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Acrylic sheet is a crystal clear (with transparency equal to optical glass), lightweight material having 
outstanding weather ability, high impact resistance, good chemical resistance, and excellent thermo-
formability and machinability. This paper develops the artificial intelligent model using partial swarm 
optimization (PSO) to predict the optimum surface roughness when cutting acrylic sheets with laser 
beam cutting (LBC). Response surface method (RSM) was used to minimize the number of 
experiments. The effect of cutting speed, material thickness, gap of tip and power towards surface 
roughness were investigated. It was found that the surface roughness is significantly affected by the 
tip distance followed by the power requirement, cutting speed and material thickness. Surface 
roughness becomes larger when using low power, tip distance and material thickness. Combination of 
low cutting speed, high power, tip distance and material distance produce fine surface roughness. 
Some defects were found in microstructure such as burning, melting and wavy surface. The optimized 
parameters by PSO are cutting speed (2600 pulse/s), tip distance (9.70 mm), power (95%) and material 
thickness (9 mm) which produce roughness around 0.0129 µm. 
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INTRODUCTION 
 
Laser light differs from ordinary light because it has the 
photons of same frequency, wavelength and phase. 
Thus, unlike ordinary light, laser beams are highly 
directional, have high power density and better focusing 
characteristics (Chryssolouris, 1991; Dubey and Yadava, 
2008). These unique characteristics of laser beam are 
useful in processing of materials. The laser beams are 
widely used for machining and other manufacturing 
processes such as cutting, drilling, micromachining, 
marking, welding, sintering and heat treatment. Lear 
beam   machining   (LBM)   is   a  thermal  energy  based  
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advanced machining process in which the material is 
removed by melting, vaporization and chemical 
degradation. When a high energy density laser beam is 
focused on work surface, the thermal energy is absorbed 
which heats and transforms the work volume into a 
molten, vaporized and chemically changed state that can 
be easily be removed by flow of high pressure assist gas. 
LBM can be applied to a wide range of materials such as 
metals and non-metals. Laser surface texturing may be 
an ideal technology for applications in mechanical face 
seal, as well as in various components in engine such as 
piston ring and cylinder and thrust bearings, involving 
creation of an array of micro dimples or channels 
artificially distributed on the mating surface with a pulsed 
laser beam (Du et al., 2005; Etsion and  Halperin,  2003).  
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The most widely used lasers for sheet cutting are 
continuous wave (CW), CO2 and pulsed Nd:YAG 
(Schreck and Zum Gahr, 2005). Pulsed Nd:YAG laser 
cutting becomes an excellent cutting process because of 
high laser beam intensity, low mean beam power, good 
focusing characteristics, and narrow heat affected zone 
(HAZ) (Luxon and Parker, 1985; Steen, 1991). Lei et al. 
(2001) have found that the laser-assisted turning (LAT) of 
silicon nitride ceramics economically reduces the surface 
roughness and tool wear in comparison to only 
conventional turning process. The study reveals that low 
pulse frequencies and high peak powers were found to 
be favourable for higher cutting speeds. Noor et al. 
(2010) observed that surface roughness is affected 
significantly by the power requirement, followed by tip 
distance and cutting speed when laser beam cutting on 
acrylic sheets. This project presents the experimental 
investigations of using partial swarm optimisation and 
acrylic sheets in order to predict the significant factors 
and their effects on quality characteristics for better 
cutting performance and showing the effect of 
relationship between process variables and performance 
characteristics.  
 
 

MATERIALS AND METHODS 
 

Response surface method 
 

Response surface method (RSM) is a collection of statistical and 
mathematical methods that are useful for the modelling and 
optimization of the engineering problems. In this technique, the main 
objective is to optimize the responses that are influenced by various 
parameters. RSM also quantifies the relationship between the 
controllable parameters and the obtained response. In modelling of the 
manufacturing processes using RSM, the sufficient data is collected 
through designed experimentation. In general, a second order 
regression model is developed because first order models often give 
lack-off fit (Montgomery, 1997). The study uses the Box-Behnken 
design in the optimization of experiments using RSM to understand 
the effect of important parameters. Box-Behnken design is normally 
used when performing non-sequential experiments. That is, 
performing the experiment only once. These designs allow efficient 
estimation of the first and second –order coefficients. Because Box-
Behnken design has fewer design points, they are less expensive to 
run than central composite designs with the same number of factors. 
Box-Behnken design do not have axial points, thus we can be sure 
that all design points fall within the safe operating. Box-Behnken 
design also ensures that all factors are never set at their high levels 
simultaneously (Draper and Smith, 1981; Box and Draper, 1987; Box 
and Behnker, 1960).  
 
