FABRICATION AND CHARACTERIZATION OF BIODEGRADABLE COMPOSITE FILM FROM BANANA STEM

LIM RWI HAU

A thesis submitted in fulfillment of the requirements for the award of the degree of Bachelor of Chemical Engineering

Faculty of Chemical and Natural Resources Engineering Universiti Malaysia Pahang

APRIL 2009

I declare that this thesis entitled "*Fabrication and characterization of biodegradable composite film from banana stem*" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any other degree.

Signature	:	
Name	:	<u>Lim Rwi Hau</u>
Date	:	April 16, 2009

ACKNOWLEDGEMENT

In preparing this thesis, I had been in contact with so many people, namely researchers, academicians, and practitioners. They have directly or indirectly contributed towards my understanding and thoughts on the field of my research. In particular, I wish to express my sincere appreciation to my undergraduate research project's supervisor, Madam Norashikin Bt. Mat Zain, for her encouragement, guidance, critics and friendship. Without her continued support and interest, this thesis would not have been the same as presented here.

I am also indebted to Universiti Malaysia Pahang (UMP) for funding my undergraduate research project as part of the fulfillment of my degree. Librarians at UMP also deserve my special thanks for their never-ending assistance in supplying relevant literatures for the completion of this thesis.

My sincere appreciation also extends to all my friends and others who have provided me with assistance at various possible occasions, specifically Zulsyazwan Bin Ahmad Khushairi, Mohd Faizan Bin Jamaluddin, and Nor Hafiza Binti Hamidon. Their views and tips were very useful indeed. Unfortunately, it is not possible for me to list all the names of those involved directly or indirectly in this limited space. I am also very grateful to all my family members for the kind support and unconditional love they have showered me with.

ABSTRACT

The diverse utilization of packaging films from bio-based compounds has received so much attention lately due to the fact that they are readily biodegradable. Banana stem fiber was subjected to acid hydrolysis and three types of film samples, banana stem fiber-chitosan, cassava starch-chitosan and banana stem fiber-cassava starch-chitosan were fabricated with the addition of PEG400. The film samples were later characterized in terms of their morphological and physical properties through FTIR, TGA, DSC and AFM. Analytical results showed that the three compounds used were almost identical in structure and therefore the miscibility between them was of considerable degree. Results also showed that the thermal stability of the three films was significantly noteworthy to be used as a packaging material. The addition of bio-fibers also affected the thermal and mechanical properties of the film samples. Thus, this study gave a new in-depth look into the usage of biofibers as reinforcing agents of biodegradable films of low thermal and mechanical properties.

ABSTRAK

Penggunaan filem pembungkusan mudah terbiodegradasi yang diperbuat daripada bahan biologi telah menerima perhatian yang meluas baru-baru ini. Serat batang pisang dihidrolisis melalui asid hidrolisis dan tiga jenis sampel filem dihasilkan iaitu serat batang pisang-chitosan, tepung ubi kayu-chitosan dan serat batang pisang-tepung ubi kayu-chitosan dengan campuran PEG400. Sampel filem tersebut kemudiannya dianalisis morfologi dan kualiti fizikal mereka melalui FTIR, TGA, DSC dan AFM. Keputusan analitikal menunjukkan ketiga-tiga bahan yang digunakan mempunyai struktur yang sangat identikal maka kebolehlarutan di antara ketiga-tiga bahan tersebut adalah agak tinggi. Keputusan juga menunjukkan kestabilan haba ketiga-tiga sampel filem tersebut adalah sesuai dengan penggunaan mereka sebagai filem pembungkusan. Penambahan serat tumbuhan juga memberi impak kepada kualiti haba dan mekanikal sampel-sampel filem tersebut. Oleh yang demikian, kajian ini memberikan satu pendedahan baru kepada penggunaan serat tumbuhan sebagai agen penguat untuk biofilem yang mempunyai kualiti haba dan mekanikal yang mempunyai kualiti ha

