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ABSTRACT 

 

Current method of enhancing the performance of a bilateral amputee runners using 

energy return prosthesis is rarely linked to the system dynamics. In this paper a simple 

simulation is used to show that if a self selected running step frequency could be 

synchronized with dynamic elastic response of a mass spring system extra gain in height 

or faster take off velocity can be achieved which results is higher state of energy 

equilibrium that is more favourable to running activity. Current method often relies on 

physiological methodology, making the differentiation between the contributions from 

the biological and the prosthetic element of the below-knee amputee athlete difficult.  In 

this paper a series of mass and composite foot system are modelled based on a 

combination of mass, spring and damper arrangement to study the effect of gravity, 

mass, stiffness, damping and inertia on the dynamics characteristics of prosthesis and 

how human can instinctively detect the natural elastic response of such system both to 

cyclic excitation and impulse through self selection of frequency or impulse.It will be 

demonstrated that if the natural characteristics of a system are identified and 

synchronised with the physiological gait behaviour of a runner, performance 

enhancement could occur that can be stored and controlled at will by the user. In the 

case of a bi-lateral amputee athlete with near symmetrical gaitit can result in steady state 

running which can be beneficial over longer distances.  
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INTRODUCTION 

 

The desire of individuals with a lower-limb amputation to participate in sports and the 

high demands of athletics, have resulted in the development of energy-storing-and-

returning (ESR) feet, capable of storing energy during stance and returning it to the 

individual to assist in forward propulsion in late stance(Versluys et al., 2009).  ESRs 

have been in use for amputees commercially since 1985(Michael, 1987).Since the 

introduction of the first specialised prosthetic sprint foot in 1996, no significant design 

changes have been made to the original design(Lechler, 2005).Currently, very little data 
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is available regarding the dynamic characteristics of ESR feet to sustain a conclusive 

argument for or against their performance enhancing capabilities.  Grabowski et al. 

(2010) highlighted that there is very little knowledge of the dynamic response of the 

spring like prosthesis and more research is needed to better understand the contribution 

that enables the amputee to achieve top speed. Czerniecki (2005) found that a typical 

ESR foot has an efficiency of as high as 95% while the ankle can generate 241% energy 

return.  This has led to the conclusion that prosthesis is fundamentally restorative 

technology that still falls a long way short of replacing the mechanical performance of 

the biological limb (Nolan, 2008;Dyer et al., 2011).  Weyand et al. (2010) examined the 

mechanics of running and concluded there are three key parameters associated with 

running: 1) how fast the limb can be re-positioned for the successive step; 2) the 

forward distance the body travels while the foot is in contact with the ground; 3) how 

much force the limb can apply to the ground in relation to body weight.  It was 

speculated that if any of these parameters exceeds what is possible in human biology, 

enhanced running speed will result. Bruggemann et al. (2008) conducted a series of tests 

to establish if ESR feet can enhance performance.  Physiological indicators were used to 

track energy efficiency and link the results to the performance of the feet. It was 

concluded that performance could be enhanced, particularly in bilateral amputee 

sprinting. Buckley et al.(1999 and 2010) described the mechanism of steady state 

running using ESR feet to a series of exchanges between potential, kinetic and strain 

energies of the leg and body system. However, no consideration has been given to the 

damping of such systems even though at the extreme of motion damping is the only 

force resisting biological forces generated by the athlete.  

Hunter et al. (2005) studied the link between ground reaction force, impulse and 

kinematics of running during acceleration. It was shown how ground reaction force can 

accelerate the mass and how impulse can assist running. Keogh (2011) has concluded 

that the results of studies on amputee sprinting tend to indicate that improvements in 

running-specific prosthetics have contributed to the enhanced performance of 

Paralympic amputee runners and that the question of whether such improvements are 

fair and/or consistent with the Paralympic or Olympic ethos. The debate of fairness of 

lower-limb prosthesis running technology in sport has recently been raised (Dyer et al., 

2010). To appreciate the effect /influence of ESR prostheses in running, all aspects of 

their static and dynamic response need to be studied and understood.   

  

 

METHODS 

 

This paper simulates the effect of impulse due shock loading of a mass spring system, 

similar to that of a human running when wearing socket that is attached to an ESR 

composite foot. (Figure 1a, b&c).   
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a)    b)    c) 

Figure 1. a) Amputee running on the Elite Blade(Endolite®, 2011), b) An equivalent 

working model 2D representation and C) showing a mechanical equivalent.  