 

Partial swarm optimisation 
 

PSO has many advantages over other evolutionary computation 
techniques (for example, genetic algorithms (GAs)) such as simpler 
implementation, faster convergence rate and fewer parameters to 
adjust (Kennedy et al., 2001; Poli, 2007). The popularity of PSO is 
growing with applications in diverse fields of engineering, biomedical 
and social sciences (Poli and Stephens, 2004). Some of the recent 
applications   of   PSO   in   engineering  include  machinery  condition  
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monitoring and diagnostics (Li and Dam, 2003). PSO has been seen 
has the most potential application, areas are pattern recognition, 
biological system modeling, robotic applications, simulations and 
identification. PSO is a population-based stochastic optimization 
technique developed by Kennedy and Eberhart (1997), inspired by 
social behaviour of bird flocking or fish schooling. In the PSO 
algorithm, there is a swarm of particles moving in an n-dimensional 
problem space, where each particle represents a potential solution. In 
simple terms, particles are ‘flown’ through a multidimensional search 
space, where the position of each particle is adjusted according to its 
own experience and that of its neighbours (Armand et al., 2007). 

PSO algorithm is similar to that of the evolutionary computation 
techniques in which a population of potential solutions to the optimal 
problem under consideration is used to probe the search space. Each 
potential solution is also assigned a randomized velocity, and the 
potential solutions, called particles, correspond to individuals. Each 
particle in PSO flies in the D-dimensional problem space with a 
velocity dynamically adjusted according to the flying experiences of its 
individuals and their colleagues. The location of the ith particle is 
represented as Xi=[xi1, xi2,….., xiD], where xid ∈  [Id,ud], d∈  [1,D], Id,u 
are the lower and upper bounds for the d

th 
dimension, respectively. 

The best previous position (which gives the best fitness value) of the 
i
th
 particle is recorded and represented as Pi=[pi1, pi2,….., piD] , which 

is also called P best . The index of the best particle among all the 
particles in the population is represented by the symbol g. The location 
P g is also denoted by g best . The velocity of the ith particle is 
represented by Vi=[vi1, vi2,….., viD] and is clamped to a maximum 
velocity Vmax=[vmax1, vmax2,….., vmaxD], which is specified by the user. 
The particle swarm optimization concept consists of, at each time 
step, regulating the velocity and location of each particle toward its P 

best and g best  locations according to the Equations (1) and (2), 
respectively (Liu and He, 2005). 
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The PSO outputs have been termed as one output node representing 
the state variable (tool life) as shown in Figure 1. The experimental 
results are used for the optimisation of the tool life model using the 
PSO. The codes for the PSO are written in Matlab 7.0 which follows 
the logic of the pseudocode shown in Figure 2. According to Zhou et 
al. (2005), particle swarm optimization (PSO) technique performs 
better than back propagation (BP) algorithms when the diameter error 
in a boring machining is predicted. To overcome the stagnation in 
searching a globally optimal solution, a PSO method with nonlinear 
time-varying evolution (PSO-NTVE) is proposed to approach the 
optimal solution closely. When determining the parameters in the 
proposed method, matrix experiments with an orthogonal array are 
utilized, in which a minimal number of experiments would have an 
effect that approximates the full factorial experiments (Koa et al., 
2007). Changa and Kob (2008) proposed a method with nonlinear 
time-varying evolution based on neural network (PSO-NTVENN) to 
design large-scale passive harmonic filters (PHF) under abundant 
harmonic current sources. The goal is to minimize the cost of the 
filters, the filters loss, and the total harmonic distortion of currents and 
voltages at each bus, simultaneously. The performance of PSO for 
function optimization in noisy environment is investigated, and an 
effective hybrid PSO approach named PSOOHT is proposed by Pan 
et al. (2006). 
 
 

Experimental setup 
 

The experiment was performed on a 30 W pulsed Nd:YAG laser beam  
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Figure 1. PSO for paddle cantilever. 

 
 
 

 For each particle  

    Initialize particle 

END 

Do 

    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 
 

 

Figure 2. A pseudo-code for PSO. 

