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ABSTRACT 

 

Nonlinear identification is a very popular topic in the area of structural dynamics. 

Detection, localisation and quantification of nonlinearities are very important steps for 

assessing faults or damages in engineering structures. There have been many studies of 

identifying structural nonlinearities based on vibration data but most methods are only 

suitable for a small number of degrees of freedom and few nonlinear terms. In this 

paper, a procedure that utilises the restoring force surface method is developed in order 

to identify the parameters of nonlinear properties such as cubic stiffness, bilinear 

stiffness or free play. This method employs measured vibration data, and can be applied 

to structures of many degrees-of-freedom. In this paper, NASTRAN is used to compute 

the frequencies and modes of the structure under study. The simulated nonlinear model 

is formulated in modal space with additional terms representing nonlinear behaviour. 

Nonlinear curve fitting then enables interpretation of the nonlinear stiffness via the 

restoring force surface. The method is shown by MATLAB simulations to yield quite 

accurate identification of stiffness nonlinearity.  

 

Keywords: Nonlinearity, structural identification, cubic stiffness, bilinear stiffness, free 

play 

 

INTRODUCTION 

 

Linear identification methods have been widely explored by researchers over the last 35 

years and are now a mature approach. Generally, most structures exhibit some degree of 

nonlinearity characteristics (Dearson, 1994: Worden et al., 2001: Ewins, 1999). 

Nonlinearity can present extremely complex behaviour which linear systems cannot 

(Worden et al., 2001). Furthermore, nonlinear dynamic analysis becomes very important 

for the identification of damage in structures. Detection, localisation and quantification 

of nonlinearity are very common in nonlinear structural dynamics area (Ewins, 1999). 

The identification of nonlinear dynamic systems is increasingly a necessity for 

industrial applications of full-scale structures. 

Initially, non-parametric identification of nonlinear system was proposed (Peng 

et al., 2007) which certain constraint made on the type of nonlinear identification. This 
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method assumed that system mass matrix M must be diagonal, symmetric and excitation 

of the force should be directly applied to discrete mass locations.  

This paper presents a method or procedure for the identification of non-linear 

single and multi degree-of-freedom using restoring forces method with three types of 

nonlinearity. Even though the method is general, the application highlighted in this 

paper suitable for non-linear identification. 

 

 

RESTORING SURFACE METHOD 

The equation of motion for SDOF system, can be written as 

 

  ̈   ( ̇  )    ( )                                                          (1) 

 

where m is the mass,  ̈ is the acceleration,  ( ) is any applied force and   ( ̇  ) is the 

restoring force which is a function of velocity,  ̇ and displacement,    . Equation (1) can 

be rewritten for the restoring force as below 

 

   ( ̇  )    ( )    ̈                                                          (2) 

 

The restoring force surface method offers an efficient and reliable identification 

of nonlinear SDOF (Platten et al., 2002). (Masri et al., 1978) described how restoring 

force method could be extended to multi-degree of freedom (MDOF) systems. 

Equations of motion can be transformed from physical coordinates to modal coordinates 

by means of modal matrix of the linear part of the system. Velocity and displacement 

can be obtained by integration of acceleration or by separate measurements and then 

curve fitting to form the restoring force surface (Kerschen et al., 2003).  

 

 

NONLINEAR MODAL MODEL 

The equations of motion of discretised structures in the physical space can be expressed 

as  

  ̈    ̇        ( ̇  )   ( )                                          (3) 

where M, C and K are n×n mass, damping and stiffness matrices; gnl is an n×n 

nonlinear stiffness matrix, f(t)is applied nodal force vector and x(t) is the vector of 

physical displacements. The equations can be obtained for example, from finite element 

modelling of a structure. Transformation by          leads to 
                         

     ̈       ̇              (  )      ( )                 (4) 

where   is the modal vector matrix. By using orthogonality of the modes, equation (4) 

become 

 
 ̅ ̈   ̅ ̇   ̅    ̅      ̅                                          (5) 

 
where  ̅         ̅    and  ̅         ̅    are diagonal matrices, and 
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 ̅        . If the structure has proportional damping,  ̅         ̅    is also a 

diagonal matrix  and equation (5) reduces to 

 

 ̅   ̈   ̅   ̇   ̅      ̅       ̅                                   (6) 

where    is the rth modal displacement and other parameters in modal expression. 

Nonlinear terms,  ̅     refer to rth mode nonlinear restoring force and others mode allow 

for nonlinear cross-coupling terms.  

