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Abstract 

This thesis is concerned with the development of model-based controllers via para- 
metric programming and their application to the design, operation and control of process 

systems. In Part I of this thesis two new algorithms are presented for solving multi- 
parametric dynamic optimization (mp-DO) problems for continuous time dynamic sys- 
tems represented by linear differential equations. These algorithms constitute the basis 

for the development of model-based controllers in the rest of the thesis. The first algo- 

rithm features a direct control vector parameterization based approach. It provides simple 

piecewise-affine expressions for the optimal values of the performance index and the con- 
trol variables in terms of a set of independently varying problem parameters. The second 

algorithm is based on a variational approach that exploits the structure of the multi-point 
boundary value Euler - Lagrange optimality conditions of the optimal control problem. It 

derives plecewise non-linear functions for the optimal control trajectory in terms of the 

problem parameters. Both algorithms (i) enable the easy and computationally efficient 
implementation of the control policy for different realizations of the parameters, (ii) pro- 
vide an insight to the dependence of the optimal problem structure in terms of the system 
parameters, (M) guarantee constraint satisfaction over the complete time horizon of inter- 

est and (iv) ensure the accurate representation of the performance index value over the 
time domain. The variational mp-DO algorithm has the extra benefits of (i) addressing for 
the first time the issue of expressing the constraint switching time instants as a function 

of the problem parameters and (ii) being independent of any control representation over 
time. The key features of the algorithms are illustrated via process and mathematical 

examples. 
In Part 11 of the thesis new theory and algorithms are presented for deriving different 

types of model-based controllers (MBC) using a parametric programming approach. These 

so-called parametric controllers (parcos) are derived for (i) discrete time linear dynamic 

systems subject to bounded uncertainty, (ii) linear continuous time dynamic systems and 
(iii) linear hybrid dynamic systems. For the first category of systems a robust controller is 

synthesized in a sequential two step procedure: (i) First a pre-analysis step is performed 
that solves a sequence of linear parametric programs to generate a set of feasibility con- 
straints. (ii) These constraints are explicitly encapsulated in a control design parametric 
optimization problem resulting in a control law that guarantees feasibility in the face of 
uncertainty scenarios without penalizing largely its performance. This controller unlike 
other approaches features reference tracking capabilities while its complexity is indepen- 



dent of the size of the uncertainty vector. The algorithms presented in Part I of the 
thesis are employed for the derivation of, the explicit control law for the second class of 
continuous time dynamic systems. The design of explicit controllers for hybrid systems is 

addressed via initially recasting the logical components of the system as binary variables 
and then formulating and solving a control design parametric optimization problem based 

on a general form of performance index. The derived parametric controllers comprise a 
set of explicit piecewise affine expressions (piecewise non-linear in the case of continuous 
time dynamic systems) that relate the control variables to the system state. This sim- 
ple controller structure enables the easy, inexpensive and efficient implementation of the 

control action. The behaviour of the resulting closed-loop system is optimal in terms of 
the performance measure considered, while the satisfaction of the restrictions imposed on 
the plant operation is guaranteed for the given model. The key features of the proposed 
methods are demonstrated through mathematical, and chemical and biomedical process 
examples. 

Part III of the thesis focuses on the simultaneous process and control design of nonlin- 
ear dynamic systems. Here, the unresolved task of incorporating model-based controllers 
in a process design framework is addressed via a two stage approach. The first step is to 
derive the model-based parametric controller for the process system under investigation. 

Then, in the second step the resulting explicit control functions are readily embedded in a 
process and control design optimization framework. The solution of this problem results 
in an economically optimal process design that exhibits significant operability benefits 

in the inevitable presence of uncertainties and disturbances. The proposed approach is 

applied to two classical illustrative process design examples that elucidate its significant 

advantageous features. 
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Chapter I 

Introduction 

"Between the formless entity called society and the ethereal concept of artistic conscience is some- 

thing quite real and tangible, the individual. ", Richard Bellmann. 

1.1 Motivation 

The unavoidable presence of variations forces the industrial plants to deviate from 

the desired operational policy. Those time - dependent or time - invariant variations 

originate from either unexpected or predictable, in nature, phenomena. The unpre- 
dictable changes are usually termed as uncertainties and have a wide range and 

variety of sources. Variations in customer demand, changes in raw materials qual- 
ity and quantity, fluctuations in process utilities, inevitable alterations in physical 

properties and uncertainties in discrete states such as equipment availability (Pis- 

tikopoulos, 1995) have a large impact on the economic performance and operation 

of a plant. On the other hand, predictable and even desirable conditions, such as 
start-up of units, maintenance periods, can also make a continuous process operate 
in a dynamic or non nominal mode thus influencing the economics and the transient 

or steady state plant behaviour. 

To illustrate some of these concepts that are associated with plant operation con- 

sider the fluidized catalytic cracking plant shown in Figure 1.1 and used in several 

control and operations studies (Hovd and Skogestad, 1993; Loeblein and Perkins, 

1999a). This is an important process in refineries as it converts the heavy hydrocar- 

17 
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bons contained in the gasoil feed to valuable light components with boiling points 
in the region of gasoline, naphtha or kerosine. This system operates usually in a 
dynamic mode due to variations in the process conditions. The challenge for an 
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Figure 1.1: Motivating example, FCC process 

engineer should be to determine the optimal operational policy for such a plant, 
that is translated into driving in an optimal manner some of the characteristic pro- 

cess outputs such as the temperature in the regenerator and in the riser to a target 

optimal set-point determined from economics. While aiming to achieve this objec- 
tive, the operator should also guarantee that process constraints corresponding to 

safety restrictions or product specifications (the temperature of the regenerator, the 

coke content of the catalyst or the temperature of the products) are satisfied. The 

manipulated variables at the operator's disposal, are the air inlet flowrate to the 
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regenerator and the recycle flow of the catalyst. What hampers the plant operation 
is (i) the presence of unknown time-varying disturbances e. g. in the feed load and 
the feed conditions, (ii) the variations in the economically optimal set-point due to 

upper-level decisions, (iii) the variability of the plant physical characteristics such as 

catalyst activity in the riser and (iv) some process design features that have a great 
impact on the system dynamics e. g. large inventory size causing increased time- 

constants or heat and mass recycle leading to disturbance amplifications. These 

phenomena force the plant to operate under transient non-nominal conditions, thus 

making the operator's undertaking more challenging. 
One of the most systematic approaches for obtaining the optimal operational 

conditions of the system is on-line control and optimization. Here, after specific 
information is obtained about the current plant conditions and the uncertainty pro- 
file, an optimization problem based on a process model is solved using as search 

variables the profiles of the manipulated inputs. When this operational strategy is 

implemented in an open-loop manner, the calculations are repeated periodically or 

every time a change in the uncertainty variation becomes known to the operators. 
This method can also be applied in a closed-loop fashion leading to an automatic 
model based predictive control (MPC) scheme. MPC, thereby, determines the ap- 
propriate future control sequence via on-line optimal control calculations based on 
the current process states, that in our FCC example pertain to the temperature in 

the regenerator and the coke fraction deposition on the catalyst. The first element 
of the sequence is implemented on the plant and the next control values are derived 

via regular state feedback updates and the repetition of the on-line computations. 
However, these widely recognized open and the closed - loop optimal control 

implementations involve significant on-line computations, while the control or op- 
erational action they provide is only known implicitly via the solution of an opti- 
mization problem. A parametric optimization based approach for moving off-line 
these rigorous calculations has recently been proposed (Pistikopoulos et al., 2002; 
Bemporad et al., 2002b) aiming to make optimization techniques applicable to a 
wider range of systems. The schematic description of this attractive alternative and 
the constrast with the traditional on-line optimization technique is shown in Figure 
1.2. The key principle of this technique is that it derives off-line, before any ac- 
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ON-LINE OPTIMIZATION / 
FEEDBACK MPC SCHEME 
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Figure 1.2: On-line Optimization vs. Off-line parametric programming approach 

tual process implementation occurs, the explicit mapping of the optimal decisions 

in the space of the plant uncertainty variations and the plant current conditions us- 
ing multi-parametric programming algorithms. Thus, on-line optimization reduces 
to simple function evaluations for identifying the optimal control action. Another 

important advantage is that the resulting parametric control law or operational pol- 
icy consists of explicit closed-form expressions that can provide precious insight to 
the closed-loop system features. Nevertheless, this novel parametric programming 

approach features the following disadvantages: 

9 It is mostly limited to steady state or discrete time dynamic systems. Thus, it 

ignores or fails to portray accurately transient plant evolution. This may result 
in sub-optimal or unrealistic solutions. The reason for this drawback is the 

absence of multiparametric. dynamic optimization methods that can readily 
address this issue. 

It does not address directly the presence of path constraints, (e. g. upper 
limits on the riser temperature in the motivating FCC example) that have 

to be satisfied over the complete time domain and not merely at particular 
time-points. 
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The closed-loop feedback controller derived from this technique has not been 

developed yet to the extent of dealing efficiently with the presence of unpre- 
dicted or unmodelled uncertainties. 

In the presence of non-vanishing disturbances this explicit controller may ex- 
hibit a permanent deviation from its steady state target point due to the 

absence of integral action. Based on the last two statements, there is clearly a 

need for designing a robust tracking controller using parametric optimization 
techniques. 

Plants that intermix logical discontinuous decisions with the continuous plant 

operation are broadly classified as hybrid systems. An example is the possi- 
ble switch in our motivating example between the partial and the complete 

combustion mode. The explicit control law for such systems has not yet been 

derived in the general case with the aforementioned parametric programming 
techniques, due to mainly the lack of appropriate formulations and mathemat- 
ical algorithms. 

Another typical engineering example subject to transient conditions involves a 
binary distillation column as shown in Figure 1.3. Unlike the FCC example in Figure 

1.1 the challenge here is to derive the optimal (i) process design (size of the column 
diameters, heat exchanger ares), (ii) process operating point (purity of the column, 

value of the reflux flow) and (iii) control scheme design (controller type, tuning 

parameters) in order to minimize the total annualized cost, while respecting any 

constraints and specifications imposed during operation (e. g. product purity, safety 
limits on temperature or pressure, actuator bounds). Obtaining the economically 
optimum and feasible design is a very difficult task since a number of uncertainties 
and variations are also present during operation (e. g. variation in the cooling wa- 
ter utility temperature, unpredicted variation in the feed flowrate). In conventional 
practice the task of designing such a plant and its control structure is decomposed 
into a set of subproblems. (i) First the process flowsheet and its design are obtained 
for nominal steady state conditions. (ii) Then over - design factors are used, relying 

on experience, so as to ensure feasible operation for the whole range of the uncer- 
tainties. (iii) Finally, a control scheme is applied in order to reject the effect of the 
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Figure 1.3: Schematic description of a binary Distillation Process 

uncertainties and disturbances and to guarantee satisfactory dynamic behavior of 
the plant. 

Consequently, the process design and control scheme are determined in a sequen- 
tial way (Stephanopoulos, 1983). However, as early as 1943, Ziegler and Nichols real- 
ized that the dynamic and control characteristics of a plant depend on the plant itself 

rather than the control structure: " ... The finest controller made when applied to 

a miserable process may not deliver the desired performance... " Optimization based 

approaches that treat design and control under uncertainty within a unified frame- 

work have only recently been reported in the literature (e. g. Walsh and Perkins, 

1996; Bahri et al., 1997; Mohideen et al. 1996a, Bansal et al., 2002a for full review 

see Van Schijndel and Pistikopoulos 1999). These developments provide economi- 
cally optimum and feasible designs in the presence of system variations. However, 
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these new approaches in simultaneous process and control design carry the following 

limitations: 

9 Most of the process and control design methods use, in the design or in the 

analysis stage, simple multiloop decentralized PI controllers with fixed tuning 

parameters, thus ignoring the theoretical development and broad industrial 

utilization of advanced model-based predictive control techniques that have 

serious implications to the plant economics and operability. 

* The issue of asymptotic stability of the closed-loop system has not been fully 

explored through the current design techniques. 

The primary aim of this thesis is the development new parametric dynamic 

optimization algorithms that readily address the design of advanced model based 

controllers and the application of the resulting control schemes to simultaneous 

process and control design under uncertainty. Achievement of this goal should lead 

to the improvement of process design and operation of plants not only in terms of 

economic criteria but also with respect to operability characteristics. 

1.2 Project Objectives and Thesis Outline 

The key goals of this thesis are summarized below: 

I Develop efficient algorithms for multiparametric dynamic optimization (mp- 

DO) and multiparametric mixed integer dynamic optimization (mp-MIDO) 
for systems where the objective is quadratic and the plant is described by 

continuous time linear dynamics subject to mixed state and control path con- 
straints. 

II Investigate design techniques for robust model-based controllers for linear dis- 

crete time dynamic systems, subject to considerable uncertainty, using a para- 
metric optimization approach. 

III Propose a method for the derivation of tracking model-based controllers for 
linear systems subject to non-vanishing disturbances. 
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IV Develop a design method for model based controllers for linear hybrid and 
continuous time dynamic systems. 

V Investigate the opportunity of incorporating advanced model-based controllers 
in a simultaneous process and control design framework. 

The work in this thesis is divided into three parts. Part I (Chapters 2-4) is con- 

cerned with the development of mathematical algorithms for parametric dynamic 

optimization. Part II (Chapters 5-7) examines techniques for the design of different 

classes of parametric controllers while part III (Chapters 8-9) looks at the accom- 

modation of parametric controllers in a simultaneous process and control design 

framework. In more detail the thesis is organized as follows: 

9 Chapter 2 reviews the most relevant techniques for multiparametric program- 

ming while identifying their potential limitations. 

Chapter 3 develops a direct multiparametric dynamic optimization (mp-DO) 

algorithm for linear quadratic (LQ) optimal control problems. The proposed 

method is based on control vector parameterization for the input representa- 
tion and a decomposition technique for treating efficiently the path constraints. 
The extension of this algorithm to multiparametric mixed integer dynamic op- 
timization is discussed in the same chapter and in Appendix C. 

Chapter 4 proposes a variational approach for multiparametric dynamic opti- 

mization (mp-DO) of LQ problems that does not assume any form of discretiza- 

tion, but relies on the original infinite dimensional Euler-Lagrange optimality 

conditions. The method provides also a technique for computing expressions 
that relate the switching points, where the set of active constraints changes, 

with the problem parameters. 

Chapter 5 reviews current model-based optimizing feedback control methods 
and focuses on the capabilities and restrictions of the new class of parametric 
controllers. 

Chapter 6 proposes a new design approach for robust model based parametric 

controllers for linear dynamic systems. These controllers are also enhanced 
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with reference tracking capabilities that are of vital importance for practical 

applications. 

Chapter 7 investigates the development of algorithms for model based control 
of nominal linear hybrid and continuous time dynamic plants. Integer variables 
are used to portray the logical conditions in the hybrid systems. Thereafter, 

multiparametric mixed-integer programming algorithms are used to derive the 

explicit control law. Similarly in continuous time dynamic systems a mul- 
tiparametric dynamic optimization problem is formulated first and then the 

mp-DO algorithms from chapters 3 and 4 are directly used for the control law 

derivation. 

* Chapter 8 outlines the most relevant optimization based simultaneous process 

and control design methodologies and identifies their limitations. 

Chapter 9 presents a method for the incorporation of the advanced model- 
based parametric controllers in a simultaneous process and control design op- 
timization framework. An outer approximation technique is developed for 

the controller tuning and a mixed integer dynamic optimization approach is 

employed for treating the discrete and continuous design decisions. 

* Finally, some concluding remarks and suggestions for future work are provided 
in chapter 10. 



Part I 
Theory and Algorithms for 

Multiparametric Dynamic 

Optimization 

'Mankind always sets itself only such problems as it can solve ... Karl Marx 

26 



Chapter 2 

Literature Review on Parametric 
Programming 

This chapter summarizes the previous works on parametric optimization. Their potential lim- 

itations are highlighted to motivate the work that is presented in the subsequent two chapters. 

2.1 Parametric Programming 

Steady state and dynamic optimization techniques are frequently encountered in 

different engineering disciplines as a means of identifying the appropriate design 

(Biegler et al., 1997), operational policy (Pantelides, 1996) and control law (Morari 

and Lee, 1999) for a process system under static or transient conditions. Opti- 

mization methods compute in general a set of independent process quantities such 

as utility flowrates, inventory level, so as to optimize an aspect of the system be- 

haviour, such as annual profit, while ensuring that all the process restrictions and 

specifications, such as product quality, maximum tank level, are satisfied. One of 
the difficulties in applying these techniques to real industrial plants arise from the 

unavoidable presence of variations in the problem parameters (e. g. uncertainties 
in the process inputs and the physical properties values or measurements from the 

plant that fluctuate as the system state evolves) that translate to the deviation of 
the plant from the considered conditions. 

It is fair to state that the efficient application of optimization tools relies on 

27 
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the repetitive computation of the optimal conditions every time an estimate of the 

uncertainty and the current system state is available. For avoiding these rigorous 

repetitive computations sensitivity analysis can be employed, where the effect of 

small perturbations of problem parameters on the optimal solution is examined. 
However, by using sensitivity analysis it is impossible to derive the optimal solution 

profile for a specified range of parameter changes. For that purpose a large number 

of optimization problems is necessary to be solved for different parameter values. 
This approach is computationally intensive and usually inaccurate. Alternatively, 

parametric programming can be used to determine accurately the effect of a wide 

range of parameter variations on the optimal solution without solving a very large 

number of optimization problems. Consider the following problem: 

min O(u, J, 0) 
u's 

S. t. g(U, 5,0) <0 

uE RN" is a vector of continuous optimization variables such as energy input or 

utility load. ýE 10,1}NJ =- Y is a vector of binary 0-1 variables representing discrete 

decisions such as unit interconnections, varying operational modes. 0E0 C- RN' 

is the vector of bounded parameters. 0 is the objective function of the problem 

whereas g: RNu XyX RN9 ý_+ Rq is a set of inequality constraints pertaining e. g. to 

process specification and safety and environmental limits. Parametric programming 
is employed to obtain the optimal solution ý profile as a function of the full space of 

parameter variations. An example of a linear optimization problem without integers 

and with two parameters is presented here (in Cal, 1995) to demonstrate the features 

and the advantages of parametric programming.: 

min(-3ul - 8U2) 
u 

s. t. 

UI+U2: 5 13+01 

5ul - 4U2 < 20 

-8ul + 22U2 :5 121 + 02 (2.2) 

4u, + U2 >8 

Ul 0, U2 >0 
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parameters that vary over a specified range. Some of those applications and a num- 
ber of other fields of research where parametric programming is utilized effectively 

are summarized in Table 2.1. 

Authors Application 7-71 
Parameters: uncertainties 

Dua and Pistikopoulos (1999) Process synthesis, design 

Dua and Pistikopoulos (1998) and operation under uncertainty 
Acevedo and Pistikopoulos (1997) 

Pistikopoulos and Dua (1998) Planning under uncertainty 
Dua and Pistikopoulos (1998) Material design under uncertainty 

Parameters: different objectives 
Papalexandri and Dimkou (1998) Multiobjective optimization 
Pertsinidis et al. (1998) Cost vs. environmental index 

Dauer and Liu (1997) Water discharge vs. groundwater head 

Pistikopoulos and Grossmann (1988) 1 Cost vs. flexibility 

Parameters: uncertainties - designs 

Bansal et al., (2000) Feasibility analysis 
Design as a function 

of uncertainty 
Parameters: state variables 

Bemporad et al. (2002b) Model Predictive Control 

Pistikopoulos et al. (2002b) & on-line optimization 

Table 2.1: Applications of Parametric Programming 

The parametric programming example presented above (Problem 2.2) is a linear 

programming problem since the objective and the constraints are in a linear form. 

Algorithms have been developed for dealing with non-linear programming problems 

and with problems that incorporate integer variables to represent discrete decisions. 

A brief review on parametric programming algorithms that handle problems with 

solely continuous optimization variables is presented in Table 2.2 and Table 2.3, 

whereas the most important algorithms for parametric optimization problems with 
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Authors I Theory development 

multiparametric-Linear Programming 

Gal and Nedoma (1972), Linear objective - constraints. 
Gal (1995) Extension of simplex algorithm - basis exchange 

Dua et al. (2002b) Solve LP and use sensitivity analysis 
Bemporad et al. (2000a) to derive expressions. Use inactive inequalities 

and lagrange multipliers to define regions 
Avoid degenerate solution 

Filippi and Romanin-Jacur (2002) Enhancement of Gal's mp-LP approach. Overcome 

dual degeneracy via lexicographic pivoting 

rnp-Non Linear Programming 

Dua et al. (2002a) Non-convex optimization 
Dua et al. (1999) Generate convex overestimator and underestimator. 

Linearization of convex functions. 

mp-NLP on the functions. 

Spatial B&B to obtain solution 
Jonker et al. (2001) p-Linear/quadratic optimization 

Distinguish between 5 types of generalized critical points g. c. 

according to whether (i)linear independent constraint 

qualification, (ii) strict complementarity conditions, 
(iii) non degeneracy of Hessian & Lagrangian hold. 

Switch between regions according to what condition 
is fulfilled, to derive optimal mapping. 
Complete enumeration of constraint space 

Table 2.2: Literature Review on purely continuous Parametric Programming Tech- 

niques for static problems A. 

mixed discrete and continuous optimization decisions are outlined in Table 2.4. One 

of the most promising techniques for multiparametric quadratic programming and 

mixed integer quadratic programming is the algorithm of Dua et al. (2002b) where 
the exact solution of the optimization problem is obtained as a function of the 
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Authors I Theory development 

rnp-Non Linear Programming ... Continue... 

Dua et al. (2002b) Quadratic objective linear constraints (mp-QP) 

Use sensitivity analysis from 

Fiacco and Kyparisis (1986) to get the expressions. 
Convex assumptions no linearization 

Tondel et al. (2003) mp-QP, Exploit the relation between polyhedral critical regions 

and sets of active constraints to improve the off-line 

computation time of the explicit solution of Dua et al., (2002b). 

Berkelaar et al. (1999) QuadraticlLinear complementarity Program p-QPILCP 
Use maximally complementarity conditions of 
interior point methods 
to characterize complete parametric region 
key features: Pivot step as in LP for switching basis. 

Use optimal basis identification/ 

optimal partition identification 

Zafiriou (1990) Quadratic programs. Obtain solutions 
for different sets of active constraints. 

Fiacco and Ishizuka, (1990), Convex problem. Sensitivity analysis around optimal. 
Fiacco and Kyparisis (1988) Linearizations to obtain expressions. 
Benson (1982) Non-convex problem. 

convex over and under estimators 

Table 2.3: Literature Review on purely continuous Parametric Programming Tech- 

niques for static problems B. 

parameters. No linearizations or approximations are necessary (as in Dua and Pis- 

tikopoulos, 1999a; Dua et al., 2002a; Fiacco and Kyparisis, 1998) and the method 
does not require the complete enumeration of all the active constraint combinations 
(as in Zafiriou, 1990) to derive the analytical solution. 

Drawing now our attention to optimal control problems, most of the work focuses 

merely on sensitivity and stability analysis in a neighborhood around the optimal 
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Authors I Theory development 

mp-Mixed Integer Linear Programming 

Acevedo and Pistikopoulos (1996) Modified branch and bound 

Acevedo and Pistikopoulos (1999) Comparison procedure between 

parametric solutions 

Ohtake and Nishida (1985) B&B algorithm for p-MILP 
LB: relaxed integers, UB fixed integers 

No formal comparison procedure 

Dua and Pistikopoulos (2000) Decomposition between 

Pertsinidis et al. (1998) (m)p-LP and MILP 

Crema (2002) mp-ILP: iterate between an MILP free 0 

and an ILP with fixed 0. 

Stop when no improved realization is found 

mp-Mixed Integer Non Linear Programming 

Dua and Pistikopoulos (1999) Convex systems 
Iterate between an mp-NLP and a MINLP 

Acevedo and Pistikopoulos (1996) Convex systems 
Pertsinidis et al. (1998) Iterate between a (m)p-NLP 

Papalexandri and Dimkou (1998) and a (m)p-MILP 

Dua and Pistikopoulos (1999) 
11 

Table 2.4: Literature Review on mixed integer Parametric Programming Techniques 
for static problems 

point. In that sense, the adjoint or co-state variables provide a straightforward mea- 

sure of the derivative of the optimal conditions with respect to the state trajectory 
(Babad and Vinter, 1993). Several researchers move a step forward determining the 
dependence of the optimal conditions as a function of model parameters included 

in the model dynamics and constraints. Tables 2.5 and 2.6 summarize the most 
important works on sensitivity analysis and parametric programming on infinite di- 

mensional dynamic optimization problems. Most of the approaches encountered in 

the literature do not attempt to derive systematically a complete mapping of the 
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optimal control solution as a function of the parameters, by partitioning the com- 

plete space of the parameter variations into critical regions. The work of Gugat 

(1999) is based on complete discretization of the control and the state space. This 

technique is subject to numerical inaccuracies due to the finite representation of an 
infinite dimensional problem and may also result in large-scale problems for a dense 
discretization. Contrary to that, the approach of Poore (1996) solves directly the 

infinite dimensional parametric optimal control problem but its complexity restricts 
the method to low, usually one-dimensional parametric spaces. 

Authors Algorithm features 

Poore (1996) Infinite dimensional problem. 
Similar to optimal control. Obtain optimal 

conditions as plecewise continuous functions of parameters 
Identify regions of optimality using bifurcation theory. 

Restrictive conditions apply for using this method. 
Does not account for path constraints and high order dynamics. 

No utilization of parametric programming techniques. 

Gugat (1999) Semi-infinite optimization. Similar to optimal control. 
Complete discretization. Fixed grid density for perturbations. 
Apply parametric programming on discretized system. 
Assumption that discretization density 

does not change with perturbations. 
Only neighborhood around optimal considered 

Table 2.5: Review on Parametric Programming in Dynamic Optimization 

2.2 Multiparametric Quadratic/ Linear Program- 

ming 
An efficient algorithm for the solution of multipararnetric quadratic programs (mp- 
QP) is outlined in this section. The algorithm was recently developed by Dua et al. 
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Authors Algorithm features 

Ito and Kunisch (1992) Optimal control. Inequality constraints Linear Dynamics. Derive 

functions of control, state and adjoint variables with respect to 

problem parameters. 

Diehl et al. (2002) On-line Dynamic Optimization. Use derivatives of objective and 

constraints with respect to parameters to derive a perturbation 

manifold. Use it as an approximation to the dependance of the 

optimal conditions. Not complete profile of optimal conditions 
in terms of parameters 

Dontchev et al. (2000) Optimal control. Solution stability under perturbations. Ex- 

pressions for neighborhood around the optimal solution. Do not 

consider range of variations 
Buskens and Maurer Optimal control. Detailed sensitivity analysis of optimal solution. 
(2000) Use Ist and 2nd order Taylor expansion. Find sensitivity of 

adjoints and states. Employ SQP methods. No exploration of 
full parameter space 

Malanowski and Maurer Sensitivity analysis of non-linear optimal control problems. 
(2001) Compute derivatives of optimal conditions as a function of 

Augustin and Maurer parameters. Problems with high order path constraints 
(2001) 

Solis-Daun et al. (1999) Stability of a dynamic system subject to uncertainty. Optimal 
feedback control as function of parameters. No constraints in- 

cluded. Cannot be used for range of variations 
Alt (1991) Optimal control. Objective: stability of optimal solution Con- 

straints included. Subject to perturbations. Restricted to ne - 
borhood around optimal 

Table 2.6: Review on Parametric Programming/ Sensitivity Analysis in Dynamic 

Optimization 

(2002b) and is based on general nonlinear parametric programming and sensitivity 

analysis theory (Fiacco, 1983). This mp-QP algorithm will be used extensively as 
a component of a generic multiparametric dynamic optimization framework that is 
discussed in subsequent chapters. The general form of a multiparametric quadratic 
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program is as follows: 
A 

0(0) = minfLi + L2U + L30 + 1UT L4U + OT L5U + 10T L60} (2.3) 
u22 

S. t. Glu < G2+ G30 

where u, 0 are the continuous optimization variables and the parameters as defined 

in equation (2.1). Matrices L4,5,6, GI, 3have the dimensions Nu x N, No x N., No x 
No, qxN, qx No respectively, whereas vectors L2,3, G2 have size N, No, q respec- 
tively. L, is a constant scalar. Matrix L4 has to be symmetric positive definite; if 

it is not symmetric it can be converted to a symmetric one by the transformation 
L4 = (L4 +L')/2 without loss of generality. The multiparametric quadratic opti- 4 
mization approach described here requires the removal of the bilinear terms O'L5U 

from the objective. This is achieved via the transformation z=u+ L-'L To that 45 

yields the following formulation: 

ý(O) = 1,1 + 7TO + jOTL 0 J3 .5+ minILTZ + ! 
ZTL4Z} (2.4) 

z22 

S. t. Olz < G-2+ G30 

where 

Li = Li, L2 = L2, 

L5 = L6 - L5L-'L T, f3T =LT -L 
T L-lL T (2.5) 

453245 
L4 

= L4 
9 

01 
= Gi, 

02 
= G2,03=G3+GlL-'L T 

45 

The first order Karusch - Kuhn Tucker optimality conditions for problem (2.4) 

are: 
-T L4 -z+ L2+G, 0 

0(01*Z-02-03'0) =0 (2.6) 

pi k 0, i=l,... q 

where PE Rq are the lagrange multipliers of the inequality constraints of problem 
(2-4) and 0 denotes element by element multiplication between two vectors. The 
basic sensitivity theorem (Fiacco, 1983) for quadratic programming problems of the 
form (2.4) is stated as follows: 
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Theorem 2.1 Let 0, be a vector of parameter values and (z, pj a Karusch - Kuhn 

Tucker critical point of (2.4), where p is the non-negative lagrange multiplier of 
the inequality constraints and u, a feasible point for (2.3). Also assume that: (i) 

strict complementarity slackness (SCS) holds; (ii) the binding constraint gradients 

are linearly independent (LICQ: Linear Independence Constraint Qualification); and 
(iii) the second order sufficiency conditions (SOSC) hold. Then, in a non-empty 

region in the 0- space, there exists a unique, affine function [z(O), P(O)] satisfying 
the optimality conditions (2.6). 

The Proof of the theorem can be found in (Fiacco, 1983), whereas in (Dua et al., 
2002b), it is shown that the affine function of the optimization variables and the 
lagrange multipliers in terms of the parameters is the following: 

Z(O) 
-M-'A(, C(o - 0c) + Z(O, ) 

p (0) 

1c 

P(oc) 
where 

L4 GT... GT 11 Iq 

mc -plGil - V, 

-Vq 

T 
YC 

=I Nu ItIG31 ... jtqG3q 
I 

0=0, 

Vi = Gliz(Oc) - 
G2i- G3iOc; i=1, --- 

(2.7) 

where N' is a null matrix of dimensions N., x No. Note that the matrices M,, Y,: 

are not a function of 0 or z but depend on the particular value of the parameters 

and the optimization variables at [0 z] = [0, z, ]. M, is always invertible if the 

assumptions of theorem 2.1 hold, hence function (2.7) is unique. The boundaries of 
the critical region in the parameter space where (2.7) applies are derived as follows: 

* The condition for feasibility of problem (2.3) for 0E CR, is translated math- 

ematically to the constraint: 
OlZc(O) 

:5 
62 + 630 (2.8) 

where GI 7 G21 G3 correspond to the inactive inequalities for the optimal point 
(0, Z, J. 
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9 The condition for optimality of (2.3) is translated to the inequality: 

A, (0) >0 (2.9) 

The joint system of inequalities (2.8), (2.9) characterize the boundaries of a 

region CR': C 

CR R= fÜlZc(0) :5 
Ü2 + Ü309 Pc(0) ý: 0, CR IGI (2.10) 

where CR" represents the set of linear inequalities defining the space of pos- 

sible parameter variations. 

A compact representation of CR, is generated by removing the redundant inequal- 

ities: CR, = AICR'}, where A is an operator that removes the redundant con- C 
straints. Next, the remaining region is defined as proposed by Dua and Pistikopoulos 

(2000): 

CRrest = CR IG 
- CR, 

A new feasible point [z(Oa), p(Oa), Oa] is then obtained in region CR"" and a new 

affine function and its corresponding region are identified using the correlations: 
(2-7), (2-10). The algorithm terminates when there are no more regions to explore. 
An outline of the mp-QP algorithm is shown in Table 2.7. The solution of the mp- 
QP comprises a set of affine profiles of the form of (2.7) for all the feasible 0E0 and 
a partition of the parameter space to convex polyhedral regions, where each affine 
function holds. Each region is defined by a finite number of hyperplanes described 
by linear inequalities. Following the transformation (2.5), the general mathematical 
form of the solution in terms of 0, u is: 

0+B,; if CR' -0+ CR' <0 for c=1,... N, (2.12) 
cc- 

where N, is the number of regions in the parameter space and matrices A, CRc and 

vectors B, CRc are determined from the solution of the parametric programming 

problem. The complete mapping of the optimization variables in the parameter 

space features therein, a set of piecewise affine expressions. It readily follows that 
the mapping of the objective function in the parameter space has a piecewise convex 
quadratic form. 
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Step II In a given region CRIG fix the parameter vector at a feasible point 0=0, 

and solve (2.3) to obtain a KKT point [u(Oc), p(Oc)] 

Step 21 Compute M, X, and from (2.7) 

and then derive the expressions [u(O, ), tt(O, )) 

Step 31 Form a set of inequalities as described in (2.10) 
R 

characterizing the region CRc 

Step 41 Remove the redundant inequalities from this set and define the 

corresponding CR, 

Step 51 Define the rest remaining region, CRIIII as given in (2.11) 

Step 6 If no more regions to explore, go to the next step, otherwise set 

CRIG = CRrestgo to step 1. 

Step 7 Collect all the solutions and unify the regions that are having the same 

solution to obtain a compact representation of the regions. 

Table 2.7: mp-QP algorithm 

Remark 2.1 In the case where the elements of matrix L4 are all zero, problem 
(2.3) reduces to a multiparametric linear program (mp-LP) since the objective and 
the constraints are linear and separable with respect to the parameters and the 

optimization variables. The same algorithm as in the case of the multiparametric 
quadratic program can thus be used to obtain the solution of the mp-LP. The map- 

ping of the optimization variables in the space of the parameters is a piecewise affine 
(2.12) function. Note that the results on mp-LP have also been reported by Gal 

(1993), where a different method based on a modification of the simplex algorithm 
for linear programming is used to obtain the corresponding parametric profile. 

Remark 2.2 The complexity of the off-line solution of the multiparametric quadratic 

program depends on the solution of the quadratic program in each region, the num- 
ber of regions and the number of redundancy tests. The most crucial of these 

factors is the number of regions that at the worst case grows exponentially with 
(i) the number of constraints, (ii) the dimension of parameters and (iii) the dimen- 

sion of optimization variables. The complexity of the other two factors increases 

polynornially with the number of parameters, number of optimization variables and 
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number of constraints. 

Remark 2.3 Tondel et al. (2003) developed an algorithm for mp-QP problems 
based on the approach described in this section. Their algorithm distinguishes the 
type of hyperplanes defining each region CRi to inactive constraints and active con- 
straints. This characterization readily identifies the boundaries and active constraint 
sets of the neighbouring regions. This method obviates the need for an LP and QP 

solution for finding the interior point and the active sets of the subsequent critical 
regions providing savings in the off-line computation time. 

2.3 Multiparametric Mixed Integer Quadratic/ Linear 

Programming 

The summary of an algorithm for the solution of quadratic optimization problems 
involving discrete and continuous optimization decisions is presented here. The 

algorithm was developed by Dua et al., 2002b as shown in Table 2.4. The major ad- 

vantage of this method over other multiparametric non-linear algorithms is that the 

solution is not obtained via multiple consecutive approximations of the non-linear 
profiles unlike other inp-NIINLP algorithms also reported in Table 2.4. Thus, the 

computation is dramatically reduced while the structure of the resulting parametric 
profile is much simpler. The discrete decisions in the quadratic optimization prob- 
lem are represented using integer usually binary variables resulting in the following 
formulation: 

AA1f 

(U)T (O)TL50} min L, + L2U + L36 + L4U + 
U'S 2 

0> OIU + 026 + 030 + 04 (2.13) 

S 10,1}N6 
i 

Problem (2.13) is a parametric program that involves integer and continuous vari- 
ables, has a quadratic objective and linear constraints, i. e. it is a multiparametric 

mixed integer quadratic programming problem (mp-MIQP). The newly proposed 
algorithm for such problems (Dua et al., 2002b) unfolds as follows: 
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Step I Define an initial region of the parameter-space CR, pertaining to the 

range of parameter variations and an initial integer solution 3 via solving a deter- 

ministic optimization problem where the parameters are treated as extra continuous 

optimization variables. 
Step II (mp-QP Subproblem) For each region with a new integer solution, 3: 

(a) Fix S in the mp-MIQP problem a and recast it as a multiparametric quadratic 

program (mp-QP) problem, (b) from the solution of the mp-QP (Dua et al., 2002b) 

obtain a set of parametric upper bounds ý'(O) and associated critical subregions 
CR, C=1,... N, that subdivide the original space CR,. 

Step III (Master Subproblem) For each subregion CRc 
,, 

formulate (2.13) as an 
MINLP master problem by (i) treating the binaries ý the optimization variables u 

and the parameters 0 as bounded optimization variables, (ii) introducing an integer 

cut, S :AS to avoid repetition of the integer solutions, and (iii) introducing a para- 

metric cut, ensuring that no solution is worse than the upper parametric bound. 

The parametric cuts are inequalities of the form: 

AA (U)T (O)TL50} 
_ 

ýU(O) L, + L2u + L3S +2 L4U +0 (2.14) 

If the MINLP problem is infeasible go to step IV. Otherwise, the solution of the 
MINLP provides a new integer solution 3, for the subregion dRr, where -r is the 

number of iterations that have taken place in region CRc. Return to Step II. 
C 

Step IV (Convergence). The algorithm terminates in a region where the solution 

of the MINLP subproblem is infeasible, i. e. 4xjý(O) :5 ýV(O). The solution consists 
of an envelope of the current upper bounds ýý(O), integer solutions 8,, profiles 
for the optimization variables u(O) and the corresponding polyhedral regions C^R'crq 

7=1, ... 9T where these functions are valid. 
Step V (Redundancy Test). The number of integer solutions and parametric 

profiles in each particular region should be originally equal to the number of itera- 

tions performed in that region T. However, it has been shown (Dua et al., 2002b) 

that some of the profiles from the set can be eliminated without affecting the 
final parametric solution. This is performed via a non-linear redundancy test that 
involves solving recursively a set of MINLP problems. The remaining parametric 
profiles per region are denoted with the index o, = where E <- 7. 
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Note that in general, a distinct number of integer scenarios hold in every region. 
Thus, a finite number of optimization variable functions and objective expressions 

A 

ft'(0), 00'(0) aE are derived for each region, pertaining to each integer real- 
ization. Then the optimum solution 0 is selected on-line, pertaining to the lowest 

profile of the objective expressions 0'5(0). Mathematically, the explicit parametric 
solution of problem (2.13) is represented as follows: 

U, = AM +3=J, c 
minlo'(0)10 CRc 

u 
.TA1ý2 

whereCR, (O) = fCR, -O+CRc: 50forc=,,... Nc j 

where a pertains to all the integer solutions that are valid in dR7' and & denotes 
c 

the optimal one implemented to the system. 

Remark 2.4 Similar methodologies (Dua and Pistikopoulos, 2000) have also been 
developed for multiparametric mixed integer linear programs (mp-MILPs) that are 
similarly formulated in the case where matrix L4 is null. 

Remark 2.5 In general, the optimal objective function is a discontinuous piece- 
wise quadratic expression of the parameters, the candidate points of discontinuity 
being the critical region boundaries where these expressions are valid. The optimal 
mapping of the continuous optimization variables in terms of the parameters is a 
discontinuous piecewise affine function. The candidate points of discontinuity for 

the parametric profiles of the optimization variables are on the region boundaries 

and on the interior of the regions where overlapping between two or more integer 

solutions occurs. 

2.4 Multiparametric dynamic optimization -A generic 

problem definition 

The general mathematical formulation of a dynamic optimization problem is as 
follows: 



Chapter 2 43 

min 0('id(tf)ý Xd(tf)5 x, ý(tf), v(tf), d, 0 (t), tf ) 
Xd(t), Xa(t), V(t), d 

t=tf 

+1 L(ýid(t), Xd(t), x�(t), v(t), d, O(t), t)dt (2.16) 

t=to 
S. t. 0= fd(ýd(t)iXd(t)iXtL(t)iv(t), d, O(t), t) (2.17) 

f�(Xd(t), x�(t), v(t), d, O(t), t) (2.18) 

0= fo(xd(to)1-, bd(to)ex, (to), v(to), d, O(t�), t. ) (2.19) 

0> g(id(t), xd(t), xe, (t), v(t), d, O(t), t) (2.20) 

0= Oe(ýd(ti), Xd(ti), xct(ti), v(ti), d, ti) (2.21) 

0 >- e'(ýd(ti), Xd(ti), x�(ti), v(ti), d, O(ti), ti) (2.22) 

i=i,... Nf 

t, > <t<tf 

Where Xd E Xd g Rnd, Xa E, Xa C Rna are the vectors of the differential states 
(e. g. enthalpy and concentration in a reactor) and the algebraic variables (e. g. 
pressure, temperature) respectively. The vectors vEVC R"'; dEDC Rnd 

represent the time varying (e. g. flowrate, heat duty, voltage of an electrical device) 

and the time - invariant (e. g. column diameter, reactor volume) input manipulating 

variables respectively. In this sequel, v are termed as the control variables that can 

be readjusted during the system operation and d as the design variables that remain 

fixed during the evolution of the plant. The inequalities g are the path constraints 

that are required to be satisfied during the complete time horizon [tý, tf ], for instance 

the maximum allowable temperature in a Fluidized Catalytic Cracking unit that 

should not exceed the melting point of the reactor material. Whereas, the point 

constraints 0 apply only at particular points within the time horizon, for example 

restrictions on the product quality at the end of a batch process can be viewed as a 

point constraint. The objective function can be the annual profit or cost of a plant 

or an environmental or operational performance index. A review of the solution 

methodologies for dynamic optimization is beyond the scope of this chapter and it 

can be found in Sargent (2000), Kraft (1994) and Biegler et al. (2002). 
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Multiparametric dynamic optimization (mp-DO) aims to derive the explicit com- 

plete mapping of the optimal conditions, i. e. the optimal objective function value 

and the optimal profiles of the optimization, state and algebraic variables in terms 

of the parameters 0: 

.ý= i(o), -; " = i"(0), ý= ý(O), d= d(o), ý= ý(O) (2.23) 

Currently there is no method for solving generically mp-DO problems. The main 

reasons for that are the following: 

For dynamic optimization problems the objective function, the process param- 

eters and the optimization variables are a function of the process evolution over 

time. Thus, another dimension is introduced leading to significant complexi- 

ties. 

2. The presence of path constraints introduces non-linearities giving rise to a 

non-linear parametric program (mp-(MI)NLP) even if the dynamic system is 

linear. 

3. In mp-DO the mapping of the objective function and the constraints on the 

optimization variables and the parameters is only known implicitly via the 

dynamic system. However, to apply current static parametric programming 
techniques the explicit functional form of the the optimization problem is 

required, which poses a limitation of this technology for the mp-DO solution. 

2.5 Conclusions 

In this chapter, the general parametric programming problem has been defined. 

Special cases of this problem were formulated and various techniques for addressing 

each one of the cases were mentioned. Two parametric programming cases were 
discussed more thoroughly (i) the first one is parametric quadratic programming 
(mp-QP) and (ii) the second one multiparametric mixed integer quadratic program- 

ming (mp-MIQP). The methods developed cannot be applied to generic dynamic 

optimization problems due mainly to the consideration of the time dimension in the 

dynamic plant description and in the system constraints. The current algorithms for 
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parametric dynamic optimization problems are applied mostly to single parametric 

systems with a specific problem structure resulting in complex solutions. 
In the next chapters, we develop two novel algorithms for linear quadratic mul- 

tiparametric dynamic optimization problems involving purely continuous decisions. 

The first algorithm is based on a direct sequential approach whereas the second 
is based on a variational approach. Our algorithms address directly all the issues 

discussed here and pave the way for the solution of more general complex mp-DO 
formulations. 



Chapter 3 

A direct Approach to 

Multiparametric Dynamic 

Optimization 

This chapter presents a new theory and an algorithm on multiparametric dynamic optimization 

for constrained linear quadratic optimal control problems using a direct approach. The algo- 

rithm is computationally efficient and provides the complete mapping of the problem optimal 

conditions in the space of a set of independently varying process parameters. The key features 

of the approach are demonstrated through two process examples. 

3.1 Problem Formulation of mp-DO 
The starting point for the development of a multiparametric dynamic optimization 
theory is the formulation and description of the problem that we aim to solve. The 

features of the problems we are addressing are the following: 

The dynamic process is represented by a set of ordinary differential equations 
(ODEs), linear with respect to the state variables, the control input variables 

and the set of parameters. 

9 The path, endpoint and interior point constraints are linear with respect to 
the control variables, the states and the parameters. 

46 
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* The objective is a linear or quadratic function of the problem variables and 
parameters. 

9 The initial conditions of the dynamic system are assumed to be linear functions 

of the problem variables and parameters. 

The general mathematical formulation of the problem is as follows: 

1X(tf)TplX(tf)+pý 'V(tf)TSIV(tf) 
+ STV(tf) min Tx(tf) +2 

x, v 22 
tf 

+ 
J[ 1 

X(t)TQ, X(t) + QTX(t) +1 V(t)TR, v(t) +R TV (t)]dt 
2222 

to 

S. t. ý(t) = Alx(t) + A2V(t) + wlO(t) (3.1) 

x (tj = x, (0, v) 
0> 9(X, V, 0)=Cl*X(t)+C2-v(t)+FI-O(t)+bi 

0> 09(x, v, O)=D,. x(ti)+D2. v(ti)+F2.0(ti)+b2 

t, <t< tf 

i= Oý 11 2,.. Nf 

In this formulation the target set point (Xref 
i Vref) corresponds to the origin for 

simplicity, otherwise the terms x(t), V(t) in the objective would be replaced by [x(t)- 

Xref (t)] and [V(t) - Vref (t)]. The time horizon tf of this problem is considered 
finite. The point constraints are imposed at NI discrete instants within the horizon. 

A,, A2, W1, C1, C2, F1, D1, D2, F2 are time invariant matrices and bl, b2 are vectors 

of appropriate dimensions. Q1, P1, R1, S, are symmetric positive semi-definite 

matrices and similarly P2, S21 Q2, R2 are vectors of appropriate dimensions. The 

above formulation is also valid for systems that are described by a linear differential 

algebraic equation system (DAE) of index one. Those systems with simple matrix 

multiplications can be transformed to a system comprising of linear ODEs. 
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3.2 Solution Procedure - Theoretical Developments 

for mp-DO 

Problem (3.1) is an infinite dimensional parametric dynamic optimization problem 
(Vassiliadis et al., 1994b). The method described in this chapter for tackling this 

problem is a direct sequential approach that relies on transforming the problem 
into a finite dimensional parametric programming problem. Then the resulting 

parametric program is solved with newly-established algorithms for mapping the 

optimal conditions to the parameter space (see chapter 2). The principle in this 

approach is to consider the optimization problem only in the reduced space of the 

control variables (Sargent and Sullivan, 1977; Vassiliadis et al., 1994). For that 

purpose the state variables that appear in the constraints and the objective are 

expressed in terms of the input variables via the integration of the dynamic system. 
Here, this mapping of the states in the control and parameter space is obtained by 

solving explicitly the linear ODE system in (3.1). The solution of this system is 

exact and is given by the following analytical expression: 

t 

x(t, V, 0) = eAl(t-t, )x, +e Alt 
1 

e-Alt (A2V(t) + WO(t»dt (3.2) 

to 

e Alt is the exponent of a matrix that is defined through eigenvalue or other 
decomposition methods (Golub and Loan, 1990). Equation (3.2) replaces the infinite 
dimensional ODE system in (3.1). However, the integrals in equation (3.2) remain 
to be evaluated. For that purpose it is necessary to assume a particular profile for 

the control variables and time invariant parameters. 

3.2.1 Control Vector Parameterization 

Control vector parameterization (CVP) is a widely used numerical solution technique 

for dynamic optimization problems. The most common form of parameterization 
is to assume a piecewise polynomial function for each control variable over a finite 

number of time elements (Rosen and Luus 1995; Vassiliadis et al., 1994b). For 
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convenience low order Lagrange polynomials are employed. Thus, over the element 
i the j" control variable is written as: 

mj+l 
v. ý 1,..., n,; 

1; if M=O (3.3) Ott (t) 

, 0(ý, 
mt T"i 11 

Ttj Tdi 
if M>1 

&1=1, tli4t 

Vt E [ti, ti+ll 

tj = 71j, ti+l = Tmi; i Nt, 

where N, is the number of time elements originating from the parameterization. 
Thus, through (3.3) the control variables are expressed in terms of a finite number 

of time-invariant variables utji, to be determined by the optimization. The variables 

u are termed as control elements. Note that this form of parameterization also 

captures the case where the control variables are constant with time, i. e. M-0, 
j N,, - 1, vi = uji, tj = tý tj+j = tf. In order to derive the explicit dependence of the 

states on the resultant time-invariant control elements equation (3.3) is substituted 
into (3.2) and the term that contains the control variables is integrated analytically 

over time. The resulting equation depends on the order M of the polynomial. 

3.2.2 Parameter representation 

If the parameters pertain to the current states a simple time-invariant represen- 
tation of the parameters suffices. However, when the parameters correspond to 

uncertainties a more detailed representation is necessary, that is tightly linked with 
the physical meaning of the uncertainty. Despite the fact that in typical process ap- 

plications the uncertainties are not precisely characterized, an adequate description 

of the uncertainty type can be developed. Usually, slowly varying disturbances are 
treated as steady-state variations (Chenery and Walsh, 1998), i. e.: 

Offl = O(to) = Oo; VtE [to, tf 1 (3.4) 

An example of a steady-state uncertain variation is the catalyst activity that com- 
monly deteriorates over a time scale much larger than the system time constant. 

0ýý (L 

ap, )t 
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Time varying uncertainties are classified in general to three different types (Seborg 

et al., 1989): 

* Sudden, sustained or unsustained input changes are represented by step and 
rectangular disturbance variations. A general mathematical description 

of these variations involves piecewise constant parameterization. The uncer- 
tainty is then fully characterized by the amplitude of each variation and the 

time when the transition occurs (considered fixed), i. e.: 

O(t) = ýi VtE [ti, ti+ll (3.5) 

Relatively slow varying uncertain inputs that move from one state to another 

with a roughly constant time slope are approximated in terms of a ramping 
function. A general representation of that behaviour is achieved by represent- 
ing these disturbances as piecewise Lagrange polynomials as in (3.3). Similar 

parameterization is done for parabolic or cubic time profiles. The uncertain 
time-varying vector is then replaced by a finite set of time-invariant uncertain 
parameters, i. e. O(t) =_ {0j, i=1,... Nj}. 

Processes are usually subject to uncertain inputs that exhibit periodic (e. g. 
diurnal, annual) fluctuation. A typical example is the temperature of cool- 
ing water that varies according to oscillations in ambient conditions. These 

cyclic time-varying disturbances are commonly approximated by single or lin- 

ear combinations of sinusoidal functions (Kookos and Perkins, 2001). The 

, parameterization of this uncertainty type is considered here in terms of the 

amplitude and the mean value of the oscillation. 

3.2.3 Problems without path constraints 

After the control and the parameter expressions, described in § 3.2.1,3.2.2, are sub- 
stituted in (3.2) the state variables are expressed as a function of time and as a 
linear function of the time - invariant control elements uE RNu, Nu = n,, (M + 1)N" 
and parameters ýE6. For the special case where we consider piecewise constant 
parameterization of the controls and the parameters the state profile is given by the 
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following equation: 

For ti : ý- t< ti+,, ti < t; 
i-I 

X(t) =e 
Al (t-t, ) Xo +E [(eAl eAl ('-'-'))A, lA2Uill (3.6) 

il=l 

I)AI lA2Ui + [(e Al(t-t,,, _, ) _e 
AI(t-t,,, ) )AI 'Wlji, ] 

+(eAl(t-t,, ) - I)Aj 'Wld,, 

where the index i is used for the time intervals in the parameter discretization to 
distinguish them from the intervals in the control discretization. 

