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Abstract 

Multi-parametric programming is a mathematical theory to address op- 

timisation problems involving varying parameters. Based on sensitivity and 

singularity theories, multi-parametric programming derives the optimum so- 

lution of the optimisation variables as analytical continuous functions of the 

varying parameters. In this thesis, novel theory and algorithmic develop- 

ments are presented for the solution of various classes of multi-parametric 

programs with relevance to real-life applications. In Part 1, Advances in 

global optimisation, particular focus is given to the following classes of global 

optimisation problems in the context of multi-parametric programming: (i) 

bilevel programming, (ii) multi-level hierarchical and decentralised program- 

ming and (iii) multi-parametric mixed integer linear programming. In Part 2, 

Advances in robust optimisation & control, the foundations towards a com- 

prehensive general theory for robust optimal control are described in detail. 

These involve two steps, the effective solution of (iv) constrained dynamic 

programming, and the (v) robust re-formulation of the original model-based 

predictive control problem. 
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1. Introduction 

"Dans le monde rgellement renverse, 

le vrai est un moment du faux. 

Guy Debord 

Multi-parametric programming refers to a class of optimisation problems 

which involve some type of bounded uncertainty and/or variability within 

the mathematical model. A typical and general multi-parametric program is 

of the following form: 

z(6) = min f(x, y, 0), 
XIY 

h (x, y, 19) = 0, 

g(x, Y, L9): 2ý, 0, (1.1) 

Rn' yC 10, JIM, 

OEe, 

where, x is the vector of continuous optimisation variables, y is the vector 

of binary optimisation variables and 0 is the vector of bounded parameters 

(eL _< o :5 eu); f is a scalar function and h, g are general vectorial functions. 

The objective of multi-parametric programming is to understand how does 

the optimal solution of problem (1.1) vary withe(Dantzig et al., 1967). 

Varying constraints and/or objective may result in quantitative and qual- 

itative changes in the solution. In a quantitative change, the solution moves 

smoothly to a neighbouring point, with the same set of active constraints. 

Whereas, a leap into a region with a different set of active constraints, corre- 
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sponds to a quantitative and qualitative change of the solution. For instance, 

regard the Zeeman's catastrophe machine, Figure 1.1. 

Legend: A- board; B- rotating disk secured at its centre by a pin QD-a pin 

stuck into the disk; E-a pin stuck into the board; F, G - rubber bands; H- pencil; 
I- piece of paper, 
As the pencil moves within the paper, the rotating disk settles itself in a certain 

position. Then, certain small moves of the pencil correspond to jumps in the posi- 

tion of the disk, that if marked draw curve K; which corresponds to the boundary 

of a qualitative change in the system behaviour (Arnold, 1984). In the multi- 

parametric programming literature the coordinates of the pencil are called state 

parameters and curve K delimits a Critical Region. 

Figure I. I.: Zeeman"s catastrophe machine. 

Multi-parametric programming has recently received considerable atten- 

tion in the open literature (see Pistikopoulos et al., 2007a), especially due to 

its important application to model predictive control (MPQ - see Pistikopou- 

los et al. (2007b). Various classes of (1.1) have been studied, see Table 1.1, 

with corresponding important developments and applications in control, see 

Table 1.2, and other areas, Table 1.3. 

Despite the above major advances, many important classes of Problem (1.1) 

have not yet been fully addressed. In this thesis we aim at different classes of 

multi-parametric non-convex programs. 
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Table 1.1.: Classes of multi-parametric programming algorithms. 
mp-LP Saaty and Gass (1954); Gass and Saaty (1954); Gal and 

Nedoma (1972); Gal (1975); Dua (2000); Borrelli et al. 
(2003); Bemporad and Filippi (2003); Filippi (2004). 

mp-QP Dua et al. (2002); Bemporad et al. (2002); Tondel et al. 
(2003). 

mp-MILP Acevedo and Pistikopoulos (1997); Kosmidis (1999); 
Dua and Pistikopoulos (2000); Li and lerapetritou 
(2007a, b). 

mp-MIQP Dua et al. (2002). 
mp-NLP Armacost (1974,1976); Kyparisis and Fiacco (1987); 

Fiacco and Kyparisis (1988); Dua and Pistikopoulos 
(1999); Acevedo and Salgueiro (2003). 

mp-MINLP Pertsinidis (1992); Pertsinidis et al. (1998); Dua and 
Pistikopoulos (1999). 

mp-GO Dua et al. (2004). 
mp-DO Sakizlis et al. (2002,2003,2004a, b). 

Table 1.2.: Applications of multi-parametric programming to MPC. 
Hierarchical decen- Fafsca et al. (2007a). 
tralised control 
Hybrid control Sakizlis et al. (2002); Borrelli et al. (2005); 

Morari and BariC' (2006); Baotiý et al. (2006). 
Linear discrete Sys- Pistikopoulos et al. (2000); Dua et al. (2002); 
tems Bemporad et al. (2002); Tondel et al. (2003); 

Sakizlis et al. (2005). 
Non-linear control Sakizlis et al. (2007). 
Robust control Sakizlis et al. (2004b, c); Bemporad et al. 

(2003); Kouramas et al. (2008a). 

Table 1.3.: Other applications of multi-parametric programming. 
Drug delivery sys- Dua and Pistikopoulos (2005); Dua et al. 
tems (2006). 
Dynamic program- Baotic' et al. (2006); Faisca et al. (2008). 
ming 
Game theory Faisca et al. (2007b, a). 
Pro-active schedu- Ryu et al. (2004); Ryu and Pistikopoulos 
ling (2007). 
Supply chain Pistikopoulos et al. (2007). 

Goals and thesis organisation 

The main goals of this thesis are the development of novel theory and algo- 

rithms for classes of multi-parametric programming which involve the solu- 
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tion of global optimisation problems. Examples illustrating the applicability 

of the new developments are (i) the plant selection problem, (ii) optimal con- 

trol of multilevel systems, (iii) process design with uncertainty and (iv) robust 

control of linear discrete systems. 

o Plant selection problem 

Companies commonly take decisions at two different levels: (i) headquar- 

ters and (ii) manufacturing plants. The manufacturing plants aim to min- 

imise the operating cost, whereas the headquarters aim to maximise the over- 

all profit; which, originates a loop of operational and strategic decisions, Fig- 

ure 1.2. 

Operational Strategic 
7---ý ------------------- 

decision decision 
Manufacturing plants 

Figure 1.2.: Plant selection problem. 

This hierarchical decision problem is formulated as a bilevel programming 

problem (Floudas, 2000). Whilst, the inner problem corresponds to the min- 

imisation of the operating cost, the outer problem corresponds to the global 

maximisation of the profit. Although the headquarters have control over the 

full set of optimisation variables, they are constrained by the action of the 

manufacturing plants. The challenges are: 

9 the existence of an hierarchy of decision makers. The mathematical 

modelling of the interaction between the two levels of decision is com- 

plex and it is widely known to result in a global optimisation problem; 

the presence of logical variables. The headquarters have to take strate- 

gic decisions, e. g. which plant to open and which products to assign. 

Obviously, the mixed integer nature of the problem further increases 

the problem complexity 
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o Optimal control of multi-level systems 

In many hierarchical control strategies a dynamic system is optimised within 

a complex structure with different objectives at different levels, Figure 1.3. As 

control variables state variables 
. o- System lip 

----------------- -------- 
Central 
Controller 

Local -Local 
Controller I Controller m 

Local Nash Local 
Controller i-i- Controller ij ... equilibrium 

Figure 1.3.: Optimal control of multi-level systems. 

we will see, this class of problems is posed as a multi-level optimisation prob- 

lem, which establishes a complex network of information (Ba§ar and Olsder, 

1982). In this thesis, we assume that different agents at the same level reach 

a Nash equilibrium, whereas agents between different levels reach a type of 

Stackelberg equilibrium. The main challenges are: 

the coordination of multiple agents within a complex structure. Again, 

the resulting problem is formulated as a global optimisation problem; 

the computation of Nash and Stackelberg equilibria in the presence of 

constraints. Originally, the theory of games does not consider the exis- 

tence of constraints. 

o Process design with uncertainty 

Process design problems are a very well-studied topic, both in academic 

and industry communities (Biegler et al., 1997). The most common solution 
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strategy is to formulate a superstructure and solve the resulting optimisation. 

problem, Figure 1.4. 

Figure 1.4.: Process design under uncertainty. 

In general, the optimisation problem is a mixed integer optimisation prob- 
lem; which can be solved with existing tools. However, if the designer as- 

sumes that the cost function and/or constraints may vary during operation, 

varying parameters have to be considered in the mathematical model. There- 

fore, the challenge is: 

the coexistence of varying parameters in the objective function and in 

the constraints. It gives rise to bilinearities and consequently to a global 

optimisation problem. 

o Robust optimal control of discrete linear systems 

Dynamic Programming is well-documented as being a powerful tool to 

solve multi-stage decision problems (Bellman, 2003). Based on the optimality 

principle, the original problem disassembles into a set of problems of lower 

dimensionality, thereby significantly reducing the complexity of obtaining 

the solution, Figure 1.5. 

Dynamic programming is very popular in the design of optimal control 

policies for discrete linear systems. Nevertheless, the standard strategy nei- 

ther addresses the presence of hard constraints nor considers the existence of 

uncertainty in the model. Thus, the challenges are: 
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Xk 
Uk Stage k 

Uk+l Stage 
ý+-l 

Uk+2 Stage ý+-2 

XN-1 
UN-1 

-C Stage N 

Xx N 

(a) Multi-stage process. (b) Time horizon of actions. 

Figure 1.5.: Multi-stage decision process. 

the development of a novel approach for the solution of dynamic pro- 

gramming problems in the presence of hard constraints. Since the op- 

timal decision laws are non-linear, the resulting optimisation problems 

are non-convex; 

the development of a novel approach whose solution is immune against 

uncertainty in the discrete linear model. The direct robust re-formulation 

of the original constrained optimal control problem is well known for 

originating a global optimisation problem. 

The thesis is organised in the following way. In Chapter 2 (Part 1) we pro- 

pose a global optimisation approach for the solution of various classes of 

bilevel programming problems based on recently developed parametric pro- 

gramming algorithms. We first describe how we can recast and solve the 

inner (follower's) problem of the bilevel formulation as a multi-parametric 

programming problem, with parameters being the (unknown) variables of 

the outer (leader"s) problem. By inserting the obtained rational reaction sets 

in the upper level problem the overall problem is transformed into a set of in- 

dependent quadratic, linear or mixed integer linear programming problems, 

which can be solved to global optimality. In particular, we solve bilevel qua- 

dratic and bilevel mixed integer linear problems, with or without right-hand- 

side uncertainty. A number of examples are presented to illustrate the steps 
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and details of the proposed global optimisation strategy Subsequently, Chap- 

ter 3 outlines the foundations of a general global optimisation strategy for the 

solution of multilevel hierarchical and general decentralised multilevel prob- 
lems, based on our recent developments on multi-parametric programming 

and control theory. The core idea is to recast each optimisation subproblem, 

present in the hierarchy, as a multi-parametric programming problem, with 

parameters being the optimisation variables belonging to the remaining sub- 

problems. This then transforms the multilevel problem into single-level lin- 

ear/convex optimisation problems. For decentralised systems, where more 

than one optimisation problem is present at each level of the hierarchy, Nash 

equilibrium is considered. A three person dynamic optimisation problem is 

presented to illustrate the mathematical developments. 

In Chapter 4, we present a novel global optimisation approach for the gen- 

eral solution of multi-parametric mixed integer linear programs (mp-MILPs). 

We describe an optimisation procedure which iterates between a (master) 

mixed integer nonlinear program and a (slave) multi-parametric program. 

Moreover, we explain how to overcome the presence of bilinearities, respon- 

sible for the non-convexity of the multi-parametric program, in two classes 

of mp-MILPs, with (i) varying parameters in the objective function and (ii) 

simultaneous presence of varying parameters in the objective function and 

the right-hand side of the constraints. Examples are provided to illustrate the 

solution steps. 

In Part 11, we focus on the new developments in robust optimisation and 

control. Chapter 5 presents a new algorithm for solving complex multi-stage 

optimisation problems involving hard constraints and uncertainties, based 

on dynamic and multi-parametric programming techniques. Each echelon 

of the dynamic programming procedure, typically employed in the context 

of multi-stage optimisation models, is interpreted as a multi-parametric op- 

timisation problem, with the present states and future decision variables be- 
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ing the parameters, while the present decisions the corresponding optimisa- 

tion variables. This reformulation significantly reduces the dimension of the 

original problem, essentially to a set of lower dimensional multi-parametric 

programs, which are sequentially solved. Furthermore, the use of sensitiv- 

ity analysis circumvents non-convexities that naturally arise in constrained 

dynamic programming problems. 

In Chapter 6, we describe the foundations of a novel optimisation frame- 

work for the solution of the linear quadratic regulation problem of paramet- 

ric uncertain systems. Based on dynamic and multi-parametric program- 

ming techniques, the procedure recast the original problem into a robust 

formulation considering the worst-case variation in the system's dynamic 

model. Moreover, we describe how the robust formulation, which preserves 

the original linear-quadratic program, is solved using the multi-parametric 

dynamic programming algorithm for linear time-invariant systems, devel- 

oped in Chapter 5. The solution steps are illustrated with the double integra- 

tor example considering path and input constraints, plus parametric uncer- 

tainty in the linear state transition model. 



Pa rt 1. 

Advances in global 

optimisation 



2. Parametric global optimisation for 

bilevel programming 

In this chapter, we propose a global optimisation approach for the solution 

of various classes of bilevel programming problems based on recently de- 

veloped parametric programming algorithms. We first describe how we can 

recast and solve the inner (follower's) problem of the bilevel formulation as 

a multi-parametric programming problem, with parameters being the (un- 

known) variables of the outer (leader's) problem. By inserting the obtained 

rational reaction sets in the upper level problem the overall problem is trans- 

formed into a set of independent quadratic, linear or mixed integer linear 

programming problems, which can be solved to global optimality, In partic- 

ular, we solve bilevel quadratic and bilevel mixed integer linear problems, 

with or without right-hand-side uncertainty. A number of examples are pre- 

sented to illustrate the steps and details of the proposed global optimisation 

strategy. 

2.1. Introduction 

Multilevel optimisation problems have attracted considerable attention from 

the scientific and economic community in recent years. Due to its many ap- 

plications, multilevel and in particular bilevel programming have evolved 

significantly. Bilevel programming problems (BLPP) involve a hierarchy of 

two optimisation problems, of the following form (Vicente, 1992; Migdalas et 
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al., 1997; Floudas, 2000; Gtimti§ and Floudas, 2001; Dempe, 2003): 

min F(x, y), 
XIY 

G(x, y) :50, 

X EE X, 

yc argmin ff(x, y) : g(x, y) :50, yc 

where, X9 R"' and Y9 R"Y are both compact convex sets; F and f are real 

functions: R(""'y) ---> R; G and g are vectorial real functions, G: R(n"ny) ---> 
R n' and g: R (nx+ny) --+ R n1 ; nx, nyE IN and nu, n1 c IN U 101. The following 

definitions are associated to Problem (2.1): 

Relaxed feasible set (or constrained region), 

0= (x EE X, ycY: G(x, y) :50, g(x, y) :5 01; (2.2) 

Lower level feasible set, 

Qx) = ty E Y: g(x, Y) :5 01; (2.3) 

Follower's rational reaction set, 

M(x) = ly E Y: yE argmintf(x, y) :yE C(x)ll; (2.4) 

Inducible region, 

IR = (x EE X, yGY: (X, y) c 0, yc M(X)l- (2.5) 

Applications of bilevel and multilevel programming include design opti- 

misation problems in process systems engineering (Clark and Westerberg, 

1990; Clark, 1990); design of transportation networks (LeBlanc and Boyce, 

1985); agricultural planning (Fortuny-Amat and McCarl, 1981); management 

of multi-divisional firms (Ryu et al., 2004) and hierarchical decision-making 
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structures (Fortuny-Amat and McCarl, 1981). These multilevel problems are 

classified according to the number of levels and the type of their cost func- 

tions and variables: if the problem has two levels, where both cost functions 

are affine functions and the variables are continuous, the problem is classi- 

fied as a linear bilevel programming problem (BLPP); if at least one of these 

functions has a quadratic expression, it is a quadratic BLPP; adding uncer- 

tainty to the formulations results in a BLPP with uncertainty; on the other 

hand, if binary and continuous variables coexist in the same bilevel problem 

formulation, it corresponds to a mixed integer BLPP. 

Recently, Pistikopoulos and co-workers (Dua and Pistikopoulos, 2000; Dua 

et al., 2002) have proposed novel solution algorithms which open the possi- 

bility of using a general framework to address general classes of bilevel and 

multilevel programming problems. These algorithms are based on paramet- 

ric programming theory (Acevedo and Pistikopoulos, 1997; Dua, 2000) and 

use of the Basic Sensitivity Theorem (Fiacco, 1976,1983). This approach can 

be classified as a Reformulation Technique (Visweswaran et al., 1996) since the 

bilevel problem is transformed into a number of quadratic or linear problems. 

The main idea is to divide the follower's feasible area into different rational 

reaction sets, and search for the global optimum of a simple quadratic (or 

linear) programming problem in each area. 

2.1.1. Global optimum of a bilevel programming problem 

While for an optimal control problem (one-player problem) there is a well- 

defined concept for optimality, the same is not always true for multi-person 

games (Baýar and Olsder, 1982). 

In the case of bilevel programming, Vicente (1992), Visweswaran et al. (1996), 

Shimizu et al. (1997), Floudas et al. (1999), Floudas (ý000) and Dempe et al. 

(2005) interpret the optimisation problem as a leader "s problem, F, and search 

for the global minimum of F. The solution point obtained for the follower's 
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problem, f, will respect the stationary (KKT) conditions and hence it can be 

any stationary point. 

Obviously, this solution strategy is acceptable when the player in the upper 

level of the hierarchy is in the most "powerful" position, and the other levels 

just react to the decision of their leader. Such approach is sensible in many 

engineering applications of bilevel programming (for instance, see Clark and 

Westerberg, 1990; Clark, 1990). It is also a valid strategy for the cases of de- 

centralised manufacturing and financial structures, when the leader has a full 

insight and control of the overall objectives and strategy of the corporation, 

while the follower does not. 
However, this is not always the case. For example, using thefeedback Stack- 

elberg solution, where at every level of play a Stackelberg equilibrium point is 

searched, the commitment of the leader for his/her decision increases with 

the number of players involved. Cao and Chen (2006) present an example 

where the sacrifice of the leader's objective on behalf of the followers results 

in a better solution for both levels. Similar solution strategies have also been 

studied (Tabucanon, 1988; Lai, 1996; Shih et al., 1996). 

Theorem 2.1 (Vicente, 1992) Iffor each XE Xf and g are twice continuously dif- 

feren tiable functions for every yc Qx), f is strictly convex for every yE Qx) and 

Qx) is a convex and compact set, then M(. ) is a real-valued function, continuous 

and closed. 

If Theorem 2.1 applies and assuming that M(x) is non-empty, then M(x) 

will have only one element, which is y(x). Thus, Equation (2.1) can be refor- 

mulated as: 

min F(x, y(x», 
xfy 

S. t. G(x, y(x» :ý0, (2.6) 

XC Crf, 

Crf = Ix c X: 3y e- Y, g(x, y) :5 0) - 
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ml + nlx, if Hlx: 5 hl, 

Considering that f is a strictly convex real function, the function y(x) can 
be computed as a linear conditional function based on multi-parametric pro- 

gramming theory, as follows (Dua et al., 2002): 

Y(X) = 

28 

m2+n2x, if H 2X 
:5h2/ 

Mk + nkX, if HkX :! ý hkj 
(2.7) 

mK+ nK X, if H KX 
:5 hK 

/ 

where, nk, Mk and hk are real vectors and Hk is a real matrix. 

Theorem 2.2 (Vicente, 1992) If the assumptions of Theorem 2.1 hold, F is a real 

continuous function, X and the set defined by G(x, y) are compact, and if (3x EX: 

G(x, y(x)) :! ý 01, then there is a global solution for Problem (2.1). 

Since an explicit expression for y can be computed, if the assumptions of 
Theorem 2.2 hold, and the two players have convex functions to optimise, 

then the global optimum for Problem (2.1) can be obtained via the parametric 

programming approach. 

The advantage of using this approach is that the final solution will consider 

the possibility of existence of other global minima, which could correspond 

to better solutions for the follower. Moreover, the parametric nature of the 

leader's problem is Preserved. 

Regarding computational complexity, a number of authors have shown 

that bilevel programming problems are NP-Hard (Hansen et al., 1992; Deng, 

1998). Furthermore, Vicente et al. (1994) proved that even checking for a local 

optimum is a NP-Hard problem. 

The goal in this chapter is to describe a parametric programming frame- 

work which can solve different classes of multilevel programming problems 

to global optimality. Section 2.2 presents the fundamental developments for 
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the quadratic bilevel programming case. The theory is extended, in Sec- 

tion 2.3, to cover the existence of RHS uncertainty, and Section 2.4 addresses 

mixed integer bilevel programming. At last, Section 2.5 presents an applica- 

tion to the plant selection problem. 

2.2. Quadratic bilevel programming 

Consider the following general quadratic BLPP: 

min F(x, y) = Ll + L2X + L3Y +1xT L4X + yT L5x +1yT L6YI 
X/Y 22 

s. t. Glx + G2Y + G3 :5Q, 
1T 

yT15X +1T 
(2.8) 

min f (x, y) 11 + 12X + 13 Y+X 14X + -Y 16Y1 

S-t 91X + g2y + 93 :! ý 0f 

ny where x and y are the optimisation variables, xEX9 R"x and y, G Y g- R. 

[L2]lxnx, [L3]lxny, [L4]nxxnx, [L5]nyxnx, [L6]nyxny, [12]lxnx, [1311xny, [14]nxxnx,, 115]nyxnx 

and 116]nyxny are matrices defined in the real space. The matrices [Gilnuxnxi 

[G2]nuxny., [G31nuxii 1911nuxnx, [92]nuxnyl [931nuxI correspond to the constraints, 

also defined in the real space. 

Focusing the attention on the follower's optimisation problem, considering 

x as a parameter vector and operating a variable change (z =y+16 115X)f it can 

be rewritten as the following multi-parametric quadratic programming (mp- 

QP) problem: 

in l' + 1'x +1x 
Tli X+ 111 Z+'ZT11 Z), rn f'(xi z) -, 2-43 22 (2.9) 

'X' +91 'Z :5 93 S't 92 

where: I' ý::: 11; 1' : -- 12 - 131-115; 11 13; If ý 14 - ITI-1 15; 1' 7: ý 0; 1/6 ý-_ 16; 
12634565 

9f (gi - 921-115); 912 == g2; g3f ` -93 - 6 

The mp-QP Problem (2.9) can be solved applying the algorithm of Dua et 

al. (2002). As a result, a set of rational reaction sets (Definition 2-4) is obtained 
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for different regions of x: 

Zk = Mk + nkx; HkX :ý hk, 2,..., K. (2.10) 

By incorporating the expressions (2.10) into Problem (2.8) results in the fol- 

lowing K quadratic problems: 

min F'(x) =L 
'k +L 'k x+'xTL 'k X, 

x1224 

s. t G 'kX 
:5G 

'k 
13 

with: 
L'k = L, + L3Mk + jMkT L6Mk; 

12 

L 'k k+ MkT + MkT k- MkT = L2 + L3n - L31 115 L5 L6n L616 
26 -115; 

L'k = L4 + 2nk L5 - 21TI-'L5 + nkT L6nk - 2nkT L61-115 + lTl-lL61-115; 
4566566 

7 
k G', = G, + G2n - G216-115; 

GI = -(G3 + G2M k); 
3 

GI= [G'IH k]T 
11 (nx)x(nu+nk) 

GI= [G'lh k]T 
33 (1)x(nu+n hk) 

Clearly, the solution of the BLLP Problem (2.8) is the minimum along the K 

solutions of Problem (2.11). 

Remark 2.1 The artýflcial variable, z, introduced in Problem (2.9) is only necessary 
if 15 #0- In all other cases the multi-parametric problem can be easilY formulated 

through algebraic manipulations. 

Remark 2.2 When one of the matrices 1', L'k is null the optimisation problem where 64 

these are involved becomes linear. Particularly, if l' =0, Problem (2.9) is transformed 6= 

into a mp-LP; on the other hand, if L'k =0 Problem (2.11) becomes a LP problem. 4=, 

In both cases, the solution procedure is not affected, due to thefact that the Basic 

Sensitivity Theorem (Fiacco, 1976,1983) also applies to the mp-LP problem, 

Remark 2.3 The expression for the artificial variable introduced, z, is only valid 



2.2 Quadratic bilevel programming 31 

Table 2.1.: Parametric Programming approach for a BLPP. 
Step Description 

Recast the inner problem as a multi- 
parametric programming problem, with 
the leader's variables being the parameters 
(2.9); 

2 Solve the resulting problem using the suitable 
multi-parametric programming algorithm; 

3 Substitute each of the K solutions in the 
leader's problem, and formulate the K one 
level optimisation problems; 

4 Compare the K optimum points and select 
the best one. 

when 16 is symmetric. If not, with thefollowing transformation: 

T6 
= 

the resulting matrix is non-singular. If the resulting matrix is singular the expres- 

sion for the artificial variable should be given by: 

=y+Ax, 

where A should satisfy: JA ER nx x nx : 15 - (116 + IIT )A 226 

In this case, several solutionsfor the system above can exist. However, as long as the 

bilinear terms are eliminated in Problem (2.9) any solution can be selected. 

Remark 2.4 This technique is not valid when at the same time: (i) f is a pure qua- 

dratic costfunction; (ii) f involves bilinear terms and (iii) matrix T6is singular. 

Observing Formulation (2.11) we can conclude that the parametric pro- 

gramming approach (Table 2.1), transforms the original quadratic bilevel pro- 

gramming problem into simple quadratic problems, for which a global opti- 

mum can be reached. 

In the following subsections, examples are presented for LP I LP, LP I QP 

and QP I QP bilevel programming problems. 
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2.2.1. LPILP Bilevel programming problem 

Consider the following linear BLPP (Bard and Falk, 1982): 

min F(x, y) , -8x, - 4X2 + 4y, - 40Y2 + 4Y3i 
X/Y 

s. t. min f(x, y) = x, + 2X2 + Yl + Y2 + 2Y3., 
y 

S-t- -Yl + Y2 + Y3 :: 5 1� 

2x, - yj + 2y2- 0-5Y3 ": ý L (2.12) 

2X2 + 2y, - Y2 - 0-5Y3 !ý 

yý0, 

Xý! o . 

Problem (2.12) was solved using the steps described in Table (2.1): 

STEP 1 Formulate a mp-LP problem for the lower level: 

min f(x, y) = x, + 2X2 + Yl + Y2 + 2Y3i 

S-t- -Yl + Y2 + Y3 : 5- 1/ 

-yj + 2Y2 - 0.5Y3 :! ý 1- 2x,, 
(2.13) 

2y, - Y2 - 0.5Y3 :51- 2x, 

> Of 

xýO. 