 

Hypothesis 

 

In this paper it is hypothesised that walking or running at a frequency that matches 

either a relevant natural frequency or the elastic dynamic response of the combined ESR 

foot and body mass system can  provide a mechanical advantage if synchronised 

correctly.  In this initial study, dropping a mass that is attached to an ESR foot is 

simulated here to show the effect of impulse on the system, its cyclic nature and the loss 

of energy and decay in amplitude. It is also speculated and later proven that human can 

instinctively detect both the natural frequency or the dynamic elastic responses of a 

mass spring system weather it being sinusoidal of impulse driven.   

Working model 2D was used  here to simulate two cases where the user can 

instinctively detect the frequency and the phase in which he or she needs to apply force 

or effort to create either a steady state response or increase and store energy in the 

system to gain more height or velocity or amplitude. This study is conducted in 3 

phases, 1) mechanical drop test. 2) WM2D simulation, and,3) Mathematical simulation 

using DasyLab. 

1)  

A solid mass attached to a composite prosthetic foot, forming a system, as shown in 

Figure 1C was used to study the response of the system to an impulse due to dropping it 

from a height. A series of tests were designed and conducted and a sample output of this 

test is shown in Figure 2a.  

The graph of the response shows that as a result of bouncing cyclic pulses are 

generated. However, as it can be seen from the graph without any additional input the 

amplitude of the height decays due to damping and other losses in the system. 
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a)  

It can be seen that the effect is an exponential decay in pulse amplitude and pulse 

frequency & period (time between two successive impulses) which after a while reverts 

to a damped natural frequency before stopping.  However, drop test alone cannot 

simulate the effect of body’s ability to generate force at self selected frequency and 

amplitude that matches that of the impulse. Also unlike human, the deadweight used in 

drop test experiment do not possess intelligence in the form of ability to generate 

controlled  sinusoidal or cyclic  input force that can complement the effect of  residual 

inertia or gravity effect of the system. 

 

 

 

   a)     b) 

Figure 2. a) Mass-spring-damper simulation of b) body and prosthetic ESR system 

(Endolite®, 2011).
 

Closer study of the above graph show that if the loss of energy in once cycle can be 

matched by an equivalent input energy through human effort and is applied at the right 

phase it can result in three possible outcomes. 1) Decaying amplitude, 2) A steady state 

response and 3) An increasing PE in the system due to extra gain in height. And shown 

in the DASYLab simulation shown in Figure 3.  
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Figure 3. DASYLab simulation. 

 

To simulate the effect of human replacing the deadweight  and also demonstrating that 

human can instinctively pick up natural modes of vibration or feel the elastic dynamic 

response due to impulse, a similar system, that is also analogous to  the mass &spring 

system, shown is figure 1c, was created using the WM2D simulation system. This 

highly idealised system closely represents the mass spring system shown in Figure 1C. 

However, in this model there exists as arrow representing an external input that can be 

triggered by the user. This system was used to repeat the simulation shown in Figure 2 

but this time all the timing, phase, load intensity and duration are controlled by the user. 

 

This model was capable of demonstrating 2 key elements that is crucial in any able and 

disable bodied athletics and sports and that is  

a) The input equal or more than loss in the system results in accumulation and 

storage of energy that can later be recovered at will. 

b) The ability of human to detect the dynamic response of the elastic system and 

synchronise with it to enhance performance.  

A practical application of this system can be shown in the form of a swing or 

trampoline. 

In both cases, if at the end of each swing or travel, when the forces are is the state of 

momentary equilibrium, an additional sinusoidal/cyclic input force, such as push or 

human effort (Push of a swing or hip and leg activity) will act on the body un-

resisted except by the damping force, and depending on its magnitude can result in 

energy storage. 

 

 Stead state motion. That is when the input energy is applied in phase and its 

value is equal to the loss of energy in that cycle. 

 Increasing amplitude of the swing if the input energy is applied in phase and its 

value is larger than the loss in that cycle. This results in a higher energy state of 

the system in the form of larger swing amplitude until a new equilibrium is 

reached. 
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 Decreasing amplitude of oscillation if the energy is applied either out of phase or 

in phase but its value is less than the loss in one cycle. In either case it results in 

motion suppression.  