Similar expressions to (3.6) are obtained for other representations of control and 
uncertainty profiles, but are not shown here for brevity. Once the derived state 

profile (e. g. equation (3.6)) is substituted in (3.1) the problem is transformed to the 

equivalent finite dimensional formulation: 

U, j)Tpl X(. ) + p2TX(. ) o(0) = min ix(tf, 
u2 

+IV(U, tf)TS, V(. ) + S2TV(. ) 
2 

tf 

+f [IX(t, U, j)TQI X(. )+ Q2 Tx(. )]dt 2 
to 

tf 
+f [IV(U, t)T R, v(. ) + R2 T 

v(. )]dt (3.7) 2 
to 

t. D, -x (ti, u, j) + D2 - u(u, ti) + F2 - 0(6, ti) + b2 <0 

The main computational difficulty in problem (3.7) is the evaluation of the integral 
terms in the objective. This calculation is accomplished here by matrix manipula- 
tions based on eigenvalue decomposition. This method is valid provided matrix A, 
is non-singular and has distinct eigenvalues (Gajic and Qureshi, 1995). Once this 

computation is completed the resulting problem is expressed as follows: 
1T 

min ý ILI + L2U + L, 90 +u L4u + OTL5U + 6TL6#} (3.8) 
u 

S. t. Glu < G2 + Gg# 

where, L_ and G_ are explicit functions of the original dynamic model, the con- 
straints and the control and parameter discretization order over time. For example, 
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G, for a piecewise constant parameterization of the optimization variables is given 

by the following formula: 

G, = D, - 

(, A(t1-16) _. 
A (t I -I I)) (e A(II-ti) 

_ 1) 0 ... ... ... 0 

AONI -td) A(INI -tj A(tNf 
eA(tNI -t 

... ... (e AONI -114. ) 

- 
(e _c... (e 

(2)AI'A2} 

D2 0 
... 

0 

0 D2 
... 

0 
(3.9) 

00... D2 

where, i 1, --- Nf are the points where the interior constraints are imposed 

and i=1, N, are the discretization points of the input variables. Here we 

assume that t,, 
-, :5 tj :5t,,. With 0 we denote element by element multiplication 

in a matrix. Similar expressions to (3.9) are readily derived for the other matrices 
in (3.8). Problem (3.8) corresponds to a multiparametric quadratic programming 

problem (mp-QP) where ý are the parameters and u are the decision variables. An 

efficient algorithm for mp-QP problems is described in chapter 2. To apply this 

algorithm problem (3.1) must satisfy the following necessary conditions: 

The matrix consisting of the second order sensitivities of the objective 
function with respect to the control variables has to be positive definite. 

The Jacobian of the active constraints Vg" with respect to the control vari- V 
ables is of full rank. Namely, its rows are linearly independent. 

e The vector of Lagrange multipliers of the active constraints consists of strictly 
positive elements. 

The solution of the mp-QP provides expressions for the optimal solution of the 

minimum value problem as an explicit function of the parameters. These expressions 
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have the following form: 

Ü(O) = A, -0+B,; if CRJ' -0+ CR, ' :50, c=l,... N, c- 

where N, is the number of regions in the parameter space. The above solution 
methodology is valid provided no path constraints are considered in the original 
multiparametric dynamic optimization problem (mp-DO) (3.1). An extension of 
this method that incorporates these constraints is described in the next section. 

3.2.4 Problems with Path Constraints 

Consider the mp-D 0 problem of the form (3.1), including the path constraints. After 

the aforementioned control and parameter discretization is applied, the problem is 

modified as follows: 

1 
UT 0(0) = min-IL, +L2u+L, 90+ 

L4 u+ 6TL5 u+ OTL6j} 

u2 
S. t. G, u< G2 + Gqj 

C, x(u, 
Ü, t) + C2v(u, t) + bi + F, O(j, t) :50 

Note that the states x are a linear function of the uncertain parameters and the 

control elements but a non-linear function of time. The same holds for the manip- 
ulated variables v and the parameters 0. Thus, the presence of path constraints 
even in the case of linear dynamics causes severe non-linearities (Biegler and Rawl- 
ings, 1991; Mayne, 1997) making impossible the direct application of steady state 
quadratic and linear programming techniques. Note also that problem (3.11) is a 
semi-infinite program since the constraints have to be satisfied for every t in the 
infinite set defined by t, :5t< tf (Hettich, 1978). 

The complex characteristics of problem (3.11) classify it as a non-linear paramet- 
ric program which in general is difficult to solve. Our alternative method, (based on 
Gritsis (1990) and Mayne et al. (1994)) restricts the maximum value of each con- 
straint over the time domain, by incorporating an interior constraint at the instant 

when the maximum violation occurs. Thus, all the constraints are guaranteed to be 

satisfied throughout the complete time domain. This is equivalent to the following 
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bilevel programming problem: 

0(0) = min ! ILI + L2 U+ L30 +uTL -TL5u + OTL6 

u24u+0 

S. t. Glu < G2+ G3j 

IP 0) <0 (3.12) 

IP (u, 6) = max1C2 pv(u, 
t) + C, 

px(u, 
6, t) + bi 

p+F, pO(j, 
t)} 

p, t 
t,, <t< tf 

where p is an index that runs over all the time-dependent constraints and C, p, C2 p, 
F, p, b, , are the rows of the corresponding constraint matrices and vectors. Note 

that the maximization problem identifies the maximum violation over time that is 

then incorporated as an extra constraint. Problem (3.12) is decomposed into two 

subproblems via a two stage algorithm similar to the ones developed by Grossmann 

and Sargent (1978) for design under uncertainty. The decomposition in our case is 

performed as follows: 

0. Set the iteration counter n=0. Consider an initial guess of time instants 
t, : ý- tk < tf ,k=1, ---K. 
1. Problem (3.1) is first transformed to an mp-QP by enforcing the path constraints 
only at the finite number of instants tk: 

A 

0(0) = min ! ILI + L2u + L. 
90 +uT L4 u+ OTL5 u+ OTL6 

u2 

S. t. Glu < G2+ G, 90 
C2V(Uitk) + CIX(Uij)tk) + bi + FjO(jtk) <0 

to: 5tk: 5tf k=l, K (3.13) 

2. The mp-QP problem (3.13) is converted to a structure similar to (3.8), that can 
be solved with recently developed techniques (Dua et al., 2000) provided the neces- 
sary conditions outlined in paragraph 3.2.3 hold. The solution will produce a set of 
critical regions CR, (j) = CR'j+ CR' <0 and a set of piecewise affine functions: CC 
ý(O) = AcO + B, in equation (3.10). 
3. Next, a feasibility test is performed to verify whether the resultant solution en- 
sures constraint satisfaction for every time point and every parameter realization in 
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the horizon of interest. This is achieved by solving the following constraint maxi- 

mization problem: 

q/ max =p 
p 

=p= maxIC2pv(u(O), t)+Clpx(u(O), O, t)+blp+FpO(O, t)} 
t 

S. t. CR'4 CR' <0 (3.14) 
cc- 

VO E E), t, <t< ti; 

This problem is still infinite dimensional since it has to be solved for every value of 
0 in the parameter domain. This difficulty is circumvented by performing simulta- 

neously a maximization over the parameter space and the time domain: 

max 
p 

wp= maxIC2,, V(U(j), t)+C,,, x(u(O), ý, t)+bl,, +FlpO(j7t)I 
t, j 

S. t. CR'j + CR' <0 (3.15) 
cC- 

tý ! ý, t< tf; 

The exact solution of problem (3.15) guarantees that no other value of 0 exists that 

produces a constraint value larger than the critical one T. Problem (3.15) involves 

global optimization of a non-linear constraint problem. By exploiting, however, some 

characteristics of the particular problem structure it is not necessary to use complex 

global optimization techniques. The linearity of the parameters j in problem (3.15) 

enables us to prove in Appendix A that the critical parameter values lie at the 

intersections of the constraints CR'j + CR' < 0. This implies that the critical CC- 
parameter values of problem (3.15) lie on the vertices of the regions: CR#) c 
1,.. N,, yielding the simplified formulation: 

max wp 
p 

wp= maxmaxIC2pV(U, t)+Clpx(u, ii, t)+blp+FpO(jl, t)I 
It 

S. t. CR'jl + CR' <0 (3.16) 
cc- 

t, :5< tf; p= 11 ... q; c=1, ... N, W1, I=1, ... 

where, L* is the number of all the vertex points. The maximization problem (3-16) 

over time is solved as a univariant unconstrained optimization problem, repetitively 



Chapter 3 56 

for all vertices ý1. Then the maximum constraints values =p out of all the vertices 
is selected. The solution of the NLP problem (3.16) when the dynamic system com- 

prises of two or less states is performed via symbolic enumerations to obtain the 

overshoot of the constraint profiles in the time or frequency (Heath et al., 2000) 

domain. The general solution method for higher order dynamics is based on a nu- 

merical integration method, The dynamic system is integrated over time via a BDF 

method (Brenan et al., 1989) to determine the actual state and constraint profile 
by using a multiple step - multiple order polynomial on each time instant. There- 

fore, once the integration is performed, the constraint profile (posed as objective in 

(3.16)) is represented within high precision by a piecewise polynomial of a particular 

order. For each integration element, where this polynomial is valid, the maximum 

constraint value is calculated and stored. Then the selected extremurn values of 

each element are compared and the maximum over the complete time-horizon is 

determined. 

Summary of step 3: 

1. Obtain the list of critical parameter scenarios that correspond to the region 

vertices. 
II. Solve the maximization problem (3.16) only with time as an optimization 

variable for each critical parameter scenario for all the critical regions. 
111. Store the maximum constraint values rup and the corresponding critical time 

points ip. (Only one time instant for each constraint). 
4. If wp :5e Vp (-= T< e), where c is a prespecified tolerance, then the optimal 

parametric solution is obtained. Otherwise set ic =n+1, K=K+1 and augment 

the time instant i that corresponds to the maximum constraint violation T to the 

set of interior point constraints tklk=l,... K = jtkjk=1, 
---K-1J}. 

Then go to step 1. 

A summary of the proposed approach is shown in Figure 3.1. Once the conver- 

gence criterion in step 4 is satisfied, within the tolerance e, the resulting parametric 

solution, obtained in Step 2, guarantees satisfaction of the path constraints over the 

time domain for all the parameter combinations. Hence, at the final mp-QP solution 
the optimal control elements are given as piecewise affine functions of the param- 

eters. These optimal control expressions are of a form identical to (3.10). Note 

that despite the fact that similar techniques to that summarized in Figure 3.1 have 
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Determine new critical 
time instants. 

Include in point constraints 

Initial guess for critical time instants 
of path constraint violation 

Solve mp-DO consisting only of 
point constraints. 

Obtain critical regions & 
control expressions 

Infeasible Solve Path constraint 
feasibility problem 

over the complete time horizon. 

Feasible 

Retain the solution of steps 1-2. 

Figure 3.1: Path Constraints treatment 

Step 1-2 

Step 3 

been used for infinite and semi-infinite programming problems (e. g. design under 

uncertainty) in this work its employment in multiparametric, dynamic optimization 
problems is reported for the first time. 

Summary of Algorithm 3.1 

Based on the above theoretical developments, the main steps of the proposed novel 

algorithm for multiparametric dynamic optimization are summarized as follows: 

Step 0 Consider a multiparametric dynamic optimization problem of the form of 
(3.1). Identify the control variables, the parameters and the path and point con- 

straints of the problem. 
Step 1 Define a particular control and parameter representation over time and solve 
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the system of ordinary differential equations in (3.1) in a matrix analytical form. 

The solution of the ODE provides explicit expressions for the states as a function of 

the control elements and the parameters. 
Step 2 Substitute the state expressions derived in Step 1 into the problem objective 

and constraints. 
Step 3 Apply the procedure described in Figure 3.1 for converting the time-varying 

path constraints to a finite number of interior point constraints. 
Step4 Express the objective and the constraints in terms of the control elements and 

the uncertain parameters. The resultant formulation represents a multiparametric 

quadratic programming (mp-QP) problem (3.13). 

Step5 Solve the mp-QP problem with existing methods (Dua et al., 2002)) and obtain 

explicit expressions for the optimal control elements and hence, for the optimal 

control profiles as a function of the parameters. 

Remark 3.1 The direct mp-DO algorithm 3.1 ensures convergence in a finite num- 
ber of iterations and guarantees optimality for the given time parameterization of 

the optimization variables and the parameters. The proof of the first statement is 

based on the theory described in Hettich and Kortanek (1993) that is outlined in 

Appendix B. The proof of the second statement follows from the uniqueness of the 

solution of a quadratic program. 

Remark 3.2 The original problem formulation (3.1) also applies in the presence of 

extra linear point equality constraints, since they are easily eliminated by removing a 

corresponding set of control variables. Linear correlations and restrictions applying 

on the uncertain parameters, such as bounds on feed temperature or correlations 
between different utility conditions, can be incorporated in the general formulation 

either as restrictions on the set 0 or as equality or inequality constraints in problem 
(3.1). Additionally, time-invariant design variables d can readily be incorporated in 

the formulation (3.1) as extra optimization variables provided they are linear and 

separable. 

Remark 3.3 A purely linear problem objective in (3.1) gives rise to a parametric 
program where only linear terms of the control elements and the uncertain param- 
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eters appear in the objective and constraints. Hence, instead of problem (3.13) 

a multiparametric linear programming formulation is derived that is solved with 

current techniques (Cal and Nedoma, 1972). 

Remark 3.4 The assumptions on non-singularity and distinct eigenvalues of the 
dynamic system matrix A mentioned in section 3.2 can readily be relaxed. Addi- 

tionally, the algorithm applies also in the case where the dynamic system matrices 

are time-varying A_(t), ttý(t), Djt), Fý(t). In these two cases, the computation 

of the necessary components for constructing problem (3.13) is completed alterna- 
tively, by integrating numerically the ODE system sensitivity equations (Rosen and 
Luus, 1991; Vassiliadis et al., 1999). 

For the case of a non-linear convex objective and non-linear convex constraints 
appropriate linearization techniques can be applied (Dua and Pistikopoulos, 1999) 

that approximate within a tolerance the optimal parametric solution. However, if 

the dynamic differential system is non-linear different techniques for convexification 
(Esposito and Floudas, 2000; Papamichail and Adjiman, 2001) have to be applied 
to obtain the parametric solution, that being the subject of future research. 

Remark 3.5 The computational requirements for the solution of the resultant mp- 
QP problem (3.13) grow exponentially with the number of control variables, param- 

eters and candidate active constraints (Dua et al., 2002b). In particular at the worst 

case the expression for the number of regions N,, g explored in terms of the number 

of path constraints and optimization variables is: 

Nq-1 

E k! (q K) k 

k=O 

n, -N,,. (M+I) 
qKq -iK (q - K)! 

where: N, =E (q K- ON! 
(3.17) 

i=O 

( 

where K are the overall iterations between the mp-QP and the feasibility problem. 
As the number of critical regions is a measure of the solution complexity, (3.17) pro- 
vides the link between the complexity and the system characteristics. Nevertheless, 
the parametric optimization approach has the remarkable advantage that the mp- 
DO problem is solved only once to obtain the optimal solution for every parameter 
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realization, which can obviate any difficulties arising from the problem size and the 

complexities of the off-line calculations. 

Remark 3.6 The presence of linear binary terms in the dynamic system and the 

constraints of equation (3.1) leads to the formulation of a multiparametric mixed- 
integer dynamic optimization problem of a specific structure (mp-MIDO). The solu- 
tion method for such a problem is entirely analogous to the direct mp-DO algorithm 
3.1. The details pertaining to the formulation and the solution of an mp-MIDO 

problem are presented in the Appendix C. 

3.2.5 Illustrative Example on direct mp-DO 

No Path constraints 

The illustrative example derives from a linearized dynamic model that represents the 

operation of an exothermic CSTR reactor (Zheng, 1999). The reaction is irreversible: 

A -ý Products. The assumptions of first order kinetics, constant hold-up and simple 
heat transfer correlations are applied resulting in a three-state system. These state 

variables are: The concentration and the temperature in the reactor CA, T,. and the 

temperature in the cooling jacket T,. The inlet temperature of the reactants Ti" is 

a known dynamic disturbance of the form: Ti, = 317.31 + 5e-'. The flow of the 

coolant F, and the flow of the reactants F are the time - invariant control variables. 
The values of the overall heat transfer coefficient between the reactor and the jacket 
(encapsulated in UA) and the inlet temperature of the utility in the jacket Tin, are 
uncertain. The performance index is the quadratic deviation of the concentration 
and the temperature of the reaction mixture from their set-points. The aim of this 

example is to derive the optimal values of the control variables and the objective 
function in terms of the parameters. For that purpose the uncertainties are treated 

as parameters and the control variables as optimization decisions resulting in the 
following multipararnetric dynamic optimization problem: 

tf 

)2 + (T )2 O(Tinc, UA) = min 
I 1[(CA(t) 

- 0.3 r(t) - 392 ]dt 
F,,, F 2 
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C A(t) CA(t) - 0.25 
F, - 2.38 

T,,, (t) - 322.31 

A, T, (t) - 395 + A2 
F1+W, 

Tin, - 300 
I1 

106 (t) T, (t) - 365 UA - 5.34 - 
I. C.: dA(t,, ) = t, = i, 0 

0.1 < CA(tf) < 0.3 kmole/m 3 

392 < T,. (tf) < 400 K 

0.5 < F, <3 m'/min 

0<F<2.5 M3 /min 

Tin, E [280,330]K, UA E [4.8c6,5.8e6]cal/A'? -ain 

t. =0 min tf = 10 min (3.18) 

where: 
-7.58 -9.35 . 10-2 001.73 

A, = 8.55 2 5.82 5.34 A2 0 -7-17-101 
0 3.56 -5.15 -4.33-101 0 

000 
W1 =10 -2.90-10-5 

0 1.59 1.93-10-5 

The analytical solution of the dynamic system in terms of the optimization vari- 
ables and the parameters results in the following multiparametric quadratic program: 

O(Tin,, UA) min L, * 
[ Fc ]+ 

L3 
Tin, 

Fe, FF UA 

+ 
FC L4 

[ 
FC 

+ 
Tinc 

]T 

L5 F, 
+ 2FF UA F 

+1 
Tinc L6 Tinc 

2 UA 

[ 

UA 

F, 
G2 + G, S. t. G, Tin, 

F UA 

where: 

L2 2-3.85 - 10' L4 37280 -1.028-105 
-2 - 10.64 . 105 -1.028-105 2.83-105 

1 
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14125 ] L5 =2-[ -1365 3763 L3 
0.077 7.41 . 10-3 -0.02043 

49.96 -2.71- 10-4 L6 

-2.71.10-4 1.47-10-9 

0.533 -1.24 -0.052 
43.17 -119 -4.425 

-0.533 1.24 0.054 

G, -43.17 119 G2 5.0053 
10 3 
01 2.5 

-1 0 -0.5 
0 -1 j 

0 

-1.95-10-2 8.58- 10-6 

1.95-10-2 -1.06.10-7 
1.58 -8.58-10-6 

G3 00 

00 

00 

L00 1 

The solution of the mp-QP is achieved using the algorithm outlined in chapter 
2. The optimal expressions for the control vari ables in terms of the uncertain pa- 

rameters are shown in Figure 3.2, while the critical regions in the parameter space 

where these functions are valid are shown here: 

Region 1 CR01: 

-1 * Tin, < -273 

-1 * UA < -4.8e + 06 

+1 * UA < +5.8e + 06 

+184172 * Tin, -I* UA <- +5.27306e + 07 

Active Constraints: 

CA < 0.3 

Tr > 392 

Region 1 CR02: 
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+I ýý I'M, < +330 

-I * 1'. 1 ýl - I. S( + 06 

+I IA<+ . 5. S (+0G 

8 117 2* Tin, +It'. I<-. 5.27306( + 07 

ACI]VC Coll"t 

PC < :3 

Tv > 392 

-111(, grilphicill represelltiltioll regioll" Is depicled In Figure 3.2. As il ls, ol)- 

x 106 2 Optimal Region Fragments 
6 

M CROl 
CR02J 

45 ý-- II-1 
270 280 290 300 3; 0 320 330 340 350 

1), = Tin, (K) 

Fig, urc 3.2: Crit wal regions for illust rat iveexample Oil Illp-Do. No Path Colist rallits. 

"erved front Figure : 3.2, above a corta III crill ca I poi I It iI Ite III pcra III Iv (it roll IId 
312K). Ihe llowrate of'the coolhig water reaches its tipper bound (F,, 

I'llis behilviour occurs because as, the coolant lemperature increases. Ihe coolant 
Ilowrilte riscs ill order 10 prevent it resulting (lemmm, Ki the livat N-inoval hum the 

reactor. Above a certain point. however, F,. is not allowNi I, o increase Furdicr. So 

the cooler ImuluTaturv increase (nut no longer be compensaled l*or. Consequenily. 

as l"s 1"01 is \0110awn. Fivin W reactor nion, reactaid A is consumed and that 

callses im increase in I It(, vahie of' die object ive. 
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Path constraints 

Several modifications are made to the problem to illustrate the case where path 
constraints are present and the control optimization variables are time-varying. The 
dynamic disturbance now has the form of a harmonic oscillator Tin, = 322.13 + 
3sin(47rt/10). The optimization variables are parameterized to piecewise constant 
functions over time using five equidistant elements. Algorithm 3.1 is used to solve the 

problem. Convergence is achieved in 8 iterations between parametric optimization 

and the feasibility problem. 8 interior point constraints are imposed at distinct time 

instants as shown in Table 3.1. The solution is illustrated graphically in Figure 3.3. 

The inequalities in the parameter space that define each region are shown in Table 

3.2. In critical region CRO1, for example, the expressions for the control variables 

are: F, (t) = -0.0374143 - Tin, + 2.08206 - 10-7. UA + 1.44533 
F(t) -0.0134279 - Tin, + 7.47244.10-' - UA + 4.612; 0<t<2; 

F, (t) -0.0381898 - Tinc . 10-7 - UA + 1.49145 
, 
+2.12521 

F(t) -0.0137066 Tinc + 7.62753 - 10-' UA + 4.65967; 2<t<4; 

F, (t) -0.0384578 Tin, + 2.14013 . 10-7 UA + 1.66972 

F(t) -0.0137997 - Tinc + 7.67938 10-' - UA + 4.71215; 4<t<6; 
F, (t) -0.0407232 Tin, + 2.2662 10-7 -UA+3 
F(t) -0.0146146 Tin, + 8.13286 - 10-' UA + 5.17959; 6<t<8; 
Fc(t) -0.0399067 Tin, + 2.22076 - 10-7 UA + 2.71493 
F(t) -0.0143219 Tin, + 7.96997 - 10-' UA + 5.10634; 8<t< 10. 

Iterations 11 21 3 4 5 6 71 8 
Interior Point t(min) 1.0, 4 6 8 4.1 2.115 4.09 1 8.01 

Table 3.1: Time points where constraints are enforced 

The optimal profiles of the control optimization variables are shown in Figure 
3.4. Týe flowrate of cooling water is increasing as the temperature of the cooling 
water rises while the flowrate of the reactants is dropping to assure that the prod- 
uct temperature and concentration are within acceptable limits. From the optimal 
trajectories of the system states (Figure 3.5) for different uncertainty realizations it 

can be deduced that the developed technique guarantees constraint satisfaction over 
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Region CROI Reglon CR-02 
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Profile ofCA O. I<CA<0.3ý in Region CR02 

2 

2 

Figure : 3.5: Profile, ". of States CA, Tr vs. time for fixed parameter values 

Figure 3.6: Scaled Objective vs. parameters 
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3.3 Process Example 3.2. Fluidized Catalytic Crack- 

ing Unit 

3.3.1 Problem description 

The example is the same as the one discussed in chapter 1 Figure 1.1. It is concerned 
with determining the optimal operational policy for a fluidized catalytic cracking 
unit, studied in (Hovd and Skogestad, 1993) and (Loeblein and Perkins, 1999a). The 

index of performance consists of the control and state integral square deviations from 

their nominal economically optimum operating point. The schematic representation 
of the FCC plant is illustrated in Figure 1.1. The linearized model description is 

shown in Table 3.3; the nominal operating point and the process constraints are 

presented in Table 3.4. 
The input variable Tf exhibits a sinusoid variation with a period of 12 hrs and 

an uncertain amplitude that can vary from 0 to 5K, i. e. TI = 400 + 61 - sin(17-"); t 720 

in min; 0< 01 < 5. The process behavior is characterized by large time constants 

,r ý-_ 60min and inverse responses on the state variables. Hence, the assumption of 
the system being initially at steady state does not hold. Instead, a better assumption 
is to consider the initial conditions of the state variables as a set of time-invariant 

parameters that are determined from regular measurements, i. e. x. = [62 j3 IT. 

Both manipulated control variables F, F, are discretized to four piecewise constant 

elements. The goal of this example is to derive the optimal profiles of the control 

variables as a function of the uncertain amplitude and the initial state conditions of 
the system. For deriving these control profiles the problem in Table 3.3 is recast as 

a multiparametric dynamic optimization problem where the optimization variables 

are the control variables and the parameters are the initial states and the amplitude 
of the process disturbance. 

3.3.2 Path constraints 

All the constraints in this mp-DO example are path constraints. Thus, they are 
treated via the algorithm outlined in Figure 3.1. The augmented set of interior 

point constraints that represent exactly the time-varying constraints are listed in 
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Table 3.3: Mathematical model for Example3.2. 

tf 

min [XTX + 10-3VT vIdt 
v 

dx Aix + A2V + W101 

Tt 
Y Bix + B2V + W201 

A, -2.55- 
10-2 1.51 . 10-6 

227 -4.10.10- j 

A2 3.29- 10-6 
-2.60.10-' 

-2.80.10-2 7.80-10-1 

W, 
6.87- 10-7 

2.47 - 
10-2 

B, 1.32.103 0.559 

B2 0.362 
0 

TV2 =0 

CIC 
- 

ac 

X=I 
TI9 - TI9 

I 

state variables 

V=F, 
P, 

control variables 
I 

F,, - 
P,, 

I 

Y= Tcy - 
! ý, 

y algebraic variables - constraints 

01 = Tf - 
1ýf uncertainty 

1. C. 2*o) ý [02 031T 

Time horizon: 0<t< tf tf = 1440min 

Table 3.5. The critical time points are identified in 16 iterations between the mp- 
QP and the feasibility problem. The absolute tolerance for constraint satisfaction is 



Chapter 3 70 

Table 3.4: Nominal operating point and process constraints 
Nominal Point 

Trg Dense phase regenerator temperature 965.4K 
Ccr Coke mass fraction in regenerated catalyst 10-3 5.207- 
Tcy Regenerator cyclone temperature 988.1 K 
Fa Air flow in regenerator 28 kg/s 
F, Flow of regenerated calatyst 294 kg/s 

A 

Tf Feed oil temperature 400K 
Process Constraints 

900 < Tg(t) < 1000 

" : ý, C', (t) < 0, 0, 
- 20%0, , +20%0,, 

T"Y(t) < 1000 
0<F,, (t) < 60 

100 < F. (t) < 400 
Bounds on Disturbance 

395 : ý, Tq(t) < 405 

taken as c= 10'. The computational requirements for the solution of the 16+1 mp- 
QPs varies from CPU=3.58sec for the zeroth iteration to maximum CPU=545sec 
for the 16" mp-QP. Each feasibility test consumes approximately CPU=500 sec. 
The details of the software used are mentioned in section 3.4. 

Table 3.5: Interior point constraints for Examp le 3.2. 
er* k01 

1k 1440 360 

2 

35.36 

3456 

381 14.24 23.54 369 

7 

40.24 

Iter. k89 10 11 12 13 14 15 16 
lk 44.65 390 6.56 29.07 374.77 364.392 18.65 385 10.26 
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3.3.3 Results 

By applying the multiparametric dynamic optimization methodology presented in 

section 3.2, the complete mapping of the optimal operational policy is derived as 

a piecewise affine function of the input disturbance amplitude and the state initial 

conditions. The parameter space is subdivided to 62 critical regions, where these 

functions are valid. A different expression for the optimal control actions holds in 

every region. Table 3.6 for example, shows the boundaries of one of these regions 

and the corresponding expressions for the control variables. An example of a 

30 ti- 

Figure 3.7: Uncertainty profile for FCC example 

process operation scenario is considered here. The initial point of the system states 
is: [C, T, 91 = [4.89 - 10-3,986.16K] and the disturbance profile is shown in Figure 

3.7. The optimal control profile is determined by the parametric solution, basea 

on measurements and on the current disturbance behaviour. The control policy is 
implemented in the plant until the next measurement is carried out. Figure 3.8 shows 
the optimal control and state profile for a 4-days operation when the measurements 

are taken every day. The response of the states even for a high disturbance amplitude 
is controlled tightly around the nominal and economically optimum set-point, even 
though a piecewise constant profile is assumed for the control variables. For the first 

day of operation the system lies in the optimal region CR20, where the constraint 

on the variable: T,., (t) :5 1000K is active due to the aggressive initial conditions. 
However, during the rest of the operating horizon it lies in the optimal region CRI 
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Table 3.6: Optimal expression for the control variable in a Critical Region. (Example 

3.2. ) 

Optimal Control Expression 

Fs (t) = -860, - 0.037 * 
ý2 

- 0.45 * 
ý3 + 514.5 

Fa (t) = +48 * ff, - 6.66e - 05 * 
0-2 

- 0.043 * 
ff3 + 45 

for 0<t< 360 min 

Fs(t) = +50 * ff, + 0.0038 * ff2 + 0.48 * ff3 + 97 

Fa(t) = -4.8 * 0-1 - 0.00021 * 
0-2 + 0.042 * 

0'3 + 11 

for 360 <t< 720 min 

Fs(t) = -1.22 * ff, - 0.00023 * 
ý2 

- 0.48 * 
ff3 + 488.5 

Fa(t) = +0.27 * ff, + 2.2e - 05 * 
ff2 

- 0.042 * 
ff3 + 45 

for 720 <t< 1080 min 

Fs (t) = -0.11 *+5.5e - 06 * 
0-2 + 0.48 * 

0-3 + 98 

Fa(t) = -0.0082 ff, - 1.3e - 06 * 
ff2 + 0.041 * 

ff3 + 11 

for 1080 <t< 1440 min 

Critical region boundaries 

-6 < -960.246 * ff, < -4 

-0.0289017 * 
ff2 < -26.0017 

-81 < -0.2 * 03 < -80 

-23354 * C, + 2.86988 * 0-2 - 0.2 * C3 < +2632.46 

where none of the associated constraints are active. 
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Figure 3.8: Optimal State and Control profile for FCC example 

3.4 Software implementation issues 

All the examples were solved on an Ultra-60 workstation (2 x 360MHz UltraSPARC- 

II CPU, 512MB RAM). MATLAB version 5.0 (The Mathworks Inc., 1999) was 

used as the main interface where the problems were executed. A set of files were 

generated that transform the mp-DO problem to a multiparametric quadratic op- 
timization problem. These files are recursively updated with the introduction of 

additional constraints after the performance of the feasibility test. The multipara- 
metric quadratic program was solved via the software POP (Bozinis et al., 1999) 
that is also implemented in MATLAB. For the feasibility test an NDF integrator 
(Shampine et al., 1999), from the library of MATLAB (The Mathworks Inc., 1999), 
is used to identify the extremum parameter values. Unless otherwise stated, the 

same software tools are used in the remaining chapters of this thesis for performing 
parametric optimization. 
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3.5 Conclusions 

This chapter has presented a new unified approach for the solution of multipararnet- 

ric dynamic optimization (mp-DO) problems with a quadratic performance index 

and linear dynamics and constraints. The foundation of the approach relies on 
transforming the original infinite dimensional optimal control problem to a finite 

dimensional parametric optimization problem posed in the reduced space of the dis- 

cretized control variables and parameters. Decomposition is then employed for the 

treatment of the time-varying path constraints. The algorithm, iterates between an 

mp-QP problem with a fixed number of interior point constraints and a feasibility 

problem where it is tested whether any constraint violation occurs over the time 
between the point constraints. 

The proposed algorithm provides simple and compact expressions for the optimal 

values of the objective and the control optimization variables as an explicit func- 

tion of the parameters for their full range of variations. This remarkable property 

eliminates the need for repeating the optimization for different parameter scenarios 

and additionally, provides an insight into the effect of parameter variations on the 

optimal system operation. The examples clearly demonstrate the benefits of deriv- 

ing the explicit optimal operating policy prior to any process implementation. The 

application of this approach to model - based control problems is studied in Part II 

of this work. 
The techniques used for the development of the mp-DO algorithm 3.1 raise two 

issues concerning the optimality and complexity of the solution. The quality of the 

solution is strongly dependent on the type and degree of control discretization. An 

adaptive discretization policy can be implemented as in Binder et al. (2000) for en- 
hancing the optimality of the solution. However, this method results in an increase 
in the problem complexity since the complete solution of the problem precedes any 
grid readjustment. Additionally, the complexity and the convergence of the algo- 
rithm also depends on the degree of parameterization as suggested in theorem B. 1 

and equation (3.17). In the next chapter an alternative approach for the same type of 
multiparametric dynamic optimization problem is developed that directly addresses 
these issues. 
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A variational Approach to 

Multiparametric Dynamic 

Optimization 

This chapter presents a new variational based approach to multiparametric dynamic opti- 

mization (mp-DO) for constrained linear quadratic optimal control problems. The algorithm 

provides the complete mapping of the optimal performance index and the decision variables in 

the space of a set of parameters of the dynamic system. The key features of the approach are 

demonstrated through mathematical examples. 

4.1 Problem Formulation of mp-DO 
The multiparametric dynamic optimization problems we consider here have the fol- 

lowing form: 

tf 

0(0) min 
1 

X(tf) T Pix(tf) + [X(t)TQIX(t) + v(t)TR, v(t)]dt 
x(t), v(t) 22 

to 
s. t. i(t) = Ajx(t) + A2V(t) 

0> V)-I(x, v) = D, - x(tf) + D2 , v(tf) + b2 

0> g(x, v)=Cl. x(t)+C2. v(t)+bl 

X(tý) = X-(O), t. <- t -< 
tf (4.1) 

75 
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It is useful here, to define the order of a path state constraint. 

Definition 4.1 The constraint gi(x, v) is said to be of order i>1 with respect to 

the dynamics, if 

ag, (X, V)j = 0, j=1,2,..., i- 1, k= 1,... n, and (4.2) 
i9vi, 

i9q, (X, V) 0, for at least one k, k=1, --- nv i9Vk 

The constraint gi(x, v) is called to be of zeroth order with respect to the dynamics, if 

i9g, (X, V) 
avk : ýO forat least one k, k= 1,... n, 

where the index j denotes time derivatives, e. g.: g, l = jj, gj2 = §j,... and the index i 

denotes the numbering of the constraints i=1, --- 

In this problem formulation, in addition to the features stated in section 3.1, we make 
the following assumptions for brevity: (i) The objective contains purely quadratic 
terms, (ii) there are only end-point and path constraints, and (iii) the parameters 

reside only in the initial state conditions of the dynamic system: x. E W. In 
A 

this chapter we are using x,, rather than 0 to denote the parameters. In the rest of 
the chapter we aim to derive expressions for the optimal value of the performance 
index and the optimal profiles of the control variables and the states as a function 

of the parameters: ý(x, ), ý(t, x. ), ý(t, x,, ). 

4.2 Solution Procedure - Theoretical Developments 

for mp-DO 
The foundation for the solution of the multiparametric dynamic optimization (mp- 

DO) problem (4.1) is based on applying sensitivity analysis (Fiacco and Ishizuka, 

1990) to the stationary conditions of the dynamic optimization problem. The 

Karush-Kuhn-Tucker conditions for the optimal control problem (4.1) derive from 

the Euler-Lagrange equations and for i>1 are written as (Bryson et al., 1963; 
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Kreindler, 1982) 1: 

ODE system 
(t) = Aix(t) + A2V(t)v tE [tý, tfj (4.3) 

x (t, ) =x" (4.4) 

Boundary Conditions for the adjoints 
A(tf) = P, - X(tf) + 

av)g(. ) lt=tf) Tv (4.5) 
Ox 

Complementarity conditions 
0= Vj. oj, (X(tf), V(tf)) (4.6) 

vj a 0, j=l,... Qq (4.7) 

Pi(t) : ý! 0, gj(. ). Pi=O, i=l,... q (4.8) 

= 
q 

TN 

-Q1 - x(t) - A, .A 
(t) 

agi 
)TtI, (t) 

OX 
(4.9) 

V(t) = 
q 

-R-' - JA T J: ( )Tll, (t)} 
12 

AW + (4.10) 
i=1 19V 

for tE (t,, tf 

V(tf) = -R-' - JA T A(tf) + )T 
12 Ov V} (4.11) 

for t= tf; 

Assume: t,, kt+nk.,, +l= tf, and Define: 
tkt Entry point =: ý jLj (t- = 0, ttj (t+ 0, k 1,2,... nkt kt kt 

t Exit point yj (t+ 0, yj (t- 0, k 1,2,... nk., kx kx 

For at least onej = 1, ---q 
Junction conditions (entry point) 

0= gq (4.12) 
, 

(X(tkt)) V(tkt))i i ---: 0) ,** li -1 

'These first order optimality conditions were first presented for nonlinear systems with pure 

state constraints by Bryson et al., (1963). Jacobson et al. (1971) and Kreindler (1982) presented 

modifications of these conditions, while Vinter and Zheng (1998) extended them to the case of 

multifunctional dynamic systems. Recently, Malanowski and Maurer (2001) and Augustin and 
Maurer (2001) presented the stationary conditions for related problems involving high order state 

constraints and mixed state - control constraints but they trade the Hamiltonian part of the 

transversality conditions for additional junction conditions at the exit points. 
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gl'(x(t+), v(t+)), k=1,2,..., nkt, i=I, -- -q i kt kt (4.13) 

Jump conditions (entry point - exit point )2. 

q j=ti-l 

Ell (( ý-7i 0,, Itht)T(pj,, (4.14) A(tkt) = 
ax 

(tkt))i + A(tkt) -E i=l j=O 

H(t+, ) = H(t-, ), k 1,2,..., nkt (4.15) 
kt kt 

A(t+ )= A(t- (4.16) 
kx kx 

H(t+, ) = H(t- ), k 1,2,..., nkx (4.17) 
kx kx 

H(t) = gt)TA(t) + X(t)TQ I X(t) + V(t)TR, v(t) + g(x(t), V(t))Tll(t) (4.18) 

tk(t, x) = Imin(tk(t, 
x)li tf )V max(tk(t, x)li to)} (4.19) 

For a zeroth order constraint equations (4.12), (4.13) are omitted and equations 
(4.14), (4.15) are written as: 
A(t+ )= A(t- ), H(t+ )= H(t- ), k=1,2, ..., nkt, 0- 

kt kt kt kt 

where AE Rn is the vector of adjoint (co-state) time-varying variables associated 

with the dynamic ordinary differential system (ODE); pE Rq is the vector of la- 

grange multipliers associated with the path constraints; VE RQ9 are the lagrange 

multipliers associated with the end-point constraints, Vi E R", i=1, ---q are the 

lagrange multipliers linked with the jump conditions and H(t) is the scalar Hamil- 

tonian function of the system. 

Remark 4.1 The time points tk where the jump conditions apply are called corners 

or switching points. The time intervals tE [tk, t,, +1J, k=1, --- (nkt + nkx) between 

two consecutive corners are termed as constrained or boundary arcs if at least one 

constraint is active or unconstrained arcs otherwise. nkt is the maximum number of 
entry points that may exist in the problem and nk,, is the maximum number of exit 

points. The influence adjoint functions A(t) are in general discontinuous across the 

entry corner points and continuous at the exit corner points. The control variables 

v(t) and the slope of the state time trajectory i(t) are in general discontinuous at 
both types of corner points. The state variables x(t) however, are continuous over 

2The jump conditions (4.14)-(4.17) are also called Weierstrass - Erdmann conditions or transver- 

sality conditions in the optimal control literature (Bryson and Ho, 1975; Stengel, 1994) 
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the complete time horizon. Note that these transversality conditions apply not only 
to transitions between constrained and unconstrained arcs but also to points when 

changes occur among different constraint sets. Thus, an entry point can be followed 

by an exit point, but alternatively, a constraint may become active between an entry 

and an exit point. A demonstration of corner points is shown in Figure 4.1 and Table 

4.1. 

Lagrange multipliers Corners YI /12 113 

t+ 
it >0 0 0 

t+ 
2t >0 >0 0 

t- 
lx >0 >0 0 

t- 
2x >0 0 0 

t+ 
3t 

0 0 >0 

t- 
3x 

0 0 >0 

Table 4.1: Lagrange multipliers vs. Corners 

Remark 4.2 (4.3) - (4.19) represent a square system of equations and correspond to 

a multi-point boundary value problem: (i) Equations (4.3), (4.9), (4.4), (4.14), (4.16) 

represent a linear ODE system of size 2-n with its corresponding multi-boundary 

conditions and discontinuity relations. From this system, given the number of corner 

points and active constraints, we can obtain explicitly x(t), A(t) as a function of the 

lagrange multipliers and the control variables. (ii) From (4.6), (4.10), (4.11), (4.12), 
q (4.13) we have Q, +2-n, + E(ii - nkt) + nkt -q equations for an equal number of 

i=1 
unknowns: v, v(t), v(tf), cp, p(t). (iii) The nkt + nkx switching times are determined 

exactly from the transversality conditions (4.15), (4.17) and (4.19). For the linear- 

quadratic problems that we consider here, these optimality conditions (4.3) - (4.19) 

are necessary and sufficient, since the objective is convex, and as will be shown later 

they provide a unique optimal solution. 

Parametric programming replaces the complementarity conditions with compact 
multidimensional parametric regions that constitute the derivation of the explicit 
solution of (4.1). Each region corresponds to: (i) a unique subset of active constraints 
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S3: active 

V) 

Sl, g2; active 

gl: active gl: active 

11 

t 
ýt 11 t3x 

Time 

Unconstrained arc Constrained arc 

Overall constraints: gI, g2, g3 

Figure 4.1: Illustration of corner points 

ýj = 0, j=1, ---4 and (ii) a unique number and sequence of constrained (non- 

singular) arcs for each one of the active constraints. Here we distinguish between 

two tasks: (i) The derivation of the control policy for each one of the regions and 
(ii) the definition of the region boundaries in the state-space. 

4.2.1 Derivation of the Parametric Control Profile 

Consider for simplicity initially that all the constraints are first order. At the end of 
the section the extension to higher order and zeroth order constraints is discussed. 

The steps followed for the derivation of the control parametric profiles are: 
Step I. The dynamic system described by (4.3), (4.8)-(4.10) is in general a high 

index (index > 1) linear differential algebraic equation (DAE) system (Brenan et al., 
1989). However, by taking the first derivative of the constraints (4.8) with respect 
to time we can generate an ODE of the following matrix form: 
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TXq TCT Al -A2R, 
'A2 

-A2R-llA2 li .. U(t)i 

TT GT 
-Ql -A, A(t -A 

(4.20) 

0= pi(t) - (ýj(t) - Klix(t) - KNA(t) - I'C3iPi(t))i i=1, q (4.21) 

where: 
Kii = IP-'[CliA 2+ CliA2R-'ATQI], i112 

K2i = F-'[CliA2R, -'A TT- T], 
i2A, -CliAIA2RllA2 

KU = 1'7l[CliA2R-'A TA TCT 
- CliAlA2R-'A TCT], 

9121 li 12 li 

Iri = CliA2R-, 'AT CT 
2 li' 

where Cli is the i" row of the C, matrix. Note that on an unconstrained arc 
(4.20)-(4.21) is simplified to: 

R-1A TXW A, -A2 1T2 (4.22) 
-Q1 -A, 

G 

Define Transition matrices (Bryson and Ho, 1975): 
Alatk(tk+l, tA; ) = 

Matk(tk+l, tk) : -- 

G(tk+l-tk) 

Matk(tk+,, tk)ll 
Matk(tk+li tk)21 

(4.23) 
Mat k(tk+1, tk)12 

(4.24) 
Matk(tk+l, tk)22 

I 

Similarly, over a constrained arc, 4 constraints are active and 0. Thus, (4.20)- 

(4.21) reduces to: 

i(t) Al -A2R-'A 
T 

12 -A2R-'A 
T (ýT 121 x (t) 

T 
-Q, -A, 

T (ýT -A, (4.25) 
ftý-, K2 R73 M 

Define Transition matrices: 
Matk(tk+,, tk) =e (4.26) 

Alatk(tk+l, tk)ll M-atk(tlc+,, tk)12 M-atk(tk+l, tk)13 

Matk(tk+l, tk) = Matk(tA; +l, tk)21 Matk(tk+ltk)22 M-atk(tk+l, tk)23 

Matk(tk+l, tk)31 Matk(tk+l, tk)32 Matk(tk+l, tk)33 

(4.27) 
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where C, is a matrix comprising of the active rows of C1, similarly for K_. 

Step II. The following vector C is defined as: C= JXJ, Aý, It(tI), Y(t2), -41(t-k, 
), 

V(ti), --., v}. Parametric expressions for C are readily derived by substitut- 

ing the multi-point boundary value system (4.20)-(4.21), into the initial (4.4), the 

boundary (4.5), the jump (4.14), (4.16) and the junction (4.12), (4.13) conditions . 
The result is a linear system: 

ß(t2) 

1112 Jii j12 ... JI, 2njg 0 (4.28) 
PT1+[ DT 1122 A, J21 J22 - J2,2njg 1 

L2i 

L 

JA(tj) 

ip(t2) 

DI 000 
0 

ol 

20 
P(tnkd 

H42 
f J4 J4 ... 0 t, 

I 
J4,2-kl 

ip(ti) 
P(tl) 0 H52 J51 J52 J5,2nkt 0 

A(t2) 
mu 

WO. kd 
LJ 

P(t. kd 

0 b2 

- L4 II xo + bi 0 (4.29) 

Lsi 0 

FB 

ANO ý: 0, k=1, --- nAt, v>0 (4.30) 

where matrix I denotes the identity matrix of dimension nxn. The zeros denote 

null matrices of appropriate dimensions. The first row in the matrices in expression 
(4.28) pertains to the relation between xf and A, Iz, ýo, x,,. The second row in the 

same equation pertains to the final boundary condition for the adjoints (4.5). The 

first row in equation (4.29) is the end-point constraint (4.6) and the next two rows 

pertain to the junction conditions (4.12) and (4.13) respectively. 
Matrices H_, J_, L_ are explicit functions of (i) the constraint matrices and (ii) 

the transition matrices Af atk, Af atk. Thus, they are an explicit non-linear function 
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of the corner times as indicated in (4.23)-(4.24), (4.26)-(4.27). Their functional form 

depends on the sequence of the switching points. For a case of a single 1st order 

constraint with a single constraint arc over the horizon the functions are: 

H12 -Matk(tf, t2)11(M5tk(t2, tl)ll-Nlatk(titO)12+M5tk(t2, tl)12Matk(ti, t0)22) 

- Afatk(tf, t2)12 (Mýtk(4, tl )21 Matk (t, , 
tO) 

12 + A15tk (t2, tl ) 
22 Matk (t, , 

tO) 
22) 

H22 
-, Nlatk (tf , 

t2) 
2,1 

(Afýtk(4, tl)l, lAfatk(ti, 
tO)1,2 + Alýtk(4, tl)1,2Matk(ti tO)2,2) 

-Afatk(tf, 
t2)2,2 (M5tk (t2, tl ) 

2,1 Matk(ti, tO) 
1,2 

+ Mýtk (t2, tl ) 
2,2 Matk(t, tO)2,2) 

H42 = CjAlatk(t,, tý)j, 2 
H52 = CIOI,, AIatk(ti, tl)1,2+CI01,2Matk(ti, tO)2,2 

J1, = -Matk(tf, t2)1, lMatk(t2, tl)1,3 - Matk(tf)t2)1,2Matk(t2otl)2,3 

T CT J12 = Alatk(tf, t, -),,, Afýtk(t2, tl)1,2Clý +Matk(tf, t2)1,2Mýtk(t2, tl)2,2 I 

J21 = -Alatk(tf , 4)2, IMýtk(t2, tl)1,3 - Matk(tf 
, 
t2)2,2mýtk(4, tl)2,3 

= Alatk (tf 
, t2) 2,1 

Mýtk (t2, T+ Matk(tf, Mýtk (t2, J22 tl ) 
1,2 

Cli t2 ) 
2,2 

tl)2,2CIT 

J41 
-«-"z 

J42 
-: Z 01 J51 : -- Cl 01,31 J52 

--: -Cl 
Ü1,2C1T 

Lil = Alatk(tf, t2)1,1 (Mýtk (t2, ti) 
,, 

Matk (t, 
, t,, 

) I', + Mýtk (t2, tl) 1,2Matk(tj I tl)2,1) 

+Afatk(tf, t2)1,2 (Mýtk(4, tl)2, lAlatk(tl, t,, ),,, + Mýtk(4, tl)2,2Matk(ti , to)2,1) 

L21 = Alatk(tf, t2)2,1 (Mýtk(t2, tl),,, Matk(ti, t, ),,, + Mýtk(4, tl)1,2Matk(t, I to)2,1) 

+Matk(tf, t2)2,2 (Mýtk(4, tl)2,1. Nlatk(ti, t, ),,, + Afýtk(t2, tl)2,2Matk(t, I tl)2,1) 

L41 = -Cl Alatk(ti, t, ),,, 

L51 = -Cl 01, lMatk(ti, t, ),,, - Cl 01,2AIatk(ti, t, )2,1 

Where, tj = t1t, t2 = tl.,. 

Step Ill. Next, Theorem 4.1 is stated that enables the derivation of the control 
functions v(t, x,, ). 

Theorem 4.1 Let Q1, P, be positive semi-definite matrices and R, be a positive 
definite matrix. Let also the strict complementarity slackness condition, i. e. 11, A> 

0, and the linear independence condition of the binding constraints hold. Then xf, 
Ao) P(tkt)lk=l,...,,,, and v are affine functions of xo for a given finite set and values 
of corners tk = Itlit27 

'* 'tnkt+nk, 
} =- jt1tit1xjt2tj 

** *tnk., 
}- 
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Note that the form of the sequence 
It 

1t, tlxý t2ti tnk, } is problem dependent, thus 

it could be for instance: ItIt, t2t7 tlx7 **-t. k. 
}. 

Proof- 

From equation (4.28) we have: 

kt 

j. (pkt + li-, .S. x0 (4.31) 

v 
where p 

kt = [tj (t 1 ), ..., p (tnjt )IT and accordingly for V. Then for the active con- 

straints, equation (4.29) yields: 

kt 

xf 
-P. x, -f3 =0 (4.32) 

Aý 
v 

where M, U, F, B are the matrices consisting of the rows of M, U, F, B respectively, 
that correspond to active constraints. Substituting (4.31) into (4.32) we obtain: 

kt kt 

_f4 . [--H-l . 
j. 

Pkt +II-1 . S. xo] +Ü . tpkt -P. x0 -ä 

v 

kt 

(pkt = [A ii-i i+ü]-' 
. [A --H-1 S+P]. x. + [A ii-' i+ül-' 

., 
ü 

v 

Note that submatrix j pertains to the active constraints and also that [. A4 -'R-1 
+ 0] -' exists because of the assumption that the active constraints are linearly in- 

dependent. Once tk are given, matrices W, J, S, U, M, F, B become constant. Thus, 

from (4.33) it follows that the multipliers 1, ýt, ýkt, P>0 corresponding to the active 

constraints are an affine function of the initial states x,,. Hence, once (4.33) is sub- 
kt -kt - stituted into (4.31) along with the condition t'l ,Vv=0, an affine expression of 

[Xf A,, ]T in terms of x. is derived. 0 
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Theorem 4.1 implies that ý is an affine function of x, but also a non-linear 
function Of tk, since all the matrices in (4.28)-(4.30) are explicit non-linear functions 

of tk. Hence it follows: ý 
-': 

ý(Ioi [t1i t27 *** tnkt+nkj) = ý(Xo, t k) 

Step IV. The evaluation of the corner points tk is performed as follows: 

1. Given an x,, and an optimal number of constrained and unconstrained arcs and 

corner points, compute ý(X,, 
' 

tk -ý (t, t k' 
and reconstruct the state x. ), adjoint 

A(t' tk, x,, ) and lagrange multiplier trajectories A(t, tk , X'). 