STEP 2 The application of the mp-LP algorithm to the lower level re- 

sults in the following five rational reaction sets in Table (2.2). 

STEP 3 Substituting each of the sets obtained into the leader"s prob- 

lem, five linear programming problems result (Table 2-3). 

STEP 4 Observing the best values achieved for each region (Table 2.3), 

the global solution is obtained for: x, ý- 0; X2 ý 0-9; Y1 ý-: 0; Y2 = 0.6; Y3 = 

0.4 (F = -26; f=3.2). 
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Table 2.2.: Rational reaction sets (Step 2). 
k y(x) = mF+ (nk - 16 115)X H 

Y1(X) =0 
Y2(X) =0 0 :5x< 2 
Y3(X) =0 

yl(x) = -1 + 2x, 0 :5 X2 

2 Y2(X) =0 4x, + 2X2 <3 
Y3(X) =0 1 <X, 

2- 
Yl(X) = JX1 

- 
ýX2 
3 

0 :5 X2 

3 Y2 (X) =0 2x, + 2X2 <3 
Y3(X) = -2 + gX1 + IX2 

33 -XI + X2 <0 

-4x, - 
2X2 < -3 

yl(x) 0 ýX1 + LOX2: 5 3 
33 

4 =22 Y2(X) -3X1 + 3X2 Xl - X2 <0 
4 Y3(X) = -2 +j+ gX2 X, 3 

0 :5x, 

-2x, - 
4X2 :5 -3 

Y1(X) =0 0: 5 X, 
5 Y2(X) = -1 + 2X2 2x, + 4X2 <3 

Y3(X) =0 1 
2 -< 

X2 

Table 2.3.: Formulation of new problems (Step 3 and Step 4). 
k Optimisation Problem Optimised variables Function 

values 
min F= -8x, - 

4X2 
x, = 0.5; X2 = 0.5 F= -6 x 

S. t. 0 :! ý x :51 2- YI = 0; Y2 = 0; Y3 =0 f= 1.5 
minF = -4X2 -4 x 

2S-t-0 ! ý' X2 x, = 0.5; X2 = 0.5 F= -6 
4x, + 2X2 :! ý 3 Y1 = 0; Y2 = 0; Y3 =0 f= 1.5 
0.5: 5 x, 

minF = 
16 

X1 -4 X2 -4 x33 
:5 S-t- 0 :5 X2 x, = 0.5; X2 = 0.5 F= -6 3 2x, + 2x2 :53 YI = 0; Y2 = 0; Y3 =0 f= 1.5 

-X1 + X2 <0 

-4x, - 
2X2 :5 -3 

min F= 24x, - 
20X2 

-8 x 2 LO S. t. 5XI +3 X2 <3 
4 XI - X2 3 X1 = 0; X2 = 0-9 F= -26 

XI - X2 0 YI = 0; Y2 = 0.6; Y3 = 0.4 f= 3.2 
0:! ý X, 
-2x, - 

4X2 :! ý -3 
min F= -8x, - 84X2 + 40 

x 
5 S*t* 0 :ý X1 XI = 0; X2 = 0.75 F= -23 

2x, + 4X2 :53 YI = 0; Y2 = 0.5; Y3 =0 f= 2 

0.5 :! ý X2 

The global minimum obtained is the same as the one reported by Floudas et 

al. (1999). Here, only the solution of a single mp-LP and five LP was required 
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Table 2.4.: Different solutions for Problem (2.14). 
Solution F f X1 X2 YI Y2 

Aiyoshi and Shimizu (1981) 5 100 25 30 5 10 
Visweswaran et al. (1996) 0 200 0 0 -10 -10 

Solution 1 0 100 0 30 -10 10 
Solution 2 0 200 0 0 -10 -10 

to obtain the global minimum; whereas for the same problem Shimizu et al. 

(1997) report that their strategy requires the solution of ten sub-problems. 

Clearly, the computational efficiency of the proposed procedure depends on 

the performance of the underlying multi-parametric programming algorithm 

(which, in independent studies, has been reported as robust and efficient: 

Dua and Pistikopoulos, 2000; Dua et al., 2002; Sakizlis et al., 2003; Sakizlis et 

al., 2004a; Sakizlis et al., 2004b). 

2.2.2. LPIQP Bilevel programming problem 

Consider a linear cost funýction at the leader's level and a quadratic at the 

lower level: 

min F(x, y) = 2x, + 2X2 - 3y, - 3Y2 - 60, 
X/Y 

S. t. Xl+ X2+Yl-2Y2-40:! ý0, 

min f(x, y) = (yl - x, + 20)2 + (Y2 - X2 + 20)2" 
(2.14) 

S. t. -x, + 2y, :5 -10, 

-X2 + 2Y2 :! ý -10i 

0<x: 5 50, -10: 5 y: 5 20. 

The solutions found for this problem (Solution 1 and Solution 2) are com- 

pared to solutions reported in the literature (Aiyoshi and Shimizu, 1981; Vis- 

weswaran et al., 1996), as shown in Table 2.4. 

It is interesting to note: (i) Solutions 1 and 2 have the same (global) solu- 

tion for the leader's problem, F=0. However, they differ in the solution of 
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Table 2.5.: Different solutions for Problem (2.15). 
Solution Ff XI X2 Y1 Y2 Y3 
Muu and Quy 0.6426 1.671 0.609 0.391 001.828 
(2003) 
Solution 1 0.6384 1.6799 0.6111 0.3889 001.8333 

the follower's problem; (ii) Solution 2 is identical to the solution reported in 

Visweswaran et al. (1996); (iii) Solution 1 is the global solution (as discussed 

in 2.1.1), where both the leader and follower's cost functions are optimised. 

Thus, this comparison enhances a singular property of the framework devel- 

oped in this work, which is the lower level optimisation; whereas most of the 

Reformulation Techniques just satisfy the requirement of having a stationary 

point, KKT optimality conditions, for the lower level, with this approach the 

decision maker optimises firstly the leader cost function but has the opportu- 

nity to optimise the lower level as well. 

2.2.3. QPjQP Bilevel programming problem 

Consider the following problem, introduced by Muu and Quy (2003), which 

has quadratic functions in both levels: 

min F(x, y) = y2 + y2 - YIY3 - 4Y2 - 7x, + 4X2/ 
X/Y 13 

S. t. Xl + X2 "S' 

2+ ly2 1 
min f(x, y) = yj -2+ -Y32 + YIY2 + (1 - 3xl)yl + (1 + X2)Y21 

y22 (2.15) 

s. t. 2y, + Y2 - Y3 + Xl - 
2X2 +2 :50, 

xýO, 

yýo. 

Muu and Quy (2003) have solved this oligopolistic market example to find 

an c-global minimum (c = 0.01). The global minimum computed in the 

present work is compared to the former and presented in Table 2.5. 

It is interesting to note here that: (i) the solution obtained is in full agree- 
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ment with the one reported in Muu and Quy (2003); (ii) the solution of one 

mp-QP and one QP were required to arrive at the global solution. 

2.3. Bilevel programming with uncertainty 

Evans (1984) highlighted the importance of considering uncertainty/ risk (e. g. 

prices, technological attributes, etc. ) in the solution of decentralised decision 

makers. The presence of uncertainty in bilevel problems has been addressed 

before for the linear case (Ryu et al., 2004). Uncertainty is considered unstruc- 

tured, taking any value between its bounds. In the present work, we present 

an extension of our earlier work to the quadratic case. 

We address the following quadratic BLPP with right-hand side uncertainty, 

0: 

'TT'T 

min F(x, y, 0) = L, + L2X + L3Y + -x 
L4X +y L5x +-y L6Y., 

X/Y 22 

S. t. Glx+G2Y+G3: 5G40i 
T yT T 

(2.16) 
min f (x, y, 19) ý` 11 + 12X + hy +X 14X + 15X +- Y 16 Y� 

y2 

S-t- 91X + 92Y + 93 : ýý 940 1 

The steps for solving (2.16) are as follows: 

1. Recast the inner problem as a mp-QP, with parameters being both x and 

0. The solution obtained is similar to (2.10): 

zk= Mk +n 
kX + fiko ;H 

kX +Fjko :5hk, k=1,2,..., K (2.17) bc 

2. Incorporate expressions (2.17) in (2.16) to formulate K mp-QPs, with 

parameters being the uncertainty 0: 

min F(x, 0) =L 
'k +L 'kX+ 1xTL 'kX, 
1224 (2.18) 

s. t. G, kx:! ý G'k + G'ke 34 
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where L'k. Lk, L'k. C'k,, C'k, C'k are appropriate matrices derived by al- l24124 
gebraic manipulations. 

We will illustrate the proposed procedure by revisiting example (2.15) with 

the addition of two uncertain parameters (01,, 02) as follows: 

min F(x, y) = y2 + y2 - YIY3 - 4Y2 - 7XI + 4X2i 
X/Y 13 

S-t- XI + X2 :! ý, 1+ el., 

min 21212- 3x1)yl + (1 + X2)Y2i f (X, ' Y) : ":: Yl + -Y2 + -Y3 + Y1Y2 + (1 
y22 

s. t. 2y, + Y2 - Y3 + Xl - 
2X2 +2 :5 02-, 

(2.19) 

X ýý 0, 

yýo, 
0: 5 01 :50.25, 
0:! ý- 02 :! ý 0-5 

- 

The solution of the inner mp-QP problem of Step 1 results in a single critical 

region, with the following parametric expressions: 

yi = 0, 
Y2 ' 

y3 -- x, - 2X2 - 62 + 2, 

Xl + X2 :51+ 191., 
(2.20) 

-x, + 2X2 ýý, 2- 191, 

xý0, 

0:: 5 0, :50.25, 
e2 :50.5 - 

Then, Step 2 involves (i) the substitution of the expressions in (2.20) into 

the leader"s problem and (ii) formulation and solution of the outer mp-QP 
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problem, based on which the following results were obtained: 

x, = 0.44401 + 0.556192 + 0.611, 

X2 = 0.55601 - 0.55602 + 0.389, 
(2.21) 

0: 5 01 :50.25, 
0 :! ý 192 :ý0.5. 

For the limiting case, when 01 =0 and02= 0, the results obtained in (2.21) 

correspond to the results obtained in section 2.2-3, Table 2.5. 

In this example, Step 1 results in a single critical region (2.20). However, it 

is possible that, by the end, different parametric expressions are computed to 

the same critical region. We overcome this redundancy by keeping the best 

solution and discarding the others through the formal comparison procedure 

proposed by Acevedo and Pistikopoulos (1997). 

2.4. Mixed integer bilevel programming 

In many real systems, the leader may have to take "yes-no" decisions (Wen 

and Yang, 1990). This type of decisions can be described by the introduc- 

tion of binary variables in the model. Assuming that the optimisation vari- 

ables are separable and appear in linear relations, the following mixed integer 

bilevel programming problem is derived (Shimizu et al., 1997): 

min F(xl, Xl, Yli Y2) = L, + JX, +L Tyl +LT X2 + LT 2345 yl, 
X1iX2iYIIY2 

S. t. Gix, + G2Y1 + G3X2+ G4Y2 + G5 :50, 
(2.22) 

+ 1TX, + IT + 1T + 1T 
min f(xl, Xl, YL, Y2) = 11 23 yl 4 X2 5 YI, 
Yl iY2 

S. t. glX1 + 92Y1 + 93X2 + g4Y2 + 95 :5Q, 

where xi, X2. yj and y2 are the optimisation variables, x, E X, g ]Rnxl,, 

0,11 nX2, yj C yl g ]Rnyl, Y2 C: - 10,1 InY2. [L2]nxi, [L3]ny, 
/ 

[L4]nX2' [L51 
nY2' 

[12]nxli [131nyi/ [14]nx2, [151nY2 are vectors defined in the real space. The matri- 
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ces [Gllnuxnxli [G2]nuxnyl,, IG3]nuxnX2' [G4]nuxnY2' [G5]nuxli 1911nuxnXII [92]nuxnyl/ 

[93]nuxnX2/ 194]nuxnY2/ [95]nuxl correspond to the constraints, also defined in the 

real space. 

If the integrality conditions, with respect toX2, are moved to the upper 
level, a multi-parametric mixed integer linear programming (mp-MILP), with 

x, andX2being the parameters, can be formulated as follows (Formulation 2.23): 

min f(x, Yl i Y2) ` 1' + l'TX + 1'Tyl + I'T Y21 
YI IY2 

1235 
(2.23) 

S-t- 9'Yl +9f Y2 :5 g' + 9'X� 241 

where: x= [XI IX2 ]T; It = 11; 11 = [12114 ]T; It 
-::: 

13; 11-:: 15; 9f = -[gllg3 ]T; g2f : -- 92; 1235 

-'*: 9 94; 9ý -95 

The mp-MILP problem in (2,23) can be solved applying the algorithm of 

Dua and Pistikopoulos (2000), from which the following group of K solutions 

are obtained: 

kk Y2 Y2 

k Mk + nkX, #> yk = Mk + nkxl + nk X2 k=1,2,.. ., K. (2.24) Yi 112 
HkX :5 hk HýXl + Hk X2 < hk 

2- 

Introducing these expressions in (2.22), a set of K independent MILPs is 

obtained: 
F(x,, X2) = min(L 

k+L ikTXJ +L ik T 
X2)., 

XI IX2 
124 

s. t. G'lkxl + G13kX2 :! ý G5k' 

with: L'k = L, + L3Mk + L5yk; L'k = L2 + L3n k; LI= L4 + L3nk; 
122142 

G' = G, + G2n k 
11 

Gf = G3+ G2n k 
32 

GI = -(G4yk + G5+ G2M k); 
52 

G [Gf IH k]T; G'k = [Gf IH k]T GI= [Gf Ih k]T 
1133253 

(2.25) 

The solution of the K MILPs in (2.25) results in the selection of the global 

optimum by direct comparison. 
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The proposed strategy will be illustrated by the following MILP I LP bilevel 

programming problem introduced by (Wen and Yang, 1990): 

min F(x, y) = -(20xl + 60X2 + 30X3 + 50X4 + 15y, + lOY2 + 7Y3)1 
Xly 

s. t. min f(x, y) = -(20y, + 60Y2 + 8Y3)1 
y 

S-t- 5xi + 1OX2 + 30X3 + 5X4 + 8yi + 2Y2 + 3Y3 :5 230, 

20xi + 5X2 + 10X3 + 10X4 + 4y, + 3Y2 :5 240, 

5xi + 5X2 + 10X3 + 5X4 + 2y, + Y3 :5 90� 

xE 10,11, 

y ýý 0. 
(2.26) 

Moving the integrality constraint to the outer level, the inner problem can 

be rewritten as a mp-LP with x being the parameter. Its solution results in the 

following parametric expressions (single critical region): 

yi = 
Y2 -6.667x, - 1.667X2 - 3.333X3 - 3.333X4 + 80, 

(2.27) 
Y3 2.778x, - 2.222X2 - 7.778X3 + 0.5556X4 + 23-33, 

XlIX2lX3lX4 :! ý I- 

Introducing these expressions in the leader's problem, and taking into ac- 

count the binary nature of x, the following MILP problem is obtained: 

min F= -(20x, + 60X2 + 30X3 + 50X4 + 15yl + 10Y2 + 7Y3)-, 
x 

s. t. Y, = 0, 

Y2 -6.667xi - 1.667X2 - 3.333X3 - 3.333X4 + 80-00, 

Y3 2.778x, - 2.222X2 - 7.778X3 + 0.5556X4 + 23.33, 

to, ill 

yýO. 

(2.28) 

Table 2.6 presents the solution for Problem (2.28), and consequently for 
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Table 2.6.: Solution for Problem (2.26). 
F= 
f= 

-1011.67 
-4673.34 

Yi = 0.00 
Y2 = 75.00 
Y3 = 21.67 
X1 = 0 
X2 = 1 

X3 = 0 

X4 = 1 

Problem (2.26). 

The result obtained is identical to the one obtained by Wen and Yang (1990). 

2.5. An application to the plant selection problem 

The plant selection problem is inherently a mixed integer bilevel program- 

ming problem; with two distinctive layers of decision. The headquarters take 

strategic decisions, i. e. logical decisions, whereas the manufacturing plants 

take operational decisions, e. g. optimise steam, raw material and fuel con- 

sumption. The fundamental issue is the coordination between the two layers 

of decision, Figure 2.1. 

Operational Strategic 
----------------------------------------- decision decision 

Manufacturing plants 

Figure 2.1.: Plant selection problem. 

Due to its major impact on multinational companies, the plant selection 

problem has attracted considerable attention, and consequently, several for- 

mulations have been proposed (Ertogral and Wu, 2000; Canel and Khumawala, 

2001; Ghiani et al., 2002). Here, we follow a non-monolithic model, which evi- 
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dences the bilevel nature of the plant selection problem (Cao and Chen, 2006): 

MM 

min F fjyj + pi Capi yj + 1: djaijxij 
XES, y, YESxy 

jEISi 

MM 

s. t. min f wi djaijxij + djRijxij, 
XESxy 

i=l ýjElSi i=l jElSi 

s. t. Exij=l, j=l,,,., n, 
iEJS i (2.29) 

Y" djaijxij :5 Capi - yi, i M, 
jElSi 

fa 

xij: 5n. yi, 
jEIsi 

xij -2ý 0, yi c 10,11, i=M, j (E Isi, 

where, 
m number of potential plants; 

n number of product types; 

Pi opportunity cost for unused production capacity of plant i 

after it is opened; 

dj costumer demand of product j; 

ail capacity consumption ratio for processing product j in 

plant i; 

Wi cost to use production capacity in plant i; 

Capi available production capacity in plant i; 

Isi the group of products that can be produced in plant i; 

jSj the set of plants that can produce product j; 

Rij transportation cost for transferring product j from the prin- 

cipal firm to plant i; 

fi Opening cost for plant i. 

In this section, we consider 6 possible locations for the manufacturing plants, 

and a portfolio of 8 products to manage - Table 2.7 and Table 2.8. 
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Table 2.7.: Data for the plant selection problem. 
Plant i 1 2 3 4 5 6 
fi 400 265 265 200 150 100 
pi 1.0 0.55 0.55 0.5 0.45 0.40 
Wi 1.0 0.55 0.55 0.5 0.45 0.40 
Capi 450 250 250 200 150 100 

Table 2.8.: Data for the plant selection problem. 
Product j1 2 3 4 5 6 7 8 
di 60 60 60 60 60 60 60 60 
aij 
i=1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
i=2 1.0 1.0 1.0 1.0 0 0 0 0 
i=3 0 9 0 9 1.0 1.0 1.0 1.0 
i=4 0 0 0 0.8 0.8 0.8 
i5 1.1 1.1 0 0 
i6 1.2 1.2 
Rij 
i=1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
i=2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 
i=3 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 
i=4 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 
i=5 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
i=6 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 

Therefore, Problem (2.29) is a mixed integer bilevel program with 6 integer 

variables and 48 continuous variables. The solution steps are as follows: 

STEP 1. Solve the follower's problem, with leader's optimisation variables 
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being the parameters: 

mm 

minf Wi djaijxij + djRijxij, 
XESxy 

EEEE 

i=l ýjEISi i=l jElSi 

s. t E xij 1, j=1,..., n, 
iEjs i 

fa djaijxij:! ý Capi yi, i 11 ... . m, 
(2.30) 

jEIsi 

Y-l 

xij n- yi, 
iclsi 

xij ýý 0,0: 5 yi: 5 1, i= 11 ... Im, je Isi. 

The solution is given by a set of piece-wise linear expressions: 

Xk = Mk + nk. y 

HkX < hk 

for instance, when k=5: 

x�, =1-1.0417Y2 - 0.5682y5, XI, 2 =1-1.0417Y2 - 0.5682Y5i XI, 6 = -1.0417Y3/ 
XI, 3 =1-1.0417y2 0.6944y6ý X1,4 = -1.0417y2� XI, 5 = -1.0417Y3 0.6944Y6i 

Xl, 7 =1-1.0417y3 0.5682y5, Xl, 8 =1-1.0417Y3 0.5682y5, X2,1 1.0417Y2 i 
X2,2 = 1.0417Y2i X2,3 1.0417Y2i X2,4 = 1.0417y2y X3,5 1.0417Y3i X3,6 1.0417Y3ý 

X3,7 = 1.0417y3, X3,8 1.0417Y3i X4,4 = 1/ X4,5 = li X4,6 li X5,1 = 0.5682y5f 

X5,2 = 0.5682Y5i X5,7 0.5682y5, X5,8 = 0.5682y5, X6,3 0.6944Y6/ X6,5 = 0.6944Y6i 

0 :5 yl :5 01 0 :5 Y2 :50.96,0: 5 Y3 :g0.96,0.72 : ýg y4 :5 li 0 :5 y5 :5 li 0 :ý Y6 : 2ý li 

-yi - 0.5556xy2 - 0.5556xy3 - 0.3030xy5 - 0.1852xy6 ! ý, -0.6667. 

STEP 2. Introducing these expressions in (2.29), 5 independent MILPs are 

obtained. The solutions are listed in Table 2.9. 

From Table 2.9, we conclude that Solution 3 is the optimal. 

STEP 3. Therefore, the optimal decision is to open one plant in position 

and one plant in position 2. And, assign the whole production of 

products 1,2,3,4 to Plant 1, and products 5,6,7,8 to Plant 2. 
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Table 2.9.: Solution of the MILPs. 

Solution Cost 
1 553 
2 880 
3 541 
4 880 
5 778 

2.6. Concluding remarks 

We have described the foundations of a novel global optimisation strategy for 

the solution of general classes of bilevel programming based on our recent 

developments in multi-parametric programming. It was shown that bilevel 

linear, quadratic and mixed-integer linear programs, also involving uncer- 

tainty, can be effectively solved. It was further shown that issues related to 

global optimality for both levels of the bilevel program can be addressed. 

In Chapter 3, we further extend this approach to address general multilevel 

programming problems (Ruan et al., 2004) and Stackelberg-Nash equilibrium 

type of problems (Liu, 1998b); the application to hierarchical control struc- 

tures (Stephanopoulos and Ng, 2000) is also described. 



3. Multilevel hierarchical and 

decentralised optimisation 

problems 

Here, we outline the foundations of a general global optimisation strategy for 

the solution of multilevel hierarchical and general decentralised multilevel 

problems, based on our recent developments on multi-parametric program- 

ming and control theory, Chapter 2. The core idea is to recast each optimi- 

sation subproblem, present in the hierarchy, as a multi-parametric program- 

ming problem, with parameters being the optimisation variables belonging 

to the remaining subproblems. This then transforms the multilevel problem 

into single-level linear/convex optimisation problems. For decentralised sys- 

tems, where more than one optimisation problem is present at each level of 

the hierarchy, Nash equilibrium is considered. A three person dynamic opti- 

misation problem is presented to illustrate the mathematical developments. 

3.1. Intro uc ion 

The development of a general theory to solve multi-person objective deci- 

sion problems is of great importance for decision making and control theory 

(Ba*ar, 1975). Multi-person objective decision problems have attracted nu- 

merous investigations (Ba*ar, 1975,1978; Tolwinski, 1981; Ba*ar and Olsder, 
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1982; Anandalingman, 1988; Liu, 1998a; Li et al., 2002; Shih et al., 2004), with 

diverse applications in engineering (Morari et al., 1980; Clark, 1983; Stepha- 

nopoulos and Ng, 2000), financial problems (Anandalingman, 1988; Nie et al., 

2006) and other areas. 

Hereto, we focus on multilevel decentralised optimisation problems, where 

the objectives (optimisation subproblems) are organised in a hierarchy of de- 

cisions. In this hierarchy, each optimisation subproblem controls a subset of 

the full set of optimisation variables; the latter is completely controlled by the 

unique optimisation problem positioned at the top level. 

The multi-layer nature in such problems results in non-linearities and non- 

convexities (Vicente and Calamai, 1994); hence, it is not surprising that gen- 

eral solution strategies for solving such complex problems are rather lim- 

ited. Moreover, the possible presence of logical decisions further increases 

the problems' complexity. Therefore, it is widely accepted that a global op- 

timisation approach is needed for the solution of such multilevel problems 

(Floudas, 2000). 

Recently, Pistikopoulos and co-workers have been developing a general 

theory, algorithms and computation tools for the solution of general classes 

of multi-parametric programming problems (Pistikopoulos et al., 2007a) and 

multi-parametric control (Pistikopoulos et al., 2007b). The application of para- 

metric programming theory to multi-level problems makes possible the de- 

velopment of an unified strategy for their solution to global optimality. The 

core idea behind this approach is to recast each optimisation subproblem as 

a multi-parametric programming problem. Computing the rational reaction 

set for each subproblem in the entire feasible space, and subsequently, com- 

puting the corresponding equilibria within the hierarchical network, reduces 

the complexity of the original problem. For instance, in an optimisation level 

with two subproblems or more, these explicit expressions are used to com- 

pute the Nash equilibrium between them. In Chapter 2 (Fafsca et al., 2007b; 
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Pistikopoulos et al., 2007a) we have addressed the bilevel programming prob- 

lem, a hierarchy of two optimisation subproblems organised in two levels. 

As aforementioned, in this chapter we extend the methodology proposed 

in Chapter 2 to cope with multilevel decentralised optimisation problems. 

Furthermore, the methodology is applied to an optimal control problem of 

multi-level nature, where the foundations of a general theory for multi-level 

hierarchical and decentralised problems are established. 

Chapter 3 is organised as follows. Section 3.2 introduces the multi-level 

mathematical formulation, which is used throughout the chapter, and respec- 

tive definitions of feasible and rational reaction set. It also briefly introduces 

the relevant multi-parametric programming theory and algorithms. The pro- 

posed multi-parametric programming approach for the solution of tri-level 

programming problems and bilevel programming with multi-followers prob- 

lems is then described in detail in Section 3.3, and illustrated with example 

problems. Section 3.4 outlines the application of the proposed approach to 

multilevel optimal control of dynamic systems. 

3.2. Preliminaries 

3.2.1. Problem formulation 

The general multilevel decentralised optimisation problem can be described 

as follows: 
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i, yk min f (X, y2 (1 " level) 
i, A 111 21' YIM)I 

Xlyl 2".. /yM 

ikI 
S. t. g, (X, y It 

Y21 *--I y') : 5: 0' 

ik where 
[Y1. 

Y21 Y/ ] solve, m 
I. ik (2ndlevel) min Iy 21* -1 yl)" 

i'yk I 
f2l(x 

VyM 
Yi 2'... 'YM 

S. t. gi (X, yi /k /**., 
1 (3.1) 

21 Y2 ym)': ýý 01 

where k, 
-, 

1] solve, Yý YM 

11) th 
..., minf, ', (x, y', /yk2/ YM '... (m level) 

I YM 
s. t. 4(x, A, Y, / I.. I M) :50, 2y 

where, f are real convex functions, g are vectorial real functions defining 

convex sets and x, y are sets of variables belonging to the group of real num- 

bers; iE 11,2,.. ., II, kE 11,2,. - ., KI, 1E(1,2,. - ., L1, implying that (2"d level) 

has I optimisation subproblems, (3rd level) K optimisation subproblems and 

(M th level) has L optimisation subproblems, respectively. 

