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ABSTRACT 
 

Moderate or Intense Low oxygen Dilution (MILD) combustion is one of the best 
alternative new technologies for clean and efficient combustion. MILD combustion has 
been proven to be a promising combustion technology for industrial applications with 
decreased energy consumption due to the uniformity of temperature distribution, also 
producing low NOx and CO emissions. This article provides a review and discussion of 
the recent research and development in MILD. Furthermore, the problems and focuses 
are summarized with some suggestions and therefore presented on upgrading an 
application of MILD in the future. Currently MILD combustion has been applied in 
closed furnace. For closed furnace, the preheating supply air is no longer required since 
the recirculation inside the enclosed furnace will self preheats the supply air and self 
dilutes the oxygen in the combustion chamber. The possibility of using open furnace 
MILD combustion was discussed and reviewed.  
 
Keywords:  MILD combustion, turbulent combustion, open furnace 

 
INTRODUCTION 

 
Chemical reaction through combustion still contributes to most of the energy needs. The 
demand of energy is dramatically increasing due to the growth of the world's population 
and  substantial  economic  development  in  countries  such  as  China  and  India.  Some of  
the major challenges are to provide efficient energy and limit greenhouse-gas (GHG) 
emissions.  Combustion  of  fossil  fuel  is  projected  to  fulfil  about  80%  of  these  energy  
needs (IEA, 2009 and Maczulak, 2010). The pollution resulting from conventional 
combustion processes is linked with global warming and other associated changes such 
as abnormal weather patterns, rise in ocean levels and melting of ice the North and 
South Poles. The more efficient use of fuel with low GHGs emission as well as carbon 
capture and storage (CCS) might be effective ways to gradually reduce the GHG 
emissions (IEA, 2006, 2009 and Orr, 2005). IEA/OECD (2002) and Jonathan (2006) 
reported that CO2 contributed 77% of the greenhouse gas emissions with combustion 
accounting for 27%, making it a major contributor to global climate change. To counter 
this issue, the improvement of combustion efficiency with lower emissions has led 
researchers to have more interest in new combustion technology and combustion 
modeling (Smith and Fox, 2007 and Merci et al., 2007). One of the methods to improve 
the combustion efficiency is to preheat the reactant by the hot flue gas. However, 
preheating the combustion air generally increases the flame temperature which results in 
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more formation of thermal NOx. A new combustion technology has been suggested that 
is  able  to  solve  this  issue:  Moderate  or  Intense  Low  Oxygen  Dilution  (MILD)  
combustion produces high combustion efficiencies with very low emissions.  

 
Combustion processes require three basic elements which are fuel, oxidiser and 

heat or an ignition source. Fuel and oxidiser need to be mixed at the molecular level via 
a turbulent mixing process. In 1989, Wünning (1991) observed a surprising 
phenomenon during experiments with a self-recuperative burner. At furnace 
temperatures of 1273K and about 923K air preheat temperature, no flame could be seen 
and no UV-signal could be detected. The fuel was completely burnt and the CO was 
below  1ppm  in  the  exhaust.  The  NOx emissions were almost zero with smooth and 
stable combustion. Wünning (1991) called that condition “flameless oxidation” or 
FLOX (Wünning, 1996, Wünning and Wünning, 1997 and Milani and Wünning, 2007). 
This new combustion technology was also labelled as Moderate or Intense Low-oxygen 
Dilution (MILD) combustion (Dally et al., 2002, Cavaliere and de Joannon, 2004). 
Katsuki and Hasegawa (1998) and Tsuji et al., (2003) found that high-temperature air 
combustion (HiTAC) is nearly the same as MILD combustion, besides operating at 
higher temperatures. MILD combustion has many beneficial features, especially on 
producing uniform temperature distribution, excellent combustion stability, very high 
efficiency and extremely low emissions of NOx. The early research and development of 
MILD combustion came from Germany (Wünning and Wünning, 1997, Plessing et al., 
1998, Mancini et al., 2002, 2007, Kim et al., 2008 and Zieba et al., 2010) and Japan 
(Katsuki and Hasegawa, 1998, Yuan and Naruse, 1999 and Tsuji et al., 2003).  However 
all the combustion was studied for closed chamber or closed furnace.  

 
Currently there is no record of studies for MILD combustion in open furnace. 

More understanding on flame structures are necessary to increase the application range 
of the MILD combustion (Medwell, 2007) especially on open furnace. Some histories, 
recent trends and researches on MILD were reviewed. The key topics discussed include 
MILD combustion regime, flame characteristics and properties, NOX emissions. Some 
early results on the modelling of open furnace of MILD combustion were discussed at 
the end of this paper.  

