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Abstract 

The aim of this thesis is to investigate the interaction of neutral atoms with 

conducting and superconducting surfaces. Experimental advances in the magnetic 

confinement of ultracold atoms have shown that they can act as a powerful tool 

in a wide range of phenomena such as electric and magnetic field imaging and 

matter wave interferometry. Coherent manipulation of atoms and ever smaller 

magnetic traps are essential elements in the implementation of integrated quantum 
devices for fundamental research, quantum information processing and precision 

measurements. 
This thesis considers main infiuences on atoms placed within three different 

environments which are useful in achieving miniaturization and efficient control in 

atomic magnetic traps: carbon nanotubes, dielectric surfaces and superconducting 

thin films. The possibility of holding atoms near the outside of a carbon nanotubes 

will be addressed. In order to give a qualitative analysis of the atom-nanotube 
interaction, thermally induced spin-flips and the Casimir-Polder potential have 

been considered. The comparison between these two effects is presented in this 

thesis. It indicates that the Casimir-Polder force is the dominant loss mechanism 

and an estimation of the minimum trapping distance is given based on its effect. 
Secondly, a first-principles derivation of spatial atomic-sublevel decoherence 

neax dielectric and metallic surfaces will be presented. The rate obtained for the 

decay of spatial coherence has dual implications. On one hand, it can be considered 

as a measure of the coherence length of the fluctuations of the electromagnetic field 

arising from a given substrate. On the other hand, it turns out to be relevant for 

quantum information encoding in double well potentials. Finally, the known spin- 
flip transition rate will be linked to the flux noise spectrum in superconducting 
thin films showing the feasibility of using cold atomic clouds in the investigation 

of vortex dynamics. 
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P refa ce 

The interaction between an atom and a dielectric or conducting surface is of 
fundamental importance in the investigation of a wide range of physical phenom- 

ena, such as in accurate measurement of inertial forces [1,2], electromagnetic field 

imaging [3-61, sensing near-field noise in the proximity of metallic and dielectric 

surfaces [7-10] and probing the Casimir-Polder force [11]. The atom is typically 

at a distance from the substrate, usually >1 nm, such that it does not resolve 

the details of the atomic structure of the surface. Atom-surface interaction is an 

unvoidable feature whenever an atom is held close to a macroscopic body and the 

precise understanding of their coupling is an essential concern. 
The spontaneous decay of an excited atom is one of the most studied examples 

of quantum processes due to ground-state fluctuations in the electromagnetic vac- 

uum [12]. However, the vacuum field and its statistical properties are modified by 

the presence of dielectric bodies and this leads to a modification of the spontaneous 

emission rate and of the Lamb shift. In particulax, the latter is associated with the 

appearance of an attractive dispersion force of the van der Waals (Casimir-Polder) 

type due to the spatial variation of the shift [10-19]. Another fundamental issue 

is represented by thermal fluctuations of the magnetic field neax the surface. The 

coupling between the spin of an atom and a thermally fluctuating field results in 

the surface-induced modification of the atomic spin-flip lifetime [8-10,20,21]. The 

present thesis contributes to the latter issue by studying atom-surface interactions 

for atoms magnetically confined in microscopic traps such as atom chips [22-26], 
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posing paxticular attention to trapping lifetimes and relaxation processes. 

Microscopic traps for neutral atoms using nano-structures carrying currents 

are called atom chips in analogy with computer chips. While in conventional 

microchips, electrons move inside wires embedded in a solid state object, in atom 

chips atoms stay a few micrometers above the surface of the wires. Atom chips rep- 

resent a powerful tool in the robust confinement of ultracold atoms, providing flex- 

ible trapping geometries [22-26] and efficient quantum-state manipulation [27-36]. 

This technology is highly attractive for the implementation of quantum informa- 

tion processing or the construction of a matter-wave interferometer, as it permits 

the accurate control over the internal and external atomic degrees of freedom. A 

way to obtain coherent control over atoms is to realize confining potentials and 

trapping structures which axe comparable in size with the de Broglie wavelength 

of the atoms [37-44]. In atom chips, a microstructured surface is used to produce 

electromagnetic fields patterned on the micron and submicron scale, which would 

not be possible in free space. This is what makes them the ideal environment to 

study atom-surface interactions. 

An atom held close to a dielectric or conducting body feels an attractive van 

der Waals interaction which can be overcome by creating a repulsive potential. 
However, the chip surface is at room temperature and can be regarded as a macro- 

scopic hot object with respect to ultracold atoms. Thermal magnetic noise may 

still cause the atom to be lost or tunnel through the repulsive potential and get 

absorbed at the surface. Part of the magnetic noise has a technical origin: fluctua- 

tions in the electric currents generating the trapping fields result in a deformation 

of the confining potential. While technical noise can be reduced experimentally, 
thermal fluctuating electromagnetic fields axe more difficult to control. 

Low-frequency magnetic noise has recently emerged as a limiting factor in the 

lifetime of atoms magnetically confined in microtraps [7-10,45-521. Thermally- 

induced current fluctuations cause the electromagnetic field near the substrate to 
fluctuate with a broad noise spectrum which is rather flat in the low-frequency 
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range [48]. These fluctuating fields can be strong enough to drive spin-flip tran- 

sitions in magnetically trapped atoms, which then lead to atomic losses. Longer 

lifetimes would be achievable by holding the atoms further away from the surface 

but the magnetic trapping potential would be much more shallow making atomic 

manipulation more difficult. As a consequence, the realization of coherent opera- 

tions on the atoms often requires a compromise between the achievement of long 

trapping lifetimes and the trend towards miniaturization. The limitations imposed 

by atom-surface interactions are often defined in terms of a minimum distance of 

the atom from the surface or a maximum time scale for coherent operations. This is 

reflected in constraints for the implementation of quantum information processing 

(QIP) or matter-wave interferometry. 

The encoding of quantum information in QIP with ultracold atoms is typi- 

cally realized by performing coherent operations on quantum superpositions of the 

atomic states [27-36]. A robust encoding and efficient manipulation require tight 

confining potentials which are achievable by reducing the trap dimensions and by 

holding atoms in close proximity of the trap surface. However, below a certain 

separation the atom-surface coupling is strong enough such that the Zeeman in- 

teraction with the neax-field magnetic noise affects the internal state of the atoms 

and the trapping potential. The encoding of quantum information into internal 

(hyperfine ground states) and external degrees of freedom (vibrational modes), is 

then subjected to errors and decoherence phenomena [28,31,32,34,36,53]. 

Atom interferometry is well known for its successful applications when preci- 

sion sensing of inertial forces is required [54,55] and different techniques have been 

used to split and manipulate Bose Einstein condensates (BECs) on microtraps. 
The evolution of a system in a double-well potential has been widely studied from 

both the experimental and theoretical point of view. Relaxation phenomena repre- 

sent a problem in the context of atom interferometry. The progress in trapping and 

manipulating neutral atoms with microtraps has led to recent experimental realiza- 

tions of on-chip matter-wave interferometry but there is serious concern regarding 
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phase diffusion and spatial asymmetry in the potential which may originate from 

fluctuating electromagnetic fields on the chip surface [56-64]. 

As a further example of relevance of the issues addressed in this thesis, mag- 

netic field sensing [3-6] may be considered. Conventional methods for magnetic 
field measurement are able to provide either high field sensitivity at low spa- 

tial resolution, via superconducting quantum interference devices [65] and atomic 

magnetometers [3], or high resolution at low sensitivity, via magnetic-force mi- 

croscopy [66]. Cold atomic clouds represent a valid alternative to standard meth- 

ods, as magnetically trapped atoms act as sensitive probes of the electromagnetic 
field when held close to the chip structure. Rap equilibrium positions depend on 
the mean fields while transitions between internal states are proportional to the 

local spectral density of the field fluctuations. Accurate imaging of the atomic 

cloud's density profile allows the achievement of high spatial resolution together 

with high field sensitivity. 
Extensive work has been carried out in the field of atom-surface interactions. 

The fundamental limits for coherent manipulation of neutral atoms in atom chips 
have been addressed, with particular attention to the noise originating from the 

chip surface [45-53,67-70]. Henkel and co-workers have developed a description 

of magnetostatic field noise near metallic surfaces and computed noise spectra by 

adopting two different approaches. The first is based on a stochastic electrodynam- 
ics approach, where dissipation in the material is associated with random charge 

and current fluctuations [68,70]. The radiation created by these fluctuations is 

then summed up incoherently, i. e. without taking care of how they are correlated 

to one another, which leads to the correct scaling laws of magnetic noise spectrum 
for atom chip geometry [47]. A second method uses the fluctuation-dissipation the- 

orem to calculate the radiation from a single dipole source (Green function) [67] 

and provides a better agreement between theoretical predictions and experimental 

results [45,51]. 

The Green function approach has been used by Scheel and co-workers to 
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develop a quantization scheme for the electromagnetic field in dielectric media 
[71-76]. The description provided for the thermally fluctuating near-field in the 

presence of dispersing and absorbing bodies proved useful to obtain a first-principle 

derivation of the spin-flip transition rate [49,501. The rate is expressed in terms 

of a Green tensor and in principle it can be applied to a dielectric body of any 

shape. The investigation presented throughout this thesis has been carried out 

within the framework of quantum electrodynamics (QED) in absorbing dielectric 

media following the method presented in [49]. 

Three physical systems are studied in depth, each one considers the interaction 

of a neutral atom with a different substrate. Initially, an atom held outside a car- 
bon nanotube is taken into consideration. Carbon nanotubes (77-81] axe graphene 

sheets rolled up into cylinders with diameters of a few nanometers. This sys- 

tem is particularly interesting due to the reduced dimensions of carbon nanotubes 

compaxed to standard wires. Furthermore, the small amount of dielectric matter 

constituting a caxbon nanotube leads to a reduction of near field noise. 
Secondly, an atom in a double-well potential above a planar dielectric substrate 

is studied. The atom is in a spatial superposition of two positions and the evolution 

of its state is investigated. A spatial decoherence rate is derived paying particular 

attention on physical length scales. The evolution of the macroscopic superposition 

state is interesting for its potential applications in quantum information processing 
in order to achieve robust manipulation of the atomic state. This topic is also 

relevant in matter-wave interferometry where coherent evolution of atomic wave 

packets in a double well is required to obtain an interference pattern. 
Finally, the possibility of detecting vortices in thin superconducting films using 

cold atoms is investigated. Superconducting materials exhibit very small penetra- 

tion depths and a zero-resistance behaviour which is particularly interesting when 

considering the near-field magnetic noise. A vanishing resistance implies that 

thermally-induced current fluctuations axe highly reduced and this is expected to 

boost the atomic lifetime by several orders of magnitude [50,82,83]. However, ab- 
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sorption and dissipation phenomena also take place in superconductors. Magnetic 

noise is present in thin superconducting films in the form of vortex motion [84-88] 

and cold atoms may represent a valid alternative to standard measurements of 

vortex dynamics. 

The thesis layout is the following. Chapter 1 reviews the magnetic trapping of 

neutral atoms in microtraps, presents the principle loss mechanisms and focusses 

on magnetic field noise. In Chapter 2, the quantization of the classical phenomeno- 
logical Maxwell equations is introduced. In Chapter 3, the spin-flip lifetime of an 

atom trapped neax the outside of a metallic nanotube is compared with the tun- 

nelling lifetime deriving from the Casimir-Polder potential. In Chapter 4, the spa- 
tial decoherence of an atom in a superposition of two distinct positions is derived 

for a planar surface. In Chapter 5, the feasibility of detecting vortex dynamics 

in a two-dimensional superconductor with cold atoms is addressed. Conclusion 

and outlooks axe summarised at the end of this thesis. Appendix A reports the 

calculation of axial conductivity and dielectric permittivity for a caxbon nanotube 

while Appendix B reviews the Green tensor for planax multilayers. 
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1 

Magnetic trapping 

Significant progress has been made in the magnetic trapping of neutral atoms 
[22-261, and since 1985 the creation of confining magnetic fields with a combina- 

tion of dipole and quadrupole magnets is a well-known technique [89-91]. Nowa- 

days, trapping over microstructured solid-state surfaces is commonly adopted to 

manipulate atoms [37-44]. Magnetic mirrors, evanescent light fields and current 

carrying wires, are widely used because of the flexibility they provide in the re- 

alization of different trapping geometries. The ability to modify the confining 

magnetic fields by adjusting currents or by changing the strength of external con- 

trol fields, makes magnetic traps a versatile tool. Promising areas of on-chip 

applications include modeling of quantum gases and disordered systems [92,93], 

magnetic field sensing [4-6], atom interferometry [56-64] and quantum information 

processing [27,29-31,33-35]. 

Magnetic trapping is possible because an inhomogeneous magnetic field exerts 
forces on atoms with a non-zero magnetic dipole moment it. For example, an atom 

placed in a magnetic field B(r) experiences the potential 

V(r) = -jA - B(r). (1.1) 
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Depending on the orientation of the magnetic dipole moment ji " 9FABF relative 

to the direction of the magnetic field, where AB is the Bohr magneton, gp is the 

Land6 g- factor of the atomic hyperfine state and F is the total spin of the atom 

with MF the magnetic quantum number, there are two cases: 

if the magnetic moment points in the direction opposite to the magnetic field 

(9FMF < 0) V> 0), the atom experiences a force towards the minimum of 

the field, therefore is a weak-field seeker; 

if the magnetic moment points in the same direction of the magnetic field 

(9FMF > 07 V< 0), the atom is attracted towaxds increasing fields and is 

said to be a strong-field seeker. 

The magnetic moment It precesses about the direction of the magnetic field with 

the Laxmor frequency 

WL : 9FABBIA. 

In most cases, in the frame of reference of the moving atom, the change in direction 

of the magnetic field is much slower than the Larmor precession such that the 

magnetic moment precesses around the local direction of the magnetic field and 
is said to follow adiabatically the magnetic field direction. Thus on average /A 
is aligned with B(r) with its projection along the field direction taking values 

9FAB7nF. The potential in Eq. (1.1) is then equal to the modulus of 11 times the 

field magnitude B(r) = JB(r)J, and it does not vary with the field direction such 
that Eq. (1.1) can be written as 

V(r) = -IA - B(r) = -gFPBMFB(r). 

Static magnetic field configurations can only trap weak-field seeking atoms in lo- 

cal magnetic field minima. Earnshaw's theorem states that a collection of point 

charges cannot be maintained in a stable stationaxy equilibrium configuration 

solely by the electromagnetic interaction of the charges. As a consequence, Maxwell 
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1.1 Simple atom guides 

equations do not allow local maxima of the field potential in free space, only sad- 
dle points [94,95]. The magnetic confinement is stable only if the adiabaticity 

condition is satisfied. Violation of this condition results in a large probability of 

non-adiabatic or Majorana transitions which change the orientation of the mag- 

netic moment to a state that may not be confined in the trap, i. e. the atom becomes 

a strong-field seeker and is expelled from the trap [96-98]. 

This Chapter reviews the magnetic confinement of neutral atoms in microtraps. 

