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Abstract

As a consequence of the rapid development of computers, there is a strong

interest in the solution of larger and larger scattering problems. In

particular, radar cross section (RCS) problems which involve typically

scattering from complex targets many wavelengths long are of considerable

interest. Though there exist many numerical methods which are suitable for

RCS problems, the boundary integral equation (BIE) method is one of the

more efficient tools for their analysis, with costs scaling with the fifth power

of the incident frequency. The algorithm modifications described here offer

the prospect of large reductions in cost, and a possible reduction in cost

scaling to the fourth power of the frequency. This has been achieved by the

combination of a re-ordering of the normal BIE algorithm to a "project

forward" form, and implementation of a modest further physical

approximation which this re-ordering makes possible. This approach is

demonstrated for a variety of geometries, including relatively difficult ones

such as the NASA almond and cone-sphere and gap benchmarks.

The project forward algorithm has some advantages over the normal

retrospective algorithm both in parallelisation and in hybridisation with

time domain physical optics (POTD). The parallelisation and hybridisation

of the project forward algorithm are developed in this thesis and their

results are demonstrated. The results show that the project forward

algorithm is very effective in such analysis.
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Chapter 1 Introduction

1.1 Overview of the Thesis

This thesis is concerned with the application of the boundary integral

equation (BIE) method to three dimensional transient electromagnetic (EM)

wave scattering problems. The governing equations for these problems have

been known for a long time. However, the solution for all but the simplest

cases was impossible until the appearance of the first scientific mainframes

in the early 1960's. With the approximately 106 times speed increase from

the io floating-point operations per second (FLOP's)Isec of the UNIVAC-i

to the GigaFLOP speed of the present mainframes, the size and complexity of

problems which can be solved have continuously increased.

As a consequence of such developments, there is nowadays a strong interest

in the solution of larger and larger scattering problems. In particular, great

attention has been paid to radar cross section (RCS) problems which involve

typically scattering from complex targets many wavelengths long. For the

solution of realistic problems, huge computational resources are required,

and because of this it is often still impossible to solve these problems on

present computers.

A variety of numerical methods have been investigated for the solution of

these problems, and the BIE method has been proven to be one of the more

efficient techniques, with its well known advantages of surface only

discretisation, automatic satisfaction of the radiation boundary condition,
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and so on. However, so as fully to exploit the computing power offered by

available computers, existing algorithms must be re-examined with a focus

on their efficiency. This is the motivation of this thesis.

Analysis of EM scattering by conventional BIE methods has computational

costs which scale with the fifth power of the frequency. In this thesis, a

novel modification to the normal (BIE) algorithm is presented. This

modified algorithm is then combined with an approximation to the physics,

involving in effect omitting integration over regions of low field

magnitude. Whilst this does increase error slightly, it also provides large

reductions in cost, and a reduction in cost scaling to the fourth power of the

frequency. In the remainder of this thesis, the modified algorithm will be

termed the 'project forward' algorithm to contrast it with the normal

algorithm which is essentially retrospective.

Parallel computation offers a way of increasing computational power for

large scattering problems. The parallelisation of the novel 'project forward'

algorithm has been performed as a part of this work. Besides the 'project

forward' algorithm being intrinsically faster in both serial and parallel form,

parallelisation of the new algorithm has other advantages over the

parallelisation of the normal BE algorithm. It can be parallelised in a

simpler way, and efficiently implemented on distributed memory parallel

computer systems such as the CRAY T3D.

As briefly mentioned earlier, full field solutions for large scattering

problems become prohibitively expensive for electrically large bodies.

Fortunately, broadly 'optical' methods become accurate as larger bodies are
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considered. However, often large bodies have significant features which are

not electrically large, and here hybrid approaches are appropriate. In this

thesis is presented a novel hybridisation of the 'project forward' algorithm

with time domain physical optics (POTD). As with its parallelisation, the

new algorithm can be hybridised in a simpler way than the normal BIE

algorithm. Computations involving sample 'electrically large, small feature'

problems will be presented later.

In the remainder of this chapter, the characteristics of the various numerical

techniques suitable for wave scattering problems, and their computational

costs, will be investigated. The algebraic derivation and numerical

formulation of the normal BIE algorithm are described in chapter 2. Chapter

3 explains the physical basis of the potential cost saving, which leads to the

need for the normal algorithm to be modified, and the applicability of the

physical basis is investigated by showing some results obtained by

simulating the new algorithm by trivial modifications to the conventional

form. In chapter 4, the project forward algorithm is described in detail

algebraically and numerically, and differences between it and the

conventional algorithm are highlighted. The project forward algorithm is

parallelised in chapter 5, demonstrating advantages over the parallelisation

of the normal algorithm. Chapter 6 demonstrates the efficiency and accuracy

of the modified algorithm for a variety of geometries on workstations and

the CRAY T3D. In chapter 7, the project forward algorithm is hybridised

with POTD, and some results are presented. Finally chapter 8 concludes this

piece of work and suggests some associated areas for future study.
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1.2 Large EM Wave Scattering Problems

The prediction of RCS response has been a great interest in many

application areas, in particular military industries because it can be very

important in the design of much military equipment. In spite of this

importance, existing numerical methods, though extremely powerful tools,

are not truly suitable for RCS prediction on many bodies of practical interest,

because of their high computational costs.

Wave scattering problems can require very sophisticated modelling of a

geometry; both if the geometry is intricate, and if the geometry is very

smooth and 'stealthy'. Even if a geometry is simple, the field which also

needs accurate modelling varies very rapidly if the body is many

wavelengths long. In addition to these difficulties, typically RCS problems

generally involve scattering from bodies many wavelengths long.

Monostatic, or backscatter, cross section is the usual quantity of interest for

most radar systems where the receiver and transmitter are collocated, and

the number of 'look angles' required increases sharply as the bodies'

electrical size increases.

There have been many efforts to apply a variety numerical methods to RCS

problems. Loosely speaking, all works in this field are mainly concerned

with obtaining accurate solutions as efficiently as possible (and indeed this

present work is one of these). These will be reviewed in the next section.

1.3 Methods for EM Wave Scattering Problems
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There exist many numerical methods for the prediction of the wave

scattered from a body of arbitrary shape. They may be categorised broadly as

optical (asymptotic or high frequency) methods, low frequency methods, and

hybrid methods. Arguably, optical methods are not numerical methods

because instead of solving the wave equations numerically, they embody

physical approximations to the scattering behaviour. The main advantages

of optical methods are that they can be reliably used for a body that is (very)

large compared to the wavelength of the incident wave, and that their costs

for obtaining solutions are much cheaper than those of other methods.

However, their primary shortcoming is that they are only applicable for

simple geometries, where length scales are significant multiples of a

wavelength.

On the other hand, low frequency methods can be used for geometrically

highly complex problems. They can be divided into differential equation

methods which solve the differential equation directly by discretising the

volume, and integral equation methods which first transform the

differential equation to an integral equation before discretising the surface.

The overwhelming disadvantage of both these classes of method is that

existing computational resources limit the size of problem which can be

solved.

Many problems combine both a large overall size, and important features

which are not large compared to a wavelength; optical methods would be

inaccurate, and low frequency methods too expensive. Hybrid methods are

suitable for these problems, incorporating the optical methods and low
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frequency methods in the region where each is most applicable. In the

following sections, the relevant literature will be discussed in more detail.

1.3.1 Optical Methods

There are two basic optical methods; physical optics (P0) and geometrical

optics (GO)'. The well known P0 is the approximation of the surface current

induced by the incident wave. The P0 current J, = 2ñ x Hm has long been

used for evaluating the scattering properties of large objects. In the context of

the magnetic field integral equation (MFIE), this solution results from

completely neglecting mutual interaction effects, as represented by the

integral term, on the illuminated portion of the scatterer, and further

implies that in the shadow region the mutual interaction which occurs

through the integral term completely cancels the incident field term. GO

assumes that the incident and reflected rays are coplanar and the local angles

of incidence and reflection are equal. Thus, in the absence of a specular point

for a given scattering direction GO predicts that the field scattered in that

direction is zero.

Some work has been done to extend the validity of P0 and GO 2'3 . As a result,

physical theory of diffraction (PTD) and geometrical theory of diffraction

(GTD) have been developed by Ufimtsev and Keller respectively. Ufimtsev

allows calculation of the induced surface currents which are due to various

types of discontinuity. The extension of GO to GTD is based upon the

incorporation of asymptotic evaluations of known, exact solutions of

Maxwell's equations for a number of canonical problems, e.g., half-plane,

wedge, cylinder, and sphere. The optical methods so far have been used
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primarily for electrically large bodies, for which low frequency methods

cannot be used because of their high computational costs.

1.3.2 Integral Equation Methods

Integral equation (IE) methods were the first to receive detailed

development in the EM field, but mainly in the frequency domain. Time

domain IE methods are probably least advanced, possibly because these are

perceived to be the most difficult of all approaches. The main iF methods

are the method of moment (MoM) and the boundary integral equation (BE)

methods. These are briefly reviewed below, and a more detailed

investigation will be presented in the next chapter.

The MoM was introduced to electromagnetic problems by Harrington, and

to acoustics by Banaugh and Goldsmith. Electromagnetics and acoustics are

the main application areas of MoM. The frequency domain MoM may be the

most widely used method4'5 '6, but recently time domain MoM has received

increased attention7'8.

The BE approach starts from the same integral equation formulation as

MoM, but it was developed by different researchers, and for different

application areas. In particular, Brebbia, Banerjee and Butterfield contributed

to the development of the current form of BIE 9'10. The main application

areas of BE have been potential and stress analysis problems; BE methods

have had limited application to electromagnetic wave propagation

problems. In the frequency domain, a good review is presented by Kress",

and in the time domain a few works have been reported 12'13 recently.
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Frequency domain 1E methods have costs scaling with the sixth power of

incident frequency, arising from the need for inversion of a dense matrix

whose size scales with the square of frequency. The time domain IE cost

scales with the fifth power, the reasons for which will be investigated in the

next chapter. Although the scaling is more attractive than in the frequency

domain, it is from a higher base. For modest sizes of scatterer (say below -10

wavelengths long) the frequency domain approach is actually cheaper.

1.3.3 Differential Equation Methods

The two common differential equation methods are finite difference time

domain (FDTD) and the finite element (FE) methods. In 1966, the first FDTD

algorithm was introduced to the EM community by Yee 14. He used a

staggered grid mesh for the solutions of E and H fields for a perfectly

conducting square illuminated by a pulse. After his work, many analyses

have been reported15 . FDTD is usually cast as an explicit time domain

method. At each time step, the field at a point is calculated from nearby field

values at the previous step. Matrix solution is thus not required, and this

helps to enable the application of FDTD to electrically large problems.

Many EM problems are exterior, and this presents some difficulties in any

differential equation method. It is necessary to terminate the computational

solution domain at some finite distance from the body. The high cost of

analyses provides a strong incentive to minimise this distance; this is

counterbalanced by the difficulty of approximating sufficiently non-

reflective boundary conditions16 on this outer surface.
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With discretisation at a constant number of nodes per wavelength, the costs

of FDTD scale with frequency to the fourth power; three spatial dimensions,

giving a cubic dependence per timestep, and with the number of timesteps

required generally scaling with frequency. This is ostensibly the most benign

scaling of the field solution methods. However, there is some evidence'7'18

that the fineness of discretisation itself must be increased as the frequency

increases, to maintain a constant level of phase error. For the four

dimensions involved, a modest dependence of discretisation on frequency

can have significant effects, resulting in perhaps one or more additional

power of frequency overall.

The large majority of FDTD work employs regular, 'sugar cube' meshes.

When applied to curved geometries these can require 50 or more cells per

wavelength to achieve acceptable accuracy19. There is some work on

extending FDTD to curvilinear co-ordinate systems. The contour path (CP)

method has been suggested by Jurgens et a!20, which can accurately model

the curved surface with retaining the ability to model corners and edges.

Recently conformal FDTD meshes have been implemented in two

dimensional problems by Holland 21 . Possible savings over regular meshing

by a factor of 256 are reported there when wavelength/10 cell sizes are

employed instead of wavelength/SO.

The complexity of curvilinear FDTD anyway approaches that of finite

elements, which have all the well known advantages of good surface

modelling through curved elements. The use of FE for low frequency

problems is well established 22'23, and there is now a growing interest in
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applying FE to EM propagation problems24 . In the time domain, like FDTD,

FE is used as a 'marching-on-in-time' method. Like FDTD, the FE solution at

a time step is generally an explicit combination of neighbouring nodal

values. Timesteps of one eighth of the smallest element size have been used

to overcome instability25.

As in FDTD, FE requires a mesh truncation scheme when the domain of

interest is exterior and infinite. This mesh truncation scheme is classified

into two. One approach is an exact mesh truncation scheme which can

reduce the computational domain. This involves in effect the use of a

boundary integral formulation to model the infinite exterior domain

surrounding the domain discretised by finite elements. However, it destroys

the sparsity of the FEM matrix, and the BIE part is as usual dense. The other

approach is an approximate truncation scheme. It needs an absorbing

boundary condition (ABC) like FDTD and retains the sparsity of the FEM

matrix, though it increases the computational domain to ensure acceptable

level of accuracy. A recent review about this topic has been produced by

Volakis et a!26.

1.3.4 Hybrid Methods

There have been many instances of hybridisation of optical and integral

equation methods, especially MoM, since 1970's, and these works are

reviewed by Medgyesi-Mitschang and Wang 27. However, all this work has

been done in frequency domain. There has been an increased interest in

time domain methods of late. Very recently, as an exception, Walker and

Vartiainen28 combined the time domain BE method with POTD. They
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showed hybridisation to be as effective as in the frequency domain, whilst

retaining all the other advantages of the time domain. As mentioned above,

a related physical optics hybrid has been devised based on the 'project

forward' algorithm developed here. This will be described more fully later.

Introduction	 24



Chapter 2 Time Domain Boundary Integral Equation Method for

EM Wave Scattering Problems

As a precursor to describing the lower cost-scaling algorithm in chapter 4,

the application of normal three dimensional BE analysis of EM scattering

from perfect electric conductors (PEC) is presented in this chapter. Section

2.1 gives a full derivation of the time domain magnetic field integral

equation (MFIE), using the vector form of the Green's function. In section

2.2, some computational issues which arise in the governing integral

equation are discussed, and some advantages of the present approach are

explained. Numerical discretisation of a form of the MFIE which is suitable

for computation is presented in section 2.3. Section 2.4 explains some

features of pulsed excitation which can be dealt with only in the time

domain. In section 2.5, the cost scaling of the BE method in the time

domain is discussed. Sections 2.6 and 2.7 respectively explain how to

implement the methods and show some results. Finally, section 2.8 uses

these results to discuss the present approaches.

2.1 Derivation of the Magnetic Field Integral Equation

The derivation of the MFIE is presented in various texts, but mainly in the

frequency domain. Recently a detailed dyadic formulation in the time

domain has been presented by Bluck29. There is an alternative approach

based on the scalar Green function, 'vectorised' by multiplying it by an

arbitrary vector30. The arbitrariness of this vector allows it to be eliminated
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WxH—=O
(2.1.2)

(2.1.3)

(2.1.4)

part way through the development. This vector formulation is presented

here.

Whilst certainly the result, and most probably the derivation itself, are not

novel, we are not aware of a published comprehensive derivation.

Accordingly, it seemed desirable, and potentially helpful, to include the

following fairly full treatment.

Derivation of the Non-Dimensionalised Vector Wave Equations:

The derivation starts from the differential form of the free space Maxwell's

equations for a uniform perfect dielectric (source free) region,

at
	

(2.1.1)

together with the following associated constitutive equations,

U=pÜ
	

(2.1.5)

D=	 (2.1.6)

where the tilde - represents a dimensional quantity.
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,
r

L0
(2.1.9)

,- It4 (2.1.10)

E=E12
v

(2.1.11)

H=H1QJ
V0Ve

(2.1.12)

The first step involves taking the curl of equation (2.1.1) and (2.1.2), and

then using Maxwell's equations again to give;

ci' x +	 = o
	

(2.1.7)

V'xV'xH+ü)=O
	

(2.1.8)

These are the familiar vector wave equations. By introducing a typical

length scale, L0 and a typical potential difference, V0, the vector wave

equations are now non-dimensionalised as follows:

The non-dimensionalised vector wave equations may now be written in

terms of the above non-dimensional quantities, showing their dependence

on the position r' and time t'.

V' x V' x E(r', t') + 
a2E(r', t') =0
	

(2.1.13)
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d2H(r', t')V'xV'xH(r',t')+	 =0 (2.1.14)

The electric field integral equation (EFIE) and the MFIE are the integral

forms of equations (2.1.13) and (2.1.14) respectively. The following sections

will develop these, with emphasis (where the derivations diverge) on the

MFIE.

Preliminaries for the MFIE Derivation:

Figure 2.1.1 shows the domain L with locations r and r'. Other notation

will be introduced as the derivation progresses.

Consider first the 'point source' inhomogeneous, infinite domain, vector

wave equation

d2G_
V' XV' X G(r,t : r',t') - V'(V' . G) +	 aS(t - t')i5(r - r') 	 (2.1.15)

Here C at position r' and time t' is 'caused' by (is the field due to) a unit

impulsive vector source at position r and time t. The vector a is uniform

and constant, but otherwise arbitrary.

The solution to (2.1.15) can be shown to be:

1 -
	 ö(t—t' — Ir—r 'I) =aGG(r,t : r',t') = a-

4,r Ir r'I
(2.1.16)

Note that in (2.1.16) we have, on the extreme right, expressed G as the

product of the vector a and the scalar C. This 'vector times scalar' form will

be found convenient later. Note also the single dirac delta in (2.1.16), with
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spatial and temporal arguments, as opposed to the two dirac deltas in (2.1.15)

each with only a spatial or a temporal argument.