 
COMBUSTION REGIME 

 
MILD combustion is greatly different from normal combustion mainly because of the 
low oxygen concentration and mixture temperature higher than the fuel autoignition 
point (Li et al., 2011b). Figure 1 indicates that the MILD combustion range for oxygen 
dilution is about 3-13% and the reactant temperature is above the auto ignition 
temperature.  
 

The recirculation of hot flue gas to preheat the reactants and simultaneously 
diluted the oxygen was a key concept of MILD combustion (Tsuji et al., 2003). The 
maximum temperature increase due to the combustion is lower than the mixture self-
ignition temperature (Cavaliere and de Joannon, 2004). Recent applications of MILD 
combustion have been into research and development of gas turbines (Duwig et al., 
2008, Arghode and Gupta 2009, 2010a, 2010b, 2011a, 2011b) and gasification systems 
(Tang et al., 2010, 2011). This combustion mode can be very interesting in gas turbine 
applications due to low maximum temperatures (very close to the ones at the inlet of a 
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gas turbine), noiseless characteristics, good flame stability and effectiveness in reducing 
pollution emissions. In contrast, the problems related to large scale application of MILD 
gas turbines are the characteristic time related to the chemical process (the ignition 
delay time) and the preheating of the fresh reactants (ultralean, superdiluted, highly 
preheated).  Based  on  the  study  and  compilation  by  Li  et  al.  (2011b),  common  MILD  
combustion appears to be summarised as: 

 
i. High temperature pre-heat of air and high-speed injections of air and fuel are the 

main requirements of achieving MILD combustion; 
ii. Strong entrainments of high-temperature exhaust gases, which dilute fuel and air 

jets, are the key technology of maintaining MILD combustion; 
iii. Important environmental conditions for the establishment of MILD combustion: 

local oxygen concentration is less than 5%-10% while local temperature is 
greater than that for fuel self-ignition in the reaction zone. These must be 
achieved by strong dilution of reactants with the flue gas (N2 and CO2-rich 
exhaust gas); 

iv. When using the regenerator to recycle the waste heat of flue gases, the thermal 
efficiency of MILD combustion can increase by 30%, while reducing NOx 
emissions by 50% (Tsuji et al., 2003). 
 

 
 

Figure 1. Schematic regime diagram for methane-air JHC flames (Rao, 2010). 
 
The supply air needs to be heated by using a recuperator or regenerator to absorb 

waste heat from the flue gas. A recuperator can preheat the air to 1000K while the 
regenerator  can  heat  the  combustion  air  to  about  1600K (Tsuji  et  al.,  2003).  It  shows 
that  there  are  four  main  regimes:  a  clean  MILD  combustion  region,  where  MILD  is  
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easily sustained without any significant emissions; an unstable flame region, where low-
emission MILD conditions can be achieved by suitably selecting some key operating 
parameters, such as the combustion air temperature; a conventional (normal) flame 
combustion region and a no-combustion or extinction zone. The more usual 
representations (Cavigiolo et al., 2003 and Wünning and Wünning, 1997) identify 
different regimes of stable and unstable flame combustion and a flameless oxidation 
region.  The  oxygen concentration  and  the  temperature  of  the  air  preheated  will  affect  
the MILD flame colour as shown in figure 2.  The flame became green and generally 
less visible when the oxygen level decreased to 2%, (Gupta et al., 1999). When MILD 
combustion started, the furnace was bright and transparent (Wünning and Wünning, 
1997, Tsuji et al., 2003 and Cavaliere and de Joannon, 2004). 

 

 
     (a)  21%                              (b) 8%                                (c) 2% 

 
Figure 2. Combustion air temperature of 1100 °C and percentage of O2 

concentration (Gupta et al., 1999) 
 

 
    (a)                                                                  (b) 

Figure 3. Closed furnace reacting zone for (a) conventional and (b) MILD combustion 
(Li and Mi, 2011) 
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Recently Parente et al. (2009, 2011b) studied the MILD combustion regime 

using a novel methodology based on Principal Component Analysis (PCA), investigates 
the main features for the characterisation. PCA can effectively identify low dimensional 
representations of the CH4 /  H2 experimental dataset. Figure 3 illustrates the flame 
region  for  MILD  and  conventional  combustion  based  on  the  [OH]  contours.  
Significantly, both the reacting and non-reacting zones for the MILD case are bigger 
compared to the conventional case. The best combustion process is lean combustion. 
This is due to lean combustion use of less fuel and the impact is less cost of combustion. 
MILD lean combustion means that the combustion with less fuel and less oxygen level. 
In between the ratio of oxygen from 3 to 13%, auto ignition temperature is reducing 
with the increase of oxygen level.  