Magnetic trapping is performed by creating a line of zero magnetic field where 

neutral atoms can be kept which is possible by using the magnetic field due to 

a current-carrying wire and a bias homogeneous field, the combination of the 

two gives a magnetic potential where neutral atom can be trapped. This is the 

building block of magnetic microtrap, which is often referred to as atom chip, and 

can be used to construct more complex confining potentials. The tendency is to 

reduce trap dimensions as much as possible so as to achieve stronger trapping 

potentials and longer lifetimes. However, an atom in the close proximity of a'hot' 

substrate experiences thermally-induced magnetic noise that imposes limitations 

on minimum distances from the surface and maximum lifetimes. 

The Chapter is organized as follows. In Section 1.1 the basic concepts of 

magnetic trapping in atom chips are presented. Section 1.2 deals with the principal 
loss mechanisms such as heating and technical noise. Section 1.3 focuses on the 

atomic interaction with near field noise and the fluctuating environment produced 

by the materials constituting the chip. 

1.1 Simple atom guides 

A current-carrying wire is the atom chip 'building block', as introduced by Frisch 

and Segr6 in 1933 [99]. They suggested trapping atoms in a circular magnetic 
field produced by a straight current-caxrying wire and a homogeneous magnetic 
field perpendicular to the wire. The combined field has a minimum located where 
the two fields have the same magnitude but opposite directions, which means that 
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1.1 Simple atom guides 

there is a line of zero magnetic field parallel to the wire. A current I directed 

along the z direction produces a radial magnetic B field with modulus 

I ti IBI =0 27rr 

at a distance r from the wire, and a constant field Bb perpendicular to the wire 

cancels out the circular magnetic field B at a distance yo 

POI 
YO = 27rBb 

(1.5) 

The total field is now given by the sum of the two magnetic fields B+ Bb = BTOT 

yo 

0 
x 

Figure 1.1: Representation of the magnetic field lines generated by current flowing in 
a wire extending along the z direction and an external bias field perpendicular to the 
wire direction. 

the field lines of which are shown in Fig. 1.1. In Cartesian coordinates one can 

write r2 =x2+ y2 and the y-component reads 

JBTOT(X ý Ot Y) 1 72+7 -yl 
yr 00 2r 0 

A weak-field seeking atom can be confined at a distance yo where the magnetic field 

is zero, as shown in Fig. 1.2. That point is taken as the trap center, (x = 0, y= 
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1.1 Simple atom guides 

yo), at which the first derivative of the magnetic field intensity is independent of 

position 
IL01 21rB 2 

-LO-I 
b D, IBTOTI 

-21 
V=yo 

; 72 
ILOI 

ly--Yo 
ý 27rr 27r 

0 0 

and in Cartesian coordinates reads 

dB., dB ' V. (1.8) Tx- dy 

Therefore, the field near the minimum can be approximated by a linear function 

of its gradient 

BTOT B+ Bb = b(xex - yey), (1.9) 

JBTOTI b(x 2+y 2)1/2 = b'r,, (1.10) 

where r, is now the distance from the centre of the trap, such as in the case of a 

quadrupole trap. 

An atom positioned at the centre of the trap experiences a field that is almost 

zero and the adiabaticity condition is violated in regions of very small magnetic 
field. In these regions, Majorana, transitions changing the orientation of the atomic 

magnetic moment to non-trapped states can easily take place [96-98]. To prevent 
these transitions, an additional magnetic field BO oriented parallel to the wire is 

superimposed and the y-component of the modulus of the total magnetic field 

becomes 
01 11+ 

JBoj2, (1.11) IBTOT(-T ý 01 Y)1 ; 72 + ýi -Y0 ly I 
0 

T2 T2 27r 
0 0 

as shown in Fig. 1.2(b). The total magnetic field is then given by 

BTOT 
=B+ 

Bb + Bo, 

and for sufficiently small r, such that Yr, << JBoj the field modulus can be 
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1.1 Simple atom guides 

approximated as 

12 + )2 1/2 
,2 

2r' 
BTOTJ ý [IBo (b'r, lBol + 

±- 
(1.13) 1- 

21Bol* 

The substitution of Eq. (1.13) into the interaction potential of Eq. (1.3), allows 

V(X) 

(a) 

V(Y) 

x (b) YO 
y 

Figure 1.2: Cross section of the magnetic potential of Eq. (1.3) along the x-axis (a) and 
y-axis (b). The cusp at the bottom of the potential leads to non-adiabatic transitions of 
the trapped atoms (dashed line). A bias field along the z-direction rounds the bottom 
of the trap to give a harmonic potential near the axis. 

Eq. (1.3) to be re-written as a haxmonic potential 

22 
V(r) ý -gFPBMF lBol + -ýLr- 21Bol) 

2r2, 
= vo +2 Mw ,c (1.14) 

where the oscillation frequency is given by 

._ 
19FIIBMF AOI 

Wr -V MlBol 27ryo2* 
(1.15) 

The confining potentials produced by free-standing structures, i. e. current- 

carrying wires, axe in general pretty shallow and deform easily due to external 
forces leading to a weak trapping of the atoms. Wires mounted on a surface are 

more robust and allow for tighter confinement of atoms in the traps. Two such 

examples axe illustrated in Fig. 1.3 and Fig. 1.4. The quantum control over the 

motion of ultracold atoms that would permits a faster and more efficient creation 
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1.2 Loss, heating and technical noise 

of BECs can be achieved with miniaturization. In fact, a full quantum control 

of an atom of mass m and energy E, requires the confining potential to vary on 

a length scale A- h/(mE)'/' which is usually of the order of 1 Am and that is 

possible if the trapping distances are small enough, i. e. d<A. The miniaturiza- 

tion of electric conductors on a substrate is possible by current nanofabrication 

technology which allows to place wires on a surface with great accuracy. Nanofab- 

rication permits the realization of confining structures with high resolution and as 

a consequence the magnetic potential can be tailored to trap atoms individually. 

This is very important in order to localize atoms in steep traps and to reduce the 

distances between individual trapping sites. 

thin wire 

upperco 

1ý 

U er CO, 

MT MOT 0 

center of thick wire 
the spherical (0 - 1.5 mm) 

quadrupole field 
60A I "Oý d-4 mm ,I 

thin wire 
(0-90 AM) lower coil 

y wira 

Z 

y CCd camera 
r 

Figure 1.3: (a) Schematic representation of the trap reproduced from Ref. [41]. The 
trap is made of two coils, a thin wire and a thick wire. The wires axe cemented together 
vertically and oriented parallel to the symmetry axis of the coils. (b) Schematic set up 
of the wires in the x-y plane and position of the center of the spherical quadrupole field. 

The main goal of this thesis is to investigate relaxation processes of atoms near 

surfaces. For the present purpose is not necessary to go further into the details of 
different trapping geometries or microfabrication techniques. 

1.2 Loss, heating and technical noise 

In this Section the limitations of wire-based magnetic traps are discussed. The 

small sepaxation between the cold atoms and the hot macroscopic environment of 
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1.2 Loss, heating and technical noise 

cover 

substrate 

:x -- 25 mm 

Figure 1.4: Atom chip set up reproduced from Ref. [8]. Atoms axe trapped near the 
surface of the guide wire. The guide wire is made of copper and is glued on a glass 
substrate. A glass cover slip is added in order to obtain a smoother surface and to make 
the surface reflecting a particular frequency of the laser light which allows the formation 
of a magneto-optical trap by reflection. 

the substrate raises the question of the smallest distance from the surface that 

can be reached while maintaining a strong atom confinement. The limiting phe- 

nomena that cause loss and decoherence are heating [45,46,100], background gas 

collisions [101,102] and magnetic field fluctuations [24]. Some of these noise sources 
have a technical origin and can be overcome experimentally. That is not possi- 
ble for thermally4nduced noise due to fluctuating magnetic fields in the substrate 

constituting the chip [7-10,45,46,511. Fluctuations of the electromagnetic field 

will be reviewed in Section 1.3. 

Loss, heating and interaction with a noisy environment of a particle bound in 

a harmonic trap potential is commonly described by a master equation [45]. The 

reduced dynamics of a system coupled to a reservoir is described by the coupling 
Hamiltonian 

V(r, t) = -gg-F r, t), 

where 9 denotes a system operator, g is a coupling constant and P(r, t) stands for 

a fluctuating force. In the Markov limit, i. e. when in a coarse grained description 

of the system dynamics memory effects axe disregarded, the relaxation dynamics 
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1.2 Loss, heating and technical noise 

of the system density matrix A is expressed as 

2 

_9 
E 

SF 

ý2 2 

2 "1 9 SF 
ýj(-)A + A&)bj(-) ý2 2 

ii 

where 9W is the positive (negative) part of the system operator whose free evolu- 

tion in Heisenberg picture is 

iwt 9(+)e-"t + 9(-)e , 

with hw denoting the energy difference between two adjacent system states. The 

spectral density of the force that appers in Eq. (1.17) is given by 

+00 

S%J dr(Pi(r, t+ 7-), Pj(r, t))e"'. 

In paxticular, the rates related to spontaneous and stimulated decay processes are 

proportional to Y'j (r, +w) while the ones associated with excitation processes are j F 

proportional to Y'j(r, -w). The force spectral density as expressed in Eq. (1.19) is F 

the central tool used to describe transition rates for decoherence phenomena and 

atomic losses. 

Atom loss mechanisms 

Table 1.1 presents estimates of lifetimes corresponding to various loss mechanisms 
that are relevant for magnetic trapping experiments (taken from Ref. [24]). By 

technical noise axe denoted all the mechanisms that arise from experimental ma- 

nipulation and that can be kept under control experimentally such as cloud com- 

pression and fluctuations in the currents used to create the magnetic field. In the 

following a brief introduction is given for the most common processes leading to 
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1.2 Loss, heating and technical noise 

atomic losses. An example of how decay rates may be derived is presented in the 

second part of this Section where the effects of a trap fluctuating in frequency or 

position are considered. 

Table 1.1: Loss mechanisms for trapped atoms above curent carrying wires 

Mechanism Lifetime 
heating > los 
background collisions > 10 S 
technical noise (cloud compression and current fluctuations) > 10 s 
tunnelling > 10 s 
thermally-induced spin flips 1-10s 

Other noise sources are intrinsically connected to the way the atoms axe trapped 

and the major one is represented by thermally-induced spin flips. The latter 

mechanism deserves more attention as it will be considered throughout this thesis, 

and is reviewed in Section 1.3. 

Heating 

Energy transfer to the atomic system, i. e. heating, causes the excitation of 

motional and vibrational degrees of freedom which leads to atomic loss or 

an ill-defined quantum state of the system. Heating arises primarily from 

audio-frequency technical noise in the currents and from the coupling to 

room-temperature surfaces, resulting in a trap fluctuating either in frequency 

or position [8,45,46,100]. 

9 Background collisions 
Collisions between background gas atoms and trapped atoms transfer enough 

energy to the latter so that they can escape the trap [101,102]. For highly 

compressed traps and high-density atomic samples, collisions between trapped 

atoms occur as well. 2-body inelastic collisions cause spin exchange such 
that the magnetic number MF is conserved while F itself is not [103,104]. 

A weaker process resulting from 2-body inelastic collisions can also provoke 
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1.2 Loss, heating and technical noise 

the spin relaxation such that MF is not conserved [105,1061. 

0 Cloud compmssion 

Cloud compression represents a loss mechanism that in principle can be con- 

trolled experimentally. During manipulation and compression of the thermal 

atomic cloud, the cloud temperature may rise over the trap depth. This 

mechanism is often used to achieve thermalization of the atomic cloud [107]. 

Curmnt fluctuations 

Fluctuations in the currents used to generate the trapping potential cause 

radio-frequency noise that are able to induce spin flips [7,8,641. This can be 

avoided by using 'quieter' current drivers such as superconducting wires or 

permanent magnets [22,24]. 

Tunneling 

Atoms in traps very close to the surface can tunnel out of the local mini- 

mum of the potential towards the surface. Tunnelling becomes important 

for states close to the top of the potential barrier, while for low-lying states 

the tunnelling lifetime has been estimated to be laxger than 1000 s [24,1081. 

Iýapping losses and heating rates are generally described in terms of a master 

equation as introduced earlier in Sec. 1.2, and a simple harmonic-oscillator po- 

tential is often adopted to represent the trapping potential. The model presented 

in [100] consists of an atom in a one-dimensional harmonic-oscillator potential. 

Heating can be described as a transition to an higher excited state of the oscilla- 

tor due to fluctuations in the spring constant or in the trap equilibrium position. 

For example, fluctuations A(k, t) in the spring constant can be modelled by the 

Hamiltonian 
p t)]X2 H(t) = ým +2 Mw.! ý[l +A (k, (1.20) 

where M is the mass of the atom, w, ' = k. ýIM is the mean square trap oscillation 
frequency in the x direction and k.., the mean value of the corresponding spring 
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1.2 Loss, heating and technical noise 

constant. Similarly, fluctuations in the trap equilibrium position are described by 

the Hamiltonian 

H(t) p2 'MWX2[X 

_ 
A(X, t)]2 =W+ý 

where A (x, t) is the fluctuation in the location of the trap center. The corre- 

sponding Fokker-Planck equation and transition rates can be derived quantum 

mechanically using first-order time dependent perturbation theory. Regaxding 

the Hamiltonian in Eq. (1.20) as a quantum-mechanical operator, a perturbation 
Hamiltonian ft'(t) can be defined as ft(t) = fto + ft'(t) with 

1 
t)ML02X2. 

2A 
(k, 

x 
(1.22) 

The average transition rate from an atomic state ji) to a state if) in a time interval 

T is given as 

R,. f dt'ki'f (t) eiwif e (1.23) 
Tf 

0 
The average transition rate for fluctuations A (k, t) in the spring constant can be 

written as 

(Mw 22 
iwifr 21i)12, f 

d-re (A(k, O)A(k,, r))I(flx (1.24) 

0 

where the correlation function of the fluctuations is defined as 

(A (k, 0) A (k, 7-» = 71 ;1 dtA (k, t) A (k, t+ -r). 