 
 
 
system with CNC worktable. The oxygen is used as an assist gas. 
The variable process parameters taken are: beam power, cutting 
speed, materials thickness and tip distance. Focal length of the lens 
used is 50 mm, nozzle diameter 1.0 mm and nozzle tip distance 1.0 
mm, were kept constant throughout the experiments. The 27 
experiments were carried out using the laser machine, which is shown 
in Figure 3. Acrylic sheet of thickness 3, 6 and 9 mm was taken as 
specimen. The specimen was cut into 30 mm width and 40 mm long 
as shown in Figure 4. Acrylic sheet was cut into rectangular size to 
measure the surface roughness. Four sides were measured to get the 
average roughness. Surface roughness tester Perthometer S2 was 
used for measurement of roughness. The material properties of the 
workpiece are listed in Table 1. After the preliminary investigation, the 
suitable levels  of  the  factors  are  used  in  the  statistical  software  

to deduce the design parameters for acrylic sheets, which is also 
listed in Table 2. The lower and higher speed values were selected of 
2600 and 3000 pulse/s, respectively. The higher and lower value of 
power requirement of 90 and 95% are considered. The range of tip 
distance is 3 to 9 mm. The design of experiment is shown in Table 3. 

 
 
RESULTS AND DISCUSSION 

 
From the experiments, it is noticed that the response 
surface roughness is affected by the tip distance followed 
by the  power  requirement,  cutting  speed  and  material
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Figure 3. Laser machine.  
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Figure 4. Dimension of the specimen. 

 
 
 

Table 1. Material properties of specimen. 
 

Property Value Unit 

Density 1170 kg/m
3
 

Yield tensile strength  52.1 MPa 

Processing temperature 156 °C 

Modulus of elasticity  2.31 GPa 
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Table 2. Level of design variables. 
 

Design variable 
Coding of levels 

Lowest Middle Highest 

Power requirement (%) 90 92.5 95 

Cutting speed (pulse/s) 2600 2800 3000 

Tip distance (mm)  9.5 9.5 9.7 

Material Thickness (mm) 3 6 9 
 
 
 

Table 3. Design of experiment.  
 

No. Material thickness (mm) Gap (mm) Cutting speed (pulse/s) Laser power (%) 

1 3 9.5 2800 95 

2 6 9.3 2800 95 

3 6 9.3 2600 90 

4 9 9.5 3000 90 

5 9 9.5 2800 92.5 

6 6 9.5 3000 92.5 

7 6 9.3 3000 90 

8 3 9.3 2800 90 

9 6 9.5 2600 92.5 

10 6 9.7 3000 90 

11 3 9.5 2600 90 

12 6 9.5 2600 95 

13 6 9.5 3000 95 

14 9 9.5 2600 90 

15 9 9.7 2800 90 

16 9 9.5 2800 95 

17 6 9.7 2600 90 

18 6 9.5 2800 90 

19 6 9.3 2800 92.5 

20 9 9.3 2800 90 

21 3 9.5 3000 90 

22 6 9.7 2800 92.5 

23 6 9.7 2800 95 

24 3 9.5 2800 92.5 

25 3 9.7 2800 90 

26 6 9.5 2800 90 

27 6 9.5 2800 90 

 
 
 
thickness. On other hand, high cutting speed produces a 
very smooth surface. Similar trend was observed by 
Choudhury and Shirley (2010) and Ciazzo et al. (2005). 
According to Choudhury and Shirley (2010), surface 
roughness represents the quality of cut surface and its 
value decreases with increasing speed, power and 
compressed air pressure. The effect of cutting speed and 
compressed air pressure are more pronounced than the 
effect of laser power on surface finish. Usually the  value 

of Ra diminishes as the cutting speed increases and this 
is true for conventional metal cutting. Meanwhile, Ciazzo 
et al. (2005) found that all of the three materials 
generally follow the rule (which the results of 
experiments on ferrous and nonferrous metals have 
already amply validated) according to which the value of 
Ra diminishes as cutting speed increases. Moreover, they 
all show Ra values which are much lower if compared, for 
instance, with  a  typical  construction  steel.  Ghany  and
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Figure 5. Effect of material thickness towards roughness. 

 
 
 
Newishy (2005) found that surface roughness decreased 
as the laser cutting speed increased, and the laser power 
and gas pressure both decreased. The present finding of 
improvement in surface, finished with increasing laser 
power agrees with the findings of Choudhury and Shirley 
(2010) but not with Ghany and Newishy (2005). Rajaram 
et al. (2003) observed that laser power and cutting speed 
have a significant effect on surface roughness and 
striation. Ciazzo et al. (2005) found that for 
polypropylene, if the thickness is doubled, power is kept 
almost constant, and almost half the speed, the value of 
Ra doubles, rising from ≈0.7 to 1.4 µm. These finding is 
supported with current finding, when material thickness 
increases from 3 to 6 mm where the roughness range 
from 0.012 to 0.04 µm (thickness 3 mm) rising to 0.048 
µm. Meanwhile, this finding is inverse when the material 
thickness is increase to 9 mm, where the roughness are 
ranged from 0.012 to 0.035 µm as shown in Figure 5. 
These phenomenon is supported by Ciazzo et al. (2005) 
when laser cutting on polycarbonate, if both thickness 
and power are doubled, at cutting speeds very close to 
the other, the Ra values observed do not differ very much 
(from 2.02 to 2.08 µm), and fall within the range ≈2 to 3 
µm. Figure 6 shows the surface roughness condition for 
the experiment with high power and cutting speed. It is 
clearly seen that the melting and burning occurs.  

