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ABSTRACT 

 

The purpose of controller tuning is to determine the parameters of controller in 
order to ensure the time response of close-loop control system at the desired 
performance. Proportional Integral Derivative (PID) controller has been used in the 
industry since 1940’s for this purpose. However, the PID controller can not completely 
compensate for the complexity of industrial processes and desired high product quality 
due to interactions, nonlinearities, and time delay of the process variables. Internal 
model control (IMC) has been developed to overcome the deficiencies of the PID. 
Unfortunately, IMC yields very good performance for set point tracking, but gives 
sluggish response for disturbance rejection problem. The present study has developed a 
controller for disturbance rejection based on feedback / feedforward IMC structure. The 
controller is then called as feedback 2DOF-IMC. A new tuning method has been 
proposed for the controller. The proposed tuning method consists of three steps: Firstly, 
determine the worst case of the model uncertainty. Secondly, specify the parameter of 
set point controller using maximum peak (Mp) criteria. And thirdly, obtain the 
parameter of the disturbance rejection controller using gain margin (GM) criteria. The 
proposed method is called Mp-GM tuning method.  

 
 The effectiveness of the proposed feedback 2DOF-IMC and Mp-GM tuning 
method has evaluated and compared with standard 2DOF-IMC using IMCTUNE and 
Kaya 2DOF-IMC using Mp-GM tuning as bench mark. The evaluation and comparison 
are investigated through simulation and implementation on a number of first order plus 
dead time (FOPDT) and higher order processes. The FOPDT process tested include 
processes with controllability ratio in the range 0.7 to 2.5. The higher processes include 
second order with underdamped and third order with nonminimum phase processes. 
Although the two of higher order process are considered difficult processes, the 
proposed feedback 2DOF-IMC and Mp-GM tuning method were able to obtain the 
optimal controller even under process uncertainties. The proposed feedback 2DOF-IMC 
and the proposed Mp-GM tuning are also successfully implemented in real-time on a 
laboratory scale air heater pilot plant. The process model is divided into two regions. 
The time responses show that the proposed feedback 2DOF-IMC and the proposed Mp-
GM tuning gave faster set point tracking and disturbance rejection responses than 
1DOF-IMC and standard 2DOF-IMC in both regions.  
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ABSTRAK 

 

Tujuan dari talakan kontroler adalah untuk menentukan parameter pengawal 
iaitu memastikan waktu sambutan sistem kawalan gelung tertutup pada prestasi yang 
dikehendaki. Kawalan kamiran terbitan berkadaran (PID) telah digunakan dalam 
industri sejak tahun 1940 an untuk tujuan ini. Namun, pengawal PID tidak boleh 
sepenuhnya mengimbangi kekompleksan proses-proses industri dan kualiti produk yang 
dikehendaki. Ini karena tingginya interaksi antara proses, proses tak lelurus, dan masa 
tunda pembolehubah proses yang lama. Kawalan model dalam (IMC) telah 
dibangunkan untuk mengatasi kekurangan PID. Malangnya, IMC memberikan 
sambutan lamban untuk masalah penolakan gangguan. Penyelidikan ini telah 
membangunkan sebuah pengawal untuk penolakan gangguan berdasarkan struktur suap 
balik / suap depan IMC. Pengawal  ini kemudian disebut sebagai suap balik 2DOF-
IMC. Sebuah kaedah penalaan yang kuat dan sederhana telah dicadangkan untuk 
pengawal ini. Kaedah penalaan yang dicadangkan terdiri daripada tiga langkah: Pertama, 
menentukan kes terburuk dari ketidakpastian model.Kedua, menentukan parameter 
daripada pengawal titik set menggunakan kriteria puncak maksimum (Mp). Dan ketiga, 
menentukan parameter daripada pengawal penolakan gangguan menggunakan kriteria 
jidar gandaan (GM). Kaedah penalaan yang dicadangkan ini disebut Mp-GM.  