The averaging time T is short compared to the time scale over which level pop- 

ulations vary, but still large enough when compaxed to the correlation time of 
the fluctuations such that the integration range over r in Eq. (1.24) and over t 

in Eq. (1.25) can be extended formally to oo, hence there is no explicit time de- 

pendence in the correlation function of the fluctuations. The power spectrum of 

28 



1.3 Near-field noise 

the fluctuations either in the spring constant A (k, t) or in the trap equilibrium 

position A(x, t), is then defined as 

Co 
S(W) =21 

d7- cos w-r(A(0)A(7-», 
7r 

0 

where A(t) denotes one of the two fluctuations mentioned above. 
In particular, for a one-dimensional trap with atoms of energy E=E,,, fluc- 

tuations in the spring constant cause transitions between states n --* n±2 with 

energy changes AE., = ±2hw., and heating rate 

2 
ri. i+2 S,, (2w.,, ). (1.27) 

Similarly, position noise may induce transitions between states n --+ n±1 with 

energy changes AE_- = ±hw-, and corresponding rate 

m3 
r+iýS. (1.28) 

h 

1.3 Near-field noise 

In the context of atom chips, thermal magnetic noise has emerged as the crucial 
limitation to the atomic lifetime [7-10,45,46,51]. The coupling of the atomic 

magnetic moment to fluctuating magnetic fields causes spin-flip transitions be- 

tween hyperfine states of the atom [49]. Thermally-induced spin flip transitions 

are the focus of this Section. It is worth mentioning that magnetic fluctuations are 

also relevant in other contexts such as magnetic resonance-force microscopy [66] 

or when a high sensitivity is required from superconducting quantum interference 

devices (SQUID) [65]. 
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1.3 Near-field noise 

Thermally induced spin flip transitions 

Let Ii) and If) denote the atomic hyperfine states whose degeneracy is lifted by a 

magnetic field B, their Zeeman splitting is 

hWif 
--` 9FAB IB1 (1.29) 

where wif is the Larmor frequency. A subset of the atomic hyperfine sublevels 

experiences an attractive potential towards regions of low magnetic field. However, 

fluctuating magnetic fields couple spin states and thus cause the atom to evolve 
into untrapped states with a different MF. Neutral alkali atoms can be efficiently 

manipulated by laser light and in paxticulax rubidium atoms have become the 

preferred atomic species for research in quantum information processing, quantum 

optics and atomic physics. Throughout this thesis, 87Rb atoms are considered 

and according to typical experimental realizations, the state IF, MF) = 12,2) is 

considered as the initial state ji) where the atoms are trapped. In Fig. 1.5 the 
Zeeman splitting of the IF = 2) hyperfine ground state is depicted. In a sufficiently 
tight trap, atoms in the state IF, MF) = 12,1) are also trapped but transitions to 
lower magnetic sublevels cause the atoms to be expelled from the trap. 

]F=2, mF=2) trapped 

IF=2, mF=l) trapped 

IF=2, mF=O) not trapped 

[F=2. mF=-l) anti-trapped 

IF=2, mF=-2 anti-trapped 

Figure 1.5: Zeeman splitting of the IF = 2) hyperfine ground state of 87Rb. The 
spin-flip transition considered throughout this thesis is shown by the axrow. 

The rate for spin-flip transitions is given by Fermi's golden rule that can be 

30 



1.3 Near-field noise 

expressed in terms of the magnetic field noise spectrum SB(w) as [48,69] 

1 (ijA,, jf)(fjAqji)SB"3(r, wfj) (1.30) 

0,, 6= YIZ 

where A,, and A, 3 are the Caxtesian components of the magnetic moment operator. 

The quantization axis is chosen to be parallel to the offset field BO directed along 

the wire direction (usually denoted as the z direction). The magnetic moment 

associated with the transition Ii) --+ If) is it = jzji)(f I+h. c. and the magnetic 

moment vector is given by 

(iIPB 9+ 
9JJ - 9I'Mýt 

i) IA (gs 
MP 

where AB is the Bohr magneton, ý is the electronic spin operator, L is the orbital 

angular momentum operator, i is the nuclear spin operator and gs(- 2), 9L and 

g, are the corresponding g factors. An alkali-metal atom in its ground state has 

an angular momentum L=0. Furthermore, the nuclear magnetic moment can be 

neglected because of the ratio of the electron mass m, to the mass of the proton mp. 
The magnetic moment vector is then proportional to the electronic spin operator 

IA! -- (ijAB9Af)- (1.32) 

The spin matrix elements for the transition from one hyperfine state to another can 

mm 
7n be evaluated via Clebsch-Gordon coefficients IF, MF) ý Ems 

I 
C; 

msm, 
' I S, 7nl) 

For the 8'Rb ground state transition 12,2) --+ 12,1) as represented in Fig. 1.5, the 

nonzero matrix elements are I(ij,! ý, 
y1f)l = 1/4. 
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1.3 Near-held noise 

Noise spectrum 

The spectral density of the fluctuating magnetic field at the atom's position r and 
transition frequency wif can be expressed according to Eq. (1.19) as 

00 
5Bao (r, wif d-r(B, (r, t+ -T)B, 3(r, t))eiu)if'r (1.33) Bf 

00 

which, in free space, is given by the thermal blackbody radiation spectrum 

iio&,; 3 

S; '3 (r, w) 
(nth + 1) 6aeO; (1.34) 

7rc3 

where 
nth ý 1/(e rxolkBT 

_ 1) (1.35) 

is the mean number of thermal photons per mode at frequency w. At zero tem- 

perature, the resulting spin-flip lifetime is 

'ro 
1 37rhO 

(1.36) fi-f 
POW'E P'BgF'I(f 1ý-Wl" 17 

a 

The presence of a surface enters in the free space calculations as a modification 

of the magnetic field spectrum Iz"3 B (r, w). In the following, only the near field noise 

is taken into consideration given the close proximity of the atoms to the substrate. 

A calculation of the magnetic noise spectrum above a metal surface was done by 

Varpula and Poutanen [681 along the lines of the stochastic approach introduced by 

Rytov et aL [70]. The key idea is to consider a conductor as a dissipative medium 

with random fluctuations of charge and current. The noise current for each unit 

of volume can be calculated via Nyquist's theorem and the single spectral density 

contributions are incoherently summed to give the total magnetic field noise, which 

correspond to assume that the oscillations from each unit are not correlated to the 

ones coming from others units. In the context of microtraps, this approach was 
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1.3 Near-field noise 

adopted by Henkel in one of his works on coherent transport of matter waves [471. 

An alternative approach using the fluctuation-dissipation theorem for the mag- 

netic field itself was put forward by Agarwal [67]. A close investigation of the re- 

sults obtained with the incoherent averaging used in [47,68] shows that the spin-flip 
loss rates have the correct order of magnitude, but differ by some numerical fac- 

tor when compared to the results predicted by the fluctuation-dissipation theorem 

approach. The latter has been used by several authors to describe and calculate 

magnetic noise in small and noisy traps [45,49-511. In this method, the calcula- 

tion is done for each dipole source. For example, if F(r, w) is the force field at a 

position r due to a classical disturbance localized at ro (for example the electric 
field of an oscillating dipole located at ro), the average linear response to this field 

in thermal equilibrium conditions is proportional to the system variable s in terms 

of a Green tensor such that 

(Fi (r, t; ro)) = e-w' Gij (r, ro; w) si. (1.37) 

The fluctuation-dissipation theorem states that the correlation function of the fluc- 

tuating force, in this case the electric field, has to be proportional to the imaginary 

part of the response function, hence 

.i. S' (rl, r2; W) oc 2h(nth + 1) ImGij (rl, r2; W) (1.38) F 

The total electromagnetic field is the sum of the field in vacuum plus the field 

reflected from the surface. The modification of the thermal radiation in the neax 
field is contained in the Green tensor together with all the information on the 

dielectric matter. 
The same conceptual framework is used in Ref. (49] where a first-principle 

derivation of the spin-flip transition rate is presented. The calculations are based 

on the quantization of an electromagnetic field in the presence of a dispersing 

and absorbing dielectric body as explained in Chapter 2. The idea is to add a 
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1.3 Nem-fleld noise 

noise polarization to the macroscopic inatter polarization ill order to Satisfy the 

fluctuation-dissipation theorem. The fluctuating part of the polarization accounts 

for the loss in the medium and plays ail important role in the determination of tl)(, 

electric field. In particular, in Ref. [49] a general expression for the spontaileoll" 

and thermal spin-flip rates of an atoin coupled to the magnetic field has been 

derived as 

B 
2(PBgS)2 

po-(fjSqji)(ijýpjf)(ntj, + I)Ini Vx G(r, r, ýojf) xV (1.39) 
h 

1ý 

qp 

which exhibits a structure similar to Fermi's golden rule Eq. (1.30). 

Lifetime dependence on length scales 

The relevant length scales for the system of an atom above a planar substrate are 

given by the thickness of the substrate h, the atom-surface distance d and the skin 

depth 6 [45,47,49-51,67], as illustrated in Fig. (1.6). For certain regimes it is 

A 
d 

I lh 

Figure 1.6: Schematic representation of the system geoilieti-y. The atoin is, located in 

vacumn at a distance d from a plain metallic layer of thickness h and skin depth 6. 

possible to obtain analytical results for the spin-flip lifetime -r = I/r' aýs function 
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of those parameters as presented by Scheel et al. [50] 

d4 
5 d, h, Ts 

82 'ro (W)2 J2 d 
S, h>d, (1.40) 

(3) 

nth+ 1C2 
J2d2 

5dh. 

i 

-ýh- 

The trapping lifetime of an atom as a function of the skin depth has been 

discussed in detail in [50] and is found to be longer above a thin metal layer than 

above a bulk metal. In particular, the lifetime has a minimum for thin films at 

- vfh-d-, while for thick slabs the minimum is at J .. j,, - d. Atom-surface 

distances of the order of the skin depth should then be avoided, however, for 

experimental realizations using metals such as copper or gold the typical atom- 

surface distances are roughly in this range [8,101. 

A thin metal film provides significantly longer lifetimes, (third line in Eq. (1.40)), 

with respect to a bulk material, (second line in Eq. (1.40)). In both cases 7 oc P, 

with the difference that the thin film gives a longer lifetime by a factor of d1h. 

The simplest model to explain thermal fluctuations in this regime is based on the 

assumption of local thermodynamic equilibrium. According to Henkel [51], the 

thermal-current noise spectrum is proportional to the mean occupation number 
(e hwlkBT _ j)-1 - kBTlhw and to the imaginary part of the (local) dielectric func- 

tion Im[c(r, w)]. The latter is due to the phenomenon of absorption of excess field 

energy by the matter and will be explained in more detail in next Chapter. Only 

thermal currents in the skin layer, of thickness 

-2 
C2 2 

lel 110aw 
(1.41) 

(with o, the substrate conductivity) contribute to the magnetic noise while the 

ones occurring in the rest of the substrate are damped before reaching the vicinity 

of the surface. The magnetic noise spectrum in the magnetostatic approximation 
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1.3 Near-field noise 

(valid at small distances d< 5), is independent of frequency. The power laws 

are [47,51,52] 

half space SB '1 (1.42) 
d' 

thickness hh (1.43) SB ' T2-) 

which are in agreement with the last two lines of Eq. (1.40). 

For skin depths J much smaller than the atom-surface distance d, the two 

cases of thick and thin slabs present the same behaviour. The radiating layer, 

i. e. the noise source, has the thickness of the order of J, and the atomic lifetime 

scales as J-1, as described by the first line in Eq. (1.40). This power law can be 

understood by considering that the thermal-current noise spectrum is proportional 

to Im[f(r, w)]. The incoherent summation of the contribution due to each dipole 

gives 
rB OC dr Im[f(r, w)] CrJ8 oc dr e-r/j, (1.44) jf 

T2 

VV 

where r is the distance between every single radiating dipole from the source point, 

and the integral is performed over all the skin layer volume V. Scaling the length 

parameter r in Eq. (1.44) with 5 gives a factor 5' such that ]pB =, r-1 OC J. In the 

regime of d>J, the noise spectrum follows the power law SB - 11d 4 [45], which 

together with the J-1 dependence explains the first line of Eq. (1.40). 

As a consequence, the magnetic noise levels can be significantly reduced by" 

decreasing the amount of absorbing material or adopting materials with virtually 

no resistivity. Both approaches are addressed in this thesis by considering a carbon 

nanotube as a current carrying wire in Chapter 3 and investigating the interaction 

of an atom with a thin superconducting film in Chapter 5. 
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1.3 Near-field noise 

Decoherence 

The coupling of the atom to neax-field magnetic noise can ultimately lead to the 
destruction of quantum superpositions or interferences [24,109]. 

The theoretical framework used to describe decoherence usually adopts the 

density matrix formalism for the trapped atoms. The diagonal elements of the 

density matrix represent the occupation probabilities while the off-diagonal ele- 

ments, or coherences, describe the quantum features of the system. The decay 

of those elements is referred to as decoherence. Magnetic-field fluctuations af- 
fect coherences and cause both the randomization of the relative phase in internal 

superposition states, i. e. phase noise, and the fluctuation of the center of mass 

motion, i. e. longitudinal decoherence. 

Phase noise manifests itself in a shift of the Larmor frequency due to fluctu- 

ations in the magnetic field. As a consequence, the relative phase between spin 

states varies in a random way. The off-diagonal matrix elements of the atom's 
density matrix axe proportional to (exp(iAýp)) where Aýp is the phase shift ac- 

cumulated during an interaction time t. Given two spin states 17nF) and Im' ) F 

and denoting by AB(t) the magnetic field noise, the corresponding frequency shift 
is [24] 

, (t) 9PB(MF-7n'F)AB(t) 
(1.45) 

h 

which means that the spectrum SO (w) of the frequency fluctuations is proportional 
to the magnetic-field fluctuations. Near-field noise can perturb the coherence be- 

tween different hyperfine states by inducing random transitions. In paxticular, 

spurious Raman transitions represent a source of decoherence whenever two hy- 

perfine states axe chosen as qubits to perform quantum gates [28,31,34,36]. 

Coherence lifetimes of internal spin states have been measured by Treutelin et 

al. [32]. They realized a coherent superposition of the two hyperfine ground states 
IF = 1i MF = -1) =_ 10) and IF = 2, MF = 1) =_ 11) of "Rb. By means of Raman 

spectroscopy, the atomic cloud coherence-lifetime was measured for different atom- 
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1.3 Near-field noise 

surface distances d and was found to decrease from 11 s for d< 20 Pm, to 1.6 s for 

d=5 pm, which is in agreement with Eq. (1.40). They did not take measurements 
for smaller distances as the magnetic field fluctuations significantly limited the 

trapping lifetime. 

Whenever the magnetic noise is not spatially homogeneous, scattering processes 

occur that leave the atoms in the magnetic trap but perturb their center of mass 

motion [24,47,48,53]. For example, fluctuations can induce decoherence by driving 

transitions between the motional states of the trapped atoms, (i. e. vibrational 
decoherence), and between transverse trap states, (i. e. longitudinal decoherence). 

Both phenomena can be described by assuming that the transverse motion is frozen 

out such that the motion along the guide axis z can be safely considered quasi- 
free. The quasi-free wavefunction for a trapped spin state Is) is perturbed by the 

magnetic potential 
V(r, t) = (slitll Is)ABII (r, t), (1.46) 

where B11 refers to the magnetic field component parallel to the wire. The evolution 

of the atomic density matrix in the position representation describes the decoher- 

ence in terms of a rate ]Pdec(l) as a function of the spatial separation 1=z-Y. In 

paxticular, a spatial decoherence rate has been derived in Ref. [47] in the context 

of matter-wave transport in waveguides. In Chapter 4 of this thesis, similar results 

are obtained by a first principle derivation of spatial atomic-sublevel decoherence 

neax dielectric and metallic surfaces and an analytical study for small separations 
is presented. 