For the sake of simplicity and without loss of generality, we analyse the 

relations in Problem (3.1) using two particular classes of multilevel program- 

ming problems: the tri-level programming problem, which organises verti- 

cally in three levels, and the bilevel programming problem with multifollow- 

ers, in a horizontal structure at the second level. 

* Tri-level programming 

The tri-level programming problem can be stated as follows: 
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Min A (XI YL, Y2)1 (1"level) 
XlYl tY2 

S- t- 91 (XI YL, Y2) '5 Of 

where [Y1., Y21 solve, 

minf2(x, YI / Y2)1 (2 nd level) 
Y1 tY2 (3.2) 

S-t- 92(Xi YL, Y2)11ý Of 

where [Y21 solve, 

minf3(XIYIIY2). (3'dlevel) 
Y2 

S- t- 93 (XI Y1 f Y2) :5 0/ 

with the following definitions: 

- Feasible set for the third level, 

Ü2(X., Yl) :::::: (Y2 EE Y2 : 93(X� YL, Y2) : ýý 0)� (3.3) 

- Rational reaction set for the third level, 

02 (X, Yl) --:: 
1 y2 E y2 : y2 c arg min(f2(x, yl, Y2) : Y2 E 02 (X� Yl» 11 (3.4) 

- Feasible set for the second level, 

QI(X) ý f(YlIY2) ý: -: YIXY2: 92(XlYl., Y2) :ý 0193(Xfyl,, Y2): 5 Olf (3.5) 

- Rational reaction set for the second level, 

O1(X) : -- Ryli Y2) EE YjxY2: y, c arg minif2(x, yl, Y2): 

Yl E Ül (X)l Y2 'E 02 (XI Yl») - 
(3.6) 

Note the parametric nature of the rational reaction sets, Equation (3.4) and 

(3.6), which reflects the dependence of the decisions taken at the upper levels 
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on the decisions taken at the lower levels. This in fact, evidences that in mul- 

tilevel programming problems the relations between the levels differ from 

the well-known Stackelberg game, where the decisions made by the follow- 

ers don't affect the decision, already taken by the leader (Vicente, 1992). 

o Bilevel programming with multi-followers 

Bilevel programming problems with multi-followers involve two optimi- 

sation levels with several optimisation subproblems at the lower (2'd) level: 

min F(x, yj / Y21 ... f YM)l (111level) 
x, yl/y7/ ... IYM 

s. t. G(x, yi, Y2 YM) :5 

xcX, (3.7) 

yi c arg minffi(x, YL, Yl, Ym) (2ndlevel) 

gi (X, Yl, YD ... i Ym) :5Q, Yi E yi li 

iG 11,2,. .., m 1, 

with the following definitions: 

- Feasible set for the i1h follower, 

Üi(X� YL, Y21 ----, Yi-L, Yi+L, ---' YM) ý 

Jyj E Yi: gi(XtXfYlIY2i ... / YM) : 5: 01 f 
(3.8) 

- Rational reaction set for the ith follower, 

Oi(X, yl, Y2, - --f yi-l" Yi+ll ... / YM) :: -- (Yi 'ýý yi : 

yi E arg Minlfi(X, Yl., Y2�---/YM) : YiE C2i(X)ll* (3.9) 

Since one assumption is that followers may exchange information, conflicts 

naturally occur. The Nash equilibrium is often a preferred strategy to coordi- 
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nate such decentralised systems (Liu, 1998a). Consequently, the optimisation 

subproblems positioned in the lower level reach a Nash equilibrium point, 

, yý,..., yý) (Ba*ar and Olsder, 1982): (X, 
' Y *1 

2 

fi (x, y*, yý, -- y* )m 1m : 5f1(X'yl'y2, 
'*'*IY*)lvylEyll 

f2 (X� Y*l, Y Y* ) :5 f2(X., Y*., Yl, ---/ Y* )., VY2 G y2, m (3.10) 

1 2"*"ym), 
vymeym. 

, 
fm (X' Y*l 1 Y*21 *'*, Y*m) :5 fm (x, yi, A 

Once more, observe the parametric nature of the followers" rational reac- 

tion set, Equation 3.9. In this case, however, each rational reaction set is a 

function of both the upper level decision variables and the decision variables 

of the other subproblems located in the same hierarchical level. Additionally, 

the priority remains to solve the leader's objective function to global optimal- 

ity. Thus, we aim to compute the global optimum for the leader and the best 

possible equilibrium solution for the followers. 

3.2.2. Multi -parametric programming 

Consider the general multi-parametric non-linear programming problem: 

minf(x, e), 
x 

s. t. gi (X, 0) :5 Vi= 

hj(x, 0) = 0, 

EXC IR", 

eE E) g: iRm, 

V lf..., qf (3.11) 

where f, g and h are twice continuously differentiable in x and 0. Assume 

also that f is a convex function and g, h define a convex set, and the linear 

independence constraint qualification is verified. Therefore, the first-order 

Karush-Kuhn-Tucker (KKT) optimality conditions for (3.11) are given as fol- 

lows: 
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V, 2, = 

Aigi(x, 0) = 0, Ai -a 0, Vi= 

hj(x, 0) = 

-21 = 

vjq, 

p 
LAigi(x, e) 
i=l 

L Yjhj(x, 0). 
j=I 

(3-12) 

The main sensitivity result for (3.11) derives directly from system (3.12), as 

shown in Theorem 3.1. 

Theorem 3.1 Basic Sensitivity Theorem (Fiacco, 1976): Let eo be a vector of pa- 

rameter values and (xO, AO, yo) a KKT triple corresponding to (3.12), where AO is 

non negative and xO isfeasible in (3.11). Also assume that W strict complementary 

slackness (SCS) holds, (ii) the binding constraint gradients are linearly independent 

(LICQ: Linear Independence Constraint Qualification), and (iii) the second-order 

su ciency conditions (SOSC) hold. Then, in the neighbourhood of 00, there exists 

a unique, once continuously differentiable function, z(O) = [x(e), A (e), Y(O)], sat- 

isfying (3.12) withz(eo) = [x(OO), A(eo), y(eo)], where x(O) is a unique isolated 

minimiserfor (3.11), and 

dx(Oo) 
de 

dA (i9o) 
-(Mo)-'No, (3.13) 

dO 
dy(Oo) 

dO 

where, MO and No are the Jacobian of system (3.12) with respect to z ande, re- 

spectively, evaluated ateo: 
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V2 y 
xx V., gl ... V, gp V, h, 

A VT 
X91 91 

M0= A vT 
p x9p 9p 

VT hi x 

VTh 
x 

2T vT 
0 

VT VT )T, No = (VexY, AlVegl,..., Ap gp ehl,.. I tghq 

If 

0 

Proof. See (Fiacco, 1983, pp. 72). 

Note that the assumptions stated in the theorem above ensure MO is invert- 

ible (McCormick, 1976). 

Dua et al. (2002) has proposed an algorithm to solve Equation (3.13) in the 

entire range of the varying parameters for general convex problems. This 

algorithm is based on approximations of the non-linear optimal expression, 

x= y*(e), by a set of first-order approximations (Corollary 3.1). 

Corollary 3.1 First-order estimation of u(x), A(x), y(x), near x= xO (Fiacco, 1983): 

Under the assumptions of Theorem 3.1, a first-order approximation of [u(x), A(x), 

y(x)] in the neighbourhood of xO is, 

x(0) XO 

'j(0) = lo - (Mo)-1 - No -0+ O(IJOII), (3.14) 

p(i9) Po 

where (xo, Ao, yo) = WOO, A(Oo), Y(Oo)], A= M(Oo), No = N(Oo), and O(x) = 

o(liell) means thato(eviieii --> 0 ase ----> eo. 

Each piecewise linear approximation is confined to regions defined by fea- 

sibility and optimality conditions (Dua et al., 2002). If g corresponds to the 

... V, hq 
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non-active constraints, and A to the Lagrangian multipliers of the active con- 

straints: 

g(x(o), 0) 
A(O) >0 

Feasibility conditions, 

Optimality conditions. 
(3-15) 

Consequently, the explicit expressions are given by a conditional piecewise 
linear function (Dua et al., 2002): 

x= Cl +Kl - 0, vec CR1, 

X= C2 + K2. e, Ve E CR2, 

X= CL + KL. e, YeE CRL, 

where K' and C' are real matrices, and CRI c Rm. 

3.3. Proposed methodology 

(3.16) 

In this section, we show how we can address tri-level programming and 

bilevel with multi-followers programming problems and solve them to global 

optimality through the application of parametric programming. 
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3.3.1. Tri-level programming problem 

Consider the tri-level programming problem with a quadratic objective func- 

tion and linear constraints: 

min X, Y1, Y2 

s. t. 

Ll' 

+Ll - 2 x+ Ll - yj + Ll ' Y2+ 34 

+IXT 2 . Ll -x+ ly T- Ll . yl 5216 + jyT 
- 22 

Ll * Y2+ 7 

+X T 
-L1-yl+yT. L1. X+yT-Ll *yl, 292 10 

G'. x+ G'. yl +GI *Y2: 5 0� 
12 

min f2 L2+ 
Y1, Y2 

1 

s. t. 

+L 2-x+L2- 
yj +L 2' Y2+ 234 

+IXT 2 -L2. X+ 1yT- L2 - yl + lyT - 521622 
L2 * Y2+ 7 

+X T- L2 . yl + yT - L2 .X+ yT - 8292 
L2() . y, " 1 

2-x+G2. Y, +G 2* Y2 :5 01 
123 

(111 level) 

(2n" level) 

min f3 =L3+ (3 rd level) 
Y2 1 

+L 3-x+L3. yj +L3' Y2+ 234 

+IXT -L3. X+1yT-L3 25216 Y'+ 

+1 T 
-L 

3. Y2 + XT -L3 yl+ 2Y2 78 

T3T3 +Y2 -L9-X+ Y2 - L10 , yi, 
3.3 

s. t. IG, -x+ 
G2 yj +G3' Y2 :! ý 0- 

(3.17) 

Problem (3.17) comprises three subproblems, one at each optimisation level. 

Each optimisation level can be recast as a multi-parametric programming 

problem, where the optimisation variables corresponding to the upper op- 

timisation levels are classified as parameters. For presentation and computa- 

tion purposes, (i) we group the parameters in the ithlevel in a single vector, d 

and (ii) we introduce an artificial variable, v', to eliminate all bilinear terms. 

Beginning with the (3 rd level), and considering a vector, 

I 
(A) 

]T 
= [Xlyl] 

I 
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we re-write (3.17) as, 

min f3 (Y2� Ü)3) =L 
3+ 

Y2 1 

3* 
. a)3 +0- Y2+ 24 

+la)3T -L 
3* 

. C03 +1T-L3. Y2+ 252 Y2 7 (3.18) 
+Y T-L 3* 

. a)3 28 

s. t. G 3* 
. 0)3 + G3. Y2 +G3<0, 134- 

XEX. 

Introducing an artificial variable, V3 ý-- Y2 + (D * (1) 3, where (D is an appropriate 

matrix, the bilinear terms, represented in (3.18) by matrix L 3% are eliminated. 8 

Under the right conditions (see Chapter 2), (D =L 
3-L 3* 

, and (3.18) can be 78 

rewritten as follows: 

min f3(V31 (1) 3) L 3+ 
V3 

I 

+L3** . W3 + 16L)3T 
.L 

3** 3 
225 

+min L 3** 
. V3 +1VTL 3** 

* V3 (3.19) 
V3 

ý4237 

s. t. G 3** 
' V3 :! ý, G 3** +G 3** 

. W3., 341 

E 

Problem (3.19) can be solved with a multi-parametric programming algo- 

rithm (Dua et al., 2002), resulting in: 

vl, = ml + n' - col, Hk. 603 < hk 
3333- 31 

which can be rewritten as, 
k= Mk k- (D) . 603, Hk . a)3 k 

+ (n <h (3.20) Y2 333- 3-' 

or, 
k=Mk+pk. X+pk. yl, Hk x+Hk -yi : 5hk" Y2 312 31 32 

where, k=L. --/K2, With K2being the number of critical regions, and con- 

sequently, the number of linear approximations done on the optimal rational 

reaction set 02(XI YO (see Corollary 3.1). 
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The expressions in (3.20) can then be incorporated in the second optimisa- 

tion level of (3.17). Note that since the expressions in (3.20) are piecewise lin- 

ear functions of yk the complexity of the original problem does not increase. 21 

Hence, the second level can be reformulated as the following K2optimisation 

problems: 

- 2* 2* 
.1T 

2* 
.X min f2 =L +L 2* x+L Yl + -x L 

Yi 1224 

1TL 2* yl+yT. L 2*. X, +fyl '5*18 (3.21) 
s. G 2* 

-x+G 
2* 

. yj +G 
2* < 0, 

123- 

xeX. 

We can thus proceed with optimisation levels 1 and 2. Following this proce- 

dure, tri-level optimisation problems in (3.17) result in K, single level convex 

optimisation problems: 

min fý (Xt Yl (X)f Y2 (Xi Yl* 

s. t. Gj(x, Yl(X)iY2(XiYI(X))):! M 

XE Crf, 

Crf 
«'--- 

IX EX: 3Y1 
oY2 

E YL, YD CJ2(X� Yl t 
y2) :50, G3(X� YL, Y2) : 5:, 01 

(3.22) 

The number of K, final convex optimisation problems (3.22) depends on the 

number of critical regions obtained in each optimisation level. The algorithm 

is summarised in Table 3.1, and is illustrated with the following example. 

Illustrative example 1 

Consider the following linear tri-level example (Ruan et al., 2004): 
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Table 3.1.: Parametric programming algorithm for tri-level programming 
problems. 

Step Description 
1 Recast the third level of the optimisation problem as a 

multi-parametric programming problem, with parame- 
ters being the upper levels optimisation variables, x and 
yj (3.18); 

2 Solve the resulting problem using a suitable multi- 
parametric programming algorithm; 

3 Substitute each of the K2 solutions in the 2 nd optimisation 
level, and formulate K2 multi-parametric problems with 
the variables from the leader being the parameters (3.21); 

4 Solve the resulting problem using a suitable multi- 
parametric programming algorithm; 

5 Substitute each of the K, solutions in the leader's prob- 
lem, and formulate the K, one-level optimisation prob- 
lems (3.22); 

6 Compare the K, optima and select the best one. 

min fi = -x - 4. Y2, 
X, YliY2 

where [YI 
I Y21 solve, 

min f2 = 2. y21 
Yl tY2 

where Y2 solves, (3.23) 

min f3 : -- -y2t 
Y2 

S. t. X+ yl + Y2 :52.5, 

X� Yli Y2 :51- 

Following the steps described in Table 3.1: 

Step 1. Recast (3a level) optimisation problem, f3, as a multi-parametric 

programming problem, with parameters being x and yi: 

min f3 -y2/ 
Y2 

S. t. Y2 < 2.5 -x- yi, (3.24) 

0:: 5 Xi Yli Y2: 5 li 

solve the resulting problem using a multi-parametric optimisation al- 
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gorithm (Dua et al., 2002): 

Y2 

CRl 0: 5 x, yj < 

x+ yj :51.5, 

Y2 = -x - y, + 2.5, 

CR 2 
X, Y, :51, 

-x - Y, :9 -1.5. 

(3.25) 

Step 2. Incorporate rational reaction set (3.25) into the optimisation problem 

corresponding to (2ndlevel); 

min 2 2,2 
Yl lY2 min 

CR 
-2x - 2y, + 5, 

s. x< 
Yl lY2 

A 

0: 5 y, :51, 
S. t. X, Y, 1, 

(3.26) 

x+y, :: ý 1.5, -x - y, :5 -1.5 

Y2 = 1, 
Y2 = -x - yl + 2.5. 

Step 3. Solve problems (3-26) considering them as multi-parametric pro- 

gramming problems, with x being the parameter; 

Y2 

CR 3 

0 Y, 1, 

x+Y, 1.5, 

yi 

CR4 y2 = -X + 1.5� 

0.5: 5 x:: 9 1. 

(3.27) 

Step 4. Incorporate rational reaction set (3.27) into the optimisation problem 

corresponding to (Istlevel); 

min , X, yl ly2 

s. t. 0 

0 :5Y, 

x+y, 

Y2 = li 

CR4 
min 3x - 6, 

X, Yl IY2 

s. t. 0.5 :: ý x<1 

! fi 1, 

Y2 =+ 

(3.28) 
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Step 5. Solve problems in 3.28; 

f CR3 
-5/ 

CR4 
--45, A-- 

Solution 1x Solution 2x=0.5, (3.29) 
Y2 yi = 1, 

0 :5 yj :50.5, Y2 = 1, 

Note that in Solution 1, yj is represented by an interval. This is due to 

the fact that the objective function of (2 nd level) doesn't depend on yi. 

Concluding, two solutions are obtained: Solution I and Solution 2, which 

are compared with the one obtained from the literature (Ruan et al., 2004, 

Solution 3), as shown in Table 3.2. 

Table 3.2.: Solutions for Problem (3.23). 
Parametric p rogramming algorithm (Ruan et al., 2004) 
Solution I Solution 2 Solution 3 

f -5 -4.5 -4.5 f2 2 2 2 
f, 1 1 1 
x 1 0.5 - 
Yi 0.5 0 
U.? 1 0 

From Table 3.2 we conclude that Solution 1 is the global optimum for this 

tri-level programming problem. 

3.3.2. Bilevel programming problem with multi-followers 

Consider the bilevel programming problem with multi-followers, and as- 

surne quadratic objective functions, linear constraints and two followers: 
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min Ll+ 
X, Y1, Y2 

s. t. 

+L1 -x+Ll -yi +L1 'Y2+ (I" level) 234 

+IXT - L' .X+1T- L' - yj + jyT 25 2Y1 - LI ' Y2+ 6227 

+X T- L' . y, + yT - L' .X+ yT - L' 8292 10 , Y1" 

G1 -x+ G1 - yj + GI * Y2.5 Ot 123 

(2"1 level) 

min f2 =L2+ Follower I 
Yi 1 

+L 2-x+L2. yl + L2 * Y2+ 234 

+IXT -L2 X+ 1T- L2 . yl + lyT 
- L2 'Y2+ 25 2Y1 6227 

+X T-L2. T-L2. X+ yT -L2' Yl, 8 yl + y2 92 10 

s. t. G2-x+G2. yl +G2* Y2 :5 01 
123 

min f3 L3+ Follower 2 
Y2 1 

+L3 -x+L3. yl +L 3' Y2+ 234 

+ ! XT -L3. X+1T-L3. yl + lyT 
-L3' Y2+ 25 2Y1 6227 

+X T 
-L3. yl+yT. L3. X+yT. LI *yl, 8292 10 

s. t. G3 
-x+G3. yl + G3 'Y2 :5 0- 123 

(3.30) 

The difference between Problem (3.30) and Problem (3.17) is the existence 

of two optimisation subproblems in a single level. Accordingly, the concept 

of Nash equilibrium is introduced. 

As in the tri-level programming case, each optimisation subproblem in 

(2nd level) is recast as a multi-parametric programming problem. In this prob- 

lem, the parameters are all the variables from the optimisation problem at 

level) as well as the optimisation variables of the other subproblems at 

the same level, Follower 1 or Follower 2 in this case (3.30). Thus, defining vec- 

tors, [(02 ]T 
= [XIY2] and P3 ]T 

= [xjyj], we re-write the (2""level) optimisation 

subproblems as, 
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min f2(yl,, 602) = Ll+ 
Yl 

+L 2* 
- &)2 + L2. 

23 yl+ 

+10)2T -L 
2* 

. a)2 +1T-L2. Yl+ (3.31) 25 2yl 6 

+Y T- L2* . (02 18 

S. t. G2* . W2 + G2 
12 12 YI :5 01 

and, 

min f3(y2, (o 
2) 

= Ll+ 
Y2 

+L3*. a)3 + L3. 
24 Y2+ 

+1 a)3T -L 
3* 

. )2a +1T-L3. Y2+ (3.32) 
252 Y2 7 

T 3* 3 +Yl -L9 

s. t. Gl* . W3 +G 3. y2 :5 

where co 2 and W3 are the vectors of parameters. The bi-linearities can be cir- 

cumvented using a similar strategy to the one used in the tri-level case. Using 

a multi-parametric programming algorithm (Dua et al., 2002), problems (3.31) 

and (3.32) result in the following parametric expressions: 

Y1 : --: 01 (X., Y2) --> rational reaction set follower 1, 

Y2 :` 02(XI Yl) --) rational reaction set follower 2, 
(3.33) 

which are then used to com ute the Nash equilibrium (x, y;, yý): pI 

fi (x, y*, y*) :ý fi (x, yi, y*), V yi E Yi, 122 (3.34) 
f2 (X� Yp, Yý) :5 f2(Xi Yli Y2)� VY2 E y2, 2 

easily computed by direct comparison (Liu, 1998a): 

ýi (X, YI) ý2(Xi YI)i Yl (P2W1 (3.35a) 

01 (X� Y2) 012 (X� Y2)� y2 01 (X) 
- (3-35b) 21 

Finally, substituting the expressions in (3.35) in the leader's optimisation 
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problem, (11' level), we end up with a single level convex optimisation prob- 
lem, involving only the leader's optimisation variables, as follows: 

min f; (x, Yl (X, Y*2 (X» / Y2 (Xi Y* (X») 
i 

s. t. G, (x, yj (x, yý)/ Y2(Xy Y*1)) :! ý 0/ (3.36) 2 

xc ix c X: 3y�y2 Ei Y, Z, G2(Xi Yl i Y2) :50, G3 (Xi YL, Y2) :5 01 - 

The algorithm is summarised in Table 3.3 and is illustrated in example 2. 

Table 3.3.: Parametric programming algorithm for bi-level programming 
problems with multi-followers. 

S tev Description 
1 Recast each of the subproblems in the lower level as a 

multi-parametric programming problem, with the vari- 
ables out of their control being the parameters (3.31-3.32); 

2 Solve the resulting problems using the suitable multi- 
parametric programming algorithm; 

3 Compute a Nash equilibrium point by direct comparison 
of the rational reaction sets (3.34); 

4 Substitute each of the K solutions in the leader's problem, 
and formulate the K one level optimisation problems; 

5 Compare the K optima points and select the best one. 

Illustrative example 2 

Consider the following linear bilevel programming example involving three 

followers at the second level (Anandalingman, 1988): 
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min F(x, YliY2�Y3)=-x-yl-2Y2-Y3., 
XiY1 iY2iY3 

s. t. rninfl(x/Yliy2�Y3)=x-3y, +Y2+y3� 
Yi 

inin f2 (x, Yl i YI, Y3) : -- X+ Yl - 3Y2 + Yl, Y2 

min f3(x, YL, Y2t Y3) 'X+ Yl + Y2 - 3Y3f 
Y3 (3.37) 

s. t. 3x + 3y, :5 30,2x + yj :! ý- 20, 

Y2 : 5- 10/ Y2 + Y3 : 5- 15/ 

Y3 :! ý 10, x+ 2y, + 2Y2 + Y3 :! ý, 40, 

X� Yl i YI, Y3 ý: 

Assume that the leader imposes all constraints to all followers. Thus, per- 

forming the steps described in Table 3.3: 

Step 1. Recast optimisation subproblems miny, f, I minY2 f2 and minY3 f3 as 

multi-parametric programming problems, with parameters being the 

set of variables out of their control; 

Step 2. Solve the three multi-parametric programming problems using a 

suitable algorithm (Dua et al., 2002); 

Follower 1 

Y, 

= -x + 10, 

CR', 
0 :: -ý X� Y2x Y3 :5 101 

y2 + Y3 5 15/ 

-0.5x + Y2 + 0.5Y3 '-5 lQ, 

yl -- -0.5x - y2 - 0-5Y3 + 20, 

0: 5 X, 

CR 2 0.5x - Y2 - 0.5Y3 :5 -101 

y2 : ýý 10i 

y2 + Y3 :ý 15, 
(3.38) 

Follower 2 
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Y2 = 10, 

0 :5 Xi Ylf Y31 

CR'21 x+ y, :5 10, 

Y3 :5 51 

0.5x + yi + 0-5Y3 :5 101 

y2 ý-- -Y3 + 15, 

0 :5X, Yl, 
CR22 x+Y, 10, 

5 :5 Y3 1()i 

0.5x + yl - 0-5Y3: 5 5, 

(3.39) 

Y2 = -0.5x - y, - 0-5Y3 + 20, 

0: 5 x, 

CR 3x+Y, 
:5 10, 

2 

-0.5x - yl + 0.5Y3: 5 -5� 

-0.5x - yl - 0.5Y3 :5 -10- 

Follower 3 

Y3 ý-::: 10/ 

0 :5 Xi Yl, Y2., 

CR', x+ Y, : 5: 10, 3 

Y, 5, 

0.5x + yi + y2 : ýý 151 

Y3 --:: -yl + 15/ 

0 :5 XI Y2i 

CR 2x+Y, 
:5 10, 

3 

5: 5 yl, 

0.5x + 0.5yl + Y2 :5 12-5, 

(3.40) 
y3 :::: -- -x - 2yl - 2Y2 + 40, 

0 :5x, yi, 

CR3 'x+Y, 
:5 10, 

3 
-0.5x - 0.5yl y2: 5 -12.5, 

0.5x + yi + y2 20, 

-0.5x - yi - Y2 < -15- 

Step I Compute the Nash equilibrium point, through direct comparison 

of the explicit analytical rational reaction sets, (3-38), (3.39) and (3.40). 

Through this comparison we generate 18 regions, of which 12 have 
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empty feasible sets. After removing empty regions: 

Y, 

= -x + 10, Y, = -x + 10, 
CR1 Y2 =1Q, CR2 Y2 = -Y3 + 15, 

Y3 = Xi Y3 = -x - 2y, - 2Y2 + 40, 

Y, 

= -x+ 10, 

CR3 Y2 = -0-5X - Yl - 0-5Y3 + 20, CR 4 

Y3 = -x - 2y, - 2Y2 + 40, 

yl = -0.5x - Y2 - 
0-5Y3 + 20, 

CR5 Y2 = -Y3 + 151 

Y3 = -x - 2y, - 2Y2 + 40, 

yj -,,,: -0.5x - Y2 - O. 5Y3+1 

+20, 

Y2 ---: 101 

Y3 = -x - 2y, - 2Y2 + 40, 

yl -0.5x - Y2 - 0.5Y3+ 

+20, 

CR 61 Y2 -0.5x - y, - 0.5Y3+ 

+20, 

Y3 = -x - 2y, - 2Y2 + 40, 
(3.41) 

For the sake of brevity we omit here the constraints for each critical 

region. 