 

MECHANICAL SIMULATION using Working Model 2D 

 

The phenomenon, that can help or assist a bilateral below knee amputee runners using 

ESR blades to run faster, or to help an able bodied athlete using trampoline to gain extra 

height advantage, on a person using trampoline or swing to gain height is presented here 

using working model 2D simulation software. A simple 2 mass spring and damper 

system, as shown in figure 1b,capable of representing both single and two degrees of 

freedom system that can simulate different stages of a unilateral amputee running or 

able body bouncing on a trampoline, was used to show the effect of load input 

synchronisation on the response.  

Figure 4 show the comparison between the simulated and real data from a drop test 

experiment. This was done to validate realistic nature of the simulation model 

employed.  

This system was first used to simulate the effect of gravity alone on the dynamic 

response of the system when it was dropped from a height.  

 

1) Drop test under gravity force alone,  

 

 
 

Figure 4a, 4b shows the comparison between the displacement profile between real and 

the imaginary system 

 

2) Under cyclic synchronised impulse.  

In the second simulation the model was used to simulate the body when it was acted 

upon by a mass-less force representing normal body force/muscle power or human 

effort. The frequency and intensity of this applied force was left at user discretion, to 

take his or her own time to detect and synchronise with to establish or create a steady 

state impulse or bouncing action. Figure 5 shows a close to steady state response that 

could be achieved in a short time by user intuitively detecting and synchronising with 

the natural dynamic characteristic of the system. Such a cyclic response can only come 

from cyclic muscle power that can be generated by the athlete to perform a bouncing or 

running action and as result of burning calories and other physiological reactions. 

Figure 5a & b. The effort synchronised intuitively close to steady state impulse creation 

representing bouncing or hoping or running action. 
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3) Asynchronous application of the load. 

In the asynchronous simulation load was applied both in synch and out of synch with 

the dynamic characteristics to control various phases of an activity, such as acceleration, 

slowing down, accelerating again and maintain the speed.  

 

 

 

 
Figure 5. Displacement, velocity and acceleration of the system during Dynamic Elastic 

Response to Impulse Synchronisation (DERTIS) 

 

Figure 5shows displacement, velocity and acceleration of the system during Dynamic 

Elastic Response to Impulse Synchronisation (DERTIS) showing increasing, steady 

state and fluctuating energy state of the system. At the terminal or later stages of a run a 

steady state can be achieved when a constant force, effort or energy is applied with 

magnitude equal to the loss of energy in one cycle. 

This effect lends itself to it being used as a design tool that allows better tuning of 

mass to prosthesis that matches for impulse synchronised gait frequency. Closer 

examination of the simulation system and the plots show that in the absence of any 

external force or effort by the athlete, the motion generated due to drop from a height 

results in some bouncing motion with decaying amplitude, then reverting back to simple 

damped vibration at its natural frequency until it stops.  

However if a cyclic energy is applied by the runner through the application of a 

mass-less force (body forces, muscle power, Physiological inputs) with a magnitude that 

is more than the loss of energy in one cycle, is applied in phase and at impulse 

frequency that matches the step frequency, it can result in two other distinct possible 

outcome. Therefore, depending on the relative size of the force, masses, damping ratio, 

stiffness, frequency and phase it can result in:-  

1) It can result in extra gain in height due to the gain in the amplitude of the ground 

reaction force causing faster take off speed resulting in higher KE which results 

is higher PE. If this action is sustained energy will be accumulated, stored and 

can later be recovered by the system 
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2) It can stop the motion if the force is applied at the wrong the time or phase of the 

motion, resulting in the reduction in ground reaction force, lower take off 

velocity and loss of potential energy as seen in Figure 6.  

 

This simulation also demonstrated the human ability to detect and synchronise with any 

cyclic force or motion within limit. Here the synchronisation is performed by the 

authors using simple mouse action that was synchronised with the motion of the 

image/body showing that normal human being can inherently identify any natural 

rhythm and is able to actively synchronise his effort to gain mechanical advantage.  

 

MATHEMATICAL MODELLING 

 

The hypothesis discussed above was further modelled mathematically to substantiate 

and validate of this synchronisation argument. The aim of this theoretical study is to 

investigate how phase between input force and cyclic impact frequency can result in 

accumulation and storage of energy that can later be recovered at will, hence 

minimising energy consumption by the runners. 