2. These time trajectories of the problem variables are substituted into (4.15)- 

(4.17) resulting in a square system of non-linear equations with tktl)tkx, as 

unknowns and x,, as parameters. The parametric solution of this system pro- 

vides the explicit functions: tktl (Xo)) tkxI (Xo) 
- 

3. Then from (4.19) the evaluation of tk(x,, ) readily follows. 

4. The control profile derives from the expressions (4.10) and (4.11). Once the 

functions for A, y, v in terms of tk (x,, ) 
, x,, are substituted in those expressions, 

v is expressed solely as a function of tk (x, )) x.. The functional form of these 

expressions depends on the number and the sequence of the corner points. For 

example for a single path constraint with a single constrained arc and in the 

absence of end-point constraints we have: 

For t,, <t< tit = ti: 

X(t) Matk(t, t,, ) - 
X0 

A(t) 

IIA,, 

( [tit, ti., tf I, X. ) 

v -R-'ATA(t) (4.34) 
12 

For tit <t< ti., = t2: 

(t) 
M at k (t t,, ) A (t) Matk(t, tit) - 

pM Pi (tit, [tit, ti..!, tf llxo) 
V(t) = -R-'(A 

TA(t) + (Ci A2 )Ttl(t)) (4.35) 12 

A similar expression holds for tj., <t< tf. 

Clearly v(t) is an explicit function of X", tk(X"), i. e. V(t) = ý(t, tk(X"), X"). 
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4.2.2 Derivation of the Region Boundaries 

The boundaries of a region originate from the inequalities: 

, 
), XO» < 0,1-1(t, tk(X"), Xo) > 0, gl(tk(X, tk «t, tk(X, v(4t, (X, »x, ), Xo) g 

Here, we are not interested in all tE [t,, tf ] but only in the time instant t= t" 

where the inequalities '<0, >0 are critically satisfied. Thus, after computing 9 
tcr(x,, ) and substituting it back into these inequalities we derive a set of inequalities 

merely in terms of x,. This undertaking is performed in a compact way by solving 

parametrically the following problems: 

* Take first the constraints that are inactive throughout the complete time hori- 

zon. Derive from them the following parametric expressions: 

v gi(xo) = maxjýi(i(t, tk(Xo), Xo), ý(t' tk(Xo), xo)) It E [to, tf I} i=1, ..., qý (4.36) 
t 

Take the path constraints that have at least one constrained arc [tj, ýt, ti, Cl and 
derive from them the parametric expressions: 

gi(x. ) = maxlji(ý(t, t k(X"), Xj, ü(t, tk(X"), Xj)Itt E [t, tf i}n t 

It ý [ti, kt, tj, ý. ]}) k -= 1,2, ..., nj, ýJ, i=1, ..., ý (4.37) 

where, nj, ý, is the total number of entry points associated with the it' active 

constraint. 

9 Finally, take the multipliers of the constraints that have at least one con- 

strained arc: 

pi(xo) = minj tk, Xo) It (4.38) 
t 

Pi(t, = ti, kt = ti, kx, k=1,2, ..., ni, kt}, i=1, 
---, 

4 

Note that when the multipliers assume their minimum value, the corresponding 

constraint is critically satisfied, hence, the path constraint reduces to a point 

constraint. This explains the presence of the constraint t :, -- ti, kt ý ti, kx in 

formulation (4.38) that captures exactly this feature. The minimum is then 

meaningful only in the case of multiple local solutions. 
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This formulation involves univariant multiparametric optimization. Here, we assume 

that a unique global optimum of (4.36)-(4.38) can be found (e. g. via the method 

of Dua et al. (1999)). If multiple solutions occur then one constraint may provide 

more that one parametric expression, i. e. in (4.36) we obtain: ýji(x. 
'), i=1, - q', 

j=1, ms instead of 9j(x,, ), where ms is the number of solutions of program 
(4.36). 

(4.36)-(4.38) yield the critical region of the parametric solution as follows: 

CRa = ig'(x,, )<o, O(x,, )>o, p(x,, )>o, rl(x, )>o}nCR IG (4.39) 

From the parametric inequalities the redundant ones are removed and a compact 

representation of the region CRc is derived. The boundaries of the region in general 

will be represented by parametric non-linear expressions in terms of x, Note that 

conditions (4.36)-(4.38) imply"that in every region there is a different number and 

sequence of arcs and a different set of active constraints. 

4.2.3 Summary of Algorithm 4.1 

The variational mp-DO algorithm is summarized below: 

1. Define an initial region CR". Set index c=1. 
2. Fix x,, at a feasible point within region CRIG and solve the resulting deter- 

ministic dynamic optimization problem. Thus, obtain the active constraints §' and 

corner points 4' 

3. Compute matrices W, J, S, M, U, F and B and obtain expressions for xf, A, v 
in terms of the initial states x,, and the corner points tk, k nkt + nkx via 
(4.3l)-(4.33). 

4. Next, solve the ODEs (4.22)-(4.27), symbolically to determine ý (t, tk, XO), ý(t' tk 
I XO) I 

A(t, t', xO). Then obtain tk(Xo) from (4.15), (4.17), (4.19) and the control profile 
ýC(t' tk(X., ), XO) via (4.10) and (4.11). 
5. Construct the region boundaries from (4.39). Remove the redundant inequalities 

resulting in a compact region CRc and the optimum control policy ý C(t' tk(X X 
C 

6. Define the rest of the region as CR rest = CR IG U CRj. 
i=1 

7. If there are no more regions to explore, go to next step, otherwise set CRI' 
CRrest and c=c+1 and go to Step 2. 



Chapter 4 88 

S. Collect all the solutions and unify the regions having the same solution to obtain 

a compact representation. 
Figure 4.2 shows a schematic representation of the algorithm. Clarifications for 

steps 5 and 6 are discussed in Appendix D. The algorithm provides a piecewise time 

cest = CR 
IG 

No 

Yes 
rest 

,, CR =empty 

STOP', 

Define initial region and feasible 
parametric point IG 

CR, x0c 

Solve DO 

Active set: ic 
Comer points: tk 

Derive expressions 

i(tAxo), PqAxo), 
^x(tAX0 

k 
t (xo), V( tAxo), xo) 

c 

Construct Region Boundaries 

k(xo), 
xo). e CRC t '0 

I 
Define rest of region 

CRrest 

Figure 4.2: Summary of algorithm 4.1 

dependent parametric control function of the following form: 

«t, t' (x, ), g') = Ac(t, t k(X. 
2» . Xo + 13c(t, tk (X, » if 

(tk(Xc») (tk(Xý, CR' - x. + CR' », for c=l,... Nc (4.40) 

This function is piecewise affine with respect to the initial states x, and nonlinear 
piecewise continuously differentiable with respect to the corner points. The cor- 

ner points are a nonlinear function of the initial conditions. The control function 

therefore, is overall an explicit piecewise continuously differentiable function of the 
initial states. The parametric profile of the objective function is readily obtained by 
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substituting (4.40) into the performance index of (4-1). The objective is a piecewise 
ý(tk, 

X, quadratic function ) of the initial states and piecewise continuously differen- 

tiable function of the corner points. 

4.2.4 Remarks on variational mp-DO algorithm 4.1 

Remark 4.3 The assumptions made about the problem formulation in section 4.1 

can readily be relaxed: (i) If the objective contains linear terms they are incorporated 

into the dynamic system (4.9) changing the ODEs (4.22)-(4.27). The ODEs however, 

maintain their linearity, thus, the statement of Theorem 4.1 and the region definition 

in section 4.2.2 still hold. (ii) The addition of interior constraints at predetermined 
fixed time instants in the formulation does not add any complexity. The jump 

conditions still hold with respect to the adjoints, however, the Hamiltonian jump 

conditions and the junction condition (4.13) are redundant. (iii) If the parameters 

reside not only in the initial conditions but also in the dynamic system and the 

constraints (as in (3.1)), it can readily be shown that theorem 4.1 still applies, since 

the ODEs (4.22)-(4.27) will maintain their linearity. 

Remark 4.4 The mapping tk ý-+ ý is in general an explicit exponential or trigono- 

metric function as shown in (4.34)-(4.35) with a unique solution. Note, however, that 

the mapping x, ý_+ tk is in general an implicit non-linear function. However, either 

via stochastic approaches or using multiparametric nonlinear global optimization 

(Dua et al., 1999) we can directly derive explicit expressions for 

tkt := tkt(X, ), kt = 1, ---, nkt, tkx = tkx(x, ), kx = 1, ..., nk., (4.41) 

Expressions (4.41) may yield (i) multiple solutions or (ii) an infinite number of solu- 
tions in terms Of tktý tkx. Here, though, we assume non-Zeno behaviour (Johansson 

et al., 1999) of the dynamics thus, ruling out the possibility of an infinite number 

of corner points within a finite time interval (case (ii)). Case (i) poses no limita- 

tions to the solution procedure provided we assume that the transversality conditons 
(4.15), (4.17), (4.19) have as many feasible solutions as the number of corner points 

within the horizon. 
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Remark 4.5 The derivation of the parametric profile in paragraph 4.2.1 is per- 
formed for P" order systems. The consideration of a zeroth order constraint readily 
follows since the formation of the ODE (4.20) and (4.21) from the index-1 (4.3), (4.8)- 

(4.10) is then performed without differentiating equation (4.8). A zeroth order ex- 

ample follows that demonstrates our approach. For higher order systems the ODE 

system (4.20) and (4.21) can still be derived, but the algebraic equation (4.8) has to 

be differentiated as many times as the order of the corresponding constraint (Brenan 

et al., 1989). 

Remark 4.6 The complexity of the variational parametric algorithm 4.1 is con- 
tingent solely upon (i) the number of constraints, (ii) the system dynamics and 
(iii) the number of control variables. Algorithm 4.1 does not rely on any form of 
discretization since the control profile is not assumed appriori as in the direct Al- 

gorithm 3.1 of chapter 3, but it is determined from the solution procedure. The 

absence of discretization also leads to less complex parameter space partition and to 

more accurate solutions. There is clearly, though, a trade-off between the number 

of partitions and the complexity of the control functional forms when putting both 

algorithms (3.1 vs. 4.1) into perspective. 

Remark 4.7 In the literature a lot of significant work has been done to derive the 

control law for linear and non-linear continuous time systems using the optimality 

conditions stated in this chapter (Palanki and Kravaris, 1997; Rahman and Palanki, 

1998; Bonvin et al., 2002; EI-Farra and Christofides, 2001 a). However, most of these 

approaches synthesize a suboptimal controller or avoid considering state constraints. 
When state constraints are considered (Bonvin et al., 2002) (i) the optimal set of 

corner points and their values are computed via numerical optimization and then 
(ii) the set of active constraints is considered fixed. Thus, they do not derive off-line 
the optimal control policy over the complete space of the state conditions as it is 

proposed in this chapter. The method presented here can be extended to non-linear 

systems and cases where the objective is of a general non-linear form, provided 
(i) the assumptions of theorem 4.1 hold, (ii) an explicit functional form: ý(X ", tk) 

and consequently ý(t' tk, X') can be derived for the given dynamics (iii) equation 
(4.33) has a unique non-trivial solution and (iv) equations (4.36)-(4.38) have a finite 
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number of parametric solutions. 

Remark 4.8 The essence of the assumptions in Theorem 4.1 are the following: 

(i) The optimality conditions (4.3)-(4.19) are in general merely necessary. If 

the objective comprise positive (semi-) definite weight matrices then the 27'd order 

sufficient conditions are automatically satisfied (see Bryson and Ho (1975) ch. 2, 

p. 50). In fact if the weight matrices were negative (semi-) definite the parametric 

solution for the stationary point would correspond to a maximum and the multiplier 

would be p<0 for an active constraint. A minimizer of problem (4.1) would then 
be non-unique, thereof, Theorem 4.1 would not hold. 

(ii) If the constraints are linearly dependent then matrix C, and therefore, [)f4 

W-' -i+ 1ý1 cannot be inverted, thus Theorem 4.1 does not apply. 
(iii) If strict complementarity does not apply, it follows that (x,, ) =0 for an 

infinite number of initial state realizations as defined from equation (4.38). Thus, we 

cannot make the assumption that when M=0 the constraint is inactive. It follows 

that the set of active constraints in each critical region is non-unique. 

4.3 1-state SISO illustrative example on Algorithm 

4.1 

The example' is concerned with deriving the control action in terms of the initial 

state conditions for the integrating system in Scokaert and Mayne (1998): 

tf 

O(xo) =1 X(tl)2 +I [X(t)2 + V(t)2 ]dt 
2 21 

SA. i(t) = V(t), Y(t) = X(t) - V(t), to <t< tj 

2> y(t) ý: -1.2, t. <t< tf 

t, = 0.01, t� = 0, tf =2 

x(t. ) = x., -2 < x� <2 (4.42) 

'Maple v. 5.1. (1998) and MATLAB v. 5. (1999) were used for the symbolic and the algebraic 
manipulations in both illustrative examples 
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The initial states x,, are treated as parameters, and (4.42) is recast as a multi- 

parametric dynamic optimization problem. Note that the path constraint is zeroth 

order and does not apply on the overall horizon but only over the interval t,, : ý, t< tf 

Steps of Algorithm 4.1 

Iteration 1. 

1. Define an initial region -2 < x,, < 2. 

2. Choose a point in the state space x,, = -1 and for that point solve the dynamic 

optimization problem. Identify that there are no active constraints for that point so 

we do not have to divide the control horizon into constrained/ unconstrained arcs. 
3,4. The optimal control, state and adjoint profile for the unconstrained case are 

shown in Table 4.2 equation (4.46). 

5. The region boundaries are identified as follows: 

9 Solve the following 2 problems parametrically: 

gýl (Xo) max (-x(t) + v(t) + 1.2) 
t. <t<tf 

S. t. X(t) = e-tx,, v(t) = -e-tx,, -2 < x,, :52 (4.43) 
gc2(Xo) max (x(t) - v(t) - 2) 

t <t<tf 
S. t. X(t) = e-tx,, v(t) = -e-tx,, -2 < x,, :52 (4.44) 

The solution is: 

-1.98x� - 1.2 <0 if x� <0 

-0.27x� - 1.2 <0 if x� ýý 0 

G, 2(x. ) 1.98x, -2 <- 0 if x� >0 

9c2(xo) 0.27x� -2 <- 0 if x� <0 

9 Remove the redundant constraints from the following inequalities: 

9c, (x, ) <0 
9,2 (X, ) :50 (4.45) 

x�< 
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9 The non redundant constraints comprise the unconstrained region boundaries 
CRO1 shown in Table 4.2: 

6. Rest of the region is here trivially defined as CRres' = CRrest UCR rest = 1-2 12 
x, < -0.606 U 1.01 < x,, < 2} . 

Iteration II. 

1. Select the critical region CRrest = 1-2 < x. < -0.606}. 1- 
2. Choose a point in the state space x, = -1.5 and for that point solve the 

dynamic optimization problem. Identify that there is an active constraint x(t) - 
v(t) > -1.2 and one constrained arc. 

3. The ODE systems (4.22)-(4.27) take the form: 

For t, t< tit and ti.,, :5t< tf: i(t) = -A(t), 
ý(t) = -x. 

For tit t< tl,: io(t) = -A(t) -M(t), 
ý(t) = -x +y(t), p(t) = -(x(t) +A(t) + 1.2). 

Using (4.28) - (4.30) we obtain the following expressions for A, xf, p(tit): 

= (12 e-ti- - e-tig + _e2tit + 5e-21, - _1 (4.53) A0 /5)e-2tig 
- e-2t1. -1 e-2tit - e-2t1. -1 

-u 

Xf = e-(t1-tlz)[1.2etlg-t" - 1.2 + et'-v-tl*(0.5e-t" + 0.5etlt)x, + 

etiz-tit (-O. 5et" + 0.5e-t"), \�] (4.54) 

= 0.4.3 - 6e-t"-tI» + 3e-2t" - 3e-2t1- - 5e-tllx� (4.55) 
-e-2tig + e-2tiý +1 

4. The optimum time trajectories of the state, adjoint and control variables for 
that region are given in Table 4.2 equations (4.47)-(4.49). 

5. To determine the region boundaries the following inequality is first posed: 

0< min ff(tltltitlxiXo)jt 
= tlt = t2x} (4.56) 

ta<t<tf 

By substituting (4.55) into (4.56) we obtain: 

0.4(-3 - 5-'x, )lt=t. ý: 0 => -3 -5-0.99x, ' 
.a0 => x� : ý- -0.606. 

Removing the redundant constraints of CRres' and x,, < -0.606 results in a critical 1- 
rest rest region that is identical to CRI , i. e. CR02 = CR, . The inequalities deriving 
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CROl 

Region Bounds: -0.606 < xo < 1.01 

For to <t< tf 

(t) = -e-(I-t-)xo, =ý ý(t) = -e-'x,, 

. i(t) = e-'xo, ý(t) = e-'xo 
kxo) = 0.50916 X02 _ 0.500 e-2.0 tj +2.0 to X02 (4.46) 

Region Bounds: -2 < xo < -0.606 

For to <t< tit 

. 'ýO -I(t) = (0.5e-I + 0.5et)xo + (-0.5e, + 0.5e-, ), \o 

ý0.1(t) = (-0.5et + 0.5e-g)xo + (0.5e-t + 0.5e, ), \o 

ýDo- I (t) = (0.5e, - 0.5e-, )xo - (0.5e-I + 0.5elmo 

A. given from (4.53) (4.47) 

For tit :5t< ti-, : 

CR02 ý1-2(0 = 1,2eg-tlt + et-tIt-, ý0_1(t1t) 

-ý1-2(0 = 1.2eg-tlt + et-t'tlo-j(tjt) - 1.2 

ý1-2(0 = 1.2 - 1.2et-tlt + (e-('-tit) - et-t'l). io-j(tjt) + e-(t"0ý0_1 (tit) 

M -[e-(g-t") (. ýo-j (tit) + ýo-j (tit)) + 1.2] (4.48) 

For tj, <t< tf : 

'D2-f W "ý2-f W= e-(t-tl')! 1-2(tlz)i ý2-f M= e-(I-t'O)! l-2(tlx) 
ý( XQ ) =5 10-3(-25.0 + 25. Oe4.0 911-4.0 t. )e-2.0 t11+2.0 t. X02 + ... 

+ 100.0 ('j 
-2 

(tjS))2 e2*0 oil -2,0 to (4.49) 

Region Bounds: 1.01 < xo <2 

For to <t< tit 

00- 1 (t) = (0.5et - 0.5e-t)xo - (0.5e-l + 0.5elmo (4.50) 

For tit :5t< tlx : 

01 -2 
(t) = -2et-tlt + et-llt: ý. 

-j 
(tit) (4.51) 

CR03 Fort,., <t<tf 

ý)2-f W= -e-(t-tlý)-il-2(tlx) (4.52) 

where: 

= (0-5e-t" + 0.5et")xo + (-0.5et" + 0.5e't")Ao 

'h-2(tlz) = -2etlý-tll +etlx-"'&,, -I(tit)+2 
A, - 4(etlx-tit - 1) + (eti. -2tit + ti. _ -tl. )X. 

ett. -2tlt + etjý - e-Cl. 

Table 4.2: Explicit Parametric Expressions for Example 4.1 



Chapter 4 95 

from maximization over time of the inactive constraint 2> y(t) define CR2 

Iteration III. 

For region CR rest = 11.01 
2<x, < 2}= CR03 the same procedure is repeated. 

In that region the constraint 2> y(t) is active and has a single constrained arc. 
For the sake of brevity, Table 4.2 shows only the parametric control profiles and the 
boundaries of that region. 

Implementation of the control policy 

Given an x,, identify the region where the system resides. If the system resides 
in the unconstrained region CRO1 then the implementation of the control policy 

requires merely the explicit equation (4.46). If however, the system resides in the 

constrained region we follow the steps: 
1. First generate the expressions (4.47), (4.48) and (4.49) if x, resides in CR02 

or (4.50), (4.51) and (4.52) if it lies in CR03. 

2. Substitute i, ý, [i in the Hamiltonian expression (4.18) and then use (4.15), 

(4.17) and the modified equation (4.19): tI (t, x) = Imin(t 1 (t, xy, tf 
)V max(t 1 (t, xy, t. 

)} 

to obtain the corner points parametrically in terms of x,,. In this particular example 
in region CR02 we derive the following functions: tit(x, ) = t,, = 0.01, tlx(x. ) = 

-0.06762 - 0.8772x' - 3.0391x,, - 1.5338 within an integral square error accuracy 00 
of 99.96%. These expressions were derived by solving the non-linear equations (4.15), 

(4.17) and (4.19) for a large number of initial state realizations within region CR02. 

Then non-linear regression was used to generate the polynomial expressions that 

relate x, with tlt, tlx. 

3. Substitute the corner point functions tj., (xO), tj.,, (xO) back to ý(t' tk, XO) thus, 
deriving the control profile. 

For example for x,, = -1 the system resides in the constrained region CR02. The 

corners are tit = 0.01sec and tj, = 0.7sec. The control, state and constraint profiles 
are shown in Figure 4.3. For x, = -0.5, the system resides in the unconstrained 
region CRO1 and the corresponding profiles are shown on the same Figure 4.3. 
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Remark 4.9 Note that the control variable is discontinuous in the time domain. 

For instance for x. = -1 it starts at v= 11 and at t=0.01 it "jumps" to v=0.31. 
The constraint is also discontinuous at the entry point tit = 0.01sec. The state is 

continuous at both corners. The control profile however, varies continuously with 

respect to the parameter x,. 

6 

-6 

t (sec) 

-0. ý 

-0 

-0 

--------- -- 

... ............... 

IV IV IV IV 
I (sec)-Logarithailc scale 

Figure 4.3: Control, state and constraint trajectories for illustrative example 4.1 

4.4 2-state SISO illustrative example on Algorithm 

4.1 

A 2-state SISO numerical example is presented here to demonstrate the features of 
the novel multiparametric dynamic optimization algorithm. Consider the open-loop 

unstable SISO plant example from Kwakernaak and Sivan (1972): 

(S) 0.003396(s + 0.8575) 
(s - 1)(s - 0.6313) 

(4.57) 

corresponding to the following numerical values of the problem matrices in formu- 

lation (4.1) where also a path constraint is added. 
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Q, = 103BTBi, Ri = 10-4, gi :50 t* 2.4 ý: Cl -x (t) Vt E [to, tf 1, to = 0, tf = 1.5sec 

where 

A, 
1.6313 -0.6313 A2 B, 0.0034 0.0029 Cl 1.5 1 

100 

1111111 

The terminal cost P, is evaluated from the solution of the Riccati equation. The 
initial states are treated as parameters and an mp-DO problem is formulated. Note 

that the path constraint is lst order. 

Steps of Algorithm 4.1 

Iteration I. 

1. Define an initial region CRI' = 1-10 < x,, l :5 10, -155 X,, 2 :5 10}- 

2. Fix a point: x* = [0.9, -1] and solve the optimal control problem. The control 
profile is unconstrained 

3,4. Derive the following expressions for the optimal profiles of the adjoint, state, 

constraint and control variables: 

ii(t) = 0.99e- 10.76 (t - tý) (1.0912 x� + 0.93 x�2) 

-0.65 
-0.8570 (t- t�) (0.1329 x�, + 1.4309 x, 2); 

ý2(t) = -0.092e- 
10.76 (t -to) (1.0912 x�, +0.93 x�*) 

+0.759 e-0.8570 
(t- to) (0.1329 x� + 1.4309 x, 2 

); 

10.76 t+l0.76 tý 
, \, (t) = 0.001240e- (1-0912 x�, +O. 93x. 2) 

-0.0002098 e-0.8570 t+O. 857 to (0.1329 xýI + 1.4309 xý-*) ; 
10.76 (t-to) (1.0912 x�, + 0.93 42) 1.4011 e- 
0.8570 (t- to) (0.1329 xa + 1.4309 x. 2) - 2.4; -0.216 e- 

«t) = _l04Ä, = -10000 [0.001240 e- 
10.76 t+ 10.76 t, (1.0912 x� + 0.93 x�2) 

-0.0002098 e -0.8570 t+O. 857 t� (0.1329 x� + 1.4309 x�2)]; 

5. Solve (4.36): max 91 (t, Xol, X,, 2) to derive the following expressions for the O<t<1.5 

unconstrained region CROI boundaries: 

Xol ýý' -10i Xo2 < 10; 
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1f, + 7ý, 1.: 3*20: 3. i-�. ) > 0,0.1: 32ý-). i-� j+1<0 

or + 

or 88.25. '1: 3.1-�1 + 7.1.: 3*20: 3-1-�. 2 < 0,0.1: 3*29-1-, 1 +>0.1. ". 2 < 10 : 

< 

1: 3*29-1-�1 +1< 0- x, ) > 1,3 

0.100817635., 1 lii(81. -) 
'-')9' ý. 

,+ 

1 . 10 11 

l-0.8577 
t 

-0.216 , (0.1329 r, ,+1- 1309 x�, )- *2.1 < 0. 

The parametric so I ution of (4.36) Is aI so sI iokvii I ii Figure 'I A, kv IiIIctI, c ret")MI, CHO I 

is shomi in Vigure . 1.6. 

88 25ý ý7.1 'I: lx 0 

1- 11 1, ", 
4 Critical 14-gion Fravmcnlý 

Inequality: 1.5*x", +x", -2.4<0 

0 133x,,. I . 43x,, =O 

Haure Parametric Solution of (1-36) for 1", xample '1.2: Critical hille / and 

plecewlse fillicholl: 

Iteration II results III the reglou CH02 "'licre t lie cmist raint, < 2.4 is active 

with a siligle arc. The boundary of the region is retrieved by Inverting Inequality 

(4.59) 111 addition to the constraints: 1.1'2 : ý' -15iXI < 10ýxj > -10,1-5. r,, I + 

X, -)2 - 
2.4 < 01. The control expression for region CH02 is, giveu In Table 1.3. The 

- 
-tO -O -6 -4 -2 02460 tO 

x 
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expressions for y(t, tit, ti, x, ), V(tit, ti, xo) are omitted for brevity. The expressions 
for the entry and the exit points are derived via solving (4.17)-(4.19) for multiple 

state realizations within CR02 and then performing non-linear regression. The error 
from this approximation is 1%. 

CR02 

For to =0<t<t It 
ý(t) = -le4 - Al (t) 

AI (t) = (10-4 5.354e- 10.77 t_ 10-4 5.354 elO. 77 ') X. 1 

+ (_10-4 3.318 elO. 77 t_ 10-4 2.767 e-0.8570 t+ 10-4 6.085 e- 10.77 t)X. 2 

+ (0-5821 e- 
10'77 t+ 10-4 1.400 CO, 

8570 8_0.0119ge-0.8570 t +0.4297 elO. 
77 9) \Ol 

+(-0.03990 elO. 
77 t_ 10-4 1.633 eO. 

8570 9-0.01399e-o . 8570 t+0.05405 e- 
10.771) A 

o2 

A0, f (1626.0 e-0.8,570 tit 
-7775.0 elO. 

77 tit +13020.0 eO, 8570 tit 
-6865.0 e-10.77 tit) W 

+(7775.0 elO. 77 III - 13020. OeO. 8570 tit - 1626.0e-0'8570 "I + 6865.0e-10.77 tit ) t, 

+(-4.708 e-9.913 81, - 0.6660eg, 913 tit + 3.378el 1.63 111 + 1.623 + 0.3728 e-l 1.63 tit) Xo2 

+(5.205 el 1.63 "1 - 0.4334e-11.63 tit - 3.953e-9*913 tit + 0.7795eg, 913 III - 1.601) z. l} - 
{3928. Oel 1,63 tit - 9810.0 + 4773.0 e-9,913 tit + 675.1c9,913 tit + 433.5e-11.63 tji}-l 

Ao2 = J(-10.16 e-11.63 tit +0.01518 C-1,714 t,, + 0.5632 e-9.913 Oil 
- 0.01026 e 1.714 tjj 

-11.49 eg. 913 $it 

24.33 e-21,54 III + 0.7239ell. 63 tit + 23.03e2l. 54 III + 48.0)X. 2 
+16150. oe-10.7T tit 12 15 102 e-0.8570 tj I+ 9727102 eO. 8570 "I 

- 18280.0elO. 77 I,, 

-3138 103 e-9.913 111 10-4 4.983e-1.714 III 
- 285 103 C-1 1.63 tit 

_ 10-4 6.574 e21,54 III 

+(21.41 e, 21*54 ill 
- 1.675ell. 63 tit + 0.01359el . 714 tit 

- 1.389e-9,9 13 'it + 37.16 e 21,54 it, 

-0-03045 e-1 1,63 91, 
- 0.04736e9.913 S,, + 57.06)ro., 

-2582 103 ell. 63 tit 
-4439 102 e9.913 I, # _ 10-3 6.012el. 714 Ill 

_ 10-3 2.958C-21-54 ht 

_10-4 4.462 e-20.68 III 
_ 10-4 9.067 L. 

2.571 tit 
-4733 102 -9.056 tit + +8364. Oeg'056 tit 

-3894 102 C12.48 III + 5371.0e-12.48 1,, +6449103 

f3928. Oell. 63 tit 
- 9810.0 + 4773.0 e-9-913 it, + 675. le9-913 III + 433.5L. -II. 63 tll}-l 

Similar expressions for t1t :5t< tj, tjz :5t< tf 

where: t -6.171 e-4 X2 2 
01 + 0.004xýý2 + O-OIXoI Xo2 + 0.126x. 1 + 0.036x02 + 0.2 

where: tIx2.699e -6 X2 2 
01 - 

0.003 Xo2 - 0.02 x0l x02 - 0.266 x0l - 0.041 Xo2 + 0.5 (4.60) 

Table 4.3: Parametric Expressions for optimal control profile in Region CR02 for 
Example 4.2 

Iteration III identifies the infeasible region CR03 with the boundaries: 11.5x,,, + 

Xo2- 2.4 > 01 -15 < Xo2 < 10) Xol < 10} Figure 4.6 shows the critical regions in 
the space of the initial state conditions. Figure 4.5 shows the profiles for the states, 
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the control and the state constraint as computed from the parametric solution. The 

profiles that correspond to the initial conditions x. = [-5,5]T are unconstrained, 

whereas for the case x. = [7, -131T the constraint is active. Note that there is a 

jump in the derivative of the control profile at the entry point when the initial state 

lies at the constrained region. This implies that the 1"' derivative of the control and 

therein, the 2, d derivative of the state have a discontinuity at this point. 
30 
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Figure 4.5: Control, state and constraint profiles for Example 4.2 

The same example was solved via the direct mp-DO algorithm 3.1 presented 
in chapter 3. The control is considered as a piecewise constant function of time, 

parameterized over 10 equi-distant time-elements. The resulting critical region and 

control and constraint profiles for a particular parameter realization are shown in 

Figures 4.6,4.7 . Algorithm 3.1 results in a larger number of critical regions because 

it discretizes the control space and generates a large number of finite dimensional 
interior point constraints to represent the path constraint. Additionally, algorithm 
4.1 derives steep exponential control profiles as opposed to piecewise constant profiles 

of algorithm 3.1 (see Figure 4.7). Thus, the solution provided by algorithm 4.1 

behaves better in terms of optimality. However, the solution form of algorithm 3.1 is 

simpler since it comprises piecewise linear equations as opposed to the piecewise non- 
linear expressions of algorithm 4.1. As shown in Figure 4.7, the maximum deviation 

between the two algorithms lies in a neighborhood around the state constraint. 
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in the traditional optimal control literature (Bryson and Ho, 1975; Kirk, 1970) with 
the advanced parametric programming technology developed recently at Imperial 
College (Pistikopoulos et al., 1999-2002a). The approach eliminates the differential 

part of the optimality conditions of the infinite dimensional optimal control prob- 
lem, thus, reducing them to a set of finite dimensional complementarity conditions. 
The solution method then systematically subdivides the complete parameter space 
into critical nonlinear regions and derives for each partition a set of explicit piece- 
wise continuously differentiable functions of the control trajectories in terms of the 

parameters. Each region corresponds to a unique set of active constraints and a 
unique number and sequence of constrained arcs. 

Our technique addresses for the first time the long standing issue of expressing the 

corner switching time points, as a function of the initial states of the system. This is 

an especially significant result that has important implications for the derivation of 
the control law of constrained (Bonvin et al., 2002) and hybrid (Xu and Antsaklis, 
2002) systems as discussed in Part II of this thesis. The implementation of our 
technique does not require the on - line solution of the optimal control problem. 
It merely necessitates explicit function evaluations from a pre-determined set of 
equations. Additionally, the optimal parametric solution does not require control 
vector parameterization, and results in less critical regions when compared to the 
direct Algorithm 3.1 developed in chapter 3. 



Part 11 

Parametric Controllers for 

Uncertain, Hybrid and Continuous 

time Dynamic Systems. 
"I own my being to my father Phillip, but I own my well-being to my teacher Aristotelis" 

Alexander the Great. 
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Chapter 5 

0 Literature Review on Model 

Based Control 

This chapter summarizes the current model-based control techniques and highlights their 

importance. The focus is on techniques using a parametric programming approach to derive 

an explicit control law. Their key features are emphasized, while limitations in handling hybrid 

systems, uncertainty and continuous time dynamics are identified. 

5.1 Model Based Predictive Control 

Model based control includes a broad array of control design techniques ranging 
from direct synthesis and IMC controller tuning methods (Rivera et al., 1986) to 

advanced nonlinear PI synthesis (Wright et al., 2001), differential geometry (Isidori, 

1989) and Lyapunov based (El-Farra and Christofides, 2001a) techniques. In this 

work we will focus on the particular class of optimizing model based predictive 
control due to its significant theoretical and practical advantages as explained later. 

One of the first optimization-based control techniques is the linear quadratic 
optimal control - LQR (linear quadratic Gaussian control - LQG in the presence of 
stochastic inputs). This method derives the optimal state feedback control law of a 
linear dynamic system by solving explicitly an optimization problem with quadratic 

criteria (Kalman, 1960). This type of controllers cannot readily address the pres- 

ence of constraints enforced on the system actuators and on the plant outputs (e. g. 
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safety limits, purity specifications, operational temperature range). This restriction 

--- 
targ9l 

- ----------------- 
past > future .0 

m output 
m 

Lmanipulated var. 

t t+l time 

Figure 5.1: Receding horizon approach of Model Predictive Control (MPC) 

of LQR is overcome by using model predictive control (MPC). Model predictive 

control or receding horizon control (RHC) is one of the most popular methods for 

designing controllers for complex multivariable processes that are subject to oper- 

ational constraints. The principle of MPC is shown in Figure 5.1. Based on the 

system state at time t+k and using a plant model, the optimal control sequence is 

selected such that the predicted output response has certain desirable characteris- 
tics. Only the first control element is implemented. At time t+k+ 1 the computation 
is repeated with the horizon shifted by one time interval. The computation of the 

control moves is based on solving on-line at every time interval an open-loop reced- 
ing horizon optimal control problem, the objective being the optimal transfer of the 

plant to a reference target point. The major benefits of this control scheme are the 
following: 

MPC is one of the few control techniques that treats constraints explicitly by 

incorporating them directly in the embedded on-line optimization problem. 

MPC is particularly attractive for multivariable processes as it provides a 

straightforward way of coordinating and balancing input-output interactions. 

9 The system behaviour requirements are clearly specified in the performance 
measure of the optimal control problem. 
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* It is capable of tracking prescheduled reference signals in an optimal manner. 

* Logical conditions related to process operation are readily addressed with this 

control scheme inasmuch as they can be included directly in the underlying 
open-loop optimization (Bemporad and Morari, 1999a). 

* Non-minimum phase phenomena such as time delays and inverse responses are 

effectively captured in this scheme (Camacho and Bordons, 1999). 

The proponents of MPC originated in 60's when Lee and Markus (1967) described 
the characteristics of an open-loop optimal control scheme that bears resemblance 
to the receding horizon approach of MPC. Earlier, Propoi (1963) presented a digi- 
tal control technique known as "open-loop optimal feedback" that solves on-line a 
linear program to determine the input actions. Nowadays, MPC is widely studied 
in academic and industrial circles. The interested reader can resort to the extensive 
reviews from Mayne et al. (2000), Lee and Cooley (2000), Rawlings (2000), Morari 

and Lee (1999), Garcia et al. (1989) that describe in detail the theoretical develop- 

ments involved in MPC from the 60's and 70's up to now. A large number of diverse 
industrial MPC applications have been reported (Qin and Badgwell, 1997), ranging 
from refineries to biomedical systems. The classification of MPC controllers is based 

upon the models they employ (linear vs. nonlinear, state-space vs. convolution), 
the type of constraints they can handle (input vs. output/state constraints) and the 

mathematical form of their performance index (quadratic, 1/00 - norm, H,,. ). In 
Table 5.1 we display a number of milestone works on the development of MPC-type 

controllers with mainly linear models. 
MPC, by definition, involves solving an optimization problem recursively every 

time the information about the current system state becomes available. This is per- 
formed, in general via a sophisticated computer based on-line algorithm (Garcia et 
al., 1989). These on-line computations confine largely the applicability of MPC to 
slowly varying processes. Besides, the resulting control mechanism is implicit, since 
it is known only via the solution of the optimal control problem. The feedback ana- 
lytical relation between the inputs and the states is not available, hence, no precise 
closed-loop analysis can readily be performed. It directly follows that no insight 

can be gained about the closed loop features such as stability margins or admissible 
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Authors Controller Objective Key Features 
type 

Cutler and Ramaker (1980) DMC - Dynamic Ma- quadratic Unconstrained formulation, step re- 
trix Control sponse convolution model, on-line 

identification 

Richalet et al. (1978) IDCOM - Identifica- heuristics Input constraints, impulse response 
tion Command convolution model, on-line identifica- 

tion, disturbance handling 
Garcia and Morshedi (1986) Quadratic DMC quadratic Same as DMC but constrained 

formulation 
Genceli and Nikolaou (1993) End point DMC 1-norm DMC with end point constraint to 

guarantee stability 
Rouhani and Mehra (1982) MAC Model Algorith- quadratic Input constraints, impulse response 

mic Control model, regular model update, filter- 
ing of disturbance estimate 

Clarke et al. (1987) Clarke GPC Generalized Pre- quadratic Avoid state but treat input con- 
and Mohtadi (1989) dictive Control straints, CARIMA, ARMA model, 

particularly suitable for systems with 
minimum phase behaviour; on-line 
self tuning via adaptive techniques to 

ensure offset free response. 
Kouvaritakis et al. (1992), Constrained stable quadratic Monotonically decreasing cost for 
Rossiter et al. (1995) GPC stability. Include penalty on con- 

straint violation to ensure feasibility 
Lee and Sullivan (1988) GMC Generic Model quadratic Input constraints, embed linear and 

Control non-linear models, explicit inte- 

gral/derivative action 
Li et al. (1989) SS-MPC / State space quadratic input/ state constraints, convert con- 

MPC volution to state-space models; use 
correction term at each interval to 

compensate for disturbances 
Lee et al. (1994) SS_MPC quadratic input/ state constraints, integrate 

with estimator for robustness 
stability 

Muske and Rawlings (1993) SS_MPC quadratic input/ state constraints, reference 
tracking and input/output distur- 
bance modelling, Kalman Filter es- 
timator used 

Ramirez and Maciejowski SS-MPC quadratic input constraints, identification 
(1995) method to convert input-output 

models to state space modes, 
controller handles measured distur- 
bances, features integral action for 

unmeasured disturbances 

Table 5.1: Types of MPC controllers 
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initial state conditions. Additionally, the requirement of a computer for performing 

the rigorous on-line calculations often implies an increase in the price of the control 

software and hardware, while it necessitates the presence of experienced operators to 

handle the underlying complexities. Multi-objective optimization (Whidborne and 
Istepanian, 2001) and invariant set (Rossiter et al., 2001) techniques that aim to 

balance the complexity with the performance of the controller have been reported, 
that usually result in a suboptimal control action. In the next paragraph, we re- 

view the methods for deriving an explicit model based optimizing controller that 

overcomes these difficulties. 

5.2 The Explicit Receding Horizon Model Based 

Control Law 

Efforts to develop explicit model based control strategies with specific performance 

characteristics and guaranteed feasibility started in 80's and continued until the late 

90's. Gutman and Cwikel (1987) and Gilbert and Tan (1991) developed an approach 
for determining the maximal admissible output set where the synthesized feedback 

controller respects the plant constraints. Furthermore, Gilbert and Kolmanovsky 

(1999) and Blanchini and Miani (2000) designed 1-D reference and disturbance gov- 

ernors that apply corrective action on a pre-determined compensator so as to ensure 
feasibility in terms of input and state constraints and comply with some output error 

criteria. These techniques do not aim to systematically design predictive model - 
based controllers and focus instead on the feasibility analysis of the system. Addi- 

tionally, they are restricted to systems of low dimensionality and most importantly 

they do not guarantee optimality. 
Only recently, has there been reported a systematic approach for moving off-line 

the computations involved in linear predictive control (Bemporad et al., 2002b; Pis- 

tikopoulos et al., 2002b), thus, deriving an explicit model based optimal control law. 

This approach is based on newly proposed parametric programming algorithms de- 

veloped at Imperial College (Pistikopoulos et al., 1999 -2002), with which the explicit 

mapping of the optimal control actions in the space of the state measurements can 
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be obtained (see also chapter 2). This novel development is followed by a series 

of publications from a number of groups, aiming to design in a similar manner the 

explicit model based controller. Most of these approaches, described in Table 5.2, 
derive a suboptimal control law or are based on a fixed set of active constraints. 
The ones that do not fall into those two categories are an extension of the original 
work of Pistikopoulos et al., (2002b); Bemporad et al., (2002b) which is described 
in detail in the next paragraph as the most generic approach. 

5.2.1 The explicit Model Based Parametric Controller for 
discrete time dynamic systems 

Consider a linear discrete-time state space description of a dynamic plant: 

xt+l = Aixt + A2Vt 

yt = Bixt + B2Vt (5.1) 

Yt E R7n, is the output vector i. e. the vector of the variables that we aim to control, 
i. e. to drive to their set-point, (temperatures, concentrations). To derive the explicit 
model - based control law for this system, the following receding horizon open-loop 
optimal control problem is formulated (Mayne et al., 2000): 

N-1 
O(Xtlt) = min xT NItPXt+Nlt +E [YT + VT kRvt+kl 

VNEVJV 
t+ 

k=O 
t+kltQYt+klt t+ 

S-t- Xt+k+llt = A, Xt+klt + A2Vt+k, k>0 

Yt+kjt = Bl-"t+klt + B2Vt+k7 k>O (5.2) 

9(Yt+klti -ýt+kjt5 Vt+k) ý COYt+klt + CI-70t+klt + C2vt+k- + bi 
k=O, 1,2,.. N-1 
O'q(--'t+Nlt)= D, Xt+Nlt + b2 

Vtlk = Kxt+klt, N<k 

Xtlt = x*; 

where t is the time when a measurement is taken; Xt+klt denotes the future pre- 
diction of the state vector at time t+k when starting from the state xtlt = x* 
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Authors I Performance Key Features 

Kreisselmeier and Birkhblzer suboptimal Value function as Lyapunov function. Implement ter- 
(1994) minal cost and free time horizon for practical asympý 

totic stability. Solve optimization off-line via dynamic 

programming and then perform interpolation to de- 

rive piecewise constant (PWC) state feedback control 
functions. Numerical rather than analytical approach, 

only input constraints, complexity explosion of the 

number of PWC functions. 

Oliveira and Biegler (1994) suboptimal Feedback control for different sets of active constraints. 
Use penalty functions - Newton control framework 

Bemporad et al., (2002b); optimal Explicit feedback control law via parametric program- 
Pistikopoulos et al., (2002b) ming, subdivide space into regions providing pertain- 

ing control functions =ýo State feedback piecewise affine 

control law. 

Johansen et al. (2002) suboptimal Explicit control law, smaller horizon than necessary, 

constraint activity regulated off-line to reduce number 

of regions, polyhedral partitions and constraint prior- 
itization in the face of infeasibilities 

Johansen and Grancharova suboptimal Rely on orthogonal tree partition of the regions. Re- 
(2002); Grancharova and Jo- quire computing QP off-line at vertices of regions. 
hansen (2002) Guarantee feasibility. Error criterion: deviation from 

optimal objective or control input value. 
Bemporad and Filippi (2001) suboptimal Relax KKT optimality conditions apart from feasibil- 

ity. Dual feasibility relaxation scheme. Error compu- 
tation aposteriori 

Bemporad et al. (2000b) optimal Subcase of Pistikopoulos et al., (2002b) for I/oo- 

norm, i. e. linear objective 
Borrelli et al. (2001) optimal Efficient on-line computation scheme for identifying 

the control function in the explicit control law. Use 

properties of value function to save storage 
Seron et al. (2002) optimal Geometric arguments to solve QP =ý, partition of the 

state space to a number of regions. Binary trees to 

speed up search of the control law through the regions. 
I The works described here do not include the works on hybrid systems and robust predictive controllers 

Table 5.2: Explicit Model Based (Sub)Optimal Controllers 

N= [VT TT ]T and applying the control sequence vt, vt+,, ..., Vt+k-l- Vt 7Vt+19 ***I Vt+N-1 de- 

notes the sequence of the control vector over the receding horizon. The constraints 

g: XxV ý-+ Rq, Oe :X ý-+ RQe and bounds on x, y, v define the feasible oper- 

ating region. Q ý: 0, R >- 0 are symmetric matrices and P >- 0 is the terminal 

cost that satisfies either the Riccati (Scokaert and Rawlings, 1998) (K = KLQ) 

or the Lyapunov equation (Rawlings and Muske, 1993) (K=O) to guarantee sta- 
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bility. Here, we assume for brevity that the constraint and the input horizon are 

the same N=N, = N., whereas the output horizon extends to infinity to ensure 

stability. The optimal tuning of the input horizon N is usually based on stabil- 
ity and feasibility criteria (Chmielewski and Manousiouthakis, 1996). To fulfill the 

stability requirements, other methods enforce extra end-point equality or inequality 

constraints (Mayne, 1997) on the states that drive the terminal state into an invari- 

ant set (Kerrigan and Maciejowski, 2000) surrounding the origin. Hybrid methods 
that include infinite horizon cost and end-point constraints have also been developed 

(Chen and Allgower, 1998). 

We assume that the pair (A,, A2) is stabilizable and the pair (A,, BI) detectable. 
k-I 

kX* + By substituting xt+klt -- A, E (A'jA2Vt+k-I-j) for the states and treating the 
j=O 

current states X* EX as parameters, problem (5.2) is recast as a multiparametric 

quadratic program (mp-QP) of the form of (2.3). The solution of that problem (Dua 

et al., 2002) consists of a set of affine control functions in terms of the states and a set 

of regions where these functions are valid. This mapping of the manipulating inputs 

in the state space constitutes a feedback parametric control law for the system. The 

mathematical form of the parametric controller is as follows: 

A, x* + B,; if CRY + CR 2<0, for c Ný; (5.3) 
cc- 

The index c designates that each region admits a different control function that holds 

over a certain polyhedral partition defined by the state inequalities. The vector Vt 
is the first element of the optimal control sequence, whereas similar expressions are 
derived for the rest of the control elements. Note that only the first element of the 

open-loop control trajectory is implemented to the plant, whereas the control action 
at the next time interval corresponds to the first element of the control sequence 
pertaining to the new updated state realization. 

The performance of this model based parametric controller is excellent in terms 

of the given performance criteria, the plant model and the imposed constraints. 
However, it fails to address the following open issues: 

9 Control of Hybrid systems. 

* Systems strongly affected by input disturbances or model uncertainties. 
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* Continuous time dynamic systems. 

Controllers that aim to tackle these types of system using an optimization based 

approach are outlined in the next paragraphs. 

5.3 Robust Model Based Control 

The performance of an MPC controller maY lead to infeasibilities in the presence 

of uncertainty due to inaccurate forecasting of the process behaviour. This may 
result in off-spec production or hazardous plant operation. Hence, a modification to 
the design procedure is necessary to preserve feasible and safe operation. For that 

purpose, the traditional techniques for designing a robust model based controller rely 
on (i) minimizing on-line or off-line the worst-case cost based on closed or open-loop 
prediction schemes or (ii) incorporating a set of robustness constraints to ensure 
stability and feasibility for the worst case or for each uncertainty scenario. While 

the first technique may result in unacceptably conservative control action, most of 
the approaches utilizing the second technique address only stability issues (Zafiriou, 

1990; Badgwell, 1997) and hence may not guarantee feasibility in terms of constraint 
fulfillment. Other approaches are based on nonlinear H,,,, control where robustness 
is ensured by the appropriate choice of the cost function. These methods as reviewed 
in Mayne et al., (2000), despite their interesting feedback properties involve solving 
a set of non-linear complex equations, which makes their implementation extremely 
difficult. A short review that classifies several recent relevant works on the design of 
robust predictive controllers is shown in Table 5.3. For a more detailed description of 
the literature on robust predictive control the reader can be referred to the excellent 
review papers of Bemporad and Morari (1999b) and Mayne et al., (2000). 

The most promising works for off-line derivation of the control law (i) incorpo- 

rate a large number of constraints and control functions (Zafiriou, 1990), (ii) require 
the consecutive solution of a long series of parametric programs that can be com- 
putationally demanding or (iii) avoid using the standard quadratic norm as a cost 
function (Bemporad et al., 2003). These issues lead the academic community to 

recognize that, despite the vast number of publications on the robust control design 

area, "the progress in that field has not been as dramatic", while it is viewed that 
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'further research is required to develop implementable robust predictive controllers" 
(Mayne et al., 2000). 

5.4 Model Based Control for Hybrid Systems 

So far the discussion is restricted to systems consisting of purely continuous dy- 

namic modes. Recently, the engineering community has seen the development and 

subsequent analysis of models for more sophisticated hybrid systems (Branicky et 

al., 1998; Grossmann et al., 1993). These systems integrate (i) continuous dynamic 

components with (ii) logical discontinuous components. The format of the logical 

rules involves Boolean algebra components such as if and then statements (e. g. if 

unit i is unavailable then all flows to that unit are set to zero). Hybrid systems can 
be classified as (Bemporad and Morari, 1999a; Tyler and Morari, 1999) (i) Piecewise 

affine models, (ii) plants with piecewise linear output functions, (iii) plants with dis- 

crete inputs, (iv) finite state machines, (v) objective and constraint prioritization 
formulations. 

The control policy of these systems motivates more advanced optimization and 
modelling techniques (Pantelides et al., 1999). The operational strategies that have 
been proposed for this class of systems usually employ a supervisory scheme for 

accommodating the discrete control decisions and a regulatory control system for the 

continuous decisions (Moor and Raisch, 1999; Lygeros et al., 1996). The operation 
of the supervisory upper level is carried out mainly in a heuristic fashion, hence, 

usually rendering the overall control system suboptimal. 
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Other methods for the control of specific types of hybrid systems have also been 

developed. These involve: (i) linear matrix inequalities (Ozkan et al., 2000), adap- 

tive multi-linear model techniques (Azimzadeh et al., 2001; Rao et al., 2001) and a 

geometric approach (Kerrigan et al., 2002) for piecewise affine systems; (ii) lexico- 

graphic programming (Kerrigan and Maciejowski, 2002) and value function weight 

determination (Vada et al., 2001) for constraint /objective prioritization problems; 

and (iii) conic laws (Hu et al., 1999) for switching systems. These techniques, de- 

spite being particularly effective in some cases are not generic and do not always 

address the discrete decisions in a optimal manner. To resolve these issues, Bem- 

porad and Morari (1999a) proposed a general predictive control scheme for hybrid 

mixed logical dynamical (MLD) systems, based on recasting the discrete events and 

the logical conditions (Urkay and Grossmann, 1996) into an equivalent set of inte- 

ger variables and mixed integer linear inequalities (Raman and Grossmann, 1992). 

Recently Bemporad et al. (2000c) and Kerrigan and Mayne (2002), based on the 

parametric programming techniques developed by Pistikopoulos et al., (1999-2002a), 

went a step further to adopt off-line parametric programming techniques to derive 

the control law, thus, obtaining parametric controllers for hybrid systems. Never- 

theless, their approach is limited to considering as an objective criterion only l- 

and oo- norms of the input and output deviations, which are not convenient for 

performance tuning and for ensuring stability, while they may also yield dead-beat 

or idle control (Rao and Rawlings, 2000). 