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE	
	DEC			
	SUPI	SUPERVISOR'S DECLARATION		
	DEC	LARATION ON COOPERATION		
	CER			
	TITI	TITLE PAGE		
	DEC	LARATION OF ORIGINALITY AND		
	EXCLUSIVENESS			
	ACK	NOWLEDGEMENT	iii	
	ABS	TRACT	iv	
	ABS	TRAK	v	
	TAB	LE OF CONTENTS	vi	
LIST OF TABLES			xi	
	LIST	xii		
	LIST	xvi		
1	INTI	RODUCTION		
	1.1	Research background	1	
	1.2	Identification of problems	2	
	1.3	Significance of study	3	
	1.4	Objectives	6	
	1.5	Scopes of study	6	
2	LITF	ERATURE REVIEW		
	2.1	Carbohydrates	7	
		2.1.1 Carbohydrate Units	7	
		2.1.1.1 Monosaccharide	8	

		2.1.1.2 Disaccharide	9
		2.1.1.3 Oligosaccharide and polysaccharide	9
2.2	Starch	1	10
	2.2.1	Composition of starch	11
		2.2.1.1 Amylose	11
		2.2.1.2 Amylopectin	12
2.3	Crysta	alline structure	13
	2.3.1	Plasticizer	14
2.4	Gelati	nization of starch	15
2.5	Chitin	I. Contraction of the second se	16
2.6	Chitos	san	18
	2.6.1	Composition of chitosan	19
	2.6.2	Degree of acetylation of chitosan	20
	2.6.3	Biocide properties of chitosan	20
		2.6.3.1 Antimicrobial agent	21
		2.6.3.2 Elicitation of defense responses by chitosan	
		in plants	22
		2.6.3.3 Economic applications of chitosan as	
		microbial inhibitors	23
		2.6.3.4 Potential antimicrobial activity of	
		chitosan-incorporated films	24
		2.6.3.5 Effect of the nature of chitosan on	
		antimicrobial activity	25
		2.6.3.6 Biodegradability of chitosan	25
2.7	Micro	organisms	26
2.8	Miscil	bility of starch and chitosan	26
2.9	Packa	ging films	28
2.10	Biopo	lymers	29
2.11	Biofib	bers	31
2.12	Biode	gradable polymers/films	31
2.13	Comp	osite biodegradable films	33
2.14	Factor	rs that affect the performance of biodegradable films	35
	2.14.1	Concentration of starch	35

	2.14.2 Concentration of chitosan	35
	2.14.3 Concentration of plasticizer	36
	2.14.4 Amount of water	37
	2.14.5 Thickness of film	37
	2.14.6 Poly(lactic acid) (PLA)	38
2.15	Innovations in food packaging	38
	2.15.1 Active packaging	39
	2.15.2 Bioactive packaging	39
2.16	Atomic force microscopy (AFM)	39
2.17	Fourier transform infrared (FTIR)	40
2.18	Thermal gravimetric analysis (TGA)	42
2.19	Differential scanning calorimetry (DSC)	43

3 MATERIALS AND METHOD

3.1	Materials		
	3.1.1	Equipment	45
	3.1.2	Chemicals and raw materials	45
3.2	Metho	odology	46
	3.2.1	Overview of methods	46
	3.2.2	Film fabrication	47
		3.2.2.1 Isolation of banana stem fibers through	
		acid hydrolysis	47
		3.2.2.2 Preparation of banana stem fiber-chitosan	
		composite film	50
		3.2.2.3 Preparation of cassava starch-chitosan	
		composite film	50
		3.2.2.4 Preparation of banana stem fiber-	
		cassava starch-chitosan composite film	51
	3.2.3	Film characterization	54
		3.2.3.1 Fourier transform infrared (FTIR)	54
		3.2.3.2 Thermal gravimetric analysis (TGA)	55
		3.2.3.3 Differential scanning calorimetry (DSC)	56
		3.2.3.4 Atomic force microscopy (AFM)	57