This section presents the mathematical simulation of the same system, initially 

suggested by Rahman et al. To represent the elastic dynamic response of the mass foot 

system to a cyclic impulse load that matches the profile of the natural frequency of a 

dominant mode. In this study it is assumed that the motion of the body is reduced to a 

single degree of freedom (DOF) mass spring system dominated, as shown below, by the 

1
st
bending mode frequency of 4Hz, which was extracted from modal analysis of the 

ESR presented elsewhere (Noroozi et al., 2011). 

Ignoring air resistance, and some alignment issues, etc, the motion of the system is 

controlled by three forces that collectively contribute to the motion response and the 

total displacement of the mass & spring system: 

 

PART I The impact contribution due to initial velocity (v0) when the foot touches 

the ground. 

PART II The constant body weight (mg) generating a new static equilibrium 

position. 

PART III The cyclic load (Acosωt) generated by the body movement due to 

running or effort. 

If the above forces are all acting at the same time the resultant equation of motion can 

be given by: 
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0v = initial velocity (ms
-1

) 

 = decay rate (rads
-1

) 

m = mass (kg) 

k = effective spring stiffness (Nm
-1

) or (kgs
-2

) 

g = constant of gravity (ms
-2

) 

P = excitation force (N) or (kgms
-2

) 

 = cyclic movement generated by body movement/ excitation frequency from body 

 (rads
-1

) 

 = phase angle (rad or degree) 

c = damping (kgs
-1

) 

 

 
Figure 6. Total response 

 

Figure 6 graphically describes the two main elements of the three responses.  The 

gravity is a constant horizontal load, omitted from the above graph. In this simulation 

the displacement is measured from the ground level with downwards displacement 

being positive. The sinusoidal curve is only valid for values of Z > 0 where the motion 

is governed by the mass-spring-damper system. For Z < 0 the motion of the mass is 

governed by the gravitational field only and is acted upon by gravity only (a horizontal 

line, omitted here).  The first half of a sine wave is used as impulse force representing 

ground reaction force which is when the foot is in contact with the ground. 

Equation (1) contains three parts: Part I is dependent on the height of the fall; Part 

II is dependent on the weight of the body, as the body has very little or no ability to 

control its fall under gravity or free fall condition; Part III, however, can be generated 

and controlled by the body using muscle power or rhythmic or synchronised effort. This 

cyclic/synchronised muscle power comes from energy due to burning body calories 

(internal metabolic actions), etc.  The frequency of this simple cyclic force canbe 

determined due to intelligence and other senses that allow passive determination of the 

natural frequencies or dynamic characteristics as shown previously.  However, for this 

mathematical simulation to enhance performance the body needs to generate a force 

with varying intensity equivalent to a half cycle of a cosine wave (Figure 6), starting 
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from the instant the foot hits the ground, and with frequency equal to the natural 

frequency of the first bending mode of the vibration. 

 

 
 

Figure 7. Force intensity profile needed to generate additional take-off velocity and 

height. 

 

To achieve a sustained motion: 

 

a) The resistance due to stiffness K will be cancelled by the inertia resistance mω
2
 

i.e. (K-mω
2
=0), leaving the force A resisted only by the damping resistance force, 

cω. 

b) The phase angle must be equal to 90
0
, making the response to be almost in-phase 

with the response due to impact (response Part I). This will, in effect, cause a 

higher take-off velocity. 

c) The phase is of paramount importance because wrong phase will cause the mass 

to work as a damper and against the motion slowing or stopping the motion.  

 

The dynamic simulation of the characteristics and response of a typical case, consisting 

of a mass and spring system being dropped from a height and then acted upon by a 

cyclic force, in synchronisation with one of its natural frequencies is presented below.  

The actual physical quantities, such as mass, damping factor, decay rate mode shape and 

frequency were all obtained from the experimental modal analysis conducted prior to 

this work (Noroozi et al., 2011).  Below is a typical calculation to show the effect that 

the synchronisation has on the performance of the foot:  

 

           This is due to free fall of a 55kg mass from a height of 0.08m 
 

 
         Half the body weight 

          The decay rate extracted from the experimental modal analysis 

tests 

         First bending damped natural frequency 

         The body mass 

            The effective stiffness, extracted from the SHM theory 

        The cyclic frequency of the effort generated by the body 

movement of the athlete. 