Step 4. Incorporate the expressions (3-41) into F, and formulate 6 single level 

convex optimisation problems. They result in the same unique solution, 

as follows: 

F= -35; x=5; yj = 5; Y2 = 10; Y3 = 5. 

The global optimum found is identical to the one reported in Anandal- 

ingman (1988). 
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3.4. An application to optimal control of multilevel 

systems 

An important application of the proposed theory is the hierarchical control 

of dynamic systems (Bapr and Selbuz, 1979), as shown in Figure 3.1. 

control variables r state variables System 

----------------- 
Central 
Controller 

Local Local 
Controller 1 Controller m 

... 

4\, 
1 1ý 01 Local Nash Local 

i (Controller '- 1 equilibrium 
Controller 

Figure 3.1.: Schematic representation of a hierarchical control configuration 
for a dynamic system. 

In hierarchical control, the performance of a dynamic system is optimised 

within a complex structure with different objective functions at different lev- 

els, for instance, as shown in Figure 3.1 for a control structure involving 

two levels. In such a system, typically described by a discrete-time dynamic 

model: In 
'n xn+l =An 'xn +Bon 'un +EBn -V, 

', (3.42) 

i=l 

we have a central controller, the leader, and m peripheral (local) controllers; 

xn is the state vector of the system, Un is the control vector of the central con- 

troller and v' is the control vector of the ith local controller, all at time step n. n 
Each local controller may have its own dynamics, which can be incorporated 

in Equation (3-42) (Ba§ar and Selbuz, 1979). 

The goal is the optimisation of a quadratic objective function correspond- 
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ing to the central controller: 

N-1 m 
10 =:: (XN)TQO XN +E (Xn)TQO )T 0 Y, (Vi)T ROY (3.43) N nXn + (Un Ro Un + 

n=O 
nI. 

=1 
nn n1l 

subject to the optimisation of each local controller's objective function: 

N-1 m 
)TQi (Xn)TQi (Un)T (Vk ikVk (XN Nnn n)T 

Rn 
nj 

Ji XN + 
Y, 

Xn R'o U, + I: _ 
(3.44) 

n=O k=l 

Expressions (3-42), (3.43) and (3.44) give rise to a multi-level optimisation 

problem formulation: the leader, central controller, has control over the com- 

plete set of optimisation variables, whereas the local controllers have access 

to their own optimisation set, Vn, and corresponding objective function. The 

aim is to obtain the global optimum for the central controller and the best op- 

timal strategies for the local controllers. Here, we consider the general case 

involving constraints (where most previous strategies considered the uncon- 

strained case - see Cruz (1978), Ba*ar and Selbuz (1979), Ba*ar and Olsder 

(1982)). 

We seek a optimal policy, as follows: 

(Un (Uo, UP ---, UNI -' Yo, Yo 'ýý Fo, 

iVnl l* = 1(Volf, (Vl)*, 
-*, 

(% ---) Y, y* 

[Vn') I (Vo)*, (Vl)*, KY 1 --4 Yi I Yi 01Nii 

tvm J* = t(Vm)*, (Vm)*,.,., (Vln)* 1 -4 )/* )/* E Fm. 
n01Nm2 

(3.45a) 

(3.45b) 

(3.45c) 

(3.45d) 

Then, the hierarchical control problem can be recast as the following multi- 

level constrained optimisation problem: 
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min Jo(yotyj/..., ym), (Central controller), YO'Y1/-.. 'YM 
S. t. 91 (Yo, Yi, ---1 

YM) :5 
01 

min Ji(yo, yl,..., ym) Yi (m local controllers). 
SA. g, (YO, yi, ym),:! ý 0 2 

(3.46) 

Using Equation (3.42) it is possible to express each state variable as a func- 

tion of the initial state and the control decisions (Pistikopoulos et al., 2000). 

Therefore, jo and Ji become functions only of the initial state: 

JO/ Ji : -- f (XO., Yl i Y2,, ---,, Ym),, Vi E 11,2,.. 
., 

Since in the lower level of this two-level optimisation problem there are 

multiple optimisation subproblems, and there is the need to coordinate such 

group, it is fairly natural to assume a Nash equilibrium (Ba§ar and Selbuz, 

1979): 

jl(y*, y*,..., y* ):! ý JI(y*, yl, y*, y*,..., y*), Vyl E IF1, (3.47a) 01m023K 

J2(Y*IY*11.., Y* ): 5 J2(Y*IY*IY2tY*i ... t Y* VVY2 E f2f (3.47b) 01m013K 

Jm (Yol Yl I ... fym): 5 J. (y*, y*, y*,..., y* _,, ym), Vym E Fm, (3.47c) 012m 

where Yyo c IFO and Yxo EE Xo, with X0 being the feasible set of the system's 

initial state. 

Problem (3.46) corresponds to a bilevel programming problem with multi- 

followers; the followers being the local controllers and the leader, the central 

controller. In contrast to Problem (3.30), the decisions involved in each sub- 

problem are not only parametric relatively to the decisions of the remaining 

subproblems, but also depend on the initial state of the system. We refer to 
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this class as multi-level optimisation problems with uncertainty. The algorithm in 

Table 3.3 can be directly applied to solve (3.46) only with a modification in 

Step 4, which requires "the formulation and solution of K multi-parametric 

programming problems". 

A similar strategy can also be applied to tri-level optimisation problems. 

Moreover, if different models are involved in the subproblem, the proposed 

optimisation strategy is still applicable, with all control subproblems treated 

in a decentralised fashion. In the next section, a dynamic three person control 

system is described to illustrate the potential of the proposed approach. 

3.4-1. Illustrative example 3 

Consider a system which has a discrete dynamic behaviour described by the 

following linear state transition model (Nie et al., 2006): 

12 
xt+l = xt + ut - 2v, + vt 

1 
=y1+2v' t=0,1,2, (3.48) Yt+l tt/ 

2= y2 V2 Yt+l t+2t 

where u, v1 and v2 are input variables, and x, y' and y2 output variables, And, 

with constraints on the input and state variables as follows: 

-30 :! ý V1, V2 < 30, tt- 

-20 :5 ut :5 20, t=0,1,2, (3.49) 

-10 :5 X0, y1/y2< 10. 
00- 
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Additionally, consider a three-controller system (Nie et al., 2006): 

2,22 

y2 +L ý(Ut)2 + 
(V1) 

_ 
(V2) 2ý ji = min 4X3+3y'+2 + 2UtXt + Xt (3.50a) 

UO, Ul, U2 33 
t=O 

222+ (V, 
+ 1)2 + 

(V2 
+ J2 = min 2X3 + 3Y3 +y2- utv (3.50b) 

V2, V2, V2 jttt 

012 t=O 

joy2 12 V2 +2 
)2 h= min X3 + 2yl +v 2vl v (3.50c) -15ut +(tttt 

Vl, v, ', v' 
33 

02 t=O 

where J1, J2 and J3 correspond to Controllers 1,2 and 3, respectively. Fig- 

ure 3.2 displays two possible configurations for the control structure of the 

considered system. The objective is then to derive suitable optimal strategies 

Controller 1 

Controller 2 

CC- -on tr 

(a) Three-level controller structure 

Controller 1 

Controller 2 1.. 
--Wý 

Controller 3 
--) Nash Equilibrium 

(b) Multifollower controller structure 

Figure 3.2.: Three-controller multilevel problem. 

for the two controller structures. Case (a) of Figure (3.2) corresponds to a 

three-level optimisation problem, whereas case (b) refers to a bilevel multi- 

follower optimisation problem. Therefore, using the proposed methodology 

we obtain the results summarised in Tables 3.4 and 3.5. 

3.5. Concluding remarks 

We have described a novel global optimisation strategy for the solution of 

hierarchical multi-level and decentralised multi-level programs based on our 

recent developments in multi-parametric programming theory and algorithms, 

see Chapter 2. The algorithms proposed are suitable for problems involving 
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Table 3.4.: Solution to the three-level optimisation problem. 
Critical Region 1 Critical Region 2 
uO = 6.84615 - 0.76928xo uO = -0.333333 - 1.8519xo 
u, = -20 u, = -1.33333 + 2.8148xo 
U2 = 15.2308 + 0.15388xo U2 = -2 - 2.4444xo 
-10:! ý xo :5 -6-63161 -6.63161 :5 xo :57.36377 
Critical Region 3 Critical Region 4 
uO = -1.53333 - 1.6889xo uO = -9 - 0.72732xo 
u, = 8.26667 + 1.5111xo u, = 20 
U2 = -20 U2 = -20 
7.36377: 5 xO 7.76466 7.76466: 5 xo :5 10 

v1 = vI -2 - 0.5uo; v' 001 V2 -2 - 0.5u,; v' = vI = -2 - 
0.5U2 

122 

Table 3.5.: Solution to multi-follower problem. 
Critical Region 1 
UO =I- XO 
ul = -8 + xo 
U2 = 5-xo 
v1=v2= -6 + xo 
vy =v9 = 3-xo 
vi = VI = -10 + X0 22 
-10 :5 XO :5 10 

general convex objective functions and convex sets of constraints. Future 

developments include general non-linear models, for which recent results 

on global multi-parametric programming (Dua et al., 2004) and explicit non- 

linear MPC (Sakizlis et al., 2007) can be used; and general dynamic multi-level 

problems, for which a dynamic programming approach coupled with multi- 

parametric programming can be applied. 



Global optimisation of 

multi -parametric MILP problems 

In this chapter, we present a novel global optimisation approach for the gen- 

eral solution of multi-parametric mixed integer linear programs (mp-MILPs). 

We describe an optimisation procedure which iterates between a (master) 

mixed integer nonlinear program and a (slave) multi-parametric program. 
Moreover, we explain how to overcome the presence of bilinearities, respon- 

sible for the non-convexity of the multi-parametric program, in two classes 

of mp-MILPs, with (i) varying parameters in the objective function and (ii) 

simultaneous presence of varying parameters in the objective function and 

the right-hand side of the constraints. Examples are provided to illustrate the 

solution steps. 

4.1. Introduction 

Numerous investigations are devoted to the development of novel algorithms 

for the global solution of mixed integer linear programs. The potential em- 

bedded in such formulations is attested by the panoply of applications in the 

systems engineering field. A general mixed integer linear program is posed 

as follows (Floudas, 1995; Biegler et al., 1997): 

mintc Tx+dTy: Ax + Ey: 5 b, XE R", yE 10, ll'), (4.1) 
Xly 

where R represents the group of the real numbers, matrices and vectors: A, 
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E, b, c, d, are constant and have conforming dimensions. 

The vast field of applications include synthesis of heat exchanger and gen- 

eral utility networks (Papoulias and Grossman, 1983a, b; Biegler et al., 1997), 

design of multi-purpose and batch plants (Grossman and Sargent, 1979; Shah 

and Pantelides, 1992; Voudouris and Grossman, 1992), synthesis of distilla- 

tion sequences (Andrecovich and Westerberg, 1985), integrated design and 

control (Sakizlis et al., 2003), scheduling (Kondili et al., 1993; Lin et al., 2004; 

janak et al., 2007) and planning problems (Liu and Sahinidis, 1996; Sahini- 

dis et al., 1989; Shah and Pantelides, 1991; Iyer and Grossman, 1998), pro- 

tein identification (DiMaggio and Floudas, 2007), pro-active scheduling (Ryu 

and Pistikopoulos, 2007) and hybrid control of dynamic systems Sakizlis et 

al. (2002). 

Notwithstanding, uncertainties are a common presence in real-life appli- 

cations. Often, these uncertainties arise from fluctuations in the product de- 

mand or resources availabilityý market prices or from variability in specific 

data as heat transfer coefficients or kinetics constants. Consequently, Formu- 

lation (4.1) is recast to include uncertainty: 

z, (O) = min C(e)T -x+ d(e)T. 
Xly 

s. t. A(O)x + E(O)y : fý, b(O), 

r(e)x + (D(e)y = y(e), (4.2) 

Rn, yC 10, llm, 

OEO. 

where, c, d, A, E, IF, (D, b and y are real matrices linearly dependent on 0, with 

appropriate dimensions. Formulation (4.2) is solved using one of the follow- 

ing three major options: (i) multi-period /scenario based approaches, where 

the varying parameters are discretised into a number of deterministic reali- 

sations, (ii) stochastic programming, where we assume a probabilistic distri- 

bution for the varying parameters, and (iii) multi-parametric programming, 
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where the varying parameters are assumed to be continuous, bounded and 

unstructured. Multi-parametric programming is selected, because it has the 

major advantage of obtaining the optimal solution as an explicit continuous 

function of the varying parameters. 

Concurrently, despite multi-parametric programming being a prime strat- 

egy (Pistikopoulos et al., 2007a, b), the presence of integer variables in (4.2) 

places an extra challenge. Four main strategies have been proposed to ad- 
dress the mixed integer nature of the problem: (a) Enumeration method (Piper 

and Zoltners, 1976; Roodman, 1974), (b) Bounding method, which explores 

properties of the objective function (Geoffrion and Nauss, 1977), (c) Cut- 

ting plane method, which sequentially introduces constraints that cut re- 

gions of the original feasible region where the optimum lies, and (d) Branch 

and Bound method, which relaxes the integer variables and derives suc- 

cessively upper and lower bounds (Marsten and Morin, 1977; Ohtake and 

Nisida, 1985). Based on Branch & Bound, Acevedo and Pistikopoulos (1997) 

proposed the first multi-parametric algorithm to address mixed-integer lin- 

ear optimisation problems with varying parameters on the right-hand side of 

the constraints, however, it has been shown to be computationally expensive. 

To overcome this difficulty, Dua and Pistikopoulos (2000) have proposed an 

multi-parametric algorithm based on cutting planes, extending the work of 

Pertsinidis (1992) and Pertsinidis et al. (1998) for a single parameter. In this 

work, we comply with these last developments. 

Nevertheless, in the cases aforementioned, the varying parameters are as- 

sumed to be isolated on the right-hand side of the constraints. Consequently, 

many important classes of Problem (4.2) are not considered. Li and lerapetri- 

tou (2007a, b) present an B&B-based algorithm to address (4.2), however, its 

performance is reported to be significantly dependent on the non-convexity 

of the problem. 

Based on our recent developments (Dua and Pistikopoulos, 2000), we de- 
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scribe a novel approach to address Problem 4.2. 'The principal idea is to iterate 

between a master problem and a slave problem. In the master problem, we 

solve a mixed integer non-linear programming (MINLP) problem to global 

optimalityý whereas in the slave problem we solve a multi-parametric pro- 

gram, obtained by fixing the integer variables to the previously computed 

optimal solution. The main challenge consists in addressing the presence of 

non-convexities in the slave problem. However, in the proposed approach, 

we circumvent the use of global optimisation tools. A new multi-parametric 

linear programming (mp-LP) algorithm is developed, which easily handles 

the bilinearites and frees the slave problem of any global optimisation proce- 

dure (Dua et al., 2004). Special focus is given to: (i) multi-parametric MILP 

problems, involving varying parameters in the objective function (OFC mp- 

MILP): 

z(O) = min c(e)T -x+ d(e)T. yl 
Xly 

s. t. Ax + Ey < b, 

IFX + (Dy = Y, (4.3) 

EX9 R", yE 10, Ilm, 

eEe, 
and (ii) multi-parametric MILP problems, involving varying parameters in 

the objective function and on the right-hand side of the constraints (RIM mp- 

MILP): 

z(e) = min c(e)T -x+ d(e)T. 
Xly 

s. t. Ax + Ey:! ý b+ F(e), 
Fx + (Dy =y+ T(e), (4.4) 

x EX9 R/yE 1011)mt 

eE E). 

Chapter 4 is organised in the following way. In Section 4.2, we describe a 
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two-stage approach to solve OFC mp-MILP problems as in (4.3). Then, we 

present the master problem and its solution steps, and then, we present a 

detailed description of the new mp-LP algorithm, establishing the links with 

our previous work (Pistikopoulos et al., 2007a). Section 4.3 describes a general 

procedure to address RIM mp-MILP problems as in (4.4). Illustrative exam- 

ples are presented throughout the sections to provide details of the steps of 

the proposed algorithms. 

4.2. Mu Iti -parametric OFC MILP problems 

Consider the formulation in (4.3), rewritten in a more compact mathematical 

form (Kosmidis, 1999): 

z(O) = min (c + HO)TX + (d + LO)Tyj 
X/Y 

s. t. Ax + Ey: 5 b, 

rx + (Dy = Y, (4.5) 

n, yC EX (0,11m, 

0 EE E) = 10 :0 Ei W, GO :5 e), 

here, c, d, H and L are real matrices with appropriate dimensions. The pres- 

ence of parametric uncertainties in the objective function introduces two types 

of bilinear terms - OT - HT -x and OT - HT -y- hence, this is a non-convex objec- 

tive function. Here, we propose a two-stage global optimisation procedure 

for the solution of (4.5), described next. 
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4.2.1. Master problem 

in the master problem, we formulate a global optimisation problem consid- 

ering the varying parameters, 0, as bounded optimisation variables: 

zM(O) = min (c + HO)TX + (d + LO)T 
x, y, e 

s. t. Ax + Ey :5b, 

IFX + (Dy = Y, (4.6) 

Rn, ye 10,1)M, 

eE E) = (e: eEW, Ge:! ý el. 

Problem (4.6) is solved using a global optimisation solver (Adjiman et al., 

1998b, a; Floudas, 2000; Smith and Pantelides, 1999). In this work, we use the 

commercial package GAMS/BARON (Sahinidis, 2000) as our global optimi- 

sation solver. From the solution obtained for Problem (4.6), the binary vector 

is fixed, y y, and is an entry data in the slave problem, which is described 

next. 

4.2.2. Slave problem 

Fixing y=y, (4.5) results in the following formulation: 

zs(O) = (d + LO)T y+ min c 
TX + OT H TX, 

x 

s. t. Ax: 5 F, 

Fx = Y" (4.7) 

n C: Xg R, 

19 Ei E) = 10: 0cW, GO: 5 el, 

where, V=b- Ey, and y' =y- (Dy. Problem (4.7) involves bilinear terms in 

the objective function, and hence, it corresponds to a multi-parametric global 

optimisation problem. 
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In principle, (4.7) can be addressed by applying the global optimisation al- 

gorithm of Dua et al. (2004). However, here we explore the structure of (4.7) 

to design a new mp-LP algorithm suitable for OFC mp-LP problems. 

* Algorithm for the OFC mp-LP problem 

The Fritz John first-order conditions state that there exist p+q+1 real num- 

bers v, A, y, not all zero, such that (Mangasarian and Fromovitz, 1967): 

p 

Y(x, v, A, p, e) = vf(x, e) +L Aigi(x, e) 

V, Y(x, v, A, p, e) = o, 
Aigi(x, e)=o, v i=l,..., Pl 

hj(x, 19) = 0, Vj=1, **., ql 

v, A i, pi -ý-> 01 

q 

yjhj(x, 19), 
j=l 

(4.8) 

where Y(x, v, A, y) is the Lagrangian, vcR, AE RP, yE Rq, are the Lagrange 

multipliers, f(x, e) = CTX + eTHTX, g(x, e) = Ax -F<0 and h(x, e) = IFx - 

y' = 0. Assuming, we seek a Karush-Kuhn-Tucker (KKT) optimum (Bazaraa 

and Shetty, 1979) satisfying the linear independence constraint qualification, 

v=1, (4.8) is rewritten in a more compact form: 

vx-zg 

F(q, 0) Ag(x, 0) 0, (4.9) 

h(x, 0) 

here, q= [x, A, PI and A is a diagonal matrix with Aii = Aj, i= 1/,.., p. Then, 

differentiating (4.9), F(q(O), 0) , with respect to 0, we obtain an expression for 

the optimal solution of (4.7) as an explicit function of 0, as shown next in 

Theorem 4.1. 

Theorem 4.1 Basic Sensitivity Theorem (Fiacco, 1976): Let Oo be a vector of pa- 

rameter values and (xO, A0, yo) a KKT triple corresponding to (4.8), where AO is 
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nonnegative and xO is feasible in (4.7). Also assume that W strict complementary 

slackness (SCS) holds, (ii) the binding constraint gradients are linearly independent 

(LICQ: Linear Independence Constraint Qualification), and (iii) the second-order 

sufficiency conditions (SOSC) hold. Then, in the neighbourhoodof eo, there exists 

a unique, once continuously differentiable function, q(O) = [x(O), A(O), P ni, sat- 
isfying (4.8) with q(00) = [x(oo), Am), y(eo)], wherex(e) is a unique isolated 

minimiser of (4.7), and 
dx 
7-0 

dA 

dp 
j -e- ) 

where, MO and No are the Jacobians of (4.9) with respect to q and 0, 
V2 

XXY V, gl ... Vxgp Vxh, ... Vxhq 

AlVT 
X91 91 

0 

mo 
- AvT p x9p 9p 

VT 
xh, 

00 
VT 

xhq 
(V2 y" /11 VT gl,... 1/1 

VT 
1v-n, "... ' 

VTh )T 
ex 0p 09p 00q 

Proof. See (Fiacco, 1983, pp. 72). 

Note that the assumptions stated in the theorem above ensure MO is non- 

singular in the neighbourhood of the solution point (qO, eo), and hence, in- 

vertible (McCormick, 1976). 

Corollary 4.1 First-order estimation of [x(O), A(e), p(e)], near e= eo (Fiacco, 

1983): Under the assumptions of Theorem 4.1, a first-order approximationof we), 
A(e), p(e)] in the neighbourhood of eo is, 
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x(0) XO 

a(ig) =: l, 

p (0) po 
where (xo, Ao, yo) = [x(Oo), A(00), p(Oo)], Mo = M(Oo), No = N(OO), and 0(0) 

o(11011) means that 0(0)/11011 --ý 0 as 0 -* 00. 

From Theorem 4.1. it is obvious that the matrices MO and No are indepen- 

dent of 0, i. e. it is equally applicable to (4.7) as it is for the righ-hand-side 

(RHS) case considered in Dua and Pistikopoulos (2000). Theorem 4.1 clearly 

states that the first order estimation of the explicit optimal function, (4,11), 

is the general solution inside the incumbent critical region, where a critical 

region is defined as a subset of the parameters space inside which the same 

set of active constraints applies. 

The main difference between the RHS case and the OFC mp-LP problem, 

in (4.7), is the non-null Hessian of the Lagrangian with respect to 19 and x, i. e. 

VOxY =HT- Yet, all matrices in (4.11) are constant, and hence, the explicit 

expression is indeed valid inside the entire critical region. By substituting the 

appropriate variables, (4.11) results in the following expression for (4.7): 

x(e) XO AT iFT HT 

Äo - AA diag (g) 00 . (0-00). (4.12) 

po F000 
no 

The analytical expressions in (4.12) are used to derive the boundaries of the 

critical region by checking the conditions stated in the following Theorem 4.2. 

Theorem 4.2 (Poore and Tiahrt, 1987) Let (qo, vo, eo) be a solution to (4.8). Addi- 

tionally, assume that f, g and h are twice continuously differentiable in a neighbour- 

hood of (xO, eo), and define two index sets: A and A, and a corresponding tangent 
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space T by, 

P, gi(xo, 00) = 01, 

A= ji GA : Ai # 01, 

(4.13a) 

(4.13b) 

T= It E R' : [V, h(xo, eo)i 
Ty=0, [V, gi(xo, eo)]T y=0, yj C (4.13c) 

Then a necessary and sufficient condition for VqF, i. e. MO, to be non-singular is that, 

each of thefollowing three conditions hold: 

(i) (={; 

(ii) S -ýý IV,, gi(xo, Oo) U Vxhj(xo, 00), iEA, j= qj is a linearly 

independent collection of q+ JAI vectors, where I-I denotes cardinality; 

(iii) The Hessian of the Lagrangian V, 2' is non-singular on the tangent 

space T-. 

If VqF(qo, 00) is non-singular, there exist neighbourhoods D, of 00 andD2 Of 
(qO, 00) and a function 0c C' (Bl) such that F(0(0), 0) = 0, YO E B, and 0(190) = 

qO. This solution is locally unique in the sense that if (q, e) E B2 and F(q, 0) = 0, 

then q belongs to the manifold defined by 0, i. e., q= 0(0). Furthermore, if f, g and 

h are Ck(k ý! 2) (C' or real analytic) then 0 is Ck-1 (Coo or real analytic, respectively) 

on B1. 

Proof. See Poore and Tiahrt (1987). 

Essentially, the singular point/surface occurs when at least one of the three 

conditions enumerated in Theorem 4.2 is violated: (i) Loss of strict comple- 

mentarity, which is identified by any change of sign or occurrence of zeros 

in any of the inactive constraints or active inequality Lagrange multiplier; (ii) 

Violation of the linear independence constraint qualification, identified by a 

change of sign or the occurrence of a zero in v; and (iii) Singularity of the Hes- 

sian of the Lagrangian on the tangent space to the active constraints, which 
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is identified by a change in in(V2yT), where the operator in(. ) represents the X 
inertia of the matrix. By inertia of a matrix we understand the number of 

positive, negative and zero eigenvalues (Lundberg and Poore, 1993). 

However, since we have a KKT point computed in the master problem, 
(4.6), and an explicit optimal function, (4.12), the limits for the validity of 

these explicit expressions can be resumed by the following (Dua et al., 2002): 

/1(X(0» ý: 0, (4.14) 

9(X(0» < 01 (4.15) 

where, represents the set of Lagrange multipliers of the active constraints, 

A, and the set of inactive constraints. 

The parameters' initial area is further explored using the methodology de- 

scribed by Dua and Pistikopoulos (2000) - see Appendix 4.4. At the end, a 

complete map of all critical regions is obtained. Each critical region is associ- 

ated with a corresponding analytical expression as in (4.12). By substituting 

this expression in zS, (4.7), a valid upper bound is obtained for (4.5). 

The OFC mp-LP algorithm was implemented in Matlab. 

Remark 4.1 Note that optimisation variables, x, in (4.12), are independent of e, 

inside each critical region, x# f(e); this is expected as (4.7) has uncertainty only 

in the objective function and it is linear with respect to x. Of course, the varying 

parameters, 0, continue to affect the optimal valuefunction, z*. 

4.2.3. The algorithm 

Between every master-slave iteration, we need to (i) introduce integer and 

parametric cuts in the master problem (MINLP), in order to avoid already 

examined 0-1 combinations and cut off worse solutions; and (ii) compare the 

parametric solution with the solutions obtained in previous iterations. For 
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(i), we introduce the following constraints (Dua and Pistikopoulos, 2000): 

EY ik 
-E yik < lpkl - 1, k=L..., K', (4.16) ii- 

jElik jELik 

(c + HO)TX + (d + LO)T Y: 5 zs(o)i, (4.17) 

where, jik L Ij : yik -I corresponds i= 11 and Lk Ij : y'k = 01, the operator I 

to cardinality and K' is the number of integer solutions analysed in a specific 

critical region. Equation (4.16) and Equation (4.17) exclude integer solutions 

already visited, and integer solutions with higher values than the current 

upper bound, zs, respectively. 