1.3.2 The Casimir-Polder interaction 

The structure of the vacuum electromagnetic field is strongly modified in the vicin- 
ity of a dielectric surface. In particular, at a distance d from the surface the spatial 
distribution and spectral density of the electromagnetic field axe substantially al- 
tered for frequencies below c1d. In the presence of macroscopic bodies, an atom 

experiences a nonvanishing force due to electromagnetic field fluctuations which 
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induce virtual electronic transitions and energy shifts known as Lamb shifts. An 

attractive force originates from the gradients of the spatially varying Lamb shifts. 
The first discussion of this effect dates back to 1948 and to the work of Casimir 

and Polder [13]. Several theoretical approaches have been subsequently developed 

[12,14,16,17]. The range of the van der Waals interaction is limited by distances 

of the order of A/27r, where A is the wavelength of the dominant virtual dipole 

transitions of the atom. For alkali-metal atoms, A is the wavelength of the D, and 
D2 transitions. In the short distance regime d< A/27r, the potential is described 

by a power law Udw oc 11d', while for distances d> A/27r the potential becomes 

weaker. It approaches the power law UCp oc 11d' for laxge distances. The very 
first measurement of the Casimir-Polder force has been reported by Hinds et al. 
in [15] and more precise estimations have been presented later on by Harber et al. 
in [11]. 

In the context of microtraps, the effect of the Casimir-Polder potential is to 

lower the trap depth which causes the loss of atoms towards the chip surface. 
Lifetime measurements at different heights have been performed by Lin et al. [10], 

which indicate that dispersion forces have a short decay length and compete with 

the confining potential such that the trap disappears at finite distances d from the 

surface. 
The approximation of the Casimir-Polder potential as a step potential suggests 

the occurrence of quantum reflection. Interpolating the two asymptotic behaviours 

above, the Casimir-Polder potential for an atom at a distance d from a solid surface 

can be approximated by [181 

C4 
(1.47) Ucp 

(r + 3, \/27r2), r3 * 

Classically, an atom incident on such a potential will be accelerated toward the 

surface and would experience either inelastic scattering or absorption. A quantum 

mechanical treatment of an atom-surface collision reveals that the atom is re- 
flected from the purely attractive surface potential, if the potential energy changes 
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abruptly on a length scale compaxable with the atom wavelength. Quantum re- 

flection of ultracold atoms from the attractive potential of a solid surface has been 

studied by Pasquini et al. [18,191, who observed reflection probabilities of up to 

60 % at low incident velocities (0.5-2.5 mm/s), and showed that the Casimir-Polder 

potential can be shaped by structuring the surface. 

40 



2 

QED in dielectric matter 

In recent years, there has been considerable interest in the properties of radia- 

tion fields in the presence of absorbing dielectric matter. The polarization of the 

medium alters dramatically the ground-state fluctuations of the electromagnetic 
fields compared to free space. In particular, a medium with dielectric properties 

modifies an electromagnetic field imposed on it. The responses of some media 

may be described in terms of induced dipole moments or induced current density. 

Those responses affect the statistical properties of the electromagnetic field, typical 

consequences being the Casimir effect [10-15) and the modification of spontaneous 

emission rate of excited atoms [20,21]. Moreover, as seen in the previous Chapter, 

the behaviour of atoms magnetically trapped near a dielectric body is strongly 

altered by the coupling with fluctuating fields taking place inside the material. 
In order to deal explicitly with the statistical and quantum properties of fields in 

dielectric media, the quantization of those fields is required. 
The quantum theory of radiation in the presence of dielectric bodies has been 

widely studied and the quantization of the electromagnetic field in dielectric me- 
dia with assumed real and frequency-independent permittivity has been proposed 
in various schemes (110-1121. Dispersive dielectrics have been considered as well, 
however, a dielectric that shows dispersion must be lossy and its permittivity, 
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which is a complex function of frequency, has to satisfy the Kramers-Kronig re- 

lations [113,114]. They state that the real part of the permittivity (responsible 

for dispersion) and the imaginary part (responsible for absorption) are connected 

with one another. The existence of the imaginary part of the permittivity does 

not allow the usual mode expansion of the electromagnetic field. An expansion 

of the field in terms of damped (nonorthogonal) waves would not be complete, at 

least in frequency ranges where the absorption cannot be neglected. 

An increasing number of investigations have been dedicated to a novel for- 

mulation of quantum electrodynamics in dielectric media with complex permit- 

tivity [71-75,115-122]. A quantum-mechanically consistent approach presented 
initially by Huttner and Baxnett [115] relies on the microscopic Hopfield model 

of a bulk dielectric [123]. The dielectric is described as a polarization field and a 

continuum of reservoir fields accounting for absorption, and the radiation-matter 

Hamiltonian is diagonalized performing a Fano-type diagonalization [124,125]. The 

resulting vector potential is expressed in terms of the Green tensor of the classi- 

cal scattering problem and frequency-dependent bosonic field operators axe intro- 

duced. The electromagnetic field operators are then expressed in terms of those 

fundamental bosonic field operators via the Green tensor. 

This Chapter focuses on how the classical phenomenological Maxwell equations 

of the electromagnetic field in the presence of dielectric matter can be transferred 

to quantum theory. In Section 2.1, the basic properties of Maxwell equations axe 

summaxized and a polaxization noise accounting for absorption in dielectrics is 

introduced. In Sec. 2.2, the quantization is performed by replacing the dynamical 

field vaxiables with bosonic field operators. 

2.1 Basic equations 

The propagation of radiation in a dispersive and lossy linear dielectric that is 

free of external sources is frequently described by the phenomenological Maxwell 
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2.1 Basic equations 

equations [126-128] 

V-D(r, t) = 0, (2.1) 

VxH(r, t)-i)(r, t) = 0, (2.2) 

VxE(r, t)+lä(r, t) = 0, (2.3) 

V. B(r, t) = 0, (2.4) 

where E and B denote the electric field and magnetic induction. The electric 
displacement D and the magnetic field H are the corresponding derived fields 

which, for a dielectric responding linearly to the electric field, are defined according 
to 

(r, t) = co 
[E 

(r, t) +I d-r X(r,, r) E (r, t- r) (2.5) 
00 

011 

where X(r, t) is the dielectric susceptibility, and for non-magnetic matter it may 
be assumed that 

H(r, t) =1B (r, t). 
/to 

(2.6) 

The electric field and the magnetic induction can be expressed in terms of the 

vector potential A as 

E(r, t) = -A(r, t), (2-7) 

B(r, t) = VxA(r, t), (2.8) 

and the Maxwell equations are satisfied when 

V'A(r, t) -1 (r, t) + d7- x(r, -r) Ä(r, t- 7-) 0. (2.9) jf IÄ 
01 
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2.1 Basic equations 

To discuss dispersion it will be necessary to make a Fourier decomposition of E(r, t) 

and D(r, t) [and B(r, t) and H(r, t)], and A(r, t) as 

00 
A (r, t) 

f 
dwA(r, w)e-w', (2.10) 

00 

such that Eq. (2.5) becomes 

R(r, w) = -o, - (r, w) E (r, w), 

where the underlined quantities represent the respective Fourier components. The 

permittivity -(r, w) is defined as 

00 
+I drewtx(r, 7-), (2.12) 

0 

and because the susceptibility X(r, 7-) is a real function yielding a real polarization 

field, the permittivity is in general a complex function of frequency, c(r, w) = 

ER (r, w) + ic, (r, w). Its real and imaginary parts, which are respectively responsible 

for dispersion and absorption, axe uniquely related to one another via the Kramers- 

Kronig relations [113,1141 

CR (r, w) 
f 

dý,;, el (r, w) (2.13) 
7r W/-w 

dw' 
CR (r, w') -1 (2.14) 

7r 

I 

w/ -w 

where P denotes the principal value. Furthermore, -(r, w) as a function of complex 

w satisfies the relation 

c(r, -w*) = e*(r, w), (2.15) 

and is holomorphic in the upper complex half-plane without zeros. 
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2.1 Basic equations 

The wave equation (2.9) is satisfied when 

V2 A(r, w) + 2-e (r, w)A(r, w) = 

In quantum theory, Eq. (2.9) and Eq. (2.16) are not valid as operator equa- 

tions for &(r, t) and A-(r, w), otherwise &(r, t) and &r, w) would be spatially 

damped and the equal-time canonical commutation relation, i. e. of the field 

= -L4Jij'(r - r'), would not be preserved, and you can see 
'-0 

that E(r, t) is the canonical conjugate of ý(r, t). From the quantum theory of 

damped systems, it is well known that the transfer of classical evolution equations 

to quantum operator equations requires the introduction of additional noise op- 

erator sources into the equations. The noise that is unavoidably associated with 

absorption can be though of as arising from a noise current JN such that 

V2 w 
A(r, w) + 7E(r, w)A(r, w) =:! N(r, w). (2.17) 

An equivalent way of including absorption is by introducing a macroscopic 

polaxization noise term PN in the relation between the electric displacement D 

and the electric field E as 

Il(r, w) = soe (r, w)E(r, w) EN (r, w), 

such that 

2IN (r, w) = -iwPN (r, w), (2.19) 

In general, the dependence of P(r) on the electric field is rather complicated and 

highly non-linear. Here, the attention is restricted to the first term in the pertur- 

bative expansion of P(E) and therefore to media that respond linearly and locally 

to the electric field such as 

R(r, w) = Eo[c(r, w) - 1]E(r, w) +PN(r, w). (2.20) 
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2.1 Basic equations 

The Maxwell equations (2.1-2.4) in the frequency domain and in presence of a 

medium now read 

coV-6(r, w)E(r, w) = pN(r, w), (2.21) 

(2.22) 

VxE(r, w)-iwB(r, w) = 0, (2.23) 

V. B(r, w) = 0, (2.24) 

where PN (r, w) is the noise charge density, defined as 

EN(r, w) = -V -, PLN (r, w), (2.25) 

which obeys the continuity equation 

V- JN(r, w) = iwp N 
(r, w). (2.26) 

The Maxwell equations (2.22) and (2.23) imply that E(r, w) satisfies the partial 

differential equation 

2 

xVx E(r, w) - T26(r, w)E(r, w) = iwpoJN(r, w), (2.27) 

which is solvable in terms of the dyadic Green function G(r, r', w) as 

E(r, w) = iwpo 
f 

d'r'G (r, r', w) - JN (r', w). (2.28) 

The Green tensor has to be determined from the Helmholtz equation 

2 
VxVx G(r, r, w) -7 c(r, w)G(r, r', w) = J(r - r') (2.29) 

together with the boundaxy conditions at infinity. In Cartesian coordinates, Eq. (2.29) 
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2.2 Field quantization 

reads 
lar W2 -k- Jik 

7e(r, w)] Gkj (r, r, w) = JijJ(r - r') (2.30) ail 7, 

(air = alaxi), where repeated vector indices are summed. An important conse- 

quence of the differential equation (2.30) is the integral relation [75] 

d 3SW 2 
EI(s, w)G(r, s, w) - G*(r', s, w) = Im[G(r, r', w)]. (2.31) j 

The Green tensor has the following properties [76] 

(2.32) 

Gij (r, r, w) = Gji (r, r', w). (2.33) 

Eq. (2.32) is a direct consequence of the relation (2.15) for the permittivity. More 

details about these properties and their proofs are given in [76]. 

2.2 Field quantization 

The Maxwell equations (2.2l)-(2.24) can be transferred to quantum theory by 

regarding the electromagnetic field and the noise polarization field as operators. 
As shown in Eq. (2.25) and Eq. (2.19), the source terms &(r, w) and JýN(r, w) 

are closely related to the noise associated with the losses in the medium, which 

themselves are described by the imaginaxy paxt of the permittivity. The current 
density !N (r, w) can be related to a bosonic vector field f^ (r, w) as shown in [73,116], 

as 

W 
ý07cj(r, 

w)i(r, w) ! 
N(r, 

V 
0--- (2.34) 

where i (r, w) and it (r, w) represent the collective excitations of the electromagnetic 

field, in terms of medium polarization and the absorbing dielectric medium. They 
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2.2 Field quantization 

satisfy the commutation relations 

= gkk'J(r-r)5(w-w'), (2.35) 
[ik(r, 

w), lk, (r', w')] = 0. (2.36) 

and the Hamiltonian of the composed system reads 

d 3jr dw hwkt (r, w) - 
k(r, w). (2.37) 

0 

Combining Eq. (2.19) and Eq. (2.34), it is now possible to write the noise polar- 
ization as 

0 (r, w) t(r, w). 
q0 

ci- 
(2-38) 

In order to understand the physical meaning of t(r, w), it is worth to develop 

the quantization scheme for the electromagnetic field in dispersive and absorptive 
linear dielectrics developed by Huttner and Barnett [115]. Their scheme is based 

on the Hopfield microscopic model for a bulk dielectric [123] where the matter is 

represented by a harmonic polarization field due to a collection of N harmonic 

oscillator fields. The polarization field is coupled to a continuum of harmonic 

oscillators representing a reservoir. The phenomenon of absorption is explained as 

a flow of energy from the medium to the reservoir. The coupled radiation-matter 
Hamiltonian is bilinear, such as kit oc ý-ý (ý is the momentum of a charged 

particle, and ý, the vector potential). After a Bogoliubov transformation, the 

vector potential A can be expressed in terms of the basic field variables f (r, W) and 
it (r, w), regarded as the annihilation and creation operators for the eigenmodes of 
the system, also known as polaritons. The Hamiltonian Hi,, t can be diagonalized 

by performing a Fano-type diagonalization [115] and it assumes the form shown 
in Eq. (2.37). 