 

 

METHOD OF NONLINEAR IDENTIFICATION 

 

Figure 1 shows the flow chart for the methodology of nonlinear identification. From 

equation (6), nonlinear stiffness terms can be expressed as: 

 

   ̅       ̅   ̅   ̈   ̅   ̇     ̅                                (7) 

 

a) Choose the numbers of degree of freedom and modes to represent the system. 

b) Choose a suitable input and ‘measure’ the response. 

c) Assume a suitable type of nonlinearity with coefficients to be determined in step 

f. 

d) Set the time step, dt.  

e) Compute the right-hand side of equation (7). 

f) Curve fit the coefficients in step c. If the error between the two sides of equation 

(7) is big, go back to step c and try with a different type of nonlinearity. If the 

error is small enough, the identification is considered completed and successful. 
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Figure 1. Methodology of Nonlinear Identification 
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NONLINEAR IDENTIFICATION FOR SDOF SYSTEM 

 

Cubic Stiffness 

Consider a SDOF system with a cubic nonlinearity shown in Figure 2, with properties 

as below: m=5kg, c=10 Ns/m, k=5000 N/m, gnl= 3x10
5
 N/m

3
, f(t)=100 N with chirp 

signal. A chirp is a signal in which the frequency increases ('up-chirp') or decreases 

('down-chirp') with time (Masri et al., 1982). Figure 3 shows the input and output of this 

system. The equation of motion cubic stiffness non-linearity system is called Duffing’s 

equation as follows: 

 

   ̈    ̇         
   ( )                     (8) 

 
Figure 2. Nonlinear SDOF System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Input and Output of Cubic 

Stiffness  Nonlinearity SDOF System            

Figure 4. Phase Diagram of Cubic   

Stiffness Nonlinearity SDOF System                   

 

Figure 4 shows the phase diagram for cubic stiffness nonlinearity of SDOF 

system excited by a chirp signal. Parameter estimation of 250,000 points centred around 

the jump region where the nonlinearity is most evidence. This data allowed the 

constructions of the force surface as shown in Figure 5(a) and 5(b). The surface is very 

smooth and clearly shown the cubic nature of nonlinearity.  

Polynomial expression for this cubic non-linear stiffness SDOF can be 

investigated when inverse analysis is performed based on output from forward analysis. 

Polynomial expression for this cubic nonlinearity SDOF as follow: 

 

         ̇ 
       ̇ 

        ̇   
       

                                      (9) 
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Figure 5(a). Restoring Forces vs 

Displacement for Cubic Stiffness 

NonLinearity SDOF System 

Figure 5(b). Restoring Forces vs 

Velocity vs Displacement for Cubic 

Stiffness NonLinearity SDOF System  

 

 

Table 1 shows the value of coefficients from polynomial expression in equation 

(11) in physical and modal coordinates. Nonlinear cubic stiffness coefficient for SDOF 

system can be compared with gnl forward analysis and    inverse analysis. Others 

nonlinearities can be modelled using suitable basic functions. (Göge et al., 2004) 

explored an extension of nonlinearities coefficients and functions in their model. 

(Dimitriadis et al., 1998) applied restoring force surface to identify MDOF by using 

simple least square computation. 

 

Table 1: Coefficient from Inverse Analysis Cubic Nonlinear SDOF 

 

Coefficient Inverse Analysis  

(Physical Coordinate) 

Inverse Analysis  

(Modal Coordinate) 

   -0.0921 4.06 x 10
-18 

   -1.2216 2.44 x 10
-13 

   -305.4 1.65 x 10
-19 

   2.966 x 10
5 

3 x 10
5
 

 

Table 2: Percentage of Error Forward and Inverse Analysis Cubic Nonlinear SDOF 

 

     Forward 

Analysis 

   Coefficient Inverse 

Analysis  

(Physical Coordinate) 

   Coefficient Inverse 

Analysis   

(Modal Coordinate) 

% of Error 

3 x 10
5
 2.966 x 10

5  
1.13 

3 x 10
5
  3 x 10

5
 0 
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Bilinear (damping) Stiffness 

Consider a SDOF system with a bilinear stiffness shown in Figure 2, with properties as 

below: m=5kg, c=10 Ns/m, k1=5000 N/m, k2= 3x10
5
 N/m, f(t)=100 N with chirp signal. 