 
COMBUSTION EFFICIENCY 

 
Combustion efficiency is the ratio of the heat received by the target material to be 
heated (useful output) to the supply heat provided to the combustor (in the form of fuel 
or electricity supply). Industrial burners need a stable and efficient flame for an 
economical and safe heating process. In the industrial scale, diffusion or non-premixed 
combustion is commonly used due to its controllability and safety (Peters, 2000 and 
Tsuji  et  al.,  2003).  Bluff-body burners can offer a stable burner as required.  There are 
many different shapes and geometries such as cone, cylinder, vee gutter, disk and 
sphere. The geometry will affect the recirculation zone (flame bluffing zone).  Furnace 
lean and clean operation is very critical since two thirds of the plant’s energy budget is 
allocated for the fuel cost (Thomas, 2011). Combustion thermal efficiency in the 
furnace can be improved by recycling the exhaust gases (Li et al. 2011a, 2011b).  

 

 
 

Figure 4. Efficiency of the heating system without EGR (Kraus and Barraclough, 2012). 
 
MILD combustion has proved to produce clean and efficient combustion. Recent 

studies by Colorado et al. (2009) and Danon et al., (2010) on low calorific value fuels 
used  in  MILD  combustion  show  that  low  NOx emissions  were  achieved.  The  
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fundamental parameters of MILD combustion are the average combustion chamber 
temperature (Tc), dilution ratio (KV), and jet velocity (Derudi et al., 2007a).  KV is a key 
parameter for the MILD combustion operating conditions. Several other researchers 
(Wünning and Wünning, 1997, Katsuki and Hasegawa, 1998, Cavigiolo et al., 2003, 
Dally et al., 2008 and Galletti et al., 2009) defined KV as the ratio between the recycled 
exhausts and the incoming air and fuel flow rates. MILD combustion has many 
advantages, such as producing very high thermal efficiencies and low emissions of NOx. 
It produces a uniform temperature distribution, excellent combustion stability and has 
been considered as one of the new-generation, clean and efficient combustion 
technologies. It has great potential to be implemented in many industrial applications.  

 

 
       

Figure 5. Efficiency of the heating system with EGR (Kraus and Barraclough, 2012). 
 
The advantages of MILD combustion are implemented by the heating industries. 

Danon (2011) reported an increase in demand for expertise on the implementation of 
MILD combustion, especially for large-scale furnaces equipped with multiple burners. 
MILD combustion was  achieved experimentally (Yuan and Naruse, 1999, Ertesvag and 
Magnussen, 2000, Weber et al., 2000, Özdemir and Peters, 2001, Hasegawa et al., 2002, 
Cabra et al., 2003, 2005,  Rafidi  and Blasiak, 2006, Sabia et al., 2007, Derudi et al., 
2007a, 2007b, 2007c, Mörtberg et al., 2007, Kumar et al., 2007, Dally et al., 2008, Li 
and Mi, 2010, Mi et al., 2010, Zhenjun et al., 2010, Li et al., 2010a, 2010b, Oldenhof et 
al., 2010, 2011, Derudi and Rota, 2011 and Kraus and Barraclough, 2012) and 
numerically (Ertesvag and Magnussen, 2000, Coelho and Peters, 2001, Park et al., 2003, 
Cabra et al., 2003, 2005, Kim et al., 2005, Awosope et al., 2006, Kumar et al., 2007, 
Galletti et al., 2009, De et al., 2010, Frassoldati et al., 2010, Oldenhof et al., 2010, 
Zhenjun et al., 2010, Szegö, 2010, Parente et al, 2011a, 2011b and Kraus and 
Barraclough, 2012) in premixed, partially-premixed and non-premixed combustion 
modes. For the furnace combustion, simultaneous increase in radiant heat transfer and 
reduced NOx emissions are possible with careful control of the fuel and air mixing 
(Mulliger and Jenkin, 2008). Nakamura et al. (1993) and Webber (2001) experimentally 
studied several pilot-scale furnaces equipped with heat exchangers. They demonstrated 



 
Noor et al./ 2ndMalaysian Postgraduate Conference, 7-9 July 2012, Queensland, Australia 