 
Keberkesanan daripada suap balik 2DOF-IMC dan kaedah penalaan Mp-GM 

yang dicadangkan dikaji dan dibandingkan dengan piawai 2DOF-IMC dengan penala 
IMCTUNE dan Kaya 2DOF-IMC dengan penala Mp-GM. Pengkajian dan 
perbandingan dilakukan melalui penyelakuan dan pelaksanaan di beberapa proses 
urutan pertama plus waktu mati (FOPDT) dan proses urutan yang lebih tinggi. Proses 
FOPDT yang diuji termasuk proses dengan nisbah kebolehkawalan daripada 0.7 
sehingga 2.5. Proses urutan tinggi yang diuji adalah proses urutan kedua dengan tak 
teredam dan proses urutan ketiga dengan sistem fasa tak minimum. Walaupun dua 
proses urutan tinggi itu termasuk proses yang sukar, suap baik 2DOF-IMC dan kaedah 
penalaan Mp-GM yang dicadangkan boleh memberikan parameter pengawal yang 
optimum pada ketakpastian proses. suap baik 2DOF-IMC dan kaedah penalaan Mp-GM 
yang dicadangkan juga berjaya dilaksanakan secara masa nyata dengan skala makmal 
pada loji pandu pemanas udara. Model proses dibagi menjadi dua daerah. sambutan 
waktu menunjukkan bahawa maklum balas yang dicadangkan suap balik 2DOF-IMC 
dengan penala Mp-GM memberi sambutan penolakan yang lebih cepat dan mencapai 
set yang lebih cepat dibandingkan oleh 1DOF-IMC atau piawai 2DOF-IMC pada 
kedua-dua daerah. 
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CHAPTER 1 

 

 

INTRODUCTION  

 

 

1.1  INTRODUCTION  

  

 A chemical industry generally consists of many unit operations, which must be 

operated on a specific operating condition such as: temperature, pressure, and flow. This 

operating condition(s) is maintained for the purpose of safety and product quality. 

Proportional Integral Derivative (PID) controller has been used in the industry since 

1940’s for this purpose because the PID controller uses a simple algorithm (Willis, 

1999). Various designs and tuning strategies were developed for the PID controller so 

that the controller can be used for various process characteristics.  However, the PID 

controller can not completely compensate for the complexity of industrial processes and 

desired high product quality due to interactions, nonlinearities, and time delay of the 

process variables (Anandanatarajan et al., 2006; Normey-Rico and Camacho, 2007). 

The rapid development of computer technologies has encouraged the development of 

various types of controllers to overcome the deficiencies of the PID. These controllers 

include Artificial Neural Network (ANN) controller (Hussain and Ho, 2004; Mohanty, 

2009), Fuzzy Logic controller (Galluzzo and Cosenza, 2009; Sarma and Rengaswamy, 

2000) and Model Predictive Control (MPC) (Bezzo et al., 2005; Nikandrov and Swartz, 

2009; Qin and Badgwell, 2003). 

 

  Internal Model Control (IMC) is a class of model based control proposed by 

Garcia and Morari (1982). The structure of IMC controller is shown in Figure (1.1). 

IMC uses a model explicitly and it is internally stable. This implies that if a plant is 

stable, the stability of the process response can be guaranteed by using a controller with 

stable model.  
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1.2  INTERNAL MODEL CONTROL (IMC) 

 

 The principle of IMC structure can be explained from (Figure 1.1); Gpm is 

process model. Difference between model response and actual measurement (e) is used 

as input signal to IMC controller (Gc1). In general, e ≠  0, due to the modeling error and 

unknown disturbances (d Gd) that are not accounted in the process model (Seborg et al., 

2004).  Unfortunately, IMC controller provides a very slow response to the case of 

disturbance rejection. Therefore, several researchers have attempted to overcome this 

weakness by developing two-degree-of freedom-IMC (2DOF-IMC) (Morari and 

Zafiriou, 1989). Figure 1.2 shows the standard structure of 2DOF-IMC controller.  

 

 
Figure 1.1 Structure of standard IMC controller 

 

Where e is error between measurement and model, E is error between set point and e, 

Gp is transfer function of the process, Gpm is transfer function of the model and Gc1 is 

transfer function of the controller, ysp is set point value, y is controlled variable, d is 

disturbance input, and Gd is disturbance transfer function. 