4.1	Film s	amples	59
	4.1.1	Banana stem fiber-chitosan film sample	59
	4.1.2	Cassava starch-chitosan film sample	61
	4.1.3	Banana stem fiber-cassava starch-chitosan film	
		sample	63
4.2	Fourie	er transform infrared (FTIR) spectroscopy	66
	4.2.1	Infrared spectrum of banana stem fiber-chitosan	
		film	67
	4.2.2	Infrared spectrum of cassava starch-chitosan film	70
	4.2.3	Infrared spectrum of banana stem fiber-	
		cassava starch-chitosan film	73
	4.2.4	Comparing the infrared absorption trend of the	
		three film samples by their FTIR spectra	75
4.3	Therm	nal gravimetric analysis (TGA)	77
	4.3.1	Thermogravimetric traces for the decomposition	
		of banana stem fiber-chitosan film sample	77
	4.3.2	Thermogravimetric traces for the decomposition	
		of cassava starch-chitosan film sample	80
	4.3.3	Thermogravimetric traces for the decomposition	
		of banana stem fiber-cassava starch-chitosan	
		film sample	81
	4.3.4	Comparing the decomposition trend of the three	
		film samples by their TGA curves	85
4.4	Differ	ential scanning calorimetry (DSC)	87
	4.4.1	DSC curve of banana stem fiber-chitosan	
		film sample	87
	4.4.2	DSC curve of cassava starch-chitosan film	
		sample	89
	4.4.3	DSC curve of banana stem fiber-cassava starch-	
		chitosan film sample	94

		4.4.4	Comparing the melting and glass transition trend	
			of the three film samples	
	4.5	Atomi	c force microscopy	95
		4.5.1	The topographic analysis of the three film	
			samples	98
		4.5.2	Surface roughness	100
5	CON	CLUSI	ON AND RECOMMENDATION	
	5.1	Concl	usion	101
	5.2	Recon	nmendation	102
6	REF	ERENC	ES	103

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Classification of monosaccharides	9
2.2	The sources of chitin and chitosan	18
2.3	Applications of chitin and chitosan	19
2.4	Packaging films commonly used	29
2.5	List of important biofibers	31
2.6	Types of biodegradable polymers and their examples	32
2.7	The types of composite films, materials used, year, and reference	ce 34
3.1	List of equipments with their brand name and model	45
3.2	List of chemicals and raw materials with their major supplier	46
4.1	Some characteristic infrared absorption peaks	66
4.2	Some important infrared regions that were analyzed from the	
	three film samples	75
4.3	The availability and ash composition of bio-fibers	86
4.4	The oxidation temperature, ash content, water content and onse	t
	temperature of the three film samples that were analyzed	86
4.5	Glass transition and melting temperatures of the three film	
	samples that were analyzed	97
4.6	The surface roughness of the three film samples that were	
	analyzed	100

LIST OF FIGURES

FIGURE NO.	. TITLE	PAGE
1.1	Degradation reactions which occur when bio-based resources	
	are exposed to nature	4
2.1	Some important carbohydrates	8
2.2	A structural formula of amylose	12
2.3	A structural formula of amylopectin	13
2.4	Crystalline and amorphous regions of a polymer	13
2.5	Structural formula of chitin	17
2.6	The chemical structures of cellulose, chitin and chitosan	17
2.7	Bacteriostatic antimicrobial activity	21
2.8	Bacteriocidal antimicrobial activity	21
2.9	Bacteriolytic antimicrobial activity	21
2.10	Some components of natural disease resistance	23
2.11	X-Ray diffractograms of: (a) free chitosan film,	
	(b) glycerol-plasticized starch films, and	
	(c) chitosan coated starch film	27
2.12	Attenuated total reflection (ATR) spectra of rice starch-chitosa	n
	biodegradable film with the ratio of rice starch to chitosan 1:1	28
2.13	Schematic presentation of bio-based polymers based on their	
	origin and method of production	30
2.14	Naturally occurring bio-polymers of use in biodegradable	
	packaging films and composites	32
2.15	An atomic force microscope	40
2.16	Photo of a basic student-grade benchtop FTIR spectrometer.	
	Spectra are recorded in a few seconds and displayed on the	
	LCD panel for viewing and interpretation	41

