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PREDICTION OF TORQUE IN MILLING
BY RESPONSE SURFACE METHOD AND
NEURAL NETWORK

K. Kadirgama* and K.A. Abou-El-Hossein**

Abstract

The present paper discusses the development of the first-order model
for predicting the cutting torque in the milling operation of ASSAB
618 stainless steel using coated carbide cutting tools. The first-order
equation was developed using response surface method (RSM). The
input cutting parameters were the cutting speed, feed rate, radial
depth and axial depth of cut. The study found that the predictive
model was able to predict torque values close to those readings
recorded experimentally with a 95% confident interval. The results
obtained from the predictive model were also compared by using
multilayer perceptron with back-propagation learning rule artificial
neural network. The first-order equation revealed that the feed
rate was the most dominant factor which was followed by axial
depth, radial depth and cutting speed. The cutting torque value
predicted by using Neural Network was in good agreement with
that obtained by RSM. This observation indicates the potential use
of RSM in predicting cutting parameters thus eliminating the need
for exhaustive cutting experiments to obtain the optimum cutting

conditions in terms of torque.
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1. Introduction

Response surface method (RSM) is a collection of math-
ematical and statistical techniques for empirical model
building [1, 2]. By careful design of experiments, the ob-
jective is to optimize a response (output variable) which
is influenced by several independent variables (input vari-
ables). An experiment is a series of tests, called runs, in
which changes are made in the input variables to identify
the reasons for changes in the output response. Originally,
RSM was developed to model experimental responses and
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then migrated into the modelling of numerical experiments.
In RSM, the errors are assumed to be random [1, 2].
Mead and Pike [3] and Hill and Hunter [4] reviewed the
earliest work on RSM. To establish an adequate functional
relationship between the surface roughness and the cutting
parameters (speed, depth of cut and feeds), a large number
of tests are required, requiring a separate set of tests for
each and every combination of cutting tool and workpiece
material. Alauddin et al. [5] developed surface roughness
models and determined the cutting conditions for 190 BHN
steel and Inconel 718. They found that the variations of
both tool angles have important effects on surface rough-
ness. To model and analyze the effect of each variable
and minimize the cutting tests, surface roughness models
utilizing RSM and the experimental design were carried
out in this investigation. Boothroyd [6] and Baradie [7]
investigated the effect of speed, feed and depth of cut on
steel and grey cast iron, and then emphasized the use of
RSM in developing a surface roughness prediction model.
Artificial neural networks (ANNs) are excellent tools
for complex manufacturing processes that have many vari-
ables and complex interactions. Neural networks (NN)
have provided a means of successfully controlling complex
processes [8]. Koren et al. [9] proposed a model-based
approach to online tool wear and the breakage sensing. Al-
gorithms and online training of the model-based approach
by using artificial intelligence methods were suggested by
them. Tarng and Lee [10] proposed using the average and
median force of each tooth in the milling operation. Mea-
sured by sensors, the average and median forces of each
tooth were used as input values. An appropriate threshold
was built to analyze information and detect tool conditions.
Koren et al. [9] introduced an unsupervised self-organized
NN combined with an adaptive time-series AR modelling
algorithm to monitor tool breakage in milling operations.
Lee and Lee [11] used a NN-based approach to show that
by using force ratio, flank wear could be predicted within
8-11.9% error and by using force increment the predic-
tion error could be kept within 10.3% of the actual wear,
whereas Choudhury et al. [12] used an optical fibre to
sense the dimensional changes of the work piece and corre-
lated it to the tool wear using a NN approach. Dimla and
Lister [13] acquired cutting force and vibration data and
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measured wear during turning, and a NN was trained to
distinguish the tool state. Tsai Yu-Hsuan et al. [14] used
NNs to predict surface roughness in milling operations in-
cluding machining parameters such as spindle speed, feed,
depth of cut and vibration “intensity” per revolution.