 Page 79-100 
 
 

85 
 

that the port angles and locations will affect the heat transfer behaviour. The comparison 
of combustion with and without EGR can be seen in Figure 4 and 5. The furnace in 
Figure 4 is running without regenerator (EGR) and 654 BTU of heat lost through flue 
gas. The difference for Figure 5 is the furnace running with the regenerator (EGR) and 
from 654 BTU of heat in the flue gas; only 133 BTU is lost through flue gas to the 
atmosphere. Some 521 BTU of the heat is returned back to the system via the 
regenerator. The efficiency is 37.4% for the system without EGR and 72.4% for the 
system with EGR.  

 
MILD RECENT TREND 

 
The concept of MILD combustion has been extensively studied experimentally and 
numerically. However the challenge still remains to accurately model the MILD 
combustion regime due to the homogeneous mixing field effect by turbulence mixing 
and slower chemical reaction rates. MILD combustion is characterised by a strong 
relation between turbulence and chemistry, occurred at similar timescales (Plessing et 
al., 1998 and Galletti et al., 2007). The turbulence chemistry interactions should be 
treated with finite rate approaches. The non-premixed mode occurred when the fuel and 
preheated air are injected to the enclosure furnace through different ports and mixing 
and combustion proceed inside the chamber. Nathan et al. (1992) and Parham et al. 
(2000) reported that by controlling the mixing through their precessing gas jet, a 
simultaneous reduction in NOx emissions by 30–50% and an increase in heat transfer by 
2–10% were achieved. Szegö et al. (2008) used a furnace with 20kW supplied by the 
fuel and 3.3kW from the pre-heated air. This closed furnace used parallel air and fuel 
jets with one central air nozzle, four fuel jets and four exhausts. All the nozzles and 
exhausts were at the bottom of the furnace. This MILD combustion setup has produced 
data on various experiments including fuel tests, flame tests, NOx tests, and heat 
exchanger tests (Maruta et al., 2000, Flamme, 2004, Park et al. (2004), Christo and 
Dally, 2004, 2005, Medwell et al., 2007, 2008, Mörtberg et al., 2006, Stankovic, 2006, 
Lou et al., 2007, Dally et al., 2002, 2004, 2008, 2010, Colorado et al., 2009, Mi et al., 
2009, de Joannon et al. 2009, 2010, Li et al., 2011b, Oryani et al., 2011). 

 
MILD combustion technology is still not fully commercialized and well adopted 

in furnace industry, thus it is very important to conduct substantial fundamental and 
applied research (Cavaliere et al., 2008, Li et al., 2011b, Parente et al., 2011a, 2011b 
and Danon, 2011). The fuel-air mixing in MILD combustion has become one of the 
interests of studies (Tsuji et al., 2003).  Precise prediction of turbulent mixing is 
important in modelling turbulent combustion because it has a large effect on the flow 
field and turbulence–chemistry interaction (Shabanian et al., 2011).  Galletti et al. 
(2007) claimed that the reactants’ jet velocity and their angles are the main parameters 
affecting the quality of the air-fuel mixture. The characteristic of MILD combustion is 
strong coupling between turbulence and chemistry (Parente et al., 2008), occurring at 
similar timescales (Plessing et al., 1998 and Galletti et al., 2007) thus the turbulence-
chemistry interactions should be treated with finite-rate approaches. The level of 
homogeneity of the mixing field (de Joannon et al., 2010) and slower reaction rates 
make the accurate modeling of this combustion regime challenging (Aminian et al., 
2011), especially for the heat release rate and NOx and  soot  formation,  thus  a  
fundamental study on the mixing quality is required.  To achieve MILD combustion, the 
air supply has to be preheated (Wünning and Wünning, 1997). Many researchers claim 
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that regenerative heating or preheating is an important element in MILD combustion 
applications, which may add some complexity when retrofitting systems. However, a 
recent study by Li et al. (2011a, 2011b) showed that preheating is not required in the 
case  of  a  closed  furnace.  The  use  of  an  open  furnace  operating  in  MILD  combustion  
mode was investigated. Generally, the setup for open furnace is simpler and cheaper 
than closed furnace because the latter needs a thick and solid wall. However, open 
furnaces have additional complexity because of their requirement for preheating of the 
reactants. Oldenhof et al. (2011) claimed that studying flameless combustion in an open 
and unconfined setup might give valuable insights. The combination of open furnace 
and preheating as well as the effect of air-fuel mixing (Oldenhof et al., 2011) need to be 
fully addressed. It is believed that there is no reported data about MILD combustion in 
open furnace applications.  