Now to transform the differential equations (2.1.13) and (2.1.14) into integral

equations involving only the surface of the domain, the vector form of

Greens second identity31 will be used for two suitably smooth and

continuous vectors p and q;

Jp . V'xV'xq—q . V'xV'xpdv' =Jn' . [(V'xq)xp—(V'xp)xq]ds'	 (2.1.17)

where v' and s' refer respectively to the volume and surface of the domain

in the primed co-ordinates, p is taken to mean p(r') and q similarly, and n' is

the unit outward pointing normal at r'.

Firstly q is replaced with G, and (2.1.17) is integrated from t'=O to t'=t, the

present time. Since G is not smooth enough to satisfy the requirements of

Greens second identity, we must exclude a small (spherical) region around r.

The excluded region and its surface are denoted by the subscript e. Equation

(2.2.17) thus can be written as;

S

t,=t

t'=O 
Jp.V'xv'xG—G.V'xv'xpdv'dt'

t.=t
= I	 In'.[(V'xG)xp—(V'xp)xG]ds'dt'

Jr=o J

(2.1.18)

Recall that G embodies an arbitrary vector a. Now we will make re-

arrangements such that every term is dotted with a, and a appears nowhere

else, allowing a to be eliminated.
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The surface integral of (2.1.18) is now considered. In the first term, V' x G

can be written as;

x G = V' x aG = V'G xa + GV' xa= V'G xa
	 (2.1.19)

since the curl of the uniform a is naturally zero. Using a standard vector

identiy, the first term of the surface integrand can thus be written as;

n'.[(V'xG)xp]=n'.[(V'Gxa)xp]=a(pxn')xV'G
	

(2.1.20)

where the a-dot is now extracted as required.

The second term of the surface intergal of (2.1.18), using again a standard

vector identity, can be written as;

n'.(V'xp)xG=G.n'x(V'xp)=aGn'x(V'xp)
	

(2.1.21)

and again a-dot has been extracted.

The entire surface integral I can thus be written as;

I = a J'	 (p x n') x V'G - Gn' x (V' x p)ds'dt'
	

(2.1.22)

where we have also taken the a outside the integral. The volume integral of

(2.1.18) will now be manipulated. First V' x V' x G in (2.1.18) is replaced with

terms from (2.1.15).

d2G	 92G
V' x V' x G(r, t: r', t') = V'(V' . G)	 = V'(V' . C) - a-- i- (2.1.23)
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Note that the right hand side of (2.1.15) is zero except inside our excluded

region, and that the time derivatives of the constant vector a are zero.

Insertion of this will generate a term p . V'(V' G), which is now

manipulated to extract a-dot.

Now using V . (ØÃ) = ØV A + VØ . A, where (V' . G) = 0, p . V'(V' . G) can be

written as;

p V'(V' . G) = V' . ((V' . G)p) - (V' . G)V' . p
	 (2.1.24)

The vector G is also replaced with aG in (2.1.24):

V' G = V' . (aG) = CV' a+ V'G a= V'G
	

(2.1.25)

where the zero divergence of the constant vector a is used. Putting this into

(2.1.24) gives:

p V'(V' . G) = V . ((V'G . a)p) - (V'G . a)V' . p

= V ((V'G a)p) - a V'G(V' . p)
(2.1.26)

The second term on the right of (2.1.26) has the a-dot extracted as required.

For the first term on the right of (2.1.26) the volume integral of the

divergence can be transformed to a surface integral, allowing the a-dot to be

extracted as required:

t,=t
I = I	 I V . ((V'G . a)p)dv'dt' =	 f ((V'G a)p) . n'ds'dt'

Jt'=o j

(2.1.27)
=a•	 JV'G(p.n')ds'dt'
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Thus the volume integral of p V'(V' . C) has been converted into:

J	 J p . V'(V' . G)dv'dt'

(2.1.28)
= —a 5	 5 V'G(V' . p)dv' dt' + a f	 5 V'G (p n')ds' dt'

a-n1

The volume integral I, of (2.1.18) now can be written with the arbitrary

vector extracted as

i, = —a.ft 5	
p+GV' XV' X p +V'G(V' . p)dv'dt'+a.5	 5 V'G(p.n')ds'dt'

n-ne
(2.1.29)

The arbitrary vector a dots everything, and so can be dropped. Doing so, and

putting the surface and volume integrals (2.1.29) and (2.1.22) back together,

finally equation (2.1.18) can be written as;

J

t'=t

t'=o 5 	 + GV' x V' x p_ V'G(V' . p)dv'dt' =

(2.1.30)

5	 5 (n'xp)xV'G^Gn'x(V'xp)+V'G(p.n')ds'dt'

Now in effect one of the two arbitrary vectors, q, in the Greens identity has

been replaced with one, C, which is useful. Now p can be replaced with

either E or H, depending on whether it is the MFIE or the EFIE which we

seek to derive. In this thesis, only the MFIE will be considered.

Derivation of the MFIE:

Now vector p is replaced by H, and we immediately use the wave equation

(2.1.13) to replace V' x V' x H with the time derivative:
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r=t	 92G	 d2H
$ 

--H—G---V'G(V'.H)dv'dt'
(2.1.31)

= 
Ir=t

IGn'x(V'xH)+(n'xH)XV'G+V'G(Hn')dS'dt'Jt'=o	 J

The first term on the left hand side is easily integrable with respect time,

since it is a perfect differential. Thus (2.1.31) becomes

5 [H - G 
dH] 

dv' - J 5 V'G(V' . H) dv' dt'

(2.1.32)

=ft JGn' x(V'x H)+(n' x H)xV'G+V'G(H .n')ds'dt'

At t'=t the only place G is non-zero is at r'=r, by virtue of (2.1.16). Similarly,

the only location where it would sift out the derivative of H is at r'=r also.

Since this location is excluded, the upper limit is zero.

The lower limit is an integral over the domain of (some function of) the

initial conditions; H and its rate of change. It is via this that the contribution

of the initial conditions to the eventual solution is included.

The form and value of the initial conditions is naturally problem

dependent. For now we will simply write the volume integral of the initial

conditions as some vector W(r). We will come back to this point later.

Equation (2.1.32) thus becomes

W -5 JV'G(V' . H)dv'dt'

(2.1.33)

=J ' JGn'x(V' xH)+(n'x H)xV'G+V'G(H .n')ds'dt'
-
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In equation (2.1.33) we have the term V'G to evaluate. Denoting r-r' as R,

and I R I as R, V'G can be written as;

V'G =	 - t' - R)+	 - t' - R)
4,rR2	RdR

(2.1.34)

We now need to differentiate the delta function. As usual, this has no

meaning till under an integral, but is of the form JVS(x0 (x)dx = —Vf=0; i.e.

where the delta function sifts the value of the associated multiplying

function, the derivative of the delta function sifts minus its derivative with

respect to the variable of integration.

Integration over the Surface of the Excluded Region

Here we will perform only the surface integrations of (2.1.33), over only the

surface of the excluded region. This will extract the 'free term'; the value of

the field at the location r. This value will then be seen to be given by the

sum of the remaining (volume and physical surface) integrals of (2.1.33).

Inserting the particular form of G and noting that for the excluded sphere

I R I, for the first term of the surface integral of (2.1.33) we have

1	 t'=t

= _f 5 -s(t— t'—R)n' x (V 1 xH)ds'dt'
4,r

(2.1.35)

Integrating (2.1.35) through time (remembering that R is small, and shortly

will be caused to tend to zero) sifts the present, t, value:
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1	 1f_n x(V'xH)ds'
4,r R

(2.1.36)

Writing ds' = R2d9, with 0 the solid angle the elemental surface subtends at

r, this becomes

151	 lflflFx(VFxH)R2d9	 (2.1.37)
4x

The limit of this as R shrinks to zero is zero. (However n' and V' x H vary

with 0 they remain finite, and are killed off by the net R term.)

For the second term of the surface integral of (2.1.33) we have

1	 t'=t
1s2 =__J.5 (1xH) 

IR2	RdRtt}5d1t	 (2.1.38)

where we have inserted V'G from (2.1.34) and have replaced n' with (unit)

R.

For the first term of (2.1.38) we have

1	 t'-t
1s2(j) =	

(. x H) [ . s(t - - R))ds'dt'	 (2.1.39)

Integrating through time again sifts the present, t, value. Doing this, and

simultaneously changing to an integration with respect to the solid angle,

we obtain

1s2(z) =_ f (xHx	 R2 d9 =__LJ(IxH)xado	 (2.1.40)
R	 4ir4'
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This is the first non-zero integral we have found, and we will come back to

this shortly.

Taking now the second term of (2.1.38), we have

1 r=t
152(U) 

= _5	 5 ( xii)	 ã	 '_R)Jds'dt'	 (2.1.41)xI--ö(t-t

a a
where we have made use of the fact that - = - for the delta function

a	 dt'

here. When we integrate (2.1.41) through time this sifts minus the time

derivative, here at time t, of the function it multiplies, giving

(_
1s2(,j) =	 -	 X -;-J 

1 R)
(2.1.42)

Again writingds' = R2d9, with 9 the solid angle the elemental surface

subtends at r, (2.1.42) becomes

1. aIi\X(a')R2d9
's2(i) =_5_Rx-J 

tR)
(2.1.43)

which again is zero as R shrinks to zero.

For the third term of the surface integral of (2.1.33) we have

1	 t'=t
's3 =	 5r=o5 1:_ro(t - t' - 

R) +	 - t' - R)J(H . a)ds'dt' 	 (2.1.44)
RdR

where we have inserted V'G from (2.1.34) and have replaced n' with (unit)

R.
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Integrating through time, using again the fact that	 for the delta

function here, and moving to the solid angle integration, gives

1g3 =	 R) -	 R	
4K '

R'dH 

JJR2d9=_1flfHldO	
(2.1.45)

where we see the approach of R to zero eliminates the second term, but

leaves the first.

The only non-zero terms we were left with were in (2.1.40) and (2.1.45).

Gathering these (and changing the order to remove one minus sign) we

have

I=-$*x(ixH)-i(H.*)d9
4ir 4g

(2.1.46)

Using a standard vector identity, we have

(2.1.47)

Integration over the Physical Volume

We now evaluate the volume integral term of (2.1.33), inserting V'G from

(2.1.34):

-1 t'=t	R d	
'_R)](V'.H)dv'dt'	 (2.1.48)'v	 J [o(t_t'_R) R dR

a-n.

Changing the differentiation variable of the delta function, and performing

the time integration (and thus sifting):
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R(	
.—Jdv
	

(2.1.49)

where Ha is the field at the retarded time, and we have also ceased to

exclude the spherical region; as its radius shrinks to zero, the R2dR dO of the

integral keeps everything perfectly well behaved.

We have a volume integration over (almost) the whole domain of the

divergence of the field (and its time derivative), at the retarded time as seen

from r. There is no mathematical reason for this to be zero; the limiting

process which eliminated the surface integrals obviously does not apply

here, but we will later have recourse to the physical observation that for the

equations we are trying to solve the divergence of H is indeed zero. The

volume integral thus will disappear.

Integration over the Physical Surface

The first term of the surface integral of (2.1.33) generates, using (2.1.34):

151 =	 1 ' i(!t - t' - R))n' x (V' x H)ds'dt' 	 (2.1.50)
.it'=oJ R11"

and integration through time yields

1	 1,I. =_J_n x(VFxH*)dsF
4rR

(2.1.51)

where the delta function has sifted the (curl of the) field value at the

retarded time.
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1	 -ñ F

xH x—ds
R2

(2.1.53)

The second term of the surface integral of (2.1.33) generates, using again

(2.1.34):

- 1 jt=t 
I (n' x H x	 - t' - R) + !I$2 

4	 /	 R-S(t_t_R)Jdsdt	 (2.1.52)
a)

Considering the first term of this and performing the time integration yields

where we have sifted (n' cross) the field value at the retarded time.

Turning now to the second term of (2.1.52) we have

(ña
's2(ii) -	 I	 I(n' x H) x	 - t' - R)Jds'dt'	 (2.1.54)

Jf'=O .1

a)

a a
As before, using - = - and performing the time integration we then sift

aR at'

once more, leaving

x— Ix—ds1s 2( , ) = ;t•- f_In'
2Ea)	 at') R

(2.1.55)

where we have sifted the time derivative of (n' cross) the field value at the

retarded time.

The third term of the surface integral of (2.1.33) generates, using (2.1.34):

1 '= (-ñ	 R)^R aI3 
= 
—5 f --ö(t t	 ---S(t - t' - R)J(H . n')ds'dt'	 (2.1.56)

a)"
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The first term of (2.1.56) integrates and sifts to give

(2.1.57)13() =	 •
47rR2

Like the first term, the second term can be written as:

iVair
I3(j) 

=	
n'Jds' (2.1.58)

The contributions are (2.1.51), (2.1.53), (2.1.55), (2.1.57) and (2.1.58). Putting

these together we have

x x___(HI =iJ!n'x(V'xH*)_a'n'xH*)x---[ ,
	 )4irR	 R2	 at'	 R R2

R	 . n'Jds'n )--R
(2.1.59)

Now equation (2.1.32) becomes, reordering a few terms for clarity:

H(r,t)=-W-__5-(V'.H)+!1'V' dH'\

	

4JrR2 RL 	
.............Jdv +

_L.J-n?x(VxH*)—(nPxHx--]	 9H

4,rR	 / R2	 XatFJXR R2 n') -	 .
R L at' )

(2.1.60)

We have here a formula for the field H at some location r in the interior of

the domain, at some time t , in terms of:

(i) an integral over the domain of the initial conditions (the term W(r))

(ii) an integral over the surface of the domain of (some geometrical function

of) the retarded (i.e. historical) values of the field and various spatial and

temporal derivatives of the field.
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(iii) an integral over the domain of the divergence of H, but as mentioned

above that will be zero.

Derivation of the Boundary Integral Equation

Equation (strictly formula) (2.1.60) was for a point r restricted to lie

somewhere in the interior of the domain. We now move the location r

onto the boundary, and for generality we have selected a non-smooth

portion of the boundary, where the exterior solid angle subtended is a. W e

will distort the boundary from this location, in much the same way as we

excluded the small spherical region earlier. This is shown in figure 2.1.2.

The physical boundary is indicated by the dotted line; outside this is a part-

spherical distorted portion, centred on r. The physical boundary is again dQ,

and the boundary of the distortion dQ.

We are now at liberty to apply (2.1.60) at location r, integrating over the sum

of dQ, anddQ

	H(r,t) = -w - J-.J--(v' H) ^ j{S7' 	 #_Jdv' +
4ir R2

1	 1, x___(H n- 5 
—n x(VxH*)_(n#xH*)x4_(nF dHJ R R .

	

R	 dt'	 R R2	 R dt

(2.1.61)

We will concentrate on the integration over the distorted surface 	 Note

that in what follows we have initially left in the asterisk to denote retarded

values, but any term sifted out from a vanishingly small distance away will

have an associated retarded time equal to the present time.
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1	 1 '	 '	
'• I)-	

')d'x___(H n	 n Si =- $ _nx(V1xH*)_(nhxW)x._	
at' R R2	R at'4,rR

(2.1.62)

In the same way as for the excluded sphere, terms involving hR are

eliminated once the R 2 dO substitution is made, and R is allowed to shrink

to zero. Thus much as in (2.1.46) and (2.1.47), (2.1.62) becomes

=	 Ji.x (1xH*)_(H* .)do =--H(r,t)	 (2.1.63)

Equation (2.1.63) provides the value of the distorted-surface integral in

(2.1.61). Using it, (and thus integrating now over only the physical

boundary), we obtain

H(r,t)("l -	 = -w - ---J--(v' . H*) + Xv' .
4ir)	 4irR2	 R	 at' 

Jdv +

	n x	 x___(H .n)-.—I—.n1J1fl1X(vPXH*)(flXHs)XR[	
_J 

R R *	
'Jds'

4,r R	 R2	 at' R R2	R at'
(2.1.64)

We see that the effect of moving to the boundary has been to modify the

coefficient of the free term, from 1 to Ii - -s-'). Note that had the surface
'...	 4,r)

been smooth the modification would thus have been from 1 to 1/2.

We now in (2.1.64) have an expression for the field at a surface location

involving fields at only other surface locations; in principle, a soluble

system.

Application of the Boundary Conditions and Other Physics
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We have as yet said nothing about boundary conditions and other aspects of

the physics of our particular problem. We will be able to make various

simplifications to our equation (2.1.64) (and corresponding ones could be

made to the formula (2.1.60)).

We know that V'• H is zero. This eliminates the volume integral from

(2.1.64) which then becomes:

H(r, t)(1 -
	

= -w +

.n')-1J_.n"1ds'
4Jr R	R2	 dt') R R2	Rt'	 )

(2.1.65)

It is often appropriate to model a scatterer as if it were the inhabitant of an

infinite domain. In terms of our present derivation, we need a doubly

connected domain, with a body wholly immersed in , with its surface

forming one of the boundaries of the domain. We must then allow the

outer surface to recede to infinity.

We must now dispose of the integrations over this infinite boundary. It is

perhaps most elegant to note that effects there at t=0, the earliest we need

worry about, will not reach us till an infinite time later, by when our

interest has declined considerably.

Physically our real world scattering problem will comprise some scatterer,

and some transmitter; two bodies 'floating' in an infinite domain. The

transmitter will have some impressed surface current (H field) distribution,

and we will solve for the H field induced on the scatterer.
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We could approach the modelling in this way, and then chose to describe

the effect of integrations over the (remote) transmitter from points r on the

scatterer in terms of an incident wave, Hmc. We would then impose zero

initial conditions, such that W simply disappears.