2. Torque Model

The proposed relationship between the machining re-
sponses (torque) and machining independent variables can
be represented by the following [1]:

7 =C(VmFrALA) (1)

where 7 is the torque in Nm, V, F, A, and A, are the
cutting speed (m/s), feed rate (mm/rev), axial depth (mm)
and radial depth (mm). C, m, n, g and z are the constants.
(1) can be written in the following logarithmic form:

InT=InC+mV+nnF+q¢gnA,+zInA,+Ine (2)
(1) can be written as a linear form:

y = Boxo + G171 + Boxa + B33 + Baxa + € (3)

where y is the torque, zo = 1 (dummy variables), z1 = InV,
ro=InF, r3=1InA,, r4=1InA, and €= Ine, where ¢ is
assumed to be normally distributed uncorrelated random
error with zero mean and constant variance, 3y = In C and
81, B2, B3 and B4 are the model parameters. The values
of B1, B2, B3 and (4 are to be estimated by the method of
least squares using the following basic formula:

8= (aTa) aTy (4)

where 27 is the transpose of the matrix  and (z7z)~!
is the inverse of the matrix (z7x). The details of the
solution by this matrix approach are explained in [1, 2].
The parameters were estimated by the method of least

square using Matlab package.
2.1 Neural Network

A neural network (NN) is an adaptable system that can
learn relationships through repeated presentation of data
and is capable of generalizing new, previously unseen data.
Some networks are supervised, in that a human determines
what the network should learn from the data. In this
case, you give the network a set of inputs and correspond-
ing desired outputs, and the network tries to learn the
input—output relationship by adapting its free parameters.
Other networks are unsupervised, in that the way they
organize information is hard-coded into their architecture
[15-17]. In addition to batch gradient descent, there is
another batch algorithm for feedforward networks that of-
ten provides faster convergence, i.e. steepest descent with
momentum [18]. Momentum allows a network to respond
not only to the local gradient, but also to recent trends in
the error surface. Acting like a low-pass filter, momentum

allows the network to ignore small features in the error
surface. Without momentum, a network may get stuck in
a shallow local minimum [19].

In the current application, the objective was to use
the supervised network with multilayer perceptrons and
trained with back-propagation algorithm with momentum.
The components of the input pattern consisted of the
control variables of the machining operation (the cutting
speed, feed rate, axial depth and radial depth), whereas
the output pattern components represented the response
from sensors (torque). The nodes in the hidden layer were
necessary to implement the non-linear mapping between
the input and output patterns.

During the training process, initially all patterns in
the training set were presented to the network and the
corresponding error parameter (sum of squared errors over
the neurons in the output layer) was found for each of them.
Then the pattern with the maximum error was found which
was used for changing the synaptic weights. Once the
weights were changed, all the training patterns were again
fed to the network and the pattern with the maximum
error was then found. This process was continued till
the maximum error in the training set became less than
the allowable error specified by the user. In the mean
time, the consistency of sum of squared errors and sum of
network weights is maintained. Network structure 4-3-1
is chosen after the observation of consistent number of
effective parameters and error terms. Torque RMS errors
on the test data confirm the reliability of this approach.

This method has the advantage of avoiding a large
number of computations, as only the pattern with the
maximum error was used for changing the weights. The
patterns were suitably normalized between 0 and 1 [20] to
fit the sigmoid function model. First, a set of training data
consisting of the normalized values of the input patterns
and the corresponding output data was used for training
the network, that is, to determine the connection weights.
Optimization of associated parameters of the networks was
carried out for achieving the minimum training error. It
was observed that after 10,000 iterations RMS error ap-
peared to be minimum for the learning rate and momen-
tum. After the training of the network, the NN model can
be used to assess the torque with the set of data of the
input parameters.

2.2 Design of Experiments using RSM

To develop the first-order, a design consisting 27 exper-
iments was conducted. Box-Behnken design is normally
used when performing non-sequential experiments. That
is, performing the experiment only once. These designs
allow efficient estimation of the first- and second-order co-
efficients. Because Box-Behnken design has fewer design
points, they are less expensive to run than central compos-
ite designs with the same number of factors. Box—Behnken
design does not have axial points so that all design points
fall within the safe operating. Box—Behnken design also
ensures that all factors are never set at their high levels
simultaneously [21-23]. After the preliminary investiga-
tion, the suitable levels of the factors were determined as



Table 1
Levels of Independent Variables

Levels Low | Medium | High
Cutting speed V' (m/s) | 100 | 140 180
Feed rate F' (mm/rev) | 0.1 | 0.15 | 0.2
Axial depth A, (mm) 1 1.5 2
Radial depth A, (mm) | 2 3.5 5

shown in Table 1, and the necessary order and combina-
tions of cutting experiments were generated using Minitab
as shown in Table 2.