 
Biogas is an attractive alternative to replace the dependency on fossil fuels. 

Recently Colorado et al. (2009) studied MILD combustion using biogas (methane 
diluted with inert gases) and reported that NOx and soot emissions were reduced but CO 
emission was increased. This was possibly due to the high fuel dilution and low coflow 
oxygen level. NOx emission could be reduced effectively by means of low-oxygen 
concentration combustion (Suzukawa et al., 1997, Gupta, 2000 and Fuse et al., 2002). 
NOx strongly depends on the mixing processes between fuel and air. The recirculation 
flue gases are entrained with combustion air and fuel before combustion occurs to 
depress higher peak temperature. As a result, thermal NOx is suppressed. There are 
parameters to be measured to achieve the desired MILD combustion which are dilution 
ratio (Kv) and temperature inside the combustion chamber. The minimum dilution ratio 
to achieve MILD combustion is 2.5 (Wünning and Wünning, 1997). The MILD 
combustion key control strategies are the heating requirement by the furnace. Based on 
the heating requirement, the dilution ratio and fresh air supply was controlled by. EGR, 
fresh air and fuel supply are controlled based on the dilution ratio required. Fuel 
consumption is the key to measure the efficiency of the system. Thermocouples are used 
to measure the heat produced by the flame.  

 
EXHAUST GAS RECIRCULATION 

 
Thermal efficiency of furnace and other heating equipment, such as kilns, ovens and 
heaters are very critical issue. Large amount of the heat is wasted in the form of flue 
gases  and  small  amount  of  wall  loss,  opening  loss,  store  heat  and  cooling  water  loss.  
Exhaust gas recirculation (EGR) is one of the methods to recover these losses. EGR 
behaves  differently  to  heat  regenerators.  EGR  works  by  recirculating  a  portion  of  the  
exhaust gas back to the combustion chamber. The main purpose of EGR is that the 
oxygen in the combustion chamber will be diluted by the hot flue gas and the mixture 
heated directly. The volume of hot flue gas to be injected back into the system depends 
on the level of oxygen dilution needed. EGR with MILD combustion was used by 
Wünning and Wünning (1997), Katsuki and Hasegawa (1998) and Cavaliere and de 
Joannon, (2004) as a solution to avoid NOx and soot formation. Wünning and Wünning 
(1997) calculated the dilution ratio KV with EGR as: 
 

K =
( )

= ( – )
( )

                                             (1) 
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The total mass flow rate (MT) is calculated by adding up the EGR mass flow rate 
(ME), fuel mass flow rate (MF) and fresh air mass flow rate (MA). The dilution ratio (Kv) 
and temperature inside the combustion chamber are to be measured when combustion 
achieve steady state. The minimum dilution ratio is 2.5 (Wünning and Wünning, 1997). 
The control strategy is the heating required by the furnace which will determine the 
required dilution ratio. The damper blade will act as a control valve at the furnace stack. 
The damper blade will use to control the outflow from the furnace and the percentage of 
the opening size will determine the percentage of the exhaust gas recirculation (EGR). 
The EGR and the fresh air mixing will determine the dilution ratio of the system. The 
total flue gas out of the system must be equal to the quantity of the fresh air and fuel 
supply. The research on utilising EGR to reduce the emission and increase the 
efficiency of the combustion extensively progress. EGR was reported giving effect on 
the reduction of the emission for the internal combustion engine (Abdullah et al., 2009, 
Mamat et al., 2009 and Yasin et al., 2011).  

 
BIOGAS: LOW CALORIFIC VALUE GAS 

 
Considering biogas with the standard methane content of 50%, the heating value is 
21 MJ/Nm³, the density is 1.22 kg/Nm³ and the mass is similar to air at 1.29 kg/Nm³ 
(Al-Seadi et al., 2008). The use of gas is predicted to continue to replace coal for 
electricity generation as it is a cleaner fuel producing lower greenhouse gases. Coal 
usage is predicted to increase by 50%, whereas gas is expected to increase by 88% 
(Scragg, 2009). Biogas can be produced from the biodegradation of organic materials of 
biological  origin  (biomass)  in  anoxic  environments,  such  as  swamps,  wetlands,  
sediments, and in the rumen of ruminant animals. Methane production in engineered 
anaerobic digestion (AD) systems has been employed for more than a century to treat 
municipal sludge generated by municipal wastewater treatment plants (WWTPs), beside 
renewable resources and reduce greenhouse gas emissions, biogas also benefit to the 
farmers. It will reduce biomass waste and digestate is an excellent fertiliser since its rich 
of nitrogen, phosphorus and potassium. Besides many advantages of biofuel and biogas, 
currently there are some debates on the sustainability of biofuel resources (RACQ, 
2008) including the risk of food supply and shortage of biomass due to floods and other 
circumstances. 