2.17	The typical decomposition trends of various polymers	43
2.18	The typical trend of a DSC curve	44
2.19	The typical melting point curve obtained through DSC analysis	44
3.1	The banana pseudostem is being cut off	48
3.2	The soft central stalk is being shown	48
3.3	The pseudostem is dissected and the central stalk is taken out	48
3.4	Pieces of banana central stalk immersed in a solution of 17.5 $\%$	
	w/w sodium hydroxide at ambient temperature	49
3.5	Pieces of banana central stalk taken out of the oven after being	
	dried at 60°C. Acid hydrolysis has been carried out beforehand	49
3.6	Blended banana central stalk. The fibers have been subjected to	
	acid hydrolysis	49
3.7	2g of cassava starch is weighed on an electronic balance	51
3.8	4g of low viscous chitosan is weighed on an electronic balance	52
3.9	Chitosan is dissolved in a solution of acetic acid 1% v/v	52
3.10	Cassava starch is dissolved in 100mL of distilled water and heated	
	to 82 – 89°C	52
3.11	Cassava starch forms a viscous and almost transparent solution	
	after being brought to gelatinization	53
3.12	Solution of banana stem fiber-chitosan is stirred at 300RPM for	
	8 hours	53
3.13	Cast solution is peeled off when dry	53
3.14	Drops of acetone are spread on the germanium crystal to clean it	
	from any impurities	54
3.15	Film sample is placed on top of the germanium crystal	54
3.16	A platinum pan that holds a sample	55
3.17	The pan with the sample is placed on the TGA analyzer	55
3.18	Film sample is placed in a standard pan using a stainless tweezer	56
3.19	A standard lid is placed on top of the film sample	56
3.20	The standard pan and lid are crimp pressed using a sample crimp	
	press	57
3.21	The crimped pan is placed into the DSC analyzer	57
4.1	Banana stem fiber-chitosan film sample	60

4.2	Banana stem fiber-chitosan film when brought in contact with	
	water	61
4.3	Cassava starch-chitosan film sample	63
4.4	Cassava starch-chitosan film sample when brought in contact	
	with water	63
4.5	Banana stem fiber-cassava starch-chitosan film sample	65
4.6	Banana stem fiber-cassava starch-chitosan film sample when	
	brought in contact with water	65
4.7	Chitosan	67
4.8	Cellulose	67
4.9	IR spectrum of banana stem fiber-chitosan film sample	69
4.10	Amylose	70
4.11	IR spectrum of cassava starch-chitosan film sample	72
4.12	IR spectrum of banana stem fiber-cassava starch-chitosan film	
	sample	76
4.13	The decomposition trend of banana stem fiber-chitosan film	
	sample	79
4.14	The decomposition trend of cassava starch-chitosan film	
	sample	82
4.15	The decomposition trend of banana stem fiber-cassava starch-	
	chitosan film sample	84
4.16	A schematic representation of interaction	88
4.17	DSC curve of banana stem fiber-chitosan film sample	90
4.18	DSC curve of cassava starch-chitosan film sample	93
4.19	DSC curve of banana stem fiber-cassava starch-chitosan film	
	sample	96
4.20	Banana stem fiber-chitosan film sample in 2D projection	98
4.21	Banana stem fiber-chitosan film sample in 3D projection	98
4.22	Cassava starch-chitosan film sample in 2D projection	98
4.23	Cassava starch-chitosan film sample in 3D projection	99
4.24	Banana stem fiber-cassava starch-chitosan film sample in	
	2D projection	99