5.5 Model Based Control for Continuous Time 

Dynamic systems 

Linear MPC employs almost exclusively discrete-time dynamic models. The reason 
is that even for linear models the presence of continuous dynamics combined with 
state constraints results in complex infinite dimensional non-linear programs (Biegler 

and Rawlings, 1991; Mayne, 1997) that can be computationally formidable. How- 

ever, discrete-time representation leads to unavoidable inaccuracies if the sampling 
interval is not sufficiently small and increases the computational load otherwise. 
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This may not matter in many applications however, in safety critical applications 

such as biomedical systems (Parker et al., 2000) it can be a crucial issue. 
On-line implicit control schemes for continuous time MPC usually rely on nu- 

merical dynamic optimization techniques such as multiple shooting (Santos et al., 
2001; Diehl et al., 2002), control vector parameterization (Zhou et al., 2001; Pin- 

heiro and Kershenbaum, 1999; Jang et al., 1987; Manousiouthakis and Chmielewski, 

2002), or modified variational approaches (Bell et al., 1996). Additionally, signifi- 

cant developments have been reported (Chen and Allgower, 1998), based on infinite 

horizon predictive control, that enhance the stability characteristics of these schemes 

. These techniques, despite being successfully used require large amounts of com- 

putation restricting their applicability. Recently, nonlinear explicit controllers have 

been developed for such continuous time systems that aim to eliminate the rigor- 

ous on-line computations. However, they rely on the assumptions that there are 

no state constraints (EI-Farra and Christofides, 2001a; EI-Farra and Christofides, 

2001b; Palanki and Kravaris, 1997; Manousiouthakis and Chmielewski, 2002) or 
that the sets of active constraints are fixed (Visser et al., 2000). There are currently 

no techniques for deriving the explicit constrained optimizing controller for systems 

represented by continuous time dynamic models. 

5.6 Conclusions 

This chapter presents an overview of the some of the pioneering model based opti- 
mizing control technologies. Model based parametric control emerges as currently 
one of the most optimizing predictive control methodologies. It assures excellent per- 
formance respecting the system constraints, while obviating the need for demanding 

on-line computations. However attempts to extend this technology to robust control 
of uncertain systems require excessive off-line calculations while they may lead to 
conservative plant behaviour. Furthermore, no generic approach has yet been de- 

veloped for deriving the explicit optimal control law for the popular class of hybrid 

systems and continuous time dynamics. These matters are investigated in Chapters 
6 and 7 respectively. 



Chapter 6 

Design of Robust Model-based 

Controllers via Parametric 

Programming 

In this chapter a method is presented for deriving the explicit robust model-based optimal 

control law for constrained linear dynamic systems. The structure of this controller is derived 

off-line via parametric programming before any actual process implementation takes place. The 

proposed control scheme guarantees feasible operation under the presence of bounded input 

uncertainties by (i) explicitly incorporating in the controller design stage a set of feasibility 

constraints and (ii) minimizing the nominal or the expectation of the performance measure 
(1/oo norm or quadratic) over the uncertainty space based on either a closed or open-loop 

prediction scheme. The control expressions consist of simple piecewise linear functions and the 

implementation of the control policy involves merely function evaluations. 

6.1 Notation 

* The sequence of vector zEZ C- R-- starting from time t and extending over 

a time horizon i in the discrete time domain is a vector denoted as: 
Zi= [ZT ZT le ... Iz 

T 
_1]T = [Zt+klk=O, 

-.., i-17 Zi = [Zt+klk=O, 
--., i-1 G Zi C R%. i. 

t t+ t+ 

Thus, zt+kEZ, k=O,... i-1,4*z ER . 

117 
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The sequence of a vector starting from time t+j and extending over a time 

horizon i -j is a column vector denoted as: zj" = [zT TT ]T t+j, Zt+j+l, Zt+i-I 

[Zt+klk=j, j+l, ---i- I- 

When the sequence of a vector z over time starting from time t admits a 

double subscript, then the first subscript denotes the time instant we refer to 

whereas, the second subscript corresponds to the element of the vector z, e. g.: 

if z Iz"' zb, Z'] Ti Zi, 2 is the second element of the vector at time t+i, i. e. 

Zi, 2 (Zb)t+i- 

6.2 Open-loop robust parametric controller 

Consider a dynamic plant that is driven by control and uncertain inputs and has 

the following linear representation: 

xt+l ..: Aixt + A2Vt + W10t 

yt = Bixt + B2Vt + W20t 

0, is a vector of unknown input additive time-varying uncertainties belonging to 

a compact polyhedral set Ot E0C: R'O, where Ot E0 #ý {OiL :5 Ot, i :5 OjU; 

i=1, --- No};. Although this type of structured uncertainty is usually character- 
ized as an input disturbance it is shown by Carnacho and Bordons (1999) that it 

can accommodate a broad variety of modelling uncertainties including nonlineari- 
ties or hidden dynamics (Kothare et al., 1996). These uncertainties may result in 

infeasibilities in terms of constraint satisfaction and performance degradation. Here, 

feasibility analysis theory (Grossmann et al., 1983; Pistikopoulos and Grossmann, 

1988) is utilized to derive the robust parametric controller that will preserve process 

performance and ensure constraint satisfaction in the presence of these uncertainties. 

Definition 6.1 A robust controller can be defined as a controller that provides a 

control sequence that guarantees to steer the plant within the feasible operating region 
for a specific range of uncertainty variations. 

Here, the design of a robust control scheme is obtained by solving a receding horizon 

constrained optimal control problem (as in chapter 5 equation (5.2)) where the 
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objective is the expected, over the entire uncertainty set, or the nominal value of 
the output and input deviations. The constraints are augmented with an additional 
set in comparison to (5.2) that serves the purpose of ensuring feasible operation 
for every possible uncertainty scenario over the prediction horizon Ot+k E 0; k= 

0, N-1. To define this extra set of feasibility constraints we substitute for 
k-1 

k 
Xt+klt= Alx*+ E (AlA2Vt+k-l-j+A, WlOt+k-l-j) and rewrite the inequalities g<0, 

j=O 
09 <0 of equation (5.2) as: 

[91 (Xt+klt 
i Vt+k) :50,1 = 1, ---q, k=0, -N-1, Otq (Xt+Nlt) :5 01 i Qel 

. ý* ji W, v N, ON) :50, j= 1'. .. j 

n N-1 nv N-1 Ne 

xi* + 
ý 

y2i, k, iVt+k, i +ZZ -y3i, k, jOt+k, i + -y4j: 5 0, j=l,... i 
k=O i=l k=O i=I 

(6.2) 

where -I- are coefficients that are explicit functions of the elements of matrices 
A, B-, TVý, C-, D-, Q, R, P. The set of feasibility constraints is defined as: 

? P(X*, v 
N) 

:50 ý* VON E ()N(Vj = (X*, VN, ON) :50; VN E VN]) 

(6.3) 

The constraints 0 ensure that given a particular state realization x*, the single 
control action vN satisfies all the constraints for all the possible bounded uncertainty 
scenarios over the time horizon. This feasibility constraint represents an infinite set 
of constraints since the inequalities are defined for every possible value of ON E0N 
The equivalent formulation of (6.3) is the following program: 

O(x*, v') :50 <* maxjýj(x*, VN' ON), VN E VN; }: 5 0 (6.4) 
oNj 

Once we include the constraints O(X*, VN) into problem (5.2) and optimize over the 

single nominal uncertainty scenario we obtain the following mathematical formula- 
tion: 

N-i 
TE [YT + VT O(xtlt) = min xt+NitPXt+Nlt + t+kltQYt+klt t+kRvt+kl VNEVN 

k=O 
S-t- Xt+k+llt = A, Xt+klt + A2Vt+k + WlOt+k) k>0 
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Yt+klt = B, Xt+klt + B2Vt+k + W20t+k, k>O 

9(Yt+klti -""t+klt) Vt+k) ---ý 
CoYt+kjt + ClXt+klt + C2Vt+k + bi 

0,1,2,.. N -1 
0 : ý' V)q(Xt+Nlt)= D, Xt+Nlt + b2 

Vtlk = Kxt+klt, N<k 

Xtit (6.5) 

0> maxjýj(x*, vN7 ON)7 j= 17.. j 
I VN E VN; ON E E)N} (6.6) 

ONJ 

Problem (6.5), (6.6) is a bilevel program that has as constraints an embedded maxi- 

mization problem. The solution of this problem corresponds to a robust control law 

according to definition 6.1. The next steps enable us to solve parametrically the 

embedded optimization (6.6) in terms of vN, x* and replace it with a set of linear 

inequalities. This is done as follows: 
1. Solve problem: 

Gi (x*, v 
N) 

= max Jýj (x*, v 
N, oN), oN, L < oN < ON, U}, j= 1'... J 

. (6.7) 
ONEGN 

as a parametric program by recasting the control elements and the current states as 

parameters. Note that each individual maximization problem is not subject to any 
inequality constraints, apart from the uncertainty bounds. Hence, the maximization 
is performed trivially via the method of Pistikopoulos and Grossmann (1988) that 
identifies the critical uncertainty points for each maximization as follows: 

cr (i) if -y3i, k, j >0 =ý Ot+k, 
i = OtU+k, 

i; 
1 J, k=0,... N - 1, i=1,... No ao, +k, i 

<0 =ý Ocr OL (i) if 73i, k, j t+k, i t+k, i; 
j = 1,... J; k=0,... N -1i=1,... No 

VN) (X*, VN ON, cr), By substituting otc+k, 
i in the constraints g we obtain: Gj(x*, jI 

where ON, cr is the sequence of the critical values of the uncertainty vector Otr over 
the horizon N. 

2. Then compare the parametric profiles G, (X* 
I VN) over the joint space Of VN and 

x* and retain the upper bounds. For that purpose a multiparametric linear program 
is formulated and solved that is equivalent to the formal comparison procedure of 

Acevedo and Pistikopoulos (1999): 

maxGj ý* IV)(X*, VN) = minfel s. t. c> Gi; 
ie 
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vNE VN 
7 X*EX (6.8) 

3. Problem (6.8) is a multiparametric linear program and its solution (Gal, 1995; 

Dua et al., 2002) consists of a set of linear expressions for Oi in terms of the parame- 

ters vN and x* and a set of regions Ti, i= where these expressions are valid. 
Note that since no region T,, exists where 0; : ý, Oj, Vlx*, vN}ET;, Vi 0 11; the full 

set of expressions Oi, i= can replace exactly the maximization constraint 
in (6.6). The importance of expressing the underlying optimization problem (6.6) 

as a set of inequalities is that we can now write the overall problem (6.5)-(6.6) as a 

single-level program: 

O(x*) = min e(X*, v IV 
90 

N, n ) 
VNEVN 

s. t. 0> jj (X*, vN ON, n), 0>0, (X*, VN) 1- 

i=l,.. Nreg, j=1,... J (6.9) 

where (D is the nominal quadratic objective as in (5.2) after substituting the expres- 
k-1 

k 
sion Xt+klt = AIX* +E (A, A2Vt+k-1-j + AIWIOt+k-l-j). The superscript n denotes 

j=O 
the nominal values of the uncertainty vector, usually on k=0. Alternatively, a mea- t+ 
sure of the expectation, (e. g. average) of the objective function over the uncertainty 

space can be employed as a performance index. In that case the formulation (6.9) 

is modified as follows: 

O(x*) min EONEE)le(X*, VN7 ON)} 
VNEVN 

s. t. 0> jj (X*, v 
N, ON), 0>0, (X*, VN) 

i=1, (6.10) 

An approximate solution to the stochastic program (6.10) is obtained by discretizing 

the uncertainty space into a set of finite scenarios (ON), i=1,.. ns with associated 

weights wti obtained from a knowledge of the probability distribution of the uncer- 
tainty vector. Then a multiperiod optimization problem is formulated where each 

period corresponds to a particular uncertainty scenario. By treating only the cur- 

rent states as parameters and the control variables as optimization variables problem 
(6.9) or (6.10) is recast as a multiparametric quadratic program. The solution of 
this problem (Dua et al., 2002) provides a control law in the form of (5.3). 
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Theorem 6.1 The solution of (6.10) or (6.9) is obtained as a piecewise form (5.3), 

where CIZc = JCR', CR'} are polyhedral regions in the state space for which system CC 
(6.2) remains feasible VOt+k E 0; k=0, ---N- 

Proof. The piecewise structure of the solution of multiparametric quadratic pro- 

grams (mp-QP) is shown in Dua et al., (2002). Problem (6.10) (or (6.9)) is readily 
recast as an mp-QP, since all the constraints are linear in the joint space of vN Ix 
hence its piecewise form follows. 

The feasibility of the resulting control expressions VON E ()N is proved here 

through contradiction. Assume that 3jN and _; F such that the resulting control ac- 
tion [Ut+kJk=0,. 

--, N-1 that satisfies (6.10) causes a violation to the constraint §J(V , 
ON), 

i. e. ý, (jý *' jN) > 0. We distinguish between two cases: 

e Case 1. Assume jý*, T)N E Ti where 'Pi is defined by the solution of (6.8). 

Thus, in the region Ti the following expressions hold by definition: 

0, (X*, VN) = G, (X*, VN) = max ji (x*, vN1 ON), VX*, VN E ql, (6.11) 
ONEGN 

Since (6.11) holds for all X*' VN it trivially follows that it holds for {X*, VN} = 

jjý*' VN} 
. Therefore, since G, is the global maximum of problem (6.7) with 

respect to 0 the inequality 0, (. t*, iiN) = Gj(V,; V-N) ýý §I(jý*'; V-N, ON) is valid 
VON E ()N and consequently for ON = 

jN 
. Hence 1 

§1 (;; *,, DNI ON) :50, (jý*' f; N). 

But the optimality conditions of problem (6.10) guarantee that Oi (t *' U N) < 0. 

Therefore, our assumption that the triplet jjý*' 6N,, DNI results in a violation 
to the constraint g, is invalid. 

* Case 2. Let FIf; N ý Ti, and let 
. 5ý*,; V-N E qfý pertinent to the expression: 

Oý(X*, V') = G2(X"i VN) = max j2(X*, V N1 ON), VX*, VN E qlý (6.12) 
ONEE)N 

The preceding comparison procedure (6.8) implies that since Oý holds in 'Fý, 
it follows: 

Oý(x*, v N) 
=c>G, (x*, VN), VX*, VN intTj, (6.13) 

Oý(x*, v N) 
=C>G, (X*, VN), VX*, VN bdTý 
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where int and bd denote the interior and the boundary of a set. Equation 

(6.13) holds for Jx*, v 
N} 

= J'ý*' DN} since it holds for all IX*, VN}. But based 

on the same arguments as in case 1: Gl(. 7, -, *, 5N) ý! ý1(jý*'; V-N' ON) 
. Thus, it 

follows directly from the optimality of (6.10) that: 

0> Oi =G2 ý: G, N ON (6.14) 

that proves that the constraint ý, cannot be violated as originally assumed. 

These two cases establish by contradiction the validity of the theorem statements. 
0 

For illustrative purposes a numerical example is presented here to demonstrate 

the derivation of the parametric robust controller. A SISO system with a single 

state is studied here (Scokaert and Mayne, 1998): 

Xt+k+llt " Xt+klt + Vt+k + Ot+k 

Yt+kit ` Xt+klt 

x. = xtlt 
Ot+k E [-0.5,0.51; vt+k E [-lO, 10]; k=0,... N-i 

Xt+klt E [-1.2,2]; xtlt E [-2,2]; k= 19 

We consider a time horizon of N=2. For simplicity of notation we drop the 

subscript "t" from the input variables in this illustrative example. After eliminating 
the equalities portraying the plant dynamic behaviour as in (6.2), the following 

system of inequalities is formulated: 

-1.2 < vo + Oo + x* <2 

-1.2 < vo + vi + 00 + 01 + x* 

-10 5 VO < 10 

-10 < vl < 10 

The necessary three steps for identifying the feasibility constraints are performed as 
follows: 
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1. The maximization over the uncertainty space (6.7) is first carried out resulting 

in the following constraints: 

-0.7 < vo + x* < 1.5 

-0.2 < vo + vi + x* <1 

-10 < VO < 10 

-10 < V, < 10 

2. Then the maximum of all the constraints is retained over the control and the 

state space by solving problem (6.8). 

At the solution of (6.8) all the constraints are retained since they are valid 

over four distinct regions in the v, x- space. (See Table 6.1). 

Critical region I Critical region 2 

lp, VO +I- VI +1- X* -1 < 0 02 vo -I- vi -1- x* - 0.2 <0 

+1 - VO < +10 -1 -vo +10 

-0.5 < +1 - VI :5 +10 -0.5 < -1 - VI +10 

-2 < -1 x* < +2 -2 < -1 - X* < +2 

-2 -vo -I -vj -2 -x* < -0.3 +2 -vo +1 -vi +2 -x* < +1-3 

-1-VO-1-VI -1-xo < -0.4 +1. VO+1-Vl+l-X* 5 +0.4 

Critical region 3 Critical region 4 

IN = -1 -vo -I -x* -0.7 < 0 
IP3 -= +1 'VO +I' 0* - 1-5 5 0 

-1 -VO +10 +1 - VO :5 +10 
0.5 < +1 -VI +10 

0.5 < -1 - VI < +10 
-2 < -1 -X* < +2 

-2 < -1 -x* < +2 
+2 -vo +I -vl + 2-x* < +0.3 

-2 -vo -1 -vl -2 -x* < -1.3 

Table 6.1: Feasibility functions and critical regions for illustrative example (open- 

loop prediction) 

The constraints Oj, i=1, -- -4 are then incorporated in an open loop optimal 

control problem of the form of (6.9) with a nominal quadratic performance measure: 
N-i 

O(x*) =x2 t+Nlt 'P+E (X2t+klt + Vt4k). The terminal cost is the solution of the 
k=O 
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Riccati equation, hence, P=3.2361. By treating the current states of this problem 

as parameters we derive the control policy as a function of the state in a piecewise 

affine form. These piecewise affine expressions that are displayed in Table 6.2 and 

shown schematically in Figure 6.1, feature a control law for the process. 

Critical region 1 Critical region 2 

vo = -0.618 - X* vo = -0.6667 - x* - 0.06667 

vi = -0.236 - x* vi = -0.333 - x* - 0.13333 

+1 x* < 2 -x* < 1.9 

-1 - X* < 1.37 X* < -1.37 

Critical region 3 

vo = -1 - x* - 0.7 

V, = 0.5 

-1-x* < 2 

1- X* < -1.9 

Table 6.2: Critical Regions and Control functions for illustrative example (Open- 

loop prediction) 

I 

0 
I, 
0 

C 
0 
U 

» 

-o 

-I 

Region I 

Region 

Tin 

vt 

Region 3 

-25 -2 -1.5 -1 -05 0 05 1 1.5 2 25 
x- state 

Figure 6.1: State - space partition of open-loop Robust parco 
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Remark 6.1 Problem (6.9) is loaded with only N,,, <J feasibility constraints 
in addition to the constraints in (5.2). In the illustrative example the equality 
is exact, hence, J=4 additional constraints are included in the control design 

optimization problem. Note also that the maximum number of additional constraints 
is independent of the number of bounded uncertainties: N- No, whereas, in the 

approach of Campo and Morari (1987), 2N-Ne scenarios are examined giving rise to 

2N-No -J constraints that have to be incorporated. This would result in 2' -4= 16 

additional constraints in the illustrative example (N = 1, No = 1) as opposed 
to 4 additional constraints with our approach. The approach of Allwright and 
Papavasiliou (1992) generates (2N -No+ 5)J/2 additional constraints instead, which 
is an improvement compared to Campo and Morari (1987). However, the complexity 
is still linear and not independent of the size of the uncertainty vector. 

Remark 6.2 A noteworthy point about the open-loop robust parametric controller 

presented here and the rest of the open-loop prediction min-max MPC formulations 

(Table 5.3) is that they do not account for the fact that (i) only the first ele- 

ment of the computed input sequence is implemented and (ii) the future control 
inputs are determined from new function evaluations (or on-line optimizations in 

e. g. Campo and Morari, 1987; Zheng and Morari, 1993) performed after feedback 

updates. Hence, the prediction property of MPC is lost and the resulting controller 

may be over conservative especially when uncertainties are time-invariant. For in- 

stance in the motivating example if the range of the uncertainty space is doubled, 

i. e.: -1 <0<1 then the feasibility functions from step 3 will be: 

0.8 < vo + vi + x* 5 0, -0.2 < vo + x* <1 

The first inequality implies that there is no feasible region, hence no feasible con- 
troller can be designed. In the next section this disadvantage is overcome by formu- 

lating the control design problem as a closed - loop min-max program. 

6.3 Closed-loop robust parametric controller 

The open-loop formulation suffers from the drawback that it does not consider the 
benefit of future measurements in the prediction. Future measurements contain 
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information about the past uncertainty values. This implies that the future control 

sequence can be readjusted to compensate for the presence of past uncertainty 

realizations. This property motivated Scokaert and Mayne (1998), Lee and Yu 

(1997) and Bemporad et al., (2001) to use a dynamic programming approach for 

formulating the worst - case closed-loop MPC problem, which requires the solution of 

a number of embedded optimization problems that are in general non-differentiable. 
Here, feasibility analysis is used to directly address the problem. A set of con- 

straints are incorporated in the control optimization problem that preserve feasibility 

and performance for all uncertainty realizations. These constraints are written as: 

0> ot+N-1 (X*, [Vt+klk=O,..., N-1 9 
[Ot+klk=O, 

---, N-2) <* 

IVOt+N-1 E E)iVi =1'* *J[jj (X*) [Vt+klk=0,.. N-1) [Ot+klk=0 N-1) :5 01}} 

vNEV [Ot+klk=O,..., N-2 G E)N-l 

0> Ikt+I (X *9 [Vt+klk=O, 
-.., N-ly [Ot+klk=0,1) <* 

VOJ E E)13Üt+2 EV... IVOt+N-2 E 013ýt+N-1 E VIVOt+N-1 E0 (6.17) 

fvj =1... Jýj(X*, [Vt, Vt+1)ýt+klk=2,.. N-It [Ot+klk=0 
.... N-1) :5 Ollffi 

... 
1 

[VT, VT j V2 
t t+ E Ot E0 

0 ipl+l (X*, vt) ý* 
vot E E){3Vt+l E VIVOt+l E E){3Vt+2 EV... IVOt+N-2 E 013 

Üt+N-1 E VIVOt+N-1 E E) (6.18) 

Ivi 1- *Jýj(X *) [Vt) Üt+klk=l 
... N-1)[Ot+klk=O,... N-1) 5 Ol}M 

... 
M; 

vt EV 

The difference between this closed-loop formulation (6.16)-(6.18) and the formu- 

lation (6.3) in section 6.2 is that here, at every interval tk, the future control action 
[Vt+k+l 

i Vt+k+2 i ... Vt+N-11 is readily adjusted to offset the effect of the past uncer- 
tainty[Ot, Ot+l, Ot+27 

... 
Ot+kl in terms of constraint satisfaction. Whereas in (6.3), the 

control sequence is insensitive to any particular uncertainty realization and has to 

ensure constraint fulfilment for any possible future uncertainty scenario. 
Once, constraints (6.16)-(6.18) are incorporated into (5.2) they give rise to a 

semi-infinite dimensional program that can be posed as a max min max bilevel 

optimization problem: 

O(x*) = [Problem (5.2)] (6.19) 
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S. t. 

0 max gj(X*, [Vt+klk=O,.. N-li [Ot+klk=O,... N-1) (6.20) 
01+N-1 

93 

0> max min... max min max max Ot+l ilt+2 Ot+N-2 flt+N-1 Ot+N-1 j 

9 (X*, [v T9vT ]T 
JIT, t t+l, 

[ýJt+k 
k=2,.. N- 

[Ot+klk=O 
.... N-1); (6.21) 

T IT 
J]T 0> maxminmaxmin... max min max max §j(x*, [vt 

, 
[F)t+k 

k=l,.. N- ot Vt+l Ot+l FJt+2 Ot+N-2 f)t+N-1 Ot+N-1 

[Ot+klk=o,... N-1); (6.22) 

[Vt+klk=O,.. N-li [f)t+klk=l 
.... N-1 E VN; [Ot+klk=O,.. N-i E ON 

Note that the manipulating inputs VN E VN are optimization variables in the 

upper level optimization problem whereas DN E VN are optimization variables in the 

low level minmax optimization problems. In other words VN can be viewed as the 

design decisions and f) N as the operating variables in a process design formulation 

(Grossmann et al., 1983; Bansal et al., 2000). The next steps comprise solving 

parametrically (6.20)-(6.22) and substituting the resulting functions in (6.19)-(6.22) 

as a set of linear inequalities. Here we show the procedure only for the most complex 

constraint i. e. (6.22), the steps for the rest of the max min max constraints are 

performed likewise. The algorithm unfolds as follows: 
1. Solve problem 

Ot+N-1 (X *9vNi [Ot+klk=0 
... N-2) = Max tjj (x*, vN ON), ON, L < ON < ONP 

Ot+N-1 

j=l,... i (6.23) 

as a parametric program by recasting the control elements, the uncertain inputs 

apart from Ot+N-1 and the current states as parameters. Note that each individual 

maximization problem is not subject to any inequality constraints and hence, the 

maximization is performed trivially via the method of Pistikopoulos and Grossmann 
(1988) also described in section 6.2. 
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2. Compare the parametric profiles G 
Ot+N-1 (X*, VN I 

[Ot+klk=o,.. N-2) over the joint i 
space of vNI [Ot+klk=O 

... N-2 and x* to retain the upper bounds. For that purpose a 

multiparametric linear program is formulated and solved in a similar fashion to the 

formal comparison procedure of Acevedo and Pistikopoulos (1999): 

, 00t+N-1 (X*, VN, [ot+kl 
k=O ... N-2) max G 

Ot+N-1 

j=l,... j i 

OOC+N-1 (X* 
1 VN, [ot+k] k=O, N-2) = minlel s. t. c> GO'+'-; j* = l,... J} (6.24) 

e-i 
The solution of problem (6.24) consists of a set of linear expressions for 0 

Ot+N-1 
in i 

terms of the parameters VN 7 
[Ot+klk=O 

... 
N-2 and x* and a set of polyhedral regions 

T Ot+N-1 
Ii=1, .. 

R""+N-1 
where these expressions are valid. i9 

3. Set the counter I=N-1 

4. Solve the following parametric minimization problem over the last control 
element: 

Vt+I * 1-1 01 
10 (X 

1v, 01-1) = min 10i t+ (X"i [Vt+klk=0 
... le [Ot+klk=0 

... 1-1)9 (6.25) 
vt+iEV 

Ot+I < 0, i=i, ^ Ot+I if Ipi N, 
eg 

} 

In order to avoid interfering with the flow of the algorithm the method for solving 
(6.25) parametrically is described in Appendix F. There, it is shown that the lim- 

iting stage for the solution of (6.25) corresponds to an mp-LP problem with low 

complexity. The solution of (6.25) consists of a piecewise affine function of 0"+, 

in terms of the parameters [Vt+klk=O,.. I-ll [Ot+klk=O,.. I-I, x* and is valid over a set of 
polyhedral regions Ti"+', i=1,.. N^, ýeg+'. 

Set I=I-1 and solve the following maximization problem over the 1th 

uncertainty element: 

0 
7kot+I(X*i[Vt+klk=o,.. Iý[Ot+klk=O,.. 1-1) = max 10i ý+l (X* 

9 
[Vt+kl k=O,.. l i 

[Ot+kl k=O,.. I- 1)) Ot+i EE) 
vt+1+1 +1+1 if kpi < 0, i 91V4 } (6.26) 

Since function V)ot+l (X% [Vt+klk=O 
... 1, [Ot+klk=o 

... 1-1) is a convex piecewise affine func- 

tion (Fiacco, 1983), its maximization with respect to [Ot+klk=o,.. I-l reduces to the 

method of Pistikopoulos and Grossmann (1988) described in section 6.2, followed 

by a comparison procedure as in (6.24). 
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6. If I>0 go to step 4, else terminate and store the affine functions ? Pie', 

7. The full set of expressions OjO'(vt, x*) can replace exactly the max min max 

constraint (6.22) in (6.19)-(6.22). Similarly, the rest of the max min max constraints 

are replaced by a set of inequalities featuring the expressions: 
Ot+1 *T TjIT, Ot),..., 00t+N-2 *TTT IT, K, oT OT IT), Oi (X 

, 
[Vt 

I Vt+ (X 
I 

IN 
I Vt+11 ***1 Vt+N-2 t t+l,..., t+N-3 

Ot+N-1 *TTTT, K, oT OT IT). (X 
I 

[Vt 
I Vt+ II... I Vt+N-21 t t+l,..., t+N-2 

The importance of expressing the underlying optimization problems (6.20)-(6.22) 

as a set of inequalities is that we can now write the overall problem (6.19)-(6.22) as 

a single-level program: 

0(X*) min gb(x*, v IV 
e0N, 

n 
VNEVN 

S. t. 0> jj(x*, v 
N9 oN, n ) 

0>i,.. N^, 10 

0jot+, (X*, [vt, vt+, ], Ot'), i=1, .. N^ ' t eg 

Ot+N-2 Ot+N-2 0> oi 11.. N,, 
eg 

0 ý: oot+N-1 ot+N-1 
i 

N, 'eg 

Xtit 

(6.27) 

where ýD is the nominal quadratic objective as in (6.9) and the superscript n de- 

notes the nominal values of the uncertainties. Note that we may choose to for- 

mulate a more general problem where the objective will be the average of the 

system deviations from the target point over the uncertainty range, i. e.: O(x*) = 
min 

EONEE)NIýD(X*, VNI ON, n) } as is presented in equation (6.10). By treating only 
VNEVN 

the current states as parameters and the control variables as optimization variables 

problem (6.27) is recast as a parametric quadratic program (mp-QP). The solution 

of this problem (Dua et al., 2002b) provides the complete mapping of the control 

variables in terms of the current state pertinent to an explicit control law of the 

system of the form of (5.3). 



Chapter 6 131 

Theorem 6.2 The solution of (6.27) is obtained as a piecewise form (5.3), where 
CIZ, = JCR, CR 2} are polyhedral regions in the state space for which system (6.2) 

CC 
remains feasible VON E E)N. 

Proof. The proof of this theorem consists of the same steps as the proof of theorem 

6.1. Here, the steps are performed sequentially over every maximizer and minimizer 

of the constraints (6.20)-(6.22). 0 

Lemma 6.1 The control action provided by the feasible solution of the robust closed 

- loop prediction scheme in (6.27) is less or equivalently conservative to the control 
action provided by the open-loop prediction scheme in (6.10). 

0C+1 
Proof. Note that excluding the constraints 0 0i from (6.27) and 0 >- Oi from 
(6.10) the two problems are the same. For proving Lemma 6.1, thereby, it suffices 
to prove that the constraints 0> 00'+' define a convex set ý that is a subset of 
the convex set Q defined by the constraints 0> 0j, i. e. Q C: Q. The constraints 
0> Oi'+' and 0 ý: ? Pi are equivalent to the constraints (6.20)-(6.22) and (6.6) 

respectively. Thus, once we prove that each individual constraint from the system 
(6.20)-(6.22) is less or equal to (6.6), it readily follows that ýCQ. In this proof, 
the notation j=1, ---j; ON E ON is dropped for clarity unless otherwise stated. 

1. Comparison between 00'+J"-'-(6.20) and 0-(6.6). 
Constraints (6.20) and (6.6) can be written as: 

(6.6) =* 

maxjj(x*, v 
N, ON) 

ONJ 

N-1 q N-1 w 

E -Ilij - Xi* + E 1: y2i, k, j * Vt+k, i + max(j: 1: 73i, k, j * Ot+k, i) + -14i 
k=O i=l 

Ot+kti 
k=O i=l 

(6.20) =ý- 
n N-1 

max . 
ýj(X*iVt+k)Ot+k)jk=o,.. N-i -Ilij - Xý + 1: 1:, y2i, k, j * Vt+k, i 09+N-1 

il 

1: 

s 
i=l k=O i=l 

N-2 w 
EE -y3i, k, j * 

Ot+k, i + max (73i, N-l, j * Ot+N-l, i) + -14j 
k=O i=l 

o, +N-1 J 
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A For an arbitrary realization of jii*, ý 0} and an arbitrary constraint 

we have: 

Aj = 
ýN, ON) ]T OT 

JIT) maxg, (-^-*, max [ýt+klk=O,.. N-li [[6t+k 
k=O ... N-21 t+N- 

ON I Ot+N-1 

N-1 w N-2 w 

max(j: 1: -13i Ot+k, i) - 1: 1>3 Ot+k, 
i) 

ON 
k=O i=l 

k, l 
k=o i=l 

i, k, j 

max Ot+N-I, i) 
01+N-1 

Since functions g are linear and separable in terms of 0 it follows: 
N-2 w N-2 w 

Aj max (E E -y3i, k, j * Ot+k, i) - 1: 1: -y3i (6.28) 
[01+A; ]A: 

=O, ---, N-2 k=O i=1 k=O i=1 
k, j ' Ot+k, i ':: ý 0 

which holds from the definition of the max operator. Since we have not made 

any assumption for the realization (6.28) holds for all feasible x* E X, 

VNE vN 
I 

ON E E)N 
. 

Hence, it trivially follows that 

G, W, v N) -:: ý Go.. '+N-1 (x*, vN, [Ot+klk=O,.. N-2) 33 

as they are defined in (6.23) and (6.7), for an arbitrary constraint j=3. But 

if this inequality holds for every constraint it will also hold for the maximum 
Ot+N-1 

constraint: Oj, Oi as defined from (6.8), (6.24) respectively; i. e. 10i; i 
0 -1 0 IV)it+N "+ -' which is what we aim to prove. 1 Nre. 

-; 
i=1,... Nreg 

2. Comparison between ip andV)vt+N-1 - From the first step of the proof it is clear 
that for a feasible arbitrary combination ýN, bN} it holds: 

n N-1 q 

ýlj -+ ý2j k* ýt+k, i+ý4- 
i=l k=O i=l 

N-1 N-2 w 
ýJot+N-l +E Eý2 Ot+N-1 ýt+k, i +E1: 6t+k, 

i i i, k i, k 
k=O i=l k=O i=l 

+ý40, +N-I} >0 (6.29) 

To computeovt+N-1 an extra minimization over the control space is performed. 
Thus, the comparison between V) and V)vt+jv-, takes the form: 

n N-1 q 
Aovt+N-1 = V) 

- 7pvt+N-1 ýlj - ýj' +E1: ý2j, k * ýt+k, i + ý4 - 
k=o i=l 
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n N-2 q 

ý10t+N-l + ý20' i, k+N-l - ýt+k, i 

k=O i=l 

N-2 w 
Ot+N-1 +N-1 ý3j, k 

Ot+k, 
i+ ý401 

k=O i=l 

But: 

(6.30) 

ý20' +N-1 
* ýt+N-I, i ý! min ; ý2 

01+N-1 
. Vt+N-I, i (6.31) 

i, N-1 Vt+N-1 

since ý is a feasible arbitrary point in the control space and it does not neces- 

sarily correspond to the minimum. Combining (6.29), (6.30) and (6.31) yields: 

V) >0 Vt+N-1 (6.32) 

Since (6.32) holds for an arbitrary feasible combination J. ý *1 ýN, 6N} it is 

thus valid for all feasible x*, vN0N. 

3. The recursive comparison between the rest of the constraints ((6.6) vs. (6.21)- 

(6.22)) is performed accordingly, yielding the theoretical result we aim to 

prove. 

r-I 
The robust parametric controller, based on closed-loop prediction, is derived here 

for the illustrative SISO example. Steps 1-6 result in the following constraints: 

000 : -0.7 < vo + x* < 1.5 

001 -0.7 < vo + vi + On + x* < 1.5 0 
< vo + Oö + x* :52 (6.33) 

Step 7 of the algorithm yields the robust parametric controller for this example 
based on closed-loop prediction. The state-space partition is shown in Figure 6.2 

and the control functions are shown in Table 6.3. Comparing the controller of the 

open-loop prediction with the one of the closed-loop prediction indicates that the 
latter is less conservative since the unconstrained part of the controller, represented 
by critical region 1, is expanded over a wider range of the state-space. The closed- 
loop robust controller can accommodate larger uncertainty variations of the range: 

-1< Oo7 01 :51. The resulting feasibility functions in that case have the form: 

- 
Ot+N-1 

. min y2i, N-1 Vt+N-I, i 
Vt+N-1 
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I Critical region 1 Critical region 2 

VO = -0.618 * x* vo = -1 * x* - 0.7 

V, = -0.236 * x* VI = 0.432624 

+1*x* < 2 -1*x* < 2 

-1*x* < 1.83262 1*x* < -1.83262 

Table 6.3: Critical Regions and Control functions for illustrative example (Closed- 

loop prediction) 

I 

0 

-G 

-1 

Region I 

Vt0 

vt, 
-Reglon 

2 

' 

-16 -2 -15 . 
11 

-a s 

x- glatt 
5 

Figure 6.2: State - space partition of closed-loop Robust parco 

-0.2 < v,, + x* < 1, -0.2 < v, + v, + x* < 1, -1.2 < v,, + x* < 2. These constraints 

when incorporated into (6.27) result in a feasible robust controller in an expanded 

state space -4 < x* <4 comprising three polyhedral partitions: 

Critical Region 1: -0.524 < x* < 2.618, vo = -0.618x*; 
Critical Region 2: 2.618 < x* < 4, vo = -x* + 1; 

Critical Region 3: -4 < x* < -0.524, vo = -x* - 0.2; 

The execution of this controller is shown in Figure 6.3. The system starts from 

an initially infeasible perturbed point at xO = -4 and is driven to the origin ful- 
filling all the constraints after the first time element k=1, despite the presence of 
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an impulse disturbance of magnitude M= ±1. Unlike the robust controller, the 

nominal controller exhibits constraint violation for a short period of time after t=1 

before steering the system to the feasible region as is shown in Figure 6.3. 

-2- 

Constralnt:. x>-71. ý 
.... .... ... .... -3 - -I .... ............. .......... 

-41 11 
02345a769 10 

I (WO 

robust *4 controiler 
4 nominal controller 

0123456769 10 
t (Sec I 

Figure 6.3: output and Control profiles for the illustrative example 

N-1 
Remark 6.3 Problem (6.27) is loaded with E N,, eg feasibility constraints in ad- 

1=0 
dition to the constraints in (5.2). If the control input does not reach its bounds 

N-i 
in (6.25) the these constraints are bounded: E Mo, 'g+' <J-N. The pre-analysis 

1=0 
for deriving this controller requires the solution of 2N-1 mp-LP problems pertaining 
to equations (6.25) and (6.26). The N of these mp-LP problems pertaining to the 

comparison procedure have a bounded complexity, since the maximum number of 
affine profiles they derive is less than or equal to the number of nominal system con- 
straints. The rest N-I constraints do also have a bounded complexity (as shown 
in Appendix F) if the control inputs do not reach their bounds in (6.25). In the 

N-i 
illustrative example the inequality E R,, tg" <J-N is not exact, hence, we get 2 

1=0 
constraints pertaining to the 0" functions and 4 additional constraints correspond- 
ing the O't+l functions. Eventually, the control law is derived by solving a single 

mp-QP (mp-LP in case of 1 or oo norm) including the extra constraints. This is 

in contrast to the approach of Bemporad et al., (2001) that requires the solution of 
2. N mp-MILPs (e. g. 4 mp-MILPs in the example) to derive the control law. The 
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dynamic programming approach of Bemporad et al., (2003) does also have a low 

complexity but unlike our method it cannot treat the case of quadratic performance 
index since the problems that it formulates become in that case non-convex. 

6.4 Reference 1racking Parametric Controller 

The controllers described in section 6.2 and 6.3, despite ensuring constraint sat- 
isfaction, may result in a permanent deviation of the output responses from their 

set-points in the presence of persisting non-zero mean input disturbances or vari- 
ations in plant parameters. To address this issue, integral action is included in 

the control design algorithm to guarantee offset free output response. In model 
predictive control practice integral action is accommodated using two methods: 

I. The steps of the first method are the following (Lee and Sullivan, 1988; Ramirez 

and Maciejowski, 1995 ): 

1. Introduce an integral state in the plant dynamics that is equal to the accu- 
mulated deviations of the output from its reference point. 

2. Augment this state as an additional penalty in the objective function. 
II. The steps of the second method are the following (Clarke et al., 1987; Muske 

and Rawlings, 1993; Badgwell and Muske, 2002): 

1. First consider an input or output disturbance structure of the model. 
2. Estimate the current disturbance realization from the discrepancy between 

the model and the process outputs. 
3. Perform a steady state target calculation in terms of inputs and states. 
4. Adapt accordingly the control law on-line by shifting the state and inputs. 
The inclusion of these two methods in the robust parametric controller design is 

discussed here. 

6.4.1 Tracking Controller with integral penalty 
1. An integral state is introduced leading to a modified open-loop control design 

optimization problem (6.9): 

TT O(x*, xq*) = min Xt+NltPXt+Nlt + xqt+Nplxqt+N 
Vt+k 
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N-i 
E[YT + VT t+kltQYt+klt t+kRvt+k + xqTt+kQ, xqt+kl t+ 
k=O 

+ Wotn S-t- Xt+k+llt = A, Xt+klt + A2Vt+k 
+k 

yt+klt = B, Xt+klt + B2Vt+k + W20t+k '4 

xqt+k+l - xqt+k + Yt+klt 

xtlt = x*, xqtlt = xq* 

9(Yt+klt)Xt+klt)Vt+k)s 0 >- V)g(Xt+Nlt)t 0 >- O(X*iV N) 

k=O,..., N-1 (6.34) 

where xq E Re' is the integral state; Q1, P, are the quadratic costs corresponding to 
that state. A similar problem is formulated in the case where the average uncertainty 
profile is considered or the closed-loop prediction scheme is employed following the 
formulation of problems (6.10) and (6.27), respectively. By treating the pure and the 
integral states as parameters, problem (6.34) is recast as a multiparametric quadratic 
program. The solution of that problem provides a set of piecewise affine control 
functions in terms of the states and a set of critical regions where these expressions 
hold. These functions constitute a state feedback controller whose mathematical 
form is as follows: 

vt x, xq*) = A, - x* + b, + P, - xq*; 

if CRl - x* + cr' + CR' - xq* :50 for c=1,... N, (6.35) ccc 

The piecewise affine multivariable controller represented by (6.35) contains a pro- 
portional part A, - x* with respect to the states, an output integral part D, xq* and 
a bias b,. The presence of the integral term guarantees off-set free tracking of the 
output set point giving rise to a tracking parametric controller. 

Theorem 6.3 The control law defined by (6.35) is asymptotically stable, thus it 

guarantees no steady state offset from the target point in the presence of constant 
disturbances Ot E0CR, where 0 =- 101, < Oj :! ý, OU} on condition that (i) the 
dimension of the controls is larger or equal to the output dimension q ý! M (ii) the 

open-loop transfer matrix defined by the equation: H(z) = Bl(zj - A, )-lA2 + B2 

possesses no zeros at the origin, (iii) the quadratic cost matrix Q, that penalizes 
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the integral error is positive- definite (iv) the terminal cost and the time horizon 

length are appropriately tuned to guarantee stability in the absence of disturbances 
(Rawlings and Aluske, 1993; Chmielewski and Alanousiouthakis, 1996) and (v) the 

reference point of attraction is an interior point of the feasible region defined as: 

9EY, Y= ýYt+klt G R'k = 0, ---N- ll[yt+kit = B, Xt+klt + B2Vt+k + FOt 

Xt+k+llt = AlXt+kit + A2Vt+k + WOtiq(Yt+klte Xt+klti Vt+k) :5 09 7k'q(Xt+Nlt) :5 01 

Vt+k C V, Ot G 0, k=0,..., N- 1]} 

The Proof of the theorem is in Appendix F. 

(6.36) 

Remark 6.4 If the target point does not belong to the feasible region y,., f =0VY 
then the equilibrium point 900 in terms of the control driven outputs will lie on 

the boundaries of the feasible region. Then, theorem 6.3 still holds provided that for 

the evaluation of the integral states, the error for the outputs is shifted according 
to the modified equilibrium point, i. e. xqt+k+llt = Xqt+klt + (Yt+klt k >- 0. 

error 

Remark 6.5 Note that the input and state constraints do not include any integral 

states. Hence, if the current states lie on a critical region where at least one of 
those constraints is active the corresponding control functions in (6.35) that prevent 
the constraint violation do not include any integral term. This implies that when 
constraint saturation occurs the integral action is switched off automatically by 

our controller. Thus, our control design technique provides the compensator with 
explicit anti-reset windup properties (as in the scheme of Kothare et at. (1994)). 

6.4.2 Mracking Controller with disturbance estimator 
The design of an offset free parametric controller integrated with a disturbance 

estimator comprises the following steps: 
1. Generate a disturbance model. For that purpose a distinction is made between 

two systems (i) one being the real process plant and (ii) the other comprising a 
model that represents an estimate of the process behaviour, as shown in Table 6.4: 

where vector w is the actual disturbance vector that enters the system, whereas 0 
is the disturbance estimate. Vector 0 is modelled as a step disturbance, thus being 
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Real System Prediction model 
A 

. ýt+j = Aj. ýt + A2Vt + IV1Wt xt+l = Aixt + A2Vt + W10t 

AA 

Ot = Bjýt + B2vt + W2wt 
, yt = Bixt + B2Vt + W20t 

Table 6.4: Real vs. Prediction Model 

constant over the receding horizon, but admitting a different realization every time 

a piece of information about the process plant becomes available. 
2. Estimate the disturbance. Two different estimation schemes are used here: 

* Least squares recursive estimator. 

(t + (9t - Yt) 
Ot = (BI - IV, + W2)p - Ct (6.37) 

where (BI - TV, + W2)P is the pseudo-inverse of matrix B, - W, + W2. This 
dynamic system performs disturbance estimation via the least squares method 
(Stengel, 1994). 

Augmented Kalman Filter Estimator This scheme provides an estimator for 

the current states and the disturbances. Consider the following system. 

xt+l A, Wi xt +[ 
A2 

Vt; 01 = JB, W21 (6.38) 
Ot+l 01 ot 0 

xet+l Al A2 

The estimator equations are (Kwakernaak and Sivan, 1972): 

xet+i = A, (I - Rf3l)xet + (A2- AiRB2)Vt+ Aiftgt 
Pt = A(I - ftf3l)xet + PIRpt + (B2 -f3l 

RB2)Ut (6.39) 

The inputs to the estimator are the measurements from the plant gt, the control 
inputs , vt to the plant and the previous state/ disturbance estimate xet. The 

outputs from the filter are the output filtered estimate, the state estimate and 
the disturbance estimate: 9= [xe, ye]T. R is the filter gain that is a function 

of (i) Q', R' cost matrices of the estimator, (ii) the structure of the input noise 
to the system. 
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Note that both estimators incorporate an integrator: C in the least squares, 0 in the 

Kalman filter estimator. The original compensator can be viewed as the proportional 

part of the controller and the estimator as the integral part (Vogel and Downs, 2002). 

3. Based on the disturbance value a new steady state point [x, vj is computed. 
If the dimension of the output vector y is equal to that of the input control v and no 
input and state constraints are violated at steady state, then this is done as follows: 

I-A, -A2] 
. 

[X, ]=[ Wl- Ott] 

(6.40) 
B, B2 V, -W2 '0 

Otherwise if q= dim v>m= dim y the evaluation of x, v, is done via (Muske and 
Rawlings, 1993): 

min(v, - Vo)TR�(v. - vo) 
Xstve 

S. t. 
I-Al -A2 X, 

-W2 *0 

[ 

B, B2 

]-[V, 1=1 wl ', ', 
1 

where vo are the prior-to-disturbance control nominal values, usually taken as vo =0 
In the case where there are more measurements than control inputs the evaluation 
of x,, v, is performed via solving: 

-W ot)TQ., (Yo min(yo - Bjx, - 
B2V-q 2- Bix, - 

B2V, - W20t) (6.42) 
xalvo 

S. t. 
11- Al -A2 

1-[ x» 
1=[ 

wi - oý 1 

where y' are the output nominal set-points, usually yo = 0. Note that problems 
(6.40) - (6.42) are unconstrained quadratic problems readily solved to obtain a 
unique analytical solution of the form: 

V, = avot + ß-, x» = a. Ot + 0., ý (6.43) 

4. The state and input constraints are shifted according to the new target point 
leading to the following open-loop optimal control formulation (Rawlings, 2000): 

N-1 

opýtlt) = Min.; ýT E [YT +, VT 
, VN tjNP-ýýtjN + t+kltQYt+klt t+kRf)t+kl 

k=O 
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SA- -71t+k+1 It = Aj-ýýt+kjt + A2Ut+k 

Yt+klt : -- Bj-ýýt+kjt + B2f)t+k 

9[Yt+kiti (-; 7; t+klt + Xs)i (Üt+k + Vs)1 ---: 
COYt+klt + Cl * (it+klt + Xs) 

+C2 * 
(iýt+k + Vs)+ bi 

IP'q(; 7; t+Nlt + Xe)= D, ' 
(it+Nlt + Xie) + b2 

avot + 0. 

a, ot + ß. " 

, ýtIt = i*; k=0,1,2,.. N-1 (6.44) 

Note that the dynamic system is shifted (ýi =x-x, o=v-v. ) to bring the system 

to the output target point, however, the constraints remain unaltered. The variables 

x., v. are not independent since they are explicitly related to Ot via (6.43). Hence, 

once Ot and ; vE* are treated as parameters, problem (6.44) is recast as an mp-QP. The 

solution of this problem has the following functional form: 

40t 
Fvt(. V, ot) = A,. V + C, Ot + b,; if CR1. V + CR + cr' <0 cc- 

for c=1, ..., Nc; (6.45) 

Note that even if x, and v. correspond to an infeasible point, the constraints will 

always be satisfied. However, the process will not reach the target point. 

Remark 6.6 The feasibility constraints 0> O(X*7 Vt+k) can readily be incorporated 

in formulation (6.44) to ensure robustness. The derivation of these constraints (sec- 

tions 6.2 and 6.3) is carried out in the space of xý-, U for the output constraints and 
in the space of x, v for the state constraints. 

Remark 6.7 In the case where problems (6.41), (6.42) include state or control 

constraints, the solution for x,, v, will be a set of piecewise affine expressions: 

vsi = aviOt + Ovi) xsi = axiOt + Pxi, i=1,. .. St (6.46) 

Then (6.46) is substituted into (6.44) instead of (6.43), thus leading to St parametric 

controllers, each one for a different target point expression. 
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6.4.3 Comparison between the two Tracking Controller Schemes 

e The main advantage of the tracking parametric controller (6.35) vs. (6.45) is 

that it does not require the existence of a disturbance estimator. 

9 The tracking parametric controller (6.35) is easier to tune since its tunings can 

readily be obtained via a modified Ziegler Nichols or IMC approach. 

The tracking parametric controller with estimator (6.45) can provide improved 

performance and feasibility provided the estimator is representing exactly 

without delays the plant and the disturbance profile, and there is no control- 

model vs. process mismatch. 

* Controller (6.45) does not wind-up and exhibits less overshoots and aggres- 
siveness than controller (6.35). 

A block description of the two tracking controller schemes is shown in Figure 6.4. 

e 
Process 

V 

Parametric Inte ral 'g 
Controller state 
', Rc c=I, Ncrxql 

wA 
y 

Process 
x 

yv 

Model y 

A 
Y-Y 

r, Parco 
CRc R 

T-xet 
-0 

1 Estimator 
le 

c-I. Nc 

Parametric tracking controller 
with integral penalty Parametric tracking controller 

integrated with an estimator 
Figure 6.4: Block diagram representation of tracking controllers 
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6.5 General Remarks on Robust ýA-acking Para- 

metric Controllers 

Remark 6.8 The controller design methods in sections 6.2 and 6.3 guarantee fea- 

sible and robust performance while optimizing either the (i) nominal quadratic per- 
formance index or (ii) the average perfrormance over the uncertainty space. Note 

that our approach is insensitive to the type of performance criteria and can readily 

accommodate apart from quadratic, 1/oo norm performance measures. The former 

result in a linear objective function and thus, problems (6.9), (6.10) and (6.27) are 
recast as multiparametric linear programs (mp-LPs) that can readily be solved with 
current algorithms and software (Pistikopoulos et al., 1999-2002). 

Remark 6.9 In the sequel, the final step in the robust controller design is based 

merely on solving an mp-QP that has been augmented with a set of feasibility 

constraints. The identification of these constraints, which guarantee robust per- 
formance, is performed in a pre-analysis stage where for the open-loop prediction 
scheme 1 mp-LP is solved and in the closed loop scheme 2-N-1 mp-LPs are 
solved. Note that these parametric programs are of moderate size resulting in at- 
most as many critical regions as the number of the nominal problem constraints. 