        
   

  
      The predicted phase required 

 

Therefore, the following formula is obtained from equation (1): 
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Figure 6 shows the displacement and the take off velocity as a result of synchronised 

input in to the system. In this mathematical simulation the results show that the take-off 

velocity due to impact alone is increased substantially when superimposed by a 

synchronised cyclic/sinusoidal load, generated by the body. This proves that, 

synchronised cyclic input force adds to the impulse which can help to increase height 

due to higher take-off velocity.  This gain in height results in additional gain in potential 

energy which is available to the athlete to use during the next foot strike giving larger 

impulse hence more energy in to the system and this continue to increase until the new 

equilibrium is reached.  

A unilateral amputee, generating the same cyclic load, will only gain height on 

every other take-off from the ground. This can result in lack of symmetry which limits 

the positive effect of the synchronisation with natural dynamic characteristics. However, 

in the case of a bilateral amputee this results in conservation and storage of substantial 

energy that can manifest its existence towards the end of the race when most runners are 

tired. During this phase of the race, the runner is running at a steady state speed 

resulting in both perfect synchronisation and symmetry resulting in minimum losses of 

energy. 

 

DISCUSSION  

 

The mathematical and experimental results demonstrates that if the impact frequency 

due to self selected running frequency is synchronised with the natural bending modes 

of vibration, the ESR foot responds like a trampoline resulting in higher take-off speed 

and higher potential energy storage in the system.  Also, every mass spring system has 

its own natural dynamic characteristic that is unique to that arrangement. The human 

body and brain can naturally detect these natural modes. If these modes are identified 

and subsequently synchronised with the self selected (predicted) running frequency, it 

can enhance performance, as shown in this paper, resulting in faster take-off speed and 

extra gain in height. This stored energy can assist runners during the latter or steady 

state phases of their chosen running event. Therefore, bi-lateral amputee athletes with 

close to symmetrical gait can synchronise their running frequency and effort with the 

natural characteristics of their prosthetic limb to enhance their running performance.  

The ESR foot does not suffer from tiredness or fatigue, once the energy is stored in 

the system it can slowly be recovered during latter stages of the running when the sound 

limb begins to get tired.  A bi-lateral amputee running at steady state needs to create 

constant input or supply of energy or force equal or slightly more than the loss in one 

cycle in order to create a sudo-resonant condition that can become almost self-

sustaining. Although this hypothesis was successfully simulated, to conclude this work 

a mechanical cyclic loading system needs designed to validate this argument and that is 

the subject of the future investigation.  

With further study and subsequent prosthesis design optimisation, it is possible that 

the performance gap between able-bodied and athletes with a lower-limb amputation 

will narrow, notably over longer running distances such as the 200m or 400 m, 10 Km 

or the Marathon. 
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CONCLUSION 

 

The above simulations shows that depending on the relative magnitude and phase of 

such cyclic force or energy input to such systems the outcome can be any of the 

following:  

 

a) It can dampen the motion, if the input energy per cycle by the athlete is less than 

the losses per cycle in the system or if the shape and phase of the input force is not 

synchronised with or in right phase with the natural modal characteristics of the 

system causing the mass to act as additional damper, stopping the motion quickly.  

b) It can result in a steady state or harmonic hopping, jumping or running motion. 

That is if the input energy per cycle and losses per cycle are equal and also if the 

shape and phase of the input effort is also synchronised with the natural modal 

characteristics of the system. 

c) It can result in higher potential energy and extra gain in height if the magnitude of 

the input energy is more than the losses in one cycle and also is applied at correct 

phase and shape.  

 

Therefore if synchronised cyclic/sinusoidal excitation energy or force is applied as right 

frequency and phase to this system, it can result in a favourable outcome.  

It has been shown that at the bottom of the travel (ground strike) when the ESR 

prosthesis deflection is a maximum the system goes into isolation where the inertia 

force and stiffness force cancel each other out. So any input or additional energy due to 

muscle effort, hip action or knee, as long as it is more than the losses due to damping in 

one cycle, will go into the system un-resisted resulting in extra gain in energy. The 

differential values of this energy results in one of the three outcomes: damping, steady 

state or increasing amplitude or height).With further acknowledgement of this 

phenomenon and subsequent prosthesis design optimisation, it is possible that the 

performance gap between able-bodied and athletes with a lower-limb amputation will 

narrow, notably over longer running distances such as the 10Km or the Marathon. 
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