4.25

99

LIST OF ABBREVIATIONS/SYMBOLS

%	-	percentage
<	-	less than
>	-	more than
°C	-	degree celcius
μm	-	micrometer
10 ⁻⁵	-	0.00001
10 ⁻⁷	-	0.0000001
ABO	-	blood group system
AFM	-	Atomic Force Microscopy
alpha-Gal	-	alpha-Galactosidase A
ATR	-	attenuated total reflectance
cm	-	centimeter
CO_2	-	carbon dioxide
DA	-	degree of N-acetylation
DD	-	degree of deacetylation
DDA	-	degree of deacetylation
DNA	-	deoxyribonucleic acid
DRR	-	disease resistance response
DSC	-	Differential Scanning Calorimtry
et al.	-	et alii/and others
etc.	-	etcetera
FDA	-	Food and Drug Administration of the USA
FTIR	-	Fourier Transform Infrared
g	-	gram
H^{+}	-	hydrogen ion

H ₂ O	-	water	
H_{m}	-	heat of melting	
Hz	-	hertz	
i.e.	-	<i>id est</i> /that is	
IR	-	infrared	
J.g ⁻¹	-	joule per gram/unit for energy	
kHz	-	kilohertz	
LCD	-	liquid crystal display	
М	-	molar	
mg	-	milligram	
mL	-	milliliter	
mL/min	-	milliliter per minute	
N/m	-	newton per meter	
NCMC	-	N-carboxy-methylchitosan-N,O-sulfate	
nm	-	nanometer	
O ₂	-	oxygen	
O-GlcNAc	-	O-linked N-acetylglucosamine	
pН	-	negative logarithm for hydrogen ion concentration	
PoP	-	point-on-purchase	
PR	-	pathogenesis-related gene	
R	-	replicate gene	
RH	-	relative humidity	
rms	-	root-mean-square	
RPM	-	revolution per minute	
T _c	-	conclusion temperature	
T _c	-	conclusion temperature	
Tg	-	glass transition temperature	
TGA	-	Thermogravimetric Analysis	
T_{m}	-	melt transition temperature	
To	-	onset temperature	
To	-	oxidation temperature	
Tonset	-	onset temperature	
T _p	-	peak temperature	

T _p	-	peak temperature
v/v	-	volume per volume
w/w	-	weight per weight
α	-	Alpha – glycoside link
β	-	Beta – glycoside link
ΔH	-	enthalpy

CHAPTER 1

INTRODUCTION

1.1 Research background

Almost the entire available consumer products have been dispensed through packaging system. This system is greatly utilized to fulfill at least one of the listed functions below (Davis and Song, 2005):

- a) to provide product protection from physical damage, contamination and deterioration;
- b) to give a product the sales appeal;
- c) to ensure that the product identity is easily recognizable;
- d) to give information about the product
- e) to optimize distribution and storage costs;
- f) to provide consumers with the convenience and safety.

Food packaging preserves and protects all types of foods and their raw materials (Tharanathan, 2003) with which their traceability, convenience, and tamper indication are secondary functions recognizably of increasing importance (Marsh and Bugusu, 2007). These protective films and suitable packaging by the food industry have become an ongoing topic of monumental interest because of their packaging potentiality attributed to the ability in increasing the shelf life of many food products (Sorrentino *et al.*, 2007). By means of the correct selection of materials and packaging technologies, it is able to keep the product's quality and freshness during the time required for its commercialization and most importantly, its consumption (Stewart *et al.*, 2002).