 
Methane is the main component of natural gas and biogas and is the most 

abundant organic compound on earth. Natural gas is a promising alternative fuel to meet 
strict combustion emission regulations in many countries. The combustion run on 
natural gas can operate at lean burn and stoichiometric conditions with different 
combustion and emission characteristics. Table 1 shows the differences in natural gas 
composition between some countries compiled by Hairuddin et al. (2010). Natural gas, 
methane or hydrogen is commonly used for industrial burners. Hydrogen is the most 
clean and very low emission in combustion. Hydrogen's low density giving a 
challenging medium for the storage (requires very high pressures tank). By adding 
hydrogen to the fuel blend, the influence of molecular diffusion will increase with 
increasing hydrogen (Mardani et al. 2010b). Recently Mardani et al. (2010a, 2010b) and 
Wang et al. (2011) investigated the effects of hydrogen addition and found that MILD 
combustion occurred more easily. Yu et al. (2010) found that pure hydrogen could not 
reduce thermal NOx emission in the flameless combustion regime. Hydrogen properties 
show a lot of advantages over fossil fuels. Hydrogen is produced mainly from fossil fuel 
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resources and only 4% generated by electrolysis (Stoots, 2011). In the future, when 
fossil fuel depleted, the raw material will be changed to water and biomass (Hollinger 
and Bose, 2008). The purpose of the fuselage (enclosure) is to capture the flue gas to 
use as EGR. This configuration is not fully enclosed due to there being an opening at 
the top of the furnace. Therefore this setup is considered an open furnace.  

 
Table 1.   The difference in natural gas composition between some countries (Jonathan 

2006, Kong & Reitz 2002, Olsson et al. 2002, Papagiannakis and Hountalas 2004). 
 

Components Volume (%) 
Australia Greece Sweden USA 

Methane (CH4) 90.0 98.0 87.58 91.1 
Ethane (C2H6) 4.0 0.6 6.54 4.7 
Propane (C3H8) 1.7 0.2 3.12 1.7 
Butane (C4H10) 0.4 0.2 1.04 1.4 
Pentane (C5H12) 0.11 0.1 0.17 - 
Hexane (C6H14) 0.08 - 0.02 - 
Heptane (C7H16) 0.01 - - - 
Carbon Dioxide (CO2) 2.7 0.1 0.31 0.5 
Nitrogen (N2) 1.0 0.8 1.22 0.6 

 
CFD MODELLING 

 
The application of computer simulation techniques to improve combustion process has 
been rapidly expanding over the last decade. These techniques offer reliable predictions 
on the effect of various parameters on combustion performance. Moreover, the 
computational simulation frequently presents information on physical quantities that are 
quite difficult to measure. CFD is the tool to model the fluid flow problems numerically 
and reduce the excessive cost of experimental work. Galletti et al. (2007) reported that 
beside the experimental characterization of MILD combustion burners, the industry also 
shows the interest on CFD modeling. CFD may help in optimizing burners’ 
performances such as injection nozzles and flue gas recirculation.  

 
CFD alone is not fundamentally strong without validation of their result with the 

experimental work. MILD combustion in setups on many different scales has been 
extensively simulated using CFD software over the last decades (Danon, 2011). The 
configuration of reactants and exhaust ports was optimized using a CFD modeling study 
(Szegö, 2003). Mollica et al. (2009) using CFD to study the effect of preheating, further 
dilution provided by inner recirculation and of radiation model for a hydrogen-air MILD 
burner. Oryani et al, (2011) numerically analyse and comparing the flue gas 
recirculation  (FGR)  and  fuel  induced  recirculation  (FIR)  conditions  in  the  case  of  N2, 
CO2 and  H2O dilution and found that with small amounts of dilution, FIR is more 
effective in NOx reduction. The established turbulent model in fluent was utilised. The 
continuous fluid flow and chemical reactions are simulated in a discretization mode. A 
mesh or numerical grid of the physical geometry for burner head and boundary wall are 
generated. The fluid flow and heat transfer transport equations, which are conservation 
of mass, momentum, heat and species, are solved. Recently Szegö et al (2011) using 
CFD to model MILD combustion in furnace and found that there is a strong coupling 
between the furnace aerodynamics and the reaction zone. CFD modelling is useful to 
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pre-determine the control parameters. Sensitivity to turbulence model (e.g. standard k-  
model (Launder and Sharma, 1974)) normally was investigated. The control parameters 
for the modelling works are temperature, velocity and the angle of the supply air; 
temperature, velocity and the angle of the fuel; percentage of EGR; location of the EGR 
input to supply air; burner head design and fuel properties. 