For (ii), since the optimal value functions for the slave problem are linear, 

the comparison procedure described in Acevedo and Pistikopoulos (1997) is 

used. 
The algorithm terminates when the master problem, (4.6), is declared in- 

feasible. The algorithmic steps are summarised in Figure 4.1 and Table 4.1. 

Next, we apply the steps of the proposed algorithm to an illustrative exam- 

ple. 

4.2.4. Example 1 

In a chemical engineering company, the decision maker has to choose be- 

tween Reactor 1, which is expensive but has a high rate of conversion, and 

Reactor II, which is more economic but has a lower rate of conversion, Fig- 

ure 4.2 (adapted from Biegler et al., 1997). 

Due to the presence of uncertainty in the cost coefficients, the multi-parametric 
OFC MILP problem results: 
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Initialisation 

Solve MINLP problem (6), 
assuming parameters as 
optimisation variables 

I 
Feasible? STOP 

Fix m=v 

Solve mp-LP problem (7) 

Comvare and uvdate the uvver bound 

Solve MINLP problem (6), 

with new constraints (16) and (17) 

yes < Feasible? 

no 

STOP 

Figure 4.1.: Algorithm for OFC mp-MILP problems. 

Figure 4.2.: Superstructure of illustrative example 1. 

min (6.4 + 0.25e, )xl + (6.0 + 0.17e2)X2 
xl, x2, yl, yll 

+ (7.5 + 0.301)yj + (5.5 + 0.15192)YIIi 

s. t. 0,8 - x, + 0.67 ' X2 ::::::: 101 (4.18) 

x, :5 20yi, X2 :5 20yli, Xl i X2 ýý 01 

0 :5 1911 02 :5 20, yl, yii, E 10,11 
- 
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Table 4.1.: Steps of the algorithm for OFC mp-MILP problems. 
Step 0. (Initialization) Define an initial region of E), CR, with best upper 

bound 2*(e) =oo, and an initial integer solution, y. 
Step 1. (Slave subproblem - multiparametric LP problem) For each re- 

gion with a new integer solution, 9: (a) Solve the mp-LP subprob- 
lem (4.7) to obtain a set of parametric upper bounds, 2(e) = z;, 
and the corresponding critical regions CR; (b) if 2(e) :5z; (e) for 
some regionof e, update the best upper bound function, 2(e), 
and the corresponding integer solutions, y*; (c) If an infeasibility 
is found in some region CR, go to Step 2. 

Step 2. (Master subproblem - MINLP problem) For each region CR, for- 
mulate and solve to global optimality the MINLP master sub- 
problem, (4.6), (i) treating e as an optimisation variable, (ii) in- 
troducing an integer cut (4.16) and (iii) introducing a parametric 
cut (4.17). Return to Step I with new integer solutions and corre- 
sponding CRs. 

Step 3. (Convergence) The algorithm terminates in a region where the 
solution of the master MINLP subproblem is infeasible. Then, 
the optimal parametric solution is given by the current upper 
bounds 2*(0). 

The solution steps of the algorithm in Table 4.1 and Figure 4.1 are listed 

next. 

Step 0. (initialization) Solve Problem (4.18) considering 0 as being optimisa- 

tion variables, y= (1,0). 

Step 1. (k=l, slave subproblem) Fix y=y. The mp-LP problem in (4.7) is 

formulated as: 

min (6.4 + 0.2501)xl + (6.0 + 0.1702)X2 + (7.5 + 0.3el), 
Xl, X2 

s. t. 0.8 - x, + 0.67 ' X2 ' 10i 
(4.19) 

0 :5 xi :5 20,0 :5 X2 :50., 

o:! ý ei, e2 :! ý 20. 

The solution of (4.19) is computed using the OFC mp-LP algorithm: 
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x, = 12.5, 

X2 = 0� 
4 

0 

:5 191 :5 20, 

0: 5 02 :5 20. 

Step 2. (k=l, master subproblem) Solve the master problem in (4.6) with two 

additional constraints, due to (4.16) and (4.17): 

yl - Y2 : 5: 0/ (4.20) 

(6.4 + 0.2501)xl + (6.0 + 0.17e2)X2 

(7.5 + 0.3e, )y, + (5.5 + m5e2)YII:! ý, 3.425e, +87.5. (4.21) 

The solution is obtained using the commercial package GAMS/BARON 

(Sahinidis, 2000): y= (0,1). 

Step 1. (k=2, slave subproblem) By fixing y= (0,1), the solution of (4-7) re- 

sults in: 

X, = 0, 

X2 = 14.9254, 

0: 9 01 :5 20, 

0 :5 02 :5 20. 

Step 1. (k=2, cOmParison of solutions) Solutions valid in 0 :5 01/ 02 :5 20: 

Solution 1 Solution 2 

12.5 

X2 :=0 X2 = 14.9254 

Y, =1Y, 

Y2 =0 Y2 

87.5 + 3.42500, z2= 95.0524 + 2.6873e2 
ss 

The intersection of the two planes is given by the line: 

3.4250e, - 2.6873e2 = 7.524, 
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Table 4.2.: Map of optimal parametric solutions for Example 1. 

Region Solution 

el ý: o X, =0 
0: 5 02 :: 5 20 X2 : -- 14.9254 

3.425001 - 2.687302 :57.524 CR1 
Y, 0 
Y2 =1 

01 :5 20 x, - 12.5 + 1.2502 

0 :5 02 :5 20 
X2 0 

3.425001 - 2.687302 ý: 7.524 CR2 
Yl 1 

y20 

below which z' (0) is valid. S 

Step 2. (k=2, master problem) Solve Problem (4.6) with 4 additional con- 

straints: 

yl - Y2 :5 0� (4.22) 

Y2 - Yl :5 0� (4.23) 

(6.4 + 0.25e, )xl + (6.0 + 0.1702)X2 

(7.5 + 0.3e, )y, + (5.5 + 0.15e2)YII : 5,3.425oe, +87.5, (4.24) 

(6.4 + 0.25el)xl + (6.0 + 0.1702)X2 

+(7.5+0.301)yj+(5.5+0.1502)YII: 595.0524+2.687302- (4.25) 

The resulting problem is infeasible, and hence, the algorithm termi- 

nates. The final solution is listed in Table 4.2. 

4.3. Mu Iti -parametric RIM MILP problems 

In this section, we consider the formulation in (4.4), i. e. the general case with 

independent varying parameters both in the objective function and the right- 

hand side of the constraints, rewritten in a more compact mathematical form 
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(Kosmidis, 1999): 

z(e) = min (c + HO)TX + (d + Le)T 
Xty 

s. t. Ax + Ey:! ý b+ FO, 

Fx + (Dy =y+ TO, (4.26) 

x CX9 Rn, ye 10,11q, 

19 c (D = 16: 0 Ei Rs, GO :: 5 el, 

where, b, y, F and T are real matrices with appropriate dimensions. For the 

solution of (4-26), we present in the following an extension of the algorithm 

presented in section 4.2, which iterates between two optimisation subprob- 

lems, a master MINLP problem and a slave multi-parametric problem. The 

principal difference is the comparison procedure between two parametric so- 

lutions, since in this case the optimal value function is non-linear. 

4.3.1. Master problem 

By considering the parameters 0 as optimisation variables, (4.26) results in 

the following MINLP formulation (Kosmidis, 1999): 

zm(O) = min (c + HO)TX + (d + LO)T 

Xle'y 

s. t. Ax + Ey:! ý b+ Fe, 
Fx + (Dy =y+ TO, (4.27) 

Rn., yC 10,1)q, 

0C (9 = 10: 0 EE W, GO: 5 e). 

Note that (4-27) involves bilinear terms in the objective function, thereby 

it is a non-convex problem which requires a global optimisation procedure 

(Floudas, 2000). The solution of (4.27) returns a new binary vector, y=Y, to 

the slave problem, which is described next. 
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4.3.2. Slave problem 

By fixing y=y, the slave problem is formulated in the following way: 

zs(e) = (d + Le)Ty + min CTX +eTH 
TX, 

x 

s. t. Ax :5V+ FO, 

Fx :5Y, +W0, (4.28) 

n XCX9R, 

fO: 0E RI, GO:! ý e), 

where, V= (b - Ey) and y' = (y - (Dy). Once again, Problem (4.28) is solved 

using a modified version of the original mp-LP algorithm (Dua et al., 2002). 

As shown before, applying Equation (4.11) to problem (4.28) results in: 

X(O) XO 0AT FT HT 

A(O) = AO - AA diag (g) 0-F. (e - eo). (4.29) 

_p 
(e) 

-- Yo --r00 -qo - 
qj 

ý qo 
The RIM mp-LP algorithm was implemented in Matlab. 

Remark 4.2 Note that in Equation (4.29), contrary to (4.12), No is a full rank ma- 

trix and therefore the explicit expression of the optimisation variables depends on the 

parameters. 

4.3.3. The algorithm 

Between every master-slave iteration, we need to (i) introduce integer and 

parametric cuts in the master MINLP problem (Equation 4.16 and Equation 4.17, 

respectively), and (ii) compare the parametric solutions obtained in the slave 

problem in order to retain the best. While the cuts are identical to the OFC 

problem, the comparison of different solutions of the slave problem is itself 

a global optimisation problem, since in this case the optimal value functions 
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are non-linear. Here, we address this issue by storing all different optimal 

solutions valid inside overlapping regions and computing the optimum so- 
lution online by direct value comparisons (enclosure of all solutions - see Dua 

et al., 2002). 

The algorithm terminates when the master problem is infeasible. 

The algorithmic steps are summarised in Table 4.3, and are described in 

detailed in two illustrative problems, shown next. 

Table 4.3.: Steps of the algorithm for RIM mp-MILP problems. 
Step 0. (Initialization) Define an initial region of E), CR, with best upper 

bound 2*(e) = oo, and an initial integer solution, Y. 
Step 1. (Slave subproblem - multiparametric LP problem) For each re- 

gion with a new integer solution, y: (a) Solve the mp-LP subprob- 
lem (4.28) to obtain a set of parametric upper bounds, 2(0) = z*s" 
and the corresponding critical regions CR; (b) If 2(0) :5 z* (e) for S some regionof e, update the best upper bound function, in, 
and the corresponding integer solutions, y*; (c) If an infeasibility 
is found in some region CR, go to Step 2. 

Step 2. (Master subproblem - MINLP problem) For each region CR, for- 
mulate and solve to global optimality the MINLP master sub- 
problem, (4.27), (i) treating e as an optimisation variable, (ii) in- 
troducing an integer cut (4.16) and (iii) introducing a parametric 
cut (4.17). Return to Step I with new integer solutions and corre- 
sponding CRs. 

Step 3. (Convergence) The algorithm terminates in a region where the 
solution of the master MINLP subproblem is infeasible. Then, 
the optimal parametric solution is given by the current upper 
bounds 2*(e). 
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4.3.4. Example 2 

Consider again Example 1 in Figure 4.2, but now with uncertainty involving 

both the customer's demand and the objective function, as follows: 

min (6.4+0.25e, )xi+ 6. OX2 + (7.5 + 0.3e, )y, + 5.5y,,, 
X1 IX2tYItYII 

s. t. 0.8 - x, + 0.67'X2 ý: 10 + 621 

x, < 40yj, 

X2 :ý 40yii, 

Xl i X2 ý: Q, 

0:: 5 01 :5 20, 

0 :5 02 :5 101 

yjl yII, Ei 10,11. 

We apply the solution steps of the proposed algorithm in Table 4.3. 

(4.30) 

Step 0. (initialisation) Solve Problem (4.30) considering 19 as being optimisa- 

tion variables, y= (1,0). 

Step 1. (k=l, slave subproblem) Fix y=y. The RIM mp-LP problem is for- 

mulated as: 

min (6.4 + 0.2501)xl + 6-OX2 + (7.5 + 0.301), 
Xl, X2 

s. t. 0.8 - x, + 0.67 * X2 ýý 10 + 02� 
(4.31) 

x, :5 40,0 :5 X2 :50., 

0 :5 (91 :5 20,0 :5 02 :5 10- 

The solution of (4.31) is computed using the RIM mp-LP algorithm: 

x, = 12.5 + 1,25 - 191, 

X2 01 

0 0, : ýý 20, 

0 :5 02 : 5- 10- 
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Step 2. (k=l, master subproblem) Solve the master problem in (4.27) with 

two additional constraints, due to (4.16) and (4.17): 

Yl - Y2 :5 01 

(6.4 + 0.2501)xl + 6. OX2 + (7.5 + 0.3e, )yl 

5.5y, j :5 87.5 + 3.425e, - 0.3125e, e2 + 8e2. 

(4.32) 

(4.33) 

The solution is obtained using the commercial package GAMS/BARON 

(Sahinidis, 2000): y- (0,1). 

Step 1. (k=2, slave problem) By fixing y=y, the solution of (4.28) is: 

X, = 0, 

X2 = 14.9254 + 1.492502/ 

0: 5 01 :5 20,0: 5 02: 5 10- 

Step 1. (k=2, comparison of solutions) Solutions valid in 0 :5 01 :! 5 20,0 :! 5 
02 !ý 10: 

Solution 1 Solution 2 

x, = 12.5 + 1.25e2 X, =0 

X2 0 X2 14.9254 + 1.4925402 

Y, 1 Y, 0 

Y2 0 Y2 1 

z= 87.5 + 3.4250, - 0.31250,02 + 802 z 8.95502 + 95.0524 

In this specific case, we can compute the intersection of the two solu- 

tions: 

-0.95562 - 0.312501192 - 7.5524 + 3.42501 = 0. 

Otherwise, we store all parametric solutions of the slave problems and 

compute on-line the best decision. 
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Step 2. (k=2, master problem) Solve Problem (4.27) with 4 additional con- 

straints: 

Yl - Y2 < Q, (4.34) 

Y2 - Yl : ýý 01 (4.35) 

(6.4 + 0.2501)xl + 6-OX2+ (7.5 + 0.301)yj 

5.5y, j :5 87.5 + 3.425e, - 0.3125,9, e2 +8e2, (4-36) 

(6.4 + 0.2501)xl + 6-OX2 + (7.5 + 0.301)yj 

5.5y, l -5 8.95502 + 95.0524. (4.37) 

The resulting problem is infeasible, and thus, the algorithm terminates. 

The final solution is listed in Table 4.4. 

Table 4.4.: Map of critical regions for Problem (4.30). 

Region Solution 

o: 5 e, :5 20 x, = 12.5 + 1.2502 

o: 5 e2 :! ý 10 X2 0 

-0.955e2-0.3125ele2 + 3.4250, :57.5524 CR1 
Y, 1 
Y2 0 

0: 5 01 :5 20 X, 0 

0 :5 02 :5 10 X2 = 14.9254 + 1.4925192 

0.95502 + 0.3125eie2-3.425e, :5 -7.5524 
Y, 0 

CR2 119 =1 

4.3.5. Example 3 

This example is a variant of a process synthesis problem described by Biegler 

et al. (1997), shown in Figure 4.3. A chemical product C is produced using 

either process unit II or III, both of which use chemical B as raw material; 

on the other hand, B can either be directly purchased or manufactured using 

process I and purchasing raw material A. 

Moreover, the decision is subject to uncertainty in the operation cost and 
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Figure 4.3.: Superstructure of the illustrative example 3. 
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product demand. 'The uncertainty- e, e2 
- is assumed to be unstructured 

and bounded. The multi-parametric RIM MILP problem is posed as follows: 

min - 18 -C+ (10 - yj + 15. yiI + 20. yiII) 

(2.5 -A-y, + (4 + 01) - BI, - yI, + 5.5 - Biji - ylii)/ 

s. t. C=0.82 - Bli + 0.95 - Bijil 

2, < C:! ý 5 +192, A: 5 16. y,, 

yl, + yIII ýý 1, BI, - 30 - yii : ý5 0, 

Biji - 30 - yiii :50, Bij + Bij, - BP - 0.9 -A=0, 

0 : fý, 191 : ýý, 5,0 :5 02 : ýý 10i YL, YIL, YIII Ei (0,11, 

C, A, BP, Bij, Biji 0. 

(4.38) 

The final solution is depicted in Figure 4.4 and Table 4.5. 
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Table 4.5.: Solution of Problem 4.38 (x =oe+ co). 
Integer solution Continuous solution 

Region y 0 

0 1 5 

2.42:! ý 01 5 0 0 16 
CR7 

8.68:! ý 02 10 1,0,1 0 1.0526 -9.1368 
0 0 0 

L0 1.0526 j 5.2632 j 
0 1 5 

2.42 :5e, :55 
0 1.1696 5.8480 

CR8 1 1,0,1 0 0 0 6.81 :! ý e? :! ý 8.68 
0 0 0 
0 1.0526 j L 5.2632 j 
0 1 5 

2.42 :! ý e, <5 
0 0 16 

CR9 0 : 51 02 :! ý 6.80 
1 1,0,1 ) 0 1.0526 -9-1368 

0 0 0 
0 1.0526 

_j 
5.2632 j 

0 1 5 
0 0 0 

0,0,1 0 1.0526 5.2632 
0 0 0 
0 1.0526 j 5.2632 

la 

e2 

0L 
0 ei1 20 

CR1 CR4 CR7 

CR2 CR5 
CR8 

CR6 
CR3 

CR9 

Figure 4.4.: Map of critical regions of Problem (4.38). 

Remark 4.3 Although wefocus on OFC and RIM classes of mp-MILP problems, the 

procedure is still valid when matrices E, (D also depend linearly on the parameters, as 



4.4 Concluding remarks 98 

follows: 

z(0) = min (c + HO)'x + (d + Le)T Y/ 
X/Y 

s. t. Ax + (ei + E20)Y: 5 b+ FO, 

rX + (01 + (D20)Y I- Y +'Wl (4.39) 

xCXg pn, y (=- 10, l1q, 

0E E), 

because, fixing the binary vector to the solution obtained in the master subproblem, 

y=y, (4.39) is rewritten as a RIM mp-LP problem: 

zs(O) = (d + LO)T y+ min c 
TX + OT H TX, 

x 

Ax :5 b' + FS, 

Fx < Y, + Ve, (4.40) 

xX Z- Rn, yC 10,1)m, 

where, V= (b - ely), y' = (y - Oly), P= (F - E2y) and T' = (T - (D2Y)- 

4.4. Concluding remarks 

We have presented a novel optimisation framework for the global solution 

of general mp-MILP problems, involving uncertainty in the objective func- 

tion and the right-hand side of the constraints. Based on our previous work 

on multi-parametric programming (Dua and Pistikopoulos, 2000; Dua et al., 

2004; Pistikopoulos et al., 2007a), a novel mp-LP algorithm was developed, 

which overcomes the presence of the non-convexities due to bilinear terms. 

This is then used in an efficient procedure, which iterates between a master 

MINLP subproblem, solved to global optimalityý and a slave mp-LP subprob- 
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lem. A number of examples are also presented. 

The proposed approach has many applications in hybrid and robust con- 

trol -a topic which is currently being investigated and will be introduced in 

Chapter 6. 

A. Definition of Rest of the Region 

Given an initial region, CRIG and a region of optimality, CRQ such that CRQ C 

CRIG, a procedure is described in this section to define the rest of the region, 

CRrest = CRIG - CRQ. For the sake of simplifying the explanation of the proce- 
dure, consider the case when only two parameters, 01 and 02, are present (see 

Figure 4.5), where CRIG is defined by the inequalities: IOL < 01 I- :: 5 OU, 1 OL < 2 

02 :! ý Oul and CRQ is defined by the inequalities: JC1 2 :! ý 0, C2 :! ý 0, C3 :5 01 

where C1, C2 and 0 are linear in 0. The procedure consists of considering 

one by one the inequalities which define CRQ. Considering, for example, the 

inequality C1 < 0, the rest of the region is given by, CRrest : IC1 0, OL < 11 
01/ 02 :! ý Oul, which is obtained by reversing the sign of inequality C1 :50 2 

and removing redundant constraints in CR IG (see Figure 4.6). Thus, by con- 

sidering the rest of the inequalities, the complete rest of the region is given 

by: CRrest = JCRrest U CRrest U CRrestj, where CRrest, CRrest and CRrest are given 123123 
in Table 4.6 and are graphically depicted in Figure 4.7. Note that for the case 

when CRIG is unbounded, simply suppress the inequalities involving CR IG in 

Table 4.6. 

Table 4-6-: Definition of rest of the regions. 
Region Inequalities 
CR rest C1 ýý 0, OL 01/ 02 :! ý OU 

11 
CRrest C1 :! ý 0, C2 ý: o, el :! ý ejý7, e2 '4' , 19U 2 

o, eL-2 CRrest C1 :50, C2 :ý0, C3 ý: 
-< e, :5 eu OL < e2 

31 11 2- 



4.4 Concluding remarks 

02 

ou 
21 

oL 
2 

Cl <02<0 

CR Q 

\\ 77-7ý 

C3 <0 

CR IG 

II- 01 
E)L OU II 

Figure 4.5.: Critical regions, CRIG and CRQ. 

02 

ou 
21 

rest CRI 

ý1>0 

oL 
2 

i 
a. 0 

oL OU II 

Figure 4.6.: Division of critical regions - Step 1. 

ou 2 

oL 
2 

CR', est rest CR2 

CR Q 

rest CR3 

i10 
oL ou 

II 

Figure 4.7.: Division of critical regions - rest of the regions. 
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5. Constrained dynamic 

M programming problems 

In this chapter, we present a new algorithm for solving complex multi-stage 

optimisation problems involving hard constraints and uncertainties, based 

on dynamic and multi-parametric programming techniques. Each echelon 

of the dynamic programming procedure, typically employed in the context 

of multi-stage optimisation models, is interpreted as a multi-parametric op- 

timisation problem, with the present states and future decision variables be- 

ing the parameters, while the present decisions the corresponding optimisa- 

tion variables. This re-formulation significantly reduces the dimension of the 

original problem, essentially to a set of lower dimensional multi-parametric 

programs, which are sequentially solved. Furthermore, the use of sensitiv- 

ity analysis circumvents non-convexities that naturally arise in constrained 

dynamic programming problems. The potential application of the proposed 

novel framework to robust constrained optimal control is highlighted. 

5.1. Introduction 

Multi-stage decision processes have attracted considerable attention in the 

open literature. With many applications in engineering, economics and fi- 

nances, theory and algorithms for multi-stage decision problems have been 

presented in the open literature (Bellman, 2003; Bertsekas, 2005). A typical 

multi-stage decision making process, involving a discrete-time model and a 
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convex stage-additive cost function, can be posed as follows (Ba§ar and Ols- 

der, 1982; Bertsekas, 2005): 

Xk+l -: -- 
fk(Xk, Uk)f Xk 'ý: Xf Uk Eý Vkt kE 10,1, 

..., 
N-1 

J(U) " 9N(XN) 

N-1 
YI, 

gk(Xki UA 
k=O 

(5.1a) 

(5.1b) 

n where, k is the index of the time, Xk is the state of the system at time k. X9 IR , 

Uk denotes the optimisation (decision) variable at time k, U 'ý JUo, U1, ---, UN-I It 

IUk 9 IR', fk describes the dynamic behaviour of the system and gk is the cost 

occurred at time k. Based on a sequence of stage-wise optimal decisions, the 

system transforms from its original state, xO, into a final state, XN (as shown 

in Figure 5.1). The set of optimal decisions, (u*, u*,..., u* 
_j), 

and the corre- 01N 

sponding path, x* , x*,..., x* optimise a pre-assigned cost function (5.1b). In 112 
NJ' 

other words, if the sequence of decisions is optimal the reward is maximum. 
Xk 

Uk Stage k 

Xk+l 
Uk+l Stage k+l 

Xk+2 
Uk+2 Stage k+2 

Xk+3 

Uk Stage k 
Xk+l 

Uk+l 
g +1 --4Stage k+l 

XN-1 
UN-1 

--c Stage N 

XN 

(a) Multi-stage process. (b) Time horizon of actions. 

Figure 5.1.: Multi-stage decision process. 

Dynamic Programming is well-documented (Bellman, 2003) as being a pow- 

erful tool to solve this class of optimisation problems. Based on the optimality 

principle, the original problem disassembles into a set of problems of lower 

dimensionality, thereby significantly reducing the complexity of obtaining 

the solution. The value function for a general multi-stage optimisation prob- 
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lem, as in (5.1), is given by: 

N-1 
Vk (Xk) 

-::: min 9N (XN) + gi(Ui, Xi) (5.2) 
i=k 

where ui = pi(xi) c 'Ui, and pi(. ) is an admissible policy. Applying the op- 

timality princiPle to Equation (5.2) results in the following recursive equa- 

tion (Ba*ar and Olsder, 1982): 

Vk(Xk) ': Min [gk(Uk., Xk) + Vk+l (Xk+l)l 
UkEVk 

(5.3) 

From (5.3) we conclude that incumbent cost functions are a compound of 

all future cost functions, previously optimised, and the cost corresponding 

to the decision taken at the present time. Bellman (2003) proved that this 

methodology solves the original problem to global optimality. The obvious 

advantage is that at each time step/stage the decision maker only takes deci- 

sions corresponding to it, provided that all future stages are optimised up to 

the incumbent stage. 

Although dynamic programming is a well-established methodology, a num- 

ber of limitations can be identified, especially in the presence of hard con- 

straints. As an example, consider the application of dynamic programming to 

unconstrained linear-quadratic regulator control problems (Rawlings, 1999; 

Mayne et al., 2006): uO = KO - xO, ul = K, ' X1 -, ---/ UN-1 = KN-1 * XN-1, where 

the control action is set to be admissible, Uk E Vk, and Ki are real matrices. In 

the presence of (hard) inequality constraints, non-linear decision laws result, 

which introduce non-convexities and hence significantly increase the com- 

plexity of the implementation as the use of specialised global optimisation 

techniques is required. 

Borrelli et al. (2005) presented an approach to address hard constrained 

multi-stage problems in a dynamic programming fashion. Based on multi- 

parametric programming theory (Pistikopoulos et al., 2007a) and Bellman's 
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optimality principle, the authors compute, for each stage, the corresponding 

control law, Uk --:: Y&O, using multi-parametric programming algorithms (Dua 

et al., 2002; Pistikopoulos et al., 2007a). The key idea is to incorporate the con- 

ditional piecewise linear function in the cost function of the previous stage, 

reducing it to a function of only the incumbent stage variables, Uk-1 and xk-,. 

However, as the objective function at each stage is a piecewise quadratic func- 

tion of 14, UJ, overlapping critical regions result, and a parametric global 

optimisation procedure is thus required to obtain the explicit solution. 

In this chapter, we present a novel algorithm for the solution of constrained 
dynamic programs which effectively avoids the need for any global optimi- 

sation procedure. The algorithm combines the principles of multi-parametric 

programming (Pistikopoulos et al., 2007a) and dynamic programming, and 

can readily be extended to handle uncertainty in the model data (El-Ghaoui 

and Lebret, 1997; Ben-Tal and Nemirovski, 2000; Lin et al., 2004; Janak et al., 
2007). These developements are described in the following sections. 