Alternatively, we could ignore the transmitter, and say that the initial

conditions throughout the domain were such as to result in some incident

wave Hmc arriving at the scatterer; i.e. H = -W.

If (2.1.61) is interpreted as integrations over the surface of only the scatterer,

there is no practical difference between these approaches. Our boundary will

subsequently be interpreted as the surface of the scatterer. We thus have

H(r, t)(1 -
	

=	 +

x_!(H* ,
4,r R	 R2 - 

X F) R R2	 -	
. n'Jds'

(2.1.66)

On a perfectly conducting surface there can be no tangential E field

component: n x E =0. Similarly, there can be no normal H field component:

it . H =0. We will apply these term by term to (2.1.66)

If nxE=0, nx=0 also. By maxwell's equation, if this is so, nxV'xH=O

also. Therefore, the first term of integrand in (2.1.66) must vanish.

Note that it is here that we have decoupled the H and E fields. Although the

H field has been chosen to be used here, in general it cannot be expected to

solve using the H field alone, and it is here that the E field would have
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featured. If we had not been able to state that there was no tangential

component of E, we could not have deduced that the curl of H would be

wholly normal, and so disappear when crossed with the normal. Keeping in

the curl of H would have been equivalent to keeping the time derivative of

E.

If n . H =0 then n x H is sufficient to define H; H lies in the surface , and we

could identify the surface current, J5, 
to write in place of n' x H in the

second and third terms of integrand in (2.1.66). The fourth and fifth terms of

the integrand are eliminated by n• H =0.

The incident wave term does not obey any boundary condition. However,

we could cross H with n in the left hand side free term without any loss of

the information because just as for terms two and three of the integrand, if

H =0 then n x H is sufficient to define H.

Now the surface H field is uniquely defined by the two components and the

third component can be obtained just from the linear combination of the

other two components. However, the decision for solving for two

components or three components should be made in terms of the efficiency

of the numerical calculation process though only two components are

independent of each other.

We thus finally arrive at the form we solve in practice

H(r1t)(1—_)=H	
I'	 Jxds1	 (2.1.67)

tJIC 4ir	 R2hlXdt,	 R
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Equation (2.1.67) is the MFIE for a perfect electric conductor (PEC) scatterer,

immersed in an infinite dielectric, subject to some incident wave.

Note that we choose computationally to define normals outwards from the

body, rather than outwards from the domain, as is 'mathematically'

conventional. If this changed direction of normal is understood, the two

minus signs in the integrand of (2.1.67) disappear. Thus finally we obtain

H(r,t)(1-	 H +-i-J(n' x W)x	 x -')x ds'	 (2.1.68)
.	 4,r)	 4ir	 R2 I	 dt') R

2.2 Computational Issues for the Governing Equation

There exists a variety of approaches to disretisation and solution of equation

(2.1.68), but to predict scattering from electrically large and complex bodies,

efficient solution methods are required, as well as sophisticated modelling

techniques. In this section, various approaches in use will be reviewed, and

the present approach will be briefly introduced.

2.2.1 Geometry Representation

As a means of better representing curved surfaces while avoiding the

excessive computational cost imposed by small mesh sizes, much work has

been done in many application areas. However, in general the

sophistication of electromagnetic BIE treatments lags somewhat behind the

numerical techniques used in BIE treatment of areas such as elastostatics.

In the 1960's, the wire-grid modelling approach was widely used for the

prediction of far field quantities such as radiation and radar cross sections32.
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This approach has many limitations such as ill-conditioned moment

matrices and difficulties in calculating near-field and surface quantities33.

Most of these limitations were overcome by the surface patch approach. In

particular, Rao, Wilton and Glisson 4 used a planar triangular element

which enforced continuity of the surface current at edges in 1982. It has been

used for a long time5 '6 '8. Using flat elements for a problem with sharply

curved geometry is naturally less desirable. Recently special attention has

been paid to higher order geometric approximation by using quadrilateral

elements'2 'M, and more recently similar works have been done by Chao et a!

and Bluck and Wa1ker13'.

In this thesis quadratic quadrilateral elements will be employed in

representing a geometry. This implies that scatterers which require

sophisticated geometrical treatment can be modelled in a relatively easy

way. The elements employed will be isoparametric; as will be discussed

below, similar modelling will be adopted for the field variation as for the

geometry.

2.2.2 Field Representation in Space and Time

In recent years, the cost of solving RCS problems has matched and in some

cases even surpassed that of computational fluid dynamics. The difficulty

arises from the need to model not only the geometry but also the field

variation. Even if the geometry is simple, modelling of the rapid variation

of field can be expensive. For wavelengths which are short compared with

the length of the body, this may lead to impractical computation times.
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Generally, low order (piecewise constant or linear) polynomial

interpolation of the field variable is used in MoM techniques. However, for

the accurate modelling of the field variation, this approach requires more

nodes per wavelength than does higher order polynominal interpolation.

On the other hand, the BIE method in other application areas has long used

techniques based on FE methods to obtain more sophisticated field

representation, by the use of higher order polynomial interpolation. These

have had limited application to EM wave scattering problems. In the

frequency domain, Ingber and OttM used linear field representation in 1991

and Chao et a!35 used quadratic polynomial interpolation in representing

field in 1995. In the time domain, quadratic representation of field variation

in space and time has been used by only a very few researchers12'13.

In this thesis, quadratic modelling of the field variation in both space and

time will be used. As mentioned earlier, the use of higher order

polynomials means that fewer nodes are required to describe any given field

variation, in both space and time.

2.2.3 Integration

All integral methods involve the integration of a kernel function over a

given domain. In most cases, this integration can be performed 1y

employing standard numerical integration. However, when the field point

lies in the element over which integration is being performed, the kernel

function becomes singular over the domain of integration. This singular

kernel function may be separated into two classes: weakly singular, and
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strongly singular. Some works associated with the integration of such

kernel functions are discussed below.

Regular Integration

Historically, the numerical integration applied to integral equations in

electromagnetics has generally been rather basic, reflecting the field and

geometry approximation themselves. As an instance, the simple midpoint-

rule has been widely used for planar elements. In this thesis, standard

Gaussian quadrature will be used, where the order can be varied at will to

provide any desired degree of accuracy of integration.

Weakly Singular Integration

The weakly singular integration may be evaluated via Lachat and Watson36

partitioning, followed by standard Gaussian Quadrature. This is akin to a

transformation to polar co-ordinates and is discussed in detail elsewhere29.

This partitioning scheme will be used in this thesis and details will be

explained in the next section.

Strongly Singular Integration

The strongly singular integration is a more difficult problem. For the many

researchers who have employed simple flat triangular elements7'8'37'38'39'40'4'

these difficult integrands very conveniently vanish. However, as explained

above, flat triangular elements are best used only for simple shapes, and

very many must be used in describing curved geometry and rapid field

variations.
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Cauchy principal value (CPV) integrations can be calculated by direct

computation or indirect computation. Indirect methods can sometimes be

used to obtain the diagonal matrix coefficients from knowledge of the

values of the more easily obtained off-diagonal matrix elements. Methods to

evaluate them more directly have been developed by several researchers.

Recently a method using a parallelogram element has been reported by Liao

and Xu42 for three dimensional elastic problems. Similarly, a tangential

element was developed by Bluck et a!43 for the solution of time domain EM

wave scattering problems. The CPV integration is changed into a weakly

singular integration and a contour integration. The weakly singular parts

are evaluated by means of the partitioning scheme mentioned above, while

the strongly singular parts of all contour integrals cancel with corresponding

terms on neighbouring elements. This method has many advantages such

as cheap computational cost, accuracy on curved (and stealthy) bodies, and

easy extension to other element topologies. Thus it is adopted here and will

be described further in the next section.

2.2.4 Implicitness. Explicitness and Stability

The usual approach in the numerical solution of transient wave scattering

problems is the so-called marching-on-in-time method. Normally this

method is implemented by forcing the treatment to be explicit, leaving no

equation ever actually needing to be 'solved'. This indeed is thought of as

an important advantage of this method; no matrix solution is needed if the

time step is smaller than a certain upper limit which is determined by the

spatial discretisation of the object.
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However, an important disadvantage of this procedure is the possible

occurrence of instabilities. Various techniques for solving these instabilities

have been reported. Rynne 37' showed that the convergence of an explicit

marching-on-in-time method can depend on the properties of the time

derivative approximation (of function f, at time step k+1), and that careful

evaluation of this term was required. The use of more stable

approximations,	 a	 retrospective	 averaging	 approach:

= Vk+l + 21k +fk-1)/4 he found to give a marked improvement in the

stability of the results with the modest loss in accuracy. An averaging

process approach was also suggested by Smith 39 . It is suggested that the

instability is related to the existence of resonant frequencies at which the

corresponding frequency domain integral equation has more than one

solution, and as a stabilising method, averaging solution over three time

steps as the computation proceeds was found to be reasonably successful in

suppressing instability.

In 1991 Rao and Wilton 8 presented explicit time domain scattering

computations, and observed instabilities. In the following year Vechinski

and Rao7 proposed methods to stabilise their work. They employed a

temporal retrospective averaging, which despite some correspondence

between them seems for practical purposes identical to that of Rynne

mentioned above.

In this thesis, the implicit approach will be used, which seems in practice to

eliminate the stability difficulties normally associated with explicit

approaches. Although this implicit approach is accompanied by the need for
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repeated matrix equation solution, the use of an iterative solver allows the

additional cost of matrix solution to be trivial. Details will be explained in

the next section.

2.3 Numerical Discretisation of MFIE

Numerical solution of equation (2.1.68) requires discretisation of the surface

. In this section, the numerical discretisation of equation (2.1.68) for a

smooth surface (a = 2) is described by using quadrilateral elements in space

and quadratic elements in time during which the field is to be modelled.

Only an outline description will be given here, as a more detailed

presentation will be given when showing the modified 'project forward'

algorithm later.

2.3.1 Geometry Representation

The surface is divided into elements, over which the geometry is

approximated by a set of polynomial functions;

S(,ii)	 a=1,...,9	 (2.3.1.1)

where	 are the parameterised spatial co-ordinates. Here nine noded

quadrilaterals are used, but in principle a wide range may be employed.

The geometry in each element is thus described by

9
rm(,) =	 Sa(FT1)1j(ma)

	 (2.3.1.2)
a=1
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where j = j(m, a) are the global node numbers of the local nodes on element

m, and rj(m,a) is the position vector of each of these nodes.

The radial distance vector from the ith spatial node to some	 co-ordinate

location on the mth spatial element is then;

9

Rm(1;;,?1)=; -	 Sa(F11)1)(ma)
	 (2.3.1.3)

a-i

The above transformation onto a bi-unit square in , i co-ordinates allows a

integration to be carried between +1 and -1 in both intrinsic co-ordinates

and ii. The Jacobian of the transformation, essentially a position dependant

scaling between areas in Cartesian co-ordinates and areas in ,ii co-

ordinates, must be evaluated. The area of an element of surface of sides d

and dii is obtained by

ds' =	 x eqddi1
	

(2.3.1.4)

where e and e q are the tangent vectors

e =	 + --e +
	

(2.3.1.5)

e q = -e +--e 2 +--e3

Thus the Jacobian can be written as;

= e X e
	 (2.3.1.6)
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e Xe
'7

Ie xe,
(2.3.1.7)

In addition to the Jacobian, the unit normal vector over the surface is

required. The unit normal vector at a point (,ii) can be obtained from

With the Jacobian of transformation LJ(,i)j and the unit normal vector

n(, ii). equation (2.2.37) can be written

2irH(i,t) = 4irH,(;,t)
M	 (9+J$!	 Sa(#7i)(fl'(,71) x H(,11;t*(Rm,t))) x	 }IJ1Idd17	 (2.3.1.8)

m=4 , ,7 1a=i
M	 (9

+ 5$	 S (, i )(n'( , i) x H(, 17; t (Rm , t))) X	 }IJ(1 17*thi
m=l ,q 1a=i

where the dependence of t on R is explicitly indicated.

2.3.2 Field Representation in Space and Time

Using an isoparametric formulation, the spatial variation of the surface

magnetic field over an element m may be written

H(,fl; t)Im =	 Sa(l11)Hj(ma)(t)
	

(2.3.2.1)

where again, j = j(m,a) are the global node numbers of the local nodes on

element m.

The temporal variation of the magnetic field over a temporal element 1 is

modelled by using quadratic elements of length 2it , with associated basis

functions T(r), with r the intrinsic time.
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3

Hj(ma) ()I i =	 T (1.)jk(Ifl)	 (2.3.2.2), j(m,a)
fl-i

where k = k(l,13) are the global timestep numbers of the local temporal

nodes on temporal element 1, and H ) are the field values at the spatial

nodes, at the three time steps of the temporal element in which the time of

interest falls.

Now the field at some intrinsic location (,ii) within spatial element m, at

an intrinsic time r within temporal element 1, is approximated as;

93

H(,?1,t')Imi =	 , j(m,a)
	

(2.3.2.3)

a=1/3=1

Any particular location in (space, time) will lie in a single (spatial, temporal)

element. Thus for a nine noded quadrilateral spatial element, the field at

some location on it, at some time, is expressed as the weighted sum of the 27

(spatial and temporal) nodal values which surround it in the 'space-time'

box.

Now the field is evaluated for a particular timestep k +1, with t = (k + 1)&

For the lossless dielectric of interest, historical field values at retarded times

are required. It is convenient to arrange that the present timestep, k +1, for

which the field is being found, forms the final node of a temporal element.

Then the number 1 of elements ago that the element in which the relevant

retarded time falls is computed , via;
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1* = inj_&l	 (2.3.2.4)
I2AtJ

and we identify the set of timestep numbers k(l*,f3) = k - 21 —2 + 13 associated

with that element. The intrinsic time r corresponding to the retarded time

is then found via

(21* + i)At - R
r(R) =__________

Then equation (2.3.1.8) may be written, using (2.3.2.1) to (2.3.2.5), as

2,rH1 = 42k+i	 (2.3.2.6)

(2.3.2.5)

	

M 19	 1T

+JJ	 S(ii1)I	
((R7 )) + 

iP(V(Rm))][( '(i) x H') Rm]}IJ(17)Idd11

	

Ia= 1	 p=i	 Rm	LtR

2.3.3 Integration

It is clear that the integrals contained in equation (2.3.2.6) must be evaluated

numerically. The elements where the field point is not on the element

being integrated, which will be termed the 'non-self element', can be treated

by standard Gaussian Quadrature (regular integration). However, if the field

point lies in the element being integrated, integrations which will be termed

'self element', the integrand becomes badly behaved, with the hR and hR2

terms giving rise to weakly and strongly singular integrands respectively.

For each case, a brief explanation is given below.

Regular Integration
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For a single one of the non-self elements, integration in the summation in

equation (2.3.2.6) can be performed, using standard Gaussian quadrature of

order NGxNG:

1	 ________ + i'$(r(Rm))][( '(
	 ) x	 x Rm1}IJ(i?1)Idd11öFLm 

= $J 	 Sa(,11)	
R3	 AtRL a=1	 m

NGNG9

=	
+

p=i q=la=1	 p=i	 R	 btR	
J[(u1) x H') x Rm]IJ(#11)kOpWq

(2.3.3.1)

Part of the kernel of equation (2.3.3.1) is conveniently expressed by writing

(n x H) x R as a [A']H, with the matrix [A'] given by:

nR2+nR3	 —nR2	 —nR3

[A'] =	 —nR1	 nR1 +nR3	—nR3	 (2.3.3.2)

—fl3i1	 —nR2	nR1 + nR2

where in Cartesian co-ordinates n' = (n,n,n) and Rm = (R1,R2IR3).

Thus equation (2.3.3.1) becomes

NG NG	 "T (T(Rm )) +
R3p=l q=la=1	 m

(2.3.3.3)

where Gauss weights are represented as co and	 and Gauss locations as

and 11q•

Note that the retarded time associated with different Gaussian locations in a

given spatial element may well fall in different temporal elements. Each

such location would generate 3 sets of 9 coefficients. Since the temporal
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elements would be adjacent, the first and last sets of nine would generally be

common to the adjacent temporal elements, resulting in 9x3, 9x5, 9x7,

.and so on possible distinct coefficients resulting from integration over a

single element.

Weakly Singular Integration

The self-element is partitioned into triangles, whose number NP depends

on the location of the field node within the element. These triangles allow a

polar co-ordinate system to be used which removes the singularity, and this

in turn is transformed into an integral over bi-unit square in new intrinsic

,i) co-ordinates, to allow Gaussian quadrature to be used. The integration

over a single one of the self- elements can then be written as;

NP NC NC 9	
1Tfl((Rm)) +
	 J[A']H(1'J( flq)Js(piq)pU)q

R3
(m,a)I c1

s=lp=lq=la=1	 m

(2.3.3.4)

where Js(pMq) is the Jacobian for the transformation of triangle into the bi-

unit square. Fuller details are given elsewhere29.

Strongly Singular Integration

The method presented, presented first by Bluck et a!43, here involves the

subtraction of a related, similarly singular kernel from the true kernel. This

technique weakens the singularity sufficiently for the above 0(1 / R) singular

integration method to be used for the residue. The singular kernel

introduced is constructed in such a way that it has the crucial property of
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cancelling exactly with this same kernel introduced on neighbouring

elements.

Consider the following integral, which is typical of those arising in equation

(2.3.2.6)

rT(r) +	 x H') x RmdS'	 (2.3.3.5)oHm 
= S sa()L R, AtPj

This integral is computed over an element m, in which a strongly singular

integration arises.

Now a 'tangential element', ñz is constructed as shown in figure 2.3.1,

chosen to be a parallelogram tangent to the element m at the singular node.