The classical electromagnetic fields E(r, w) and B(r, w), will now be regarded 
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2.2 Field quantization 

as operators and the combination of Eq. (2.19), Eq. (2.28) and Eq. (2.38) leads to 

t(r, 
w) =iw2 

Id 3 
r'N7, c-, ý(rl, j)-C (r, r', w) - i(r', w), (2.39) F71e-I0--i 

i3(r, w) = (2.40) 

Integration over w then yields the electromagnetic field operators in the Schr6dinger 

picture 

f 00 
&A(r, w) + H. c., (2.41) 

00 
dwB (r, w) + H. c.. (2.42) 

This quantization scheme satisfies the basic requirements of quantum theory, 

in the form of equal-time commutation relations, and statistical physics, in terms 

of the fluctuation-dissipation theorem. It has been shown in [76] that the electric 

and magnetic field respect the correct commutation relations 

[kk (r), 41 (rf)] [f3k 
(r), f3l (rl)] = 0, (2.43) 

[coPk(r), f3j(r')] 
-irlfklmOm'rJ(r-r'). (2.44) 

A way to see that the fluctuation-dissipation theorem [126] is satisfied, is to con- 

sider the vacuum expectation values of the correlation function of E(r, w) and 

w) at zero temperature 

hw 21 
LEk (r, w)E 

10 Im [G(r, r, (r', w')) 
7r 

W)]kl 6(W - WI)s (2.45) 

I hpo 
w) B; (r , W')) Im 

7r 
IV x G(r, r, w) x V] 

kl 
6(W (2.46) 

The above equations illustrate that the fluctuations of the electric field are de- 

termined by the imaginary part of the Green tensor, while the fluctuations of the 

magnetic field are determined by the imaginary part of the curl of the Green tensor 

taken with respect to both position arguments r and r'. Both relations are consis- 
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2.2 Field quantization 

tent with the fluctuation-dissipation theorem, as the Green tensor (or the curl of 
the Green tensor) plays the role of the response function of the electric (magnetic) 

field to an external perturbation. Moreover, if the system of the electromagnetic 
field and absorbing matter is in thermal equilibrium at some temperature T, the 

correlation function of the dynamical variables reads 

(r, w) 
it (r', w) (ilth + 1) J (r - r') J (w - w') U, (2.47) 

with U the unit dyad and ýIth the mean thermal photon number given in Eq. (1.35), 

such that the expectation value of the magnetic field fluctuation can be written as 

VxG(r, r', w)xV](ftth+l)S(W-Wf)- (2.48) 

Finally, it is worth pointing out the limitations of the quantization scheme 

presented in this Chapter. The form of the polaxization, Eq. (2.38), is valid only 
for strictly locally responding materials. This is equivalent to the assumption that 

the elementary dipoles linked to the polarization axe essentially fixed in space. 
Certainly, for metals this is not true as chaxge carriers can move around freely 

for considerable distances. However, the locality assumption can be upheld in 

situations in which the mean free path length of the conduction electrons is much 

shorter than all the other length scales in the system under consideration. While 

this is certainly true for ordinaxy metals at room temperature and geometric length 

scales of several micrometers, corrections due to spatially nonlocal response (the 

anomalous skin effect) axe expected for metals or superconductors at very low 

temperatures as considered in [50,51]. 
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Trapping an atom near a carbon nanotube 

The creation of microscopic traps and guides for neutral atoms close to surfaces 
is possible using nanofabricated structures. Long trapping lifetimes and robust 

confinement are the key requirement when neutral atoms need to be prepared and 

manipulated efficiently. Both objectives are achievable by reducing the dimen- 

sions of the atomic traps as much as possible and by choosing materials with low 

magnetic field noise. 
The trapping magnetic field may be tailored to achieve ever shorter atom- 

surface distances. However, an atom located in close proximity to an absorbing 
dielectric body undergoes thermally-induced spin-flip transitions that result in 

the atomic loss [8-10]. The origin of these transitions lies in fluctuating elec- 

tromagnetic fields which can be attributed to resistive noise in the substrate 
[7-10,45,46,49,511. In addition, these fluctuations interact with the atom and 
induce virtual electronic transitions that lead to an attractive force - the Casimir- 

Polder force [10-17]. The potential generating this force adds to the magnetic con- 
fining potential, thereby lowering the trap depth and causing the trap to become 

unstable at small distances. The reduction of magnetic fluctuations is possible 

either by using materials with less resistive noise or by using a smaller amount of 
dielectric matter to trap the atoms [50]. This Chapter address the latter case by 
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3.1 Carbon nanotubes 

putting forward the idea of adopting carbon nanotubes (CNs) as current carrying 

wires. 
Carbon nanotubes are graphene sheets rolled up into cylinders with diameters 

of the order of a few nanometers (see, for example Ref. [77]). The extensive 

work carried out on CN has revealed their intriguing properties [78,79] and their 

possible utility in the miniaturization of many different devices such as electronic, 

mechanical, and scanning probe devices [80]. Given their electrical properties and 
their reduced dimensions, CNs seem to represent rather attractive structures for 

the design of miniaturized magnetic traps [81]. Since disorder is generally weak 
in carbon nanotubes, the current density distribution is spatially homogeneous, 

which is less likely to induce inhomogeneities in the potential surface of the trap. 

Moreover, they consist of a very small amount of dielectric matter which means 

that unwanted dispersion forces, such as the Casimir-Polder force, are minimized. 

This Chapter is organized as follows. In Section 3.1 the basic concepts about 

carbon nanotubes and their conducting properties are introduced. In Section 3.2 

the spin-flip lifetime for an atom near the outside of a metallic nanotube is calcu- 
lated and compared to the limiting effect of the Casimir-Polder potential. 

3.1 Carbon nanotubes 

Carbon nanotubes axe a one-atom thick two-dimansional structures that can be 

thought of as a hexagonal network of carbon atoms rolled up to make an extremely 

thin (seamless) cylinder, as schematically represented in Fig. 3.1. Each end of the 

cylinder is capped with half of a fullerene molecule which implies that the diameter 

of a nanotube can be as small as the fullerene molecule itself. 

Interest from the reseaxch community first focused on electronic properties 

of carbon nanotubes. Those properties are due to the quantum confinement of 

electrons normal to the nanotube axis. In the radial direction the electrons are 

confined by the monolayer of the graphene sheet and they can only propagate 

along the nanotube axis. 
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3.1 Carbon nanotubes 

Figure 3.1: Schematic of the carbon nanotube geometry, taken from Ref. [129]. 

All carbon nanotubes derive their conduction and valence bands from those 

of a graphene sheet. A CN can be metallic or semiconducting with its electrical 

properties determined by the way the graphene sheet is rolled. Nanotubes rolled 

in different ways, or with a different chirality, exhibit different electronic band 

structures. A lattice vector between two hexagons is usually defined as R,,, b :, " 

ax +by where a and b are integer numbers and x and y are the unit vectors of the 

two-dimensional graphene lattice as shown in Fig. 3.2. The vector Ra, b defines a 

periodic condition by connecting two graphene points that one identifies in order 

to create a nanotube. Depending on a and b, carbon nanotubes axe either semi- 

conducting or metallic and in the following the tubule index (a, b) is adopted. In 

particular, a CN exhibits metallic properties when 2a +b= 3n, where n is again 

an integer [130-133]. An (a, b) carbon nanotube has one-dimensional electronic 
band [130] 

2rN a+ ýb t 
E±(N, p)=±to 1+4cos pt) cos 

L' +4 COS2 
Ltr (3.1) 

v(a 

2a 22 

where I=2.13 A is 2 times the interatomic distance, to = 4.32 x 10" J is the 2 

tunnelling energy of the electrons along the lattice sites, N=0,1, ..., a-1, and 

-7r/I <P <7r/I where p is the wave number of the first Brillouin zone. The plus 

and minus subscripts stand for the conduction and valence band, respectively. 
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3.1 Carbon nanotubes 

Figure 3.2: Parametrization of nanotubes, taken from Ref. [1301. Vectors x and y 
stand for the unit vectors of graphene lattice. The integer numbers a and b refers to 
the way the nanotube is rolled up. A nanotube (a, b) is formed by rolling the graphene 
sheet such that the hexagon 0 is overlapped with the hexagon (a, b). 

In order to address the interaction between an atom and the vacuum electro- 

magnetic field in the vicinity of a carbon nanotube, the electrodynamical properties 

of a CN need to be considered [129]. The electromagnetic response of a single CN 

can be modeled through effective boundary conditions by replacing the real nan- 

otube with an infinitely thin cylindrical surface [134]. Optical processes such as 

absorption and diffraction are well described by the dielectric function -(W). For a 
linear dielectric medium, the relation between a(w) and c(w) is given by [127,135] 

C(W) 
-1= iol(w) 1 (3.2) 

60 WEO 

where -, (w) = -(w)lEo is the (complex) relative dielectric permittivity. Because 

of the cylindrical structure of CNs, the polarization of the electromagnetic field 

is parallel to the nanotube axis [130,136-139]. The azimuthal current can be 

neglected and the axial conductivity per unit length can be expressed as [129,130] 

uzz (R, w) =- 
ZWE0 Er (R, w) 1 (3.3) 

PT 
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3.1 Carbon nanotubes 

where R= (RCNi 01 Z) is the radius vector of an arbitrary point on the CN surface, 

S is the cross-sectional area of a single nanotube, PT is the tubule density and 

c,. = c; ' is the axial component of the permittivity tensor. The relative dielectric 

permittivity is then given by [130] 

+ Er'(W), (3.4) 

where ed(W) 
r is the dynamic conductivity due to the free carrier and represents 

the main contribution to the conductivity. For high frequency regimes, transitions 

between the conduction and the valence bands take place and an additional con- 

tribution c b(w) needs to be considered. A detailed calculation of the permittivity r 
is presented in Appendix A. 

Unit conversion 

For the sake of completeness, it is worth pointing out here that almost the totality 

of the work cited in this Section and in Appendix A adopts Gaussian units. The 

transition from Gaussian units to SI units is straightforwaxd, but attention is 

required when calculating the axial conductivity. The axial conductivity (per unit 

length) in Gaussian units reads [129,130] 

o, zz(R, w) = -iw 
c, (R, w) 1 (3.5) 

47rSpT 

To obtain the conductivity per unit length in SI units, as plotted in Fig. A. 1, it 

is then sufficient to multiply Eq. (3.5) by a factor 1/(47reo) = 10-7C2 . 
Analogous 

attention needs to be taken when obtaining effective boundary conditions for CNs. 

3.1.1 Green tensor of a single wall carbon nanotube 

This Section shows how to obtain the dyadic Green tensor for a single-wall CN 

together with the corresponding boundary conditions for the electromagnetic field 

on its surface. For a single-wall nanotube, the carbon layer can be approximated 
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3.1 Carbon nanotubes 

by a layer with zero thickness. The Green tensor will then be discontinuous in its 
first spatial derivative across the caxbon layer. 

Due to the cylindrical symmetry, the problem can be described adopting the 

cylindrical basis f e,, e., e_, } with the CN directed along e,,. The method of scat- 
tering superposition is used (see, e. g. [140,141]). For an atom located at r' outside 
the CN, the Green tensor can be written as 

Go(r, r', w)+G(s)(r, r', w), r>RcN, G(r, ri, w) (S) IR 
(3.6) 

GT (r, r, w), r< RCN) 

where GO (r, r, w) is the unbounded Green tensor representing the contribution 
of direct waves from a source at r' to the point r. The two scattering contribu- 

tions G(9) (r, r, w) and G(s)(r, r', w) describe the reflection and transmission of RT 

waves from/through the cylindrical surface. In order to satisfy the homogeneous 

Helmholtz equation and the radiation condition at infinity, the vacuum term and 
the two scattering terms are written as [141] 

fig(r r') i 00 00 2 
Go (r, r', w) k2 + dhE -2 

00 

T7r 

I 

n=O 77 

Mýl)(h)M'. �(-h)+Nýl)(h)N'�, 
(-h) r>r', n0n0 

�(h)N'ý, 
1)(-h) r< r', Men(h)M'(1)(-h) + Ng en en 

00 
G(S) 

i 
dh 

2- Jno 
R T7-r 

fE2 

n=O 77 

1) x 
f[ClHM, ýn(h)+C2HNo(ln)(h) M'e(l)(-h) n 

+ [CivN2)(h) + C2vM(l)(h) N'(1)(-h) 
on On 

I 
en 

(3.7) 

(3.8) 
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3.1 Carbon nanotubes 

00 
G(s) (r, 

i 
dh 

2-6,, o 
TIE2 

-00 
n=O 

77 

1 X 
ý[C3HM. 

en(h)+C4HN. �(h)]M'ýý)(-h) c en 

+ [C, 3vN,. �, (h) + C4VM-n(h)] Ne(1) (-h) (3.9) 
6n 

where k= w1c andq' = kI - hI. To enhance readability, the tensor product symbol 

0 has been omitted between the even (e) and the odd (o) cylindrical vector wave 
functions which axe defined as 

(Cos) 
nO e 

ihze. 
] 

, ., 
(h) =Vx 

[Z,, 
(77r) 

si /1 
(3.10) Mg 

in 

Ný, (h) =1Vx 17 x Zn(77r) 
( Cos )nOe ih'e.. 

] 
(3.11) 

kI sin, / i 

The symbol Z,, (x) has to be replaced either by the Bessel function J,, (x) or, if the 

superscript (1) appears on the respective vector wave function, by the (outgoing) 

Hankel function of the first kind H, (, ')(x). The primes in Eqs. (3.7)-(3.9) indicate 

the cylindrical coordinates W, 0', z'). The coefficients C,,, p (m = 1,2,3 and 4, and 

P=H, V) need to be determined from the boundary conditions for the electric 

and magnetic field components on the CN surface. 
In order to fulfill the boundary conditions, the density of the electric surface 

current is assumed to be evenly distributed throughout the nanotube surface such 

that it can be considered as a continous current sheet. Ohm's law on the nanotube 

surface may be written as 
J(r) = a(r) - E(r), (3.12) 

where a(r) is the (diagonal) conductivity tensor whose only non-zero element 

is a,,,, (R, w). As no magnetic current density is excited on the surface, the electric 

field satisfies the boundaxy condition 

e� x 
[E(r, 

w)i r=R+ - E(r, W)lr=R- j= 
CN 
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3.1 Carbon nanotubes 

while the electric surface current density creates a discontinuity in the tangential 

component of the magnetic field 

e, x 
[H(r, 

w) I r=R+ - H(r, W) I 
r=R- 

] 
=J(r, W)lr=RCN* (3.14) 

CN CN 

Equations (3.13)-(3.14) translate into the respective boundary conditions for the 

Green tensor 

e, x 
[G(r, 

r, W) 
1 
r=Rc+ - G(r, ri, CN 

W)lr=RCNI 

e, xVx [G(r, r 1, W)lr=R+ - G(r, r', W)lr=R- 
] 

CN CN 

iwpoor(r) - G(r, r, W)lr=RCN* (3.16) 

Substituting the decomposition (3.6), together with Eqs. (3.7)-(3.9), into the 

boundaxy conditions (3.15) and (3.16) leads to 16 linear equations grouped in 

two sets that enable the determination of the coefficients C,,, p. Note that the 

presence of the symbols ± and :: F is due to an opposite sign when the even and odd 

wave functions of Eqs. (3.10)-(3.11) are derived in order to satisfy the boundary 

conditions. The coefficients CmH can be obtained from 
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17 22 

-H�(rir)C2H + 
2'J�(Tir)C4H 

ý 02 (3.17) 
kk 

ihn 
r 

-0,11�(rir)C1H ± %F-H�(i7r)C2H 

+arJn(77r)c3H:: F 
ihn 

J�(rir)C4H = d9rJ�(i7r), (3.18) 
kr 

_172H,, (? 7r)ClH + 772j"(? 7r)C3H = 772j,, (77r), (3.19) 

ihn 
H�(i7r)C1H - kd9, H�(rir)C2H ± 

ihn 
J�(i7r)C3H 

rr 
+ 

(k0, 
J�(i7r) - C4H -'-' ± 

ihn 
Jn(, qr), (3.20) 

kr 

while the coefficients C .. v can be obtained from 

77 2 
H,, (77r)CIV + 71 2 

Jn(77r)C3V ý 
77 2 

J. (77r), (3.21) 
Tkk 

T 
ihn 

H�(? 7r)Civ - 8, I-I�(i7r)C2v 
kr 

± 
ihn J�(rir)C3V+DrJ�(? 7r)C4V =± 

ihn 
J�(rir), (3.22) 

kr kr 

_772H"(i7r)C2v + 172j" (i7r)C4v = 0, (3.23) 

-k0, H�(77r)Civ ± 
ihn 

H�(rir)C2v 
r 

+(kOrJ�(i7r)-iwpou��2J. (77r) C3v 
k 

T 
ihn 

J�(i7r)C4v = kd9, J�(i7r). (3.24) 
r 

The appearance of the axial conductivity o,,,, (R, w) in the boundary conditions 
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(3.20) and (3.24) reflect the jump condition (3.16) of the derivative of the Green 

tensor at the boundary layer. 