5.2. Constrained dynamic programming 

Consider the last stage of the decision chain depicted in Figure 5.1(a), Stage 

N, and its corresponding optimisation problem: 

Min JN(UN-1,, XN-1) : --: 9N(XN) + 9N-1 (XN-1 
-, 

UN-1)1 
UN-1 

min "ý- UN-1 :! ý Um'7x S-t- UN_j N-1 (5.4) 
Xmax ml n xN '-' XNN 

XN : -- fN-1 (XN-1 
/ UN-J, 

where, XN, XN-1 E IR" andUN-1 E IR'. A Karush-Kuhn-Tucker (KKT) point 

for (5.4) satisfies the linear independence constraint qualification and the fol- 
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lowing system of equations (Bazaraa and Shetty, 1979): 

'VY(UN-1� X Hi XN-1) = 

Aiýi(UN-IIXN-1)ý=O, V i=l,..., 2m+2n, 

Wj(UN-1fXN-1)=O, V j=l,..., n, 
(5.5) 

2m+2n n 
Y=JN(UN-liXN-1)+ AilPi(UN-11XN-1)+EYj(Oj(UN-1)1 

where A and y are vectors of the Lagrange multipliers of the inequalities and 

equalities of (5.4), respectively. Since XN-I is a varying parameter, the solution 

of (5.5), u* 
_1, 

instead of being a point, corresponds to an optimal function, 
N 

Uý Yý-j(XN-1). The existence of such function depends on the conditions N-1 N 

stated in Theorem 5.1, where we set x -: -- XN-1 and u ---": UN-1 

Theorem 5.1 Basic Sensitivity Theorem (Fiacco, 1976): Let xo be a vector of param- 

eter values and (uO, Ao, yo) a KKT triple corresponding to (5.5), where AO is nonneg- 

ative and uO isfeasible in (5.4). Also assume that W strict complementary slackness 

(SCS) holds, (ii) the binding constraint gradients are linearly independent (LICQ: 

Linear Independence Constraint Qualification), and (iii) the second-order sufficiency 

conditions (SOSO hold. Then, in neighbourhood of xO, there exists a unique, once 

continuously differentiable function, z(x) = [u(x), A(x), Y(x)], satisfying (5.5) with 

z(xo) = [u(xo), A(xo), y(xo)], where u(x) is a unique isolated minimiserfor (5.4), and 

du(xo) 
dx 

dA(xo) 
-(Mo)-'No,, (5-6) Tx- 

dp(xo) 
dx 

where, MO and No are the jacobian of system (5.5) with respect to z and x: 
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MO = 

V2y Wl Wp V601 ... V&)q 

Apv Tipp V)p 

VTa), 

If 

VT(o 

N= (V2 AlVTýl,..., A VTýp, VT(Vl,..., VT )T. 0 xu xpxxx (Oq 

Note that MO is always invertible (non-singular) because the solution for 

the homogeneous system of Mo is always zero (Fiacco, 1983, pp. 80-81). 

From (3.13) it is possible to derive a general analytic expression for UN-1, 

however, this is obviously limited to all but simplest cases. Nonetheless, Dua 

et al. (2002) have recently proposed an algorithm to solve equation (3.13) for 

general convex problems in the entire range of the varying parameters. The 

algorithm is based on approximations of the non-linear optimal expression 

by a set of first-order expansions (Corollary 5.1) valid for different combina- 

tions of active constraints. 

Corollary 5.1 First-order estimation of u(x), A(x), p(x), near x= xO (Fiacco, 1983): 

Under the assumptions of Theorem 5.1, a first-order approximation of [u(x), A(x), 

y(x)] in a neighbourhood of xO is, 

u(x) UO 

Ä(X) Ao (Mo)-1 - No -x+ o(Ilxll), (5.7) 

y (x) po 

where (uo, Ao, yo) = [u(xo), A(xo), y(xo)], Mo = M(xo), No = N(xo), and O(x) = 

o(llxll) means that O(x)lllxll ---> 0 as x -4 xo. 

Each piecewise linear approximation, (5.7), is confined to regions defined 
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by the feasibility and optimality conditions (Dua et al., 2002). If ý corresponds 

to the non-active constraints, and A corresponds to the active constraints: 

O(U(XN-1)1 XN-1) '5 0 

MXN-1) ý! 0 

Feasibility conditions, 

Optimality conditions. 
(5.8) 

Consequently, the explicit expression is given by a conditional piecewise lin- 

ear function: 

UN-1 ---` Y* 
-1 

(XN-1) 
N 

or, 
UN-1 = K' XN-1 N-1 + Cl 

N-1 
"IXN-l E CRl N-11 

2 UN-1 =K N_l XN-1 c2 + N-1 'IXN-1 2 E CR N-l' 

LN-1 
UN-1 = KN-1 * XN-1 + CLN-1 

N-1 
VXN-1 E CR 

LN-1 

N-l' 

(5.9) 

(5.10) 

where, K'_, and C' are real matrices, and CR'_ c IR'. Note that similarly N N-1 N1 

to Bellman's procedure (Bellman, 2003) we obtain a piecewise linear function 

for the incumbent states; the difference being the fact that we compute dif- 

ferent decision laws in different regions of the states, CR' 
1, 

because of the N- 

presence of hard constraints and as a result different combinations of active 

constraints. 
Consider then Stage N-1, and its corresponding optimisation problem: 

min JN-1 (UN-2/ XN-2) ---: 9N(XN) 
UN-2 

gN-1 (XN-1 
/ UN-1) + 9N-2 (XN-21 UN-2)/ 

S-t- XN ---: 
fN-I(XN-lt UN-1)1 

XN-1 ---: 
fN-2(XN-21 UN-2),, (5.11) 

U ml n "ý UN-2 :5 Umax N-2 - N-2f 

XMI n '5 XN-1 :5 Xmgx N-1 - N-11 

XN., XN-1 f XN-2 E IRn. UN-1 / UN-2 E IRM 

Proceeding as in the conventional dynamic programming procedure, we 
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can incorporate the expression in (5.9) into (5.11), integrate the model infor- 

mation: Xk+I =A* Xk +B- Uk, express the incumbent cost function in terms of 

only (XN-2. UN-2), and then optimise manipulating UN-2. Note that since (5.9) 

is a nonlinear function Of XN-11 it is also a nonlinear function Of XN-2 and UN-2; 
i. e., UN-I : -- Y* -1 

(fN-2(XN-21 UN-2))/ therefore, the resulting problem, formula- N 
tion (5.11), corresponds to a global optimisation problem, which is obviously 

undesirable. However, note that (5.11) is convex with respect to UN-1" UN-2 

and XN-2- We then take advantage of the following Lemma. 

Lemma 5.1 If a dynamic system is described by a convex function (5.1a) and we 

aim to minimise a convex stage-additive costfunction (5.1b), then the dynamic pro- 

gramming recursive formula for the valuefunction at stage k, 

Vk(Xk) : -: min [9k(Uk. Xk) + Vk+l (Xk+l)],, (5.12) 
Uk'Mk 

implies that the solution computed, (Xk, * (Xk), U*N1 (XN-1)), satisfies Uk k+I 
(Xk+l), U* 

thefollowing inequalities, 

Vk(Xki U*(Xk)i U*+I(Xk+l)i ... / U* 
-1 

(XN-1))f 
kkN (5.13) 

N 1(XN-1))l 
Vk(Xk, Uk(Xk)l Uk+l (Xk+l), 

---i Uý- 

Xk+l 

Vk+l (Xk,, U* (Xk)., U* N1 
(XN-1)),, 

k k+l 
(Xk+l)f 

---, U* 
- 

Vk+l (Xkl Uk(Xk)., Uk+l (Xk+l)., 
---,, UN-1 (XN-1))l 

Xk+l 

(5.14) 

where, ui*, iE (k, k+1,. N- 11, is the optimal value of the optimisation variable 

for the incumbent stage. 

Proof. Since the cost functions at each stage are convex the proof is obvious. 

Since Vk, j and Vk are convex functions, their interception will be unique. 

Thus, one concludes that the optimum at stage k may be obtained comparing 
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the optimal function for stage k and stage k+1, with Uk+j being a varying 

parameter at the kth stage optimisation problem. In other words, similarly to 

Problem (5.4), Problem (5.11) is recast as a multi-parametric program (Dua 

et al., 2002,2004; Pistikopoulos et al., 2007a), with both XN-2 and UN-, being 

varying parameters: 

UN-2 ' -2 
(XN-21 UN-1),, YN 

or, 

UN-2 K' * XN-2 N-2 + Hl UN-1 N_2 + Cl 
- N 21 XN-2t UN-1 (=- CRl N-2' 

2 UN-2 =K N_2'XN-2 
2 +H N_2 UN-1 + C2 

N_21 
2 XN-21 UN-1 E CR 
N-2' 

UN-2 =K 
LN-2 

. XN-2 N-2 + HLN-2 UN-1 N-2 
+C 

LN-2 
I N-2 XN-2, UN-1 E CRLN-2 

N-2' 

(5.15) 

(5.16) 

where Kj 
_, 

Hj 
-2 and Cj 

- are real matrices, and CRj 
_c 

IR". Then, the N2NN2N2 

for the incumbent stage, explicit optimal decision law, UN-2 
-2 

(XN-2)1 YN 

Stage N-1, is computed by incorporating (5.10) in (5.16). On the other hand, 

the constraints are also reformulated since we have to consider the propaga- 

tion of constraints along the horizon of decisions in order to get a consistent 

constraint satisfaction problem (Apt, 2003, see Appendix). Due to this fact, 

the final critical regions are defined as a union of the inequalities from (5.10) 

and (5.16), resulting in (i) realisable sets of inequalities and (ii) empty sets of 

inequalities. Empty sets are regions of the domain for which no feasible so- 

lution exists. Consequently, feasibility tests are performed here, after which 

empty regions are pruned and a compact set of regions is obtained. Note that 

in this way the need for global optimisation problem is circumvented, as all 

possible combinations of policies are checked and the ones corresponding to 

inconsistent paths are systematically pruned. For instance, when incorporat- 
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Algorithm 
Step 1. ý=I) Solve the Nth stage of the problem, considering it as a 
multi-parametric optimisation problem, with parameters being the in- 
cumbent state-space, XN-1; 
Step 2. U=j+ 1) Solve the (N -j+ 1)th stage of the problem, considering 
it as multi-parametric optimisation problem, with parameters being the 
incumbent state-space, XN-j and the future optimisation (control) vari- 
ables, UN-j+l,, ---,, UN-1; 
Step 3. Compute the optimal control action for sample time 
comparing the two sets obtained in the steps before, UN-j+1 
YN-j+1 (UN-j+2., UN-1 / XN-j+l), 
(if j2 => UN-1 YN-&N-1)), and UN-j 
fN-j(UN-j+ll 

... f UN-1t XN-j), and compute, UN-j = YN-j(XN-j); 
Step 4. If j=N stop. Else go to Step 1. 

Figure 5.2.: Dynamic programming via multi-parametric programming. 

ing region i into j the feasibility test is formulated as: 

min 0, 
XN-21UN-2 

S-t UN-1 = KI * XN-1 + CN' 
N-1 (5.17) 

XN-1 =A' XN-2 + B'UN-21 

XN-1 E CRl 
-j N li XN-21 UN-1 E CRN-21 

If (5.17) does not have a solution, we conclude that it defines an empty region, 

which is discarded with its corresponding control policy 

Figure 5.2 surnmarises the steps of the proposed overall algorithm. 

Remark 5.1 Within this methodology we may also assume unknown but bounded 

uncertainty in the data of matrices A, B of the dynamic model asfollows: JA =A+ 

61A; -el JAI :5 61A :! ý el JAII and JB =B+ 62B; -C21131 :5 62B :5 C20). Hence, a 

previous step is required to the algorithm in Figure 5.2. For the linear model and path 

constraints, the original optimisation problem is recast by introducing thefollowing 

constraints, as suggested in (El-Ghaoui and Lebret, 1997; Ben-Tal and Nemirovski, 
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2000; Lin et al., 2004), in order to immunise the solution to uncertainty: 

x min < AXk + BUk :5 Xmax (5.18) k+l - k+l 

A* Xk + 101 - JAI ' IXkI +B* Uk + C2'IBI - IUkI :! ý x"' +6- max[l, Ix"'Ij, (5.19) k+l k+l 

-A - xk + ei -1- Al * lXkl + (-B) - Uk + C2 -1 - BI ' lUkl :5 -Xmln+ k+l 

+6 - max[l, Ix""I]. (5.20) k+l 

Details of the application of the proposed algorithm to robust control can befound 

in Chapter 6. 

5.3. Illustrative example 

In this section we revisit a popular optimal control problem (Pistikopoulos et 

al., 2000; Borrelli et al., 2003,2005; Pistikopoulos et al., 2007a): 

N-1 

min 11 U, x) - x' * P'XN + [Xk' *Q' Xk + U' -R- Ukl, 
uNEk 

k=O 

S-t- Xk+l =A' Xk +B* Ub 

-2'4'-Uk: 52, k=0,1,..., N-1, 

2 
where, Xk E IR 

, Uk E IR, 

0.7326 -0-0861 0.0609 
N=2; A =; B 

0.1722 0.9909 0.0064 

1.8588 1.2899 10 
P= ; Q= ;R=0.01. 

1.2899 6.7864 01 

(5.21a) 

(5.21b) 

Following the steps of the methodology proposed in Figure 5.2: 
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Step 1. Second stage - Recast the second stage optimisation problem as a 

multi-parametric program with x, being the parameters: 

min IN::::: X' 'P*X2+ X' Q. x, +u' R. ul, (5.22a) 
Ul 

S-t- X2=A. x, +B. ul, 

- 2:! ý ul :5 

(5.22b) 

(5.22c) 

A suitable multi-parametric programming algorithm (Dua et al., 2002; 

Pistikopoulos et al., 2007a) can be used to obtain its solution, resulting 

in the decision law: ul = f(xj), which comprises the critical regions 

listed in Table 5.1 and depicted in Figure 5.3. Substituting the model 

information, Xk+I = AXk + BUk (for xi), we obtain the critical regions 

listed in Table 5.2. 

-4 
-4 =3 -2 -1 01234 

x 

Figure 5.3.: Map of critical regions for the second stage 

Step 2. First stage - Recast the first stage optimisation problem as a multi- 
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Table 5.1.: Explicit solution of u, = f(xi), Stage 2. 
Control action Critical region 

1 u, =2 +0.9961 - xI +x2< -0.3292 
2 ul = -6-051 - x1 -0.9961 - xi - x2 0 3-2-9-2 11 

-6.074 . X2 +0.9961 - x1 +x :50.3292 
3 u, = -2 -0.9961 - x1 - x2 :! ý -0.3292 

Table 3.2.: Explicit solution of u, =f (xO, uo), Stage 2. 
Control action Critical region 

1 u, =2 X3 0.9019 - x' + 0.9051 - 0+ 0 
+0-0671 - uO :! ý -0.3292 

2 u, = -4 5376 - x1 0 ' -0.90194 - x0l - 0.90514 XO- 
. X2 -0.0809 0 -0-067062 - uO :50.3292 

-0.3723 - uO 
0.90194 - x1 + 0.90514 . X2+ 00 
+0-067062 - uO :50.3292 

3 u, = -2 -0.90194 - x0l - 0.90514 -xol-+- 

-0.067062 - uO :5 -0.3292 

parametric program with xO and ul being the parameters: 

min IN = x2'P * X2 + Xj Q. x, +uj R. ul+ Ul 
211 

uo -R- uo, 

S-t- X2=A. x, +B. ul, 

x, =A xo+B. u0, 

-2 -5 uo :5 

114 

(5.23a) 

(5.23b) 

(5.23c) 

(5.23d) 

Again, using a suitable multi-parametric programming algorithm (Dua 

et al., 2002; Pistikopoulos et al., 2007a), we obtain the explicit decision 

law: uo = f(xo, ui), listed in Table 5.3. 

Table 5.3.: Explicit solution of uO = f(xo, ul), Stage 1. 
Control action 

1 uo =20.9962 - x, ', + x-, + 0.0490 - ul :5 -0.2805 
2 uo = -7.104 - x' - 7.131X2 -0.9962 - x' - x' - 0.0490 - ul :50.2805 00 

-0.3494u, +. 9962x' + x, 2 + 0.0490u, :50.2805 0 
3 uo = -2 -0.9962xol_7ýj- 0.0490u, :! ý -0-2805 
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Step 3. Incorporate decisions ul, Table 5.2, into uO, Table 5.3, and express 

uO as function only of the incumbent state-space, xo. After performing 
feasible tests in each of the 9 generated regions we obtain the results 
depicted in Figure 5.4 and listed in Table 5.4. 

5 Feasible Region Fragments 

05 

-0 5 

-1 

_t5 

-2 

I -T -7-1- 

CRO03 
C 04 RO04 
CROOS 

-05 0 05 1152 

Figure 5.4.: Final map of critical regions. 

Table 5.4.: Map of control policies' regions. 
Control action Critical region 

1 uo =2 0.9965 - x' + x' < -0.5119 00 
ul -2 :5 XI, X2 -2 00 

2 uo =2 -0.9965 - x' - x' < 0.5119 00- 
u, = -5.479 - x' 0 0.9961 - x' + X2 :5 -0.3292 00 
-5.498 .. x' - 0.8147 0 -2 :5 XI, X2 00 

3 uo = -6.051 - x' 0 0.9961 - x' + x' < 0.3292 00- 
-6.074 . X2 0 -0.9961 -x1-x2<0 3292 00-, 
u, = -3.014 - x' -2 :ý XI, X2 <2 00 2 
-3.024 - x. 

4 uo = -2 + X2 +0.9965 - x' 0 :50.5119 0 
u, = -5.479 - x' 0 -0.9961 - x' - X2 < -0.3292 00 
-5.498 - x, 2 

+ 0.8147 XI, X2 <2 00- 
5 uo = -2 -0 . 9965 - x' - x' < -0.5119 00 

ul = -2 x(), x02 :52 

Note that each critical region in Figure 5.4 corresponds to a different pol- 

icy, however, many regions may have the same identical first-stage optimal 

decision, uO. In the example above, Table 5.4, only 3 different first-stage opti- 

mal decisions were identified. The implication of this in a closed-loop control 

implementation strategy, where only the first-stage decisions are updated, 
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is that a very significant reduction of the number of critical regions (control 

laws) can take place, by merging the adjacent regions with identical first- 

stage control actions. 

In order to test the algorithm in different situations we have performed two 

independent modifications in the original illustrative example: (i) we make 

N= 100 and (ii) we introduce a path constraint in the first stage (Pistikopou- 

12 los et al., 2000): -0.5 :5 x1, x1. In both cases the methodology was successfully 

applied, and the results are depicted in Figure 5.5 and Figure 5.6, respectively. 

N 

-06 

-2 -1 -1 

Figure 5.6.: 

U CR002 
CR003 
CROCI 
CR005 
CR000 
CR007 

xI 0 
Figure 5.5.: Maps of feasible 

regions. 

5.4. Computational complexity 

-05 0 05 1 16 2 

1 
x0 

Maps of feasible 
regions. 

In this section, an analysis of the computational complexity of the proposed 

algorithm is presented and comparisons are performed with the direct solu- 

tion of a multi-parametric programming problem. 

We assume that all input and output variables, at each step, are bounded. 

We first consider the solution of the multi-stage problem as a single, large 

scale multi-parametric program. For a problem with m optimisation variables 

and N stages, the total number of inequality constraints, pQp, is: 

pQp =N- (2 -m+2- n), (5.24) 
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Table 5.5.: Complexity comparison analysis for Example 1. 
Algorithm mp-QP mp-DP 
Example 1 Horizon Length, N=2 

# mp problems 12 
# optimisation variables 21 
# inequalities 42 

Horizon Length, N=100 
# mp, problems 1 100 
# optimisation variables 100 1 
# inequalities 200 2 

The maximum number of regions, q, is bounded by (Dua et al., 2002): 

q-1 

qr:! ý E k! Nk . (2 -m+2. n)k, (5,25) 
k=O 

where 

q 
(2. m. N+2. n. N)! (5.26) 

(2. m. N+2. n. N-i)! i! * 

This can result in a rapid increase in the number of regions as N increases. 

However, in our proposed algorithm the dependence on N is eliminated, i. e., 

where 

q-1 

PDP = 2-m+2-n => qr:! ý Y, k! (2. m+2. n)k, (5.27) 
k=O 

(2 -m+2- n)! (5.28) 
(2 -m+2. n- i)! i! 

In other words, the large-scale multi-parametric program in our case is dis- 

assembled into a set of smaller problems, with the extra requirement of addi- 

tional, albeit almost negligible computational cost, algebraic manipulations 

and feasibility tests. Note also that the computational performance of the 

proposed algorithm can be further improved by performing parallel compu- 

tations. 

Table 5.5 illustrates these points. While for small-scale problems (N = 2) the 

computational advantages are not clear, for large-scale problems (N = 100) 
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the computational savings are of several orders of magnitude. 
Comparisons of the proposed algorithm to the one presented in Borrelli 

et al. (2003) are not meaningful, as their work requires solution of global 

optimisation problems and involves a larger number of intermediate multi- 

parametric programs, naturally resulting in much higher computational re- 

quirements. 

5.5. Concluding remarks 

Chapter 5 presents the main steps of a novel multi-parametric programming 

approach for the solution of general, constrained convex multi-stage prob- 
lems. Through a literature example of optimal control problems, we high- 

lighted how (i) we can use recently proposed multi-parametric programming 

theory and algorithms (Pistikopoulos et al., 2007a) to efficiently address con- 

strained dynamic programming procedures, used in the context of multi- 

stage formulations, and (ii) we can avoid any need for global optimisation 

methods by carefully posing and conducting feasibility tests, based on sen- 

sitivity analysis of the obtained parametric solutions. The work presented 
here establishes the foundations towards a comprehensive general theory for 

robust optimal control, which is described in detailed in Chapter 6. 

Appendix 

Definition 5.1 Consistency ofa Constraint Satisfaction Problem (CSP) (Apt, 2003): 

Consider a finite sequence of variables X: = X1, ---, xn with respective domains 

Dl,..., Dn, together with a finite set C of constraints, each on a sub sequence of 

X. We write such CSP as (C; D8), where De :=x, E Dl,. - -, Xn c D, and call 

each construct of the form XEDa domain expression. We now define the crucial 

notion of a solution to a CSP, Intuitively, a solution to a CSP is a sequence of legal 

valuesfor all of its variables such that all its constraints are satisfied. More precisely, 
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consider a CSP ýC; D8) with De := X1 E DI,..., X, E D, We say that n-tuple 

(dl,..., dn) E D, x ... x Dn satisfies a constraint CEC on the variables xi,,. . ., xi,, 

if D, x ... x D, is a solution to (C; D8) if it satisfies every constraint CEC. If 

a CSP has solution, we say that it is consistent and otherwise we say that it is 

inconsistent. 



6. Robust optimal control of discrete 

linear systems 

Chapter 6 describes the foundations of a novel optimisation framework for 

the solution of the linear quadratic regulation problem of parametric uncer- 

tain systems. Based on dynamic and multi-parametric programming tech- 

niques, the procedure recast the original problem into a robust formulation 

considering the worst-case variation in the system's dynamic model. More- 

over, we describe how the robust formulation, which preserves the original 

linear-quadratic program, is solved using the multi-parametric dynamic pro- 

gramming algorithm for linear time-invariant systems, developed in Chap- 

ter 5. The solution steps are illustrated with the double integrator example. 

6.1. Introduction 

Model-based predictive control is a celebrated control strategy. Based on an 

optimisation formulation, model-based predictive control (MPQ handles ef- 

ficiently the complexity of multi-variable systems subject to constraints, in 

the presence of uncertainties and/or disturbances. A typical MPC formula- 

tion includes (i) path and input constraints and (ii) the explicit mathematical 

model representing the dynamic behaviour of the system; it corresponds to 

a finite horizon open-loop constrained optimal control problem. The on-line 

solution of this problem is a sequence of control decisions (policy), based on 

the measurement of the current state (or output) and on the predictions of the 
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future states. To ensure a closed-loop control strategy, the problem is solved 

recursively at each sampling time with only the first control action being im- 

plemented. 

The on-line (implicit) MPC implementation strategies dominate the pa- 

norama of both industrial applications and theoretical developments. Yet, 

the numerical methods involved in the solution of the resulting optimisation 

problems have a high computational cost. Consequently, many applications 

are prohibitive. Recently, Pistikopoulos et al. (2000) and Bemporad et al. (2002) 

reported a new approach which moves the demanding computations to a off- 

line procedure. In this approach, the optimisation problem is regarded as a 

multi-parametric program where the optimal control actions are obtained as 

an explicit map of the system's states (parameters). The resulting closed- 

loop controller is known as explicit MPC control, multi-parametric control or 

ParOS control (ParOS, 2007). 

Most of the multi-parametric control theory available is for linear time- 

invariant (LTI) systems with no uncertainty (Pistikopoulos et al., 2000; Be- 

mporad et al., 2002; Pistikopoulos et al., 2007b). But, relatively little atten- 

tion has been given to the worst-case design of multi-parametric controllers 

for parametric uncertain systems, in other words, the design of controllers 

when we have worst-case variations in the available model (Witsenhausen, 

1968a, b; Bertsekas and Rhodes, 1973). Sakizlis et al. (2004c) described a multi- 

parametric algorithm to address the explicit MPC problem with additive dis- 

turbances in the system"s dynamic model and quadratic cost functions, min- 

imising the expectation of the objective function over the uncertainty space 

or the nominal value function. On the other hand, Bemporad et al. (2003) de- 

scribed a min-max approach to address the explicit MPC problem for para- 

metric uncertain system, such as (6.1); however, it is limited for linear cost 

functions only. 

In this chapter, we attempt for the first time, to our knowledge, to address 
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the challenging constrained Linear Quadratic Regulation (LQR) problem of 

parametric uncertain systems (6.1). The proposed approach recasts the orig- 
inal problem into a robust formulation, considering the worst-case of varia- 
tion in the model (Ben-Tal and Nemirovski, 2000; Lin et al., 2004; janak et al., 
2007), which is then solved using a multi-parametric dynamic programming 

algorithm. These development are described in the following sections. 