Using the element th, equation (2.3.3.5) can be written in the following

form:

[T (r) T'/3(t)1(l x H') x Rds'OH m =SSa(F1i)[ R
3 +m	 EtR	

(2.3.3.6)

_5(n' x H')x ..ZLds' +f (ñ' x H')x fds'
ñi	 m

All quantities with the - symbol are evaluated on the newly constructed

tangential element th, and the second and third integrals on the right hand

side of equation (2.3.3.6) are computed over it. By construction, and from

figure 2.3.1, it is seen that as R approaches to zero, R, j, and ñ' get closer

and closer to R, J, and n' respectively.

By changing to parameterized space and using Stokes' theorem, equation

(2.3.3.6) can be written as;
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r 7 (r)	 8(•)1( x H') x RmJ(, 11 dd11 - JJ(n' x H') x5Hm =ffSa I 3 +
i, [ 

R	 EtR]

- ---dlxH'
	

(2.3.3.7)

a(th)

IJ(,n and Jdenote the Jacobian of the transformation from both the true

element and the tangent element respectively onto the bi-unit square. As

the notation implies, the latter is a constant by construction.

Now the integrand in the first term of equation (2.3.3.7) is at worst 0(1/ R)

singular and so the technique discussed above can be used. Finally using

matrix notation, equation (2.3.3.7) can be expressed as;

NP NG NG

m
s=1 p=l q=1

ITPN 
t(r)

Sa(piflq) R3 +
m pWq - [P]}H

Rm

(2.3.3.8)

where

n 2 + ñk3

[A']=	 _n1

—ñR1

—n1R2	 —n1R3

n; 1 + ñk3	-nk3

-n 2	n;k1 + nk2

(2.3.3.9)

and

0	 —l.p —1.p
[P] =	 p	 0	 -î p	 (2.3.3.10)

-Ii' jp	 0
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p =	 (2.3.3.11)
d(th)R

Here equation (2.3.3.7) is the particular case of equation (2.3.3.4) when J3=3,

=1 and j(m,a) = i, the singular node. The contour integral of equation

(2.3.3.11) can be treated analytically, as described in the paper by Bluck et a!43.

2.3.4 Implicitness. Explicitness and Stability

Evaluation of the summations in equation (2.3.3.1) provides an expression

for the contribution to the field at a location in terms of a weighted sum of

historical field values. The field on the left of equation (2.3.3.1) is (as yet) a

three component vector, expressed as a weighted sum of historical three

component vectors. The weights thus take the form of 3 by 3 (sub) matrices.

Application of the PEC boundary conditions allows these to be reduced to 2

by 2 matrices. This elimination process is described in various texts45'.

Now all of the M equations (2.3.3.1) can be assembled, and non-zero matrix

entries which are related to timesteps before the present one at which the

field is being sought can be multiplied by the associated historical field

value, forming a known contribution to the field which can be added to the

incident wave term. Coefficients multiplying as yet unknown (i.e. nearby)

field values are moved to the left hand side, and together with the free term

form a sparse matrix equation for these new field values:

[a]H = [c]	 (2.3.4.1)
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Note that neighbouring new field values affect each other; a matrix

equation is solved at each time step, and the approach used here is thus not

an explicit but an implicit one. Implicitness has important consequences. In

spite of the disadvantage of requiring solution of matrix equation, this is for

all practical purposes not subject to instability, as the explicit approach is.

Furthermore, and of crucial importance for computational costs, it allows

local refinement to be used at edges, apertures, corners and so on, without

requiring a corresponding reduction in timestep.

2.3.5 Matrix Solution

The rational choice of time step At, providing broadly equally good

modelling of temporal and spatial variations of field, ensures that in

general only a handful of distances between field point and Gauss points on

boundary elements are shorter than cAt. The consequence is that the [a]

matrix in equation (2.3.4.1) is sparse and this sparse matrix equation is

solved at every time step.

Using iterative methods such as the conjugate gradient (CG) method, and

with an excellent initial guess available in the form of the field at the

previous time step, convergence is generally achieved in a handful of

iterations. These iterative techniques involve a simple matrix vector

multiplication, where the matrix [a] has very small number of entries per

row. The result of this makes the matrix solution cost a trivial fraction of

the total cost, and a fraction that itself declines as larger problems are

tackled.
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2.4 Pulsed Excitation

The time domain Maxwell equations represent a more general form than

the frequency domain Helmholz equation, which are usually restricted to

solving scattering problems having time harmonic fields. A time-domain

approach can obtain continuous wave (single frequency, harmonic) as well

as single-pulse (broad-band frequency) transient response.

However in general, the RCS response is desired in the frequency domain,

whereas the computational solution is in the time domain. The time

domain results of electric and magnetic scattered waves are processed using

a spectral technique such as Fourier deconvolution to obtain the response in

the frequency domain. For a continuous wave representing a single

frequency, the spectral analysis will provide the response at the given

frequency, whereas for a pulse case containing many frequencies, the

spectral analysis allows one to compute the RCS response for all frequencies

contained in the incident pulse from a single time-domain transient

calculation. An upper limit to the frequency which can in practice be

extracted arises from the 'cut-off' implicit in the discretisation.

The pulse width and the frequency range which can be extracted from the

pulse are related. Generally, as the pulse becomes narrow, the wider is the

range of frequency that can be extracted. However, the pulse must be wide

enough for the timestep to model its temporal variation, and the spatial

discretisation its spatial variation. Therefore, choosing a proper pulse width

may be explained in terms of the associated number of timesteps. Some
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results will be demonstrated by relating them to the timestep size in section

2 .7.

In this thesis, a Gauss pulse is used for the pulsed excitation, and thus the

incident wave Hmc has the form:

41n2(t-R/c)21
Hmc (r,t) = H0 exp{_	

g2
(2.4.1)

where the pulse width parameter g is selected to provide the desired width

at half maximum of this pulse.

2.5 Cost Scaling of BIEM for RCS problems

In the section below are obtained order of magnitude estimates of the

computational costs of BIE techniques for transient wave scattering

problems. Two main computational costs are of interest; matrix formation

and matrix-vector multiplication for forming the right hand side vector.

The dominant cost is dependent on the particular problem, principally the

number and frequencies of the incident waves. For the MFIE,

computational costs will be calculated below as a function of the number

and frequencies of the incident waves.

A perfectly conducting sphere of P wavelengths diameter is considered as a

geometry. The body is covered in nodal points at a spatial separation of n

per wavelength and the temporal discretisation is at the same rate n per

period of radiation. In the discussion below F and rM are defined as the
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costs of matrix formation and matrix-vector multiplication per coefficient

respectively.

The approximate number of surface nodes and time steps per transit can

then be calculated as;

,rp2n2
	

(2.5.1)

and

Pn
	 (2.5.2)

respectively.

The computational costs can be investigated by estimating the number of

non-zero matrix coefficients. It is assumed, due to the implicit nature of the

method in this thesis, that the time step & is bounded by the maximum

spatial nodal spacing. The maximum number of temporal elements

required to cover' any spatial element is then three. The minimum will be

obviously one, that is, one temporal element may completely 'cover' the

spatial element. This is likely to be the case in particular in a problem with

local mesh refinement.

If the maximum number of temporal elements per spatial element is three,

then at most seven and at least three contributions may arise from the

integral over this element. Considering 3 by 3 (sub) matrices, thus the

number of non-zero matrix entries N .e,,nes can then be shown to be;

(3 x 3) x 3 x (,rP2n2 )2 ^ N t _e,	 ^ (3 x 3) x 7 x (,rP2n2 )2	(2.5.3)
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or equivalently,

27,r 2P4n4 ^	 ^ 63,rPn
	

(2.5.4)

Therefore, the number of non-zero matrix entries can be written as;

N i,uentncs = cur 2 P4n4 	 (27 ^ a ^ 63)
	

(2.5.5)

Now the matrix formation cost	 can be directly calculated by

multiplying the number of non-zero matrix entries by tFl the formation

time of each, without any consideration of the incident waves, because the

matrix is only dependent on geometry. Thus C1 will be shown to scale

with the fourth power of the frequency of the incident wave;

Ciorm = wr2P4n4 x
	

(2.5.6)

The number of incident waves must be considered for the calculation of the

matrix-vector multiplication cost 	 and this multiplication is

performed as many times as the total number of time steps, which is

typically perhaps three times the number of time steps per transit. It should

also noted that by now the 3 by 3 (sub) matrices have been reduced to 2 by 2

by the application of the PEC boundary conditions. Thus Cmuit,,,ij	 can be

written as below:

Cmuitq,iicatj = Nwa x 3Pn x a,r2P4n4 x =	 x a,r2P5n5 x
	

(2.5.7)

where N a is the number of incident waves.
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In the above equation, Na should increase with frequency due to the fact

that as the frequency of incident wave increases, more illumination angles

are required so as to characterise the response. Thus	 will be by far

the dominant cost, which scales with the fifth or sixth power of the

frequency as body size increases, even though the cost ratio F I rM is

typically -100 in time.

These two main costs are compared in figure 2.5.1, where Na is

approximated as 20P for the multiple illumination angles, and the values n

and a are taken to be 10 and 54 respectively. Figure 2.5.1 shows that

Cmuiti, t is an increasing fraction of the total for a single illumination angle

and as would be expected is by far the dominant cost for the multiple

illumination angles.

2.6 Computational Implementation of BIEM

The methods described in section 2.3 have been implemented in Fortran 77,

mainly on workstations including DEC alpha and Silicon Graphics. Creating

solid models and meshes, and displaying results are via a direct interface to

the widely used commercial CAD package; MSC 'Patran'.

2.6.1 Pre-Processing

There are two main activities in this stage. One is converting a neutral file

from Patran to a mesh file which is easily recognisable and usable as an

input file. This file has nodal co-ordinates and element information such as

the node numbers each element has.
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The other is performing tests on the quality of mesh. This process has many

advantages because the test results are sometimes useful in analysing results

obtained finally, and much information such as node normals and

Cartesian co-ordinates of the intrinsic co-ordinates origin is pre-calculated

and stored.

2.6.2 Surface Current Calculation

This stage is the most important and costly. The first step involved in this

stage is the matrix formation. The integration of the kernel over all

elements is performed for all (field) nodes. For each field point and element

combination, there will be an array of linear relationships between the H

field at a field node and the H field at a boundary node on an element at a

small number of neighbouring time steps. All the contributions from

integrating from a field point over all elements are inserted into a matrix

row. This row is generally sparse, with entries clustered around a few time

steps, and therefore is rearranged in a compact form so as to reduce storage

requirements. It is then written to a matrix file in the specified location.

As the second step, the matrix is read from the disk, and the corresponding

right hand side vector is calculated for each timestep. Finally the matrix

equation is solved by the conjugate gradient squared (CGS) method at each

location, for each time step.

2.6.3 Far Field Solution

Once the surface field has been calculated, the far field solution can be

obtained using a spectral technique. Here the Fourier decomposition
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method is used for obtaining RCS response to harmonic waves at a given

frequency.

2.7 Some Examples of EM Scattering Problems

In this section the methods described in previous sections are demonstrated,

using three different geometries illuminated with a Gaussian pulse. In

section 2.7.1, numerical results are compared with analytical results for a

sphere. The proper pulse width is investigated in terms of accuracy in

section 2.7.2, and some results for a more difficult geometry than a sphere

are shown using this pulse width in section 2.7.3. The surface current is

calculated in all cases, and as a far field solution, a number of bistatic RCS

evaluations are made.

2.7.1 Sphere

Figure 2.7.1.2 shows the bistatic RCS of the one wavelength long (674 node)

sphere in figure 2.7.1.1, calculated by the Mie series, and by BIE time domain

method. The bistatic RCS is extracted from the results of a pulsed

illumination. Good agreement can be seen between the analytical and

calculated results. Figure 2.7.1.3 shows the time variation of the surface

field, H, for a single surface location, at (-0.15, -0.79, -0.59) when the wave

propagates in the +y direction. The peak when the wave arrives, at time,

—2.8, is easily seen.

2.7.2 Choosing the Pulse Width
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The question of the optimum combination of mesh nodal spacing, timestep

length, and illumination pulse width, to achieve some desired mix of

accuracy and computational cost, is complicated. It is also to a degree

problem dependant, and in practice some essentially empirical, pragmatic

approach must be used.

Here we will show some results on a dipole geometry; they are typical of a

large number, from which the 'rules of thumb' actually employed have

been derived.

Figure 2.7.2.2 shows results on a 10:1 cylindrical dipole, with hemispherical

ends, shown in figure 2.7.2.1. It was illuminated from head-on with a

Gaussian pulse with several different pulse widths to extract the bistatic RCS

results at a certain frequency.

The bistatic RCS in figure 2.7.2.2 is extracted for a wavelength of -1/4 of the

dipole length. This corresponds to a maximum nodal separation of 1/10 of a

wavelength. This is known from frequency domain work, where obviously

timestep issues do not arise, to provide a good compromise between cost

and accuracy. With quadratic modelling of both spatial and temporal

variation, we use "the same" timestep; that is, tht - Ax, where c is the wave

speed, and At and Ax the timestep and maximum nodal spacing

respectively. The different lines on this figure correspond to illuminations

using different pulse widths. Pulse widths are described in terms of the

number of timesteps used to model the width at half maximum of the

Gaussian pulse. A broad pulse provides 'less' of the higher frequency

components of interest, but is easier to model; a narrow pulse, the reverse. It
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is seen from the figure that good agreement is found between time and

frequency domain results with the combination of a timestep size and

maximum mesh spacing each about 1/3 of the pulse half-width. This

combination, or there about, is generally used in this work.

2.7.3 NASA Almond

The almond is one of a set of benchmark RCS targets described by Woo 47. It

probably provides a good test of the approaches adopted in this thesis, as the

backscatter RCS is low, and the main backscatter is probably due to waves

creeping around the surface.

In figure 2.7.3.1, a 690 almond mesh is shown, and the 1.19 GHz

(approximately 1 wavelength long) bistatic RCS for vertical(VV)

polarisation is presented in figure 2.7.3.2. It shows good agreement at the

backscatter between the measured (-38 dB sq m) and calculated (38.257 dB sq

m) RCS.

2.8 Discussion

This chapter has described in detail the application of a conventional

boundary integral equation method to the solution of transient EM wave

scattering problems. The use of quadratic interpolation in representing a

geometry and field has been shown, and the singular integration and

implicitness associated with stability problem are considered.

The methods adopted in this thesis have been demonstrated for a few

simple problems, and good results have been obtained. Satisfactory means
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has been identified to help select the combinations of pulse width, mesh

refinement and timestep to employ. In particular, it has been shown that

these methods, incorporating smooth (non-facetted) modelling, allows

accurate results to be obtained for difficult problems (for example, almond),

even using relatively modest computational resources.
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Figure 2.1.1	 Domain and domain boundaries (I)

Figure 2.1.2	 Domain and domain boundaries (II)
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Figure 2.7.1.1	 674 node sphere mesh
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Figure 2.7.2.1	 674 node dipole mesh
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Figure 2.7.2.2	 Bistatic RCS of 10:1 dipole: 4 wavelengths long case
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Figure 2.7.3.1	 690 node almond mesh
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Chapter 3 Physical Basis of the Computational Cost Reduction

In this chapter, the physical observation which allows the project forward

algorithm to achieve cost savings is described. It was presented earlier 1y

Walker48, along with an investigation into the likely loss in solution

accuracy the approximation involved would cause. For completeness,

however, it is briefly summarised here based closely on the reference cited,

and demonstrations of the physical basis, without any modification of the

algorithm to reduce costs, are given here.

This chapter is organised as follows. Section 3.1 briefly introduces the cost

reduction methods. As a main section, section 3.2 describes these methods

and shows some ways of implementing them. In section 3.3 are presented

the results of investigations into the accuracy loss which the additional

physical approximation causes, and into the accompanying cost saving

which might be achieved if that accuracy loss is acceptable. Finally section 3.4

discusses possible ways of implementing the cost reduction methods.

3.1 Introduction

One approach to time domain modelling is to illuminate with a harmonic

wave, following the calculation for long enough for transient effects to

become negligible. The harmonic surface field can then be interrogated to

obtain the response at that single frequency.

An alternative is to use a (for example Gaussian) pulse. This is in practice

less straightforward; the interactions between optimum mesh fineness,
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timestep size and maximum frequency which can reliably be extracted are

rather complicated. It does have the major advantage that responses at other

frequencies up to maximum can also be obtained at the minimal cost.

For present purposes, the pulsed illumination has a more crucial role to

play. It is on the pulsed nature of the excitation, with the primary excitation

being in length a small fraction of the body length, that the cost saving

measures depend. These physical approximations, described in section 3.2,

will provide an opportunity to reduce power dependence of computational

costs with the frequency for this pulsed excitation form.

3.2 Physical Basis of Cost Saving

A pulse which is short compared to the body will tend to move over the

body as a fairly narrow 'active' band, of a length in the direction of travel

roughly equal to the pulse width plus a 'wake' of maybe several pulse

widths. Fields on the surface will tend to be small outside this band, save

perhaps for wholesale reflections off geometrical features. Such reflections

will themselves, however, tend to take the form of an active band of a few

pulse widths.

The main work at each time step in the regular time domain BE approach is

the integration over the surface to obtain the effect 'here and now' of

historical (retarded) surface fields. There may be little benefit in integration

over regions outside this active band, where the (historical) field was small.

As suggested above, it seems likely that this active band may be of a width

related to the pulse width; perhaps a modest multiple of it. In that case the
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area of the surface over which it is necessary to integrate is reduced by a

factor of order 0, where 9 is the size of the body in wavelengths in the

direction of propagation.