2.3 Experimental Details

The 27 experiments were carried out in a random manner
on Okuma CNC machining centre MX-45 VA using a
standard coolant. Each experiment was stopped after
85 mm cutting length. Meanwhile, the data about torque
was acquired with the aid of a piezoelectric dynamometer
provided by Kistler. Each experiment was repeated three
times using a new cutting edge every time to obtain an
accurate reading of the cutting force. A cutting pass was
conducted in such a way that a shoulder, of depth ranging
from 1 to 2mm, and width of 2 to 5 mm, was produced.
Fig. 1 shows the experimental setup employed in this study.

3. Results and Discussion

3.1 First-Order Model by RSM

The first-order linear equation for predicting the torque is
expressed as:

y = 2.6215—0.1308z1 + 0.2292x5 + 0.1408x3 + 0.2142x4
(5)
The levels of independent variables and coding identifica-
tions used in this design are presented in Table 1. Table 3
shows the experimental conditions and results obtained
from experiments.
(5) can be transformed into the following form:

T = 315.23(Vf0.5204F0.796719A0‘489432AO.60055) (6)

From this linear equation, it can be observed that the
response y (torque) is affected significantly by the feed
rate followed by axial depth of cut, then by radial depth
of cut and lastly, by the cutting speed. Generally, the
increase in feed rate, axial and radial depths of cut will
cause the torque to become larger. On the other hand, the
decrease in cutting speed will slightly cause a reduction
in cutting torque. Table 3 compares the torque values
obtained experimentally with those predicted by the first-
order model (5) and NN. It is clear that the predicted
values are in good agreement with the experimental values.
This indicates that the obtained linear model is able to
predict the values of torque.

Table 2
Design Values Obtained from the Minitab

Run | Cutting | Feed Rate | Axial | Radial
Speed | (mm/rev) | Depth | Depth
(m/5) (im) | (sm)

1 140 0.15 1 2

2 140 0.2 1 3.5

3 100 0.15 1 3.5

4 180 0.15 1 3.5

) 140 0.1 1 3.5

6 140 0.15 1 5

7 100 0.15 1.5 2

8 140 0.1 1.5 2

9 100 0.2 1.5 3.5

10 140 0.15 1.5 3.5

11 180 0.2 1.5 3.5

12 180 0.15 1.5 2

13 140 0.2 1.5 2

14 140 0.15 1.5 3.5

15 140 0.15 1.5 3.5

16 180 0.1 1.5 3.5

17 100 0.1 1.5 3.5

18 100 0.15 1.5 )

19 140 0.1 1.5 )

20 180 0.15 1.5 )

21 140 0.15 1.5 3.5

22 140 0.15 2 )

23 140 0.2 2 3.5

24 140 0.1 2 3.5

25 140 0.15 2 2

26 100 0.15 2 3.5

27 180 0.15 2 3.5

The adequacy of the first-order model was also verified
using the analysis of variance (ANOVA). At a level of
confidence of 95%, the model was checked for its adequacy
and the results are presented in Table 4. The model
is adequate as the P values of the lack-of-fit are not
significant. This implies that the model could fit and it
is adequate.

The developed linear model (5) was used to plot con-
tours of the torque at different values of cutting speed and
radial depth. Fig. 2(a—c) shows the torque contours at
three different combinations of cutting speed and feed rate.



Figure 1. Tool holder and Okuma CNC machine.

Table 3
Torque Experimental Results, Prediction Values by RSM

Run | Cutting Speed | Feed Rate | Axial Depth Radial Experimental | Prediction of Torque
(m/s) (mm/rev) (mm) Depth (mm) | Torque (Nm) by RSM (Nm)

2 140 0.15 1 2 10 8.06
7 140 0.2 1 3.5 13 14.18
11 100 0.15 1 3.5 16 13.43
14 180 0.15 1 3.5 13 9.89
19 140 0.1 1 3.5 8 8.16
21 140 0.15 1 5 16 13.97
4 100 0.15 1.5 2 16 11.71
5 140 0.1 1.5 2 7 7.11
6 100 0.2 1.5 3.5 17 20.6
9 140 0.15 1.5 3.5 14 13.75
10 180 0.2 1.5 3.5 18 15.17
12 180 0.15 1.5 2 12 8.62
15 140 0.2 1.5 2 13 12.36
22 140 0.2 1.5 5 18 21.42
24 140 0.15 1.5 3.5 13 13.75
25 180 0.1 1.5 3.5 8 8.73
26 100 0.1 1.5 3.5 14 11.86
8 100 0.15 1.5 5 22 20.29
17 140 0.1 1.5 5 14 12.33
18 180 0.15 1.5 5 15 14.95
22 140 0.15 1.5 3.5 18 13.75
1 140 0.15 2 5 20 19.61
3 140 0.2 2 3.5 23 19.91
13 140 0.1 2 3.5 13 11.46
16 140 0.15 2 2 11 11.31
20 100 0.15 2 3.5 23 18.86
27 180 0.15 2 3.5 16 13.89