Remark 6.10 Clearly, the closed loop robust parametric controller requires more 
involved computations compared to the open-loop scheme during the pre-analysis 
stage. Thus, the open-loop robust controller design can be suitable in cases where 
a fast and simple answer is required. However, as is discussed in Lemma 6.1, the 
closed-loop robust controller is less conservative than the open-loop robust parco. 
Hence, it results in improved performance over a broader region in the state space. 

Remark 6.11 A significant disadvantage of most worst-case robust control algo- 
rithms is that all possible plant uncertainties are considered to be equally likely. 
Thus, the controller focuses on the worst case realization at each time step. It fol- 
lows that these methods may result unacceptably conservative control action, as 
typical statistical assumptions imply that the worst-case scenarios are extremely 
unlikely to occur. Our proposed control design approach avoids completely this 
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shortcoming by optimizing the nominal or the average performance cost, thereby, 

resulting in an improved plant dynamic behaviour with guaranteed feasibility. 

Remark 6.12 The incorporation of integral action in the control law as described 

in section 6.4 is absolutely necessary for guaranteeing improved performance in 

terms of steady state reference tracking. Additionally, it is shown that the con- 
troller with integral penalty encapsulates explicit controller anti-windup action in 

the presence of constraint saturation. Alternative methods for reference tracking 
have been proposed in Bemporad et al., (2002b), but rely on a perfect model and a 

perfect disturbance measurement assumption. 

Remark 6.13 The controllers developed in this chapter are portrayed by simple 

piecewise affine functions. Their implementation is remarkably simple, therein, en- 

abling advanced robust control technology to be readily incorporated within modern 
industrial plants. Note for instance that if the states correspond exactly to the con- 
trolled outputs the control law in (6.35) corresponds to a multivariable parametric 
PI controller with gain scheduling capabilities. 

6.6 Process Example 

6.6.1 Design of Robust Parametric Controller 

A 2-state MIMO example is presented here to demonstrate the features of this 

newly developed model-based robust control design methodology. The problem is 

concerned with deriving the explicit robust control law for an evaporator process 
studied in a sequence of works starting from (Newell and Lee, 1989). The linearized 
discrete model of the process for At = 1min (see Appendix H) is as follows: 

0.8004 [ 0.04829 
Xt+k+llt = 

-0 1881 
Xt+klt + Vt+k 

-0.01992 0.9441 0.00966 -0.000184 

+ -1.1022 0.5 
ot+k 

-0.0204 0 

Yt+klt =01 Xt+klt 

10 
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X= y= [C2 p2]T; v= [Ploo F2oo]; 0= [F, Cl] 

The constraints and the nominal values of the system variables are shown in Table 

6.5. To derive the open-loop and closed -loop robust control law, first the feasibility 

Nominal Values Upper Bnd Lower Bnd 
Outputs C2 M 25 30 25 

P2 (KPa) 50.57 80 40 

Control Inputs F200 (kg/min) 207.52 400 0 

Ploo (KPa) 193.37 400 0 

Uncer ain Inputs F1 (kg/min) 10 9.9 10.1 

Ci M 5 4.9 5.1 

Table 6.5: Nominal values and constraints for the evaporation process 

problems (6.6) and (6.20)-(6.22) are formulated with a horizon N=3. Two cases are 

considered for each controller design according to the size of the uncertainty space 
(Table 6.6). The solution procedure described in section 6.2 and 6.3 is pursued to 
derive a set of non-redundant feasibility constraints as shown in Table 6.6, where 
C21 P2 denote the current values of the states whereas C21k, P21k denote their predicted 

values. 
In Case I, where a small range of uncertainty variations is considered, our 

control design methodology results in two feasible robust controllers (Q(1,1) = 
3/5, Q(2,2) = 1/10, R= 10-1 - I) based on open and closed - loop prediction. The 

C-L robust parametric controller is less conservative than the O-L counterpart, since 
the feasibility constraints imposed on the second and third time interval (Table 6.6 
first column) are less strict. The state-space partitions of the controllers are shown 
in Figure 6.5 and 6.6. Each one of the shaded regions corresponds to a different 

control function. For instance for the open - loop prediction robust parco region 
CR20 is characterized by the inequalities and control functions shown in Figure 6.5: 

The execution of the control policies for both schemes is compared with the 

nominal non-robust parametric controller. The system is initially perturbed C2, t=O = 
30%, P2, t=o = 61.57KPa and as it is driven back to the origin a sequence of zero 
mean step disturbances in C1, F, of magnitude C1 E [4.9,5.11% and C, = 9.9 - 
10.1kg/min occur. The profiles of the inputs and the outputs are shown in Figure 
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I Case I 

IA PI I :ý0.1: 1 AC' II ! ý, (). II 

Case II 

IA VI I : ý, 1.2 5: 1. 'ýi CI Iý0 
.5-I 

25.16 < (, '21k-I 29.84 26.63 < ý'21k=l 28.37 

40.002 <I 21k=1 79.995 40.02 < 121A, 
= 1 7,9.9 7 

2-5.29 < ("2 1 k=2 29.71 2 7.9: ý< ('2 lk, 
=2 

27.07 
Open - 

loot) 

40.003 < P2 jk-2 79.99.4 40.034 < 1321k-=2 79.96 

25,39 < ("2 11, 
=ý'i 29.61 28.97 < C2 k =2 

26.03 

40.007 < P2 I A-3 79.959 40.06 < P2 k =3 
-19.9: 

25.16 <C, 21k=i 29.84 2(i. 63 < C2 Ik-= I< 29.37 

40.002 < P2 IA, 
= 1 79.995 40.02 < 1'2 I/., = 1 79.97 

Closed-loop 
25.16 < 02 1 k=2 29.84 26.63 < C2 jk=2 29.374 

40.002 <i 21k=2 79.99. ý 40.02 < P2 1: =2 
9.97 

25.16 < C2 1k=:! 29.84 26.63 < C2 11: 
=3 

29.37 

40.002 < 1'2 1 k=?, 79.995 40.02 < P2 k=3 79.9 7 

1 16 

Table 6.6: FeasibilitY collstrallits for closed alld opell-loop prediction (I"Naporatol. 

process example) 

an o, 

CH20 : 

0.35 < 0.4025C., - 0.0946112 < 10-06 

48.707 < -0.2(-'. -, 
+1 . 

0908 1121 < 49.1705 

p loo - 16.575C., + : 1.8956 P*2 + 414.19 

P1,00 0 

Li 
Li 0. 
- 
-. 
- 
- 
- 
- 
Li 
- - - - - - CHIT 
- 

:3 

Figure 6.5: St, at, e - space part it loll of ()-I, Robils, pal-co - Case I 

6.7. The difference in the trajectories resultilig froill the C-I, ýIlld 0-1, prediction 

robiist controllers are indistinguishable alld thely ill. c 1)0111 desigluited ýis -roblist 

parco". 
In (-'(is( // a ia,, -g(,, - image or uncedainly vakitions is coiisidered residting in au 

infeasible 0-1, roblist parco. The rea"Oll for this is the presence of the infeasible 
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I in- -I Saw 

Figure 6.6: State - space partitloii of C-L Robust parco - (-'a,, e I 
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27.93 < ('21k=2 < 27.07 . 28.97< ('21A=3 < 26.03 

(a, s shown III Table 6.6) HIM. is derived from t he colit rol design pl-c-allillysis III sc(. tjl()Il 

6.2.111 t lie case of C-L predictions i'lle corresponding variables are constrained as 
follows: 

26.63 < (-"21k=2< 29.37,26.63 :ý (72 JA-=: ý < 29.37 

Hence, the cout rollerdesigii for the C-L result's III a feasible robust parallietriC 

controller. The stale space partitions of the C-L robust, parco are shown III l, 'Iglll. e 
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6.8. The execiihon oft lie coii I, rol law for d Ist II I-ba II ces of IIIa, gl I It II de C', E 

aiid F, E [8.75,1 t. 25]kg1, m*i-n I,; shown III Figm-c 6.9. The 110111111al parallictriC 

70 

.1 

Sm 
- 

1=3 

M 

31 46 

Figure 6.8: St, at, e space paxt it ion of ( '-L Robust, parco -( 'ase II 

29 

28 

27 -- ------------- 

25 ---------- 

24 

10 15 20 25 30 
1 (min) 

260 ----------- 

240 

m! 
4 220 

Foo ---------- 

180 

1W 

10 is 20 25 30 
t ('nin) 

Fip, mre 6.9: Output, mid control profiles - Clase 11 

controller exhibit s severe coustraint violat ions since rcaclics 2: 3.. -') whereas 

the robust, parco avoids any violations. 

6.6.2 Design of Robust Tracking Parametric Controller 

Two robust. parametric Cracking conirollers are (lesiple(I following the procedire 
described m sectiou 6A. The micertaml ies are assumed to be in Fl. C, of magnihide 
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AF, = ±O. lkg/min and AC, ± 0.1%. The robust controller with integral penalty 
is partitioned to 97 critical regions for a wide range of variations of the pure and 

integral states 22.5% :5 C2 :5 30%, 40KPa < P2 : ý, 80KPa, -15 < C2q < 15% *min 

and -20 < P2q < 20KPa - min. For example, a particular region is defined by the 

set of inequalities and corresponding control functions shown below: 

4.5 < 0.2C2 <6 

999.6 < -31.061C2+214.56P2-0.2C2q+46.23P2, <10123 

9.843 < 0.22912C2+9.4607- 10-2p2 + 0.2676C2q + 0.10745P2q 5 11-055 

-0.318 > 0.2C2 - 0.1217P2 + 0.2C2q - 1.2082 . 10-2p2,7 

1.210.105 < 4.887.103 + 0.3296P2 + 4.8868 

Ploo = -16.575C2+3.895GP2+414.18; 
F2oo = -97.842C2 + 675.86P2 - 0.63C2q + 45.63P2q - 3.149 - 104 

Note that the function for the first control variable Ploo in that region is not 

affected at all by the integral states. The reason is that when the states lie in that 

region the system operates in the neighborhood or on the boundary of the constraint 
C2 > 25%. Thus, the control variable P100 that largely affects C2 is readjusted 
to ensure constraint satisfaction and does not feature target tracking capabilities. 
Whereas, when the states enter the region where none of the constraints is active 
the control activity features integral action and the corresponding expressions are: 

Ploo = -3. ll. lOlC2+3.89P2-1.45-lOlC2q+7.75- 102 
F200 = -1.72 . 102C2 + 6.75 -102P2 - 7.56.10IC2q + 1.45 - 102p 2q -2.96- 

104 

Thus, the values of the integral coefficients in the control functions are alternating 
according to how close the constraints are to saturation. This characteristic clearly 
manifests, therein, the anti-windup properties of our proposed tracking controller. 
The robust tracking parametric controller with the disturbance estimator is derived 
in a similar fashion. 

The execution of the robust tracking controllers is compared with the plain ro- 
bust controller and the nominal controller. The system is initially perturbed to 
C2, t=o = 26% and P2, t=o = 51.57KPa and as it is driven back to the origin a 
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sequence of non-vanishing persistent step disturbances in C1, F, occur. The dis- 

turbances have overall a magnitude of AF, ! -- ±0.16kg/min and ACI = ±0.4%. 

However, each individual step does not exceed the uncertainty range considered in 

the design specifications of the controller, i. e. JFI :5 ±O. lkg/min and JC1 : ý, ±0.1%. 

The profiles of the disturbances and the output and input trajectories corresponding 

to the action of the nominal parametric controller (nominal parco), the robust track- 

ing parametric controller with integral penalty and estimator (robust tracking parco 

- integral, robust tracking parco - estimator) and the robust parametric controller 
(robust parco) are displayed in Figure 6.10. A Kalman Filter estimator is used for 

the simulation of the corresponding tracking controller. The nominal controller ex- 
hibits severe constraint violations since C2(t) < 25% even asymptotically as t -4 00. 
The robust controllers avoid constraint violations in the first 6 min when zero mean 

variations of the uncertainty occur around the reference point that stay within the 

considered range of variations JAC11,1AF11 :50.1. However, as the step disturbance 

variations deviate from the nominal point JAC11, AF11 > 0.1 the robust controller 
fails to fulfill the constraint C2> 25%. It also exhibits a permanent deviation from 

the reference target point C2 = 25% that asymptotically violates the composition 

constraint. The tracking controllers, however, respect the constraints over the com- 

plete envelope of operation because they bring the system into the interior of the 
feasible region after every disturbance step. Note that the tracking controller with 

estimator exhibits slightly less overshoots compared to the tracking controller with 
integral penalty. This verifies the conclusions of paragraph 6.4.3. 

6.7 Conclusions 

In this chapter a novel framework is presented for designing model-based robust 
tracking parametric controllers for linear dynamic systems that are subject to input 
disturbances and uncertainties. Two types of controllers were designed, the first is 
based on an open-loop prediction scheme where the future control sequence cannot 
be readjusted to compensate for the uncertainty values, whereas in the second type 

of controllers a closed loop scheme is applied, namely, the future control elements are 
allowed to readjust according to the past uncertainty realizations. Both controllers 
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Figure 6.10: Output and control profiles for nominal, robust tracking and robust 

parco - Case I 

optimize either the nominal or the expected value, over the uncertainty space, of 

some measure of the system performance. The controller guarantees robustness by 

means of constraint satisfaction and also preserves the system performance, while 

tracking asymptotically the output reference signal. The closed-loop robust con- 

trol scheme is shown to be less conservative than its open-loop counter-part. The 

controllers consist of piecewise affine state feedback expressions enabling implemen- 

tation through simple linear function evaluations and avoiding any expensive on-line 

computations. Additionally, the simple structure of the controller enables its func- 

tioning via a small-size microprocessor, thereby, obviating the need for expensive 

software tools. This concept of inexpensive advanced model based control implemen- 

tation has been realized in an experimental device at Imperial College (Panjwani, 

2002) that clearly demonstrates the advantages of this novel control technique. 



Chapter 7 

The Explicit Control Law for 

Hybrid and Continuous Time 

Dynamic Systems via Parametric 

Programming 

This chapter presents a new approach for deriving the explicit model based control law for 

hybrid and continuous time linear dynamic systems via parametric programming. Our method 
first formulates an open-loop receding horizon optimal control problem and then recasts it as a 

multiparametric mixed integer quadratic program (mp-MIQP) in the case of hybrid systems and 

as a multiparametric dynamic optimization (mp-DO) problem in the case of continuous time 

dynamics. The solution of the parametric programs (see chapters 3,4 and 5) derives off-line an 

explicit parametric controller for the pertinent plant before any actual process implementation 

occurs. The key features of our novel approach are demonstrated via mathematical, and 

chemical and biomedical process examples. 

152 
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The Explicit Control Law for Hybrid Systems 

via Parametric Programming 

7.1.1 General Hybrid Systems 

Here, we examine the problem where a process described by linear dynamics and 
subject to logical operating conditions is perturbed from its reference target. Thus, a 

control law to bring the system back to the origin is derived via solving the following 

optimal control problem in the discrete time domain: 

N-i 
TE [YT + VT + jT SSt, k] O(Xtlt) min Xt+NltPXt+Nlt + kltQYt+klt kRvt+k VNEVN, k=O 

t+ t+ ilk 

S-t- Xt+k+llt A, Xt+klt + A2Vt+k + A3St+k 

Yt+kjt = BXt+klt + B2Vt+k + B3St+k 

9(Yt+klt) Xt+klti Vt+k) COYt+klt + ClXt+klt + C2Vt+k+ b, St+k + C4 

0,1,2,.. N- 1 
0 ý! Oe(-"t+Nlt) = D, Xt+Nlt + b2 

Xtlt = X* (7.1) 

where E 10,1}N' =_ Y are binary variables involved in the modelling of the dis- 

continuous modes of the system. jN denotes the evolution of the binary variables 

over time JN = [Jt7Jt+1i8t+2i 
... i 

Jt+N_IIT 
. 

The initial conditions x* of (7.1) repre- 

sent the current states that are received as information from the plant. Equivalent 

formulations to (7.1) apply for the 1/oo- norm objective function (Rao and Rawl- 

ings, 2000). S >- 0 is a positive semi-definite penalty matrix. Note that the integer 

non-linearity JTSJ, which appears for notational compliance, is replaced with the 

equivalent linear term gTJ when matrix S is diagonal since J is a positive binary 

variable JEf 07 l}N'. In that case, S_ is a vector consisting of the diagonal elements 

of S. Otherwise, if matrix S is non-diagonal, terms Ji - sij - Ji are replaced with the 

positive auxiliary variable wij defined by the following inequalities: 

wij Si - sij; wij :5 sj - sij; wij ý: (ji + sj - 1) - sij 
i=1, ..., Ns j= Ns 
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where sij denotes the element in the ith row and jth column of S. The equalities 

associated with the dynamic system are eliminated by substituting for the states: 
k-I 

Xt+klt -A 
kX* E (A'A2Vt+k-l-j+ A'A38t+k-1-j), thus, yielding: I+II j=O 

1 N)TLS N (VN)TLSX* + (X*)TLSX*} + LSSN 
O(x*) = min -I(v iv 

+234 
VN, SN2 

61VN + 62 SN + 62X* + 64 (7.2) 

Problem (7.2) involves integer and continuous variables, has a quadratic, in general, 

objective (linear in case of 1/oo- norm) and linear constraints. By treating the cur- 

rent states x* as parameters, (7.2) is classified as a multiparametric mixed integer 

quadratic programming problem (mp-MIQP). The solution of this problem will pro- 

vide an explicit feedback expression for the control actions and the logical decisions 

in terms of the system states, thus providing to a control law for the hybrid system. 
Until recently there were no efficient algorithms for dealing with mp-MIQP prob- 
lems. The newly proposed algorithm for such problems (Dua et al., 2002) described 

in chapter 2 section 2.3 is employed here resulting in the following solution: 

vt = vt = A'5x* + Bc&; St = Sý' ct 
O'ýý(x*) min{o'(x*)Ix* E 

dR7(x*)} 
c 

2 
where dR. CRc - x* + CR <0 for c=1,... Nc} (7.3) 

c 

^T where a signifies all the integer solutions that are valid in CRc and 6- denotes the 

optimal one. Note that the expressions in (7.3) hold only for the first element of the 

sequence of control and binary variables that is implemented on the plant. Similar 
functions are derived for the full trajectories of these variables. 

7.1.2 Piecewise Linear Systems 

Mixed Integer Formulation 

Piecewise linear systems is a category of Hybrid systems. Here this category is 

examined due to its advantageous properties in terms of computational savings and 
stability analysis. The general formulation of the optimal control problem (7.1) 
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embedding piecewise affine models is shown below: 

N-i 
TT 0(Xtlt) = min hp(XtIN) +E Yt+kItQYt+klt + Vt+kRvt+k (7.4) 

VN, SN 
k=O 

S. t. if 0> fj(Xt+klt) (7.5) 

Xt+k+Ilt = (A1)j Xt+klt + (A2)j Vt+k (7.6) 

Yt+klt = (B1)j Xt+kit + (B2)j Vt+k (7.7) 

Xtlt = X* (7.8) 

0 >- 9(Yt+kltg Xt+klti Vt+k) = (CO)jYt+klt + (C1)jXt+klt 

(C2)iVt+k+ (b1)j (7.9) 

k=0,1,2,.. N-1 

0 >- O'q(Xt+Nlt)= (DI)iXt+Nit + (b2)i 

i= 11 ... , JM 

where index j runs over all possible models and the linear constraint fj defines the 

region of application of model j. In a more general fashion the model allocation is 

performed based not only on the state but also on the control and output variables 

at time k, i. e. f (Xk, Yk, Vk) : fý, 0. The term hp represents the terminal cost of the 

objective function. To demonstrate the problem formulation consider the evaporator 

example discussed in section 6.6 and in Appendix 11. The system is linearized at 
two different points, thus deriving two linear discrete -time models for the plant as 

shown in Table 7.1.2. The problem formulation for this example is: 

1 N-1 

. Y2, 
+, I, 

+ 0.1 . Y2 min 
hp(XtIN) + J: [0.2 1 lt+klt 

VN, SN 2 k=O 

+10-3 . 
(V2 2 

It+k 
+ v2t+k)] 

S. t. 

Xt+k+llt : -- (AI)j * Xt+klt + (A2)j 
* Vt+k 

Yt+k ---: lt+k 

C2 - C2 Ploo - Ploo 
P2 - 

P2 F2oo - 
F2oo 

xtit = x* G X, X= 1-2 < x, 5 5, -10 5 x2: 5 27.84} 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

(7.15) 



Chapter 7 156 

I Lin. Point j=l Lin. Point j=2 
- Outputs C2 P2 (KPa) C2 P2 (KPa) 

25 50.57 28.5 50.57 

Inputs Ploo (KPa) F200 (kg/min) Ploo (KPa) F2oo (kg/min) 

193.447 207.323 1 206.997 1 245.744 

Models j=l j=2 

0.90546 -0.088305 0.90476 -0.1008 (Al)j 
-0.0093454 0.9729 j -0.0093425 0.97266 

0.022765 4.1417 . 10-5 0.025993 3.5814 - 10-5 
(A2)j 

0.0046476 -9.0578.10-4 0.0046401 -0.00068596 

Table 7.1: Linearization points for evaporator example 

k=0,..., N-1 

Logical Conditions 

If 23 < C2(tk) < 27 1 and model 1 is chosen (7.16) 

If 27 < C2(tk) :5 30 j=2 and model 2 is chosen (7.17) 

k=0,..., N-1 

General Constraints 

24.75 < C2(tk) :5 30 40 < P2(tk) : ý, 80 (7.18) 

k=N 

120 < PIOO(tk) :5 265 140 < F2oo(ti, ) :, ý 275 (7.19) 

k=0,... N -1 

N= 11, At = 0.5min (7.20) 

The "if" logical decisions (7.5) and the dynamic model (7.6)-(7.7) can be transformed 

via integer modelling to the following set of constraints: 
im JM 

A 1., A2j 
Xt+k+llt - 

Ehk 
+Ehk (7.21) 

j=j j=l 
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im im 
Bli B2i 

Yt+klt hk +E hk (7.22) 
j=1 j=l 

UpAl (1 S 
t+k) 

A I., OAl (1 (Al)jXt+klt j hk < (Al)jXt+klt 
-L- Sj, 

+, 
) (7.23) 

similarly for A2, BI, B2 terms 
LOAl .S3. t+k <h 

Ali < UpAl Sjt+k (7.24) k- 

similarly for A2, B1, B2 terms 
fi(Xt+klt) :5 UP(l - Jjt+i, ) (7.25) 

i=l,..., Jm 
j=JM 

E jit+k (7.26) 
j=l 

k=0, ---N- 1 

For the illustrative evaporator example this set of constraints is written as: 

xlt+k+llt = h All +h 
A12 

+h 
A21 

+h 
A22 

lk lk Ik Ik (7.27) 

02, +k+ll, = h All 
+h 

A12 
+h 

A21 
+h 

A22 
2k 2k 2k 2h (7.28) 

h All 
lk < 

- 
0.90546-Xlt+k it - 0.088305-X2t+k Ij +50(1 - 61t+k) (7.29) 

h All 
2k < 

- -0.0093454 - Xlt+klt + 0.9729 ' X2t+kl, + 50(1 - 
51t+k) (7.30) 

h All 
lk > 

- 
0.90546 * "171t+klt - 0.088305 - X2t+klt - 50 (1 - 611+0 

h All 
2k > 

- -0.0093454 - Xlt+klt +0.9729. X2t+k -50(1-811+k) it (7.32) 

-50 < h All < +50 k- 
(Slt+k) (7.33) 

-50 < h A12 < +50(Slt+k) k- (7.34) 

similarly for A2 t 
82t+k terms 

-2 -5- (1 - 81101) :5 Xlf+klf 52+ 5(1 - 611+k) (7.35) 

2-5- (I - 82, +, ) 5 xl, +,,, :55+ 5(1 - 82j+k) (7.36) 

1 = 31t+k + 32t+k (7.37) 

k = 0, -.. N-1 

where ternis h(*) - [h(*) h(*)]' are vectors of the size of the states (hAI, 2j) and out- k- 10 2k 

puts (h BI, 2.1) 
and represent the auxiliary continuous optimization variables. Note 

that 
81t+2 

=1 implies that at the second time interval the model j=1 is se- 
lected. Thus, from (7.27)-(7.34) the dynamic model of the process is reduced to: 
Xt+31t = (Al)lXt+21t + (A2)lVt+2 and the constraint -2 < Zlt+21t :52 is enforced. The 

computation of the terminal cost hp is based on stability criteria and is discussed in 
Appendix G. 
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Control Law derivation - Algorithm 7.1 

By treating the current states x* as parameters problem (7.4), (7.8), (7.9), (7.21)- 

(7.26) is recast as a multiparametric mixed integer quadratic program (mp-MIQP). 

The size of this mp-MIQP is computationally formidable bearing in mind that its 

computational requirements grow exponentially with the number of variables and 

constraints (chapter 2). The limiting stage in the mp-MIQP algorithm as described 

in chapter 2 is the solution of the embedded mp-QP subproblem. Here, a method 
is proposed for solving efficiently off-line problem (7.4), (7.8), (7.9), (7.2l)-(7.26) 

by reducing drastically the size of the underlying QP. This method is based on the 

principles of the mp-MIQP algorithm (Dua et al., 2002) in section 2.3 and its steps 

are summarized as follows: 

Step I (Initialization) Define an initial region of the state-space CR, and an initial 
integer solution S. 

Step II (mp-QP Subproblem) For each region with a new integer solution, 3r: 

(a) From the fixed values of the binary variables retrieve a fixed sequence of 
models over the time horizon. Use this sequence to formulate a single mp- 
QP problem of the form of (5.2). This mp-QP problem involves neither 
any auxiliary continuous variables nor any logical conditions since the 
discontinuous decisions are fixed. For instance in the motivating example 
for Sl, 

+, = 1, k=0, --- 10, the dynamic system and the constraint are 
simply: 

xt+k+llt = (AI)j - Xt+klt + (A2)j 
' Vt+k 

Yt+k ý-- Xt+k 

23 5' C2(tk) < 27 

(7.18) - (7.19) 

(b) Solve the mp-QP problem to obtain a set of parametric upper bounds 
O(x*) and associated critical regions CR, c= 11 ... Nc. 

Step III (Master Subproblem) For each region CR, formulate and solve the MINLP 

master problem in (7.4), (7.8), (7.9), (7.21)-(7.26) by (i) treating x* as a 
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bounded optimization variable, (ii) treating all the auxiliary variables h(*) as 

optimization variables, (iii) introducing an integer cut to avoid repetition of 
integer solutions (Floudas, 1995), and (iv) introducing a parametric cut, ensur- 
ing that no solution is worse than the upper parametric bound. The parametric 

cuts are inequalities of the form: 
N-1 

TE (YT + VT Xt+NJAXt+NIt + t+kltQYt+klt t+kRvt+k) - 
ý(X*) 0 (7.38) 

k=O 

The solution of the MINLP provides a new integer solution P, , where 7- is 

the number of iterations that have taken place in region CR,. Return to Step 

Ii. 

Step IV (Convergence) The algorithm terminates in a region where the solution of the 

MINLP subproblem is infeasible. The solution is given by an envelope of the 

current upper bounds O(x*), integer solutions, 3 and the corresponding CRs. 

The embedded QP in Algorithm 7.1 is much smaller in size comparing to the QP 

formulated with the formal mp-MIQP algorithm in section (2). For example for the 

moderate conceptual case of y=x, and when there are 2 states, 1 control, 2 mod- 

els and N=5 the total number of continuous variables is: (controls)+ (auxiliary) 

= 5+80 whereas the number of integers is: 20. The pertaining QP of the tradi- 

tional mp-MIQP approach involves all 85 continuous optimization variables and 2 

parameters, whereas, the QP formulated with Algorithm 7.1 involves merely 5 op- 
timization variables and the same number of parameters which indicates significant 

size reductions. 

Remark 7.1 The control law for piecewise affine systems has the general form of 
(7.3). Provided the embedded MINLP problem in Algorithm 7.1 is solved to global 
optimality, the resulting control law is optimal with respect to the performance crite- 

ria. However, since the model of the dynamic system is not necessarily continuous it 
follows that the control functions that are an explicit function of the model matrices 
are discontinuous over the state domain. 

Remark 7.2 In parallel to our work Bemporad et al. (2002 a) discuss the continuity 
properties of the control law for hybrid systems with quadratic norms. In their work 
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the authors prove that the control law is piecewise affine, while its state partition may 
be non-convex. However, in their approach the authors do not solve the encapsulated 

mp-MIQP, thereby, they do not manage to derive the control law for the hybrid 

system. 
Our findings are recently verified by the work of Mayne and Rakovic (2002). The 

authors used reverse transformation rather than integer programming to characterize 
the partition of the control law for the special class of piecewise affine systems. Their 

approach is based on treating the dynamic system as a linear time-varying plant 

and on assuming an initial feasible switching sequence for a particular set of initial 

states. The control law is partitioned to ellipsoidal regions in the state space that 

are transformed to equivalent polyhedral regions admitting more than one optimal 

control functions as in (7.3) 

Remark 7.3 The tracking and disturbance rejection techniques described in § 6.4 

can readily be applied here for the control of piecewise - linear and general hybrid 
dynamic systems. 

Results on illustrative Evaporator Example 

The solution of the mp-MIQP (7.4), (7.8), (7.9), (7.2l)-(7.26) for this example results 
in a feedback control law consisting of 42 critical regions (Figure 7.1) in the state 

space and their corresponding control functions. For instance, in the region that is 

specified by the state inequalities: 

-0.2C2 :5 -5.4; 0.0946P2 < 5.38 

1.2C2-0.946P2: 527.82; 0.2C2-1.16P2<-58.89 

the control function that applies is represented by: 

Ploo = -34.58C2 + 2.72P1 + 920 

F2oo = 275 

Groups of state-space regions form assemblies where a specific optimal integer 

realization remains valid; for instance (Figure 7.1) in the region assembly GA, where 
23 < C2 :5 27 the integer realization that corresponds to model j=1 holds and the 
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integer value is ý,, 
+, = [11 k=0, --- 10. As such, only model j=1 is employed for 

forecasting the process behaviour for all the time instants in the receding horizon. 

However, for C2 > 27 model j=2 is used for the same purpose either for the 

first two (assembly GA3) or for the first only (assembly GA2) time element. Note 

that in this example there is no overlapping between two or more optimal integer 

combinations in the same region. 
A scenario is examined here to investigate the capabilities of this control law 

concerning its regulatory properties. The system is initially (time t, = Omin) per- 
turbed to the state-space point [C2 p 2]T = [30 57]T. Then, as it is steered back to 

the origin two impulse disturbances in the feed mixture flow and composition enter 
in the process. In the second scenario the same disturbances are present put the 
initial perturbation point is [C2 p2JT = [30 44]T The control action and the corre- 

sponding output time trajectories for the prescribed operating condition are shown 
in Figure 7.2. The output trajectory in the state-space is also shown in Figure 7.1. 
Despite the perturbation caused by the disturbance, the control action manages to 
drive the outputs to the reference point without any constraint violations. Con- 

straint C2 > 24.75 remains close to its bounds for the first 20min forcing the control 
variables to operate at their bounds. The model j=2 applies over a larger region 
of the state space at lower pressures as shown in Figure 7.1. From this we can infer 

that the response of the system is slower at low pressures due to the interaction 
between the manipulated variables. Note that this type of conclusion can readily be 
derived from the structure of the parametric controller, while it cannot be extracted 
if a conventional MPC scheme is employed that involves on-line optimization. 

The off-line computations for deriving the control law require the solution of 
3mp-QPs, 3 MIQPs and 42 MINLPs, one MINLP for each region. The solution of 
each mp-QP takes about 170 sec CPU using POP (Pistikopoulos et al., 1999-2002), 

whereas the MINLPs/MIQPs were solved in 7-10 sec when feasible, using GAMS 
(Brooke et al., 1992). The on-line implementation of the controller takes only 10-3 

sec, whereas the on-line solution of the corresponding MIQP takes 7-10 sec. 
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7.2 The Explicit Control Law for Continuous Time 
00 Systems via Parametric Programming 

7.2.1 Problem Formulation 

Here, we examine the problem where a process represented by continuous time linear 

dynamics is perturbed from its original condition and a control scheme is employed 
to steer the system to its origin. This control law is derived from the following 

open-loop receding horizon optimization problem: 
tf 

0(X*) Minf[IY(t)TQY(t)+V(t)TRv(t)]dt+X(tf)TpX(tf) (7.39) 
2 

t* 
S. t. : i(t) Alx(t) + A2V(t) (7.40) 

y(t) Blx(t) + B2V(t) (7.41) 

x(t*) = x* (7.42) 

0 ý: 9(Y(t), X(t), V(t» = Coy(t) + Clx(t) + C2v(t) + bi (7.43) 

t* <t< tf (7.44) 

Once the value of x(t*) at time t* becomes available from the plant, problem (7.39)- 
(4.2) can be solved to provide the optimal control action. The control action is 

applied throughout the interval t* 
-< 

t <- t* + At and at the next time instant 

t* + At the current state values are updated (i. e. t* = t* + At and x(t*)) and the 

control computation is repeated. 

7.2.2 Stability Requirements 

The stability and feasibility of the control law derived from (7.39)-(7.44) is guar- 
anteed by considering an infinite problem horizon, i. e. tf = oo. This however, 

makes the optimization problem infinite dimensional. Rawlings and Muske (1993) 
developed for discrete systems a formulation that considers a finite control horizon 

while extending the state horizon to infinity. The corresponding formulation for the 
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continuous case is as follows: 

too tf 

OW, X*) = min _X(t)TQIX(t)]dt + _[V(t)T Riv(t)]dt 
X, V 

A J2 

t* t* 
S. t. (7.40) - (7.43) 

t* < t<t,,, v=O, fort >tf (7.45) 

Theorem 7.1 If the optimization problem (7-45) is solvable at t* and the con- 

straints are satisfied fort > ti, the associated control law implies closed-loop asymp- 
totic convergence to the origin, provided that for t> tf all the constraints are satis- 
fied. (Note that the assertions of the theorem concern convergence but do not claim 
Lyapunov stability. ) 

Proof: Theorem 7.1 is proved using similar arguments to Lee and Cooley (1997), 

Rawlings and Muske (1993). The control variables are parameterized to piecewise 
Lagrange polynomials; in the following proof piecewise constant profiles are consid- 
ered for simplicity v(t) =f ut-, ut. +l,.. }, where ut. +j applies at interval t* +i- At < 
t : ý, t* + (i + 1) - At. The proof is readily extended to higher order polynomials or 
any assumed control representation over time. 

The fact that the optimization problem (7.45) is solvable implies that there exists 
a tf such that the objective cost is finite, i. e. 0(t*) < oo and the constraints are 
satisfied. Let ý(t*), u^t. +j be the optimal values for the states and the controls at 
the time instant V. The objective at this time instant is given by: 

00 
+ 

... 
+ ýT f ýTQýdt+ ýtTRý -T 

+N-, 
Rut. +N-l (7.46) t* It. + u,. +, Rýt-+j t. t* 

This objective corresponds to the following control action: ý= JýIt*+Ii ýV+2) ... I 
ýIt*+N-I 

9 IýV+N}, where ýV+N+j = 0, i=0,1,2,... is zero according to (7.45). By 

moving one time step forward the new control sequence is: ý=f ýIt-+2 IýV+N-I 9 
ýIt*+N}. But this time flt*+N 00 is not necessarily zero since it is fully determined 
from the solution of the optimization problem, whereas ýIt*+N+j = 01 j=1,2,... 
Therefore, an improvement is expected in the objective cost, hence: 

t*+4, t 

i(t)TQi ^T OW) ý! ý(t* + At) +f (t)dt + u,, Ru^to (7.47) 

ts 
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Consequently, the finite sequence 0(t*) is non-increasing and since it is bounded 

below by zero, it reaches a constant number for t* -+ oo, i. e. it converges. (7-47) 
t*+At 

also implies that f i'Qidt, ý't*Rýtt- converge to zero independently for large t*. 
t* Since R is a positive definite matrix, lim iýt- = 0. Accordingly: 

to-+00 

'* +At to +At 

tlim 
T Qýdt =0 tlim 

(ýTQý)It* <t< t* + Afldt =0 
-+00 -+00 

But i'Q. ý >0 since Q >- 0. Therefore, 
t1im 

i(t)TQi(t) =0 Vt E [t*, t* + Afl. 
"00 

Thus, R. (t*) -+ 0 for t* -+ oo. The fact that ; i(t*), iýt. vanish for large t* ensures 

that the system is asymptotically stable. 0 

The calculation of the objective function cost after the end of the control horizon is 

performed by replacing the infinite horizon with a terminal cost component, i. e.: 
tf 

O(X*) = MirX(tf)T. p. X(tf) +f[! [X(t)TQX(t) + V(t)TRv(t)ldt] 
X, V to 

2 

s. t. (7.40) - (7.44) (7.48) 

Where, the weighting matrix P is evaluated as the solution of the steady state 

continuous Lyapunov equation (Lewis and Syrmos, 1995): 0= ATp + PA + Qi. 

The size of the control horizon is selected based on the criterion that constraint 
feasibility is ensured beyond the finite horizon termination, i. e. Vt E [tf, +001 (Lee 

and Cooley, 1997). Methods for evaluating an appropriate value for tf for discrete 

systems (Chmielewski and Manousiouthakis, 1996), dictate that the horizon should 
be equivalent to the time it takes for the system to reach an invariant set around 

the origin. This value is an upper bound to the continuous case considered here, as 
in the continuous time domain the system may reach the invariant set at any time 

between tN-1 and tN --= tf - 

7.2.3 Solution Procedures 

By treating x(t*) as a vector of parameters, (7.39)-(7.44) is recast as a multiparamet- 

ric dynamic optimization problem (mp-DO). The solution of this type of formulation 

is discussed in detail in chapters 3 and 4 where two mp-DO algorithms are developed. 

These algorithms are summarized in this paragraph. 
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mp-DO Algorithm 3.1 

Step 1 Define a particular control representation over time, e. g. Lagrange polynomi- 

als. Solve the system of ordinary differential equations (7.40) in a matrix analytical 

form. The solution of the ODE provides explicit expressions for the states as a 

function of the control elements, the current state and time. 

Step 2 Substitute the state expressions derived in Step 1 to the problem objective 

and constraints. 
Step 3 

3.1 Enforce the path constraints as a set of interior time points tklk=l, ---K. 
The 

optimization problem then takes the form of (3.8) in chapter 3. 

3.2 Solve the resulting mp-QP. 

3.3 Check if there is any constraint violation at any time instant within the time 

horizon. 

3.4 If there is a violation, add the critical time instant 1 pertaining to the maximum 

violation to the set of interior time points, i. e. K=K+1, tklk=l, 
---K = 

jtkjk=1, 
---K-jj}. Then go to step 3.1. If there is no violation the solution of 

the mp-DO is equal to the solution of the final mp-QP at step 3.2. . 

For a piecewise constant control parameterization v= 
[U09UIiU27 

-* UN-11 the mp- 
DO solution with algorithm 3.1 leads to the parametric controller: 

üo (x*) = Ac - x* + B,; if CR' - x* + CR' < 0, c=l,... N, (7.49) 

Note that uO is the first element of the control sequence. Similar expressions are 
derived for the rest of the elements. However, only the first element is implemented 

on the plant, thereby, the rest of the control functions [U I (X*) 
i U2 (X*) UN- I (X*)] 

do not have a direct impact on the closed - loop system. 

mp-DO Algorithm 4.1 

Step 1. Define an initial region CR". Set index c=1. 
Step 2. Fix x* at a feasible point within the region CRIG. Solve the deterministic 
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dynamic optimization problem treating the current states as initial conditions. At 

the solution obtain the active constraints §' and the corner points t' when a switch k 

in the active constraint set occurs. 
Step 3. Next, solve the state and adjoint ODEs, symbolically to determine the op- 

timal profiles for the adjoints 
ý(t' tk' X*), states gt, tk, x*) and lagrange multipliers 

A (t, tk 
IX 

*). 

Step 4- Obtain expressions for the corner points tk(x*) in terms of the current 

states, and also obtain the optimal control profile ýC(t' tk(X*), x*) as a minimizer to 

the Hamiltonian function. 

Step 5. Construct the region boundaries and remove the redundant inequalities 

resulting in a compact region CR, associated with point x* and optimum control 

parametric function ýC(t' tk(X*), X*). 

Step 6. Define the rest of the region as CR rest = CR IG -U CR,. 

Step 7. If no more regions to explore, go to next step, otherwise set CR IG =C Rr, sl C 

and c=c+l andgotoStep2. 
Step 8. Collect all the solutions and unify the regions having the same solution to 

obtain a compact representation. 

The algorithm provides a piecewise time dependent parametric control function 

of the following form: 

ý(t, t'(x*), x*) = A, (t, t'(x*)) - x* + B, (t, t'(x*)) if 

0> CR' (tk(X*)) 
- x* + CR' (tk(X*)), for c=1,... Nc (7.50) 

cc 
The control functions as such, are piecewise continuously differentiable in terms of 
the current states. The control law for the continuous dynamic system comprises 

of the parametric control functions applying over a time interval equal to the plant 

sampling time: V(X(t*)) = jýc(t'tk(X*)'X*)jX(t*) = X*'O <t< At*}. Note that 

the control law derivation is independent of the length of the sampling interval At*. 

However, its implementation does depend on the size of the sampling time. In the 

case where a continuous realization of the state variables is available the control law 

is given by the expression: V(X(t)) = jliMý(t1jtk(X*)'X*)jX(t) = X*} 
tl-+o 

Remark 7.4 While the control law derived from Algorithm 3.1 does depend on the 
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form and order of the control vector parameterization, the controller derived from 

Algorithm 4.1 does not assume any time representation of the controls. However, 

in most cases Algorithm 4.1 derives non-linear state feedback control functions as 

opposed to the piecewise linear functions of Algorithm 3.1. 

Remark 7.5 The parametric controllers derived from both Algorithms 3.1 and 4.1 

have the following benefits when compared to a parametric controller for discrete- 

time dynamic systems (Bemporad et al., 2002b and Pistikopoulos et al., 2002) : 

* The constraints are satisfied over the complete time horizon irrespective of the 
length of the sampling interval. 

9 The value of the cost function is more precise inasmuch as the integral and not 
the sum of the input/output deviations, over the time domain is considered. 

9 There is more flexibility in the choice of the control profiles that in some cases 
leads to improved systems performance and feasibility. 

Remark 7.6 The parametric controllers derived via Algorithm 3.1 can readily be 

extended to treat continuous time representations of hybrid systems. The logical 

decisions, which are modelled as binary variables, are discretized over time and the 

pertinent mp-MIDO problem is solved using the algorithm proposed in Appendix 

C. Further developments are needed however to treat hybrid systems via Algorithm 

4.1 since the solution of an optimal control problem involving discrete decisions via 

a variational approach is still an open field of research. 

7.2.4 Illustrative Process Example 7.2.1 

The Fluidized catalytic cracking (FCC) example presented in section 3.3 is used here 

to illustrate the features of the parametric controller for continuous time dynamic 

systems. A challenging operating point is selected, while the "Hicks" control struc- 
ture is considered based on controllability indicators and economic criteria (Hovd 

and Skogestad, 1993). These problem features along with control design charac- 
teristics are shown in Table 7.2. The control law was derived using the mp-DO 
Algorithm 3.1.7 iterations were performed between the mp-QP solution and the 
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feasibility test, the CPU for the last mp-QP solution is 1863.4sec. The values of 
the interior time points where the constraints are enforced are shown in Table 7.3. 

The output time profiles are discontinuous since matrix B2 is non-zero and the con- 
trols are piecewise constant. Thus, point constraints have to be enforced on both 

sides of the discontinuity points. This feature is readily addressed by Algorithm 

3.1, while it cannot be captured with the discrete time representation of Bemporad 

et al., (2002b). The parametric controller is partitioned into 212 critical regions as 
shown in Figure 7.3. Each region corresponds to a different control state feedback 

expression. For instance in the region defined by the inequalities: 
103. C 

re < 6.078 

_ 103 - Crc - 0.17 - Trg < -169.1 
1021.5 - Cc + 2.99 - 10-2 - T, -g < 22.8 

The control functions for the first element are given by the equations: 
F. 0 = -1.84 . 104 - C, - 3.121 - T, -g + 3.51 - 103 

F. 0 = 2763 - C,, - 0.349 - T,. g + 354.8 

Nominal operating point for Partial Combustion mode 
States Outputs (Ilicks structure) 

'r2-T rg 966.6K YI-Tr. 770.6 K 

xi-Cer 3.578- 10-3 Y2 - Tcy 997.4 K 
Output continuous - time model matrices 

B, 
1.32- 10-3 0.559 

B2 0.362 0 

-4.42 - 
10-3 0.538 0 0.877 

Control Design Features 
Control elements: N At(min) tf (min) 

12 3 36 

1/(29.4) 0 1 1 

R= 10-3 
101 1 

. 1/(24) 01 

Table 7.2: Characteristics of Example 7.2.1 

The execution of the controller is examined for a scenario where the states are 
initially perturbed from the origin and two disturbances in the feed flowrate and 
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syst, em st, art, s from Hic st, eady st, atic and a scries of dishirba. nces are occurring. The 

N`IPC controller feattires const, raint violations as shown iii Figure 7.. '-) due to the larýgc 

hine delay. from Ole complit, at, ions, while t lie parco cont, roller responds 20min fask, r 

without. violatnig auy const. rainis. 

7.2.5 Illustrative Biomedical Process Example 7.2.2 

In this example I lie control of g1licose in tYpe I Diabeles patients is studied. Thc 

single inampulating variable is the infusion from all external source to maill- 
tain the blood sugar content al acceptable levels. The linearized Berg-man model 
(LYnch aud Bequette, 2001) is used fol' (. 01111-01 pill-pose's. 'I'llc model (Ictall"". the 

coustraints and I lie control desigu decisimis are shown in Table 7.1. Algorithm 3.1 I-S 

employed to derive the coidrollel. rot. i Ills sYstell). 8 iteratiOlls al, C betweell 

all mp-QI) aii(I a feasibility- test, (Table 7.. 7)) and the compulational time for 1he 
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7.7): MIT vs. Parametric cmitroller. output profile for 1-'. xýmiplc 7.2.1 
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)"Olililml operating poilit - Constraints 

Varlahle Nominal Vahic T ollild ilm"T B Upper 1301111d 

states -x G pla, ýllla gillcose (111111ole/11t) 

Nx Inslitill - relliolle compartment 
(lilt' / 111) 

I phisilla (lilt /111) 

1.5 

0 

15 

3 

- 

1 

Control 111put -v 
U infusion rate ofinsulin (nit i/min)j 16. GG66 0 SO 

Disturhance Inptit, -0 
1) ghlcose 111put-ille aI (g) 0 30-5 0 

Output = Plasma Glucose 

Continuotis time model matrices 

j. =A+A., +IV, 0 

. 1. ý) 1()- 7 

-0.025113 1.3015.10-" 

00 -0.019272.5 

2.65 PS 10-" 

0.083 177 1) 

Control Design Features 

Rano of input to mitput cost: R/Q A' - Horizon AI(111111) If (111111) 
le-2 -5 5 25 

Stato X= 10 <U< 15, -10< X< 10,10< I< w) 

Table 7. -1: Chitracteristics of' Fximiplc 7.2.2 
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last mp-QP is CPU = 2,1sec. The path collstraillts arc sidislied withill ml ah"ohlic 

ertur of 7A - 10-t The cm0rolhT (unsisix of 11 coWrJ WHack (Apn4sions aml II 

correspoildilig critical regions. The colltrol expression for olle of' the regiolls is: 

4 

Intel. 101, PollIts lk 1 
"-), 10,15 0 2.397 7.533 1A12.. l(ýi7 3.23 1.57 2. (S 

Table 7., '-): 1111". 101. PoIllt COIlStI'Mills f0l' FNiIIIII)IC 7.2.2 

U=3.726, It + 01 -G-1. U59. It+ 0: 1 -N- . 5.2 133( - 011 - I. . 5627e + 02 (7.. 5 1) 

whdc t he Sl ille 111equal it Ics spec I (V Ing t he regioll hollildill-ICS MV: 

10 «l- 1 10 

-7.1636 - 10'; -G++ 02 -X+1.0000 - 10- 1-1< 

_ 1013 . (; +. 10-2 . ., 
ý + 1.0000 . 10- - *2.1 -ý') G! ) 101 

6.5332 - 10'; - G' + -K2956 - 10'-' -X+-1.0000 - 10- < 2., 7) 9- 11 e01 

The executioll of' I'lle closed-loop SY'stell) "'uh. ject to a 111cal (I I still-halicc of' 30"'l. is 

shown in Figure 7.6. The wil-1111cal. Bel-gimill model is llsýed FOI. I llc sillmlat loll. Tllc 

colltrolicl. respects the SY'Stell) collstraillis guill-allteellig the , ýI[C operilholl k)l' tills 

h1olliedical sYstelll. 

1. ý 
&or 

1"I"nire -I. (;: MN, vs. Parallict ric coiil roller, out put profile for F. xýmiplc 7.2.2 
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7.2.6 Illustrative Mathematical Example 7.2.3 

I h(. 1-litic ('villipic 1.1 lllýlt wil", descri hed III Chapter .1 scololl 1.3 P, 
I Ic re Io de IIIoI Is I ril IctI Ic der I va tI on oftI ie pa rametric contro II aw vi a AIgo rit I im . 1.1. 

The constraint applies here over the complete time horizoll: 

- 1.2 < x(t) - uji) < 2, Vt E [t, 
. I. f 

]ý t* = 0, tf = 2-se c. 

The control fillictiolls alld III(, corre.,, pomling statc, profiles are writion in Tahle 

7.6. The constrah"A regions CH02. CR03 Ratum two bomidarY arcs, while the 

micoitstrained region CROI alld the collstrailled regions CRO-1. CRO-5 hilve a Sillgdc 
houlidan. al. c. 

. I'lic control law for Illis S. N, st(, Ill comprises the recill-sive lill plellicilt ilt ioll of' the 

collI1,01 fulictiolls III Fable -1.6 ovel. a fixed Illm, Illterval equal to Ihc samplilig tilm' 

Note that t. ur --\/ -0 the Control Iaw is not a fullctioll of' the switching Ilille /I, 

because there are otily 2 arcs with the first being Lhe conmah"d Inim. This is ilot 

the case wheit three const rai lled arcs are present, as showii ill Table 1.2 ill chapler 
1. The execution of the coMrol la", Or a sampling tiniv of A/ = 0.5mc is shmn 01 

7.7. where the state initializes from the pvrtuked point al -. -1. 

-ol 

0- 

I. I: Control illplit. 01111)"t aild collstrail I tit profile for Example 

7.3 Conclusions 

I 11c III ý, t Pitrt ol I III., t ý, Ilmv, hkAV parailiet ric programming allows explicit 1111,01, 
Iiialloll to he ohlallied oil Ow delwildelice of' the optimal solution of' mi optimiziIII011 



Chapter 7 175 

CROI - Region Bounds: -0.6 < x* <1 

Fort, :5t< tf : v(t) = -e-x* 

X(t) = e-tx* 

CR02- Region Bounds: -1.1186 < x* < -0.6 

For tj, : ý, t< tf : 

V(t) -e-(t-el-). (1.2etl-v+etlxx*-1.2) 
For t,: ý, t< tj., 

X(t) = e-(t-tlx) - (1.2et's + etlxx* - 1.2) 
V(t) = 1.2eg + CY 

where from non-linear regression: 
X(t) = 1.2et+etx*-1.2 

ti., = -18.8 - 
(X*)3 

- 45.851 - (x*)2 

-34.762 - x* - 9.6101 

CR03-Region Bounds: 1 <_ x* < 1.86 

For t. <t< tj., For tj., : ý. t< tf 

v(t) = -2c' +etx* v (t) = -e-("-) - (-2et's + etlxx* + 2) 

x(t) = -2ee + etx* +2 X(t) = e-(t-tl-). (-2etlx+etlxx*+2) 

CR04-Region Bounds: -2 < x* < -1.1186 

For t. <t< tf : v(t) = 1.2et + et x 

x(t) = 1.2e' + e'x* - 1.2 

CR05-Region Bounds: 1.86 < x* <2 

For t. <t< tf : v(t) = -2et + etx* 

x (t) = -2et + etx* +2 

Table 7.6: Control and state functions for Example 7.2.3 

problem on the values of a set of independently varying parameters. In this chapter 

we have invoked parametric programming to derive, for the first time, the explicit 

control law for the categories of linear hybrid and continuous time dynamic systems. 