Now the methods to neglect all but this active band must identify some

essentially arbitrary field value below which we treat the surface field as

negligible, because naturally no part of any body is absolutely quiescent. This

fact leads one to the idea of a threshold, below which the field is treated as

zero. There are many ways of thresholding, but they should all aim to fulfil

the requirement that at any time step, sufficient portions of the surface

satisfy the thresholding criterion for appreciable saving to be possible

without significant loss in overall accuracy. One easy and simple

thresholding technique suggests itself; the threshold value, taken as constant

throughout all time steps, is a certain fraction of the incident wave

amplitude. This simple thresholding technique will be used in this thesis,

and various alternative approaches will be discussed later.

The physical basis explained above may be viewed in some respects as lying

in some sense between the conventional full field solution and the P0

approximation. One of the short-comings of the P0 approximation is its

inability accurately to represent the current near the terminator (the

illuminated region-shadow boundary). This can be a source of significant

error because of the abrupt discontinuity in current which occurs. A typical

way of circumventing this difficulty is to use a "pseudo" P0 approximation

which employs the integral equation to find the current in the shadow

region. The above approximation can be an alternative approach. The
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integral equations are employed both in illuminated and shadow regions,

but more subtle approximation are made within the integral equation.

It needs to be ascertained that the pulse width is indeed related to the

amount of cost saving. For a given body, as the pulses become shorter,

pulsed illumination will tend to leave increasing fractions of the surface of

the body quiescent. This means that possibly greater savings can be achieved

by using narrower and narrower pulse widths. However, as mentioned in

the previous chapter, the fineness of temporal and spatial discretisation

needs to be sufficient to model the pulse accurately. The overall cost scalings

still mean that it is not likely to be cost effective to mesh more finely than is

needed to represent properly the highest frequency of interest.

3.3 Thresholding Results

In the section below, the results to illustrate the accuracy loss given by this

neglect of all but 'small' fields are presented for various geometries. As

mentioned earlier, simple thresholding technique is used; the threshold

value is the quoted fraction of the incident pulse amplitude.

3.3.1 10:1 Dipole

The first results are for a 10:1 cylindrical dipole, with hemispherical ends. It

was illuminated 200 degrees off-axis with a Gaussian pulse with the pulse

width selected to allow extraction of results at relevant frequencies.

The bistatic radar cross section (RCS) is shown in Figure 3.3.1.1, extracted for

a wavelength of 1/4.4 of the dipole length. The different lines on figure
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3.3.1.1 correspond to different levels of threshold. There is a steady

worsening of the result with increasing threshold, as would be expected.

However, even the 5% and 10% threshold results are close to the normal

BIE time domain result over most of the range, and for most practical

purposes the 1% and 2% cases are probably indistinguishable from it.

Figure 3.3.1.2 shows the time variation of the surface field on-axis at the far

end in the direction of travel of the pulse, for the same cases. The peak when

the wave arrives, at timestep —60, is obvious. The main wave then travels

back, leaving the field at the end jittering close to zero. Most of this jitter is

missed in the threshold cases, and indeed thresholding is such that the

return wave seen at timestep 140 is supressed. If it were desired to capture

this second bounce this is a perhaps a case where time dependent

thresholding based on the present maximum field would be required.

3.3.2 Bent Dipole

The bistatic RCS of a hemispherically capped 10:1 aspect ratio dipole, with a

90° bend at its centre is calculated. The mesh used is shown in figure 3.3.2.1.

This was illuminated by a half-sinusoid pulse, such that each arm of the

dipole was 2 wavelengths long. It is a problem of modest size, and thus not

one where dramatic savings are to be expected. For example, even if

thresholding were to eliminate essentially all but the incident wave

contribution, it would be expected that the active region in this case would

be —1/4 to 1/2 of the body surface during the first transit.
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The calculation was performed with a range of thresholds, and the bistatic

RCS for each case is indicated on figure 3.3.2.2. There is a steady increase in

deviation from the 0% base case, although with even large 15% threshold,

the main deviations involve only a deepening of troughs. Figure 3.3.2.3

shows the number (out of the total of 1094) nodes active versus time for

three cases. This number of nodes active is a good indication of the potential

cost saving. It is seen from figure 3.3.3.3 that as would be expected the

number of nodes active declines and the body becomes quiescent more

quickly as a larger threshold is used.

3.3.3 NASA Almond

The NASA almond47 presents a more difficult test. This is one of a series of

stealthy RCS benchmark targets, where things such as late time effects and

travelling waves are significant contributors to the response. Here the 2.5

wavelength long version is analysed. The monostatic RCS is shown in

figure 3.3.3.1 for thresholds of 1% and 5%. Also shown are unthresholded

BIE time domain results, measured results (extracted from enlarged

photocopies of the reference), and frequency domain results49.

Both the normal BE time domain and frequency domain results show

reasonable agreement with the measurements, particularly bearing in mind

both the experimental uncertainty and the additional errors introduced in

making measurements from photocopies. The regular BE time domain

result is generally close to the frequency domain solution. More relevant for

present purposes is the change with threshold in the results of the BIE

computations; this is generally modest, even for the 5% case.
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3.4 Discussion

In section 3.3, a relatively crude threshold was applied; a uniform, constant

value expressed as a fraction of the incident pulse magnitude. After the first

transit, and the incident pulse has left the body, fields tend to fall sharply.

One approach to deal with this would be the specification of a time

dependent threshold, expressing the threshold in terms of the present

maximum field on the body.

For some geometries the field in the shadowed region may be small, but

may play a large role in determining the scattered field. In such cases it may

be good to apply position dependent thresholds, with a lower value in such

generally low-field regions.

It is worth commenting here that the thresholding technique described

above is not a 'near neighbour' approach, where remote regions are ignored.

A remote portion of the surface could have been 'active' at the relevant

retarded time, and would be included 'exactly', just as normal, while nearby

portions of surface could have been quiescent, and integration over them

would not be performed. A near neighbour approach could indeed be

incorporated in addition, and this would perhaps be an interesting area for

future work.
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Figure 3.3.2.1	 1094 bent dipole mesh
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Figure 3.3.3.1	 Monostatic VV RCS of NASA almond at 3 GHz

Physical Basis of the Computational Cost Reduction	 92



Chapter 4 Modification of the BIE Algorithm to Implement Cost

Reduction

In the present chapter, a novel modification to the normal boundary

integral equation (BIE) algorithm is presented. This algorithm is then

combined with the approximation to the physics presented in the previous

chapter, involving omitting integration over regions of the low field

magnitude. Whilst this does error increases slightly, it also provides large

reductions in cost, and a possible reduction in cost scaling to the fourth

power.

Section 4.1 introduces some differences between the normal and modified

algorithms. In section 4.2 the modified algorithm is derived algebraically

and its numerical implementation presented. Section 4.3 describes its

computational implementation, and a general discussion of the

characteristics of the new algorithm is presented in section 4.4.

4.1 Introduction

The normal algorithm for the boundary integral equation (BE) method in

the time domain involves calculating the field at a node by integrating over

all the rest of the surface, summing the effects of the historical field at the

relevant retarded time (weighted by the appropriate integral of the Green

function, embodied in the main system matrix coefficient). This is shown

algebraically in equation (2.1.68) of Chapter 2. This can be described as a

'retrospective' approach, summing historical values relating to widely

different times, once they are all known.
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Here will be introduced an inversion of the normal algorithm, which will

be termed 'project forward'. In the 'project forward' approach, once a field

value is known, we can use it immediately, to begin to form future field

values over the whole of the rest of the surface, simultaneously, for times

up to one transit time in the future. For each other surface location, it is

possible to determine the time in the future at which the field in question

will have an effect, and the size of the effect. The field at each location and

future time will then gradually be built up by contributions from various

parts of the surface, at various times, until the current time itself becomes

the future time under discussion. Computationally, this corresponds to a re-

ordering of the loops implicit in equation (2.1.68). The situation is actually

made more complicated by the implicit approach adopted, but is unchanged

in principle.

At any time, we have now a set of future solutions for other times up to one

transit time in the future. They will be partial solutions, with the temporally

more remote ones less complete, and the nearer ones more complete. It is

then no longer necessary to store the field history at each node; we have

already made such use of it as we need. Its place is taken by this set of

accumulating future surface fields.

The main work in the algorithm is now this projection forward of each

surface field value as it is calculated. This is analogous to, and equal in effort

to, the normal repeated surface integration of equation (2.1.68).

The above re-ordering of the algorithm is applicable to the 'normal' (i.e.

unthresholded) approach, and displays the normal fifth power cost scaling.
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However, once implemented the re-ordering does offer a relatively simple

way to exploit the physical approximation, related to the small active area,

discussed in the previous chapter. Once a field has been calculated, the

normal action would be to project it forward, incurring the main cost of the

time domain BIE approach. A lower cost, and possibly 'fourth power'

approach is achieved if this projection forward is only done if the field was

large enough to be deemed active when some arbitrary threshold is

imposed.

4.2 Description of the Modified Algorithm

This description, and indeed the implementation of the reduced scaling

version, are based on the curvilinear isoparametric treatment presented in

chapter 2, but the modifications described are of general applicability. They

could, for example, be applied similarly to a flat-facetted or wire grid

discretisation.

As derived in chapter 2, for any point r on the smooth surface, the field is

given by an integral over the rest of the surface (r' and s') of the history of

the field there. For the field at some time t , we have

2rH(r,t) = 4irH,,.(r,t) + 5 f(n' x H(r',t')) x - . S(Jt - t'j - Ir - r'I)ds'dt'

(4.2.1)+ 
5 Jin' x	 (r', t')' x -- S(It - t'I - Ir - r'ls'dt'

)

where we denote r'-ras R, and IRI asR.
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The normal use of this equation involves finding present field values

essentially by evaluating weighted summations of historical values. We will

re-order this process. When we find the field at any timestep, we will

immediately use the field value so found to begin to form future fields. Any

field value will have some effect at every surface location at some time in

the future; just how far into the future is a function of how far away the

particular location is. We thus will have no need to store surface field

histories, but instead will store accumulating partial sets of future surface

fields.

We write (4.2.1) for some future time tf, when the present time is t. We will

shortly discretise time into timesteps of length L4t, and so will divide the

range of time integration in (4.2.1) into the period up till 4t ago, the current

timestep, and all future ones. Our concern at any one timestep will be only

integration over the last period 4t, so denoting the past and future parts of

the integral H(r,t1 ) and H'(r,t1 ) respectively, we can write (4.2.1) as:

2irH(r,t1 ) = 4JrH jr.c (r,ti ) ^ H"(r,t1 ) + H'(r,t1)
t,=t

+ J 5 (n' x H(r', t')) x _!. 8(t1 - t'I — Ir - r 'I) ds'dt' (4.2.2)
t'=t-& )

+	
J[n' x	 . (r'i t')] x	 — t'I — Ir — r'I)is'dt'

t •=t-t a

We will now address the discretisation of (4.2.2).

The surface is divided into M elements m, over which the geometry is

approximated using polynomial shape functions Sa (i11) where	 are the
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9

R(i;,ii) = 1; - Sa(,11)rj(ma)
a=1

(4.2.4)

parameterised spatial co-ordinates. We will here use 9 noded quadrilaterals,

but in principle a wide range of element types may be employed. The

geometry of each element is thus described by

9

=	 Sa(,11)rj(m,a)
	

(4.2.3)

a=1

where j = j(m,a) are the global node numbers of the local nodes on element

m, and rj(m,a) is the position vector of each of these nodes.

The vector from the ith spatial node to some (,i) co-ordinate location on

the mth spatial element is then

Using an isoparametric formulation, the spatial variation of the surface

magnetic field over an element m may be written

9

H(, 11; t )I 	 Sa(l11)Hj(ma)(t)
	

(4.2.5)
a=I

We model the temporal variation using quadratic elements of length 2At,

with associated basis functions T(r), with r the intrinsic time. The temporal

variation of the magnetic field over a temporal element is thus

HJ(ma) (	 =
	

(4.2.6)

where k = k(l, f3) are the global timestep numbers of the local temporal nodes

on temporal element 1, and H ) are the field values at the spatial nodes, at
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rr_r'

LAt]
= k + intl (4.2.8)

the three timesteps of the temporal element within which the time of

interest falls.

We thus approximate the field at some intrinsic location ,ii within spatial

element m, at an intrinsic time r within temporal element 1, as

H(, 11,	 = ± ± Sa (, ii)T ()H)
	

(4.2.7)

a=1$=1

From these representations, all the various quantities needed (normals,

tangents, various spatial derivatives, surface divergence, Jacobian J, and so

on) may readily be obtained.

We return to consideration of (4.2.2). Because of the delta function, for any

location r there will be only one future timestep k1 which will be influenced

by the field at a particular location r' during the timestep from tic-i to tic

over which we are integrating. This future timestep is given by

This field at k1 will be influenced by the field at an intrinsic time r* in the

present time element, given by:

(Ir_r'l . r._'
I—intl

t J	 L t 1)
(4.2.9)

However, note that as r' varies over an element, the future timestep kf and

the intrinsic time both in general vary over a single element m. Since the

support of the shape function associated with any one node extends over
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several elements, the field at a given boundary node j will affect the future

field at a given field node i for a handful of future timesteps. Conversely, or

equivalently, the field at any future timestep is affected by the field at a

handful of earlier timesteps.

We see the timestep k and (intrinsic) time r* identify what would be the

retarded time at r' as seen from the future time kj at r.

Inserting our shape function representations into (4.2.2), making use of

(4.2.8) and (4.2.9), we obtain

2jrH = 41rH 1 +	 + H

M	 9	 3
+	 55 Sa(,71)'	

T
+ fi	

'F(n'xH ) xRm=1ija=1	 R3	 EtR2 )
	

j(m,a)

(4.2.10)

Writing (n' x H) x R as [A']H, with the matrix [A'] given by:

nR2 + nR3

[A'] =	 —nR1
'V—fl3i1

—nR2	 —nR3

nR1 +nR3	—nR3

—nR2	nR1 + nR2

(4.2.11)

and integrating via Gaussian quadrature (with singular and hypersingular

integrals treated essentially as in chapter 2), yields

2jrH = 47rH + H"' + H''

M NG NG 9	
3 (r,((i)) + ifr(R))][A]Hk+fl_3I./ 

uiq)frpWq
R3	MR2	

j(m,a)[Jp
m=lp=1 q=la=1

(4.2.12)

Thus far we have implicitly allowed the field H to have three (say) Cartesian

components, such that integrations of matrix [A'] would result in 3 by 3
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matrices. As mentioned in chapter 2, application of the perfect conduct

boundary conditions permits one of the three H components to be expressed

as a linear combination of the other two, in turn reducing the results of the

integrations to 2 by 2 (sub)matrices.

Denoting as azj the now 2 by 2 (sub)matrix which results from integration of

the matrix [A'] for each i,j node pair, we can write (4.2.12) in the form

2gH' = 4,rH% +	 + H' +	 + ar)H' + ar2)H2	 (4.2.13)

where we have indicated explicitly that there will be one such submatrix

associated with each of the three timesteps k, k-i and k-2, associated with the

present temporal element.

This equation is evaluated at each timestep, for each node, for each of the

future timesteps associated with each i,j node pair. For the particular case of

kf being the present timestep, we have naturally no more future

contributions to add. The terms involving field values at timesteps k-i and

k-2 are multiplied out and added to the vector on the right hand side, to

which is added also the incident wave vector, giving a right hand side vector

c, say. Those terms a involving the present timestep are brought to the left

hand side, and together with the free term 2,r, form a matrix equation for the

new field value at each node:

[a]H" = [c]
	

(4.2.14)
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This matrix equation is solved at each timestep to determine the new field

values. The actual solution cost is low, as the matrix in (4.2.14) is very sparse,

and is a tiny fraction of the total computational work. With the new field

found, its future effects are accumulated via (4.2.13).

The dominant work is in these repeated 'projection forward' activities

involved in (4.2.13). At each timestep, the effect of the field at every node, at

every other node (at some time in the future) is calculated. This has costs

which scale with nodes squared (i.e. frequency to the fourth power) at each

timestep. With the number of timesteps generally scaling with frequency,

this gives an overall fifth power cost scaling. This scaling, and indeed the

actual computational work, is the same as in the conventional

'retrospective' approach to time domain integral equation calculations.

4.3 Computational Implementation of the Method

In the project forward algorithm, there are two main cost components in

terms of storage; the main system matrix, the collection of submatrices a of

(4.2.13), and the future right hand side vectors. For a given number of nodes

N, which scales with the second power of frequency, 2N components of

each right hand side vector need to be stored, where the number of future

right hand side vectors is the number of time steps in a single transit. Thus

the storage requirement for future right hand side vectors scales with the

third power of the frequency.

Each component of the main matrix has 2 x 2 entries, and for each boundary

point / field point pair there are from 3 up to about 7 time step 'layers'.
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Therefore, the number of entries of matrix is up to about 28 x N2 , a quantity

scaling with the fourth power of the frequency. This matrix storage is the

dominant storage requirement, and as the frequency of the incident wave

increases it rapidly becomes very large.

If the storage requirement for a problem is not greater than the RAM

available on the computer being used, the matrix is best calculated in

advance and kept in core. As shown in section 2.5, therefore, the cost for

matrix formation is a trivial fraction of the total work. If the storage

requirement for a problem is greater than that available, one approach is to

form the matrix, write it to disk, and read it for each time step. On a single

processor machine this incurs only a modest penalty, particularly if multiple

illumination angles are required, allowing the cost of reading to be shared

amongst the look angles. However, parallel computation gives a much

greater increase in computational power in the processing stage than in the

input / output stage. (Additionally, although it is not very costly, additional

disk storage is needed.) Thus repeated reading from disk is not attractive.

The alternative approach is to form the matrix when it is needed. Normally,

the entire matrix is formed only once at each time step because the matrix is

only geometry dependent, even if multiple illumination angles are

required. Thus it can be seen that the penalty associated with the inability to

store matrix decreases as the frequency of incident wave increase, due to the

fact that the number of angles required to characterise the response rises

with frequency. If this penalty is accepted, the whole storage requirement is

greatly relieved. The dominant storage becomes the future right hand side
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vectors. Thus this approach allows in practice a vast reduction in the

amount of storage required.