The Green function needs to be computed in the region where the atom is 

located and only C(1,2)p has to be determined. On using various properties of the 

Bessel functions such as the Wronskian between the Bessel function J,, (x) and the 

Hankel function H, (, 1) (x), 

(x) H, (, ')'(x) - J,, (x) H, (, ') (x) =2 (3.25) 
7rx 

the only non-zero coefficient is obtained as 

Civ =- 
7rpowRCNO'zz77'J,, ' (77RCN) 

(3.26) 
2k2 + 7rliowRCNOZZ772jn(77RCN)Hn(77&N)' 

Finally, the Green tensor for an atom located at position r' outside the CN can be 

expressed as 

i 00 w., 2- Jo 
G (r, r', w) = Go (r, r, w) + dhE-CjVN(l)(h)N'(1)(-h). (3.27) 

87r 

1-00 

n=O 
712 

en en 

Equation (3.27), together with Eq. (3.7), is the expression for the Green tensor 

used throughout this thesis for a single-wall carbon nanotube. 

3.2 Trapping lifetimes 

Due to the very small amount of matter constituting a carbon nanotube (compared 

to a dielectric bulk material), the noise originating from fluctuating electromag- 

netic fields neax the surface is expected to decrease significantly. Nevertheless, 

thermal spin flips and the Casimir-Polder force cannot be neglected and their ef- 
fects need to be both taken into account. The interplay of these two phenomena 
is analysed in this Section. 

The calculations presented here are valid for a single-wall metallic carbon nan- 
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otube acting as a current carrying wire. In particular, the current sent through 

a (9,0) carbon nanotube is assumed to be I= 20 MA, which seems to be the 

largest current that can be sustained before saturation effects become impor- 

tant [142]. The axial conductivity and the resulting dielectric permittivity 

c(w) of a (9,0) carbon nanotube are calculated in Appendix A. At a frequency 

fo = 70 kHz, chosen to correspond to an offset field B,, = 10-1 T= 100 mG, the 

estimated values of axial conductivity and dielectric permittivity are o,..,, (wo) 

1.19 - 10' +i 11.5 (0m) -' and c(wo) ý_- 3- 1014 i. 

3.2.1 Spin-flip lifetime 

The interaction of an atom with the carbon nanotube can be described within the 

framework of quantum electrodynamics in dispersing and absorbing bodies [76], 

as introduced in Chapter 2. This is a macroscopic theory whose central quantities 

are linear susceptibilities and macroscopic polarizabilities. Carbon nanotubes axe 

probably at the limit to what can be described with in this framework. In addition, 
the use of macroscopic Green functions assumes that one can place boundary 

conditions on smooth surfaces and the application of QED in dielectric matter is 

correct if a CN may be considered as a mesoscopic object [129]. If an atom is placed 
far enough from the surface, say at distances that are several multiples of the bond 

lengths, the CN is seen as a homogeneous object by the probe atom so that the 

detailed structure from the surface cannot be resolved and QED in dielectrics can 

safely be used. This also assumes that the CN contains no impurities and shows 

no pitch alterations. 
The lifetime of an atom due to spin-flip transitions is given by the inverse of 

the spin-flip rate [49] 

2(IZBgS)2 
r= 

C260h 
(f Jýqji) (iJ41f)IM [V x G(r, r, wo) X Vlqk' (3.28) 

where yB is the Bohr magneton, 
ýk is the kth vector component of the electronic 
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spin operator, and gs ; ý-, 2 the electron's g factor. Spin flips occur between the 

initial state Ii) = 12,2) and the final state If) = 12,1). The position r of the atom 

is taken to be at the centre of the trap which, in the haxmonic approximation, is 

the average position of the atom and also the minimum of the trap. 

The spin-flip rate in Eq. (3.28) is given in terms of the dyadic Green ten- 

sor G(r, r, w) which contains the physical and geometrical information about the 

nanotube. If the CN is in thermal equilibrium with the environment at a tem- 

perature T, the total spin-flip rate is given by ]Pt. t : _, ý r(hth + 1) where f1th is 

the mean thermal occupation number given in Eq. (1.35). In Fig. 3.3 the spin- 

100 

10 

I 

10-1 

10-1 

50 100 150 200 
YO (mn) 

Figure 3.3: Spin-flip lifetime of a rubidium atom near a (9,0) caxbon nanotube with 
radius RCN = 3.52 A. The trapping distance yo is varied between 1 and 200 M-n. The 

other parameters are: fo = 70 kHz and T= 380 K. 

flip lifetime rSF ý 1/rt,, t is plotted as a function of the trapping distance yo 

for a temperature T 380 K, corresponding to a thermal excitation energy 

of kBT = 5.2 10-21 J 33 meV). At the transition frequency fo = W0127r = 

70 kHz, the thermally-induced spin flips dominate the spontaneous spin flips be- 

cause hwo = 4.8 10-29 j (ý, 0.3 neV) < kBT. 

The lifetime increases with the atom-surface distance yo and is in agreement 

with the behaviour encountered in [49] for a solid wire. According to Fig. 3.3, at 

atom-surface distances above 20 nm, a lifetime of the order of a few seconds is 
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achievable. The spin-flip lifetime can reach one minute for distances approaching 

120 nm and exceeds more than 100 s for trapping distances larger than 160 nm. 

These results suggest that an atom can be held very close to a metallic CN for 

sufficiently long times, which is in line with the expectations on spin-flip occurrence 

and the atom-loss rate estimations presented in [81]. 

3.2.2 The Casimir-Polder potential 

The presence of macroscopic dielectric bodies changes drastically the structure of 

the vacuum electromagnetic field. One consequence is that an atom in its ground 

state placed sufficiently close to a dielectric body experiences a non-vanishing, in 

general attractive, dispersion force, the Casimir-Polder (CP) force [10-17]. Since 

the CP potential is added to the (repulsive) trapping potential, atoms can tunnel 

through the potential baxrier and get stuck at the nanotube surface. The life- 

time calculated in Sec. 3.2.1 provides information about the distance at which an 

atom can be held before thermally-driven spin flips occur in a given time, but the 

Casimir-Polder force may play an even bigger role for small enough distances. 

The Casimir-Polder potential can be derived in lowest-order perturbation the- 

ory within the framework of QED in dielectric media [16]. For an atom in an 

energy eigenstate 11), the CP potential is given by the body-induced - i. e. depen- 

dent on the quantity of material- (and position-dependent) shift of the eigenvalue 
AEI. The CP potential can be expressed as [14,16] 

U(r) = 
ýpo 

du u2 a(iu)Tý[G(') (r, r, iu)], (3.29) 
00 

27r 

1 

0 

where iu =w and a(w) is the atomic polarizability in lowest-order perturbation 

theory. In particular, for an atom in a spherically symmetric ground state as in 

the case considered here, one finds that 

2 wk 12 a(w) = lim T 
1: 1 IdIk (3.30) 

t-o hk Wk2l - W2 - jWý 
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with d1k = (I IaI k) representing the matrix dipole elements relative to the transition 
from the atomic initial state 11) to the allowed states Ik) with frequency WkI : -: 
(Ek - EI)Ih. The expression of the CP potential in Eq. (3.29) is given in terms 

of the scattering part G(') (r, r, iu) of the Green tensor and the frequency integral 

is performed along the imaginary axis. The Casimir-Polder potential has to be 

compaxed with the magnetic trapping potential in order to establish the impact 

of its effect. 

2 
= 100 nm 

00 

-S 

.9 

-2 

100 150 200 
y (nm) 

= 150 nm 

= 200 mn 

Figure 3.4: Plot of the potential Vt. t given by the sum of the Casimir-Polder potential 
of Eq. (3.29) and the magnetic trapping potential of Eq. (1.3). The three lines corre- 
sponds to three trapping distances yo = 100 nm, 150 rim, and 200 nm, with a 20pA 
current and a spin-flip transition frequency of fo = 70 kHz. 

The total potential Vt,, t given by the sum of the two potentials of Eq. (1.3) 

and Eq. (3.29) is plotted in Fig. 3.4 for three different trapping distances yo = 
100 nm, 150 nm, and 200 nm, considering again a 20 pA current flowing through 

the CN. Among all the possible transitions 11) -4 1k), the only one taken into 

consideration is the lowest electronic transition D2 (5 2S 1/2 --+ 52 P3/2) with fre- 

quency W2 = 2r 384 THz and dipole moment Id2l = 4.227eao [aO: Bohr radius]. 

In contrast to the spin-flip lifetime, temperature effects axe negligible because 

hc/A =4 10-20 j (ý, 0.2 eV) >> kBT which means that the resonant contri- 
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butions [143] axe suppressed. The transition D, (5 2 S1/2--+5 2 P1/2) with frequency 

w, =, 27r 377 THz and dipole moment Id, I=2.992eao has not been included in 

the calculations presented here. Its contribution to the atomic polarizability is 

smaller than the one from the D2 transition although not exactly negligible. The 

order of magnitude of the two contributions is the same which means that the 

atomic polarizability would have the same order of magnitude as well and this 

does not affect too much the compaxison between the Casimir-Polder potential 

and the magnetic trapping potential. Thus the results obtained here can be safely 

regaxded as good estimates. 
As it is evident from Fig. 3.4, Vt. t forms a potential barrier whose height and 

width vary with the trapping distance yo. As previously mentioned, the addi- 

tion of the offset field B. changes the bottom of the potential well from a lin- 

ear to a harmonic trap which is, however, not visible on the scale of the figure. 

When yo decreases, the potential barrier becomes more and more shallow, until 

for atom-surface distances smaller than the critical value of yo = 100 nm, the bar- 

rier effectively disappears and the minimum becomes a saddle point. For trapping 

distances larger than that, the total potential shows a pronounced minimum. For 

example, for yo = 150 nrn the trap oscillation frequency is estimated here to be 

w, = 0.7 kHz, and the width and the height of the potential barrier are 68.6 nrn 

and 3.8 - 10-29 J, respectively. 

The VvKB approximation allows the estimation of the transmission coefficient 
T through a barrier of variable potential V(x) as 

a 
2, y 

1 
T= e- 

I 
dx V2--rn[V(X) 

- El (3.31) 

0 

where V(x) in this case is Vtt, given by the sum of the Casimir-Polder potential 

and the trapping magnetic potential, a is the width of the potential barrier and 
E the energy of the trapped atom depending on the trapping distance yo. The 

corresponding tunnelling lifetime is then Tcp = 27r1(Tw, (yo)). The result is shown 
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Figure 3.5: Tunneling lifetime -rcp as a function of the trapping distance Vo. 

in Fig. 3.5 for a ground-state atom trapped at varying distances yo. From the 

comparison of Fig. 3.3 and Fig. 3.5, it is clear that the effect of the CP force 

cannot be neglected. For small enough atom-nanotube distances (and indeed for all 
distances shown in the figures) the tunnelling lifetime is several orders of magnitude 

smaller than the spin-flip lifetime. For example, at a trapping distance yo = 150 nm 

TSF and rcp are estimated to be 94.4 s and 0.2 s, respectively and a tunnelling 

lifetime of a few seconds is achievable for trapping distances equal or bigger than 

170 nm where the spin flip occurrence is no longer a limiting factor. 

3.2.3 Bound states 

Atoms magnetically confined near a wire are often trapped in metastable states 

and indeed atoms in the trap suggested here occupy resonance states and have no 
true bound states, see for example [97,144,145]. However, for large enough values 

of the offset field the decay rate becomes so small that the resonances can be 

regaxded as stable. For example, for a bias field of 0.3 G, the expected resonance 
lifetime exceeds two hours as pointed out in [145]. 

This may raise the question of whether there are any bound states below the 

trapping distance yo. Those states would be located close to the caxbon nanotube 
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Figure 3.6: Schematic representation of the confining potential for a distance yo = 
150pm from the nanotube surface The wavy line represents a bound state, note that 
the position is totally arbitrary. 

surface such that they would see a delta potential S(O) for the surface and the 

Casimir-Polder potential VCp, as schematically illustrated in Fig. 3.6. If such a 

state exists, it must have an energy lower that the trapping energy at yo. For sim- 

plicity, it is assumed that the atom experiences only the Casimir-Polder potential 

as the magnetic trapping potential is several orders of magnitude smaller for the 

distances considered. The energy of the first bound state can be found by solving 

a radial Schr6dinger equation for the cylindrical Casimir-Polder potential 

02 2m 1 '9 (r9 )-1+ 
(Vcp(r) - E) ý)(r, 0) = 0. (3.32) 

1- 

r 
jr- är- ; 72 äp -F2 

1 

The atom's wavefunction can be separated in an azimuthal and a radial paxt 
because of the cylindrical symmetries of the potential VCp 

0 (r, 0) = ul (r) e"'k, (3.33) 
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such that Eq. (3.32) becomes one-dimensional and can be rewritten as 

1a (r 0) 12 2m 3 
- 

(£3 
+ E)] ul(r) = 0. (3.34) 

[-r 

är- är- Ti 72- 
r3 

In order to solve Eq. (3.34), it may be useful to express the Casimir-Polder 

r (run) 
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Figure 3.7: Casimir-Polder potential (solid line), and numerical interpolation (dotted 
line) according to a power law -C31r 

3 with C3 = 4.6 10-49 j M-3. 

potential as a function of the distance r 

Vcp(r) = -ar-' (a > 0). (3.35) 

In agreement with the results presented in [146], the best power law given by 

numerical interpolation for the distance dependence is found to be r-3 as showed 
in Fig. 3.7 

Vcp(r) = 
C3 

(3.36) 
r3 

with C3 
= 4.6 10-49 J M-3. 

The solution to the differential equation (3.34) is likely to be a combination 

of Hankel functions (spherical Bessel functions) but no analytical solution exists. 
Before looking for numerical solutions, it is worth attempting an estimation of 
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the energy of the first bound state. Among all the attractive potentials with r-, 

dependence, the ones with s=2 lie on the border between atomic radial motions 

that can be stabilized by angulax momentum (s < 2) [147] and those where the 

stabilization is not possible, in principle (s > 2) [148]. This behaviour can be 

understood by considering a wave function that is finite in some small region of 

radius ro around the origin. If the uncertainty in the position of a particle in 

this wave packet is of the order of ro, the uncertainty in its momentum is then 

=- h1ro which corresponds to an average energy W/mr02. An atom experiencing 

the Casimir-Polder potential has a mean potential energy of c- C3/r03. One can 

assume that the atom has an initial potential energy equal to 0, and that it gains 

kinetic energy h2 /mr02 as it rolls down the potential losing part of its potential 

energy C3/r03. A stable radial motion would have 

A2 c3 
; ýý 0, (3.37) 

Mr2 r3 00 

which, for the value of C3 obtained here numerically, corresponds to a wavepacket 

spread of the order of 600 nm. This wavelength is too big to allow for an atom to 

be in a bound state. Hence, no bound states exist apart from those confined by 

the local minimum of the magnetic trap. 