The force displacement characteristics bilinear stiffness nonlinearity system as: 

 

   ( )  {
           
           

                                                   (10) 

 

 

      

Figure 6. Input and Output of Bilinear 

Stiffness Nonlinearity SDOF System 

Figure 7. Phase Diagram of Bilinear 

Stiffness Nonlinearity SDOF System  

 

 

 
Figure 8(a). Restoring Forces vs 

Displacement for Bilinear Stiffness 

Nonlinearity SDOF System 

Figure 8(b). Restoring Forces vs 

Velocity vs Displacement for Bilinear 

Stiffness Nonlinearity SDOF System  

 

                                       

Piecewise Stiffness 

Consider a SDOF system with a piecewise or backlash nonlinear stiffness shown in 

Figure 2, with properties as below: m=5kg, c=10 Ns/m, k1=5000 N/m, k2= 3x10
5
 N/m, 

f(t)=100 N with chirp signal. The force displacement characteristics piecewise stiffness 

nonlinearity system as: 
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                             ( )  {

     (     )                   

                                         | |    

    (     )                 
                                  (11) 

 

 

     

Figure 9. Input and Output of Piecewise 

Stiffness  Nonlinearity SDOF System            

Figure 10. Phase Diagram of Piecewise    

Stiffness Nonlinearity SDOF System                   

 

 

          

Figure 8(a). Restoring Forces vs 

Displacement for Piecewise Stiffness 

Nonlinearity SDOF System 

Figure 8(b). Restoring Forces vs 

Velocity vs Displacement for Piecewise 

Stiffness Nonlinearity SDOF System  

 

 

 

NONLINEAR IDENTIFICATION FOR TWO-DOF SYSTEM 

 

Consider the two degree of freedom non-linear system shown in Figure 12, with the 

properties: 
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Figure 13 shows the input and output of the system. The equations of motion in physical 

coordinates are: 

 

[
  
  

] [
 ̈ 

 ̈ 
]  [
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 ̇ 
]  [

   
   

] [
  

  
]  [

       
  

] [
  

 

  
 ]  [

   
 

]      (12) 

 

 
Figure 12. Nonlinear TWO-DOF System 

 

 

 
 

Figure 13. Input and Output of Nonlinear TWO-DOF System 

 

 

Transform equation (12) into modal coordinates as: 

 

 ̈      ̇                
         

             
        

                  (13) 

 

 ̈    ̇                 
         

             
         

                (14) 

 

Polynomial expression for this cubic nonlinear stiffness TWO-DOF can be investigated 

when perform inverse analysis based on output from forward analysis. Polynomial 

expression for stiffness cubic nonlinearity TWO-DOF as follow: 
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                 ̇ 
        ̇ 

         ̇   
        

      ̇ 
        ̇ 

         ̇   
  

      
       

            
                                                                       (15) 

 

           ̇ 
        ̇ 

         ̇   
        

      ̇ 
        ̇ 

         ̇   
  

      
       

            
                                                                       (16) 

 

Both in polynomial equation (15) and (16) had ignored the damping coefficients. Table 

3 shows the percentage of error forward and backward analysis from coefficients of 

polynomial expression in equation (15) and (16). In forward analysis, value for 

nonlinear cubic stiffness, gnl is 100000 N/m
3 

and from inverse analysis, gnl = 99997.96 

N/m
3
. Percentage of error between forward and inverse analysis is 0.02%. 

 

Table 3: Percentage of Error Forward and Inverse Analysis Cubic Nonlinear TWO-DOF 

 

Coefficient Forward 

Analysis  

Inverse  

Analysis  

% of Error 

    

    

    

0 

0 

0 

-5.1x10
-16 

-5.53x10
-13 

-1.32x10
-12 

very small 

very small 

very small 
    

    

    

    

2776.50 

0 

0 

0 

2776.46 

4.82x10
-17 

1.09x10
-13 

5.65x10
-13 

0.144 

very small 

very small 

very small 
    7858 7857.84 0.204 
    11782 11781.95 0.042 
    

    

    

    

16666 

0 

0 

0 

16665.59 

-9.23x10
-16 

-3.53x10
-13 

-1.32x10
-12 

0.025 

very small 

very small 

very small 
    

    

    

    

3927.30 

0 

0 

0 

3929.63 

1.05x10
-16 

6.66x10
-14 

9.58x10
-13

 

0.059 

very small 

very small 

very small 
    11115 11121.48 0.058 
    16666 16675.41 0.056 
    23574 23587.41 0.057 

 

As can be seen from Table 3, those coefficients associated with nonlinear stiffness terms 

are identified very accurately (within 0.3%) and all coefficients of zero value are 

identified to be extremely small. So the identification of this simulated example is 

successful. 

 

CONCLUSIONS 

 

A simple and quick methodology for nonlinear identification based on the restoring 

force method is presented. This method was demonstrated on nonlinear systems with 

one or two degrees-of-freedom. Furthermore, it can be used, when combined with force 

appropriation, to identify nonlinear systems which have a large number of degrees-of-

freedom. 
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