For the above approach, the matrix formation time becomes dominant

when a single illumination angle is required, and remains so unless a very

large number of illumination angles is required. The project forward

algorithm offers the opportunity to save matrix formation time for this case.

When the field is negligible, the formation of the matrix entry which will be

multiplied by this field value can be omitted. This is naturally only

applicable for a single illumination angle because the active region depends

on the illumination angle. If multiple illumination angles are required it is

likely that all the matrix will be used by one or other angle, so formation of

the entire matrix prior to any 'projections forward' is probably simplest.

However note that the right hand side vector formation, the projection

forward activity itself, again becomes dominant for multiple illumination

angles, thus recovering the cost saving.

The project forward algorithm has here been implemented in two different

ways. If the matrix fits in core, it is formed once in advance, and used in the

formation of right hand side vector [c] at each time step. This we will term a

'not on the fly' calculation. If it does not fit in core, the matrix entries are

calculated when they are required, termed here an 'on the fly' calculation. It

is explained below how the modified algorithm is implemented in each

case.

4.3.1 'Not on the fly' Calculation
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As shown in chapter 2, there are three main stages to obtaining the RCS

response at a given frequency in the time domain; pre-processing, surface

field calculation, and far field (RCS) calculation. The only change which

needs to be made is to this surface current calculation stage. The system

matrix itself is formed exactly as usual. The project forward algorithm may

be thought of at its simplest as a re-ordering of the process of right hand side

formation in the normal algorithm. For each time step, the surface field is

obtained by solving the matrix equation, and then at each location the

magnitude of surface field is compared to threshold values. If the surface

field is negligible, the multiplications associated with using this field value

for forming future right hand side vectors are simply omitted.

4.3.2 'On the fly' Calculation

The 'on the fly' version of the project forward algorithm is necessarily

implemented in a rather more complicated way. There are two main

computational issues in this version; formation of the [a] matrix in equation

(4.2.14) and finding the elements which should be integrated over at each

time step. These are investigated below.

Generally the [a] matrix is very sparse, and manipulations and storage

involving it is relatively cheap, as it scales in size with frequency squared.

The storage cost involved in the [a] matrix are thus not important at all, and

here it is formed at once in advance and kept in core. it is nonetheless worth

noting that for modest sizes of scatterer (say below —10 wavelengths long)

which also are locally (very) refined, the storage for the [a] matrix could be

important and sometimes exceeds that of the future right hand side vectors
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which scales with frequency cubed, because of its higher base. If this is so, to

overcome this difficulty, the [a] matrix entries may be calculated easily when

they are required.

For each time step, the active elements, that is those elements which include

active nodes where the surface field is not negligible, must be found. These

are then integrated over, from every other field point, and the result

multiplied by the surface field value to form the future right hand side

vectors. Here, for the efficient finding of the active elements, firstly the list

of active elements which each active node lies on is calculated. Normally

this list has many duplicated elements, and thus secondly it is rearranged

and entries made unique by using a sorting algorithm.

4.4. Discussion

As the pulse becomes shorter, pulsed illumination will tend to leave

increasing fractions of the surface of a body quiescent. Exploitation of this

has been identified as a means to reduce the cost and possibly cost scaling of

time domain integral equation scattering analyses. A novel 'project forward

algorithm' has been devised and implemented to achieve just such

exploitation. The approach becomes easier to implement, and the cost

savings closer to their asymptotic fourth power scaling, as the bodies become

bigger, which will be shown in chapter 6.

In particular, in the case of 'on the fly' calculation, the coefficients of a

constitute in effect a large matrix of size (several times) nodes by nodes, and

scaling with frequency to the fourth power in storage requirements. OnJy a
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fraction 1/f of this is needed at each timestep, and in practice we choose to

re-evaluate this portion of the matrix as it is needed, rather than store it all.

Storage requirements otherwise scale with frequency to the fourth power.

This approach incurs a one-off operation count increase by a factor of

perhaps 5, depending on the order of quadrature adopted. The benefit is that

the remaining storage is only of the future surface fields; a much more

manageable cost, scaling with frequency to the third power.
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Chapter 5 Parallelisation of the Project Forward Algorithm

Large scattering computations by any technique are very expensive, and the

computational costs of all approaches rise sharply with frequency. One way

to begin to meet this computational requirement is via the use of massively

parallel computers. In this chapter the parallelisation of the project forward

algorithm is developed, for implementing on distributed memory multiple

instruction multiple data (MIMD) computers.

In section 5.1 a few general topics associated with parallel computation are

introduced. Section 5.2 reviews the (very few) prior works on time domain

BIE parallelisation, and section 5.3 develops the parallelisation of the project

forward algorithm. The differences between parallelisation of the normal

'retrospective', and the project forward algorithms are explained in this

section.

The matrix solver, used at each timestep to solve the sparse matrix equation,

is parallelised in section 5.4. In particular, the conjugate gradient squared

(CGS) method is considered here.

Section 5.5 describes the particular computational implementation on a

CRAY T3D, and finally the entire parallelisation activity is discussed in

section 5.6.

5.1 Parallel Computation

In this section are introduced some of the different kinds of parallel

computers, and the approaches involved in the parallel computation.
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5.1.1 Architecture of Parallel Computers

Loosely speaking, a parallel computer has the ability to perform several

different processes at the same time. The architecture of parallel computers

falls into two classes:

(a) Single-instruction multiple data systems (SIMD) such as ICL DAP and the

Connection Machine, where each processor executes the same instruction

simultaneously using different data, and

(b) Multiple-instruction multiple data systems (MIMD), where each

processor executes possibly different instructions on different data.

There are two different types of MJMD computers: shared memory and

distributed memory. In a shared memory machine such as CRAY X-MP,

CRAY Y-MP and CRAY 2 series of computers, each processor can access a

common memory, while in a distributed memory machine such as the

MEIKO Computing Surface and the CRAY-T3D, each processor has its own

memory which cannot be accessed directly by the other processors (although

it is actually possible to do this to a degree on the T3D). With distributed

memory machines, data and instructions must be passed between processors

using communication links and the outputs from all processors must be

combined to yield the final result.

5.1.2 Parallel Implementation

Currently, there are three major communication standards or libraries

which support parallel computing: High Performance Fortran (HPF),
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Parallel Virtual Machine (PVM) and Message Passing Interface (MPI). Which

one is the best choice for parallel computing is still very much a matter of

debate. They are briefly introduced below.

There have been several extensions of Fortran 77, and its sucessor Fortran

90, for parallel computing. High Performance Fortran (l-IPF), is one of the

latest50. It is an extension of Fortran 90 to include data distribution features,

data parallel execution features and extended intrinsic functions to be used

with parallel machines. It is still in a very early stage of development.

PVM is a communication library and a programming environment for

parallel programming on various machines including 'virtual' parallel

machines. It is can be used with Fortran and C. it is general in nature, but

slow.

Over the last ten years numerous message passing systems have been

created all using very similar concepts with some variation. Among them,

MPI arguably has taken and combined the best features of all present

message passing systems including PVM, PICL, and Zipcode. The

development of MPI has been so fast that MPI-2 was in preparation while as

far as the author is aware, only one book on MPI-1 was published5' very

recently. In this thesis, the MPI-1 standard is used with Fortran 77 for

parallel implementation.

5.1.3 Parallel Performance Metrics

Parallelisation of the Project Forward Algorithm	 109



T(1)
Speedup(N) =

T(N)
(5.1.3.1)

There are many ways to measure the performance of a parallel algorithm.

Among them, the conventional measure of speedup is the most widely

used. This is defined as;

where T(1) is the execution time using 1 processor, and 1(N) is the execution

time using N processors

The efficiency of algorithm is then defined as

Speedup(N)	 T(1)
Efficiency(N) =

N	 N.T(N)
(5.1.3.2)

This measure of efficiency gives an indication of how well the application

utilises the processors available, although for the same algorithm it can

generally be improved by increasing the size of the problem solved.

5.2 Parallelisation of the Time Domain Integral Equation Method

Parallel computers have been applied very little to BIE techniques relative to

say finite element or finite difference approaches, and the large majority of

such work as there is addresses frequency domain or steady state

problems52'53'M'55 . There has been very little attention paid to parallelisation

of transient BIE treatments. The only exceptions are the works of Walker

and Leung56'57 where acoustic and electromagnetic scattering problems are

solved on distributed memory systems; a Meiko surface and the T3D. Their

main concern is the parallelisation of the right hand side formation stage.

For the wholly 'in-core' cases they addressed, this is by far the dominant cost,
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and becomes an increasing fraction of total cost as larger problems are

addressed. Various different approaches for this are investigated in their

works, and these are summarised below.

The first approach is the allocation of a sequential set of field nodes to each

processor. For each field node is then performed integration over all the

surface patches. Both for this and for right hand side vector formation, there

is almost exactly equal computation to be performed for each field node,

allowing very good load balancing. At the end of this activity, each processor

has generated a portion of the required right hand side, and these partial

vectors are then communicated to a single processor for solving the matrix

equation. This approach may be the most simple to implement, but it has

significant drawbacks. The history of the field over the whole surface needs

to be stored on each processor. Whilst it is not of itself the dominant storage

cost, if the history is duplicated in this way it quickly becomes intolerably

large. Thus this approach was not in practice used in their work, despite

being so easy to implement.

The second approach is domain decomposition, where a major objective of

the approach is to avoid storing (i.e. duplicating) the history of the all the

field on each processor. Firstly, an allocation of elements to processors is

made, dividing the domain (surface) between processors. Each processor

then integrates over 'its' elements from every field node. Matrix formation

via this approach exhibits essentially perfect parallelisation. However, its

disadvantage is that nodes on element edges are dealt with separately by two
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processors in the right hand side vector formation stage, leading to some

duplication of effort.

In their third approach, a sequential set of boundary nodes is allocated to

each processor. Each processor then integrates over its portion of the surface

from every field node. This led to some inefficiencies in the matrix

formation stage, because computations within a given element are repeated

by all processors allocated a node lying in that element. However, it did

optimise the dominant right hand side formation activity. Thus the quality

of the parallelisation is not significantly affected by the inefficiency in matrix

formation stage. Walker and Leung adopted this third approach.

5.3 Parallelisation of Project Forward Algorithm

As explained in an earlier chapter, when the storage requirement for a

problem is greater than the storage available, forming the matrix at each

time step is the more efficient approach in parallel computation than is the

repeated reading of the matrix from a disk. Once this operation cost is

accepted the whole storage requirement on each processor can be greatly

relieved. This is probably a sensible course even for the conventional

approach, and is certainly so for the reduced cost version, where only a small

part of the matrix is used at each timestep. Consequently, this approach has

been adopted here.

In parallel computation, in general the most important criteria are that the

duplicated work or storage, and the communications between the

processors, should be minimised. In terms of work and communications,

Parallelisation of the Project Forward Algorithm	 112



partitioning over field nodes seems to be the most attractive, but as described

above the consequent duplication of storage renders it unsuitable for the

conventional algorithm.

A significant consequence of the project forward algorithm developed here

is that it does however allow this most attractive approach to be used. As

noted earlier, the new algorithm replaces storage of the history of the field

values with storage of the future right hand side vectors. The former are

quantities associated with the 'boundary elements'; the latter with the field

nodes. Thus when a set of field nodes are allocated to each processor, each

processor need store only future right hand sides vectors for its 'own' set of

nodes.

Our objective in the parallel implementation is to solve as large as possible a

problem. As it is often the amount of storage which a processor has which

limits the size of problem which can be solved, the efficient use of this

storage is crucial to solve larger and larger problems.

The first main storage considered in this work is the [a] matrix (see equation

(4.2.14)) which scales in size with frequency squared. (Recall, it is a sparse

matrix, with as many rows as there are unknowns, with each row

comprising a more or less fixed number of non-zero coefficients). For a large

problem, the relevant part of the [a] matrix (that is, those rows associated

with the nodes allocated to that processor) should be allocated to each

processor. This requires that the matrix solution stage be parallelised,

although viewed in isolation the matrix solution is not costly at all in

operations. Each processor is given a portion of the [a] matrix, and performs
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a subset of the matrix-vector multiplications involved in the matrix

solution. Details associated with this will be explained in the next section.

The method adopted here requires the whole surface (all elements) to be

integrated over 'from' a given set of field points on each processor. Thus all

the mesh information required for element integration, such as the

Cartesian co-ordinates of Gaussian locations, and the Jacobians at Gauss

points, on every element, should be duplicated on every processor. This

storage requirement, whilst intrinsically relatively modest and scaling with

only the square of frequency, may eventually limit the size of problem due

to this duplication over processors. If it is, one approach is wherever possible

to calculate these quantities whenever they are needed. For large problems

such those as which actually require parallel computation, this recalculation

is a trivial fraction of the operations required for the whole calculation. This

approach is adopted here.

5.4 Parallelisation of the matrix solver

As has been explained above, the actual computational time for repeated

matrix solution is a small fraction of total, but the matrix solution stage

should be parallelised to permit the allocation of the relevant part of the [a]

matrix to each processor. Here the conjugate gradient squared (CGS)

algorithm58 has been parallelised.

The outline of the CGS algorithm and its parallelisation algorithm are

shown in figures 5.4.1 and 5.4.2 respectively. Typically the matrix-vector

mulitplication is the main calculation in iterative solvers, and indeed in

Parallelisation of the Project Forward Algorithm	 114



CGS each iteration involves two matrix-vector multiplications. Before

performing those multiplications, the partial-length vector on each

processor should thus be assembled into a full-length vector and sent to

every processor because the matrix has full-length "rowise". The actual

multiplication generates again a partial-length vector on each processor.

In the domain decompostion approach, the vector multiplied by the system

matrix is partial, but is of full length. (That is, each coefficient is non-zero,

but is of magnitude only a fraction of what it will be once agglomeration of

all such partial vectors has been performed.) The consequence is that the

domain decomposition approach requires much more data to be

communicated than does the present approach, and is consequently less

efficient in the solution stage too.

5.5 Computational Implementation of the Method

The method of the allocation of sequential sets of field nodes is applied to

the project forward algorithm, and thus each processor performs the

calculations involving its own set of field nodes. At every time step each

processor forms its own part of the matrix and builds its own part of the

future right hand side vectors. It is obvious that no communication is

required in those stages.

The only stage requiring some communication is the matrix solution which

is performed at every time step. For example, the residuals calculated on

each processor must be added together after each iteration to compare with
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the stopping criterion, and the solutions must be assembled for the output.

Details are explained in section 5.4.

5.6 Discussion

The approach of the sequential sets of field nodes is very attractive because it

does not require any communication between processors at the two main

calculation stages (the matrix and right hand side vector formations), and

duplicated calculations are performed only for the element-related mesh

information, which is almost negligible for the large problems which

require parallel computation.

The approach described in this chapter has been successfully implemented

with the project forward algorithm. As expected, it exhibits good

performance both for the matrix and right hand side formations; results

demonstrating this will be shown in the next chapter.
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Figure 5.4.1	 Conjugate Gradient Squared (CGS) algorithm
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Figure 5.4.2	 Parallelisation of CGS algorithm
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Chapter 6 Results of the Modified Algorithm

In chapter 3, the accuracy loss occasioned by the neglect of all but 'small' fields

has been investigated. In this chapter will be investigated the reductions in

cost and possible reduction in cost scaling to the fourth power provided ly

that neglect. Many results will be shown for a variety of geometries ly

implementing on workstations and CRAYT3D.

6.1 Accuracy. Cost and Thresholds

The speed of computers has increased very rapidly even during the

performing of this work, and varies widely across the computers on which

these examples were run. As a consequence, making time comparisons is a

difficult problem, particularly as the absolute cost of the runs performed

varies by more than an order of magnitude.

In this section is presented a pragmatic measure of cost, expressed in terms of

the number of calls of the principal subroutine of the code, and later costs

and cost scalings will be presented in terms of this.

6.1.1 Spheres 1.3 and 4 wavelengths in diameter

As a first example, we consider two very different size problems; two spheres,

of 1.3 and 4 wavelengths in diameter.

Meshes comprising 674 and 6146 nodes were used, with Gaussian pulse

illumination. This is not a particularly attractive geometry for demonstrating
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the cost reduction approach, but does allow us to compare with analytical

solutions.

Table 6.1.1.1 shows the fraction of the CPU time expended on each

subroutine in the calculation. The routine for the integration over an

element, and the return of a set of weights (the coefficients a of chapter 4),

IPEC, is evidently the dominant cost. Further, the associated routines

IPECNSQ9, IPECSQ9 and ELIMAT are each called once per call of 1PEC. Thus

the number of calls of IPEC characterises at least 96.25% and 96.93% of the

total CPU time for the job in the 674 and 6146 node cases respectively.

Additionally, these calls are known to be a part of the computation which

has the highest, characteristic cost scaling, with these percentages then

increasing as larger bodies are analysed. For comparisons between cases we

thus conclude that the number of calls of IPEC should be a robust, cross-

platform, measure of the computational cost of a run, and it will be used in

this thesis.

Figure 6.1.1.1 and 6.1.1.2 shows the bistatic RCS of 1.3 and 4 wavelength

diameter spheres. With the spheres each of unit radius, the pulse widths

were 0.483 and 0.168 respectively. Maximum nodal separation on the two

meshes was 0.107 and 0.112, with corresponding timesteps of 120 and 200. In

each case the frequency extracted corresponds to a nodal separation of —1/10

of a wavelength, typical of the relationship between pulse width, mesh

parameters and frequency we employ.
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Good agreement between analytical and calculated data is found with a zero

threshold, with a steady degradation of the results up to the maximum 5%

threshold employed. Figures 6.1.1.3 and 6.1.1.4 show the number of IPEC calls

versus different levels of threshold for the two cases. It is seen that though,

as noted, the sphere is not an ideal geometry to demonstrate cost savings,

and these problems are not really large enough to lead us to expect

particularly dramatic results, the cost reduction method performs reasonable

well. The 5% threshold provided a cost savings by factors of —4 and —6 for the

small and larger sphere cases respectively with very slight loss of accuracy.