Figure  7  shows  the  surface  texture  for  the  surface  

roughness of 0.0250 µm. The surface texture is without 
melting surface compare with Figure 6; however, it is 
quite wavy at the surface. It’s very important to verify the 
surface texture since the defect at the microstructure 
cause the materials pathetic and less strength 
(Stephenson and Agapiou, 1997). Surface plot for cutting 
parameters and surface roughness are shown in Figure 8. 
The relationship between surface roughnesses with 
cutting parameters can be seen. In Figure 8a, it was 
observed that low tip distance (9.30 mm) and low power 
(90%) produce roughness around (0.028 µm). The 
combination of low cutting speed (2650 pulse/s) and low 
power (91%) produce rough surface (0.026 µm) as shown 
in Figure 8b. The situation quite different with 
combination of high cutting speed (2950 pulse/s) and low 
tip distance (9.30 mm) produce bigger roughness values 
(0.04 µm) as shown in Figure 8c. 
 
 
Test validation 
 
The optimized surface roughness model is tested with 
experimental result. The predicted surface roughness 
using optimized roughness model is compared with the 
measured roughness and their results are reported in 
Table 4. The validation experiment is performed in the 
same machining environment as the training experiment.
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Melting and burning area 

 

 
 
Figure 6. Microscope picture for roughness at condition materials thickness 6 mm, tip 
distance 9.5 mm, cutting speed 3000 pulse/s and power 95%. 

 
 
 

 
 
Figure 7. Microscope picture for roughness at condition material thickness 6 mm, 
tip distance 9.5 mm, cutting speed 2600 pulse/s and power 92.5%. 

 
 
 
The percentage of error of roughness obtained by 
optimized roughness model is about 3.73% which is 
within the acceptable level. This error also agrees with 
Zhou et al. (2005) results. According to Zhou et  al. 

(2005), the networks for diameter error prediction trained 
by the PSO algorithm or by the BP algorithm both 
improve the precision of the boring machining, but the 
neural networks  trained  by  the  PSO  algorithm perform
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Figure 8. (a) Surface roughness at power and tip distance plane; (b) Surface roughness at power and cutting speed plane; (c) Surface 
roughness at cutting speed and tip distance plan. 

 
 
 
better than those trained by the BP algorithm. It is 
expected that the PSO algorithm will become more 
popular as an optimization tool in many fields in the 
future. 

CONCLUSIONS 
 
According to the results obtained in this study, the 
following conclusions could be drawn as follows:  
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Table 4. Comparison between optimization and experimental results. 
 

Cutting speed 

(pulse/s) 

Tip distance 

(mm) 
Power (%) 

Material thickness 

(mm) 

Surface roughness (µm) Deviation (%) 

Expt. Predicted  

2600 9.70 95 9 0.0132  2.27 

2600 9.70 95 9 0.0135 0.0129 4.44 

2600 9.70 95 9 0.0135  4.44 

    0.0134 (av.)  3.73 

 
 
 
(1) It was found that the surface roughness is 
significantly affected by the tip distance followed by the 
power requirement, cutting speed and material thickness. 
(2)  Surface roughness becomes larger when using low 
power, tip distance and material thickness. Combination 
of low cutting speed, high power, tip distance and 
material distance produce fine surface roughness. 
(3) The optimised parameters by PSO are cutting speed 
(2600 pulse/s), tip distance (9.70 mm), power (95%) and 
material thickness (9 mm) which produce roughness 
around (0.0129 µm). The error of roughness obtained by 
optimized roughness model is 0.085%. 
(4) At materials thickness (6 mm), tip distance (9.5 
mm), cutting speed (3000 pulse/s) and power (95%), 
there is a melting and burning area. 
 
 
ACKNOWLEDGMENT  
 
The authors would like to acknowledge the support of 
Universiti Malaysia Pahang for funding under University 
Grant No. RDU0903098. 
 
 
REFERENCES  
  
Armand S, Blumenstein M, Muthukkumarasamy V (2007). Off-line 

signature verification using an enhanced modified direction feature with 
single and multi-classifier approaches. IEEE Comput. Intell. Mag., pp. 
18–25. 