 
 
1.3  TWO-DEGREE-OF- FREEDOM INTERNAL MODEL CONTROL 

(2DOF-IMC) 

 

 Figure 1.2 shows the controller for set point (Gc1) and the controller for 

disturbance rejection (Gc2) in a 2DOF-IMC structure. The set point controller is in an 

open loop form and the disturbance rejection controller is in a feedback structure. The 

parameter of set point controller is designed as 1DOF-IMC controller, while the 

Gc1 Gp y 

Gpm 

ysp 

IMC Controller 

E 

e 

- + 

+ 
- 

+
+

Gd d
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disturbance rejection controller is designed such that the disturbance can be rejected as 

soon as possible. 

 
Figure 1.2 Structure of standard 2DOF-IMC 

 

 
 These tuning parameters can be easily obtained in the case of no error in the 

model. However, the setting of parameter becomes a complicated matter if there is an 

uncertainty model. On the other hand, the models developed will always contain 

inaccuracies or contain uncertainty. 

 

 The model uncertainty comes from several sources as follows (Laughlin et al, 

1986);  

(i) The variation of real parameters affecting plant operation.  

(ii)  The inherent non-linearity of the processes.  

(iii) The experimental identification of the process.  

(iv)  The mathematical model development. 

 

1.4  PROBLEM STATEMENTS  

 

 As mentioned in the previous section the tuning parameters in the case of model 

uncertainty is difficult to obtain. Many researchers have tried at different ways in tuning 

of 1DOF-IMC based on model uncertainty (Brosilow and Joseph, 2001; Laughlin et al., 

1986; Liu et al., 1998; Morari and Zafiriou, 1989). Several works concentrating on the 

2DOF-IMC tuning based on model uncertainty has done by Brosilow and Joseph (2001), 

Gd 

Gc1 Gp y 

Gpm 

ysp 
E

e 

- + 

+ 
- 

+
+

d

Gc2 



4 

Morari and Zafiriou (1989) and Stryczek et al. (2000). One of the difficulties of Morari 

and Zafiriou’s method is the use of weighting transfer function in the formulation of 

robust performance. Stryczek (1996) has introduced Mp-tuning method to facilitate the 

completion of tuning that does not involve the weighting transfer function. This method 

is easily applied in obtaining the parameter of 1DOF-IMC based on model uncertainty. 

Unfortunately, for 2DOF-IMC structure, the Mp-tuning method uses partial sensitivity 

function that involved disturbance transfer function (Stryczek et al., 2000). Disturbance 

is very difficult to be modeled, because disturbance can come from more than one 

sources. Besides, the use of partial sensitivity function is restricted to overdamped 

system (Brosilow and Joseph, 2001).  As a consequence, tuning of 2DOF-IMC using 

Mp-tuning method has its limitation. Recent research on the structure and tuning of 

2DOF-IMC is very limited. Kaya (2004b) has developed a 2DOF-IMC structure and 

how to design the controller based on the gain and phase margins. He used IMC 

algorithm for controller tuning, however PD (Proportional Derivative) was used for this 

structure. It was because the structure and the tuning were only tested on integrating 

process. Meanwhile, the attention of recent researchers is the application of IMC on 

specific cases rather than on IMC tuning, for example unstable and integrating process 

(Chia and Lefkowitz, 2010; Liu and Gao, 2011; Tan, 2010; Tan et al., 2003; Wang and 

Watanabe, 2007), nonlinear process (Cheng and Chiu, 2007; Ganeshreddy Kalmukale et 

al., 2005; Toivonen et al., 2003). Therefore, study on the structure and tuning of 2DOF-

IMC for general purpose (stable process) is needed to develop a tuning method which 

simplifies the existing tuning of the 2DOF-IMC under model uncertainty. 

 

1.5  OBJECTIVES AND SCOPE OF THE RESEARCH 

 

The main objectives of the research are stated as follows: 

1. To develop and analyze the 2DOF-IMC based on feedback control structure for 

both set point and disturbance rejection controllers. 

2. To develop tuning method for 2DOF-IMC to meet robust performance criteria. 

3. To implement and validate the performance and tuning method of 2DOF-IMC. 

 

The scope of this research covers the followings: 

1.  Theoretical development of the structure of 2DOF-IMC 



5 

2. Theoretical review of the maximum peak and gain margin for 2DOF-IMC tuning.  

3.  Determine the optimal constants that involved in the tuning of 2DOF-IMC. 

4. Simulation of several process characteristics that employ the structure and the 

tuning method of 2DOF-IMC.   