6.1.2 NASA Almond

We now show results on the NASA almond 47 of chapter 2, using various

different levels of threshold.

The almond mesh employed has 690 nodes, and is of length 9.936 units, with

a pulse width of 1.925 used. Maximum nodal separation is 0.055,

corresponding —1/18 of the wavelength to be extracted. This wavelength

makes the almond one wavelength long, and corresponds to a frequency of

1.19GHz, one of the frequencies at which the RCS of the almond has been

measured.

The bistatic RCS for vertical polarisation(VV) is shown in figure 6.1.2.1, for

each level of threshold. The number of calls of IPEC for each case is shown in

figure 6.1.2.2. There is seen to be some degradation of accuracy with

threshold, but for say even the 10% case results are still very little different
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from the unthresholded case, with for example the head-on RCS perturbed

by about 0.02 dB sq m.

This is a relatively small problem, and large cost saving is not expected.

However, over the range of thresholds employed, cost savings by up to a

factor of 11 are gained.

We now consider a second, larger almond example. The mesh employed

now has 3266 nodes, with a pulse width of 0.805. Maximum nodal separation

is now 0.1, corresponding to 1/10 of the wavelength to be extracted. This

wavelength makes the almond —4.3 wavelengths long.

A single illumination from 20° degrees off-axis was performed. The 1%

threshold in this case modifies the backscatter RCS trivially, from -38.9 to -

38.7 dB sq m (although it should be said that there may well have been found

larger differences at some angles had the full monostatic calculation been

performed) whilst costs are reduced by a factor of —9 relative to the

conventional BIE time domain.

6.2 Cost Scaling

On small problems where the pulse width is similar to the body length, no

cost reduction is expected. As bodies become larger, and specifically larger in

the direction of travel of the incident wave, the factor by which costs are

reduced is expected to increase roughly in proportion to the body size itself.
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An investigation of this will now be made for the dipole of section 3.3. The

dipole is of unit radius, is 22 units long in total, with hemispherical ends. A

number of meshes are employed, ranging from 674 to 6034 nodes.

We will use head-on illumination. This is then a rather idealised geometry

and illumination, and if the method does have any promise, it should be

apparent in such a case.

We will be considering a range of frequencies, with our primary interest

being in the computational cost. However, first we show results for one case,

computed both with the basic code, and with the 1% threshold we will

employ in the rest of this section. Figure 6.2.1 shows the bistatic RCS for the

6.53 wavelength long dipole (1218 node mesh, pulse width 1.5, average nodal

separation 0.337) for these two cases. Whilst acceptable accuracy loss is

naturally problem dependant, the degradation is small.

We now consider scattering from a series of such dipoles, of increasingly

refined mesh, illuminated with shorter and shorter pulses. In all cases this

1% threshold is employed, along with corresponding calculations (where

practicable) using the basic code. Our interest is to investigate the degree of

cost saving, and in particular the relationship between cost and body size /

frequency. As discussed earlier, here 'cost' will be expressed in terms of the

number of calls of the routine IPEC.

Figure 6.2.2 shows the variation of computing cost with body size, along with

results for the normal BIE time domain approach. Here the body size is

characterised in terms of the wavelength of the highest frequency which
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could be extracted from the run, using the usual criteria regarding mesh

spacing, timestep and pulse width.

The reduction in cost is obvious. To provide some more practical indication

of cost, the 6.53 wavelength case (1% threshold), showing a cost of 1.06 x iO

[FEC calls, actually took about 1 hour to run on a DEC alpha workstation. The

number of IPEC calls for the conventional BIE time domain approach can be

easily computed, and is shown for cases up to 14.7 wavelengths long on the

figure 6.2.2. However, actual runs using the conventional approach (0% case)

were only performed up to a -10 wavelength long case. This took -50 hours

on a DEC alpha workstation. Using the lower cost approach, the -10

wavelength case required only -8 hours, a factor of -6 smaller. Using the

conventional approach the -15 wavelength case would have required about

(15/10) times as long; i.e. about 400 hours. Using the reduced cost approach,

the actual time required was 35 hours, a factor of -11 smaller.

Plotting logarithmically allows cost scalings to be estimated, and this is done

in figure 6.2.3. The 'basic code' scaling line on the figure indicates a cost

scaling with frequency to the power, -5.1. The other line shows the threshold

results. Fitting to the observed results indicates a cost scaling with frequency

to the power -4.3.

It should be noted here that it is difficult to show a single definitive cost

scaling with the frequency, because some physical phenomena, such as

creeping waves (which depend on the shape of the target geometry) may

affect the active band which is involved in the cost reduction method.

Additionally, if in some regions the mesh fineness is deternined I.y
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geometrical considerations the simple, expected scaling behaviour will not be

observed. For example, the coarser dipole meshes (up to 8.23 wavelengths

long) used here are indeed locally refined at the cap ends. If however we

observe the last three points on the line of thresholded results, which are

relatively little affected by the local refinement, a cost scaling with frequency

to the power 3.96 is observed.

6.3 Computational Work, and Active and Ouiescent Regions

It is of interest to examine more closely the extent of quiescence and so on;

even such a simple shape as this, the interactions and cancellations are

actually rather subtle. Recall that at each timestep we project forward only

'significant' surface field values, to all the rest of the surface, to affect at each

location a subset of future times. On large targets the net result of these

projections forward to any given location will mostly be zero; they will

cancel. Occasionally they will not all cancel, giving on those occasions a

significant field, itself to be projected forward in turn.

Figure 6.3.1 shows the fraction of the surface (nodes) above the 1% threshold

as the calculation progresses for the 6.5 and 12.7 wavelength long cases. The

time average of this fraction is a good indication of the fractional cost saving.

It is seen that as would be expected the fraction of the surface contributing,

and its time average, declines as shorter pulses (or bigger bodies) are used.

We now will examine in rather more detail the process by which the field is

built up (and indeed will observe that this lower cost approach still seems to
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perform much redundant work, a point to which we will return later). We

will consider for a particular location the variation with time of

(i) the number of elements from which significant fields were projected

forward on to the node, and

(ii) the field value at the node, the net result of the projected forward fields.

We will consider a set of three nodes; one at the incident end on-axis, (a), one

half way along, (b) and one on-axis at the far end on-axis, (c). These are

indicated in figure 6.3.2.

The three lines on figure 6.3.3 show results for each of the three locations (a),

(b) and (c). In each case is shown the variation through time of the number

of surface elements contributing to the field. Note that the times at which

these elements were contributing will vary according to their position. The

field at remote elements from long time ago, and nearby elements recently,

will combine to produce the field at any particular location and time.

Shown on figure 6.3.4 is the field history itself at location (c); in effect a

summation of the various contributions just described. It is seen that there is

a large field when the incident pulse arrives; prior to that the field naturally

zero, with causality naturally preventing any historical contributions. The

duration of the large field is much shorter than the duration of the period

when many elements contribute to the field. During time steps —70 to 100

many elements contribute to the field there, but their contributions all

cancel, and their net effect is zero. Much computational work is incurred in
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calculating these zero values. Similar observations apply to locations, (a) and

(b).

6.4 Perfectly Conducting Cone-Sphere with Gap

Another of the set of 'stealthy' RCS targets presented by Woo47 is the cone-

sphere with gap, shown in cross section in figure 6.4.1 . In this section we will

investigate the effectiveness of the reduced cost methods in predicting its

RCS. It is both a large and stealthy target, with the very low backscattered

response a consequence of subtle cancellations, and thus provides a fairly

severe test of the approach.

A single, head on, illumination was run with different levels of threshold

on the Cray T3D. For the extraction of the frequency, 9 GI-lz (18 wavelengths

long) results, a 7373 node mesh was used. This frequency corresponds to a

nodal separation of —1/6.6 of a wavelength, and is probably at the upper end

of the frequency range for which the mesh is adequate. The mesh employed

is shown in figure 6.4.2.

The calculated and measured backscattered RCS for the VV polarisation is

shown in table 6.4.1. It shows that the backscattered RCS is perturbed by about

—1.8 and —0.5 dB sq m for 1% and 5% threshold cases respectively. Although

the 5% threshold result is anomolously close to the measured RCS for

backscatter, this is not necessarily the case over all scattering angles; in

general we would expect better results for the 1% case.

We can investigate the cost saving that the threshold provides. Figure 6.4.3

shows the number of 1PEC calls for the different levels of threshold.
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Additionally, it is straightforward to calculate the number of such calls

required with a zero threshold, and this too is indicated on the graph. W e

see, for example, that the 5% threshold, which degraded accuracy only

slightly, nonetheless provided a cost saving by a factor of about 20.

6.5 Performance of the Parallel Algorithm

The strategy and algorithms associated with the parallel implementation

have been discussed earlier. We here will discuss the actual performance of

the algorithms on the T3D, addressing the 674 node dipole problem.

Figure 6.5.1 shows the CPU times to solve the matrix equation, and to form

the matrix coefficients and to project forward, for those elements where it is

necessary, for 32, 64 and 128 processors.

Lack of T3D time prevented a more comprehensive study of parallelisation,

but is possible to infer that the parallelisation of forming coefficients and

projecting forward is good. Time is about quartered by moving to 128

processors from 32. However, the parallelisation of solving the matrix is less

good. This reflects that for this small problem, the matrix-vector

multiplication which is actually parallelised is not a dominant cost in the

solution stage because of the inevitable communications between processors.

For example, it is seen that the solution of the matrix using 128 processors

took essentially the same time as using 64 processors.
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Calculation	 1.3 wavelengths	 4 wavelengths

_______________________________	 (% cycles)	 (% cycles)

Integration over an non-self	 85.19	 88.93

element (II'ECNSQ9)

Integration over an self	 3.56	 0.40

element (IPECSQ9)

Reduction of 3 by 3 (sub)	 7.50	 7.60

matrices to 2 by 2 (ELIMAT)

RHS formation	 2.56	 2.61

Table 6.1.1.1	 Fraction of the CPU time expended on each calculation
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Figure 6.4.1	 Cross section of the cone-sphere with gap
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Figure 6.4.2	 7373 node cone-sphere gap mesh
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RCS (dB sq m)

Measured	 - -6.3

1% threshold	 -8.123

5% threshold	 -5.866

Table 6.4.1	 Backscattered RCS; cone-sphere with a gap at 9 GHz
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Chapter 7 Hybridisation of the Project Forward Algorithm

The motivation for the entirety of the work described in this thesis is the high

cost of full field solutions. Whilst this cost may be greatly reduced by the

methods developed here, it remains high. A complementary approach to

extending the size of problem which can be tackled is to hybridise two

methods, using a cheap one in regions where its associated greater

approximations are reasonably valid, and reserving the fuller, more expensive

approach for regions where it is truly necessary. In essence, regions where the

surface orientation changes over a length scale of at least several wavelengths

can often be treated by a simple approach. In geometrically complex regions,

where this is not so, a full field solution is employed. In the present context, this

translates into using some (broadly) optical approach wherever feasible, and

using the BIE approach where necessary.

There are many such problems where hybridisation of low frequency methods

and optical methods is appropriate; where optical methods in isolation would

be inaccurate, and field solutions too expensive. It is because of this that there is

a considerable body of work addressing the hybridisation of various forms of

optical treatment with full field solutions, allowing each to be used for that

portion of the body for which it is most suited. All, bar one recent paper, has

addressed the frequency domain, where issues and difficulties are markedly

different from the time domain.

One recent work, by Walker and Vartinainen, has described hybridisation of

the conventional 'retrospective' IETD approach with POTD. Besides its being an
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intrinsically faster IETD algorithm (when thresholding is employed), there are

features of the 'project forward' approach which also make it particularly suited

to hybridisation. In this chapter a novel hybridisation of the project forward

algorithm and time domain physical optics (POTD) is developed, exploiting

simplicities this algorithm offers over that of the normal algorithm.

Section 7.1 introduces briefly the hybridisation of integral equation methods

and physical optics. In section 7.2 is discussed the "normal" (that is, Walker &

Vartinainen) time domain BIE hybridisation, and section 7.3 develops the

hybridisation of the project forward algorithm . Some results are demonstrated

in section 7.4, and finally the incorporation of the cost reduction algorithm into

the BIE region is discussed in section 7.5.

It should be noted that the earlier referenced time domain hybridisation is itself

a very recent piece of work, and the present hybridisation is thus even more

recent. As a consequence, it is probably true to say that the implementation may

not be as efficient as should be possible with more time available, nor has the

investigation of its performance been as thorough. Nonetheless, it is believed

that the principles of the new approach have been demonstrated, and

opportunities for further research identified.

7.1 Introduction

In recent years, it has been shown that hybrid approaches incorporating high

frequency (asymptotic) techniques and low frequency techniques (especially

integral equation methods) have the potential to solve many problems which

can not be solved by either one of these alone. Broadly speaking, these hybrid
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approaches may be classified as either current- or field-based ones depending

whether the mathematical Ansatz is a current or a field.

In this thesis is developed a hybridisation of integral equation (IE) techniques

and physical optics (P0). There have been many reported hybridisations of IE

techniques and P0 in the frequency domain59'604142, but not in the time domain

in spite of increasing interest in time domain methods of late.

Very recently Walker and Vartiainen have presented a hybridisation of time

domain BIE and POTD and investigated its cost savings. This employed the

normal retrospective approach. It seems that one (initially unsuspected) feature

of the project forward algorithm may be that it allows a simple and efficient

implementation of hybridisation. The sections below will show how the new

algorithm can be hybridised in a simpler way than the normal BIE algorithm,

and will note the principal differences between the hybridisations of the two

algorithms.

7.2 Hybridisation of the Time Domain Integral Equation Method

Consider a three dimensional body where it is identified that in some region,

region (I), the local geometry requires a full field solution, and that in some

region (II) POTD can be used. We will take the quantity 9 as the fraction of

nodes falling within (I).

Algebraic Form of the Hybridisation Approach

For nodes within region (I) partitioning the domain of integration into region (I)

and (II) equation (2.1.68) for a smooth surface in chapter 2 can be written as;
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For nodes in (I) the surface H field is found from the usual integrations over the

BIlE region (I), plus the integrations over the optical region (II). Since in both

regions the required historical H field is known (albeit via different methods, as

discussed immediately below), the calculations in region I proceed exactly as

normal.

For region (II) we do not employ (7.2.1) at all; the surface H field at any location

and time is simply, and very cheaply, given by the physical optics

approximation

H(r,t) = —2n x (n x H mc (r,t))
	

(7.2.2)

Numerical Implementation of the Hybridisation of the Normal Algorithm

As shown in (7.2.2) the physical optics approximation gives the surface field

values at nodes in region (II). The integration in (7.2.1) is of known quantities,

and thus it can be easily evaluated. However, some computational issues arise

in terms of efficiency. These are investigated below.

Normally historical fields only in region (I) are stored because storing historical

P0 solutions in region (H) is obviously wasteful evenif only the active band of

region (II) for the pulsed illumination is considered. It is much cheaper to store

the effect of these many POTD nodes on the (relatively) few IETD nodes,

reducing the storage needs by the factor 0. However, this requires that the time

Hybridisation of the Project Forzvard Algorithm 	 144



in the future at which the field in question in the region (II) will affect some

location in region I, and the size of the effect, should be determined in advance.

As is clear in the work cited, incorporation of this into the conventional

retrospective IETD approach is rather cumbersome. Conversely, it is apparent

that it fits very naturally into the structure of the 'project forward' algorithm

developed here.

7.3 Hybridisation of the Project Forward Algorithm

The hybridisation of the project forward algorithm with POTD can be more

easily implemented than that of normal retrospective algorithm. For the region

(II), again the POTD approximation is used for the surface H field solution,

which is the same as in the hybridisation of the normal algorithm.

For the first integration in (7.2.1), over the IETD region I, the normal

retrospective algorithm finds a geometrically weighted integral of earlier

surface fields over all the rest of the body. On the other hand the approach in

the project forward algorithm is to predict the size of effect which the fields in

question in region (I) will have at times in the future.

This is also essentially exactly what is required to compute efficiently the

influence of region II on region I. Since this is hardly special at all in the context

of the project forward algorithm, hybridisation of it allows equation (7.2.1) to be

solved by means of almost the same calculation procedure as used in the non-

hybrid project forward approach.

7.4 Results
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One difficulty with such a hybrid treatment is in finding suitable test cases to

validate the implementations; if the test cases are small enough to be calculable

by other means, they are too small for the hybrid approach to be expected to

perform well. In this thesis, comparisons will be made with the full field

solution for a small problem, and performance on some realistic problems will

be demonstrated, but without any 'correct' solution to assess them against.

7.4.1 Correctness of Hybridisation

The correctness of the implementation of the hybridisation can be demonstrated

by analysis of a problem small enough to be soluble by a full field solution (and

thus a problem for which the hybrid is of little practical benefit). In such a case

comparisons can be made with the full solution, and we would expect the

analytical solution to be approached as the size of the optical region is reduced.

Figure 7.4.1.1 shows the bistatic RCS of a 2 wavelength (1583 node) sphere,

calculated by the Mie series, and a set of hybrid analyses. In each case the

central circular portion of the face of the sphere on which the wave impinges

was analysed using POTD. The size of the POTD region is characterised by the

angle its diameter subtends at the center. Good agreement can be seen between

the wholly IETD result and the Mie series, with a degradation as more of the

front face is analysed using POTD. Whilst use in such a way is of limited

practical interest, it fulfils its primary purpose here, of indicating that the

hybridisation itself is performing in a satisfactory manner.