Box GEP, Behnken DW (1960). Some new three level designs for the 
study of quantitative variables. Technometrics, 2: 455-475. 

Box GEP, Draper NR (1987). Empirical model-building and response 
surfaces. John Wiley & Sons, New York. 

Ciazzo F, Curcio F, Daurelio G, Memola F, Minutolo C (2005). Laser 
cutting of different polymeric plastics (PE, PP and PC) by a CO2 laser 
beam. J. Mater. Process. Technol., 159: 279–285. 

Changa YP, Kob CN (2008). A PSO method with nonlinear time-varying 
evolution based on neural network for design of optimal harmonic filters. 
Expert Sys. Applic., 36(3): 6809-6816.     

Choudhury IA, Shirley S (2010). Laser cutting of polymeric materials: An 
experimental investigation. Opt. Laser Technol., 42: 503–508. 

Chryssolouris G (1991). Laser Machining- Theory and Practice. Springer, 
New York. 

Draper NR, Smith H (1981). Applied Regression Analysis. John Wiley, 
New York.  

Du D, He YF, Sui B, Xiong LJ, Zhang H (2005). Laser texturing of rollers 
by pulsed Nd:YAG laser. J. Mater. Process. Technol., 161: 456–461. 

Dubey AK, Yadava V (2008). Experimental study of Nd:YAG laser beam 
machining– An overview. J. Mater. Process. Technol., 195(1-3): 15-26. 

Etsion I, Halperin G (2003). A laser surface terxtured hydrostatic 
mechanical seal. Seal. Tech., 3: 6–10. 

Ghany KA, Newishy M (2005). Cutting of 1.2 mm thick austenitic stainless 
steel sheet using  pulsed and CWNd: YAG laser. J. Mater. Process. 
Technol., 162: 438–47. 

Kennedy J, Eberhart R (1997). A discrete binary version of the particle 
swarm optimization. Proc. IEEE Intl. Conf. System, Man, Cybern., 5: 
4104-4108 . 

Kennedy J, Eberhart R, Shi Y (2001). Swarm Intelligence. Morgan 
Kaufmann, San Francisco, USA.  

Koa CN, Changa YP, Wuc CJ (2007). An orthogonal-array-based particle 
swarm optimizer with nonlinear time-varying evolution. Appl. Math. 
Comput., 191(1): 272–279. 

Lei S, Shin YC, Incropera FP (2001). Experimental investigations of 
thermo-mechanical characteristics in laser-assisted machining of silicon 
nitride ceramics. ASME J. Manuf. Sc. Engg., 123: 639–646. 

Li X, Dam KH (2003). Comparing particle swarms for tracking extrema in 
dynamic environments. Proc. IEEE CEC, pp. 1772–1779. 

Liu Y, He X (2005). Modeling Identification of Power Plant Thermal 
Process Based on PSO Algorithm. Am. Control Conf., USA. 

Luxon JT, Parker DE (1985). Industrial Lasers and their Applications. 
Prentice Hall, London. 

Montgomery DC (1997). Design and analysis of experiments. Wiley, New 
York. 

Noor MM, Kadirgama K, Rahman MM, Zuki NMNM, Rejab MRM, 
Muhamad KF, Julie JM (2010). Prediction Modelling of Surface 
Roughness for Laser Beam Cutting on Acrylic Sheets. Adv. Mat. Res., 
83-86: 793-800. 

Pan H, Wanga L, Liu B (2006). Particle swarm optimization for function 
optimization in noisy environment. Appl. Math. Comput., 181(2): 908–
919.   

Poli R (2007). An analysis of publications on particle swarm optimization 
applications. Technical Report CSM-469, Dept. Computer Science, 
University of Essex. 

Poli R, Stephens CR (2004). Constrained molecular dynamics as a search 
and optimization tool. In M. Keijzer et al. (Eds.), Lecture notes in 
computer science: 3003: 150–161. 

Rajaram N, Ahmad JS, Cheraghi SH (2003). CO
2
 Laser  cut quality of 

4130 steel.  Int. J. Machine Tools Manuf., 43: 351–358. 
Schreck S, Zum Gahr KH (2005). Laser-assisted structuring of ceramic 

and steel surfaces for improving tribological properties. Appl. Surf. Sci., 
247: 616–622. 

Steen WM (1991). Laser Material Processing. Springer, New York. 
Stephenson DA, Agapiou JS (1997). Metal cutting theory and practice. 

Marcel Dekker, Inc. 
Zhou J, Duana ZC, Lia Y, Denga J, Yua D (2005). PSO-based neural 

network optimization and its utilization in a boring machine.  J. Mater. 
Process. Technol., 178(1-3):19–23. 