For both of these types of system the common starting point is to formulate a reced- 

ing horizon optimal control problem. Then by treating the initial state as a set of 

parameters the problem is recast to a multiparametric mixed integer quadratic pro- 

gram (mp-NIIQP) for hybrid systems and a multiparametric dynamic optimization 
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(mp-DO) problem for continuous time dynamic systems respectively. 
For general hybrid systems we resort to the newly developed algorithms from 

the literature (Dua et al., 2002a) to solve the pertinent mp-MIQP. For the special 

class of piecewise linear systems though, a new algorithm is proposed that leads to 

a drastic reduction in the number of continuous decision variables. This saving is 

achieved by eliminating from the underlying mp-QP the auxiliary variables involved 

in the integer modelling, while retaining them in the embedded MINLP problem. 
The solution of the mp-NIIQP corresponds to a parametric controller (parco) for 

the hybrid system that comprises explicit expressions for the continuous and logical 

decisions in terms of the plant state. For plants represented by continuous time 
dynamics, the solution of the pertinent mp-DO relies on the algorithms proposed 
in chapter 3 and 4 of this thesis. As such, using these current developments an 

optimal explicit control law for these systems is obtained that respects the state 

path constraints over the complete time domain of operation. Guaranteed improved 

performance over NIPC and parametric controllers for discrete time dynamics is 

established based on theoretical arguments while the design and the functioning 

of those algorithms is demonstrated via illustrative examples. The fundamental 

advantages of the parametric controllers as developed in this chapter are: 

e Simple structure and elimination of expensive on-line computations. 

* Feasibility in terms of the problem constraints and optimality in terms of the 
performance criteria. 

e Significant reductions in the system sampling time implying an improvement 
in system performance. 

Precious insight into the problem structure towards identifying the infeasibil- 
ities, the areas of strong input interactions and the switching times between 
different operating modes. 

The controllers developed here extend the analysis tools and the applicability of 
advanced model based control to a wider diversity of plants. 



Part III 

Parametric Controllers in 

Simultaneous Process and Control 

Design 
"All our science, measured against reality, is primitive and childlike-and yet it is the most 

precious thing we have. " Albert Einstein 
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0 

Literature Review on 
Simultaneous Process and Control 

Design 

This chapter presents an outline of the existing methods for the integration of process design 

and process control. Their key characteristics are discussed and their limitations especially are 

identified. 

8.1 Methodologies for Integration of Design and 
Control 

Traditionally, controllability and operability issues are examined after the design of 

a plant has been fixed. This approach brings about operational limitations and can 
be economically inefficient. In particular, when applied to plants that are intrinsi- 

cally dynamic or involve heat and mass integration it is likely to cause infeasibility 

problems during operation. As a result, during the last 30 years a trend towards 

considering the design and control aspects simultaneously has developed. 

As a first step for achieving that, the open literature focuses on the controlla- 
bility of process systems. The evaluation of open and closed - loop controllability 
indicators of different process designs allows the comparison and classification of al- 

178 
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ternatives in terms of operational characteristics. The development of the majority 

of the controllability metrics is based on the concepts of functional and structural 

controllability and switchability (e. g. RHP zeros, time delays, RGA and condition 

number of the system (Perkins and Wong, 1985; Skogestad and Morari, 1987; Pa- 

palexandri and Pistikopoulos, 1994a; Psarris and Floudas, 1991; Kuhlmann and 
Bogle, 2001; Govatsmark and Skogestad, 2002)), on the dynamic resilience of the 

system (Alorari, 1983; Saboo and Morari, 1984; Karafyllis and Kokossis, 2002) and 

on open and closed-loop stability analysis (e. g. Luyben et al., 1996; Yi and Luy- 

ben, 1997). Recently passivity theory and LQG-based dynamic measures are also 
developed to make process design decisions for improved operability (Tousain and 
Meeuse, 2001; Seferlis and Grievink, 2001; Meeuse and Grievink, 2002). The prime 
benefits of this analysis are its relatively simple implementation in large processes 

and the straight forward way of calculating every metric. Nevertheless, the uti- 
lization of controllability metrics exhibits two main shortcomings, the first being 

the uncertain link between the value of the measure and the plant design, whereas 
the second is associated with the conflict between different controllability indices. 

Furthermore, the fact that the controllability analysis is performed using mostly, 

either steady state or linear dynamic models introduces significant approximations 

and restricts further its applicability (Schijndel and Pistikopoulos 2000). This is- 

sue becomes evident by the large number of papers where the authors verify their 

findings through closed - loop dynamic simulations. 
More systematic efforts in the context of interactions of Design and Control 

appear in the literature aiming to avoid the limitations of controllability indicators. 

These methods can be classified into two categories: 

9 In the first category (Table 8.1) nominal steady state operation is regarded as 
preferable. The attempt of these approaches is to design economically optimal 
processes that can operate in an efficient dynamic mode within an envelope 
around the nominal point. In order to accomplish this goal two objectives are 
usually considered, an economic index of performance and a dynamic measure 
(e. g. integral square error). Those methods give insight into the trade-offs 
between economic benefits and the operability of the plant. However, their 
drawback is their inability to determine precisely the importance of the two 
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competing objectives and to treat systematically the dynamic behaviour of the 

plant. 

Authors Model Work outline 

1. Lenhoff and Morari (1982) SS-LD Multiobjective optimization - Decomposition technique. 
S. S. design optimization vs. ISE optimal control 

2. Palazoglu and Arkun (1986) SS Multiobjective optimization: Economic function - robust- 

ness indices (IMC-SVD) using c constraint method. Sym- 

bolic technique to include dynamics and ellipsoid algo- 

rithm for NLP 

3. Brengel and Seider (1992) NLD Coordinated design optimization (economic objective) + 
MPC algorithms for nonlinear systems (control objective) 

4. Luyben and Floudas (1994) SS Multiobjective optimization: ss economics - ss controlla- 
bility indicators MINLP for synthesis issues 

Table 8.1: Design methods for economically optimal and operable systems 

* In Table 8.2 another class of methods is described. These methods acknowledge 
that all process systems are intrinsically dynamic and it is unavoidable or 

sometimes even desirable to operate in a dynamic rather than a steady state 

mode (e. g. Douglas and Rippin, 1966). Therefore, dynamic optimization is 

employed in order to determine the most economic design that satisfies all the 

operability constraints. 

Judging by the concepts discussed in the literature, a methodology that consid- 

ers design and control issues simultaneously must exhibit the features listed below 
(Pistikopoulos and Schijndel 1999): 

9 It should be applicable to non - linear dynamic systems (3,1,11,111, V, VII 
IV, vil, Vill). 

It should be able to handle successfully the whole range of variations of the 

system uncertainties (lb, II, III, V, VI, VII, VIII) and disturbances (1,3, la, 
ii, III, V, IV). 

The method should accommodate discrete decisions about the process (4,1,11, 
III, V, VI, IV, VII) and control (4,11,111, V, IV, VII) design in an optimization 
framework. 
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Authors Work outline 
777ý 

Ia. Nishida et al. (1975) Accommodate in Dynamic Framework relaxed integers ad- 
dressing synthesis issues 

Ib. Nishida and Ichikawa (1976) Consider uncertainty via minmax formulation Applicable to 

small scale models 
Ila. Perkins and Walsh (1996) Method for simultaneous design optimization and control 

structure selection 
lIb. Walsh and Perkins (1994,1996) subject to uncertainty and disturbances. Use: dynamic worst- 

case design & disturbance rejection test Structural decisions 
determined through heuristics. Application to waste water 
treatment 

III. Mohideen et al., (1996a, b, c) Dynamic optimization framework for design and control. Dis- 

crete decisions via integer variables. Multiperiod decomposi- 

tion approach for uncertainty-disturbance treatment 
IV. Bahri et al. (1997) Decomposition framework -+ NL Dynamic models + discrete 

decisions vs. back - off minimization to capture the uncer- 
tainty effect No inclusion of disturbances - CSS. 

V. Schweiger and Floudas (1997) Multiobjective optimization. Economics vs. ISE. Synthesis 

issues addressed using binary variables 
Vla. Bansal (2000) Applied Mohideen framework in a rigorous distillation model 
VIb. Bansal et al. (2002) single uncertainty incorporation MIDO algorithm for struc- 

tural decisions 

VIL Kookos and Perkins (2001) Proposed a method for design and control under uncertainty 
based on property: Obj, s < Objdv,, Multivariable controllers 

used 
VIII. Swartz et al. (2000) Multiperiod design and control problem Q-parameterized 

model based control 
IX. Shah and Madhavan (2001) Use GBD to decompose design and operating variables. Op- 

timal control for operation LP for design 

Table 8.2: Simultaneous Design and Control based on Dynamic Optimization 

From all the work that has been done so far the approach of Mohideen et al. 
(1996) that was enhanced in Bansal et al., (2002a) complies with all the suggested 
criteria. The approach of Kookos and Perkins (2001) avoids dealing with discrete 
decisions at the level of dynamics and iterates between a steady state MINLP (lower 
bound) and a dynamic optimal control problem (upper bound). Their method 
however, cannot accommodate intrinsically dynamic processes such as the design of 
cyclic systems and batch plants. 
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8.1.1 Process and Control Design using advanced control 

schemes 

Most of the authors mentioned in Tables 8.1 and 8.2 use SISO multiloop PI con- 
trollers in their process design and control scheme. Here, it is worth highlighting the 

work of several authors that use advanced control techniques while determining the 

optimum process and control design. Kookos and Perkins (2001) and Swartz et al. 
(2000) incorporate multivariable PI and Q-parameterized controllers respectively, in 

the simultaneous process and control design optimization framework. These con- 
trollers are relatively easy to tune but have marginally superior performance com- 
pared to conventional SISO PI controllers, while they do not always account for the 

presence of process constraints. 
Brengel and Seider (1992), focus on using an MPC controller integrated with a 

process design optimization scheme. The work of other groups on the incorporation 

of model based predictive controllers in process design (Loeblein and Perkins, 1999b) 

and control structure selection (Ricker, 1996; Zhu and Henson, 2002) are indicative of 
the potential of these control schemes to improve drastically the process economics 

and operability. However, most of those approaches fail to derive explicitly the 

associated control law, thus they are forced to make certain simplifications in the 

optimal control problem that remove some of the advantageous features of MPC. 

8.2 Simultaneous Design and Control under Un- 

certainty Fýramework 

Here, the simultaneous process and control design framework of Mohideen et al. 
(1996a) and Bansal et al. (2002) is reviewed in detail as one of the most suitable 
methods in this field. The problem of the integration of process design, process 
control and process operability can be conceptually posed as follows: 

minimize Expected Total Annualized Cost 

(P) 
Subject to Differential-Algebraic Process Model, Inequality Path Constraints 

Control Scheme Equations, Process Design Equations 
Feasibility of Operation (over time) Process Variability Constraints 
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A general, algorithmic framework for solving (P) is schematically shown in Figure 

8.1, and can be summarized as follows: 

Step 1. Choose an initial set of scenarios for the uncertain parameters. 
Step 2. For the current set of scenarios, determine the optimal process and control 
design by solving the (multi-period) mixed-integer dynamic optimization (MIDO) 

problem: 

ns 

min d, J, vi, v: .... 

lv: s 
v, ', 0' (tf ), d, J, tj ), (8.1) 

S-t- fd (i'(t» x(t), xa(t), v'(t), v, ', O'(t), d, S) 0, 

f, ý (x(t), v'(t), v, ', O'(t), d, ý) 0, 

9 (i'(t), X'W, x. '(t), v(t), vt,, O(t), d, 8) 0, 

fo (t. ) , Xi (t. ), Z. i (t. ), vi (t. ), v', i, oi (t. ), d, 8) 0, 

i= ns, 

where SEY 10,1}N' comprises the binary variables for the process and the 

control structure (corresponding to e. g. the number of trays in a distillation column); 

v, is the set of time-invariant operating variables (e. g. set-point of controllers, 

utility flows); d are the design variables that remain constant during operation (e. g. 

equipment size); i is the index set for the scenarios of the uncertain parameters O(t) 

that can be time varying or time invariant (see section 3.2.2); ns is the number 

of scenarios; wi, i=1,..., ns, are discrete probabilities for the selected scenarios 
C ns wi is usually here an economic index of performance that may include 

=1 
weights on the operability or the environmental impact of the plant; and g<0 
represents the set of constraints (end, point and path) that must be satisfied for 
feasible operation (e. g. purity specs, safety regulations). 
Step 3. Test the process and control design from Step 2 for feasibility over the whole 

range of the uncertain parameters by solving the dynamic feasibility test problem: 

max min max g, (8.2) 
0 VU lEq, tE[O, tf] 

S-t- f, (') fd (') = 0, 
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If X (d, S) < 0, feasible operation can be ensured for all values of 0 within the given 
ranges. In this case, the algorithm terminates; otherwise, the solution of (8.2) iden- 

tifies a critical scenario that is added to the current set of scenarios before returning 
to Step 2. 

Initialization 

Assume critical scenarios 
for uncertain parameters 

etermine Optimal Process and 
Control Structure Design 

I 

Fix design and 
control scheme 

Infeasible SolveTest for Feasibility over 
the Whole Range of the 

Uncertain Parameters 

Feasible 

Optimal and Operable 
Design and Control Scheme 

Figure 8.1: Decomposition algorithm of Mohideen et al. (1996); Bansal et al., (2002) 

Remark 8.1 The formulation (P) is an exact closed-loop, dynamic analogue of the 

steady-state problem of optimal design with fixed degree of flexibility (Pistikopoulos 

and Grossmann, 1988). Accordingly, the solution strategy shown in Figure 8.1 and 
described above, is a closed-loop dynamic analogue of the flexible design algorithm 
of Grossmann et al., (1983). 

Remark 8.2 The integrated design and control problem requires in general the 

solution of MIDO problem in steps 2 and 3. Until recently, there were no reliable 
methods for dealing with such problems. In the next section a newly developed 
MIDO algorithm (Bansal, 2000; Bansal et al., 2003) is briefly outlined. 
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8.3 Mixed-Integer Dynamic Optimization 

Optimal Control with the incorporation of binary variables, hence, Mixed Integer 

Dynamic Optimization (MIDO), plays a key role in methodologies that address the 

interactions of design and control. A number of algorithms recently started to appear 
in the open literature for solving MIDO problems as described in Table 8.3. In the 

Complete Discretization 

Avraam et al., (1998), (1999) Balakrishna Complete discretization on the dynamic system. The MIDO 

and Biegler (1993) Bahri et al., (1997) problem is transformed to a large mixed integer non linear 

problem. This problem is solved using Outer Approximation 
(Viswanathan and Grossmann, 1990) 

Mohideen et al., (1996a, b) Dimitriadis and Complete discretization on the dynamics, Generalized Ben- 

Pistikopoulos (1995) ders, decomposition (Geoffrion, 19T2) 

Androulakis (2000) Complete discretization and branch and bound 

Fraga et al. (2000) Complete discretization. Map continuous variables, (e. g. com- 

ponent flows) in the discrete space. Then perform relaxation 

Contro l Vector Parameterization 

Sharif et al. (1998), Schweiger and Floudas Used control vector parameterization. Outer approximation 
(1997) for treating the integers 

Schweiger and Floudas (1997) Generalized Benders decomposition for treating integers 

Mohideen et al. (199Tb), Ross et al. (1998) Similar to Schweiger and Floudas (1997). Use special inte- 

gration gradient evaluation method that has benefits in the 

master sub-problem formulation 

Bansal (2000), Bansal et al., (2002) CVP-GBD. Simplified master problem construction and no 
restriction to any integration or gradient evaluation method 

Allgor and Barton (1999) CVP-decomposition. New integer set obtained via screening 

model technique 

Samsatli et al. (1998) CVP-Relax integers via stiff functions 

Table 8.3: Methods for addressing MIDO problems 

generic approach of Bansal et al., (2001b), as opposed to other methods, a simple 

master problem is formulated while, the computation of a rigorous dual problem 
is completely avoided. This approach uses variant-2 of the Generalized Benders 

decomposition (Geoffrion, 1972; Floudas, 1995) method to formulate the master 

problem and is described in detail here. Consider a general MIDO formulation 

similar to (8.1) (single period for brevity): 

min 0(i(tf), X(tj), xa(tf), v,, d, J, tf) 
V., 6 

S. t. 
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0 fd(i(t), x(t), x, ý(t), v�, d, 8, t) 

(8.3) 

0 fo(x(to), i(to), x. (to), vv, d, J, to) 

0> g(. i(tf), x(tf), x�(tf), v�d, 3, tf) 

t, <t< tf 

The binary variables S participate linearly in the objective function, the differ- 

ential system and the constraints. The constraints are considered end-point but can 
also represent path constraints (Vassiliadis et al., 1994b). The primal problem is 

constructed by fixing the binaries to a specific value 8= jk . Then problem (8.3) 
becomes an optimal control problem. In GBD-based approaches the master problem 
is constructed using the dual information of the primal solution embedded in the 
Lagrange multipliers M of the constraints and the adjoint time-dependent variables 
A(t), p(t) that are associated with the DAEs. The evaluation of the adjoint variables 
requires an extra integration of the so-called adjoint DAE system. After the adjoint 
functions are calculated the master problem is constructed as follows: 

min 

tf T 
k)T k)T 

[ fd 
+ (Wk)T 

[ fd 
+ (pk)T fo + 

Ak (t) fd 
s. t. 17 + (P g+ (wf 0 f. k (t) 

] 
dt 

k=l, K kEK (8.4) 

where p, wf and wo are multipliers that are evaluated from the first order op- 
timality conditions of the optimal control primal problem (Vassiliadis, 1993). The 
demanding adjoint DAE system solution is eliminated by introducing an extra set of 
continuous optimization variables Jd, in the primal problem, that are fixed according 
to the constraint: Jd -P=0. This gives rise to the following primal problem: 

min 0(i(ti), X(tf), x. (tf), v,, d, Sd, tf) 
v,, d, J, i 

s. t. 
fd Jd, 

-), 
0= f- (-, Jd 0A (-, Jd, 

-) 
0 >- Jd, 

Jd jk, t<t< tf (8.5) 
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The corresponding master problem is then simplified to the following equation: 

min 6,17 

S. t. 77 Vk 
k, jk, tf + f2k (6k 0(ik(tf), Xk(tf), Xk(tf), vd d-6), kEK dad (8.6) 

In the modified equivalent master problem (8.6) all the terms are calculated at 
the solution of the primal problem and no adjoint calculations are required, while 
its formulation is considerably simplified compared to the original master problem 

structure (8.4). The master problem is an MILP and its solution apart from being 

a lower bound to the MIDO problem also provides a new integer realization. If 

the lower bound evaluated at the master and the upper bound calculated in the 

primal cross then the solution is found and is equal to the primal problem, whereas 
if they do not cross the new integer set is augmented to the primal problem and the 

algorithm recommences. 

Summary of the MIDO Algorithm 8.1 

The steps of the algorithm are briefly summarized below: 

e Fix the values of the binary variables, S= jk 
, and solve a standard dynamic 

optimization problem (eqn. (8.3), kth primal problem). An upper bound, UB, 

is thus obtained. 

9 Re-solve the primal problem at the optimal solution (eqn. 8.5) with additional 

constraints of the form Jd - jk = 0, where Jd is a set of continuous search 

variables. Convergence is achieved in one iteration. Obtain the Lagrange 

multipliers, ilk, corresponding to the new constraints. 

9 Construct the kth relaxed master problem from the kth primal solution, Ok, 

and the Lagrange multipliers, Qk (eqn. 8.6). This corresponds to the mixed- 
integer linear program (MILP) The solution of the master, 77k , gives a lower 
bound, LB, on the MIDO solution. If UB - LB is less than a specified 
tolerance c, or the master problem is infeasible, the algorithm terminates and 
the solution to the MIDO problem is given by UB. Otherwise, set k=k+1, 
Sk+1 equal to the integer solution of the master, and return to step 1. 
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Remark 8.3 If the primal problem is infeasible the constraints are relaxed and a 
feasibility optimization problem is solved. The corresponding master problem is 

then modified accordingly (Floudas, 1995). Integer cuts should also be included in 

the master problem formulation to exclude previous primal integer solutions. 

Remark 8.4 The incorporation of the extra set of continuous optimization vari- 

ables Jd in (8.5) improves drastically the implementation of the MIDO algorithm 

since it now relies merely on a dynamic optimization and an MILP code. However, 

it can be computationally expensive in some cases. In Appendix E an algorithm is 

presented that directly addresses this issue. 

8.4 Conclusions 

This chapter initially outlines the most widely used methods for simultaneous de- 

sign and control. Uncertainty and disturbance effects as well as discrete decisions 

are addressed by several of the approaches. The optimization framework that was 

conceived and developed by Mohideen et al. (1996a, b) and Bansal et al., (2002) was 

analyzed in more detail as one of the most complete approaches so far, for the inte- 

gration of design and control. In the consecutive subproblems that are solved during 

this approach a MIDO problem is frequently encountered. Therefore, the efficient 
treatment of MIDO is a prerequisite for the application of the overall algorithm. 
An outline of a computationally and theoretically advanced MIDO algorithm has 
been presented in this chapter. Formal proofs related to this MIDO algorithm, in 

addition to an alternative MIDO approach, are the outcome of this work and are 
discussed in Appendix E. 

Despite the recent developments in simultaneous process and control design, 

there exist the following limitations: 

* Synthesis issues and periodically varying systems have not yet fully been ad- 
dressed systematically by any of the proposed techniques. 

Most of the methods used in the design or in the analysis stage feature sim- 
ple multiloop decentralized PI controllers with fixed tuning parameters, thus 
ignoring the broad industrial utilization of advanced model-based predictive 



Chapter 8 189 

control techniques (Vogel and Downs, 2002; Qin and Badgwell, 1997). Con- 

trary to the PI controllers, advanced controllers are multivariable and can treat 

constraints in a more direct manner, thereby leading to significant operability 

and economic benefits, while bringing about less conservative designs. How- 

ever, the current methods that attempt to integrate those controllers within a 
process design algorithm rely on certain simplifications that may remove some 

advantageous features of the controller. 

9 The employment of conventional controllers may jeopardize the dynamic asymp- 
totic stability of the system. In the literature (Mohideen et al., 1997a; Kokossis 

and Floudas, 1994), stability margins are enforced to avoid such phenomena 

resulting in over-conservative designs. Whereas, in other approaches (Bansal 

et al., 2002a), rigorous simulations on an extended horizon are performed to 

check asymptotic plant behaviour. 

Clearly, there is a need to incorporate advanced control schemes into the simultane- 

ous process and control design framework, without increasing largely its complexity. 
For that purpose, in the next chapter, a systematic approach is developed for inte- 

grating the new type of advanced parametric controllers presented in Part II within 
a design framework. 
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Simultaneous Process and Control 

Design using parametric 

controllers 

This chapter presents a new method for incorporating advanced model-based parametric con- 

trollers in a simultaneous process and control design framework . The algorithms described in 

Part 11 of this thesis are directly used for the controller derivation. This new framework incor- 

porates discrete and continuous decisions in the process and control design, while it guarantees 
feasible operation in the face of time-varying parametric uncertainty. Two illustrative process 

examples are used to demonstrate the capabilities and the benefits of this new approach. 

9.1 Problem Formulation 

Consider a process design optimization problem: 

min O(x(tf), x�(tf), v(tf), v� d, 5) tf) 
v(t), v., d, 8 

S-t- 0 fd(i(t)eX(t»Xa(t)ýV(t), 0(t), 
v� di S, t) 

0 f, (x(t), x. (t), v(t), 0(t), v�, d, J, t) 

y(t) fv(x(t), x. (t), v(t), 0(t), v�d, 8, t) 
0 fo(x(to, i(to), x. (to), v(to), 0(to), v�d, 8, to) 
0 

_q(x(tj), xa(ti), v(ti), 0(ti), v�, d, &, tj) 
t', <t< tf 

190 
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In problem (9.1) a nonlinear DAE model of the process is considered to represent 

accurately the transient system behaviour. However, note that (9.1) ignores the 

presence of uncertainty since it fixes 0 to its nominal point. In the sequel, uncer- 

tainty is treated directly by considering the system expectation over the uncertainty 
domain. Furthermore, controllers are included in the design problem to portray the 

realistic process operation. In particular a feedback correlation between the controls 

and the states or outputs YE R' has to be incorporated in equation (9.1). Here, 

this correlation comprises an embedded receding horizon optimal control problem 
leading to the following formulation: 

min EOEGO(X(tf)i xcL(tf), v(tf), v� d, S, tf) 

s. t. 0= fd('-(t)Ix(t)lx"(t)Iv(t)lo(t), v�d, 8, t) 

v� d, S, 

fy (x (t), x. (t), v (t), 0 (t), v, d, S, 

0 fo(x(to, i(to), x,, (to), v(to), O(to), v,,, d, Slto) (9.2) 

0 g(x(ti), x,, (ti), v(tj), O(tj), v,, d, S, tj) j=l,... Nf 

tý <t< tf 

N-1 

O(xtit, Ot, y., t) = min XTt+NltPXt+Nlt + E[(Yt+klt 
- yset)TQ(q) 

VN 
(Yt+klt - Yset) 

k=O 
T +vt+kR(q)Vt+kl 

S-t- Xt+k+llt = Aj(j, ý07v)Xt+kjt + A2(j)3717v)Vt+k + W, (j, S, t7, )Ot k>0 

Yt+klt = BI(d, 67 lTv)Xt+klt + B2(d, 6, i7v)vt+k- + W2(d, 6, i7v)Ot k>0 

0> CI(d, 6, lTv)Xt+klt + C2(d, 6ý 77v)Vt+k + bi(d-, S-, t7, ) 

k= 071,2,.. N -1 
0>D, (j, 31 lTv)Xt+Nlt + b2 (j1 31 lTv) 

Vtlk = Kxt+klt N<k (9.3) 

------------------------- 

X, 1, = x* = x(t) - xl, Mx*, Ot) = v(t) - vi, Ot = O(t) - o', 
i= dý 3=S, üý = v. 
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xl = x1(J,, tJ), v: =vi(J,, ff) 

where 
Ofd 

A' = -( 7 
Ofd 

(- - 
0 fd 

- - (f -1 
'f) 

) 5 x 5 x ý x. . qx. 19X 
49fd A'2 19fd G9fd afa 

( I 
afa 

) ) 

v x a ýX. Xa 
51 

lvj'ý = _(ýfd )-I(Ofd _ 
Ofd 

(Ofa )-lafa) 
ai 00 axa oxa 00 

at at 

Ai =eA, *at, A2 A eAl-rd W, = w1c -eA, " dr 2 r) I 

(f 

00 

B, = Bl, B2 = B2, VV2 = W2, 

(9.4) 

where At is the sampling time that is used to convert the linear continuous time 

dynamic system to a discrete time representation. W', Bf, Cc, B-, lvý, C_ are 
defined accordingly. The superscript c denotes the matrices of the continuous time 

linear dynamic system while the matrices A, B, C, TV that do not have this superscipt 

correspond to its discrete-time counterpart (Kwakernaak and Sivan, 1972). xi, vi, 0. 

is the linearization point of the system; and y,, t is the output set point that is a 

subset of the operating variables Yset 9 v,,, Q, R matrices are diagonal and q is a 

vector of the diagonal elements of Q, R. Note that in this formulation we consider 

every varying non-manipulated input 0 as a bounded uncertain parameter, with the 

representation given in chapter 3, § 3.2.2, where the space 0 comprises lower and 

upper bounds on 0. This can readily capture the presence of known disturbances 

or time-invariant uncertain parameters. In the former case OU(t) = 0"(t) = OL(t), 

while in the latter case O(t) = O(t. ) =constant. 
It is interesting to emphasize that (9.2)-(9.4) is the closed - loop form of a simul- 

taneous process and control design optimization problem. The decision of including 

in the design framework an optimizing predictive controller (9.3) is based on the ad- 

vantages mentioned in Part II, the most crucial being its ability to handle constraints 

effectively and the straightforward manner of defining its performance requirements. 
The purpose of using an approximate linear representation for the design of the 

model-based controller is to avoid complexities and instabilities arising from the al- 
ternative of a non-linear model-predictive controller (Biegler and Rawlings, 1991). 
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The presence of the uncertainty 0, the binary variables 8 and the embedded control 
optimization render problem (9.2)-(9.4) a stochastic mixed integer dynamic bilevel 

optimization problem, where the process design optimization (9.2) is the leader and 
the control optimization problem (9.3) is the follower (see Gumus and Floudas, 2001 

for a review in bilevel programming). While there are methods for the treatment 

of uncertainty (Mohideen et al., 1996) and for resolving the underlying mixed inte- 

ger dynamic optimization problem (Bansal et al., 2002b) as discussed in chapter 8, 

there is no efficient method for integrating the receding horizon controller into the 

simultaneous process and control design framework. In the next section we present 

an approach for that purpose that is based on parametric programming for deriving 

the controller structure and on an outer approxima 
i 
tion technique for determining 

its design. '11, 

9.2 Theoretical Developments - Solution Proce- 

dure 

9.2.1 Problem reformulation 

It is interesting to note that once (z7ý, j, 3,4) are fixed problem (9.3) is a classical 
MPC problem featuring a quadratic index of performance and linear constraints. 
Once the current states x* and the uncertain parameters 0 in (9.3) are treated as 

parameters, the MPC formulation can be recast as a multiparametric quadratic 

program (mp-QP) as discussed in chapter 5, Part IL The solution of the mp-QP 
provides an explicit piecewise affine control function of the current states and the 

uncertainties. This parametric controller can directly be substituted into the process 
design subproblem, thereby, eliminating the complex inner optimization (9.3). How- 

ever, if the vectors (tT,, j, 3, q) are treated as parameters the same strategy cannot 
be pursued. The reason is that the mapping tT,, j, 3, qF. + v is in general non-convex 
and non-linear. Thus7 its parametric representation may lead to a large number 
of complex piecewise affine functions (Dua et al., 2002b) that will complicate and 
hamper the solution of the design problem. Even if the linearization point remains 
fixed the determination of the controller design (tuning) parameters q still remains a 
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challenging task. In Table 9.1 a review of the methods for computing 4 is presented 
indicating that most of the literature methods focus on controllability rather than 

economic criteria which, render them unsuitable for a process design purpose. 

Authors Criterion Work outline 
1. Ge et at. (2002) Heuristic performance rules Use linear matrix inequalities instead 

of LQR. Unconstrained systems Gain 

as function of Q, R 

2. Tan et at. (2002) Classical specs on damping fac- Relate Q, R to gain use Smith Predic- 

tor & natural freq. tor and GPC design 

3. Kookos and Perkins (2002) Economics Use back-off and lagrange info un- 
constrained system, based on steady 
state, account for dynamics via 
decomposition 

4. Al-Ghazzawi et al. (2001) Set-point track, disturbance Gradient approach no optimizationon. 
rejection overshoot reduction line adjustment 

5. Shridhar and Cooper (1998) Condition N* reduce oscilla- Unconstraint system analytical 
tion & slug response relations 

6. Semino and Scali (1994) Robustness to disturbance slug Use Ist and 2nd order models and 
response unconstraint law, derive analytical 

expressions 
7. Bryson and Ho (1975) Q, R elements inverse proportional to 

max acceptable deviations 

8. Meadows and Rawlings (1997) similar to Bryson and Ho (1975) use 
100 weight on outputs & 0.1-1 on 
inputs 

Table 9.1: Review on performance index tuning in MPC 

Here, we aim to transform problem (9.2)-(9.4) into an equivalent simpler more 
tractable problem. This is performed by adopting the outer approximation algorithm 
of Fletcher and Leyffer (1994) for our case. Variables jV,,, j, 4} are treated as the 

complicating variables giving rise to the following sequence of transformations: 

e (Notation). Let the vectors P, -& be defined as: 

[Vv, 

and let problem (9.2)-(9.4) for fixed binaries be reformulated as follows via the 
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appropriate substitutions: 

iiýin 
Y, fj 

S. t. o> §0, -b) 
9E'?, 'D 

BNLP(qj) is defined as the problem (P) in which the complicating variables 
p are fixed ýj. 

* We aim here to find a representation of P as an intersection of an infinite collec- 
tion of sets. This is performed by means of supporting hyperplanes providing 

a polyhedral representation of the continuous feasible space of program (P). 

Such a representation implies linearity in the optimization variables enabling 
the replacement of the difficult (9.2)-(9.4) program with a linear program LP: 

min77 

+ S. t. 0> 
j9p 80 

0> 0) + (2L)T(p _+ (A)T(ý - 
0), Vj E ap 80 

0+ (a)T(p -+ (A)T(ý - ýj)j Vi EI 

PE iD EV 

where J and I is the collection of all the feasible and infeasible solutions of 

problem BNLP(P) VO E ?, ýEV. Problem (R) is equivalent to (15) only if 

the following assumptions hold: 

Al Y, V are nonempty compact polyhedral sets. The functions are con- 
vex. 

A2 and ý are continuouslY differentiable. 

A3 The normal vectors of the active constraints are linearly independent. 

Problem (R) is infinite dimensional since it requires all BNLP(Pj1P') to be solved 
first. A decomposition algorithm is presented in the next section. 
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Benzene/Toluene 

UNCERTAINTY 
0.45< 0 <0.5 

FAST DISTURBANC 
z benz 

b+0.08 

.J 
b 

b-0.08 

240 min 

DISTILLATE 
SPEC. 

X d, benz >, 0.98 

BOTrOMS 
SPEC. 

x : 50.02 b, benz ý 

Figure 9.1: Schematic description of the Distillation Process Example 9.2 

9.2.2 Decomposition Approach for Process and Control De- 

sign - Algorithm 9.1 

To illustrate the simultaneous process and control design approach of this work 

consider the binary distillation column in Figure 9.1, which has been extensively 

studied in the literature (Schweiger and Floudas, 1997; Bansal et al., 2002b). The 

model of the system is described in detail in Appendix H. The system is subject to a 
high frequency sinusoid disturbance in the feed composition with an uncertain mean 

value. The goal is to obtain the economically optimum process and control design 

for this system. The approach should adequately treat and ensure feasibility, while 

accounting directly for both continuous and discrete design decisions. The design 

formulation for this example is outlined in Table 9.2. The process model is adapted 
from Schweiger and Floudas (1997) featuring (i) dynamic material balances for the 
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trays, the reboiler, the condenser and the reflux drum, (ii) material hold-up dy- 

namics and tray liquid hydraulics, (iii) ideal thermodynamics with constant relative 
volatility, (iv) fast temperature/energy dynamics, (v) perfect inventory and pres- 
sure control on the loops: Pressure - Condenser duty, Reflux drum level - Distillate 
flow and Level at bottom column sump - Bottoms flow. The design optimization 
problem features a closed-loop dynamic system that incorporates a receding hori- 

zon model based controller. The mathematical representation of this problem is 

given by (9.2)-(9.4) where the objective is the minimization of the expected overall 
annualized cost': 

min EOE: (3 min EoEq 
3 

(ccolumn + Creb + Ccond) + OPCOSt] (9.5) 

subject to the dynamic model of the process and the constraints as described in 
Table 9.2. For our example the states are: X= JXB 

iX9 
MI 

i'** 
AfNt, 

-, Y, i Xbenz, l 9*** 

Xbenz, Nt,, ys bwhere M denotes the tray hold up, XBiX the benzene mole fraction in 
the top and bottoms product and Xbenz pertains to the benzene mole fraction on 
each tray; y is the vector of output controlled variables, i. e. the top and bottoms 

mole fractions; v, represents here the vector of the manipulated variables, i. e. reflux 
flowrate Ref I and boilup flowrate V that are fully determined from the controller 
equations (9.3). Note that in this example there are no operating variables v', that 

can be adjusted during operation. The process constraints g :50 and the design 
decision variables d are shown in Table 9.2. xt, vi, 0. is the linearization point of the 

system; and y,, t is the output set points. The input time-varying uncertainty in the 
feed composition is modelled as: 

(ý-_7r 
. t) + oi . 04(t Zbenz, f O(t) + 0. - sin 240 -0 

0.45 <6<0.5, Ow = 248,0. = 0.08 

Oi = 0.05, Os: impulse function of magnidutel (9.6) 

Note that the uncertainty is parameterized to a time-invariant component: j which 
is the mean value of the sinusoid signal. The procedure for solving the overall design 

problem unfolds as follows: 
'A 3 year pay-back period is considered hence, the 1 term 
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Step 0, Initia ization 

Discretize the uncertainty space 6E [0.45,0.5] to two uncertainty scenarios 0 

10.45,0.5}. Choose an initial process structure: e. g. number of Trays =26 (Rr, = 1), 2 

Feed location = 12 th tray (ýIf2 = 1). Select as an initial guess two linearization 

points al, 01 shown in Table 9.3 based on the uncertainty scenarios. Parameterize 

the diagonal penalty matrices in the control design equation (9.3) to Q(l, 1) = 41, 

Q(2,2) = 1, R(l, 1) = R(2,2) = q2 and select as an initial guess for their values: 

q, = 1.2,42 = 10-4. Set iteration counters to n= land 1=1. 

Step I- Structural Primal 

Step Il - Control Design Primal 

Linearize the open-loop dynamic model of the process at the two fixed points in 

Table 9.3. Then perform model reduction (Moore, 1981; Jaimoukha et al., 1992) to 

Table 9.2: Formulation of process and control design optimization for the binary 

Distillation Example 
minimize Expected Total Annualized Cost 
S. t. Differential-Algebraic Process Model 

Inequality constraints 
Purity of product. Xbenz, D(t) ý: 0.98, Xbenz, B(t) :50.02 

Flooding restrictions Minimum diameter due to flooding Dc - Dc,,, in W 2: 0 
Minimum temperature diff. ToutRW - TB(t) ý: 5 (reboiler), TD(t) - Tout,,, (t) 2: 5 

(condenser) 

Subcooling conditions-reboiler TinR(t) - ToutR(t) >7 

Degrees of Freedom 

Control Scheme Equations Model based controller 

Process design variables d Tray Diameter: Dc, Heat transfer areas: AR (reboiler), AC 

(condenser), Set points: Xboeenos, D, Xbseenls, B 

Control tunings q Q, R 
Discrete decisions 8 Number of trays - reflux tray location: Jk'*, feed tray location: 

Sf 
k 

Disturbance/Uncertainty Feed composition Zbertz, f (t) 

Time horizon t,, <ý t 
ý< 

tf where t. = O, tl = 720min 
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Zf Refll VI Xbenz, D, l Xbenz, B, l Ac, l AR, j Dc, l 
Lin. a' 
Lin. 0' 

0.45 

0.5 

3.218 

3.199 

5.459 

5.701 

0.98 

0.98 

0.191 

0.191 

110 

110 

280 

280 

1.65 

1.65 

Table 9.3: Initial linearization points for structure jr 26 
S1f2 

derive two reduced linear 4-state models. From the Jacobian of the full state model, 
balanced truncation was used to reduce the model order. The error introduced by 

truncating the (2 - Nt,. yý, + 2) model with transfer function IIj(jW)) to an n=4 state 
representation H, (jw) is computed from: 

error = 
Ilfff - HrIlhoo 

IlHf llhco 

2-Nt,. V. +2 
2E aif, i=n+l 

HI hoo 
(9.7) 

where a? ' is the ith Hankel singular value of the original model, while the 11-infinity 

norm of a transfer function is defined as: IIHIlhoo = maxall"(H(jw)), where 47 max 
wER A 

is the maximum singular value of matrix H. Compute the discrete model matrices, 
keep the control designs fixed at q= 4' and formulate an open-loop receding horizon 

problem (9.3). For this particular process design the appropriate values of sampling 
time and time horizon according to heuristics (Seborg et al., 1989) are: At = 0.3min, 
N=6, respectively. Note that these values are allowed to change during the solution 
procedure according to the current design and linearization point. The terminal cost 
P is the solution of the Lyapunov discrete algebraic equation, while only the purity 
constraints are considered in the controller design, Instead of solving this problem 
on-line in the traditional MPC fashion, parametric programming (Pistikopoulos et 
al., 1999-2002) is used to derive the explicit state feedback control law for the plant 
(see chapter 5). The current states xt1t, the set-points y,, t and the disturbances Ot 

are treated as parameters and the control inputs as optimization variables, therein, 
problem (9.3) is recast as an multiparametric quadratic program (mp-QP). The 

solution of this program results in a parametric controller (Parco) for the distillation 

process that comprises a set of piecewise affine control functions and the critical 
regions in the state space where these functions hold: 
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n=4 D 
E (A"c 

- xri) + Ca 'Zbenz, f +L (W * Xbiet 
, i) 

+ 5ca if 

i=l 
S, , i=B 

I, c en 

CRc'(xr, " et 
fl]T = 

Zbenz, li Xb"t z, D) Xb z, B) :5 of c Ncay Zbi! nx, f E [0.37,0.475) 
[V, Re 4c n=4 

en en 
D 

(Aqs, c - xrj) + CcP ' Zbenz, f +E (D%ý, 
c ' Xobeenlz, i) + Bcý if 

i=B 
0 t oet CRO(xr, Zbenz, J) X'boeenz, D, Xbenz, B) 5 ol C= 10 Ne 

9 Zbens, f E (0.475,0.61 c 
(9.8) 

where xr are the reduced states. For instance for fixed set-points, in the region 
described by the following inequalities 

-4.94101 < 10 * xrl + 0.0076 * x"" et < +5.54101 ben&, D + 0-0105 * "rb'lens, B - 

-15.5127 < +15 * xr2 'Iel < -14.9127 - 0.0418 * Xbenz, D + 0.0200 * Xbenz, B - 
see 

+20 * xr3 see et < +13.5137 - 0.0575 * Obenz, D + 0.0375 * Osbens, B - 
8 see < +29.1961 27.9961 < +30 * Xr4 - 0.1219 * Xbeengz, D + 0.0923 * Tbenz, B 

+20 * Zbens, f < +12 

+53.1505 * xrl + 267.148 * xr2 - 48.4428 * xr3 + 30 * xr4 + 60.3675 * Zbenz, f 
+0.9655 * Xbleenlz, D - 0.5958 * Xb, "n',, B < -204.557 

+10 * xr, + 763.158 * xr2 - 735.539 * xr3 - 613.728 * xr4 - 370.639 * Zbenz, f 
+1.7432 * 'ýb s, D b - 0.5202 * Xbenx, B 

8e: 
n 

S: 
n -2064.91 

tt 

The control expression has the form: 

V= +6.10246 * xr, + 30.6725 * xr2 - 5.56195 * xr3 + 3.44444 * xr4 + 6.93108 * Zbertij 

+110.69797 * Xbseentz, D - 68.2136 * xb"t ., B + 29.7862 en 

Refl = -37-144 * xrl + 52.495 * xr2 + 3.36925 * xr3 + 6.32022 * xr4 

+190.3907 * "b8ienz, D - 44.0635 * Obeenez, B + 8.03056 * Zbens, l + 63.1623 18 

Note that (9.8) replaces exactly (9.3). The next step is to substitute (9.8) into (9.2), 

(9.4) and treat only d as optimization variables to solve the resulting multiperiod 

primal problem: 

01 =12 min 
(Ccolumn + Creb + Ccond) + OPCOSti 

d3 

Tot'rlCost 

s. t. 0= fd (i'(t), x'(t), x' (t), [V(t), Ref 1 (t)], d, 6') a 
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fo (-) ,0ý! g (-) (9.9) 

where V(t), Ref 1(t) given from (9.8) 
)T. Xi, i=a, ß X'r = 

(TLj 
T 

where TLT is a matrix derived from the model reduction that represents the mapping 

of the real states to the reduced states. The solution of the dynamic optimization 
(DO) problem (9.9) provides an upper bound UP inasmuch as the fixed controller 

tunings and the linearization point values are not necessarily optimal. 

Step 12 - Control Design Master 

Compute the gradients of the objective function and the constraints with respect 

to the (i) linearization point j, (ii) control designs q and (iii) process designs d to 

construct and solve the following control master problem: 

min 77 
ýJ, d 

S. t. + (doT 
dO T doT 

)'(d - dl) (9.10) 
di 

)I(j-'ý)+(Fq + (7d 

0 gi + (dg 
TgT dg T L 

)'(q - 41) + (y- )I(d - d') (9.11) 
di + dq d 

> IdL,, _ jj, C> IVL,, _ IT, 1 (9.12) 
v 

where L,, is the number of feasible control primal problems that have been solved so 
far. Inequalities (9.12) ensure that the new process linearization point in terms of 
d is close enough to the process design point that is derived by the previous control 

primal problem. These inequalities are in fact a relaxation of the equalities (9.4). 

Note that if the primal problem is infeasible a constraint minimization problem 

is solved instead. Accordingly, in the master problem the inequality pertinent to 

the objective is omitted. An example of a control design master problem for the 

structure [ Number of Trays=25, Feed location =12 ] is shown here: 

min 17 
41,42,. Ac. A It, j3, AC. A It, Dc, xbg: Ins, 

D jxb: 
0 

. 8, B 

77 ý 6.2283+13.159-(2belnz, D-0.98038)-2.5e-2-(. tbeeýnz, B-0.0156)+Ie-4-(AC-115)+Ie-3. (AR-268) se 
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+le -5- (De - 1.64) + 4.04e -2- (fi - 1.2) + 6.05e3. (i2 - le - 4) + 3.03e -3- (AC - 131.92) 

+1.2le -2- (AR - 277.09) + 1.21 - 104 - (De - 1.66) 

+l0 * (rbae"ntz, D - 0.9815) + (-4.6). (xbenz, B - 0.01782) tet 

0>4.24199e-4+3.2745-(2b$eetnx, D-0.98038)+3.1152-(. tb"tý, B-0.0156)-le-4-(Äc-115) en 

+le -4- (ÄR - 268) - le -5- (D, - 1.64) - 1.48e -3- (ji - 1.2) + 4.29 - (12 - le - 4) 

+le -7- (AC - 131.92) - 10-8 - (AR - 277.09) + 2.96e -1- (De - 1.66) 

-90-6 * (ýTbeentz, 
D - 0.9815) - 3.77e -1. 

(xset 
jg benz -0.01782) 

0>1.4866e -3-1.7912 - (-tbse*ng,, D - 0.98038) + 7.635e -2*(, tbseengz, B - 0.0156) + le -6- (Ac - 115) 

+le -7- (ÄR - 268) + le -6- (D, - 1.64) - 1.3e -5- (ii - 1.2) + 5.13 - (J2 - le - 4) 

+3.7e -7- (AC - 131.92) - 2.82e -7- (AR - 277.09) + 1.2e -1- (Dc - 1.66) 

en -0.01782) +3.75 - (, wto, 'egntz, D - 0,9815) - 4.92e -1-(. rb'@et z�q 

Note that problem (9.10) is a linear program (LP) and its solution provides a 
lower bound to the structural primal and a new realization for d, q. If UP, ' : ý' L01c 

then stop, the solution is equal to the upper bound. Otherwise, update the structural 

upper bound UPjc = UP, ' and go to Step II. If UPF > LOc then set 41+1 d-'+' 

and update the counter 1=I+1. Then go to Step I. 1 and update the values of the 

control tunings and the linearization point. 

Step II - Resolve Session of Structural Primal 

Introduce a set of continuous variables Sd that replace the binaries while adding 
the equality constraints 06e : -, 4 8d -S to the formulation (9.9). Resolve the structural 
primal in one iteration to get the multipliers W of the extra constraint . 

Step III Structural Master 

Use the multipliers W to formulate the master problem: 

min 
77,81r, st, 

Nt,.. y, 
r TotalCost' + (Q, + I, d II 

81ýd 

Ntrays 

if 

k 
k=l 
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Nt,.. ya 
1: Jk' 

k=l 
Nerays 

Sf -KE 
Kleas (9.13) k 

1: Sk 
, k=lj ... 7 

Ntrays7 

k'=k 

where Kf,, ý., is the number of feasible primal solutions. The solution of the MILP 

master problem (9.13) is a lower bound LO-' for the design MIDO problem, and it 

provides a new integer realization. If LO-' > UP' then stop, the solution of the 

MIDO problem corresponds to the upper bound, else go to Step I, set K=K+1 and 

update the integer values. 

Step IV Feasibility Test 

Check if there are any constraint violations for all jE (0.45,0.5]. Note that there 

are no operating variables in this process since the output set-points are treated as 
design variables. Hence, the feasibility problem (8.2) reduces to: 

max Xil I X1 max gi JE[O. 45,0.5] 
(9.14) 

If X<0 the optimal design remains operable for all possible uncertainty realiza- 
tions. Otherwise, augment the critical uncertain values that bottleneck the system 
feasibility to Step 0 of the algorithm and continue. 

A summary of the simultaneous process and control design algorithm 9.1 is shown 

in Figure 9.2. 

Remark 9.1 The control primal problem (9.9) is a dynamic optimization (DO) 

problem. The solution of this problem is a valid upper bound provided the as- 

sumptions (A. 1)-(A. 4) hold. In general the control master problem is an LP and 
its solution is a lower bound under the same assumptions (A. 1)-(A. 4) because it is 

solved for a finite collection of fixed values of non-complicating variables and not 
for all jEJ, iET as in (R). Thus, it generates a sequence of non-descending 

supporting functions that are a relaxation of the original problem 

Remark 9.2 The assumptions (A. l)-(A. 4) in general do not hold. Thus, the solu- 
tion of the overall problem may not be a local optimum but just an improved feasible 
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Initialize: Assume critical scenarios for 

uncertain parameters 

Guess values8 Structural Primal Problem (Step 1) 
*Fixed Binaries (K=) 

Bilevel Optin-dzation problem 
Control Primal (Step 11) 

V, Vl 
-Fix complicating variables yy 
-Derive parco 

Update Critical -Solve DO in space of Z 

Scenarios -Generates upper bound UPC 
- - Generate o b jFconstr. gradients No 

Control Master (Step 12) 
Solve LP v Is UP c< LOc 
Obtain new values for Y 
Generates lower bound LOc 

Yes 

* Generates upper bound UP s 
UP 

6U 
P4 

No vv Optimal control f& process design: yV 

Is Dual Problem - Ressolve section (Step 11) 
W] < Ld 

Ls< 

Ld up * Add constraints I 4 =0 continuous 
Solve Feasibility d * Resolve Primal 
Test for complete 
Range of Uncertainty 

Yes Lagrange multipliers fir, d 

-0 uctural Master Problem (Step 111) 
Fixed continuous variables 

.2 
CResult 

UPs MILP, Generates 1,01 

-------------------------------- 
V set -tI y=q 1. q2, AC, AR, Dc, x(benz, D) , X(benz, ffl 

optimal and Operable Design t v V= AC, AR, Dc, x(benz, , x(benz, hý 

-------------------------------- 

Figure 9.2: Simultaneous Process and Control Design Algorithm 9.1 

point. However, local optimality of the control primal is guaranteed for a fixed set 

of control design variables q and a fixed linearization point j, ty". The overall MIDO 

solution is thus a local optimum for a fixed set of discrete degrees of freedom, a fixed 

set of control design variables and a fixed control design linearization point. 

Remark 9.3 Industrial research (Hess et al., 2001) enables the integration of the 
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MPC controller (9.3) with a commercial simulator to study the benefits for plant 

operation. However, the integration with an optimization platform has remained 

an unsolved issue until now since nobody could effectively solve simultaneously the 

two interdependent optimization problems. Here, our technique manages to directly 

address this issue enabling the determination of the optimum design and operation 

of a system that employs advanced optimizing control. 

9.2.3 Modelling Aspects of the Parametric Controller 

The implementation of the parametric controller in (9.9) involves the selection of the 

optimal control function according to the operating region where the current system 

resides. This implies that a logical decision has to be made on-line on what function 

will be used based on the current values of the system states. While the modelling 
of this logical rule for simulation purposes in problem (9.9) can be performed via if- 

then Boolean algebra statements, it is inadequate to employ the same strategy from 

an optimization point of view. Alternatively, binary optimization variables can be 

assigned to each one of the regions but this will greatly increase the complexity of 
the problem. Here, we propose the approximation of this logical component using 
steep exponential functions. Thus, problem (9.9) is written as follows: 

min 0(-, vl, _) v,,, d 

S. t. 0 fd (-I VII -), 
M-, V fo(-, v 

YM = fy (-IV" 
-)1 

0 >_ g(-, V,, 
N, 

where vI= VB + Tý 
V, (X(t)) 01 yset) 

C=l 

hic = CR! x(t) + CW - O(t) + CR4 - y,, t + CR2 sc sc te ic 9 
1, Nineqc 

ai, = 
1- tanh(hi, - 

103) 

I ýc : -- 

Nineqc 

aic, c=1,... N, 

errlt=to 0 

2 

err = y,, t - (y - yl), 

(9.15) 
(9.16) 

(9.17) 

(9.18) 

(9.19) 

Note that when X(t) E CRa, all hia i=1, --- Nineqa are negative, thus via (9.18) 

all aia are unity, hence, ýa is also unity. Otherwise, if x(t) ý CRa then at least one 
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hj6 > 0, so at least one aia = 0, which yields: ýa = 0. Hence, once all §, c=1, ---N, 
are substituted back to (9.15) only the control function pertaining to the region 

where x(t) resides contributes with a non-zero coefficient to the value of the control 

variable. VB is the control bias while equalities (9.19) are used to establish that the 

closed - loop system initializes at steady state. 