3.3 Summary 

In summary, a novel way of miniaturizing atomic magnetic traps has been ad- 
dressed by considering carbon nanotubes. Their small diameter and the small 

amount of matter they are made of allow the magnetic confinement of atoms in 

the close proximity of the surface. The major loss mechanisms, such as thermally 

induce spin flips and the tunnelling through the Casimir-Polder barrier, have been 

investigated. 

Very promising spin-flip lifetimes have been obtained for distances of the order 

of a few radiuses of the carbon nanotube. However, the alterations of the trapping 
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potential due to the Casimir-Polder interaction are much more severe than the 

limitations due to the thermally-induced spin flips. It appears that the minimal 
feasible trapping distance is larger than 100 nm. The main reason for this lim- 

itation is the fact that single-wall caxbon nanotubes cannot sustain high enough 

currents because of saturation effects, leading to shallower magnetic traps. It may 

be beneficial to consider multi-wall carbon nanotubes as an increased number of 

layers allows higher current densities and so tighter trapping potentials. 

The effect of the temperature has been considered for the two interactions. The 

magnetic transition frequency is typically in the kHz-MHz range which means that 

the mean thermal occupation number at room temperature is very large. On the 

other hand, optical frequencies are relevant in the Casimir-Polder interaction such 

that the mean thermal photon number is almost zero. 

Finally, atoms confined according to the trap presented here occupy resonance 

states and have no true bound states. However, the expected resonance lifetimes 

are rather long for large enough values of the offset field. The possibility of having 

bound states at distances closer to the surface, i. e. between the surface and the 

Casimir-Polder potential, has been taken into consideration. Estimations of the 

energy of the first bound state have been given by approximating the Casimir- 

Polder potential with a power law 1/rI. They show that the wavelength associated 

to such a state would be too big, hence, suggesting that no bound state exists 
between the carbon nanotube surface and the Casimir-Polder potential. 
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4 

Spatial decoherence near metallic surfaces 

Decoherence occurs when a quantum system interacts with its environment such 

that the quantum superpositions of the system are destroyed and macroscopic 

classical features emerge. The preparation, manipulation and measurement of 

the quantum state of a physical system requires robust quantum control over the 

system itself and the loss of coherence due to its interaction with the environment 
is often a matter of concern. For example, control over the coherent evolution of 

atomic wave packets is a key tool and a strong requirement in the context of atom 
interferometry [56-64] and quantum information processing [30,31,33]. Both of 

these rely on the coherent dynamics of macroscopic superposition states created 
by the tunnelling in macroscopic and mesoscopic systems [53,149-151]. 

In this Chapter, the evolution of a macroscopic quantum coherence in a noisy 

environment is explored by considering an atom in a double-well potential, or 

more generally in an optical lattice structure [152]. The study of the latter has 

received much attention over recent years for its potential application in quantum 
information processing [31,33]. The separation of the lattice sites is of the order 

of optical wavelengths (half of the wavelength of the laser adopted to create the 

lattice), which may be considered a macroscopic distance when compared to atomic 
dimensions. The delocalized states resulting from tunnelling over those distances 
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are susceptible to decoherence due to the interaction with the noisy environment. 
In particular, magnetically trapped atoms experience a fluctuating electromagnetic 

field arising from the surface [7-10,45,46,48,49,51] which causes an incoherent 

evolution in each site of a double-well potential. Here, the decoherence properties 

of an atomic spatial superposition state are derived within the framework of the 

quantum electrodynamic theory for the electromagnetic field in dielectric media 

introduced in Chapter 2. 

This Chapter is organized as follows. In Section 4.1, the density matrix of the 

atom is obtained in the presence of a fluctuating magnetic field and an expression 
for spatial decoherence is derived. Section 4.2 focusses on a particular substrate 

geometry, a planar multilayered structure. 

4.1 Spatial decoherence rate 

An atom is placed in one of two adjacent sites of a double well potential or of an 

optical lattice, as shown in Fig. 4.1. Denoting by 11,0) and 10,1) the two sites of 

Figure 4.1: Schematic representation of a double well potential with an atom placed 
in one of the two sites. 

the double well, the atomic density matrix at an arbitrary time to may be written 

in the position basis as 

PA (to) ý10 (4.1) 
(00 
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By denoting the creation operators of the atom at the lattice site i with at and the S 
occupation number operator with hi, the evolution of the system can be described 

by the Hamiltonian [153,154] 

fifti - jEatai +uEf, (4.2) T. 

where Ei is the energy for each site, J represents the hopping matrix element 
between the two sites and U is the on-site energy. The temporal evolution of the 

density matrix is given by 

PA(t) ` OPN)Ott (4.3) 

where 0(t) is the temporal evolution operator 0(t) = e-ýf'tl', if E, = C2 =e then 

the evolution is periodic in time with a period 7rh/J. The tunneling interaction of 

Aj 

12 

Figure 4.2: Schematic representation of a double well potential with an atom in a 
spatial superposition of the two sites. 

Eq. (4.2) allows the atom's wave function to coherently spread over the neighboring 

site as depicted in Fig. 4.2, so eventually its state can be written in the occupation- 

number basis as 
0)) A : ": 

1 
(4.4) 72 (1l'o) + lo'l)) 

* 

For the sake of simplicity, it is assumed that the equal superposition has been 

established at time t=O and that no tunneling occurs at later times. This means 

that the tunneling interaction is thought to be frozen over a time period longer 

than the decoherence time. The fluctuating environment axising from the materials 
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constituting the chip acts on the spatial superposition leading to an incoherent 

evolution at each site. Although the atom is still trapped, spin-flip transitions can 

take place at different times in each well and cause the spatial superposition state 

to collapse to a mixed state with the atom in either one of the two sites. 

In the experiment reported in [8], "Rb atoms are initially pumped into the 

low-field seeking hyperfine state IF, MF) -,..: 12,2) and for sufficiently tight magnetic 

traps, atoms in the IF, 7nF) = 12,1) state are also trapped. Spin flips to even lower 

magnetic sublevels cause the atoms to be expelled from the trap. In such case, 

spatial decoherence is no more a matter of interest. Hence, it is sufficient to treat 

the atomic system in a two-level approximation described by the following atomic 
Hamiltonian 

flA 
"' 

1 
rIWA(li)(il - If)(f D, (4.5) 

2 

where ji) and If) are the initial and final states associated with the spin-flip tran- 

sition and wA the transition frequency. The Hamiltonian describing the combined 

system of electromagnetic field and absorbing matter has been obtained in Chap- 

ter 2 and can be written in terms of the bosonic field operators i(r, W) and it (r, w) 

as in Eq. (2.37). 

The interaction of an atom, located at position r., with a magnetic field b(r) 

is described by the Zeeman interaction Hamiltonian 

Hz B(r,, ), (4.6) 

where f3(r,, ) is given by Eq. (2.40), together with Eq. (2.39) and Eqs. (2.41)- 

(2.42). The magnetic moment operator in Eq. (4.6) associated with the transition 

ji) --+ If) can be written as [A = tiji)(f I+h. c. and the magnetic moment vector 
has been already given in Eqs. (1.3l)-(1.32) as 

11 ý 9SPB(il§lf)- (4.7) 

Inserting Eq. (2.40) into Eq. (4.6) and adopting the rotating-wave apprwdmation 
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gives the following Zeeman interaction Hamiltonian 

Hz -ABgS + h. c. 
] 

PBgS -0, -7r Cqpj Op 
00 I& Fzr 

0 

3Sýf ýC(S 
Wý) xfd I) Gji(ra, s, w)ji(s, w)ý+ + H. c. 

] 
, (4.8) 

where If) (i I denotes the atomic spin lowering operator which obeys the com- 

mutation relation [ýý, ýW] = ±ý(: Q, with ýý =1 NON - If) f D' 

The state of the atom needs to be rewritten in a way that contains information 

over both the spatial and internal degrees of freedom. The number basis state, 
indicating either the first or the second site, it will be denoted in the following by 

a subindex 11,0) = I(), ) and 10,1) = 1()2), where () represents the internal atomic 

state. The initial total state of the atom is then 

1 J'OA) ý -7 
(Jil) + li2)) 

- (4.9) 
2 

The system composed of the two-level atom and the fluctuating magnetic field, 

initially in the vacuum state 10), reads 

11 JOAF) : "-2 (lil) + li2» 0 10) ý -7 (lil) 0) + 1i2) 0» 
- 

(4.10) 
72 2 

The Hamiltonian describing the evolution of the combined system is given by the 

sum of the field Hamiltonian ftF of Eq. (2.37), the free atomic Hamiltonian ftA of 
Eq. (4.5) and the Zeeman Hamiltonian ftz introduced in Eq. (4.8). The system 

wave function of Eq. (4.10) at time t is an arbitrary superposition of all the possible 
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spatial and internal atomic states and can be described as 

JOAF(t» 
= Ci, (t)e-i�All2 1 ii, 0) + Ci, (t) e`A 

t/2 1i21 0) 

00 
+Jd 3jr 

f 
(r, w, t) e-i(w-wA12)t 

0 
00 

+f d3r 
f 

&u Cf,,,,, (r, w, t) e`(, -, A/2)t I f2' 1 (r, w)), (4.11) 

0 

where 10) and 11 .. (r, w)) denote the vacuum and single-excitation states of the 

electromagnetic field, respectively. The Schr6dinger equation yields (a = 1,2) 

00 iPBgS 
(fl§qli) 

f 

dr 
f dw w e-'(-'A)t 

C2 V/7r 
IEO 

0 

VE-I -(r, w), Epj Dp Gj,,, (r., r, w) Cf.,,,, (r, w, t), (4.12) 

tßB9S (iiýqlf)we'(I-1A)t 

C2%/7reoh 

x w)epjd9pG, *�, (r�, r, w)Ci. (t). (4.13) 

By making use of the relation of Eq. (2.31) for the Green function, the result of the 

formal integration of Cf.,,,, (r, w, t) is inserted into iýj,, (t) with the initial condition 
Cf.,,,, (r, w, 0) = 0, and Eq. (4.12) reads 

It di. W= dt'K,, (t - t')Ci,, (t'), (4.14) 

where the integral kernel is given by 

(ABgs )2 § K,, (t - t') -T 
(f ISqli) (il§klf) 

C27r6oh 
00 

xf dý) e-ý(-'l)(t-t')Im 
[V 

x G(r,,, r,,, w) x ! ýý] 
qk . 

(4.15) 

0 

76 



4.1 Spatial decoherence rate 

Both sides of Eq. (4.14) are integrated over t, 

Tt 

Ci. (T) - Ci. (0) =1 dt 
1 dt'K, ý, (t - t') Ci� (t') (4.16) 

00 
TT 

1 
dt' 

(/ 
dtK�(t-t') Ci. (t') 

0t 
T 

1 
dt' R� (T - t') Ci. (t'), (4.17) 

0 

with the integrated kernel given by 

Tý(T-t') 
dt K,, (t - t') (T - t'). (4.18) 

If T is now replaced by t, the integrated kernel of Eq. (4.18) assumes the form 

(t 
- t') 

- 

(I-lBgS)2 
(f I§qli) (iJ41f) 

c27rEoh 
00 

xd Im w 
i(W - WA) 

[V 
xG (r,,, r,,, w) x ; ý] 

qk 
0 

and with the initial condition Ci. (0) = 1, Eq. (4.17) can be rewritten as 

t 

I+I dt'k,, (t - t')Ci. (t'). (4.20) 

0 

Markov approximation 

The integral equation (4.17) is a well-known Volterra integral equation of the 

second kind. Although an algorithm to solve such an equation can be found 

numerically, this study adopts an approach similar to the Weisskopf-Wigner decay 

theory [155]. It is then worth revisiting Eq. (4.15) and write K,, (t - t') in the 
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simplified form 

W2, K,, (t - t') dAe-'A(t-t') ', 
(4.21) 

where AýW- WA. Note that in Eq. (4.14), the value of Ci. (t) depends on the 

values of Ci. (t') at all earlier times. If the kernel is sharply peaked at t= t' then 

only values of t' close to t contribute significantly to the integral in Eq. (4.17). 

In particulax, when W,, ' is broad with slowly varying coupling, the kernel being 

the Fourier transform of W,, ' is sharply peaked around t=t. In the Markov 

approximation, i. e. when in a coarse-grained description of the atomic motion, 

memory effects are disregarded, Ci. (t') can be replaced by Ci. (t) and taken out of 

the integral in Eq. (4.14) 

tt 

Ci. Wz dt'K,, (t - t) = Ci. (t) 10 
d7- K,, (7-). (4.22) 

.0 

The Markov approximation is adopted under the assumption that K,, (7-) is sharply 

peaked at r=0, which makes the integral in Eq. (4.22) independent of its upper 

limit 7- = t. The integral can be solved by letting the upper limit tend to infinity. In 

doing so, the integral over 7- must converge and therefore a convergence factor e-'7' 

is inserted, performing the limit 71 --+ 0+ after the integration has been performed. 
The integral in Eq. (4.22) can be written as 

00 
iAr-, q-r W2) lim d7- dA e- 

77 0+ 

f (f 

0 

lim -i dA 
I" 

77ý0+ A-i? 7 
2 

7 W2A _ ip dA W, (4.23) raIA* 

The last line has been obtained by separating the real and imaginaxy parts of the 

integrand and recognising that, for AýW- WA, the imaginaxy part is a principal 

part integral, while the real Part contains a Lorentzian function that tends to a 
delta function J(W - WA) for 77 --+ 0+. This is equivalent to using the following 
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replacement in the evaluation of the integral of Eq. (4.19) 

1) 

--+ -7rJ(W - WA) + iP 
1 

(4.24) 
i(W - WA) W- WA* 

Equation (4.19) can be rewritten in the condensed form 

K,, (t - t) = --1P. + iSw.. (4.25) 
2 

by defining the following coefficients 

(ILBgS)2 --il ra =2 
C2EOh 

(fj, §qji)(ij&jf)IM IV 
xC (r,,, ra; WA) X 

4V1 

qk 
(4.26) 

and 

(I1B9S)2 
00 Im 

[; e 
xG (ra, ra, wA) X Vlqk 

ÖWa ý 
C27reon 

(f jýJi) (il4klf)P 
1 

dw 
W- WA 

(4.27) 

0 

By substituting into Eq. (4.20) the kernel function expression of Eq. (4.25), the 

time evolution of the coefficients Ci. (t) is finally obtained as 

Ci. (t) = exp 
1 
r, + i5w, (4.28) tl - 

The coefficients r. and Jw,, defined in Eqs. (4.26) and (4.27) represent the spin- 
flip rate and the line shift, respectively, and have been derived in a similar fashion 

in [49,156]. In what follows, it is assumed that the line shift Jw,, caused by the 

interaction with the quantized electromagnetic field is negligible. This can be seen 

as follows. The Green tensor appearing in Eq. (4.27) is the same tensor playing 

the role of a response function for the electric and magnetic field and it satisfies the 

Kramers-Kronig relations for acomplex-valued function g(w) = Re[g(w)]+iIm[g(w)] 
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[113,114], such as 

00 
Re[g(w)ll 

ip f &o'ImIg(w)) (4.29) 
w 

-00 
00 

IM[g(w)] 1p dw' 
Re 

I 
[g(w)] 

(4.30) 
7r 

fw-w 

00 

The lower limit of the integral in Eq. (4.27) can be extended to -oo with little 

error as the integrand is peaked around WA. Hence, Eq. (4.27) is proportional to 

the real part of the Green function and it can be rewritten as 

(IiBgS)2 --+ 

c2coh 
(fjýqji) (ijýkjf) Re [V x G(r,,, r., WA) X 

! ý; ] 

qk 
(4.31) 

The line shift is of the same order of magnitude as the spin-flip rate. For typical 

experimental realizations [8-10,24,45,48-51], this will be in the sub-Hz range. 