6.2. Problem definition 

Consider the discrete time linear system: 

xt+l ý f(xt, ut) := Axt + But, (6.1) 

xcX, X: = (x c: R" : Gx: 5 wl, (6.2) 

V: = ju c R' : Mu: 5 pl, (6.3) 

here, X, V are the sets of the state and input constraints which are assumed 

to be compact and non-empty polytopic sets; GE R'9"', wC R"g, ME IPL'g" 

and yc R'g. And, A and B are uncertain matrices defined as: 

Ao + AA, AA EIyq, (6.4) 

A= JAA c: R"'": -cjAoj:! ý AA:! ý clAol), (6-5) 

B=BO+AB, ABcB, (6.6) 

B= IAB c W` : -elBoj :ý AB :5 elBoýl. (6.7) 

The matrices AO and BO denote the nominal parts of A and B, respectively; 

in other words, AO and BO correspond to the measurements or calculations, 

while AA and AB denote the uncertainty in the system matrices. Note that, 

from (6.4)-(6.7) we conclude that the uncertainty is bounded between an up- 

per and a lower bound defined using an auxiliary parameter c, which cor- 

responds to a percentage of the nominal values, CE [0,1). In the limiting 
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case, c=0, (6.1) is a linear time-invariant (LTI) dynamic system, A= Ao and 

B= BO, and the MPC problem for (6.1) is formulated as follows (c = 0): 

N-1 
I 

V*(x) = min J(x, U) = min 4Xb Ut) + O(XN)l 
U 

(6.8) 
t=O 

s. t. xt+l f (xt, ut) := Axt + But, (6.9) 

Xt, Xt+i G x, 

Ut E V, 

x0 = X, (6.12) 

U :::::: IUO 
/---, UN-1 IE uN 

/ (6.13) 

where, N is the prediction horizon, f(xt, ut) := x'Qxt + u'Rut, O(XN) := Xf PXNI 
ttN 

Q ý: 0 is a positive semidefinite matrix, R >- 0 is a positive definite matrix 

and P ý: 0 is a positive semidefinite matrix such that ensures stability to the 

MPC controller (Rawlings, 1999; Mayne et al., 2006) (usually P is obtained by 

solving the discrete-time Riccatti equation for (6.1)). The open-loop control 

problem, (6.8)-(6.13), is solved at each sampling instant, t ý! 0, to obtain the 

control policy, U= [uo, uj,..., UN-111 with only the first control action, uO, 

being implemented. This strategy establishes a feedback control policy. 

The dynamic programming recursive formula for Problem (6.8)-(6.13) is as 

follows: 

N-1 

Vt(xt) min 7, C(xi., ui) + ý(XN)i (6.14) 
utEv i=t 

s. t xi+I = Axi + Bui ,i=t,..., N-1, (6.15) 

Xt c x, (6.16) 

Ut E V. (6.17) 

In Chapter 5, we have described an algorithm to address the class of prob- 

lems defined in 6.14-6.17, however, for completeness in the presentation of 

the problem, we highlight the main steps. 
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In (6.14) the optimisation variable is the current control ut, and only the 

constraints on the current control and state are considered. Furthermore, 

in the conventional dynamic programming approach, all stages from i= 

t+1,..., N - 1, are substituted by the next stage value function, Vt,, (xt+, ). 

However, given the fact that the problem at each time t is solved as a multi- 

parametric quadratic program, Vt+l(xt+l) is a piecewise quadratic function; 

thus, incorporating this solution in the current optimisation problem results 
in a global optimisation problem that cannot be solved via the known multi- 

parametric methods (Borrelli et al., 2005; Faisca et al., 2008). 

As described in Chapter 5, the multi-parametric dynamic programming 

approach takes advantage of the fact that the objective function in (6.14)- 

(6.17) is convex with respect to xt, ut, ut+,, . UN-1, as shown next in Lemma 6.1 

(Faisca et al., 2008). 

Lemma 6.1 Consider the optimisation (6.8)-(6.13) and assume that xt, u*(xt), u* t t+l(xt+i), 
U* 

_I(xN-l) 
is the solution to the multi-stage problem. It holds that, N 

Vt(xt, u*(xt), U* N I(XN-1)) t t+l 
(xt+i), 

---, U* 
- 

+I 
(Xt+l), ---, U* (6-18) :5 Vt(xt, ut(xt), U*t N-I(XN-1)) 

Xt+i 

Vt+i (xt, U*t (xt), u t+l 
(xt+i), 

---, Uý- NI 
(XN-1)) 

Vt+i (xt, U*(Xt), ut+i (xt+i), -u*- -1)) 
(6-19) tN1 

(XN 

Xt+i 

where Vt(. ) and Vt,, (xt+, ) are the objective functions of (6.14) at times t and t+1. 

Proof 6.1 The proof is straightforward and is a result of the convexity of Vt(xt) and 

Vt, l (xt, j) (see Faisca et al. (2008)). Note also that Vt, l (-) is a function of xt,,, 

u*1 (xN-1), and however xt, j is a function of xt, ut so is 
t+l(Xt+l)l Ut*+2(Xt+2),, U* N 

Vt+1 (). 

The lemma above states that if a feasible solution to (6.14) exists, the so- 
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lution is unique. This implies that the solution for the multi-stage problem 
(6.14)-(6.17) is also unique. The main idea behind this approach is to solve 
(6.14)-(6.17) as a mp-QP problem, where: 

ut is the optimisation variable; 

Xt., Ut+l., Ut+2/ . --/ UN-, are the parameters; 

the state constraints apply only on the current state, xt; 

e the input constraints apply only on the current control input ut. 

Replacing xi = A'-txt + E'-t-1 AiBui-i-p for all t+I:! ý, i :! ý N, in the objective j=0 
function (6.14), xt+l = Axt + But in the state constraints (6.16) and X, V by 

(6.2) and (6.3) respectively, the optimal control problem (6.14)-(6.17) can be 

re-written as a mp-QP problem: 

Vt (xt) =min 
1 

u'Hut+ e(t)'Fut +1 ewlyem, (6.20) 
utEv 

ý 
-2 12 

s. t. GAxt + GBut :ýw, (6.21) 

Mut: 5 P, (6.22) 

where, O(t) is the vector of parameters, O(t) = [X/ U/ ut _1j, and ut is t t+l N 

the optimisation variable (current control input). Problem (6.20)-(6.22) can be 

re-written in a more compact mathematical form, as follows: 

Vt(xt) = min 
1 

u'Hut + 0(t)'Fut 
UtEvý-2 t 

S. t. cut :! ý Vv- + EO(t)l 

where, 
GB w GA 0 

and P= 
m00 

(6.23) 

(6.24) 

The term 1120(t)'YO(t) is neglected from the objective function since it does 

not influence the minimisation problem. Problem (6.23)-(6-24) is a multi- 
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Algorithm 
Step 1. ý=I) Solve the Nth stage of the problem, considering it as a multi- 
parametric optimisation problem, with parameters being the incumbent 
state-space, XN-1; 
Step 2. ý=j+ 1) Solve the (N -j+ 1)th stage of the problem, considering it 
as multi-parametric optimisation problem, with parameters being the in- 
cumbent state-space, XN-j and the future optimisation (control) variables, 
UN-j+11 ... / UN-1; 
Step 3. Compute the optimal control action for sample time j, 
comparing the two sets obtained in the steps before, UN-j+I 
YN-j+1 (UN-j+2., 

---/ UN-1 i XN-j+l)l 
(if j=2 =* UN-1 PN-1(XN-1)), and UN-j = fN-j(UN-j+ll 

... / UN-Ii XN-j)i 
and compute, UN-j YN-j(XN-j); 
Step 4. If j=N stop. Else go to Step 1. 

Figure 6.1.: Dynamic programming via multi-parametric programming. 

parametric quadratic programming problem with ut being the vector of op- 

timisation variables and O(t) being the vector of parameter, and thus, can be 

addressed using a mp-QP algorithm (Pistikopoulos et al., 2000,2007a). 

Remark 6.1 Note that (6.23)-(6.24) is the re-formulation of the (6.14)-(6.17) at 

time t. At other times t+j the formulation is similar where the optimisation vari- 

able is the control ut+j at that time, but the parameter is the vector O(t + 

xi ul t+j t+j+l UN-11, which has smaller dimension thane(t). 

Remark 6.2 The multi-parametric program (6.23)-(6.24) is solved at all times t= 

0, ..., N-1, resulting each time in a multi-parametric quadratic program in which 

the optimisation variable has the same dimensions but the parameter vector's O(t) 

dimension decreases as t increases (Remark 6.1). 

The solution steps of the dynamic programming algorithm for constrained 

multi-stage optimisation problems is depicted in Figure 6.1 (as in Chapter 5). 

6.3. Robust multi-parametric control 

In this section we focus on the case: e ý: 0. This is the case when system 

matrices A, B are uncertain, (6.4)-(6.7). If (6.8) were defined using 1-norm or 
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oo-norm costs (linear cost functions), Problem (6.23)-(6.24) could be reformu- 

lated as min-max problems to account for the influence of the uncertainty 

in the optimal solution and guarantee satisfaction of the constraints for all 

admissible values of the disturbance (Bemporad et al., 2003). Obviously, the 

effectiveness of the method is due to the linearity of the objective function, 

since the maximisation term of the min-max problem can be substituted as 

an extra linear constraint in the optimisation problem, and hence, resulting 

in a multi-parametric linear program. Obviously, in the presence of quadra- 

tic cost functions, this procedure is not applicable since the substitution of 

the maximisation term in the min-max formulation by a quadratic constraint, 

results in a nonlinear problem for which global optimisation methods are re- 

quired. 

Here, we propose a new procedure to solve the linear quadratic regulation 

problem of parametric uncertain systems, considering the worst-case varia- 

tion in the system dynamics. We assume that (i) the cost function, (6.8), is 

formulated only for the nominal system, i. e. the effect of the uncertainty in 

A and B is not considered in the cost function; and, (ii) the constraints are 

reformulated taking into account the uncertainty in the system dynamics, to 

ensure that none of the constraints are violated for all possible values of the 

uncertainty. 
In order to re-formulate (6.23)-(6.24) to account for the presence of the un- 

certainties, we proceed as follows: 

1. The objective function (6.23) is formulated only including the nominal 

system dynamics (A = AO, B = Bo), 

Vt(xt) = min 
1 

u'Hut + 0(t)'Fut (6.25) 
UtEV 

G2 
t 

where H= H' >- 0, F are obtained from Q, R, A0, BO after substituting 

xi = A'-txt + E'-t-1 AjBoui-, -j in (6.14); 
0 j=0 0 
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2. Since the effect of the uncertainty on the constraints has to be consid- 

ered in the constraints, (6.24) has to be reformulated to account for all 

admissible values of the uncertainty. Since the uncertain matrices ap- 

pear only in the constraint (6.21), this constraint is re-written as, 

GAxt + GBut :! ý w, (6.26) 

A= Ao + AA, B= Bo + AB, V (AA, AB) G (A, B), 

or, 

GAoxt+GAAxt+GBout+GABut: 5w, Y(AA, AB)E(A, B). (6.27) 

Hence, the optimal control problem (6.23)-(6.24) becomes a robust op- 

timisation problem, 

Vt (xt) =min 
1 

u'Hut + 0(t)'Fut (6.28) 
UtEV 

ý-2 
t 

s. t. GAoxt + GAAxt + GBout + GABut :! ý w, 

V (AA, AB) cz (A, B), (6.29) 

Mut: 5 P, (6-30) 

in which, the coefficients of the linear inequality (6-29) (or some of the 

coefficients) are uncertain. Since the cost function is strictly convex 

(H = H' >- 0), (6.28)-(6.30) is a Robust Multi-parametric Quadratic Pro- 

gram (Robust mp-QP) (Pistikopoulos et al., 2007b), where ut is the opti- 

misation variable and e(t) is the vector of parameters. 

Remark 6.3 The problem of robust solution of Linear Programming Problems with 

a linear objective function and linear inequalities with uncertain coefficients (Robust 

Linear Programming) has been studied in (Ben-Tal and Nemirovski, 2000), where no 

parameters were included in the optimisation problem. An initial study on robust 
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solution of multi-parametric optimisation problems is given in (Pistikopoulos et al., 

2007b). 

Remark 6.4 The main idea of the methodology described in (Ben-Tal and Nemirovski, 

2000; Lin et al., 2004; Pistikopoulos et al., 2007b) is based on deriving a reliable (or 

feasible) solution to (6.28)-(6.30), i. e., a solution that satisfies the constraintsfor all 

(AA, AB) (=- (, 91, B). This requires the re-formulation of the robust optimisation prob- 

lem into its interval robust counterpart (IRC), for which the constraints consider the 

worst-case uncertainty realisation. 

The following definition of reliable solution for (6.28)-(6.30) is necessary be- 

fore proceeding. 

Definition 6.1 A solutionut(e(t)) to the Robust mp-QP problem (6.28)-(6.30) is 

called reliable if it is feasible (i. e. satisfies the constraints (6.29) and (6.30)) both for 

the nominal problem (A = AO, B = BO) and the uncertain problem. 

Our objective is to obtain a reliable or robust solution for (6.28)-(6.30). We 

follow a methodology similar to the one described in (Ben-Tal and Nemirovski, 

2000; Lin et al., 2004; Janak et al., 2007). It is clear from Definition 6.1 that a 

solution to (6.28)-(6.30) is reliable if the constraints are satisfied for all admis- 

sible values of (AA, AB), i. e. for all possible values of the uncertain coefficients 

in (6.29). It is also clear that the uncertain coefficients in (6.29) are the coeffi- 

cients of the matrices GAA and GAB. Although the coefficients of GA-A, GAB 

are uncertain, it is easy to obtain their bounds; since -eJA0 I :! ý A. A :! ý clAo I and 

-clBol :5 AB :5 clBol, it follows that: 

-cjGjjAoj:! ý GAA:! ý cIGIlAol, (6.31) 

-cIGIIBol < GAB: 5 clGIlBol. (6.32) 
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Take for example the ij-th coefficient (GA. A)ij of matrix GAA given by: 

n 
(GAA)ij =E gik6Akjf 

k=l 

where gik is the ik-th entry of C and 6Akj is the kj-th entry of AA. Then, since 

gik is fixed and -cIAOkjl < 16AkjI :ý cjAOkjI, where AOkj is the kj-th entry of AO, it 

follows that the lower bound of (GA-A)ij is as follows: 

nn 

(GAA)ij =E gik6Akj 
E lgikllAOkjl 

k=l k=l 

Following a similar procedure for all the upper and lower bounds of GAA 

and GAB we obtain (6.31) and (6.32). For u* to be a reliable solution for (6.28)- t 
(6.30), it has to satisfy all constraints for all admissible (A. A, AB), especially 

(6.29) where the uncertain coefficients of GAA and GAB appear. Hence, a 

reliable solution ut will have to satisfy each of the constraints in (6.29) even 

for the worst case realisation of the uncertain coefficients of GAA and GAB. 

Then, the worst-case realisation of the constraints (6.29) is given by: 

GAoxt + clGIIAOlIxtj + GBout + clGIlBollutl < w. (6.33) 

Problem (6.28)-(6.30) can then be re-written as: 

Vt(xt) = min 
1 

u'Hut + i9(t)'Fut (6.34) 
UtEvý-2 t 

s. t. GAoxt + clGIlAolixtj 

GBout + clGIlBollutl :: ý- w, (6.35) 

Mut :5p. (6.36) 

An optimal solution to (6.34)-(6-36), if it exists, is a reliable solution to 

(6.28)-(6.30). 

Lemma 6.2 An optimal solution for (6.34)-(6.36) is a reliable solution for (6.28)- 
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(6.30). 
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Proof 6.2 An optimal solution (also a feasible solution) u*(xt) to (6.34)-(6.36) will t 
satisfy the constraint (6.35)-(6.36) and hence the constraints (6.29)for all admissible 

values of (GAA, GAB) and (6.30). Therefore, it is a reliable solution to (6.28)-(6.30). 

It is obvious that solving problem (6-34)-(6.36) we can obtain a reliable 

solution to our initial robust optimisation problem (6.28)-(6.30). Further- 

more, (6.34)-(6.36) can be recast as a multi-parametric programming problem 

where ut ande(t) are again the optimisation variables and the parameters, re- 

spectively. However, the constraints (6.35) are not any more linear due to the 

presence of jutj and Ixtj and hence the known multi-parametric programming 

methods cannot be applied to solve explicitly (6.34)-(6.36). Nevertheless, we 

overcome this problem by introducing the following relaxation of the con- 

straints (6.35) (Ben-Tal and Nemirovski, 2000; Kouramas et al., 2008b; Pistiko- 

poulos et al., 2007b): 

Vt(xt) = min 
1 

u'Hut+ e(t)'Fu t (6.37) 
U, EV 

ý-2 
t 

s. t. GAoxt + clGIIA01wt 

GBout + cIGIlBolzt ý5 w, (6.38) 

- Zt :5 Ut :5 Zt, (6.39) 

- Wt :! ý Xt :5 Wt, (6.40) 

mut:: 5 M, (6.41) 
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or, 

Vt (xt) =min 
1 

u'Hut+ e(t)'Fut 
UtEV -2 t (6.42) 

s. t. GBut + eIGIlBolzt + clGIIA01wt :5w- GAoxt, (6.43) 

- zt :! ý ut :! ý zt, (6.44) 

- Wt !ý Xt :5 Wt, (6.45) 

Mut jý m. (6.46) 

Problem (6.42)-(6-46) is the Interval Robust Counterpart (IRC) of the uncer- 
tain problem (6-28)-(6-30) (Ben-Tal and Nemirovski, 2000). 

In this new formulation two variables zt, wt and four new inequalities (6.39)- 

(6-40) have been added to transform the nonlinear inequalities, (6.35), into 

linear inequalities, (6.43)-(6.45). The optimisation variables in (6.37)-(6.41) are 

ut, zt, wt and the parameters are O(t). Hence, in (6.37)-(6.41) we introduce two 

extra optimisation variables and four new inequalities, whereas the number 

of parameters remains the same. 

Lemma 6.3 An optimal solutionfor (6.37)-(6.41) is also a reliable solutionfor (6-28)- 

(6.30). 

Proof 6.3 The proof is simple and is based on thefact that an optimal solution (6.37)- 

(6.41) is also a feasible solution for (6.34)-(6.36) and hence a reliable solution for 

(6.28)-(6.30). 

Therefore, solving (6.37)-(6.41), an optimal control action can be obtained 

to ensure that all admissible values of the uncertainty satisfy the constraints, 

at time t. Hence, (6.37)-(6.41) are recast as a mp-QP problem, where ut, zt, wt 

are the optimisation variables andem is the vector of the parameters. How- 

ever, the objective function is not anymore strictly convex (although it re- 

mains convex) with respect to the optimisation variables. The method can 

be further refined by adding an extra term in the objective function, (6.37), 
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which is strictly convex with respect to zt, wt: 

Vt(xt) = min 
I 

u'Hut + e(t)'Fut + h(zt, wt) (6.47) 
UtEv12 t 

s. t. GAxt + clGIIA01wt 

GBut + clGIlBolzt :! ý w, (6.48) 

- Zt :! ý ut :5 zt, (6.49) 

- Wt !ý Xt :5 Wt, (6-50) 

Mut : ýý, ýI. (6-51) 

where h(zt, wt) is a strictly convex function of zt, wt. 

Remark 6.5 There are many candidate functions h(zt, wt) that are strictly convex 

with respect to zt, wt. A simple and obvious choice is the quadratic function 

h(z, w) := z'Q, z + w'Qww, 

where Q, = Q' >- 0 and Q,, = Q' >- zW 

6.3.1. The case of polytopic parametric model uncertainty 

A different way to describe the uncertainty in system (6.1) is by the polytopic 

parametric uncertain model (Boyd et al., 1994): 

AA c ColAi), AB e Co(Bi), i=l,..., s, (6.52) 

where, Col-I denotes the convex hull of its entries, Ai E Rnxn and Bi E R'IxI, 

i=1, ..., s. In this way it is assumed that matrices A and B are given as linear 
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combinations of Ai and Bi, respectively: 

A =Ao+ AjAi, 

s Y, 
Ili = 1, Ili ý: 0. 

i=l 

B= Bo+ AiBi, (6.53) 

The above description of (AA, AB) is more general than the one considered 

in (6.1)-(6.7) and can be used to describe a wider class of linear uncertain 

systems (Boyd et al., 1994). 

The procedure described in the previous section can be extended and (6.28)- 

(6.30) can be re-formulated to accommodate this type of uncertain systems. 

Consider the constraint (6.29) in which the uncertain matrices (AA, AB) ap- 

pear. Then, this constraint is always satisfied for all admissible values of 

(AA, AB) if 

GAoxf + GAixt + GBout + GBiut:! ý w, i=1,..., s. (6.54) 

This is a consequence of the convexity of the constraints in (6.28)-(6.30) and 

of the convex description of A, B in (6.53). 

The robust optimisation problem (6.28)-(6.30) can then be re-formulated as 

follows: 

Vt(xt) = min uHut + e(t)'Fut (6.55) 
U, EV t 

s. t. GAoxt + GAixt + GBout + GBjut :! ý w, (6.56) 

i= 1'. 
. . 's, 

Mut :5P, (6.57) 
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which is re-written as, 

Vt(xt) = min 
1 

u*Hut+ e(t)'Fut (6.58) 
UtEvý2 t 

s. t. GBout + GBjut :5w- GAoxt - GAixt, (6.59) 

i= 11. 

.. 

mut: ý P. (6.60) 

Problem (6.58)-(6-60) is a mp-QP problem with the same optimisation vari- 

ables, ut, and same parameters, O(t), as in (6.28)-(6-30). A set of s extra con- 

straints are included corrresponding to each different realisation Aj, Bi of the 

uncertain matrices (AA, AB). It is obvious that if a feasible solution of (6.58)- 

(6.60) exists, ut, then this is also a reliable solution for (6.28)-(6.30), due to the 

convexity of A, B and to the fact that (6.59) is satisfied. It follows: 

GAxt + GBut = 
ss 

GAoxt +G AjAixt + GBout +G AiBiut 

ss 
Ai(GAoxt + GAixt + GBout + GBjut):! ý Aiw = w. 

6.3.2. Deriving a robust optimal control policy 

It is obvious that both problems (6.42)-(6.46) and (6.58)-(6.60) are mp-QPs 

similar to the one described in (6.23)-(6.24). Therefore, a similar strategy to 

the one depicted in Figure 6.1, is used to compute robust control policies for 

parametric uncertain systems, Figure 6.2. 

6.4. Illustrative example 

The main steps of our approach are summarised in Figure 6.2. Here, we will 

illustrate in detail how the algorithm can be applied in the context of robust 
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Algorithm 
Step 0. ý=I) Reformulate the original problem, introducing the con- 
straints (6.48)-(6.50); 
Step 1. ý=I) Solve the Nth stage of the problem, considering it as a multi- 
parametric optimisation problem, with parameters being the incumbent 
state-space, XN-1; 
Step 2. ý=j+ 1) Solve the (N -j+ 1)th stage of the problem, considering it 
as multi-parametric optimisation problem, with parameters being the in- 
cumbent state-space, XN-j and the future optimisation (control) variables, 
UN-j+11 ... / UN-1; 

Step 3. Compute the optimal control action for sample time j, 
comparing the two sets obtained in the steps before, UN-j+I 
ýN-j+l (UN-j+2., 

- --/ UN-11 XN-j+l),, 

(if j=2 =* UN-I YN-1(XN-1)), and UN-j = fN-j(UN-j+I. 
--- I UN-11XN-j)f 

and compute, UN-j PN-j(XN-j); 
Step 4. If j=N stop. Else go to Step 1. 

Figure 6.2.: Robust multi-parametric programming. 

optimal control, by revisiting a popular control example problem (Pistiko- 

poulos et al., 2000; Borrelli et al., 2005): 

min j(Ux) = x' -P 

N-1 

XN + 1: [X, ' 
k=O 

Xk + Uk -R- Ukll (6.61a) 

s. t. xk, l =A* Xk +B- Uk., 

-1:! ý Uk :5 lf 

- 10:! ý Xk :! ý 10, 

C where, Xk : IR2, Uk 'ýý IR., 

k=O, 1,..., N-1, 

k= 0,1, � N, 

(6.61b) 

(6.61c) 

(6-61d) 

N=3; A B0 ; P= 
2.6005 2.0810 

Q10 ;R=1. 
0112.0810 3.3306 00 

The solution steps are as follows. 

Step 0. For the linear model, (6.61b), and path constraints, (6.61d), the fol- 

lowing constraints are introduced to obtain a solution immune to un- 
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certainty: 

:: ý xmax min < AXk + BUk 
k+l Xk+l - 

A*Xk+61 -JAI *lXkl+B 'Uk+ 

: ýý Xmax +62 * JBI * lUkI 
k+ll 

-A * Xk + 61 -1 - Al - lXkI + (-B) * Uk+ 

+C2 -I- BI ' 
IUkI '5 -X min 

k+l' 

resulting in the following robust optimal control formulation: 

N-1 

Q' Xk + U' - R. Ukli min I Ut XI ::::: XI ' P'XN +k 
uN 

E[Xk 

k=O 

S-t- Xk+l =A' Xk +B' Ukl 

A'Xk + Cl - JAI * Yk +B* Uk + IE2 JBI ' 64:! ý- 10,, 

-A' Xk + Cl -I- Al - Yk + (-B) Uk + C2 -I- Bl'a)k :! ý 10i 

- Yk :! ý Xk !ý Yk1 

- 60k :5 Uk -5 60k., 

1 :! ý Uk :! ý li 

10 :! ý Xk :! ý 10f k=O, 1,..., N. 
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(6-62) 

(6.63) 

(6.64) 

(6.65a) 

(6.65b) 

(6.65c) 

(6.65d) 

(6.65e) 

(6.65f) 

(6.65g) 

(6.65h) 

Step 1. Third stage - Recast the third stage optimisation problem as a multi- 
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parametric program with X2 being the parameters: 

min J=X' *P*X3+Ul R. U2. 
U2, (1)2, Y2 32 

S-t- X3 = A'X2 +B* U2f 

A* X2 + 61 - JAI ' Y2 +B' U2 + 62 - JBI ' (02 :ý lOf 

-A' X2 + 61 -I- Al ' Y2 + (-B) - U2 + 162 -I- BI ' a)2 :! ý 10/ 

- Y2 : 5- X2 :5 Y2/ -(02 ! ý- U2 :5 (021 -1 :ý U2 :5 If -10 :5 X3 :5 10- 
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(6.66a) 

(6.66b) 

(6.66c) 

(6.66d) 

(6.66e) 

A suitable multi-parametric programming algorithm Dua et al. (2002) 

can be used to obtain its solution, resulting in the decision law: (U2, W2, Y2) 

f(X2)., which comprises 12 critical regions; 

Step 2. Incorporate the model information, Xk+1 = AXk + BUk (for X2). in each 

critical region. For instance, in critical region #8: 

Critical region #8f f (X2): 
-::: * Critical region #8,, f (xi, ul): 

-0.385x' _ X2 < 0.800, -0.385x' - 1.385X2 _ U, :! ý 0.800, 22-11 

x1 + 0.980X2 < 9.90" x1+1.980X2 + 0.980ul :! ý 9.90, 22- 

2 X2 0.385x2' +x : ý, 0,0.385x + 1.385 1+ ul :50, 22-1 

-x 
I<0, 

-x 
1-x2<0, 

2-11- 

Optimal decision lawU2 f (X2) =>Optimal decision lawU2 f (X1 
/ U1) 

U2 = -0.481xl - 1.25X2 
/ 

U2 -0.481xl - 1.73X2 1.25u,, (6.67) 2211 

(A)2 = -0.481xl - 1.25X2 / U)2 -0.481xl - 1.73x 2 1.25ulX6.68) 22 

1 Xi xI+x2 (6.69) Y2 21 Y2 1 J/ 

222 
_X2 - Ul; 1 Y2 X21 Y2 (6.70) 

Step 3. Second stage - Recast the second stage optimisation problem as a 

multi-parametric programming problem, with xj and U2 being the pa- 
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rameters: 
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min 1=XI *P*X3 +Ul R. U2 +X' *Q*X2+U' R. ul, (6.71a) 
UI, ü)I, YI 

3221 

S-t- X2=A. xl+B. ul, (6.71b) 

+A xl+cl -JAI y, +B. ul+C2'IBI-wl : 510, (6.71c) 

-A . x, +cl -1-A1-yl +(-B)-ul +62-I-BI-wl :5 10, (6.71d) 

- yl : 5- Xl ! ý- yl, -O)l :5 Ul !ý (Ol/ -1 !5 Ul :5 1/ -10:! 5 X2 !ý 10- (6.71e) 

The solution of (6.71) can be obtained by multi-parametric program- 

ming, resulting in explicit expressions, ul -: -: 
f (X1 

i U2). in 22 critical re- 

gions; 

Step 4. We then incorporate the future decision, (U2., (02/ Y2) = f(xi, ul), in 

the current decisions, ul = f(X11 UA by which we obtain expressions: 

ul = f(xi). Note that we need to incorporate the 12 regions obtained in 

Step 2 in each one of the 22 regions obtained in Step 3, i. e. we generate 

264 critical regions. Feasibility tests are performed here (see Chapter), 

with which infeasible critical regions are eliminated and a compact set 

of regions is obtained, resulting in only 80 regions to examine further. 