5. Application of the proposed method to experimental study in AFPT (air flow 

pressure and temperature control system) pilot plant made by Syntec Sdn Bhd.  

The plant is installed in laboratory of Chemical and Natural Recourses 

Engineering University Malaysia Pahang. The experimental process is modeled 

as FOPDT. 

 

1.6  METHODOLOGY OF THE RESEARCH 

 

 The objectives of the research can be realized by creating a new structure of 

2DOF-IMC into feedback control structure. By using feedback control structure, the 

principle of robust performance that is usually used in conventional control such as 

maximum peak (Mp) or resonant peak and gain margin (GM) can be applied.  

  

 Resonant peak (Mp) and its relationship between time responses of IMC 

structure has been studied by (Brosilow and Joseph, 2001) using Mp-Tuning (maximum 

peak) method. The maximum peak is the maximum of magnitude of frequency response 

of complementary sensitivity function set as 1.05. This value corresponds to about 10% 

overshoot of time response. With this method the parameters of the set point controller 

on the model uncertainty can easily be determined.  

  

 The difficulties in tuning of disturbance rejection controller can be solved by the 

principle of Gain Margin. Gain margin is a criterion that often used to measure the 

stability of a control system (Kuo, 1995). In the Nyquist plot, gain margin is the 

frequency response of open loop transfer function on the real and imaginary axis 

(Seborg et al., 2004). Open loop transfer function of proposed feedback 2DOF-IMC can 

be derived easily. The disturbance rejection controller parameters can be determined 

using this method after the set point controller parameter is calculated.  
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 There are three specifications in the Mp-GM tuning that needs to be specified 

i.e; Mp, λ2/λ1 and GM. The best Mp value is determined where the overshot of the 

worst case should not exceed than 10%. The value of the λ2/λ1 and GM is determined 

from the closed loop response, where the corresponding minimum average of ISE 

(Integral Square Error) value in the worst case, nominal case and slowest case will be 

selected as tuning parameter. The Specifications above are selected with FOPDT 

simulation process with θ/τ = 1, θ/τ > 1 and θ/τ <1.  

  

 The proposed feedback 2DOF-IMC structure and proposed Mp-GM tuning 

method are evaluated both in simulation and experimental. For simulation, this work 

studies; 

(i) FOPDT (first order plus dead time) transfer function. It is because; typically 

chemical process can be approximated by FOPDT form. Three 

characteristics of FOPDT are analyzed i.e FOPDT with θ/τ (ratio between 

time delay and time constant) equal to 1, less than 1 and more than 1.  

(ii) Higher order process i.e SOPDT (second order plus dead time) with 

underdamped and third order with non-minimum phase system.  

The proposed structure and tuning method is also evaluated in nonlinear process of 

AFPT (air flow pressure temperature) control system pilot plant. The detail of AFPT 

pilot plant is presented in experimental study (Chapter 4). 

 

 Closed-loop response of the proposed feedback 2DOF-IMC with Mp-GM tuning 

is compared with the standard 2DOF-IMC with IMCTUNE and Kaya 2DOF-IMC with 

Mp-GM tuning. However, when IMCTUNE could not calculate the controller 

parameters then standard 1DOF-IMC with IMCTUNE is performed.  If standard 1DOF-

IMC with IMCTUNE still could not calculate the parameters then 1DOF-IMC with Mp-

GM is applied. 
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1.7  CONTRIBUTIONS OF THE RESEARCH 

 

 The main research contributions from this study are as follows: 

1. New 2DOF-IMC structure based on feedback/feedforward control structure was 

proposed. It is designed and simulated for open loop stable process which 

commonly representing the chemical process system.  

2. New robust and simple method to tune parameters of 2DOF-IMC was employed 

using Mp-GM (Maximum peak and Gain Margin) criteria.  

3. An air heater control system has been developed in laboratory for experimental 

study in order to validate the above finding. 

 

1.8  STRUCTURE OF THE THESIS 

 

 Chapter 2 reviews the related literatures about the weaknesses, advantages, 

design and tuning of 1DOF-IMC controller structure. The design and tuning of 2DOF-

IMC under model uncertainty are reviewed and the chemical process uncertainty is 

described.  