Table 4
Analysis of Variance of RSM First-Order Equation

Source DF | Seq SS | Adj SS | Adj MS F P
Regression 4 1434.746 |434.746 | 108.687 |186.37 |0
Linear 4 1434.746 | 434.746 | 108.687 |186.37 |0

Residual error | 22 | 12.830| 12.830 0.583
Lack-of-fit 20 | 12.830| 12.830 0.642 5.103310.196
Pure error 2 0.000| 0.000 0.1258
Total 26 |447.576

Figure 2. Torque contours in the axial depth-radial depth plane: (a) cutting speed 100m/s and feed rate 0.1 mm/rev;
(b) cutting speed 140 m/s and feed rate 0.15 mm/rev; and (c) cutting speed 180 m/s and feed rate 0.2 mm/rev.
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Figure 3. (a) MSE of the torque predicted by ANN and (b) prediction error by ANN and RSM.

Table 5

Prediction Results of Torque by ANN and RSM

No. |Experimental | Prediction of | Prediction of
Exp. | Torque (Nm) | Torque by Torque by
RSM (Nm) | ANN (Nm)

1 10 8.06 11.41

2 13 14.18 16.63

3 16 13.43 15.61

4 13 9.89 12.11

5 8 8.16 10.80

6 16 13.97 16.16

7 16 11.71 14.47

8 7 7.11 9.80

9 17 20.6 18.42
10 14 13.75 15.16
11 18 15.17 16.29
12 12 8.62 10.93
13 13 12.36 15.72
14 18 21.42 18.63
15 13 13.75 15.16
16 8 8.73 10.34
17 14 11.86 13.83
18 22 20.29 18.14
19 14 12.33 14.53
20 15 14.95 15.75
21 18 13.75 15.16
22 20 19.61 17.92
23 23 19.91 18.25
24 13 11.46 13.29
25 11 11.31 13.96
26 23 18.86 17.57
27 16 13.89 14.68

It is clear that the reduction in cutting speed and increase
in feed rate will cause the torque to increase dramatically.

From the contour shown in Fig. 2(c) the torque reaches
its highest value when the cutting speed is at its lowest
value and feed rate, axial depth and radial depth are at
their maximum values. In this case, the torque can reach
more than 20 N. The lowest torque occurs when the cutting
speed is at its maximum value and the other factors at its
minimum value (Fig. 2(a)).

3.2 Comparison between Two Techniques

After determining the ANN programme and RSM equa-
tions for predicting the torque values, the two techniques
will be compared. It is clear that the two groups of values
are close to each other (Table 5). Fig. 3(a) shows the
MSE (mean square error) of the NN for predicting torque
and Fig. 3(b) shows the prediction error of both methods.
It is clear that the error percentage of RSM and ANN
techniques is relatively small and can be neglected. Fig. 4
shows the experimental results and the ANN prediction
results.
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Figure 4. Prediction of torque by NN and experimental
data.

4. Conclusion

In the present research, the first mathematic model was
developed to predict cutting torque when milling of ASSAB



618 stainless steel using coated carbide RSM. The predicted
results by RSM were compared by experimentation and
further confirmed by using artificial intelligent.

In general, the results obtained from the mathematical
model are quite close to those found experimentally as well
as those predicted by NN. The results showed that the
torque increases with increasing feed rate, cutting speed,
axial depth and radial depth. With feed rate having the
most dominant effect on the cutting torque.

The use of ANN in predicting the cutting torque was
found to be effective. The results obtained by ANN were
in good agreement with those predicted by RSM. In con-
clusion, the two techniques are considered potential to
conduct optimization tasks in machining operations. The
current study can be utilized successfully in similar exper-
imentations as far as the same range of cutting parameters
are used when end milling ASSAB 618 steel with coated
carbide inserts.
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