For example, incorporating (6.67-6.70) (critical region #8 in Step 2) in 

one of the regions obtained in Step 3, results in the following critical 
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region #14: 

Critical region #14, f (xi . 
U2): 

2<8.90, 
1- 

xl + 0.980X2 < 9.90, 
11- 

-0.980xl -x2<9.90, 11- 

2 9.90, 
1- 

< 1- 

-0.865x' - 0.680x 2_ 11 U2 :ý -20.3, 

Optimal decision law u, -": 
f (X1 

fU 2) 

Ul = -X 
2_9.901 
1 

X2 +9.90, 1 
1= Yl 

=> Critical region #14, f (xj): 

x2<8.90, 1- 
0X2 x' + 0.98 11 

-0.980x1 -x2<9.90, 11 

2 
-xl _< 

9.90, 

-x 1<0, 
1- 

-1.346x' _ 0.1 99X2 < -7.90, 11- 

=: > Optimal decision law ul =f (x, ) 

U, = _X2 _ 9.90, 
1 

Wl =X 
2 

+9.90, 1 

2= Yl 

1=0 Yi f 

2= Yl 

Note also that constraints belonging to future stages are not considered 

in (6.71), as future constraints satisfaction is implicitly guaranteed by 

the definition of the present map of critical regions. Hence, the use of a 

global optimisation procedure is not required; 

Step 5. First stage - Similarly, we can obtain the final map of critical regions, 

i. e. all feasible solutions, as depicted in Figure 6.3 (for different values 

Of I CL, C2 1) involving 464 critical regions. 

Each critical region in Figure 6.3 corresponds to a different policy, how- 

ever, many regions may have the same identical first-stage optimal de- 

cision, uO. In the example above, only 20 different first-stage optimal 

decisions were identified (i. e. a potential reduction over 95%). The im- 

plication of this in a closed-loop robust control implementation strategy, 

where only the first-stage decisions are updated, is that a very signifi- 

cant reduction of the number of critical regions (control laws) can take 
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place, by merging the adjacent regions with identical first-stage control 

actions. 
15 

10 

5 

0 

-5 

-10 

-15 
-2 5-2 0- 15- 10 -5015 10 15 20 25 

x0 

(a) 'Elf C2 = 0% - nominal case 

15 

10 

5 

0 

-5 

-10 

-15 25-20- 15- 10 -5C 5 10 15 20 25 
X0 

(b) C 11 102 ý 10% 

Figure 6.3.: Maps of critical regions - feasible solutions. 

From 6.3 we observe that the space of feasible initial states, map of crit- 

ical regions, corresponding to the robust solution (ci, c2 = 10%) is smaller 

than the nominal system's case solution. This observation complies with the 

discussion in Pistikopoulos et al. (2007b), where it is further shown that the 

nominal solution cannot guarantee robustness in the presence of uncertainty, 

and the nominal system control trajectory may result in constraint violation; 

opposed to the robust controller, which retains the trajectory in the set of fea- 

sible states. 

6.5. Concluding remarks 

We have presented a novel multi-parametric programming approach for the 

linear quadratic regulator problem of parametric uncertain systems. We have 

highlighted how: (i) we can reformulate the original multi-stage optimal 

control problem involving polytopic uncertainties into its robust equivalent, 

while preserving the original model structure and features, (ii) we can use 

recently proposed multi-parametric programming theory and algorithms to 

efficiently address constrained dynamic programming procedures, used in 
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the context of multi-stage optimal control formulations, (iii) we can avoid 

any need for global optimisation methods by carefully posing and conduct- 
ing feasibility tests, based on sensitivity analysis of the obtained parametric 

solutions. The work presented here clearly establishes the foundations to- 

wards a comprehensive general theory for robust optimal control. 



Conclusions and future work 

Que vous importe, lecteur, ma cWtive 
individualite? 

Proudhon 

In this thesis we have developed novel theory and algorithms for the so- 

lution of many classes of global optimisation problems. Part I has focused 

on the advances in global optimisation using multi-parametric programming 

tools. In Chapter 2, we have described the foundations of a novel global op- 

timisation strategy for the solution of general classes of bilevel programming 

based on our recent developments in multi-parametric programming. It has 

been shown that bilevel linear, quadratic and mixed-integer linear programs, 

also involving uncertainty, can be effectively solved. It was further shown 

that issues related to global optimality for both levels of the bilevel program 

can be addressed. In Chapter 3, the approach has been extended to address 

general multi-level programming problems. A promising novel global opti- 

misation strategy has been described for the solution of hierarchical multi- 

level and decentralised multi-level programs. The algorithms proposed are 

suitable for problems involving general convex objective functions and con- 

vex sets of constraints. Stackelberg-Nash Equilibrium type of problems (Liu, 

1998b), as well as the application to hierarchical control structures (Stephano- 

poulos and Ng, 2000), have been discussed. 

In Chapter 4, we have presented a novel optimisation framework for the 

global solution of general mp-MILP problems, involving uncertainty in the 

objective function and the right-hand side of the constraints. Based on our 
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previous work on multi-parametric programming (Dua and Pistikopoulos, 

2000; Dua et al., 2004; Pistikopoulos et al., 2007a), a novel mp-LP algorithm 

was developed, which overcomes the presence of the non-convexities due to 

bilinear terms. This is then used in an efficient procedure, which iterates be- 

tween a master MINLP subproblem, solved to global optimality, and a slave 

mp-LP subproblem. A number of examples are also presented. The proposed 

approach has many applications in hybrid and robust control -a topic which 
is currently being investigated and introduced in Chapter 6. 

Part II has focused on the advances in robust optimisation and control. 
Chapter 5 has described the main steps of a novel multi-parametric program- 

ming approach for the solution of general, constrained convex multi-stage 

problems. Through a literature example of optimal control problems, we 
have highlighted how (i) we can use recently proposed multi-parametric pro- 

gramming theory and algorithms (Pistikopoulos et al., 2007a) to efficiently 

address constrained dynamic programming procedures, used in the context 

of multi-stage formulations, and (ii) we can avoid any need for global optimi- 

sation methods by carefully posing and conducting feasibility tests, based on 

sensitivity analysis of the obtained parametric solutions. Summing-up, the 

work presented in this chapter establishes the foundations towards a com- 

prehensive general theory for robust optimal control, for which Chapter 6 

is a step further. In Chapter 6 we have presented a novel multi-parametric 

programming approach for the linear quadratic regulator problem of para- 

metric uncertain systems. We have highlighted how: (i) we can reformulate 

the original multi-stage optimal control problem involving polytopic uncer- 

tainties into its robust equivalent, while preserving the original model struc- 

ture and features, (ii) we can use recently proposed multi-parametric pro- 

gramming theory and algorithms to efficiently address constrained dynamic 

programming procedures, used in the context of multi-stage optimal control 

formulations, (iii) we can avoid any need for global optimisation methods by 
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carefully posing and conducting feasibility tests, based on sensitivity analy- 

sis of the obtained parametric solutions. The work presented in this chapter 

clearly establishes the foundations towards a comprehensive general theory 

for robust optimal control. 

7.1. Key contributions 

The key contributions of this thesis can be summarised as follows: 

a novel optimisation approach for the global solution of different classes 

of bilevel programming, e. g. bilevel linear programming, bilevel qua- 
dratic programming, mixed integer bilevel linear programming and 
bilevel programming involving uncertainty; 

a new global optimisation approach for the solution of general multi- 

level programming problems, namely ones involving hierarchical and 

decentralised optimisation structures; 

9a novel optimisation strategy for the global solution of MILP problems, 

involving uncertainty in the cost function and/or right-hand side of the 

constraints; 

a multi-parametric programming approach for dynamic programming 

problems in the presence of hard contraints; 

the foundations of a general theory for robust optimal control. The ro- 

bust optimisation framework was fully implemented in Matlab@. 
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7.2. Future work 

In this section, suggestions for future work are discussed. 

7.2.1. Theoretical and algorithm developments 

Bilevel programming with non-convex functions; 

In Chapter 2, a general framework has been developed for the global so- 

lution of several classes of bilevel programming, involving convex functions. 

To further extend the framework to non-convex functions, we may utilise 

multi-parametric global optimisation algorithms (Dua et al., 2004). A bilevel 

program involving non-convex functions is posed as: 

min F(x, y), 
XOY 

s. t. G (X, y) :50, 

xcX, 

yc argmin lf(x, y) : g(x, y) :50, yc Y), 

where X Rnx and Y9 R"Y are both compact sets; F and f are real functions: 

R(nx'ny) R; G and g are vectorial real functions, G: R(nx+ny) -) IRn' and 

g: R(nx+ny) _> RnI; nx, ny E IN and nu, nI E IN U (0). 

Obviously, the hierarchical decentralised optimisation framework - Chap- 

ter 3- possibly addresses also general classes of non-convex cost functions. 

Global optimisation algorithms for mp-MILP; 

Chapter 4 has described an efficient algorithm to solve OFC and RIM mp- 

MILP problems. Furthermore, in Remark 4.3 the algorithm has been shown 

to address other classes of mp-MILP problems, as the general class of mp- 
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MILP problems: 

z(e) = min (c + He)TX + (d + Le)T 
X/Y 

s. t. A(O)x + (el + E20)Y:! ý b+ FOI 

147 

IF(O)X + (01 + (DAY =Y+ TO, (7.2) 

Rn, yC 10,1)q, 

OEO. 

In the master problem we obtain an integer solution, y=y. Then, the 

resulting slave multi-parametric problem is posed as follows: 

(d + Le)Ty + min CTX + eTH 
TX, 

x 

s. t. A(O)x: 5bf+Ffe, 

IF(O)x = y' Vo, (7.3) 

XEX91R", YE 10,11', 

eE e, 

where, V= (b - ely), y' = (y - Oy), P= (F - E2y) and V= (W - (D2Y)- 

Performing a robust re-formulation of (7.3), as described in Chapter 6, the 
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slave problem is: 

(d + Ljq)T + min c 
TX + 19T H TX" 

x 

s. t. Ax:! ý V+ Pe, 
A-x+ cl - JAI - lxl: 5 b'+ Pe, 

X: 5 Y, + T, tg, 

148 

F*X+ 62, IF1 * IxI :! ý yl +V0, (7.4) 

-r-x: 5 -y, - ve, 

- F'X + C2'1 - rl. IXI :! ý -Y f- ql/e, 

EX9n, E 10,11m, 

eEe, 

where, C1, C2 define the uncertainty affecting matrices A and F, respectively. 

Advances in constrained dynamic programming; 

In Chapter 5 we have proposed a new algorithm for multi-stage optimisa- 

tion problems. Possible developments in this promising algorithm are listed 

as follows: 

The cost function at each recursive step is computed as a compound 

of all future cost functions, previously optimised, and the cost corre- 

sponding to the decision taken at the present time. Since in the pro- 

posed approach the future actions are considered as parameters, we 

might consider only the control decision ahead dismissing all other fu- 

ture decisions. For instance, consider Stage N-2, Figure 7.1. 

If it is proven to give the optimal solution, the curse of dimensional- 

ity (Bellman, 2003) is solved, because the vector of parameters at each 

stage has the same dimension, and therefore, regardless the dimension 

of the receding horizon the problem has always the same dimension; 
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XN-3 XN-2 
WXN-1: 

UN-3 UN-2 

------------------------------------------------------------- 
: 

JN-2 JN-1 

Figure 7.1.: Multi-stage optimisation problem - Stage N-2. 
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Instead incorporating the maps obtained in each other and obtaining a 
final map of regions for the initial states, if we store the different maps 

we improve storage demand and we might accelerate the identification 

of the critical region. The challenge is to derive an efficient algorithm to 

locate on-line the valid critical regions. 

Distinction between hard and soft constraints; 

In Chapter 6, we have studied the application of multi-parametric pro- 

graming to model-based predictive control (Santos, 2001). The original con- 

trol problem was recast to incorporate robustness and solved using a multi- 

parametric programming approach. However, the performance of the algo- 

rithm was observed to be high dependent on the number of constraints, 

Oliveira (1994) and Oliveira and Biegler (1994) describe the benefits of han- 

dling the soft constraints within a merit function; which might reduce sig- 

nificantly the number of constraints affecting the final map of regions. The 

decrease in the number of constraints, is therefore, a high motivation for con- 

structing the merit function. Moreover, approaches addressing non-linear 

multi-parametric programs with merit functions have been reported. Re- 

garding the perturbed optimality conditions as follows: 

VX-2, (X, 0, /l, p) = (7.5) 

Aigi(x, 0) = r, i=1... , Pf (7,6) 

hj(x, e) = pjr, j= 1/ ... lqj (7.7) 
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Armacost (1974,1976) derive the following logarithm quadratic loss function: 

P h'(x, 0) 
W(x, 6, rk) f(X� 19) + rk 4 Ingi(x, O)+E j (7-8) 

i=I j=I rk 

where, r is an artificial parameter which controls the relaxationofw(x, e, rk)- 
The strategy is similar to a interior-point strategy, or other homotopy-based 

algorithm, with x --> x* as rk ---) 

o Fractional programming; 

Fractional programming considers optimisation problems of one or more 
ý"k (') 

ratios of functions, Qk(X) -:: ', subject to constraints. A fractional program Tk W 

with k=1, is posed in the following way: 

min 
N(x) 

:XES 
xD (x) 

Assume: 

9 E' is an Euclidean space of dimension n; 

9S is a compact and connected subset of E"; 

* N(x), D(x) are continuous and real-valued functions of xcS; 

9 D(x) > 0, Vx c S. 

(7.9) 

Then, Problem (7.9) has the same solution as the following parametric pro- 

gramming (Dinkelbach, 1967): 

" 
IN(x)-O. D(x): XES, OEE'l. min (7.10) 

Consequently, the algorithms developed through out this thesis address 

certain classes of Problem (7.10). Plus, we can further explore fractional pro- 
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grams involving integer variables and the multi-ratio case: 

y 

min 
E Qi(X): XES 

x k=l 

Real-life applications of Formulation (7.11) include, among others, geno- 

mics (Leber et al., 2005), agricultural systems (Lara and Stancu-Minasian, 

1999), energy systems (Kobayashi et al., 2002) and finances (Goedhart and 

Spronk, 1995). 

Model reduction techniques; 

Model reduction techniques are very popular techniques within optimi- 

sation and control communities. Because, it is extremely useful to compact 

the information described by large scale and complex mathematical models. 

Although the model is compacted, it still captures the essential dynamic be- 

haviour of the system. In the context of multi-parametric programming and 

control, the use of these techniques is considered very promising (Narciso 

and Pistikopoulos, 2008). 

Novel class of global multiparametric programming algorithms; 

A general multi-parametric program with non-convex functions is posed 

in the following way: 

min lf(x, 0) : h(x, 0) = 0,9(x, 0) :: 5 0,6 IE E)l, (7.12) 
XEK 

where,; ( g: Rn, E) C- RM, f: Rn+m --> R, h: Rn+m -4 Rq and g: Rn+m ---> RP 

are assumed to be at least twice continuously differentiable. Furthermore, it is 

assumed that all minima are isolated minima and that the varying parameters 

are unstructured. 

The advantages of solving (7.12) using multi-parametric programming (Pis- 

tikopoulos et al., 2007a), rather than a standard optimisation algorithm, is 
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two-folded: (i) there is a qualitative characterisation of the parameter space, 
Figure 7.2 and 7.3; and (ii) the optimal decision is an analytical function of 

e2 

e3 

(h 

Figure 7.2.: A map of critical Figure 7.3.: A map of critical 
3 regions, E) c IR2. regions, E) CR. 

the parameters, and therefore, on-line computation is a very fast procedure. 
However, in the presence of non-convex functions the performance of the 

actual algorithms Qua et al., 2004) decreases. The algorithms face an explo- 

sion of critical regions, due to the numerous linear approximations. The im- 

plications are a high storage demand, sub-optimal solutions and the on-line 

computation of the optimal decision slows down. Therefore, the two main 

advantages of multi-parametric programming are lost, because: (i) the critical 

regions no longer correspond to qualitative changes, but to validity of the ap- 

proximations; (ii) the on-line computation becomes computationally expen- 

sive. Nevertheless, recent investigations into singularity theory (Poore and 

Tiahrt, 1987; Tiahrt and Poore, 1990a, b; Lundberg and Poore, 1993; Hasan and 

Poore, 1996a, b; Allgower and Georg, 2003), unveiled some important proper- 

ties of Problem (7.12). 

The singularity theory provides a solid framework of conditions to derive 

the analytical limits of the critical regions. Then, this data accelerates the 

numerous available traditional global optimisation algorithms. Therefore, 

the new class of multi-parametric programming algorithms should deploy 

the complexity in two steps: (i) Off-line, determine the analytical limits of the 

critical regions, and (ii) On-line, compute the global optimum with the input 

of the parameters" value and respective active set of constraints. 
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Step 1- Determine the map of critical regions (off-line) 

First, we identify a closed system of equations for (7.12). Since f, h and g are 
non-convex we consider Fritz-John (FJ) first-order necessary conditions (Man- 

gasarian and Fromovitz, 1967): 

VJ(X, 6) +L Ai-vxgi(x, 0) +L Pj - V, hj(x, 19) = 01 
i=l j=l 

Iligi(x, 0) = 0, i= 11 ... , pl 

hj(x, 0) = 

gi (X, 0) :5 
Aj, v ýý 

i 
"""': 

111 

i= 1'..., P. 

(7.13a) 

(7.13b) 

(7.13c) 

(7.13d) 

(7.13e) 

Note that equations (7.13a) - (7.13c) correspond to n+q+p equations, and 
q there are n+q+p+1 unknowns, XE Rn, ýER, AE RP and VER. Thence, 

we formulate an extra equation (Tiahrt and Poore, 1990b): 

v2+ý, Týl + AT A_ p2 
0 (7.14) 

with Po being a fixed positive real number, which normalises the Lagrange 

multipliers. Therefore, the original problem, Problem (7.12), is recast as a 

closed system of non-linear equations: 

V, 21 (Z, 0) x 

F(z, 0) 
Ag(x, 0) 

0, where zv (7.15) 
h (x, 0) A 

v2+ jýi + ITII - ß2 
0 

where, V, Y(x, e) is the gradient of the Lagrangian, Equation (7.13a), and A 

is a diagonal matrix, A= diag(Ai); And, F: R n+p+q+l --ý Rn+p+q+l , is assumed 

to be a smooth mapping, which means it has as many continuous derivatives 

as the discussion requires (Allgower and Georg, 2003). Moreover, note that it 
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has been assumed that all minima are isolated minima, i. e. V2 F(x) is positive 
definite at every minimum. 

The solution of (7.15) includes: minima, maxima, saddle and infeasible 

points, and thus, all KKT and Fj points. To be classified as a Fj point, a solu- 
tion to System (7.15) has to be either a solution to Equations (7.13d) and (7.13e), 

additionally, if v>0, the KKT conditions are also satisfied (Bazaraa and 
Shetty, 1979). Henceforth, we refer to any solution to System (7.15) as a critical 

point, and refer to a singular point and to a regular point to distinguish between 

singular and non-singular critical points, respectively. It follows naturally that 

the group of all critical points, corresponding to a specific active set, is called 

critical region. 
The limits of a critical region are defined by points for which the Fr6chet 

derivative is singular, DzF(zo, i9o) (Tiahrt, 1986). In multidimensional finite 

spaces, this is equivalent to state that the jacobian matrix has to be singular. 

As we have seen in Theorem 4.2, these conditions resume to: 

(i) Loss of strict complementarity; 

(ii) Violation of the linear independence constraint qualification; 

(iii) Singularity of the Hessian of the Lagrangian on the tangent space 

to the active constraints. 

Yet, the classes of problems which have been fully addressed in the open 

literature (Pistikopoulos et al., 2007a, b) exhibit a very important property: the 

manifold, with respect to the parameters, is isotropic inside each active set. 

In an isotropic manifold, the Jacobian matrices are constant in the neighbour- 

hood of the optimum point, i. e. M, N# f(z, 0). From (7.15): 
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F(z(0), ýi9) = 0, (7.16) 

deriving with respect to e, 

dF(z, 0) 
+ 

dF(z, 0) dz 
0 <: * 

dý- 
-M-1 - N. (7.17) de dz d(9 d0 

N(z, i9) M(Z, 19) 

since M and N are constant, 

f dz = 
f[ 

-M-1 . Nde ý* z =-M-1 -N (e - eo) + zo. zo eo 

Therefore, inside the respective critical region, the Taylor expansion will be 

the exact optimal solution for z(e). Inherently, it also corresponds to the exact 

representation of the optimum value function, pe). Consequently, since we 

have an explicit analytical expression forx(e), A (e) and y(e), it is trivial to 

check the singularity conditions stated in Theorem 4.2. 

Remark 7.1 A manýfbld is a topological space that is connected and locally Eucli- 

adean. 

Remark 7.2 Note that in this case the neighbourhood of the optimum point is de- 

fined by the non-singularity condition of matrix M. 

Remark 7.3 The set of constraints defining thefrontier of a critical region is a com- 

pletely different identity from the set of active constraints inside a critical region. 

For instance, we can have hundreds of constraints defining the critical region and 

just a couple of active constraints. 

Therefore, the challenge is how to check for singularities within a non- 

isotropic manifold, i. e. M, N= f(z, 0) - Since, it " complex to compute an 

analytical expression forz(e), valid inside the whole critical region. Many in- 

vestigations have been using continuation methods (Henderson, 2002,2005; 
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Brodzik, 1996,1998), however, they rely on exploring the space using trian- 

gles or simplices; which has a predictably poor performance, when the size 

of parameters" dimensionality exceeds R2 (Hedengrena and Edgar, 2008). 

Concurrently, further studies should be pursued in a gradient projection 

method along geodesics (Luenberg, 1972). Following the geodesics of the 

function, finite points of the critical region limit (singular points) are iden- 

tified. However, conditions to connect efficiently these points and define a 

closed critical region are still not available. 

Another pathway should be the use of second-order approximation of the 

optimum value function. As in (7.17): 

d 
N(z, 0) + M(z, 0) - 

dz 
=0 ý-* 

d 
IN(z, 0)1 +d 

ýM(Z, 0) 
dz ý=0e:: 

ý d0 d0 d0 d0 d0 

+ 
dN(z, 0) dz d 

IM(z� 0) 
dz 

+ M(Z, 0) 
d 2Z 

0. 
d0 dz d6 di9 d0 d62 

, 11--ý 
second-order 

The challenge is the manipulation of tensors of rank-3, e. g. dN(z, e) 
de 

Step 2- Global optimisation (on-line) 

The bibliography in dynamic and global optimisation is vast (Vassiliadis et 

al., 1994a, b; Adjiman et al., 1998b, a; Smith and Pantelides, 1999; Floudas, 2000; 

Forsgren et al., 2002; Gertz and Gill, 2004; Akrotirianakis and Rustem, 2005), 

and an algorithm should be selected after clarifying the off-line step. 

7.2.2. Applications 

Energy market; 

The energy market is a very dynamic multi-agent environment with strong 

competition between rival companies. In this non-cooperative environment, 

each company has to set a price for the energy production, efficiently man- 

age its energy production, meet the obligations agreed contractually with the 
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customers, and to maximise profit by selling or buying energy from a com- 

petitor, in the spot market or using forward contracts. The mathematical for- 

mulation of such problems has constraints. For example, distribution com- 

panies inescapably have to supply to the customers the energy contractually 

agreed. Hence, designing an appropriate optimisation framework to address 

planning issues in the energy market relies to a great extent on the correct 
formulation and solution of constrained multi-agent problems. 

In multi-agent optimisation the individual reward is dependent on the de- 

cisions of the remaining agents. Interactions between agents can be modelled 

as straightforward competition with or without dominant player(s). Domi- 

nant agents models are characterised by Stackelberg equilibria. If all agents 
have comparable authority, or dominance, relative to each other, Nash equi- 

libria are considered. Game theory models become complicated in presence 

of constraints that affect more than one agent. Therefore, developing a game 

strategy/ algorithm to resolve constrained problems is important for manag- 

ing the interactions between networks of agents within the energy market. 

In Chapter 3, theory and algorithms have been developed which can be 

used in the solution of this class of problems. 

Unmanned aircraft systems; 

Unmanned aircraft systems (UAS) have attracted considerable attention 

in the last decade, primarily because they have important civil and defence 

applications. Examples of which are rescue missions, fire extinction, iden- 

tification of hazardous materials, oceanographic/ geological surveys, border 

inspection and surveillance for traffic control (Swaroop and Hedrick, 1999; 

Burns et al., 2000; Girard et al., 2003). 

The mathematical problem underlying UAS is a typical hierarchical decen- 

tralised control problem. Compounded by a central controller (leader) and 

multiple local controllers (vehicles), UAS have a complex dynamic behaviour. 
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Which is expected, since there are combinatorial interactions between leader, 

vehicles and environment. Therefore, the efficient coordination between the 

embedded guidance schemes (vehicles) and the control schemes (leader) is a 

crucial piece to guarantee a good and verifiable dynamic performance. Ob- 

viously, the application of UAS to safety-critical missions is dependent upon 

the design of a robust and reliable control structure. 
In Chapters 3,5 and 6, theory and algorithms have been developed for these 

type of interconnected dynamic systems, where individual dynamics con- 

strain the leader's performance. 
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