 
Turbulent flow occurs at high Reynolds numbers and very complex process and 

even more complex when involve with combustion reaction or other chemical reaction. 
Tennekes and Lumley (1972) characterised the nature of the turbulence as irregularity, 
large Reynolds numbers, diffusivity, three-dimensional vorticity fluctuations and 
continuum phenomenon. In the combustion process, particle interactions are very 
important in the fuel and air mixing process: usage of mixing models is required to 
close the molecular diffusion term in the probability density function (PDF) transport 
(Pope, 1985):  

 
+ + "| + , |                         (2) 

 
Particle mixing is becoming more important to study for the mixing process. 

Recently Wandel (2011) has proposed a new turbulent mixing model which randomizes 
the interaction of the particles in a local manner. The proposed model was called SPDL 
or Stochastic Particle Diffusion Length (Wandel, 2011) model, which is based upon the 
practical localness of the random inter-particle distance (Noor et al, 2011). The 
configuration of reactants and exhaust ports was optimized using a CFD modelling 
study (Szegö et al., 2003, Khoshhal et al., 2011, Noor et al, 2012a, 2012b). Mollica et 
al. (2009) used CFD to study the hydrogen-air MILD burner. They reported about the 
effect of preheating, further dilution provided by inner recirculation and radiation 
model. Numerical method was utilised on the flue gas recirculation (FGR) and fuel 
induced recirculation (FIR) analysis (Oryani et al., 2011).  In the small amounts of N2, 
CO2 and  H2O  dilution,  FIR  is  more  effective  in  NOx reduction.  Recently  Szegö et  al.  
(2011) used CFD to model MILD combustion in furnace and found that there is a strong 
coupling between the furnace aerodynamics and the reaction zone.  

 
OPEN FURNACE 

 
MILD Combustion in closed furnace was established for many years; however, many 
fundamentals still need further study and resolution. Open furnace combustion for 
MILD is still a new approach. Open furnace combustion needs the enclosed chamber to 
collect the flue gas and use it as EGR. The oxygen in the fresh air supply needs to be 
diluted and EGR must be used for this purpose. The concept of open furnace is due to 
the opening at the top of the furnace and the flue gas that is not used for EGR was 
released from this top opening. Figure 6 shows the open furnace (Noor et al, 2012a, 
2012b) used to numerically study the MILD combustion. The opening on the top of the 
furnace chamber can be controlled and adjusted in order to control the amount of EGR 
and dilution ratio. The dilution ratio was controlled by the opening of the damper. The 
damper  at  the  furnace  stack  was  used  to  control  the  outflow from the  furnace  and  the  
percentage of the opening size was determined by the percentage of the exhaust gas 
recirculate (EGR). The main purpose of EGR is to dilute fresh air with exhaust gas; and 
therefore will reduce the peak combustion temperature and pressure which will 
consequently  reduce  the  amount  of  NOx (Santoh et al., 1997, Abd-All et al., 2001, 
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Agarwal  et  al.,  2006,  Hountalas  et  al.,  2008).  The  EGR  and  the  fresh  air  mixing  will  
determine the dilution ratio of the system.  

 
The total flue gas emitted from the system must be equal to the quantity of fresh 

air supply. In order to capture the combustion image and the flame propagation, high 
speed camera was utilised in the early state of the combustion and establishment phase. 
When the flame reaches a steady state and invisible to the naked eye, the high speed 
camera will capture the flame luminescence (Oldenhof, et al., 2010, 2011). This process 
is important for the MILD combustion non premixed lifted flame. In normal jet flames, 
the lift-off height is the axial height of the sharp flame interface. To determine lift-off 
height, a certain threshold level for an averaged quantity is defined. Example using the 
quantities like temperature (Kumar et al., 2007), OH concentration (Cabra et al., 2003 
and Ertesvag and Magnussen, 2000) or luminescence (Cabra et al., 2005) was proposed. 