7.4.2 Ball and plate
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Now is considered a large problem, where much of the target is electrically

large and electrically smooth, whilst some is neither. The geometry analysed is

taken from Walker and Vartinainen; a unit radius sphere placed centrally 1.75

diameters in front of a square plate of side 50 diameters. The sphere and a

circular region on the plate directly behind the sphere are treated by BIE time

domain approach, and the balance of the plate, the large majority of the total

problem surface, by POTD. Here we will take as the diameter of the IETD circle

6.5 diameters of the sphere. Behaviour of the surface field H is investigated for

the case of pulsed illumination from 6 degrees off-axis.

In figure 7.4.2.2 is shown the surface field at a location (a) in figure 7.4.2.1. The

main feature of the response, and in particular the double peak of the incident

wave and its reflection from the plate past (a), are well captured. The small later

peak occurs later by about one transit time from the plate edge back to the

centre, and presumably corresponds to a reflection from the plate edge.

7.4.3 Missile on Wing

As another large problem, a pointed cylinder located near and parallel to the

surface of a large plate (akin to a missile suspended below a wing) is

considered. The missile is placed centrally 1 diameter in front of a flat square

plate of side 60 diameters of the missile. The missile and plate are meshed with

1794 nodes and 18225 nodes respectively. The missile itself, and a region

extending about two diameters beyond the projection of the missile onto the

plate, are treated by the BE time domain approach. The balance of the plate is

treated by POTD. The behaviour of the surface field H is investigated, using 15

degrees off-axis illumination.
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Figures 7.4.3.1 and 7.4.3.2 show the mesh employed, and the overall

arrangements. The time variation of the surface field magnitude is shown

graphically in figure 7.4.3.3. It is seen from the figure that the surface field

magnitude peaks sharply as the incident wave passes and exhibits no wake on

that part of the wing which is a P0 region, as expected from a P0

approximation.

Figure 7.4.3.4 shows the interaction between the missile and wing. Two narrow

active bands on the missile are clearly seen in this figure. One is caused by the

incident wave, and the other presumably from the reflection from the wing.

In the results shown here, the cost reduction via thresholding, presented in

chapter 3, was not applied. (As noted, it was not possible to devote very much

time to the hybridisation itself, and it seemed prudent not to confuse the issue

at so early a stage.) Nonetheless, the example shown here in 7.4.3 clearly offers

the opportunity to apply it. The missile and adjacent plate has a relatively

narrow band of active region, while the large majority of the rest of the IETD

region is quiescent most of the time. The application of a threshold in the IETD

region could thus result in considerable cost savings.

7.5 Discussion

The ability to hybridise the project forward approach with time domain

physical optics has been demonstrated. This hybridisation offers clear gains in

simplicity of implementation over the conventional retrospective approach. It

similarly offers the ability to perform truly time domain scattering calculations

on problems which would be way beyond the capacity of computers to perform
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full field solutions. Additionally, this present approach permits the

straightforward incorporation of thresholding, gaining the same cost reductions

for the IETD region as have been demonstrated in the non-hybrid parts of this

thesis.
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Figure 7.4.3.1	 20019 node "missile on wing" mesh
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Figure 7.4.3.3 Time Variation of the surface field magnitude
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Chapter 8. Conclusions

The prediction of the behaviour of wave scattering is very important in

many branches of engineering. Of significant interest in this thesis are RCS

problems. For stealthy objects, RCS analyses combine requirements for good

accuracy with the need to model bodies many wavelengths long. However

these require huge computational resources, and present computers and

numerical methods limit the size and complexity of problems which can be

solved. Another broad area of application, and one where the true time

domain calculation is particularly valuable, is in electromagnetic pulse

(EMP) calculations. Here too, similar comments about computational costs

apply.

Though there exist many numerical methods which are suitable for RCS

and EMP problems, the time domain BE method is one of the more

efficient tools for their analysis. Its computational costs scale with the fifth

power of the frequency. While this is broadly comparable to or better than

the cost scaling of alternative techniques (such as finite difference time

domain, or frequency domain integral equations), because of this cost scaling

it is impossible to solve realistic problems on present computers.

The project forward algorithm presented here offers the prospect of large

reductions in cost, and a reduction in cost scaling to the fourth power of the

frequency. This has been achieved by the combination of a re-ordering of the

algorithm, and implementation of a further physical approximation which

this reordering makes possible. This approach is demonstrated for a variety
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of geometries, including relatively difficult ones such as the NASA almond

and the 'cone-sphere and gap'. Results in these cases have shown that the

accuracy loss occasioned by the physical approximation is acceptable, and that

large cost savings can be achieved, with larger cost savings being observed as

the body size increases. On the examples studied cost savings by upto factors

of 20 have been achieved.

The approach obviously has potential application in a variety of other fields.

One is naturally acoustics, which is computationally essentially a subset of

computational electromagnetics. Another area, where the same physical

observation should hold, is elastodynamics.

In addition to allowing the easy implementation of the physical

approximation, the project forward algorithm has some advantages over the

normal retrospective algorithm in parallelisation. The partitioning over the

field nodes seems to be the most attractive approach in terms of the

simplicity and efficiency, but the consequent duplication of storage renders it

unsuitable for the retrospective algorithm. The project forward algorithm

does however allow this most attractive approach to be used, by its particular

and crucial characteristic of the replacement of storage of the historical field

values with storage of the future right hand side vectors. The efficiency of

parallelisation of the project forward algorithm has been investigated 1y

solving the same problem with different numbers of processors. Good

parallelisation is observed in the matrix formation and the future right

hand side formation stages, which are the dominant costs.
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It has been shown that the project forward algorithm can be hybridised with

POTD. As is anyway the underlying approach in the BE region when using

project forward, it is possible to determine the time in the future at which

the field in question in the POTD region will have an effect, and the size of

that effect. As a consequence of that, relatively minor changes are required

for implementation of the hybridisation. Some large problems are analysed,

showing reasonable results in terms of the physical behaviour of the EM

wave. Further, the cost of the BIlE time domain portion of the hybrid

calculation can be reduced in just the same fashion as the non-hybrid case,

using the physical approximations discussed above though this has not been

done.

Topics for further Research

There seem two main areas for further research:

In the application of the physical basis for the cost reduction, only a

relatively crude threshold was used. Some more sophisticated thresholding

techniques could be implemented, such as the threshold in terms of the

present maximum field, or even spatially or time dependent thresholds. A

'near neighbour' approach as explained in chapter 3 might be incorporated

in addition. More study about those would be beneficial.

The hybridisation of the project forward algorithm with POTD was

developed in the previous chapter. The application of physical basis for the

cost reduction may be extended to the BE part of the hybrid approach. This

also would be a fruitful area for further work.
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APPENDIX

For cost saving in the frequency domain, a study of the use of iterative methods

for the solution of the large dense scattering matrices was made. In particular it

involved development of a rational criterion for termination of the iteration.

This work will shortly appear in the journal of "Communications in numerical

methods in engineering", and the text of the forthcoming paper forms this

appendix.
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Termination Criteria in Iterative Solution of Large Scattering problems Using

Intergral Equation Methods

Abstract

Iterative methods are increasingly used for solution of the extremely large

matrix equations generated by integral equation analysis of multi-wavelength

frequency domain scattering. Whilst much cheaper than direct methods, the

matrix solution remains the dominant cost, and is very costly.

The criterion adopted for termination of the iteration can have a marked effect

on this cost. We show that for large scattering problems a robust and rational

prior choice of termination criterion can be made, based only on discretisation.

This allows confident use of a much larger termination residual than those

commonly used, with consequent cost reduction.
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1. Introduction

There is considerable interest in the solution of larger and larger scattering

problems, in acoustic, elastodynamic and, perhaps in particular,

electromagnetic applications. 'Large' in this context relates to the body size,

expressed in wavelengths of the incident field. Frequency domain integral

equation methods 1'2 (method of moments, boundary integral equations) are

widely used, with their well known advantages of surface- only discretisation,

automatic satisfaction of the radiation boundary condition, and so on.

The two components of computational work in such an analysis, matrix

formation and solution, scale with size to the fourth and sixth powers

respectively. There is thus considerable interest in reducing solution time, as

increased interest in iterative methods 9 indicates.

Any iterative method is a gradual approach to the exact solution of the matrix

equation; a solution which could in principle be found by direct methods. It is

necessary to decide when to terminate the iteration; when the approach of the

iterative solution to the exact solution of the matrix equation is sufficiently

close. Since the solution cost is dominant, there is obviously a strong incentive

to terminate as soon as possible. In particular, there is no benefit in spending

effort in seeking, via prolonged iteration, an iterative solution which is an

extremely close approximation to the exact solution of the matrix equation,

when that 'exact' solution itself embodies by then much larger errors due to the

discretisation.
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This general issue, of the interplay between the error due to truncation of an

iterative solution, and the discretisation error, is an area in which considerable

work has been done in a number of branches of numerical mathematics. The

interested reader is referred to chapter 4 of Briggs'°, and the references cited

therein. In this paper we address the issue of what constitutes 'sufficiently close'

in the context of large harmonic scattering problems; how far from the exact

solution of the matrix equation can one safely terminate the iteration, on the

grounds that the matrix equation solution is itself only an approximation to the

physical problem.

However, we naturally do not know the analytical solution to the physical

problem, and so do not know how far from it is the exact solution of the matrix

equation representing the discretised problem. However, for the practically

important case of multi-wavelength scattering problems, it is almost invariably

the modelling of the field variation which is the determinant of the error due to

discretisation.

It will be shown that, via its expression in the same terms as the residual in the

iterative method by transforming it into the right hand side space, a robust and

reliable prediction can be made of the difference between the analytical solution

and the exact solution of the discretised problem. This difference is primarily a

function of the fineness of discretisation; the principal determinant of solution

cost, and under the direct control of the analyst.

The closeness expressed in these terms of the exact to the analytical solution

provides a rational target for the closeness of the exact and iterative solution

which need be sought. This allows a more rational, albeit necessarily still
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empirical, approach to the choice of the value of the iteration residual at which

to terminate. In particular, it allows values lower than those commonly

reported to be used with confidence, with significant savings in time.

2. The method

We consider either acoustic or electromagnetic scattering of an incident 4

wave from the exterior of a hard (perfectly conducting) body, transformed into

a second kind integral equation. The surface of the body is then discretised, and

a matrix equation formed1'2.

We then seek the solution to

A$DJs -' =0

where A is the matrix resulting from discretisation of the integral equation and

•DIS the (exact) solution of the matrix equation. We will define additional

vectors: $AN the values of the analytical (ie correct physical) solution at the

nodes, and Iter the k 'th attempt to find the solution via an iterative method.

We define a discretisation error vector:

eDIS = $AN - $D!S

The iterative method calculates a series of iterates via

(k)	 (k—I)
1:er =	 +

where the difference between methods lies essentially in the choice of step

lengths a and step directions d. Associated residuals are

(1)

(2)

(3)
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A"—' _rWYlter	 'inc -

The iteration is terminated when

Ork)II
A - her
"Inc

The selection of a small value for R11 ensures that the iteration is not

terminated till the iterative solution $Wi,er is sufficiently close the exact solution

•DIS of the matrix equation.

There has been relatively little attention paid to the actual value adopted for the

quantity Rite,. , and figures ranging from io to io' have been used in the

iterative solutions of integral equations referenced above, with essentially no

discussion of the rationale behind the choice.

3. Discretisation error as a quasi-residual

The error due to discretisation can be re-expressed in a form similar to the

residual. Since the discretised solution, not the analytical solution, is the

solution to the matrix equation (1), we can identify a discretisation residual

(4)

(5)

vector

- = rJ

and thus define the 'discretisation-residual:

IIFDIs II
= RD,s

II4ncII
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This of course cannot normally be evaluated, as the analytical solution is

unknown.

However effective (3) is in generating small residuals in (4), it is still only

finding the discretised solution, ever more precisely. The discretised

solution remains just that; an approximation to the analytical one. A measure of

how far it is from the analytical one, in terms comparable to the iteration

residual, is provided by (7).

Iteration to a vanishingly small value of R,,,,. still would correspond to a 'true'

residual RD,s as given by (7) above, and is thus wasteful. Iteration till R1,,. - RD,s

may be worthwhile; beyond this the return for the extra computational work is

likely to be small.

4. Determination of the discretisation residual

It remains to estimate the discretisation residual; the analytical solution, used in

(6) and (7), is obviously not available in any case of real interest.

The error arises from imperfect discretisation; imperfect representation of the

geometry, imperfect integrations to form the coefficients of the system matrix,

and imperfect representation of the field variation over the surface. For the

multi-wavelength bodies of interest, the field variation is much greater than the

geometry variation, and is the dominant contributor to error. it is to be expected

then that a suitable parameter against which to correlate error will be the

number of nodes per wavelength used in the discretisation.
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It is this observation, that the discretisation error is likely to depend primarily

on a quantity available in advance, which permits its use as a benchmark

against which to compare the iteration error.

This dominant dependence of error for large problems on field discretisation is

readily demonstrated. A series of sphere meshes, comprising quadratic

quadrilateral elements, with 266, 530, 770, 1130 and 1658 nodes N, were each

excited with incident scalar waves of a variety of frequencies. Figure la shows

error versus nodal separation. It is seen that the nodal separation is indeed a

good criterion for accuracy, and that as expected it becomes increasingly so as

bigger bodies are modelled; for small bodies the influence of representation of

the geometry is clear. The actual separation selected obviously will depend on

the needs of the work. For large scattering problems such as radar cross section

evaluation typically separations of about 1/5 to 1/10 wavelength are employed.

In figure lb is plotted the variation of the 'discretisation residual' RD!s . Nodal

separation correlates well with this, especially for the cases of most relevance

(large problems where representation of the geometry does not intrude). If for

example a nodal separation of -1/6 of a wavelength is employed, the figure

indicates there is nothing to be gained by using an iteration residual below

- 6 x i0, and that in practice a value of - l02 can probably be employed with

little loss in accuracy.

5. Demonstrations of the method

Here we apply the above methods for selecting the iteration residual, and

investigate their effectiveness in reducing the number of iterations. We employ
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the complex bi-conjugate gradient method 11, although others produce similar

results. Since the residual does not decline monotonically, use of the moving

average of the last few values introduces a further slight conservatism and

produces more consistent termination.

We will first investigate the behaviour on two spheres, discretised with very

different fineness, and consequently producing very different discretisation

errors. Three other more practically relevant geometries are then investigated,

with 'analytical' solutions approximated by separate analyses with very fine

meshes and double precision direct solutions.

5.1 Large and small spherical scatterers

Figure 2a shows error and residual during solution of a 4610 node sphere at 2

and 8 wavelengths diameter, with nodal separations of 0.05 and 0.2.

Figure lb would suggest termination with residuals of -0.5x10 3 and _l02; a

factor of 20 apart. This would cause termination essentially as soon as the final

discretisation error is reached, with modest increase in error. Relative to a

residual of say 10'6, savings for both would be by factors of -2.

This simple approach has thus allowed us to select, a priori, residuals such that

we stop very close to the eventual errors in each case, despite the errors

themselves and the selected residuals differing by a factor of 20 between the

cases.

5.2 Prismatic scatterer
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We consider now a rectangular prismatic scatterer, of sides 1, 2 and 10, subject

to an incident wave 20° off-axis, of wavelength 1.9. The course of the iteration

with a nodal separation of 0.14 wavelengths is shown in figure 2b. From figure

lb termination at a residual of -4 x iO 3 is predicted to be acceptable, and

would reduce the computational work relative to say l0 by a factor of about 2.

5.3 Slender dipole

Figure 2c shows analysis of scattering from a slender dipole (hemispherical end

caps, aspect ratio 10:1, -8 wavelengths long, nodal separation 0.14, 300 off-axis

illumination).

A residual of -4 x l0 would again be suggested. This does not increase the

error arising from the discretisation itself, but the consequent termination after

-12 iterations reduces by -4 the work required to reach i0.

5.4 Almond

Figure 2d shows analysis of scattering from a 866 node 'almond', a widely

analysed benchmark12 (here, 4.3 wavelengths long, nodal separation 0.13, head-

on illumination). Figure 1(a) suggests a residual of -2 x l0, and figure 2d

shows this leaves unchanged the error arising from the discretisation itself. This

is achieved after -7 iterations, reducing by a factor of about two the work

required to reach l0.

6. Conclusions
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For large scatterers, many wavelengths in size, the need to model the field

variation is the determinant of the discretisation needed. In such cases the error

is predominantly a function of nodal separation in wavelengths. It has been

shown that it is possible to express this error as a 'discretisation residual', the

value of which can be characterised reliably in terms of this separation, and

which is thus available, in advance, for practical cases in which the solution is

naturally not known. This discretisation residual can then be used as a criterion

for terminating iterative solution of the matrix equation. Its successful

application in cases with markedly different errors and residuals indicates the

robustness of the empirical criterion developed.

Use of this residual value gives an 'iteration error' generally small compared to,

and at worst comparable to, the discretisation error. For typical discretisations

employed its use results in a reduction in computational work by a factor of

two or more compared to the residuals of —1O commonly employed.
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Figure captions

Figure 1

Error (a) and discretisation residual (b) for spheres discretised with different

numbers of nodes, illuminated at a range of frequencies.

Figure 2

Error and residual versus iteration number, for: (a) spheres, 4610 nodes, 0.05

wavelength nodal separation, 2.0 wavelengths in size (diameter) and

4610/0.2/8.0, (b) prismatic bar, 488/0.14/5.3, (c) dipole 10:1 aspect ratio,

722/0.14/8.0, (d) almond 866/0.13/4.3.
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