 

 Chapter 3 discusses the proposed Mp-GM tuning for 2DOF-IMC. The proposed 

tuning method is derived from proposed design of 2DOF-IMC based on 

feedback/feedforward structure control system (feedback 2DOF-IMC). The method can 

then be implemented to a standard 2DOF-IMC structure.  The results are compared with 

some existing tuning method of 2DOF-IMC. The Mp-GM tuning is applied to several 

FOPDT process from small to long time delay. There are three specifications that affect 

to closed loop time response using Mp-GM tuning i.e; maximum peak (Mp), ratio filter 

time constant of set point and disturbance rejection controller (λ1/λ2), and gain margin’s 

values. The specifications are determined by simulating of FOPDT model. The effects 

of simplification model are described with examples by using simulation of difficult 

higher order process such as underdamped and nonminimum phase system. The closed 

loop responses of proposed structure 2DOF-IMC and Mp-GM method are compared to 

standard 2DOF-IMC with IMCTUNE and Kaya 2DOF-IMC with Mp-GM.  
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 Chapter 4 describes the implementation of feedback 2DOF-IMC and Mp-GM 

tuning method to the air heater system in AFPT pilot plant. The AFPT pilot plant is a 

nonlinear plant particularly in the low to medium temperature range. It has nearly linear 

model at high temperature range. Therefore, the effects of nominal model selection in 

different range of operating conditions are presented in this chapter.   

 

 Finally, chapter 5 concludes the research study. Summarizes the results obtained 

from previous chapters. The recommendations for future work are outlined. The 

recommendations are given based on assessment of the significant findings, limitations, 

conclusions obtained and difficulties encountered in this study. 
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CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

2.1  INTRODUCTION   

 

 The IMC was developed by Morari and coworkers (Garcia and Morari, 1982; 

Morari and Zafiriou, 1989; Rivera et al., 1986). Internal Model Control (IMC) is a type 

of model based control that has applied in the process industry (Brosilow and Joseph, 

2001). IMC uses model explicitly in controller algorithm. This controller is actually a 

generation of Smith predictor (SP) controller which was designed for a process with 

long time delay (Smith O, 1959). The standard PID controller can not handle them 

optimally because (Kaya, 2003; Normey-Rico and Camacho, 2007; Romagnoli and 

Palazoglu, 2005); 

-  The disturbances are not detected immediately (detected until certain time 

with delay). 

-  The control actions based on the delay is not in accordance with the 

purposes of information. 

-  The control action took some time to determine its effects on the process. 

  

 Smith (1959) proposed delay compensator that aims to eliminate the delay 

element of the feedback loop. This was done by including delay model in the controller 

algorithm (Romagnoli and Palazoglu, 2005). SP controller has some weaknesses. If the 

primary controller is not properly tuned, may be unstable when a small mismatch in the 

dead time is considered (Palmor, 1980) and the disturbance rejection response can not 

be faster than the open loop (Normey-Rico and Camacho, 2007). These weaknesses 

could be overcome by IMC. SP can be considered as part of IMC. Modified version of 

SP controller such as Filtered-SP (FSP), Filtered Predictive Proportional Integral (FPPI), 
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Two Degree of Freedom-Dead Time compensator (2DOF-DTC) and Dead Time 

Observer disturbance compensator (DO-DTC) can be represented by the 2DOF- IMC 

(Normey-Rico and Camacho, 2007). The advantages and weaknesses of IMC are further 

discussed in section 2.2. 

 

2.2  STRUCTURE OF STANDARD INTERNAL MODEL CONTROL 

 

2.2.1 Principle of IMC controller  

 
 The structure of a standard IMC controller illustrated in Figure 1.1 can be 

simplified into classical control feedback (Figure 2.1) (Chia and Lefkowitz, 2010).  

 

 
 

Figure 2.1 Simplified IMC controller to classical feedback control 
 

 

 

Gc Gp y ysp + 
- 

+
+

Gd d

Gc1 Gp y 

Gpm 

ysp 

IMC Controller 

+ 

+ 

+ 
- 

+
+

Gd d

Classical controller
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From Figure 2.1 the classical controller (Gc) can be derived as follow  

 

 
mGpGc

GcGc
.1 1

1
−

=                 (2.1) 

  
It shows that the classical controller can be derived from IMC controller structure, or 

the IMC controller can be analogous to the classical controller Gc. However, it is very 

easy to design Gc1 than to design Gc. this is because some properties following IMC 

structure (Economou and Morari, 1986): 

Property 1: Assuming that the process model is the same as the plant then the closed 

loop stability can be guaranteed if the plant and the controller is stable. 