In recent years, bio-based, materials such as carbohydrates and proteins have, gradually if not extensively, been tested and experimented to develop biodegradable films which had been proven to have more and more versatile properties (Perez-Mateos *et al.*, 2009). Also, natural fibers present important advantages such as low density, appropriate stiffness and mechanical properties and high disposability and renewability. Moreover, they are recyclable and biodegradable. There has been lot of research on use of natural fibers in reinforcements (Mukhopadhyay *et al.*, 2008). Natural fibres are getting the attention as a reinforcing agent in both thermoplastic and thermosett matrices (Pothan *et al.*, 2006). This has indefinitely set off the diverse utilization of food packaging films made of bio-based materials.

1.2 Identification of problems

Global production of packaging materials is estimated at more than 180 million tons per year, spurred by the fact that both growth and demand are increasing annually. Within the plastic packaging market, food packaging is the largest growing sector (Cutter, 2006). For the last 20 years, petrochemical polymers, commonly called "plastics," have been booming and are by far the most widely used polymers for packaging due in part to their high performance, low cost (Callegarin *et al.*, 1997), availability in large quantities at low cost and favorable functionality characteristics, such as good tensile and tear strength, good barrier properties to oxygen and heat-sealing capabilities (Alves *et al.*, 2006).

Indefinitely, plastics have indeed gained a unique position in food packaging technology for a number of quite different reasons including (Psomidaou *et al.*, 1997) :

- a) higher strength, elongation and barrier properties against waterborne organisms responsible for food spoilage,
- b) lower cost and higher energy effectiveness,
- c) lightness and water resistance.

They are also incredibly durable and inert even in the presence of microorganisms, leading to a sustainable long-term performance (Mali *et al.*, 2002; Arvanitoyannis *et al.*, 1998). Until as recent as today, the largest part of all materials used in the packaging industries is derived from fossil fuels and practically non-biodegradable (Sorrentino *et al.*, 2007; Ban *et al.*, 2006). These traditional packaging materials also encourage the migration of harmful additives (Lopez-Rubio *et al.*, 2006) into food products.

As the amount of plastic waste increases every year, the exact time needed for its biodegradation is unknown (Reis *et al.*, 2008). Approximately 40 million metric tons of such films are consumed annually on a global basis (Ban *et al.*, 2006). The world is also running out of landfill space as degradation of plastics requires a long time and most of them end up overburdening on landfill (Xu *et al.*, 2005).

Waste is not confined only to plastic materials. According to Abdul Khalil *et al.* (2006), Malaysia has a large area of plantation of oil palm (3.87 million hectars), coir (147 thousand hectares), banana (34 thousand hectares), and pineapple (15 thousand hectares). Large quantities of cellulosic and non-cellulosic raw material are generated during harvesting (Abdul Khalil *et al.*, 2006). The explosive expansion of these plantations in Malaysia has generated enormous amounts of plant wastes, creating problems in replanting operations and tremendous environmental concerns.

Packaging materials, especially for food products or produce, like any other short-term storage packaging materials, therefore represent a serious global environmental problem (Kirwan and Strawbridge, 2003) if no concerted actions are adopted to address and prevent it.

1.3 Significance of study

A big effort to extend the shelf life and enhance food quality while reducing packaging waste has encouraged the exploration of new bio-based packaging materials, such as edible and biodegradable films from renewable resources (Tharanathan, 2003) for the goal of food packaging is to contain food in a costeffective way that satisfies industry requirements and consumer desires, maintains food safety, and minimizes environmental impact (Marsh and Bugusu, 2007). Since the depletion of oil, societal and environmental pressures continue to prompt efforts to develop renewable, cost-effective, and environmentally friendly materials for the manufacture of a number of products, including these films (Ban *et al.*, 2006).

Hence, at present, one of the major trends in the food packaging field is the development and use of polymeric materials of biodegradable and/or edible nature that decompose naturally causing no environmental problems when discarded as waste and can also be considered an alternative to traditional plastics obtained from petrochemical industry (Muratore *et al.*, 2005). This notable growth of interest in developing packaging materials based on biopolymers has been witnessed as early as the last decade (Mendieta-Taboada *et al.*, 2008).