 

 
  

Figure 6. Open furnace with 4 EGR and top chamber opening. 
 
Open furnace through the combination of the study parameters: preheating the 

reactants using EGR to dilute the oxygen in air supply, high reactant jet velocity, 
hydrogen additive to the biogas to reduce the mixture self ignition temperature and 
turbulent mixing of the reactant, optimisation of MILD combustion in an open furnace 
can be achieved. CFD was utilised to simulate the combustion with low calorific value 
gas call biogas. In this simulation, 50% of methane was mixed with 20% of hydrogen 
and 30% of carbon dioxide to form the low calorific value gas. The result for the 
combustion temperature and combustion radiation zone is shown in figure 7 and 8. The 
result from the simulation shows that MILD combustion can be achieved using an open 
furnace combustion with the enclosed chamber to capture and utilised flue gas as EGR. 
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Figure 7. Combustion temperatures for low calorific value gas. 
 

 
 

Figure 8. Combustion radiation zone.  
 

CONCLUSION 
 

The review of MILD combustion toward open furnace was discussed. MILD or 
flameless combustion produces higher efficiency with lower emissions. The MILD 
combustion provides many benefits to the furnace and burners in heating industries. 
Despite the benefits, the fundamental of the combustion is not properly well established 
and needs further research especially on the control parameters, combustion behaviour, 
combustion characteristics, exhaust gas recirculation and dilution required. Heating 
industries  are  still  in  early  stages  to  adopt  MILD  or  flameless  technology  to  their  
burners. Most of the burners are still using conventional combustion technology since it 
is fundamentally stable, strong knowhow and relatively high experience. In January 
2012 issue of Industrial Heating journal, Kraus and Barraclough discussed about the 
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utilisation of thermal regeneration for the industrial furnace is a must in order to 
increase the thermal efficiency of the burners. Biogas is one of the best alternatives for 
the fuel depletion issue. Fuel from bio resources is very environmental friendly since the 
cycle of CO2 is properly closed. Hence the biogas with MILD combustion is the one of 
the best combustion for future energy and heating industries. CFD are good tools to 
simulate and predict the parameter before the experimental work take place. Simulations 
were the best option to reduce the experimental cost. Recent trend shows that MILD can 
be achieved by closed furnace. The dilution and preheating process happened internally 
in the closed combustion chamber. This will make the constructions of the combustion 
chamber simpler without external EGR needed but still closed furnace need thick wall. 
At this stage, there are no results of experimental or numerical records for open furnace 
MILD combustion. In this study, the open furnace with EGR to dilute and pre-heat the 
oxidant was numerically studied. MILD combustion was achieved for open MILD 
combustion. This result needs to be validated by an experimental technique. 
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Nomenclature 
CCS  Carbon capture and storage 
CFD   Computational fluid dynamics 
CMC    Conditional moment closure 
CO   Carbon monoxide 
CO2   Carbon dioxide 
FGR  Flue gas recirculation  
GHG  Greenhouse-gas 
HC   Hydrocarbon 
HiTAC High temperature air combustion 
HTOC High temperature combustion 
JHC Jet in hot coflow 
LCV Low calorific value 
MILD Moderate or intense low O2 dilution 
NOx  Nitrogen Oxides 
OH  Hydroxyl 
PDF  Probability density function 
SOx Sulphur Oxides 
SPDL Stochastic particle diffusion length 
UHC  Unburned hydrocarbons 
 
Symbols 

  Diffusion coefficient 
  Total number of particles 
  Mean molecular weight of mixture 
  Molecular weight of species I 

  Heat release rate 
  Total number of species 
  Favre joint PDF of composition 

Pb Position of particle 
  Gas constant 

Rd  Internal dilution ratio 
  Temperature 

Tc Chamber temperature  
  Volume 

Kv Dilution ratio 
  Mass fraction 
  Mixture fraction 

d Constant 
k Turbulence kinetic energy  
min  Mass flow rate 
  Time 
  Velocity  
  Specific volume 
  Importance weight 

 
Greek Symbols 

  Favre mean fluid velocity vector 
 Time interval 
  Reaction rate for species k 

 Dissipation rate 
 Composition space vector for specie k 
 Fluid velocity fluctuation vector 

,  Molecular diffusion flux vector 
  Kinematic viscosity 
  Reference variable 
  Density or mean fluid density 
  Composition of particle 
  Chemical reaction rate 
  Index of composition variable 
  Model parameter 

 
 