9.2.4 Disturbance Rejection 

Note that the control functions in (9.8) contain a feedforward element CR, 9 - Ot, 
C 

where the value for Ot can be obtained via direct measurements or estimations. 
However, if the information on the values of 0 is not complete as is often the case, the 

controller may fail to provide satisfactory performance. The techniques developed 

for disturbance rejection and reference tracking purposes (Part II of this Thesis) can 

readily be adapted here as alternative or complementary to feedforward action. 

9.2.5 Control Structure Selection 

Control structure selection is dealt with indirectly in this work via the controller 
design. Since the control scheme is multivariable, we are interested merely in which 
manipulated and which controlled outputs are in the structure and not the pairing 
between each individual combination. For instance, if at the end of Step 12 the 

control tuning q, is approaching zero it implies that the output Xben., D should not be 

participating in the control structure. Thereafter, in the next control design primal 
problem q, is fixed to zero. A similar rule is derived for the manipulated variables 
where the criterion for keeping or discarding the jth input from the structure is 

whether the elements of the jth row of matrix A are all non-zero or not. 

9.3 Process Example 9.1 - Evaporation Process 

This example is concerned with deriving the optimal process and control design of 
the evaporation process that is discussed extensively in Part II of this thesis. The 

simultaneous process and control design optimization problem for this example is 

posed in Table 9.4. 
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minimize Total Annualized Cost 

S. t. Differential-Algebraic Process Model (Appendix 11) 
Inequality constraints Purity of product, Pressure of product, Utility consumption 

bounds: 

25% < C2(t) 

40KPa < P2(t) < 80KPa 

Okg/min < F200: 5 400kg/min (9.20) 

OKPa < Ploo < 40OKPa 

Degrees of Control Scheme Equations: Parametric Controller 

Freedom Design variables: Condenser Area 20OM2 > Aý > 1OM2, 
Heater Area 20OM2 > A, ý! 18M2, Controller tunings: 

Q >- 0, R>- 0 
Operating variables: Controller Set Points: 
25%-< C2"t, 40KPa < P2'" < 8OKPa 

Disturbances Feed conditions: F, (t), C2 (t) 
Time horizon: G<t< tf where t. = 0, tf = 1440min 

Table 9.4: Formulation of process and control design optimization for Evaporation 
Example 9.1 

Objective Function 

The total annualized cost is partitioned into the following terms: 

Ct. t = C,. p + Cp 

The total annualized capital cost is (Douglas, 1988): 

(9.21) 

CI. P = Cý + C, (9.22) 

C, = 0.6 - (1/3) - (M&S1280) - 101.3 - (1 - 10' - 
A, 0.65 -3.29-1.35 144-2.542) 

C, = 0.6 - (1/3) - (Af&S1280) - 101.3. (1 . 104 . 
A, ) 0.65 

-3.29-1.00 144 . 2.542 

The annualized operating cost is (Kookos, 2001): 
tf 

ClIp (0.6 - F2oo + 1.009 - (F2+ F3) + 600. Floo) 8150 
dt (9.23) 

1 
tf - 1000 

t=O 
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The Marshall and Swift index for year 2001 when this example was solved is Af &S = 
1100 (Chemical Engineering, 2001). 

Inequality Constraints 

The inequality path constraints (9.20) are modified to end-point constraints via the 

method developed in Bansal et al., (2002a). The basic idea in this approach is to 

define a variable X that tracks the maximum value of the path constraint X(t) <0 

over time and then to enforce an end-point constraint on this new variable. Hence: 

X(t) = max X(o 
TE[to, t] 

X(tf) <0 (9.24) 

The optimization problem (9.24) is approximated by: 

dX 
= 0.25 - [1 + tanh(l . 106 - Float)] - [1 + tanh(l - 

106 - 
dX A- dX 

dt Tt 7t 
Float =X- 

Float(t,, ) = (9.25) 

If X corresponds to a differential state then its derivative is explicitly available for 

use in (9.25). Otherwise, A-'- can be accurately approximated by dt 
, where: dt 7F 

0-8. 
dX dX 

X=X+1 -5 lt=t,, =0 dt dt 

Disturbances 

(9.26) 

The disturbances vary sinusoidally around their nominal point (Fil = 10kg/min, 
C1, = 5%) described by the following equations: 

Fl = 10 + 0.8 - sin( 
27r 

if -/4 t) 
27r 

Cl =5+0.5 - sin( tf /3 . t) (9.27) 

No parametric uncertainty is considered in this example. 
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Decision Variables 

In this problem no discrete process design decisions are considered. The value of the 

composition set - point varies periodically between 25% and 27% due to operating 
decisions. This variation is allowed to occur between time tj = 360min and t2 = 
740min on a daily basis. This transition is modelled as a piecewise linear variation 

and its duration is a free optimization decision. To derive the parametric controller a 
discrete time model predictive control problem is formulated based on the linearized 

version of the open-loop model. The manipulated variables v= JPIOO, F200} are the 

control optimization variables, whereas the outputs Y= JC21 P2} correspond to the 

system states. The objective function is a quadratic index of performance as in (9.3) 

where 
ql/(C21-30) 0 

R=q2 
10 

(9.28) 
0 1/(p2l -80 01 

where P21, C21 is the linearization point. In this study we consider 41,42 the control 
design variables to be determined by our optimization procedure. The discrete 

sampling time is taken as At = lmin and the prediction horizon is considered to 
be N=3. The terminal cost P is computed from the Lyapunov function. The 

constraints enforced on the prediction horizon are: 

output constraints: C2, k ý: 25%, 401f Pa 5 P2, k :5 8OKPa (9.29) 

input constraints: OKPa < P100, k :5 40OKPa, Okg/min < F200. k :5 40OKg/min (9.30) 

k=1, ---N 

The model based control optimization problem is recast as a mp-QP by treating 
the current states, disturbances and set-points as a set of parameters. The control 
action is derived from the mp-QP solution and is a piecewise affine function of the 

system states, disturbances and set-points. 
Problem (PEV) is solved via the outer approximation decomposition algorithm 

9.1 described in section 9.2.2. Convergence was achieved in 3 iterations and the 

results are shown in Table 9.5. The initial guess corresponds to the steady state 
optimal point. The profiles for the set-points in each iteration are shown in Table 
9.6. The optimal controller for this process is portrayed in Figure 9.3, in the two 
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dimensional state-space. Each colored region corresponds to a different function for 

the control variables in terms of the states. The evolution of the system over the 

time horizon of interest is also shown in Figure 9.3. The time trajectories of the 

outputs and the inputs are shown in Figure 9.4. 

Variables Initial guess I Iteration 11 Iteration 21 Iteration 3 

Control Primal 

F2oo-BIAS 207.515 189.023 189.061 182.851 
(kg/min) 
Ploo-BIAS (KPa) 193.372 211.471 213.261 217.555 
A, (M2) 19.2 18 18 18 
A, (0) 13.68 13.90 13.81 13.76 
Cap. Cost - 1.7631 1.7603 1.7587 
(10'$/yr) 
Oper. Cost 4.62960 4.63187 4.63347 
(104 $/yr) 

Obj. (104$/yr) - 6.39278 6.39217 6.39209 
UP +00 6.39278 6.39217 0.39209 
Control Master - 
Control designs 

ý1 1 100 55.32 
q2 10-3 0.24 0.2519 
Linearization point 
F2oo (kg/min) 207.515 198.676 212.838 
Ploo (KPa) 193.372 185.406 180.602 
A, (m2) 19.2 19 18 
A, (m2) 13.68 14 14 
Obj (104$/yr) - 6.3849 6.39215 
LO -00 1 6.3849 6.39215 
Is UP-LO<O? I NO NO Yes 

Table 9.5: Results of design decomposition Algorithm 9.1 for Example 9.1 

Remark 9.4 A large value for 41 implies tight control on the product composition 
and favours constraint satisfaction. However, there is clearly a trade-off since there 
is an adverse effect on the economic objective. 



Chapter 9 211 

Interval Duration of Interval Conc. C2"' (%) at the Conc. C2"' (%) at the 
beginning of interval end of interval 

Iteration I 

1 360-000 25.030 25.030 

2 18.13 25-030 27 

3 341.87 27 27 

4 20 27 25.053 

5 700.000 25-053 5.012 
Iteration 2 

1 360.000 25.004 25.004 

2 14.84 25.004 27 

3 345.16 27 27 

4 20 27 25.189 

5 1 
700-000 25.016 25 

Iteration 3 

1 360.000 25.005 25.005 

2 14.84 25.005 27 

3 345.16 27 27 

4 20 27 25 

5 1 700.000 25-074 25.008 
1 Iteration 1 Iteration 2 Iteration 3 

Pressure 51.260 51.744 52.840 
PA et 28 

(KPa) 

Table 9.6: Set-Point variability in design decomposition Algorithm 9.1 for Example 

9.1 
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Rernark 9.5 A high q implies tight, collt I-01 oil t lie ellergy illplit t 21 tý. 

ecouomic performance. The end restilt, contradicts HI I Ills partIcIllar example Ille 

C01-111110TI NIPC heII11SIR' (Meadows and Rawlings, 1997) of imposmig a small weighl 

oil the Input deviat'loll. The reasoll Is that, ecollolilics, alld 1101 t ight oIII pill coIII I-()1 

is the perfol-Illallce requil-eincill 111 12111', problem. 

Remark 9.6 The soWtiou set I Ies on a, point, whei-e a 1, ight. almost pci-rect coilti-ol 
is en%vd on the Inaduct (Yuqxmilion whNvas the o1hei- ont, pia, i. c. 

pressul-e is looselly cout'l-olled. The advmdage or this techniqnv, uewTI heNss. is I hat 

it provides 2 inom Feasible soblions Lo Hie opeiýat, ol- apall fl-011) Hic opt ilual. 

the opeiýat. oi- has the abilit, y to select between an extreniely tight coioi-ol mi Hie 

couiposil. iou (Ilium! 2. PAW 3) and an equa, Hy disfrWml conhal annnm I Iw I "w) 
0111, puk (Plifnal 1). 

53 

(72 '70 

Figure 9.3: Schematic descripholi oft lie Parametric Controller ka 1,, x it IIIp1, ! ). 1 
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Figure 9.4: Time trajectories of the inputs and the outputs in Example 9.2 

9.4 Process Example 9.2 - Distifflation Column 

9.4.1 Problem Forinu ation 

The distillation process example (Figure 9.1) that served as an illustration of the 

theoretical developments in this chapter is revisited here. 

Results 

Two uncertainty periods were selected as discussed in section 9.2.2 and the mul- 
tiperiod design mixed integer dynamic optimization problem is solved first. The 

algorithm converged in three iterations between structural master and primal as 

shown in Table 9.7. Each structural primal problem required two iterations be- 

tween the control primal and master solutions as shown in Table 9.8 for the optimal 

structure. In all three MIDO iterations the control master was indicating for every 
structure that matrix Q is positive definite, i. e. that both outputs are participating 
in the optimal control structure. In the process structure there are 30 possible feed 

tray locations and for the feed located on tray k there are (31 - k) alternatives for 

the reflux tray locations. Hence the total number of discrete alternatives portayed 
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30 

by integer variables is F, (31 - k) = 465. Despite this large number of alternative 
k=1 

discrete decisions the algorithm converged in 3 iterations between the structural 

master and the primal problems. A reduced model of 4 states was used in all three 

process structures for control design purposes. The error from the reduction was 
0.17% for the optimal structure, while the frequency responses of the singular values 

of the reduced vs. the full models are shown in Figure 9.5. Note that for frequencies 

above 100rad/min the responses of the two models deviate. However, in this study 

we are interested in disturbance frequencies less than: w <- 1- 10rad/min where 
the reduced model portrays the dynamic behaviour satisfactorily. The profiles of 
the control inputs and the outputs are depicted in Figure 9.6, whereas the time 

trajectory for the minimum allowable column diameter is shown in Figure 9.7. 

After solution of the simultaneous process and control design MIDO problem, 
the feasibility problem (9.14) is solved. Its solution is shown in Table (9.9). The 

maximum constraint value X=-8.6 - 10-' corresponds to the bottoms benzene mole 
fraction and is less than zero. Thus, the optimal process and control design ob- 
tained in Table 9.7 is indeed feasible for all possible bounded scenarios involving the 

specified uncertainties. 

Remark 9.7 Table 9.10 compares the different designs clearly demonstrating the 
benefits from pursuing a simultaneous approach in process and control design rather 
than the traditional sequential approach. The steady state design (first column in 
Table 9.10) is feasible at steady state but inoperable at transient conditions since it 

cannot satisfy the specifications. In order to make the steady state design operable 
the equipment size was increased by 10% resulting in a still inoperable process due 
to violations of composition and thermodynamic driving force constraints. The 

equipment size was then increased by 20%, leading to an operable but expensive 
design as represented in the 2nd column of Table 9.10. As opposed to this ad- 
hoc sequential overdesign procedure, the systematic optimization method leads to a 
selective increase in the size of the reboiler and the column diameter, whereas the 

condenser size remains almost the same. Hence, economic savings of the order of 5- 
6% are obtained with feasible dynamic performance when comparing column 4 with 
column 2 in Table 9.10. Thereby, it is guaranteed that the resulting design meets 
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all the production specifications and operational restrictions despite the presence of 

rapidly varying disturbances. 

Remark 9.8 The economically optimum design point usually lies on constraint in- 

tersections (Narraway and Perkins, 1993). The parametric controller is particularly 

effective in dealing with constraints while it contains a feedforward element to com- 

pensate for the disturbance effect. These features allow the plant to operate closer 
to the constraint limit, as opposed to the operating point derived when using PI 

control. This property in combination with the reduced equipment size explains 

why the parametric controller leads to total economic benefits of 2- 3% as shown 
in Table 9.10 column 4 vs. column 3. Another significant benefit of the parametric 

controller is shown in Figure 9.8 where we examine the scenario of an increased 

disturbance amplitude and impulse (0. = 0.095, Oi = 0.07,0, = 228min in (9-6)). 

The design with the parametric controller exhibits half the size of the overshoot 

compared to the case of the PI controller, while it avoids under-damped oscillatory 
behaviour. This implies that this novel control law respects to a high degree the 

process constraints, thus enhancing the operational plant performance. 

Remark 9.9 The employment of advanced controllers in the design framework en- 
ables the direct accommodation of stability performance criteria in the controller 
synthesis phase. This is done by computing the terminal cost and the time hori- 

zon length in (9.8) according to established literature criteria (Keerthi and Gilbert, 
1988; Rawlings and Muske, 1993; Chmielewski and Manousiouthakis, 1996). This 
is a clear advantage over the PI case where stability is either not accounted for 
directly (Bansal et al., 2001a; Mohideen et al., 1996a) or it is guaranteed via over- 
conservative complex constraints (Mohideen et al., 1997a). 

9.5 Computational Times and Software Implemen- 

tation Issues 

In both examples the mp-QP solution for the parametric controller derivation was 
performed using POP (Pistikopoulos et al., 1999-2002a), whereas the process and 
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Iteration Number 1 2 3 

Primal Solutions: 
No. of Trays 26 25 24 

Feed Location 12 12 12 

Control Scheme Full Structure Full Structure Full Structure 

Process design 
D, (m) 1.654 1.657 1.663 
AR (M2) 275.15 276.16 278.74 
AC (m 2) 131.61 131.95 133.63 
Controller tunings 
q1 16 15 11 

12 10-1 10-4 10-4 

Set point 
Xte t enz, D 0.9815 0.98146 0.98149 

X6.9 et 
enz, B 0.01782 0.01770 0.01716 

Costs 
Capital Cost ($100k yr-1) 1.9953 1.9720 1.9543 
Operating Cost 4.2327 4.2507 4.2914 
($100k yr-1) 
Expected Cost 6.2280 6.2227 6.2457 
($100k yr-1) 
UP 6.2280 6.2227 6.2227 
Master Solutions: 
No. of Trays 25 24 25 
Feed Location 12 12 11 
Control Scheme FullStructur FullStructure Full Structure 

LO 6.2118 6.2205 6.2339 
'Full Structure: Xbenx, D i Xbenz, B - Hell, V 

Table 9.7: Progress of the Iterations for the multiperiod MIDO design problem in 
Example 9.2 

control design dynamic optimization was performed in gOPT/gPROMS (PSE, 2000). 
For example 9.1 the computational times are on average CPU = 100sec foý the mp- 
QP and CPU = 3000sec for the dynamic optimization. For example 9.2 the CPU 
times are on average CPU = 500sec for the mp-QP and CPU = 5000sec for the 
dynamic optimization. The linearization in example 9.1 was performed analytically 
via Maple (1998), whereas in example 9.2 the linearization subroutine of gPROMS 
(PSE, 2000) was used. The model reduction, in example 9.2, was performed via the 
SLICOT package (Varga, 1999) that implements the Balance & Truncate (B&T) 

method and is integrated with MATLAB-6 (Mathworks, 2000b) running under a 
WINDOWS 2000 environment. 
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Iteration 11 Iteration 2 

Linearization point 

Xben2, D 0.9815 0.98025 

Xbenx, B 0.0156 0.01916 

Ac 115 110 

AR 268 280 

D, 1.64 1.65 

Lin a 

Zbenz, f 0.45 0.45 

V, 5.530 5.480 

RefIl 3.280 3.238 

Lin# 

Zben2, f 0.5 0.5 

V, 5.725 5.238 

Refli 3.224 3.223 

Control Primal 

et Xiblenx, D 0.9815 0.9814 

et Xboen; e, B 0.01782 0.0177 

Ac 131.92 131.95 

AR 277.09 276.16 

Dc 1.66 1.65 

41 1.2 15 

i2 10-4 10-4 

Cap. Cost ($100k yr-1) 1.9738 1.9720 

Op. Cost ($100k yr-1) 4.2545 4.2507 

Exp. Cost ($100k yr-1) 1 
6.2283 

1 6.2227 

UP 1 6.2283 6.2227 
Control Master 

41 
q2 

LO 

15 
10-4 10-4 

6.2218 

5 

6.2360 

IS LO > UP ? NO Yes 

Table 9.8: Progress of the iterations in the control design procedure for structure 

Ntrays= 25, Feed location = 12 (Example 9.2) 
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Constraint X1 Critical value of uncertainty 
0.98 - Xbenz, D '5 0 -1.2-10-3 0.45 

-(0.02 - Xbenz, B) <0 -8.6-10-3 0.45 
7- TinR(t) + ToutR(O <0 _1.1 . 10-2 0.5 

5- TD M+ TOU t, w W<0 -7.6-10-1 0.45 
5- ToutR (t) + TB (t) <0 -2.2-10-1 0.45 

-Dc + Dc .. in <0 -2.7-10-3 0.5 

Table 9.9: Feasibility test results in the Distillation Example 9.2 

Design Variables Steady State Sequential Simultaneous Simultaneous 

Inoperable approach approach approach 
SISO-PI SISO PI Parco 

No. of Trays 25 25 26 25 

Feed Location 12 12 13 12 

De (m) 1,6061 1.93 1.68 1.65 

AR (M2) 255.34 306.43 289.06 276.16 

Ac (rn2) 133.66 156.41 132.55 131.95 

Nominal Utility 

consumption 
F,,, (kg/min) 970 922 1029 1004 

F, t (kg/min) 83 85 84 83 

Set points 
X Zee 

nt z, D 
0.98 0.985 0.985 0.9814 

X bo eef, z. B 
0.02 0.01009 0.0099 0.0177 

_ Controller 

tunings 
KcxD-Reft - 50 50 

KCxB-V -50 -50 

TCxD-Reft 80.03 so 

TCxB-V 3.55 5.59 

fi - - - 15 
ý2 - 10-4 

Costs 

Capital Cost 1.9076 2.274 2.034 1.9720 

($100k yr-') 
Operating Cost 4.2304 4.3024 4.3353 4.2507 

($100k yr-1) 

Expected Cost 6.1380 6.5764 6.3691 6.2227 

($100k yr-1) I I I I 

Table 9.10: Comparison of different designs in Example 9.2 
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9.6 Conclusions 

This chapter has presented a simultaneous process and control design algorithm 
that employs explicit parametric controllers in the controller derivation and design 

stage. Our approach is based on an outer approximation decomposition method for 

simultaneously identifying the optimal process and control design decisions. The 

presence of discrete decisions about the system design and operation is accommo- 
dated via formulating and solving a mixed integer dynamic optimization problem, 

while in the face of parametric uncertainty the two stage decomposition algorithm 

of Mohideen et al., (1996a) and Bansal et al., (2002a) is adopted. 
The explicit structure of the parametric controller enables, formally for the first 

time, the incorporation of advanced optimizing model based control schemes in a 
design framework. The clear benefits from this approach include: (i) improved 

process economics, (ii) enhancement of the system dynamic performance, (iii) guar- 

anteed operability in the face of uncertainties and (iv) improved system stability 

characteristics. 
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0 

Conclusions and Future Research 

Directions 

"Each problem should lead naturally to further problems; each solution to further solutions. " 

Richard Bellman. 

This chapter is a summary of the major findings and contributions of the work described 

in this thesis. Directions for future developments based on this work are also identified. 

10.1 Summary of key contributions 

10.1.1 New Algorithms for Multiparametric Dynamic Op- 

timization 

Part I of this thesis is devoted to developing new methods for multiparametric dy- 

namic optimization (mp-DO) of systems described by linear differential algebraic 

equations. An extensive literature survey on the existing parametric programming 

algorithms is performed in chapter 2, where a number of limitations are identi- 

fied. These include the facts that: (i) no complete formal methods exist for multi- 

parametric dynamic optimization and multi-parametric mixed integer dynamic op- 

timization; (ii) the few methods that attempt to tackle multi-parametric programs 
involving differential and algebraic equations approximate the problem via complete 

222 
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discretization, thereby leading to inaccurate suboptimal or even infeasible solutions 
if the discretization is not sufficiently dense; and (iii) there is currently no technique 

that completely characterizes the optimal conditions of such problems by expressing 

explicitly their solution as a function of the points in time when the switching of 
active constraints occurs. 

In response to this review two formal algorithms were developed for multipara- 

metric dynamic optimization (mp-DO) of linear quadratic optimal control problems. 
The first algorithm (chapter 3) is based on a direct approach involving control vector 

parameterization while the second algorithm (chapter 4) is based on a variational 

approach. 
The foundation of the direct approach to mp-DO relies on transforming the orig- 

inal infinite dimensional optimal control problem to a finite dimensional parametric 

optimization problem posed in the reduced space of the input control variables and 

parameters. For that purpose control vector parameterization is adopted to generate 

a finite set of decision variables. Decomposition is then employed for the treatment 

of the time-varying path constraints. The algorithm, thus, iterates between an mp- 
QP subproblem with a fixed number of interior point constraints and a feasibility 

subproblem where it is tested whether any constraint violation occurs over the whole 
time horizon. The same algorithm was also applied for multiparametric mixed inte- 

ger dynamic optimization problems (mp-MIDO), involving discrete logical decisions 

that are modelled as binary variables. The proposed algorithm provides simple 

piecewise affine parametric expressions for the optimal values of the objective and 
the optimization variables while determining exactly the regions in the parameter 

space where these expressions are valid. This novel approach (i) guarantees that all 
the constraints are satisfied over the time domain within a pre-specified tolerance 
c4c"; (ii) gives a wide range of options for specifying the control vector representa- 
tion over time; and (iii) ensures an accurate representation of the performance index 

value since the system states are not discretized but are integrated analytically over 
time. 

The key characteristic of the variational approach to mp-DO is the analytical 
elimination of the differential part of the Euler-Lagrange optimality conditions of 
the optimal control problem. This results in a set of finite non-linear conditions. 
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The algorithm exploits the structure of these conditions to systematically subdivide 
the complete parameter space into critical nonlinear regions and derive for each par- 

tition a set of explicit nonlinear piecewise continuously differentiable functions of the 

control trajectories and the constraint switching points in terms of the parameters. 
It is shown that each region corresponds to a unique number of active constraints 

and a unique number of constrained arcs. Our technique (i) addresses for the first 

time the long standing issue of expressing the constraint switching time instants, as 
a function of the problem parameters; (ii) is independent of any form or degree of 
the control vector parameterization as it identifies exactly the optimal control time 

profile as part of the solution procedure; and (iii) results in a reduced number of 
parameter space partitions. 

The direct mp-DO approach results in a complex parameter space partition with 

simple expressions for the optimal control values, while, the variational approach is 

more accurate and produces a minimal parameter space partition but leads to more 
complex non-linear expressions for the optimal control trajectory. Both algorithms 
provide explicit functions for the optimal problem conditions in terms of the prob- 
lem parameters, thus eliminating the need for repeated on-line optimization. Ad- 
ditionally, the explicit form of the solution provides an insight into the underlying 
structure of the optimal solution that cannot be gained via other forms of sensitiv- 
ity analysis. The aforementioned features and the computational efficiency of the 
developed algorithms have been demonstrated via a number of mathematical and 
process engineering examples. 

10.1.2 Model - Based Control via Parametric Optimization 

Part 11 of this thesis focuses on the development of explicit model based predictive 
controllers (MBPC). As reviewed in chapter 5, currently, one of the most advanced 
MBC control schemes is the so called parametric controller. These controllers are 
derived via first formulating an open-loop optimal control problem, then treating 
the current states that are initial conditions for this problem as parameters and 
finally using parametric programming to derive the complete explicit mapping of 
the optimal control actions in the state space. This mapping features piecewise 
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affine functions, comprising an explicit control law for the process plant. However, 

the design techniques for these types of parametric controllers involve several issues 

as mentioned in chapter 5 including: (i) the absence of many efficient techniques 

for handling input disturbances and uncertainties, (ii) the inability of the current 
design methods to deal in a generic manner with the optimal control of a broad 

class of hybrid systems and (iii) the absence of methods that derive the parametric 

controller for systems represented by continuous time dynamic models. 
In response to the first remark we have developed in chapter 6a new design 

method for robust model-based parametric controllers for linear dynamic systems. 
The proposed control scheme guarantees feasible operation in the presence of input 

bounded uncertainties, while preserving the system performance, by (i) explicitly 
incorporating in the controller design stage a set of feasibility constraints based on 

either a closed or open-loop uncertainty prediction scheme, (ii) minimizing the nom- 
inal value or the expectation of the performance measure (1/00 norm or quadratic) 

over the uncertainty space and (iii) incorporating integral action in the controller de- 

sign. Parametric programming is used to convert the feasibility constraints to linear 

inequalities and to derive off-line the explicit control law before any actual process 
implementation takes place. In the open-loop prediction scheme the future control 

sequence cannot be readjusted to compensate for the uncertainty values, whereas in 

the less conservative closed loop scheme the future control elements are allowed to 

readjust according to the past uncertainty realizations. It is shown that our novel 

robust controller (i) features significant computational complexity reduction in its 

derivation as it is independent of the size of the uncertainty vector, (ii) exhibits 
less conservative control action over the worst-case design when the uncertainty lies 

close to the nominal point, (iii) guarantees asymptotic tracking of the reference out- 

put target and (iv) has the advantage of comprising simple piecewise linear control 

expressions that enable the simple and fast implementation of the control policy, as 

such, enhancing greatly its applicability. 
The development of novel control schemes for linear hybrid systems and contin- 

uous time dynamic plant representations is performed in chapter 7. Our approach 
first formulates an open-loop receding horizon optimal control problem and then 

recasts it as a multiparametric mixed integer quadratic program (mp-MIQP) in the 
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case of hybrid systems and as a multiparametric dynamic optimization (mp-DO) 

problem in the case of continuous time dynamics. The solution of the parametric 

programs corresponds to an explicit parametric controller for the plant before any 

actual process implementation occurs. Appropriate tuning of the prediction horizon 

and the terminal cost is shown to ensure the asymptotic stability of these new con- 

trol schemes. Our proposed approaches (i) avoid solving an optimization problem 

on-line which is the current practice for this type of controller, (ii) manage for the 

first time to derive a closed-form state feedback expression for the optimal control 

action in hybrid systems using general performance criteria, (iii) derive for the first 

time, in the continuous time dynamic case, state feedback expressions for the values 

of the manipulated variables and the switching time instants that ensure feasible 

and optimal closed-loop dynamic behaviour. 

The key characteristics of the above new approaches are demonstrated via math- 

ematical and process examples. The findings in this part of the thesis extend the 

applicability of the simple structure of these parametric controllers to realistic plants 
involving uncertainty, logical discrete components and continuous time system rep- 

resentation. 
It is fair to state that the proposed parametric controllers are particularly appli- 

cable to problems with low state and control dimensions but are not in their current 
form suitable for plants with increased dimensionality and a high degree of non- 
linearity. The reason for this feature is the exponential increase of the parametric 

controller complexity with the size of the open-loop system. 

10.1.3 Parametric Controllers is Simultaneous Process and 
Control Design 

The emphasis in Part III of the thesis is on the application of the explicit parametric 

controllers to an optimization based simultaneous process and control design frame- 

work. Chapter 8 summarizes the current approaches to the integration of process 

and control design. While there are efficient methods for dealing with uncertainty 

and discrete process and control decisions, there are no efficient techniques for in- 

tegrating advanced optimizing controllers within a design framework. This issue 
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may penalize system performance since the conventional PID controllers that are 

currently employed (i) are not usually multivariable, (ii) do not account explicitly 
for process constraints and (iii) cannot readily accommodate closed-loop stability 

requirements. Furthermore, advanced control schemes are widely employed in in- 

dustry and their absence from a process design framework may lead to unrealistic 

solutions and discourage its practical implementation. 

In response to these issues a method is proposed in chapter 9 to incorporate 

model-based parametric controllers into a simultaneous process and control design 
framework. This is performed in a nested iterative manner based on Generalized 

Benders decomposition to determine the discrete decisions and an Outer Approxi- 

mation to obtain the controller tunings. In the first step the uncertainty space is 
discretized into a set of scenarios. In the next step a structural primal problem 
is formulated for fixed discrete decision variables that is directly decomposed to 

a control primal and a control master problem. In the control primal the control 
tunings are fixed and a parametric controller with enhanced stability properties is 
initially derived based on a linearized version of the process model. Thereafter, the 

closed-loop process including the explicit form of the controller is optimized in terms 

of performance criteria. The solution of the control master follows providing new 
controller tuning variables. When no tunings can be found that improve the system 
performance, a structural master problem is solved providing new values for the dis- 

crete design decision variables to the next structural primal problem. The optimal 

process and control design is derived once the structural primal solution, which is 

an upper bound, converges with the solution of the structural master problem. The 

resulting design is tested for feasibility over the complete range of uncertainty varia- 
tions. If infeasibility occurs, the critical uncertainty is augmented into the first step 
of the procedure, otherwise the derived design ensures operability over the complete 
set of operating conditions. It is shown that the control primal is in general a non- 
linear dynamic optimization problem (DO), the control master is a linear program 
(LP) and the structural primal is a mixed integer linear program (MILP). 

The proposed design framework: (i) effectively integrates for the first time ad- 
vanced predictive controllers within a simultaneous process and control design op- 
timization platform, (ii) results in locally optimal designs with respect to the given 
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performance index (economic criterion) for a fixed set of discrete decisions and fixed 

values of the controller tunings, (iii) ensures operability in the face of time varying 
uncertainties, (iv) leads to enhanced closed-loop stability properties and (v) as it is 

also shown through the illustrative process examples leads in general to inexpensive 
designs with improved dynamic operation and economics over the traditional se- 
quential or simultaneous process and control design methods featuring conventional 
PID controllers. 

10.2 Key Contributions 

The contributions of the work presented in this thesis can be summarized as follows: 

A new algorithm for linear quadratic multi-parametric dynamic optimization 

and multiparametric mixed integer dynamic optimization problems based on 

control vector parameterization techniques. For the first time, this approach 
derives explicit expressions for the optimal values of the objective function 

and the decision variables in terms of the problem parameters that ensure 
satisfaction of the system path constraints. 

A novel method for solving linear quadratic multi-parametric dynamic opti- 

mization problems based on a variational approach. This new algorithm de- 

rives explicit analytical expressions for the optimal conditions, including the 

optimal constraint switching time points, in terms of the plant parameters, 
avoiding any form of system discretization. 

A new design algorithm for robust model based tracking controllers, for lin- 

ear dynamic models based on parametric programming, that (i) guarantees 
feasibility in the presence of bounded uncertainty, (ii) preserves the system 
optimal performance and (iii) reduces greatly the complexity of the controller 
derivation and implementation. 

A new algorithm for deriving the explicit control law for linear hybrid systems 
via parametric programming that (i) features improved stability properties for 
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the special case of piecewise affine systems, (ii) consists of simple piecewise lin- 

ear optimal control expressions and (iii) for the first time accounts for general 
both quadratic and 1/oo - norm performance indices. 

A new method for designing the explicit optimal parametric controller for lin- 

ear continuous time dynamic systems featuring asymptotic stability properties 

and explicit handling of path constraints. It is shown here for the first time 
how the control action is explicitly affected by the values of the constraint 
switching time points. 

An optimization based framework for solving the simultaneous process and 
control design problem that (i) for the first time incorporates successfully ad- 
vanced model-based controllers with explicit stability and feasibility handling 

capabilities and (ii) can effectively treat the presence of uncertainty and dis- 

crete process design decisions. The designs obtained with this new approach 

ensure operability with respect to the process specifications and optimality in 

terms of the performance index. 

A summary of the key contributions is shown in Figure 10.1, where the dashed 

blocks denote the relevant contributions from the previous works and the solid line 
blocks pertain to the contributions from this work. 

10.3 Recommendations for Future Research De- 

velopments 

The work in this thesis raises a number of issues that could form the foundations 
for future research. These are discussed in this section in the same order as they 

appear in the thesis. 

Grid refinement in Control Vector Parameterization for direct mp-DO 

In § 3.2.3 and 3.2.4 we discuss the development of a control vector parameterization 
algorithm for mp-DO. The control discretization points in time are usually set a 
priori according to the system dynamics. A method needs to be developed for 
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refining this grid according to accuracy and performance criteria. An advantage 

of parametric programming is that here, multi-grids can be developed each one 

applying to different parameter space partitions. Additionally, methods are required 
for the efficient location of the point constraints in the decomposition algorithm 3.1 

in order to improve the convergence characteristics of the off-line computations. 

Multi- parametric Non-linear Programming 

Paragraph § 4.2 derives non-linear parametric profiles for the case of optimal control 

of linear continuous time dynamic systems. These profiles are valid over regions in 

the parameter space that their boundaries are represented mathematically by non- 
linear inequalities. The inherent presence of nonlinearity in these type of problems 
increases both the complexity of the off-line derivation of the parametric solution 

and the computational time of its on-line implementation. A resolution to this 

issue could be the expansion of the complex parametric profiles and the region 
boundaries to a set of approximate "base functions" that can comprise polynomial 

or exponential terms. The order of those functions and the values of their expansion 

coefficients can be manipulated accordingly to improve the accuracy and reduce the 

complexity of the parametric solution. 
Additionally, it is clear that the research on variational multiparametric dynamic 

optimization motivates the further development of efficient multi-parametric non- 
linear programming (mp-NLP) algorithms that can deal with convex and non-convex 

systems of high dimensionality. Thus, the improvement of the recently reported mp- 
NLP algorithms of Dua et al., (1999), Dua and Pistikopoulos, (1999); the derivation 

of suboptimal mp-NLP solutions using the techniques of Johansen and Grancharova 
(2002) and Grancharova and Johansen (2002); and the adaptation of the efficient 
on-line parametric solution implementation of Borrelli et al. (2001) to the case of mp- 
NLP are significant and challenging tasks that can produce new theoretical results 
and enable new parametric programming applications. 
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A variational approach to Multi-parametric Mixed Integer Dynamic Op- 

timization (mp-MIDO) 

In Appendix C, the extension of the direct mp-DO algorithm 3.1 to mp-MIDO 

problems involving integer variables is discussed. The same principles do not read- 

ily apply to the case of the variational mp-DO algorithm since special treatment 

is required to derive the time dependence of the integer variables. The solution 

aspects of a variational mp-NIIDO method need to be explored by combining for 

instance the algorithms of Bansal et al., (2001a) and Xu and Antsaklis (2002) for 

deterministic MIDO problems with the mp-MIDO approach described in Appendix 

C. A suggested sequence of steps can be defined as: (i) Fix the binary variables and 

solve an rnp-DO problem, (ii) Solve a variational MIDO problem in each region with 

appropriate integer and parametric cuts, (iii) If the MIDO problem is feasible go to 

step (i) otherwise terminate since no better integer combinations can be identified. 

The direct adaptation of such an algorithm to parametric control technology for 

hybrid systems readily follows the discussions in § 7.1. 

Generic Uncertainty Description and Hybrid Systems in Robust Model- 

Based Control via Parametric Programming 

In chapter 6a robust parametric controller is derived assuming a bouded deter- 

ministic affine uncertainty vector. Different descriptions of the uncertainty and the 

presence of logical discontinuous modes would lead to interesting extensions of the 

algorithm. Here, we distinguish three cases: 
(i) Stochastic representation of the uncertainty vector (e. g. Loeblein and Perkins, 

1999b): 

xt+l = Aixt + A2Vt + W10t (10.1) 

where Ot is assumed a Gaussian white noise process with a particular covariance 

matrix W. The derivation of the control law for system (10.1) and the analysis of 

properties such as the covariance of the outputs and the probability distribution 

of the constraints of the closed-loop system could be explored to establish a new 

theoretical result for that case. 
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(ii) Parametric uncertainty in the linear model matrices (Mayne et al., 2000): 

xt+l = AI(Ot)xt + A2(0t)Vt (10.2) 

This type of uncertainty modelling can accurately depict the uncertainty in the 

plant model due to inaccurate determination or variability of the model parameters. 
A new explicit robust controller for (10.2) in the case of convex and non-convex 

mapping 0 ý-+ x would be desirable to provide improved accuracy and performance 

over the existing controller. 
(iii) Robust model-based control for hybrid systems. The approach presented in § 

6.2 and 6.3 can in principle be applied to robust control of hybrid dynamic systems. 
The discontinuous modes are first required to be represented as integer variables. 
Thereafter, problems (6.20) - (6.22) will need to be solved explicitly as a series of 

multi-parametric mixed integer linear programs (mp-MILPs). However, the study 

of the convexity properties of the resulting feasibility constraints is a non-trivial task 

that is important for establishing the controller design features. 

Stability analysis of the parametric controller 

The extension of the traditional techniques for ensuring stability in piecewise affine 

systems and continuous time dynamic systems is discussed in the context of para- 

metric controller design in Appendix G and in § 7.2.2 respectively. However, these 

methods, which are based on extending the control horizon and tuning the terminal 

cost, may feature an adverse effect in terms of complexity and unnecessary con- 
servativeness. A new reverse stability analysis approach is required which, given 
a prediction horizon, a terminal cost or a set of terminal contraction constraints, 
will readily compute the region of state-space where the explicit model-based con- 
troller is stable. This can be performed by first monitoring an appropriate energy 

- Lyapunov function V= XTPx and then determining the closed-loop polyhedral 
partitions where the time derivative of this function remains negative, thereby im- 

plying Lyapunov stability behaviour. This approach has significant implications to 
the stability of uncertain and hybrid systems where the traditional techniques may 
fail or lead to complex formulations. 
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Explicit Moving Horizon Estimator 

In part II of this thesis several types of state feedback parametric controllers are 

proposed. These controllers require as input the plant state. In this work the 

value of the plant state is assumed to be accurately determined via regular direct 

measurements or through a well-designed state estimator. The design of such an 

estimator is an analogous problem to the optimal controller design. It involves the 

solution of a moving horizon optimization problem where the plant states are the 

optimization variables and the objective is to minimize the measurement and the 

state estimation error. If the formulation of such an optimization problem employs 

an infinite horizon cost and does not involve constraints the resulting estimator is the 

well-known Kalman Filter (Kwakernaak and Sivan, 1972) that is used also in section 
6.4 for estimating input disturbances. In the presence however, of constraints the 

formulation of a moving horizon estimator is as follows (Rao and Rawlings, 2001): 
N-1 

2- 12 min ; -"rIo lldkll'-1 + IlWkl 
Q_j 

Xo, {Wk}N- 
'X" 

R 
1; =O k=O 

S. t. Xk+l =f (Xk) Vk) + Wk 

Yk = 9(Xk) + dk 

Wk E Wki Xk E Xk (10.3) 

where matrix H provides a measure of confidence in our knowledge of the initial 
}N }N 

state jý and 14IN-1 
k=0 and 16kIN-1 

k=0 are the optimal state and disturbance 

estimates at time N. dk is the discrepancy between the real output value and the 

output value computed from the model. The constraints represent physical bounds 

on the plant states and disturbances that can lead to improved realistic values for 

their estimates. 
By treating the initial state t, the output yl, and the input Vk as a set of param- 

eters, problem (10.3) is recast as a parametric optimization problem. The solution 

of such a program will result in an explicit closed form relation between the optimal 

state estimates and the values of the inputs and the outputs. Thus, this closed-form 

expression will become an explicit constrained moving horizon estimator for the 

plant. The details of such a derivation and issues related to the stability of such an 
explicit estimator and its integration with a parametric controller can be an active 
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and challenging field of research. 

Applications of Parametric Controllers 

The advantages of parametric controllers are appreciated mostly in rapidly varying 

plants, systems demanding high levels of accuracy and safety critical constrained 

applications where the traditional N1PC is too slow and the performance of the 

conventional PID control is inadequate. Thus, it comes as no surprise that beneficial 

parametric control applications should come from biomedical drug delivery problems 

such as anesthesia control (Morari and Gentilini, 2001) or glucose control (Parker 

and Doyle, 2001), oscillatory systems such as periodic operation of Fisher-Tropsch 

reactors (Nfeeuse et al., 2001) and mechanical engineering systems such as camless 

shaft depletion studies (Peterson et al., 2002). Other opportunities may lie in the 
determination of the optimal operation of supply chain networks via a predictive 

control approach, where the inventories of each warehouse constitute the system 

state and the flows between the nodes of the network to the manipulated variables. 

Single - Stage Approach to Simultaneous Process and Control Design 

The proposed framework for simultaneous process and control design has proved to 
be efficient for deriving an operable and economically optimal design. However, it 

exhibits the drawback of requiring three series of iterative procedures as shown in 

chapter 9. The recursive method for treating the uncertainty can be avoided by first 

obtaining explicit expressions of the process feasibility in terms of the design con- 
tinuous and discrete decisions via an mp-DO approach and then incorporating the 
feasibility expressions in the multiperiod design subproblem as constraints to guar- 
antee operability. This method has been proposed for steady state design (Bansal et 
al., 2000), but it has not been developed to treat dynamic feasibility and process and 
control design. In a similar fashion the outer approximation approach for control 
design can be replaced by a single-stage approach where we solve first a paramet- 
ric program to derive expressions for the control variables in terms of the control 
tuning parameters and then include these expressions directly into a design (mixed 

- integer) dynamic optimization problem that will have as decision variables both 
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control and process designs. These two developments are necessary for simplifying 

the process design methodology, thus elevating it to a useful tool for process and 

control design engineers and practitioners. 
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Appendix A 

00 Critical parameter values in path 

constraints 

Lemma A. 1 The solution of problem (3.15) lies always on the vertices of the crit. 
ical regions CR, or equivalently at the intersections of the constraints: CR1 -j+ C 

2 CR, < 0, VO E EY 

Proof. Here we prove Lemma A. 1 for a two dimensional parameter space. The 

Lemma holds for higher order systems but the relevant proof is omitted here for 

brevity. Problem (3.15) for a two dimensional case can be rearranged as: 

minf = minfl(t) - 01 + f2(t) - 02 + f3(t) 
0 

S. t. a, - ji + b, - 
U2 < cl 

a2 * 01 + b2 * 02 : 51 C2 

a3 ' 01 + b3 * 02 '5 C3 

a4 ' 01 + b4 ' 02 < C4 

where a-, b-, c- are explicit functions of the elements of DI, D2, D3, b21 CR, ',, CRc'. 

The Karush-Kuhn Tucker conditions for problem (A. 1) are: 

KKT: 2-fl . j, + 2L2 *j2+ 
2L3 

=0 (A. 2) at at at 
fl(t) + pla, + /42a2 + tl3a3 + tl4a4 ý0 (A. 3) 

267 
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f2(t) + plbl+ 112b2 + [13b3+114b4 --'= 
0 (A. 4) 

pi(a, 61 + b, 62- cl) =0 (A. 5) 

P2(a261+ b262- C2) =0 (A. 6) 

[13(a361+ b362 - C3) =0 (A. 7) 

/14(a461+ b462 - C4) =0 (A. 8) 

Pli P27113) P4 20 (A. 9) 

I If the solution lies at the vertices of CR,, two of the inequalities are active. 
Consider inequalities (A. 5), (A. 6) being active. Then the KKT conditions are 

written as: 

KKT Ofl 
* 

il + 2'fl 
' 

62 + 211 
--: '- 

0 (A. 10) at at at 
fl(t) + [12a2 + P3a3 0 (A. 11) 
f2(t) + 

jU2b2+ p3b3 0 (A. 12) 

a26l+ 
b2 j2 

- C2 0 (A. 13) 

a3il +b3j2 - C3 0 (A. 14) 

PI ý /44 -= 
0 (A. 15) 

The optimum is found as follows: The critical values for 01,02 arc uniquely 
determined from (A. 13), (A. 14) . From (A. 11), (A. 12) Pli P2 are computed. 
Then from (A. 10) the critical time is calculated. Thus, the critical valucs for 

the parameters are unique once the solution lies at the vertices of the regions. 

11 If the solution lies at the boundary of one constraint (e. g. on the third con- 

straint (A. 7)) we have: 

KKT: 2of-tl '61+ 2al-t2 * 
62 + Of3 

`0 (A. 16) at 
fl(t) + P3a3 ý0 (A. 17) 
f2(t) + P3b3 "0 (A. 18) 

a361+ b362 
- C3 ý-- 0 (A. 19) 

P17P27[L4 ý-- 0 (A. 20) 
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From (A. 17) and (A. 18) we obtain t and [13. Then from (A. 19) we obtain an 
- a, 3 0, 

expression between6l , 
62) i. e. 

02 
---: 

C3 
b3 - Since we already know t, 113 we 

need one more equation to find one of the two is or an additional connection 
between them. The only equation left is (A. 16): 

0 
fl 

+ 
IM Oh L 

*02+ 
at at at 

0, 
L3 

+ (Lf 1) -1 
Oh Oh 

5-t] 1 
02 

= 
[2c3 

+ a3(ýf- IN (A. 21) 
[a3 

at at -Tt 
I 

The condition (A. 9) indicates that 93 ý! 0. Conditions (A. 16)-(A. 21) cor- 

respond to a minimum point jl*, j2*, therefore, any variation of 6J2 in the 

neighbourhood of 0, *, 0; along the constraint line, should result in positive 

variations on the value function if the time t is kept fixed. Let us take a posi- 
tive variation on 01, i. e. J#j >0 resulting in Jj2= -21JOI from (A. 19). The b3 
variation in the value function is: 

(fl(t)j*+fl(t)661+f2(t)j2*+f2(t)(- L3)8j. 
1) 

(t)jl + (t)j, ) I b3 
fl f2 

2 

fl (t) 
_ 

L3 )f2(t))661 (A. 22) b3 

But from (A. 17), (A. 18) we have f, = 21f2. Hence, (A. 22) becomes: b3 

if = (f, (t) - f, (0) A=0 (A. 23) 

This implies that conditions (A. 16)-(A. 20) correspond to a weak minimum and 
that any point along the constraint line will result in the same optimal value 
for the objective function. In that case the solution still lies at the vertices 
of the constraint because the vertices are also contained into the boundary 

constraint arc (A. 19). 

III The last alternative is all the constraints being inactive, i. e. the solution lies 

within the feasible region. Therefore, PI, 2,3,4 ý-- 0- From (A. 3), (A. 5) it can 
be deduced that f, (t), f2 (t) = 0. Therefore, there are two equations available 
for determining the critical time t, and only one i. e. (A. 2) for computing the 

value of 0*11 62*. So the system is ill defined, hence, the assumption that none 

of the constraints are active is wrong. 

11 
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0 

Solution properties of the direct 

mp-DO algorithm 

B. 1 Convergence Properties of the direct mp-DO 

algorithm 3.1 

Lemma B. 1 The direct mp-DO algorithm 3.1 converges asymptotically to the opti. 

mal solution of problem (3.11) for a given parameter and control time discretiation. 

Proof: The proof amounts to showing that the value of the maximum of the path 

constraints descents as the algorithm progresses V'+I <- T', until there is no con. 

straint violation. 

At the zeroth iteration n=0 assume that no path constraints arc enforced. 
Denote the solution of (3.13) as: ý6=0(0) and u'=O(O). The solution of (3.15) is 

r. =O, K=O. 0<c Vp then the algorithm terminates. Else proceed to the ru t If W` -) 
I>r. =O next step where r. =1 and 0' 

-ý 
holds, since the problem (3.13) at the 

first iteration includes an extra set of inequality constraints that are active. The 

formulation of (3.15) at the first iteration can be written as: 

IF = max w. 
p 

(B. 1) 

MaX{C2pV(U'(O), t)+C�x(u'(6), it)+bi. +F�0(jt)1 
to 
CR, 'j+ CR, ' : 5,0,45 t: 5 tf, c=l,... N, 

270 
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ul = arg(3.13)} (B. 2) 

(B. 2) can be rewritten as: 

max{C2, V(tJ', t) + Cl x(uAt) + bi 
p+ F1 

pO(Iý, t) 
t, W 

CRcl + CR, 2 0, tý :5t :5 tf, p q, c=1, ... N, (B. 3) 
if tP then 

0= LT + (UI)T L4 + OT L5 +AT. GI +, \T (C28toj!! 'A 
+ C, Or(ull, t)) (B. 4) 2pU, du 

0=A, 0 (GI ul - G2 - Giý) (B. 5) 

0= Ap 0 (C2v(ul, t) + Cix(u', ý, t) + b, + F10(jt))) (B. 6) 

Note that conditions (B. 4)-(B. 6) restrict the search space of t and 6 comparing to 
the preceeding iteration r. = 0. Therefore the maximum of (B. 3) - (B. 6) in iteration 

n=I is smaller than its maximum at n=0, implying Tr-+I < T" for tz = 0. The 

same can be proved recursively for any iteration r.. 13 

B. 2 Solution of a semi-infinite program 

Problem (3.11) is classified as a parametric semi-infinite program which in general 
has the form (Hettich and Kortanek, 1993): 
O(P, 0) = minjO(z, 0) Ig(z, 0, t) :50 Vt E [t,,, tf ]} 

Z (P) 
where zE RN- are the optimization variables and 0E0 are the parameters. 

Theorem BA Assume that in program (P) (i) f and h are convex with respect 
to z and (ii) 0, g are finite over RN- and (iii) O(P, 0) is finite. Assume also that 
for every set of N.. +1 points to, ..., tN, E [to, tf ]aý exists such that g(2,01 ti) < 
0, i= 0'... ' N-,, for a fixed 0E0. Then there exists TN 

" tN,, } such that: (i) 
O(P, 0) O(P(TN, ), 0); and (ii) there exist multipliers 

n 
Ili 0, i N. such that 

O(P, 0) inf JO(z, 0) +E tlig(z, 0, ti) 1z E RN'} for a fixed realization of 0E E). 
i=1 

Theorem B. 1 was posed by Hettich and Kortanek (1993) for a fixed 0 realization. In 
problem (3.11) 0 is a convex quadratic function and g is a linear function with respect 
to the optimization variables. Hence, according to theorem IM there exists a finite 
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set of discrete time points such that by imposing the inequality path constraints of 
(3.11) on those points the solution of the original dynamic optimization problem is 

equivalent to the solution of the resulting quadratic problem. 