Biological Degradation Enzymatic Reaction Chemical Reactions Mechanical Thermal Degradation	 Fungi, Bacteria, Insects, Termites Oxidation, Hydrolysis, Reduction Oxidation, Hydrolysis, Reduction Chewing Lightning, Sun, Man
Pyrolysis Reactions	- Dehydration, Hydrolysis, Oxidation
Water Degradation	- Rain, Sea, Ice, Due
Water Interactions	- Swelling, Shrinking, Freezing, Cracking, Cyclic
	Wetting and Drying
Weather Degradation	- Ultraviolet radiation, Water, Heat, Wind
Chemical Reactions	- Oxidation, Hydrolysis
Mechanical	- Erosion
Chemical Degradation	- Acids, Bases, Salts, Metals
Chemical Reactions	- Oxidation, Reduction, Dehydration, Hydrolysis
Mechanical Degradation	- Dust, Wind, Hail, Snow, Sand
c	- Stress, Cracks, Fracture, Abrasion

Figure 1.1: Degradation reactions which occur when bio-based resources are exposed to nature (Rowell, 1998).

The search for biologically active compounds from natural sources has taken the center stage in recent years for their low or absent toxicity, their complete biodegradability, their avalailability from renewable sources, and, their low-cost if compared with those compounds obtained by total chemical synthesis (Tringali, 2001). Also, the abundance of natural fibres combined with the ease of their processability is an attractive feature (Pothan *et al.*, 2006). The incorporation of these plant fibers which are mostly residues of agriculture and agro-industries, allows a valorization of these wastes and a limitation of environmental damages. It had been demonstrated that natural fibers can reinforce concrete and exhibit the same performance behavior as that of conventional fiber reinforced concrete produced from steel and other inorganic/synthetic fibers (Bilba *et al.*, 2007).

Starch is the commonly used agricultural raw material, since it is a renewable source (Zhai *et al.*, 2004). In the food packaging sector, starch-based material has received great attention owing to its biodegradability, wide availability and low cost (Avella *et al.*, 2005). Starch owes much of its functionality to the two major high-molecular-weight carbohydrate components, amylose and amylopectin, as well as to the physical organization of these macromolecules into the granular structure (Romero-Bastida *et al.*, 2005).

Chitosan is recognized for its antimicrobial activity and film-forming properties (Sebastien *et al.*, 2006) besides its biocide effects (Fernandez *et al.*, 2008). In addition, chitosan also possesses useful properties such as biodegradability, biocompatibility (Sashiwa *et al.*, 2003), and non-toxicity leading to extensively use over a wide range of applications (Bangyekan *et al.*, 2006).

The scope of films made with starch combined with other polysaccharides was widened to include chitosan for several reasons. First, chitosan is a biopolymer, obtained by N-deacetylation of chitin, which is the second most abundant polysaccharide on the earth after cellulose (Bangyekan *et al.*, 2006). It is commercially available from a stable renewable source, that is, shellfish waste (shrimp and crab shells) of the sea-food industry. Second, chitosan forms good films and membranes (Vandamme *et al.*, 2002). Since the use of synthetic polymers is dependent on the use of crude oil, nature has been touted as another possible resource for structural polymers (Jansson and Thuvander, 2004).

1.4 Objectives

The objectives of this study are:

- a) To fabricate different types of biodegradable composite films from banana stem fiber.
- b) To characterize different types of biodegradable composite films from banana stem fiber.

1.5 Scopes of study

The scopes of this study are:

- a) Film preparation:
 - i. Banana stem fiber-chitosan film
 - ii. Cassava starch-chitosan film
 - iii. Banana stem fiber-cassava starch-chitosan film
- b) Film characterization:
 - i. Morphological properties using AFM (Atomic Force Microscopy)
 - Physical properties tests using FTIR (Fourier Transform Infrared) spectroscopy, TGA (Thermal Gravimetric Analysis), and DSC (Differential Scanning Calorimetry)