Property 2: Assuming that the controller Gc1 = 1 / Gpm generate a stable IMC structure, 

then a perfect set point controller can be achieved. 

Property 3: For all Gc1 with Gc1 (0) = 1 / Gpm (0) produces a stable IMC structure, then 

an offset free control can be achieved.  

 

 The first property can be seen from equation 2.1 in which the stability of the 

closed loop response is only affected by the stability of the plant and controller. While 

the second character can be derived as follows. For the SISO system, the IMC controller 

can be derived from Eq. (2.2) to (2.4) (Morari and Zafiriou, 1989). 

 

 Eeysp =−               (2.2) 

 

 EGcGpye m 1−=          (2.3) 

 

Then,   

 EGcGpEyy msp 1−=−        (2.4) 

 

          E* EGcGpm )1( 1−=                 (2.5) 

 

Where e is error between measurement and model, E is error between set point and e 

(see Figure 1.1), Gp is transfer function of the process, Gpm is transfer function of the 

model and Gc1 is transfer function of the controller. The other abbreviations that are 
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used in Figure 2.1 and in the next figures are;   Gd is transfer function of disturbance, d 

input of the disturbance, ysp is setpoint input and y is a process variable (measurement / 

controlled variable). 

 

 In the nominal case Gp = Gpm. Gc1 is designed to yield minimum value of E*; 

 

 212 )1(min*min
11

EGcGpE m
GcGc

−=           (2.6) 

 

In order to get minimal value of E*,  

 

 Gc1 = 1/Gpm.           (2.7) 

 

Eq. (2.6) states that optimal controller can be achieved if Gc1 = 1/Gpm (Eq.2.7) or the 

error will be zero. It means that the process variable is always the same with set point.  

However, Gc = 1/Gpm does not apply in some cases such as processes which has right 

half plane zero and time delay. Fortunately, It can be done by following two steps as 

below (Rivera et al., 1986): 

Step 1. Factor the model, 

 

 −+= mGpGpGp mm          (2.8) 

 

 The Gpm
+ consists of all of the time delay and the right half plane (RHP) zeros. 

It has the general form of 

 

 )1( +−Π= −+ seGp i
i

s
m βθ     Re(βi)>0      (2.9) 

 

 Where θ is time delay of the process, βi is zeros constants of the process transfer 

function. 
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Step 2. Make the IMC controller with, 

 

 f
Gp

Gc
m
−

=
1

1          (2.10) 

 

 Where, f is the low pass filter which must be chosen so Gc1 is proper. The 

simplest form of filter is 

 

 rs
sf

)1(
1)(
+

=
λ

        (2.11) 

 

 Where, r is a scalar to make Gc1 proper.   

 

 The value of λ affects the speed of response. The smaller is the value of λ, the 

faster is the response (more sensitive controller). In order to maintain stability of the 

system, for FOPDT model, Rivera et al.(1986) suggested that λ = 0.8 θ, Chien and 

Fruehauf (1990) proposed τ > λ > θ and Skogestad (2003) recommended λ = θ.   

  

2.2.2 Advantages of IMC controller 

 

 The relationship between the response variable (y) and set point (ysp) and 

disturbance (d) can be expressed by Eq. (2.12)  

 

 ( ) ( ) d
GpGpGc

GcGp
y

GpGpGc
GpGc

y
m

m
sp

m −+
−

+
−+

=
1

1

1

1
1

1
1

    (2.12) 

  

 Eq. (2.12) shows that, if there is no error in the model (Gp = Gpm), the IMC 

structure is open-loop system for set point tracking. In this situation, the speed of time 

response is function of filter time constant. The smaller in the filter time constant the 

faster time response will be achieved.  IMC structure is internally stable, if both of the 

model and controller are stable. A control system is internally stable if bounded signals 

is injected at any point of the control system generates bounded responses at any other 

point. The internally stable is more comprehensive than the usual stability concept, 