We will show here, that Theorem B. 1 in our mp-DO case, holds VO E0 within 

a constraint violation tolerance c. It trivially follows that if the theorem holds for 

every critical region in the parameter space, pertaining to a particular set of active 

constraints, it will hold to the union of those regions which is the complete 0- 

space. Perturbing a0 point, interior to a critical region, around its neighbourhood: 
0+ AO and applying Theorem B. 1 again, we can obtain another solution to the semi- 
infinite program and another set Tk,. This set corresponds to the points in time 

where the trajectory of the constraints reaches its maximum. These points, within 

a tolerance c, are independent of the value of 0 for a particular active contraint set, 

thus, Tk. = TNi.. Therefore, in critical region 0E CR, (O), there exists a unique 
TN. such that O(P, 0) = ý(P(TNJ, 0) - It also follows from the mp-QP solution that 

VO E CRJO) there exists an affine function i(O) that relates the optimal values of 
the optimization variables to the parameters. 



Appendix C 

Multiparametric Mixed Integer 

Dynamic Optimization - 

mp-MIDO 

CA Problem Formulation of mp-MIDO 

The type of multiparametric mixed integer dynamic optimization (mp-NIIDO) prob- 
lems we aim to address have the following formulation: 

mino(x(t), v(t)) 
X, V 

1T1 
(tf)TS, V(tf) + STV(tf) + S3Tj(tf) min X(tf) PIX(tf) + P2TX(tf) +V2 

x, v 22 
tf 

+f['X(t)TQ, X(t) +QTX(t) + 
'V(t)TR, 

v(t) +R TV(t) + R3TJ(t)]dt 
2222 

to 

S. t. 

ý(t) = Alx(t) + A2v(t) + A35(t) + WlO(t) (C. 1) 

x(t�) x�(0(t, ), v(t, » 
0 0, q(x(ti)iv(ti»0(ti»=Cl*x(ti)+C2*v(ti)+C3*8(ti)+F, -0(ti)+bi 

0> g(x, v, O)=D,. x(t)+D2-v(t)+D3 * 8(t) + F2 
- Offl + b2 

t, > <t< tf 

273 
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i=1,2,.. Nf 

Note that this formulation can incorporate quadratic binary terms in the objective 

of the form ý'93S, 93 >- 0. These terms are represented as follows: (i) If matrix 
S3 is diagonal the quadratic term is replaced by a linear term 'ýTs in the objective, 

where the diagonal elements of 93 are the elements of the column vector ý3, (ii) 

If matrix ý3 is non-diagonal the quadratic terms Si - 9-3ij - Sj are replaced with an 

auxiliary continuous optimization variable wij defined by the following inequalities: 

+ 

i=1, ..., b 

where §-3ij denotes the element in the i" row and j" column of 93. 

In this formulation the continuous decision variables v may not pertain only to 

control variables but also to auxilary continuous variables similar to w used in the 

modelling of discrete logical decisions. The binary variables may represent logical 

decisions about the system operation (e. g. equipment shut down or start up), mod- 

elling of piecewise affine models, treatment of constraint or objective prioritization, 

structural decisions in process design and process synthesis. 

C. 2 Theoretical Developments for mp-MIDO - Al- 

gorithm CA 

Here, we aim to derive the complete mapping of the optimal conditions i. e. the 

optimal objective value and the optimal profiles of the optimization continuous 
and binary values in terms of the parameters 0. The solution method for problem 
(C. 1) combines the algorithmic developments in section 3.2 with the multiparamet- 

ric mixed integer quadratic algorithm described in chapter 2. The steps of our novel 
algorithm are as follows: 

The continuous optimization variables and the time varying parameters are 
parameterized as described in section 3.2 into a set of time invariant variables 
V(t) -= Ui, i=1, ---N,,; O(t) =- ji, i=1, ---, Nj . The binary variables are 
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parameterized over time to a set of piecewise constant functions: 

Ji = (ii Vt E [ti-l, til 
i=l,... Nt; 1=l,... Ns; CG 10,1}NJ'Nt (C. 2) 

where C are time invariant binary variables. 

2. Set the iteration counter r. =0 and consider an initial guess of time instants 

tk, k=1, ---, K. Eliminate the equalities related to the dynamics in problem 
(C. 1) by substituting for the states x(t) the following function for piecewise 

constant control and parameter discretization: 

For ti, t-, t-, :5t< ti+l, t, I S+l I ts+l 
i-I 

x(t) = eAi(t-to)x, + 1: [(eAl(t-t, i-, ) -e 
Al (t-ti'))A-llA2ui, ] (C. 3) 

i'=l 

+(e AI(t-ti) 
- I)Al-lA2Ui + 

I)AI 'WO,, 

E[(e Al(t-tio-1) _e 
AI(t-tit) )AT, llvloill 

[(e Al(t-tip-1) 
_e 

Al (t-tit) )ATjlA3(i'l 

+(eA1(t_t - 

i=1,... N�; z=1, ---, Ni z=1, ---, Nt (C. 4) 

Similar functions for x(t) may be derived for other type of p arameteri zat ions. 

3. Enforce the path constraints of (C. 3) only at times tk, k=1, ---K. The mp- 
MIDO problem (C. 1) is thus transformed to a finite dimensional mp-NIIQP 

of the form (2.13). Solve the resultant parametric optimization problem (mp- 

MIQP) as described in section 2.3 to obtain a set of piecewise functions for 

the optimization variables and the objective function. 

Based on the parametric solution, test whether the path constraints are sat- 
isfied Vt E [t,,, tj] and VO E 0. This is performed via a maximization of the 
constraints over the time and parameter space. 

If there is a violation within a low tolerance e identify the time point I where 
the maximum violation occurs. Set K=n+1, K=K+1 and add this point 
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to the set tklk=l,. 
--K =f tklk=l,.. 

-K-1 i 
i}. Return to step 3. If no violation occurs 

stop; the solution is given from the solution of the last MP-MIQP obtained at 

step 3. 

The parametric solution of mp-MIDO provides piecewise affine expressions for the 

continuous and binary variables in terms of the parameters that hold over a set of 

critical state-space regions. These expressions are given by an equation of the same 
form as (2.15). 

u= u& = Aa0 + 13a c e; 
e(0) = minIO'(0)10 E C. R. (0)1 (C. 5) 

a 
.TI 

where CR, (0) = IdRc .o+ diic <o 

for c=1,... N, } 

Remark CA Note that for a piecewise constant input parameterization the linear 

continuous time dynamic system in (C. 1) is identical to a discrete time dynamic 

system. However, in the optimization problem (C. 1) the path constraints are not 

enforced only at discrete time points but over the complete time horizon. 

Remark C. 2 The presence of bilinear terms of the form 8(t)i - x(t)h ý(Oi - V(t)k, 
i=1, --- Ns, j = 1, --., n, k=1,... n, in the dynamicsystem and the constraints is 

not prohibitive for the application of the mp-MIDO algorithm CA since these terms 

are readily converted to a set of linear continuous and binary terms by performing 
the following transformation (Floudas, 1995; Glover, 1975): 

JXij = J(t)i ' X(t)j; JVik = J(t)i 'V(t)k 

xj - U. j (1 - Ji) :5 S-xij xj - Ji) (C. 6) 
L,, jSi: 5 Sxij U., Si 

where &, b are continuous auxilary variables and Lx, Ux are upper and lower bounds 
in xi. Note that if Si = 1, S-xij = xi, which derives from the inequalities: 

xi :5 sxii < xj 
ýxjj < Ux 
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C. 3 Illustrative Example on mp-MIDO 

Consider the following open-loop dynamic problem from Pistikopoulos et al., (2002): 

ii = -3x, - X2+ 0.70727v 
i2 

= 2x,; y=x (C. 7) 

-2 < v(t) <2 

with the following logical constraints: 

if V(t) :5 -1 =ý- xi(t) ',: ý -0.25 (C. 8) 

else xi(t) > -2.25 

The problem is concerned with deriving the optimal operational policy over the 
horizon of interest tf = 0.2sec as a function of the initial states'. For this purpose 
first the constraints are converted to a set of mixed integer inequalities of the form: 

xi(t) > -0.25 v -< 
3(1 - S) -1 

if V(t) -1 -V <S+1 

else xi(t) -2.25 -xi(t) :5 2(1 - S) + 0.25 

Thus, an mp-NIIDO problem is formulated where the initial state conditions arc 
treated as parameters 0 =- x,, = [x,,, X. 2] E [-2.25, -11 X [1-5,1-5]. The 

performance index of this problem is a quadratic function of the continuous control 
variables and the plant states: 

tf 

ý(xo) min 
1xT. 

p. Xf +1 
I[X(t)T. 

X(t) + 11(t)T. f2R- v(t)]dt 
to 

S. t. (C. 7), (C. 9) 

p 

R 0.02 

(C. 9) 

Algorithm CA is employed here for solving (C-9). The time instants where the 
constraints are enforced are shown in Table C. 1. 

'The example is solved in collaboration with Dr. Vivek Dua 
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Definition of Rest of the Region 

and determination of the 

redundant constraints in 

variational mp-DO 

The procedure described in this appendix is valid under the following assumption: 

Assumption D. 1 The epigraphs and the hypographs of the functions CR(tk(X, ))j. 
C 

x, + CR2(tk(X,, )) j, C where j=1, --- Ni",,, (Nineq: the number of inequalities that 

represent the boundaries of region c), are non-empty sets: hyp(CR'(tk(xo))j - xO + C 
CR' (tk(X")) j) 56 0, epi(CR'(t'(x,, ))j - x,, + CR 2(tk(Xo))j 

CCC )00 
Given an initial region, CR" and a critical region CRQ, such that CRQ C CRIG I 

a procedure is described here to define the rest of the region, CRreat = CRIG - CRQ. 
Consider for brevity the case when only two initial state - parameters, are present: 

IG be defined by the inequalities: f x0L, :5x,,, :5 xU XoI9'ro2* Let the initial region CR 
I 01 - 011 

xOL < x. 2 < xý, } and CRQ be defined by the inequalities: o2 
fII(XO) 

:5 OiI2(Xo) < 

o, I3(xo) : ý, 0} where I- are non-linear with x,, (see Figure D. 1). The procedure is as 
follows: 

Consider initially any one of the inequalities, e. g. I, and by reversing its sign 
and removing the redundant constraints in CRIG obtain the region CRrest 

279 
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xU 

CRQ 
X*2 7- 

CRI'3 

xL 02 

Xý., X. 1 x1j., 

Figure D. 1: Critical Regions CRQ and CR" 

UL (Xo) ': ý 0, X. 2 :5 Xo2 ) XOI xol} depicted in Figure D. 2. 

Successively, first inequality 13 :50 and then 12 :5x,, are inverted to obtain 

regions CI? r2e"I and CR3e-", respectively. Thus, CR rest = JI3 01 110, 
2 

Xo2 5 XU I X01 :5xU, x,,, ', ý! x' } and CRrest 
o2 01 01 3= 

112 a01 13 :5 01 h :50, 

L} as shown in Figure D-3. Xo2 ý! Xo2 

Once the Rest of the regions are defined, Algorithm 4.1 commences by (i) considering 

each region CR*"" as CRIG, (ii) obtaining a feasible point x,, in each CRre"t and 1,2,3 1,2,3 

(iii) subdividing each CRrest to critical subregions. Note that the fact that some of 1,2,3 

the regions are non-convex or even disjoint does not affect the steps of the solution 

procedure. 

Remark D. 1 A method for the identification of the non-redundant constraints 

when all the constraints are linear is discussed in Gal (1995). Here, a new method 
is presented for determining the non-redundant constraints from a collection of non- 
linear region boundaries (Step 5 of Algorithm 4.1 as described in § 4.2.3). Assume 

the presence of i=1, --- Ni,,,, inequalities CRi(x,, ) :50 that pertain to region 
CRE(x,, ) <- 0. The non-redundant constraints are found by solving the following 
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XU 

XL 

Figure D. 2: Critical Regions CR1 

non-linear programs: 

, Ei = maxlElc=CRi(x�), 0ý: CRj(x�), j=l Ni., q, j: ý- i}, iý1,, *, Arineg 
XO 

if ýj ý: 0 inequality i is non-redundant 

if ýj <0 inequality i is redundant (D. 1) 

An example of redundant and non-redundant constraints is shown scheinaticall i y III 
Figure D. 4. 
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xo 

XL. 

2 

CR, 1111 

CRQ 

CR2"1* 
CR3711 

CRI-11 

2 

XL x XU 

Figure D. 3: Rest of Regions CRreat 

>0 CA non - redundant 
<0 CR, redundant 

Figure DA: Redundant Constraints 



Appendix E 

An Adjoint, Approach on Mixed 

Integer Dynamic Optimization 

E. 1 An Adjoint based Algorithm on Mixed Inte- 

ger Dynamic optimization 

When applying the original GBD-approach (Mohideen et al., 1997b; Schweiger and 
Floudas, 1997) to MIDO, the solution of the primal optimal control problem is 
followed by an additional subproblem that involves the backwards integration of the 

so-called adjoint DAE system: 

dl [Ofd]T 
. \(t)} 

A [! 
ýh f, ai 

_[ýfd]T 
fa 

)T . p(t), 0= d]T 
., 

M 
]T . p(t) -[L dt ax c9x ax. OX. 

(2fd)T 
O)T 

+ (Lq)T 
fd)T 

(Lfa)T], .,, } 
O. i tj -{(L If+ ((ý_ - (E. 1) 

c9x ax c9x 49X 

The solution of (E. 1) can be computationally expensive, a method is developed 
for eliminating the extra calculations by adapting an adjoint-based approach for 

evaluating the gradients of the constraints and the objective function of the primal 
optimal control problem. This provides at the optimal solution of the primal a set of 
vectors of adjoint variables that are associated with the constraints and the objective 
function, denoted as [AO(t) po(t)], [A, (t) p,, (t)] respectively. These adjoint functions 

are given by the same linear DAE system as the adjoint functions that are necessary 

283 



Appendix E 284 

for construction of the master problem. However, [AO(t) po(t)], [Aq(t) p, (t)] are given 
by different final conditions as opposed to [A(t), p(t)]. Their final conditions are: 

_[(490)T + [(ý_ - [(9fd]T Ao(tl) = 
fd)T 

(Lfa)T], (Wl)o] 

0i It Ox ax ax 
_[(Lg)T + [('9fd)T (L (2fd)T 

., 
X (tf) = 

fa)T], 
(WI)gl 

g 
19X 

f Ox Ox 

The linear properties of the adjoint differential system and its boundary condi- 
tions, enable the evaluation of the adjoint variables required for the master problem 
[A, p] as a function of [AO pi], [A, p, ] from the equation: 

At Ag (t) 

p(t) 
'POW 

)I+ 
PT 

pg(t) 
(E. 2) 

Equation (E. 2) can be proved using transition matrix theory. Even if the eas- 
ily obtained time-dependent functions A(t), p(t) are supplied to the master problem 

many calculations are still required due to the presence of the time integral in equa- 
tion (8.4) and the usually complicated non-linear functions involved in the DAE 

system. In order to simplify further the master problem equations fd, f. are decom- 

posed in terms of the binary and continuous variables: 

2ý, 6 (i, x, x�, v� d, fd = fd X) Xa)vvid, t) + fd 

f. '(x, x, v� d, t) + f. 6 (x, x�, v� d, (E. 3) 

1 fo fo(ido, Xdo, xao, v� d, t. ) + fo&(kdos Xdot Xao, v., d, to) -6 

fd' 'f5f5 are matrices of dimensions n I a) 0 ,dx N8, n, x Ns, n-- x Ns respectively. 
This separation is allowed, since the binaries participate in the DAE in a linear form 
(variant-2 of GBD). At the primal solution though: 

So, (fd)k can be written as: 

fd=O f,, =O fo=O (E. 4) 

(fl)k = _(fS)k. 
jk 

dd (E. 5) 

Similarly for f, ' , f. 
6, fo', f08. Finally we have: 

(fS)k 
d 
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f= (f S)k (j 
_ jk) 

aa (E. 6) 
fo = (fol)k (j 

_ 
jk) 

Once equation (E. 6) is substituted in equation (8.4) the modified master problem 
becomes: 

min tj (E. 7) 
6,71 

Lk (Xk, Xk' vk, dk, 8, Ak' pk I Ilk, Wk, Wk S-t- 77 ý! avf 0) 
(fo)k (fJ)k 

Lk + (14k)l .g+ l(Wk)T dVd+ (pk)T J)k 
f (f6)k 

+ (Wo 
(f. l)k 

fo 

af 
tg I (f6)k 

+ [(, \k)T (pk)T] d dt} . (S _ Sk) 
(fb)k 

Iat 

where L is the Lagrange function of the primal problem (8-3). In this manner, 
the size of the master problem formulation is significantly reduced. The multiplier 
of the binary terms S- S' corresponds to a time dependent vector of size equal to 
the dimensions of the binaries N8. This vector does not contain any integer terms 

and hence, it remains fixed throughout the master problem solution. In order to 

evaluate the components of that vector it suffices to compute the embedded integrals 

as an ODE system of size N8. Alternatively, if formulation (8.4) was retained, 
every equation that contains a binary term would have to be integrated, producing 
an ODE of size 0(n,.,,, + n..,. )>> ns. Algorithm 8.1 also requires the solution of 
an adjoint or sensitivity based ODE system of size (n,, + n-,. )(2 + q) + NS +q or 
(n.., + n.,,. )(1 + n,, + nd + Ns) respectively preceding the master formulation. 

The steps of the algorithm (E. 1) are summarized as follows: 

Fix the values of the binary variables, 8= Sk , and solve a standard dynamic 

optimization problem (k" primal problem). An upper bound, UB, on the 
solution to the MIDO problem is obtained from the minimum of all the primal 
solutions obtained so far. 

2. At the solution of the primal problem, using equation (E. 2) obtain the adjoint 
functions A(t), p(t). 

3. Use the problem variables x(t), x,, (t), v, d, the adjoint functions A(t), p(t) and 
the Lagrange multipliers of the constraints ji to construct the kt' relaxed 
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master problem (E. 7) from the kth primal solution. The Master problem cor- 

responds to a Mixed -integer linear program (MILP), whose solution provides 
the lower bound, LB, on the MIDO solution. If UB-LB is less than a specified 
tolerance c, or the master problem is infeasible, the algorithm terminates and 
the solution to the MIDO problem is given by UB. Otherwise, set k=k+1 

and y k+I equal to the integer solution of the master problem and return to 

step 1. 

This alternative algorithm eliminates completely the adjoint evaluation and does 

not require any resolve session after the primal problem is solved. It also manages to 

simplify considerably the construction of the master problem. Moreover, despite the 
fact that it is restricted to using only an adjoint based gradient evaluation procedure 
for the primal optimal control problem it is not confined to a particular type of DAE 

integrator as in Mohideen et al. (1996a) and Ross et al. (1998). 

E. 2 Proof that Master Problems (8.4) and (8.6) 

are equivalent 

The Lagrange function of (8.3) is equivalent to the right hand side of (8.4) which is 

shown via Algorithm E. 1 to be equivalent to the simpler form of (E. 7). Accordingly 

the Lagrange function of (8.5) is written as: 

k= 0(ik(tf), xk(tf), zk(tf), vk, d k'Skstf)+(, 
Uk)T. g(ik(if), Xk(tf),., k(tf), k, Sk, tf) d vvk, d 

vd 

k)T 
fd 

+ (Wk)T 
[ fd 

+ (pk)T . fo 0 f. 
0 

T. 

+tktf 
(ik(t), Xk(t), Zk(t), Vk, k'S k 

dvd d't) dt 
It 

pk fa (Xk (t), Zk (t), Vk , 
dk, S, t) 

vd 

+Qk (Sk 
_ 

S) 
d (E. 8) 

Note that at the primal solution all the terms that contain the DAE equalities 
and the constraints are equal to zero. Thus, (E. 8) is equivalent to the right hand 

side of (8.6). 
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Proof. In order to show that (8.4) and (8.6) are equivalent, equivalence needs to 

be established between the Lagrange functions of the primals (8.3) and (8.5) at the 

primal solution. This can be achieved as follows. Firstly, consider the optimality 

conditions that must be satisfied by the continuous optimization variables in (8.5). 

These are determined by finding a stationary point for the Lagrange function Lk in 

(E. 8): 

21d 
+ (Wk)T 

[21 LO 
+ (. Uk)T . 

O-q 
+ (W)rc)T a6d 016'd 

OSd TSd 0 2L 66d 

ty 
[(Ak)T(pk)T]. a6d dt +I- Qk 

Of. 

it [ 

(F; ) 6dt 

Of, 
OJd 

(E. 9) 

Substituting the expression for Q given in (E. 9) into (E. 8) yields: 

0(ik(tl), Xk(tf), Xk(tl), Vk , 
dk, 6k, tf+[ 190 

+ (Mk)T 
. 

09 
+ (Wk)T 

avd 196d 
ýJd 

II, 

V+ (pk)T. C 
+ [(, \k)T (pk)T] dt] (Wo 

2L ýJd 
Obd 0t 

. 
(_Sk + d 

(E. 10) 

Note that in (E. 7) fs 2-f- and f Thus the only difference as 
between (E. 10) and the Lagrange function of the original problem (E. 7) lies in the 

objective function and end-point constraint terms. However, these terms can be 

written as: + (OS)k . (S _ Jk), g= gi + (gS)k . (J _ Jk), and once they are dd 

substituted back in (E. 7) along with the complementarity conditions p-g=0 they 

result in the equivalent formulation of (E. 10). 13 

Remark EA Note that the the Lagrange functions (8.3) and (8.5) are required to 
be equal only at an optimal primal point. In fact they are not equal at any other 

sub-optimal point in the space of the optimization variables J, v, d. 

Remark E. 2 Alternatively to Algorithms 8.1 and E. 1 the mixed integer dynamic 

optimization problem (8.3) could be addressed as follows. First, substitutute for the 

state and algebraic variables the implicit expressions derived from the solution of 
the DAE system x=x (v,, d, 6) Xdo 7 Xao it), Xa = Xa(v,, d, 8) Xdol Xaoi t): 
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min (i(v,,, d, J, Xdoi xao, tf), x(v,, d, 8, Xdo, Xao) tf)) xa(vv, d, J, Xdo, Xaol tf), 

vv, d, 8, tf) , 

s. t. g(. i(v�d, S, Xd�X«�tf), z(v�d, b, Xdo, Xao, tf), xa(vvtd, S, XdoXaottf), v�d, S) :50, 
fo (i (to), x (to), x, '(t�), v�, d, 3) =0 

(E. 11) 

Then problem (E. 11) is treated as an MINLP problem in the space of the op- 

timization variables v,,, d, J. However, problem (E. 11) cannot be readily addressed 

with the current MINLP approaches for two obvious reasons: 

9 The mapping g: y ý_+ Rq, 0: YF-+ R is highly non-linear if the DAE system 
is non-linear, even if the binaries participate in a linear form in the system. 
This can be shown with an illustrative example. Take the simple system: 

min xf 6 
k= -x 

2+6 

X(tý) =1 
tE [to, tf 1= [0,11 

(E. 12) 

The analytical expression for x(t) derived from this equation is: 

"/S-(l + /, -+' 
Xf i- Vj (E. 13) 

Despite the fact that S participates linearly in the ODE, function x(S, tf) is 

non-linear. Most NIINLP algorithms require the function O, g to be linear 

or convex in S (Geoffrion, 1972; Duran and Grossmann, 1986; Adjiman et 

al., 1998). Otherwise, valid supporting functions for constructing the master 

problem cannot be found and the resulting master problem cannot be solved 

with standard branch and bound algorithms (v-2,3 of GBD, Floudas 1995, 

p. 130-140). Additionally the mapping g: Y ý-+ RI, 0: Y ý-* R is in 

general implicit making even harder the generation of the supporting functions. 

Thus, these NIINLP algorithms cannot solve in general problems of the form of 
(E. 11). Fletcher and Leyffer (1994) developed an outer approximation based 
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NIINLP algorithm where the binary variables are allowed to participate in a 
non-linear form in the objective and constraints. However, their algorithm 

cannot handle equality constraints, while the nonlinearity is treated by fixing 

the integers in the primal problem and linearizing the active constraints around 
the integer point in the master problem. Thus, the nonlinear characteristics 
of the problem are removed completely and a large number of iterations may 
be required to achieve convergence. 

Note that Algorithm 8.1 applies only in the case where the binary variables 

participate linearly in the DAE system. Otherwise, the proof in section E. 2 
does not hold. Algorithm 8.1, cannot be applied in general to the MINLP 

problem (E. 11) to remove the non-linearities. 



Appendix F 

Methods and Proofs for the 

Design of the Robust Tracking 

Parametric Controller 

F. 1 A method for solving the parametric opti- 

mization problem (6.25) 

The subscript "t" is omitted for clarity in this section unless otherwise stated. Ad- 

ditionally, ON E E)N' VN E VN unless otherwise stated. Problem (6.25) is written as 

set of parametric optimization problems over each one of the subregions %Pj": 

vi 'Oi (X*t [VkIk=O 
... I-li[Oklk=O,.. 1-1) = minOii(X*i[Vklk=O,.. 1-1 8i19 

[Oklk=O,.. 
1-1) 

vi S. t. ýi (X*e[Vklk=O,.. 1-le[Oklk=O�. 1-1) = Min10iO'(X*, 
Vi 1 

[Vklk=O,.. 
i) [Oklk=O,.. 

1-1) 

if ipil < O} i=ii 
"lýreg (F. 2) 01 

The solution of (F. 1)-(F. 2) requires the solution of 9,1,1, mp-LPs in each reagion, and 

then a comparison between the resulting parametric profiles. An alternative simpler 

approach however, can be used for deriving the same result. It is straightforward to 

recognize that the function 06'(X*i [Vklk=O,.. 17 [Okjk=O,.. 1-i) is a convex piecewise affine 
function in terms of x*, [Vklk=O 

... 6 [Okjk=O,.. 1-1 since it is the solution of a convex 
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- linear in our case - parametric optimization problem (Fiacco, 1983). Thus, its 

parametric minimization over the space of vi can be performed as follows: 

Vi (X*, [Vkl k=O ... 1-19 [OkIk=O 
... 1-1) = min fele > l,.. NOig} (F. 3) 

viEV, e 
ie 

This method for minimizing a piecewise affine function is also proposed in Bemporad 

et at., (2003) for the minimization of the worst case infinity norm objective that 

results in from the dynamic programming robust control formulation. Here, it is 

used for minimizing the piecewise affine feasibility function resulting in a polyhedral 
partition and a set of piecewise affine functions: 

11 
-4ý + oc ov, = oc 

for c=1 ., 
if CR'ý + CR' < 0,9 A, ý + Bc cc-I..., N, ', ' 

where Cý [X*i [Vklk=O 
... I-Ii 

[Oklk=O 
... 1-11 (F. 4) 

Remark FA If the mp-LP (F. 3) did not have the bounds on vt it would at the 

worst case result in as many regions as the number of functions i. e. N', 01 
. But 

the number of regions of the first mp-LP (6.24) is at the worst case as many as 
the number of constraints J=Q, + (N - 1) - q. The bounds on the controls may 
increase the complexity of the mp-LP in particular for a large range of uncertainty 
variations. 

Remark F. 2 The control function (F. 4) is a feedback mechanism that allows the 

control at time 1 to compensate for the uncertainty at time I- 11 1-2... 0. It 
is this feedback action that makes our method closed-loop. However, the control 
expression (F. 4) is not the robustly optimal control profile for step t=2, it merely 
provides the means to determine the robust feasible region for problem (6.5)-(6.22). 

The method presented in this Appendix is demonstrated here, through the moti- 
vating example in section 6.3. After performing steps 1-3 of the algorithm in section 
6.3 we obtain a set of feasibility functions Of' and regions Tiol i=1,4 shown in 
Table F. 1. By solving problem (F. 3) we obtain the optimal polyhedral partition 
and corresponding feasibility functions shown in Table F. 2. The maximization over 
the uncertainty space as dictated in step 5 equation (6-26) results in the following 
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Table F. 1: Feasibility functions and critical regions after the comparison procedure 
(6.24) 

Critical region 1 Critical region 2 

00 
il = vo+v, +Oo+x*-1.5 02 -vo-vl-00-x*-0.7 

0' 

TI: VO < 10 412 VO ý: -10 

-0.5 < vi :5 10 -10 < v, 0.5 

-0.5 < Oo :50.5 -0.5 < 00 0.5 

-2<x* <2 -2 < x* <2 

-2vo - v, - 200 - 2x* < -0.3 2vo + v, + 20o + 2x* < 1.3 

-vo - v, - Oo - x* < -0.4 vo+vl+Oo+x* <0.4 

Critical region 3 Critical region 4 

00, 3 = vo+Oo+x*-2 00, = -vo-00-x*-1.2 4 

T3 : VO 
-< 

10 lk4 VO 2: -10 

-10 < vj -0.5 0.5 < vl ': ý 10 

-0.5 < Oo 0.5 -0.5 < 00 :50.5 
2< x* <2 -2 < x* <2 

-2vo - vi - 20o - 2x* < -1.3 2vo + vj + 20o + 2x* < 0.3 

functions: 

0100 = -vo - x* - 0.7,0200 = vo + x* - 1.5 1 (F. 5) 

The feasibility functions in Table F. 1 and in equation (F. 5) comprise the extra 
constraints (6.33) that are included in (6.5)-(6.22) to design the close-loop robust 
parametric controller. 

F. 2 Proof of Theorem 6.3 

Proof. NVe distinguish two cases, (i) when the state xt that generates the output 
trajectory yt lie in a critical region where none of the constraints g is active, i. e. 
xt E CR,,,,, and (ii) when the states lie on a region where at least one of the 
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Tnhlp F-9- Feasibilitv function after solvina moblern (6.25) 

Critical region 1 Critical region 2 

io vt 1 = -vo - Oo - x* - 1.2 0 VI 2 = vo + Oo + x* -2 
V, = 0.5 V, -0.5 

VO > -10 VO 10 

-0.5 < 00 :50.5 -0.5 < 00 :50.5 

-2 < +1*x* <2 -2 < +1*x* <2 

1 
-0.1 > vo+Oo+x* -0.9 > -VO-00-x* 

Critical region 3 

10 Vt 3 = -1.1 
VI = -vo-Oo-x*+0.4 

-0.5 < 00 0.5 

-2 < +1 x* <2 

0.9 > vo + 00 + X* 
0.1 > -vo - 00 - X* 

constraints g is active, i. e. xt E CRw. - 

9 Case 1. xt E CR.,, c. Consider for simplicity B2 = W2 = 0, the proof is valid 
for B2 54 0, TV2 00 with minor modifications. Since the target point lies in the 

unconstrained region, according to condition (iv) the control brings the plant 
into an invariant set within this region. The control law for the unconstrained 

case can be proved to be of the form vt = -F, - xt - F2 - xqt. If we substitute 
this law into the plant lyt = Bixt, xt+i = Aixt + A2Vt +WOt} and take the 

z-transform of the dynamic system we will eventually obtain: 

(z - 1)y(z) = Bi(zI - A, + A2F1)-1 - 1-A2F2Y(Z) + (Z - 1)0(Z)} (F. 6) 

Note that the inverse of Bj(zI - A, + A2F, )-'A2 exists due to conditions 
(ii), (iv) and the fact that the plant (A,, A2) is stabilizable (see ch. 3 p. 273, 
Kwakernaak and Sivan, 1972). At the limit t -+ oo, z -+ 1. Hence (F. 6) 
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reduces to: -F2y(l) = 0. Note that F2 is a linear function of the integral cost 
(Dua et al., 2001), so its rows are linear independent due to condition (iii). 

This implies that y(l) = 0, i. e. lim yt = 0. 
t +00 

Case 2. xt E CR,,,,. The stability analysis of Rawlings and Muske (1993) is 

readily extended to the case where constant disturbances are present resulting 
in the condition: 

x TQXt + xqTQxqt + VT Rvt (F. 7) ttt+ Ot+i =: ý Ot Ot+l 

While in the absence of disturbances the system is driven to a point where 
the objective becomes zero, here it is steered to a point where the quadratic 

cost function takes its minimum possible value that is not necessarily zero. 
Next we will prove that the equilibrium point where the system will be driven 

eventually, violates the condition xt E CR,,,,. The optimization problem (6.34) 

after eliminating the equalities can be written as follows: 

min 
1 (v N)T LON + VL5VN 

v, v 2 
s. t. Gjv N< G2 + G35ý* (F. 8) 

where i= Ix, xq}. The control expression is thus given by (Dua et al., 2001): 
T 

(OILVOI )-1(62 + (03 + OlL4'L5 
NT 

-L4'G, v10 LVL5 
. (F. 9) 

where 0 denotes an q' dimensional null vector, where - denotes the cardinality 
of inactive constraints and - the cardinality of the active ones. By substitut- 
ing (F. 9) in the objective function of (F. 8) a constant non-zero positive term 

appears in the cost: 

((j, L-l(jl 
T 

L4 
- (-L-'G T 

L4 '(jl T 02) 

410 

This term results in an increased cost value in comparison with the uncon- 
strained case where 62 = 0. According to assumption (iv) condition (F. 7) 
holds, i. e. Ot > Ot+,. Therefore, the control will drive the system to the uncon- 
strained region where this positive penalty takes its minimum value, i. e. zero. 
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This establishes by contradiction that at the equilibrium point xt 0 CR,,,,. 
But this implies that even if the system starts from xt E CR,,, ý it will be 
driven to CR.,, c and as shown in Case 1 eventually will settle at the origin. 

0 



Appendix G 

Stability Requirement for the 

Control of Piecewise Linear 

Dynamic systems 

The computation of the terminal cost hp is based on stability criteria (Rawlings 

and Muske, 1993), that require the extension of the prediction horizon to infinity 

and restrict the control action after the end of the control horizon k>N, either to 

zero for open-loop stable plants or to the unconstrained LQR control law profile for 

unstable plants. However, in piecewise linear systems we cannot apriori assume a 
future profile for Yki Xk Vk >N since there is no information about the pertaining 

models. Here the following steps are proposed to resolve that issue: 
1. Assume that Vk 0 Vk > N, the terminal cost is defined as: 

00 
5-, N 

ytT hp(x*) 
+kItQYt+klt 

N 
im 

Xt+k+llt = 
Alj Ehk 

j=l 
im 

Blj 
Yt+klt hk 

j=l 

(7.23) - (7.26) 

00 
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IL The infinite dimensional problem (G. 1) is approximated with a finite dimensional 

one by selecting a large number M>N as the point in time when the states enter 

an invariant set that includes the origin(Scokaert and Mayne, 1998; Mayne, 1997). 
This invariant set is restricted to be a subset of the territory of model j that 

corresponds to the origin. Thus, the terminal cost is computed as follows: 
Af-I 00 

YtT 
E 

YT hp(i*) -= 
E 

+kltQYt+klt + t+kltQYt+klt 
(G. 2) 

k=N k=M 

But 
00 

TT )TQ Yt+kltQYt+klt - Xt+MjtPýXt+Mjt 'ý* Pý = (Al)TPf (Al)l + (BI (BI)l (G. 3) f 
k=M 

111. Substituting (G. 1), (G. 2), (G. 3) and (7.2l)-(7.26) into the original formulation 
(7.4)-(7.10) yields: 

O(Xtlt) 
M-1 N-1 
E (YT 1: VT min xTt+, Af tPfxt+Mlt + t. +kltQyt+klt) + kRvt+k N " (G. 4) 

,6 V k=O k=O 
S. t. 

Xt+k+llt 

im JM 
A2i 

=Eh; A, 11 +Eh k k (G. 5) 
j=l j=l 

Yt+klt 

J" j" 
BI, 

+ 
B2i hk 1: hk (G. 6) 

j=1 j=l 
Ali 

h1c > UpAl(l jj, 
+") - 

(AI)jxt+klt - (G. 7) 
Ali hk < OA1(1 (AI)jXt+klt 

-L (G. 8) 

similarly for A2, Bl, B2 terms 

L OAI .8 +" 
Ali < UpA I* SjI+k 

j :5 
hk 

- (G. 9) 

similarly for A2, Bl, B2 terms 
fi(Xt+klt) :5 UP(l-iil+, ) (G. 10) 

j=jm E jis 
+k (G. 11) 

j=l 
k=0, ---Af-l 
0h A2i 

=h 
B2i k=N, ---M kk (G. 12) 

0 9(Yt+klt) Xt+klti Vt+k) = (Co)jYt+klt + (Ci)jxt+A; lt + (C2)jvt+k + (bl)j (G. 13) 
k=0,1,2,.. N-1 

0> oe (Xt+Nlt) = (Dl)jXt+Nlt + (b2)j (G. 14) 
i=1, ..., JAf 
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0> fi(Xt+mlt) 
Xtlt X* 

(G. 15) 

(G. 16) 

Problem (G. 4)-(G. 16) is a finite dimensional mixed integer optimization problem 
that guarantees stability based on an infinite horizon value function. The critical 

point in formulating this problem is the calculation of the time horizons N, M. This 

can be done by employing the method of Chmielewski and Manousiouthakis (1996). 
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Process and Control Design 

Examples 

H. 1 Model of the evaporation process 

The evaporation process examined as a motivating example in this thesis removes 
the volatile components from the throughput leaving the product rich in the non- 
volatile material. A flowsheet of the process is shown in Figure 11.1. The major 
variables of interest are outlined in Table H. 1, whereas the equations describing the 

system transient behaviour are the following (Kookos, 2001): 

Differential equations (fd) 

Al ' 
02 Fl ' 

C2 
-F2' 

C2 (11.1) 

CP2 F2- F5 (11.2) 

Algebraic equations (f,, ) 

F, - F4- F2 0 (11.3) 

Fl. Cp-Tj-F4*(IX+CP'T4)-F2'CP'T2+Q100 0 (11.4) 

0.5616-P2+0.3126-C2+48.43-T2 0 (11.5) 

0-5070-P2+55-T4 0 (11.6) 

0.1538 - Ploo + 90 - Tloo =0 
Qloo -U-A, (Tloo - 

T2) =0 (11.8) 

299 
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Fl, 

Figure H. l: Flowsheet of Evaporation process 

Qloo - Floo - A. =0 
Q200 - F2oo - Cp - (T2o, - T200) =0 (11.10) 

Q200 -U-A, - (T4 - 
T201 + T200) 

=0 
2 

F5*A-Q200 =0 

The linearized version of the model is the following: 

i(t) = Alx(t) + A2V(t) + wlO(t) 

Y(t) = X(t) = [c2 p2]T _ [C2,1 P2 IIT 

2 ()IT _ [pl()Oll F2()(), 1]T v(t) = [P, ()o F, 0 

Offl = [F, Cl] - [F�l Ci, il 
(11.13) 

where (-)I is the value of the variable at the linearization point. The linearization 
point in terms of the control inputs and the outputs varies in the process and control 
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Variable Units 

Feed flowrate F1 (kg/min) 

Product flowrate F2 >> 

Vapor flowrate F4 >> 

Condensate flowrate FS >> 

Steam flowrate Fioo >> 

Cooling water flowrate F2oo >> 

Feed temperature Tj (OC) 

Product temperature T2 >> 

Vapor temperature T4 >> 

Steam temperature Tloo >> 

Cooling water inlet temperature T2oO >> 

Cooling water outlet temperature T201 >> 

Feed composition C1 M 

Product composition C2 >> 

Product and operating pressure P2 (KPa) 

Steam pressure Ploo >> 

Heater duty Qioo (KW) 

Condenser duty Q200 >> 

Parameters Value (Units) 

Evaporator holdup 10 (Kg) 

Constant C 4 (kg/KPa) 

Heat transfer coef. U 0.5 (KWkg-IM-2) 

Cooling water heat capacity Cp O. OT (KWmin /kg) 

Latent heat of process stream A 38.5 (KWmin/kg) 

Latent heat of steam As 36.6 (KWmin/kg) 

Cooling water inlet temperature T200 25 (*C) 

Feed temperature Ti 40 (*C) 

Table H. 1: Major variables - parameters of the evaporation Example 9.1 

design optimization. The nominal values of the disturbances are fixed though in the 
design framework to Fij = 10kg/min, C1,1 = 5%. The matrices A_, B_, IV,, F, for 
fixed values of the parameters (Table H. 1) are: 

C 112 9 46 F +946ý915) 
-204 -1 6.90,4 6 7,4 + UT9 

Al = 

1/20 Ft - 0.0 156 
_ 9.1 . 53+6.9046 T4 

-6.9046 T2+3797.52+6.9046 T4 

0.5616 6.9046 Fg+946ogl5 
_+0.507 r4 1/20 C2 

( 
6.9046 Tg+3797.52+6.9046 T4 1.0 To+ 550.0 + 

'046; M946.915 
-0.1267 --0.1268- 

Füan 

1 
(11.14) 

-0.1404 
6 

5.629 Figoo+275.0 -6.90: 
ýý6IT-, 

@+ . 52+6.9046 74-1.0 Tg +sso. o+ 74 

0.00769 Cm- 0 
A2 -0.007292 Tt+4.01+0.007292 T4 

0.03845 (-0.007292 T2 + 4.01042 + 0.007292 T4)-1 0.25 =0-07 T�nr+I. 73 
0.788 Faoo+38.5 

.i 
1/20 Ci - 1/20 C2 T4 

-2.80(-O. 07T2+38.5+0.07 1/20F1 
WI t+3 . 5+0.07 T4 

-0.0175 T4 0.07 +3 + 0.7 (-0.07 T2 + 38.5 + 0.07 T4) o g+T 
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H. 2 Model of the distillation process 

The process superstructure is shown in Figure 11.2. The integer modelling for rep- 

resenting the discrete process alternatives is performed along the lines of Bansal et 

al. (2002) whereas the differential algebraic (DAE) dynamic model is formulated 

according to Schweiger and Floudas (1997) and Kookos and Perkins (2001). The 

components of the binary mixture are toluene and benzene. The key features in- 

volved in this model are: 

* Dynamic material balances for trays, reboiler, condenser and reflux drum 

* Dynamic liquid material hold-ups 

o Liquid hydraulics for each tray 

e Flooding correlations 

The assumptions of this model are the following: 

* Perfect control on reflux drum & reboiler via product flowrates. 

* Perfect pressure control via coolant flow. 

9 Constant relative volatility. 

o Fast temperature / energy dynamics. 

The major variables in this process are shown in Tables H. 2, H. 3. 
Integer decisions 

* Feed location integers: 

Fl, F-S; f,, k Ntrays, 

N 
trays Sf 1. 

k=l 

* Reflux location integers: 

RA; = Refl - Jk, k Ntrays, (11.17) 
N 

trays 6k = 
k=l 
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Figure H. 2: Distillation process superstructure 

* Feed location only below reflux: 

Ntrays 

3f - 
Z' br, < 0, k= Ntrays. k 
k'=k 

Control Structure selection integers: 

Sc(ji) 1 iff both vj, yj belong to the control structure (11.20) 

else J'(ji) 0, j=1,2, i=1,2; (11.21) 

where vi V- VI, V2 = Refl - Refli, (11.22) 

YI Xbenz, D - Xbenz, Dj, Y2 = Xbenx, B - Xbenz, B, l (11.23) 

r7- Equations involving binary variables 
Component molar balances for each tray: 

INtrays 
Ejr, 

! Af"k 
Lk +I- xi, k +1+ Vk 

-1- yi, k -1+ 
Fk 

- zij + Rk - Xi, d (11.24) 

k'=k 
k dt 

Lk 'Xi, k - Vk * Yi, k ,i= benz. k=2.., Ntrays - 1. 
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First tray from bottom 
Ntrays 

F- 6", 
)-= 

L2 Xi, 2 + VB Yi, B + Fl * Zi, f + Ri * Xi, d 

kl=l 
k dt 

- Li xij - Vi Yij, i= benz 

Last tray from bottom 

Ntrays dAfi, Ntrays E 
dt 

VNtrays-1 * Yi, Ntrays-1 + FNtrays 'Zi, f + RNtrays * Xi, d 

k'=Ntrays 
LNtrays ' Xi, Ntrays - VNtrays * Yi, Ntrays i benz (11.26) 

Total molar balance: ' 
INtraYs 

dAlh 
- 

Lk+i + Vk-l + Fl; + Rk (11.27) 
dt 

k'=k 

- Lk - Vk, k=2,.., Ntrays - 1. 

First tray from bottom 
Ntrays 

61' 
,) 

dAli L2 + VB + F1 + Ri k dt 
Li - 

V1, 

Last tray from bottom 
Ntrays 

E Sr 
) dAfNtrays 

VNtrays-1 + FNtrays + RNtrays (11.29) 
V=Ntrays 

k' dt 
LNtrays - VNtraysi 

Other Equations 
Constant vapor molar flow 

Vk 
-= 

Vk-1 
--= 

VB (11.30) 

k=2.., Ntrays 

Hold - up equation 

Afk, i Mk - Xk, i (11.31) 

Volk 
Mk 

(11.32) 
PLmix, k 

VOIk (Atray/3.3 2) 
- Levelk (11.33) 

i= benz. k=L., Ntrays 

'This is a difference from the Schweiger and Floudas (1997) model where constant molar hold 

up is assumed 
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Francis' weir formula 
2/3 

Levelk 
Lk 

-- + Hweir (11.34) 
1.84PLmix, kL., i, 
i= benz. k=L., Ntrays 

DensitY of liquid mixture 

xi, k 
+1- 

Xi, k 
P. pt. 1 PLmix, k MWbons mwt. 1 

i= benz. k=1... Ntrays 

Minimum tray diarnater due to flooding 

Dc,, i,, = 0.6719 - VO'5 (11.36) 

Tray area and weir length 

Atray = 
0.8 . 7r - DC2 (11.37) 

4 
= 0.77 - Dc (11.38) 

Reboiler VLE (bubble point) 
Pýbenz, B * Xi, B + Ptool, 

B * (1 - Xi, B) 

p 
i= benz 

Condenser VLE (dew point) 
Xi, D 1- Xi, D) p. ( 

Pboe 
n z, D+ Ptoo 1, D 

(11.40) 

i be? ýz 

Vapor Pressure (Antoine equation) (Reid et al., 1987) 

PiO, D = Pi4ý, D(TD) 

PiO, B = PioB(TB) (11.42) 

i= benz, tol 

Constant relative volatility 

Pboenz, D ' Pboenz, B (11.43) 
Ptool, D * Ptool, B 

Yi, k 
a 'Xi, k 

(11.44) + Xi, k * (a 

i= benz, k 1,... Ntrays 
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Reboiler molar balances 

dA, fi, B Li - xi, l -B* Xi, B - VB * Yi, B 
dt 

0 Li-B - 
VB 

MB 
A'fi, B 

Xi, B 

= benz. 

Reflux Drum molar balances 
ýAfi'D 

VNtrays * (Yi, Ntrays - Xi, D) dt 
Ntrays 

0 VD -E Rk D 

kl=l 

AID = 
Alfi, D 

Xi, D 

= benz. 

Reboiler Energy balance (Subcooling in steam)2 

QB =V- AHB 

F, t = 
QB 

AH, t + CPwB ' (TinR ToutR) 
(TinR - TB) (ToutR - TB) 

QB = 
UB 

-AR - ln T.. R-TR 
TOýM-TB 

Condenser Energy balance (Assume: No subcooling in process stream) 

(11.45) 

(11.46) 

(11.47) 

(11.48) 

(11.49) 

(11.50) 

(11.51) 

(11.52) 

QD =V- AHD (11.53) 

QD = Fw * CPw * (Tout, w - 
Tin, 

-) (11.54) 
(TD - Tin, 

w) - 
(TD - Tout, w) QD = U,, - Ac - In 

Tn-Td..., 

TD-TO. t. 

First order delay in bottoms and distillate composition measurements and in the estimation 
of the rest of the states 

d. ii, B Xi, B - -ýi, B 

dt TB 
i= benz 

dh, D Xi, D - ii, D 
Wt 7D 

i= benz 
jXLi, k Xi, k - h, k 

dt T*k 
i= benz, k 1, Ntrays 

2Details of the heat exchangers models are not incorporated in Schweiger and Floudas (1997), 
Kookos and Perkins (2001) models. The equations here are taken from Bansal et at. (2002) 
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dAlk Mk - 
ifk 

dt 'rk 
k Ntrays 

Initial conditions. 
d(. ) lt=o 
dt 

Cost Correlations (Douglas, 1988) 

Cost of Column 

M&S 10ODc 1,066 15)0.802 1.4-3.18-101.9- T-0 * (12-2.54) - (Heightstack + 
8 

Af &S OODc 
+1.4. . 4.7-( 1 )1-55 - Heightstack 

280 12-2.54 

Cost of Reboiler 
M&S 104 AR 

)0.65 Creb = 0.6 - 101.3 - ý- -( -3.22-1.35 80 T44 
- 2.542 

Cost of Condenser 
104 M&S 
W 

Ac 0.65 Ccond --: 0.6 - 101.3 - T- -( -3.22 80 144-2.542 

Annual Operating Cost 

9=tf 

opcost =J [Fst . 0.01 - 8150-60 + F,,, .4 . 10-5 - 8150 - 60]dtltf 

9=t. 

Objective - Total annnual Cost 

TotalCost ý-- OpCost +3 (Ccolumn + Creb + Ccond) 

'A factor of 1.4 taken from Bansal et al., (2002a) was used to match industrial data 
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Variable U. itsý 

Feed flowrate in tray k Fk (kmole/min) 

Total Reflux flowrate Ref I >> 
Reflux flowrate in tray k Rk >> 
Vapor flowrate leaving tray k Vk >> 
Liquid flowrate leaving tray k Lk >> 
Vapor boil-up VB >> 
Distillate floware D >> 
Bottoms flowrate B >> 
Vapor mole fraction of component i in Yi, k dimensionless 

tray k 
Liquid mole fraction of component i in Xi'k >> 
tray k 
Distillate mole fraction Xi, D >> 
Bottoms mole fraction -Ti, B >> 
Feed model fraction of component i Zilf >> 
Binary indicating the existence of tray 6" Ic >> 
k 
Binary determining whether tray k is Skf >> 
the feed tray 
Molar hold up of component i in tray Mi, k (kmole) 
k 
Total molar hold up in tray k Mk >> 
Molar hold up of component i at the Mi, B >> 
bottom of the column 
Molar hold up of component i in the Mi, D >> 

reflux drum 
Volumetric hold up in tray k VOIA; 
Molar density of liquid mixture in tray PLmiz, k (kmole/M3) 

k 
Minimum flooding diameter (m) 
Tray diameter Dc >> 
Level of liquid in tray k Leveli, >> 
Length of weir L ei,. 
Tray Area Atray (m') 
Heat transfer area of reboiler AR >> 
Heat transfer area of condenser AC (m') 
Vapor pressure of component i in FýP 

, BID (KPa) 
bottoms/distillate 
Mean relative volatility a dimensionless 
Temperature of utility stream leaving ToutR (K) 

reboiler 
Temperature of utility cooling water Tout. >> 
leaving condenser 
Bottoms temperature TB >> 
Distillate temperature TD >> 
Heat input into the condenser QD (KJ/min) 
Heat input into the reboiler QB >> 
Column installation cost Ccolumn $ 
Reboiler installation cost Creb $ 
Condenser installation cost Ccond $ 
Operating cost opcost ($/yr) 
Total Cost TotalCost ($/yr) 

Table 11.2: Major variables of the distillation Example 9.2 
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Parameter Value (Units) 

Feed Flow F 5kmole/min 
Maximum number of trays N 30 

Mass density of Benzene Pbenx 885kg/ms 

Mass density of Toluene Not 867kq/M3 

Molecular weight of benzene MWben. - 78.108kg/kmole 

Molecular weight of toluene MI'Vtol (92.134kg/kmole) 

Height of weir Hweir 5cm 

Reboiler and Reflux Drum Hold up MBvMD 1.75kmole 

Latent heat of bottoms mixture. AHB 359 - 92.134KJ/kmole 

Latent heat of distillate mixture AHD 397.4-78.108KJ/kmole 

Latent heat of steam AH't 2182KJ/kg 

Height of Distillation Column Ileightstack Space - (F, (k - 8") - 1) (f t) k 
Distance between two trays Space 21t 

Inlet temperature of steam TinR 400 K 

Inlet temperature of coooling water Ttnw 298 K 

Heat capacity of condensed steam CPwB 4.24KJ/kgK 
Heat capac: t of cooling water Cp, 4.18KJlkgK 

Heat Transfer cofficient at condenser Ue 0.7 - 60 KJ/KM3min 

Heat Transfer cofficient at reboiler UB 0.9 - 60 KJ/Km3min 

Table H. 3: Major parameters of the distillation Example 9.2 
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