This means that Jw,, can be neglected as it is extremely small when compared to 

the spin-flip transition frequency WA- 
Substituting Eq. (4.28) into Eq. (4.13), the formal solution of Eq. (4.13) is 

obtained as 

21IBgS (i I §q I f) Ve- 
I 
-F 

W) fqpi ap 
C2V(7rCoh 

t 
jr t/ i(W-WA)t' -2 a x Gj*,,, (ra 

I r, w) 
I 

dt'e e (4.32) 

0 

Once the formal expressions of both the coefficients Ci. and Cf.,, have been de- 

rived, the system density matrix PAF = jIPAF(t))('0AF(t)j at time t can be written 
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in the basis (Jil), Ifl)) li2)) Jf2)) as 

PH P13 P12 P14 

P31 P33 P32 P34 
PAF 

P21 P23 P22 P24 

P41 P43 P42 P44 

and the atomic density matrix can be obtained by tracing over the field 

00 

PAW ý (OIPAF(t)10)+E d3r dw(lj(r, W)jPAFjlj(r, w)) 
iii 0 

PH 0 P12 0 

0 P33 0 P34 

P21 0 P22 0 

0 P43 0 P44 

(4.33) 

(4.34) 

As the interest here is in the position of the atom and not in its internal state, the 

atomic density matrix can be written in a simpler way, by tracing over the internal 

states as well, 

PA 
PH + P33 P12 + P34 L011 

(t) 
L012 (4.35) 

P21 + P43 P22 + P44 L012(t) L022(t) 

where the matrix elements oij have to be calculated from 

Loll(t) = lCi, (t, )I'+, Efd 3rf&, 
a (r, w, t) 12, (4.36) 

00 

0 
C, o 

L022 
(t) =I Ci2 (t)12 + d3r 

I 

dýj I Cf2,,, (r, w, t) 12, (4.37) 

0 
6012(t) = Ci, (t)Ci*2(t) 

00 

d3r 
I 

dw Cf,,,, (r, w, t) C;,,,,, (r, w, t), (4.38) 

0 
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4.1 Spatial decoherence rate 

First, it can be checked that the diagonal elements pil(t) and 6022(t) are prop- 

erly normalized to Loll(t) = 022(t) = 1/2 by inserting Eqs. (4.28) and (4.32) into 

Eqs. (4.36) and (4.37), respectively. Thus, as a consistency check it results that 
rft[PAI --.: 1- 

The calculation of the off-diagonal term of Eq. (4.38) gives 

012(t) = e-rt +2 (1 - e-rt) 
(I-lBgS)2 

ocoh 

X (i f) (f 14 1 i) 

Im [V 
x G(r2, rl, WA) X 

kq (4.39) 
r 

where the summer over indices k and q is implied and r= (r, + r2)/2 is now 

the arithmetic mean of the spin-flip rates, Eq. (4.26), at each site and for a planar 

geometry the spin-flip rates 1Pj coincide such that r =- ri = 172. Equation (4.39) 

constitutes the main result of this Section. It provides, via the Green function 

C(r2, ri, wA), an elegant way to assess the loss of spatial coherence for arbitrarily 

shaped substrates. Recalling the expression for the expectation value of the mag- 

netic field fluctuations Eq. (2.48), it follows that Eq. (4.39) can 

be rewritten as 

912 (t) = e-rt + (1 - e-rt) 

(ilýqlf)(flýkli) f dW(ýÜk(r2, wA)ht(r1, w» 
(ýO 

0 (4.40) 
f) (f ýk li) f &0 (f3k (ri, wA) f3qt (ri, w)) 

00 

0 

Equation (4.39), or equivalently Eq. (4.40), consists of two parts. The first is a 
(spatially local) exponential decay that describes the effect of the transition from 

the initial spin state Ii) to the final spin state If). The second term is a (spatially 

non-local) non-exponential term which is proportional to the spatial coherence 
function and will be investigated in more detail in the following Section. 

Note that, although the calculations have been performed for surfaces held at 

zero temperature T, the extension to finite temperatures is trivial. As seen from 

Eq. (2.48), the correlation function of the magnetic field at temperature T needs 
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4.2 Planar multilayer substrates 

to be multiplied by a factor (ýIth + 1). This means that in Eq. (4.40) both the 

numerator and the denominator are multiplied by factors (fith + 1) which then 

cancel out. 

4.2 Planar multilayer substrates 

All the formulas derived up to this point were valid for arbitrary substrate geome- 

tries. A particular geometric arrangement is fixed by defining the correct boundary 

conditions for the dyadic Green function C(r, s, w). This Section focusses on the 

spatially non-local term of Eq. (4.40) for planar multilayer dielectrics. 

4.2.1 Spatial coherence above multilayers 

A function S (ri, r2, WA) containing all the spatially non-local information about 

the system can be extracted from Eq. (4.40) and 6012(t) is written in the simplified 
form 

Lo(t) = e-rt + -rl2t) S (ri, r2 , WA) - (4.41) 

In the following, only the spatially non-local term is considered (which is equivalent 

to taking the long-time limit of Eq. (4.41) ) 

S (ri, r2, WA) ý 

(ilSqlf)(flSkli) fo'o &v(Bk(r2)WA)Pt(rj, w)) (4.42) 
(i I ýq If) (fj, ýkji) fooo dW(f3k(rj, wA)f3qt(rj, w)) 

Note that in a planar geometry in which the atom is held at a fixed distance to 

the material surface, the spin-flip rates ri coincide due to translational invariance, 

i. e. r =- IF, = r2. Note also that Eq. (4.42) is temperature-independent as the 

temperature enters only in the pre-factors Crt and (1 - e-rt). 

The attention is now restricted to a half-space filled with a dielectric or a metal 

of dielectric permittivity e(w). The Green tensor for the electromagnetic field 

scattering off a planar surface is reported in Appendix B following Ref. [74,157]. 

For the case of an atom above a substrate, only the reflection term R(") (r, r', w) in 
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4.2 Planar multila. vor substrates 

Eq. (B. 1) is relevant and for a planar geometry the calculations are carried out by 

writing R( 12) (r, r, L,; ) in terms of the 'Weyl expansion as in Eq. (13.3). The atoni- 

surface distance d enters the Green function as an exponential factor Cikjý(z+z') - 
2iklzd 

e. with klz defined as 

ki, 
W2 

- k2 
11 (4.43) V(ýC2 
III 7-: 

and kjj is the integration variable which represents the modulus of the wave-vector 

in the (x, y)-plane. For typical spin transition frequencies, the ratio u)'/c 2 pzý 

10-6 m-' is negligible and the factor klzd at the exponent can be approximated 

as 
2 

k2222222 
lzd C2 

d- kil d ýý -kll d (4.44) 

which means that the transition wavelength, A= cl(27rw), is by far the biggest 

length scale in the system. The two-dimensional Fourier transform in Eq. (13.2) is 

calculated here by adopting polar coordinates and by performing the following 

substitutions k1l = (ký,, ky) ý-+ (K cos (p, K sin ýo) and d' k1l ý--+ K dK &p. The 

integration over ýo allows the spin-flip rate r' to be written as 

(PB9S )2 K2 dK C-2Kd M, F= 
8C2EOh 

37 
f 

(27)2 2 
lM[rl2 (4.45) 

where the spin matrix elements have been calculated for the hyperfine transition 

2,2) --+ 12,1ý of a "Rb atom. The line shift 6w,, in Eq. (4.31) can be computed 

dI 
/4J 

/ 

6 

Figure 4.3: Schematic representation of the system geometry. An atom in a sliper- 
position of two positions separated by distance 1, is located at a height d from a plain 
metallic layer of thickness h and skin depth 6. 

84 



4.2 Planar multilayer substrates 

by replacing Im[r TE] 
with Re[r TE] in Eq. (4.45). Moreover, it is easily seen that 12 12 

both IP,, and Jw,, are of the same order of magnitude which means that JW. can 
be neglected when compared with spin-flip transition frequencies in the sub-Hz 

range. 
The schematic representation of an atom located at a distance d away from 

the planar interface is depicted in Fig. 4.3. The lateral separation between the 

two distinct positions occupied by the atom is denoted by 1. In particulax, a 
"Rb atom with a transition frequency f= 560 kHz and an aluminiurn substrate 

with skin depth J= 110pm and dielectric permittivity e(WA) = 2.371013i are 

considered. In Fig. 4.4, the dependence of S (ri, r2, WA)on the sepaxation I is shown 

S(rl,, K2.40) 

0.8 

0.6 

0.4 

0.2 

T- I(pm) 
o(o 

Figure 4.4: Plot of the spatial coherence function S(rl, r2, wA), Eq. (4.42), as a 
function of the lateral separation I for a transition frequency f= 560 kHz, and a skin 
depth 8= 110 pm. Three different distances from the surface are represented: d= 20jum 
(solid line), d= 10 jim (dotted line), and d=5 pm (dashed line). 

for three different atom-surface distances d. The non-local function S (rl, r2, WA) 

constitutes a measure of the spatial coherence. Cleaxly, for a lateral separation 

I=0, r, = r2 as the atom is placed in one site and S (ri, r2, WA) =1 as no spatial 

decoherence can take place. As a function of 1, the decay of the spatial coherence 

starts off rather slowly. This is attributed to the fact that, for separations below the 

coherence length of the magnetic-field fluctuations, the spin flip is driven coherently 
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4.2 Planar multilayer substrates 

at both sites. The decay is much quicker for shorter atom-surface distances, as the 

magnetic field fluctuations are stronger. 
In order to investigate the small-separation limit in some more detail, it is 

worth having a closer look at the Weyl expansion of the scattering Green tensor 

R(12) Eq. (B. 2). The separation 1 is nothing but I Ig and serves 

as a parameter in the integral where Lo is the position of the atom. Hence, the 

exponential e ikjj-(v-e') in Eq. (B. 2) can be expanded into powers of I and each term 

is then evaluated separately. The zeroth-order coefficient trivially leads to the spin- 
flip rate 1"12. The contribution from terms proportional to 1 vanishes identically 

due to the symmetry of the generalized reflection coefficients M12) with respect 13 
to the wave-vector components k1l in the (x, y)-plane. In fact, all odd powers of I 

vanish because of that symmetry. 
Hence, the lowest non-vanishing power is 12. It is straightforward to find analyt- 

ical expressions for the spatial coherence in that limit by converting the additional 

factor K2 due to the expansion of the exponential in Eq. (B. 2), into a parameter 

differentiation with respect to the atom-surface distance d. That is, the replace- 

ment K2 ý_, 1- &2 is performed such that 4 a7l 

1 512 02 
+0(14). S(ri, r2, L')A)=T- r- -, -r) (4.46) 

2 
ýid-2 

11, 

In certain asymptotic regimes in which r can be expressed as a monomial 0C d-I 

of the atom-surface distance d (see, e. g. [45,47,50]), Eq. (4.46) can be rewritten in 

the form 
S (ri, r2, WA) 

5n(n + 1)12 
+0(14). (4.47) 

96d2 

In addition to the planar half-space, the experimentally relevant situation in which 

a thin metallic layer of thickness h has been brought onto a dielectric substrate is 

addressed here. The generalized Fresnel coefficient for this three-layer system is 

given in Eq. (B. 5). In the limit of thick films (J, h> d) the asymptotic behaviour 

of the spin-flip rate is r oc 11d [45,50] whereas for thin films (J >d> h), 
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4.2 Planar multilayer substrates 

r oc 11d' [47,50]. Thus, the small-1 limit of Eq. (4.39) is finally obtained as 

-rt 
5al, 

-rt) + 0(14), 
10-12(t) =e- T87 (1-e (4.48) 

where a=1 for thick films and a=3 for thin films. It is interesting to note that 

the fall-off is three times faster for thin films than for thick films due to the fact 

that thick films are more likely to drive spin-flips coherently. 
In order to see how the time scale is related to the expected lifetime, the 

exponential in Eq. (4.48) is expanded for short times as 

1912(t) 
- 012(O)l ý-" 5al 2 (t 

+ O(t2) (4.49) 
48d2 r) 

where L012(0) =1 and r= IP-1. The left-hand side in Eq. (4.49) can be thought of 12 

as a proper measure of decoherence due to spin flips in terms of physical parameters 

such as the spin-flip lifetime 7-, the separation 1 and the distance from the surface d. 

This result is particularly interesting whenever a certain degree of spatial coherence 
has to be maintained, as in quantum information processing. The decoherence 

rate can be in principle minimised by achieving efficient control over experimental 

parameters as the ones appeaxing in Eq. (4.49). 

For laxger sepaxations, however, it is difficult to find analytical approximations 

and one has to resort to numerical evaluations of the Fourier transform (B. 2). It 

is interesting to calculate at what separation 11/2 the spatial coherence drops to 

half its initial value as a function of the other length scales in the system. The 

behaviour Of 11/2 can be regarded as a measure of robustness against decoherence. 

The dependence Of 11/2 on the thickness h of the intermediate layer is plotted in 

Fig. 4.5 for three different skin depths: 8= 100 pm (solid line, corresponding to a 

good conductor such as Al of Cu at room temperature), J= 50 prn (dashed line), 

and 5= 10 ym (dotted line) with a transition frequency of f= 560kHz. Although 

the latter two skin depth values are not realistic for materials at room temperature, 

at cryogenic temperatures these values can be achieved. For example, just above 

87 



4.2 Planar multilayer substrates 

11/2 (UM) 

1001 , 6=10OLIM 

90 

80 

70 

60 

50 
h(pm) 

Figure 4.5: The parameter 11/2 is represented as a function of the layer thickness 
h. The lateral separation 11/2 is the distance between the two atom positons; r, and r2 
after which the spatial coherence S (rl, r2 , w) has dropped to half its initial value. The 
skin depth varies from J= 100, um (solid line) to J= 50jum (dashed line) and J=1 pm 
(dotted line). The atom-surface distance is d= 50, um and all other parameters as in 
Fig. 4.4. 

its critical temperature of T, = 9.2 K, pure niobium shows a skin depth of only 
S= 15 pm at f ;ý1 MHz [158]. 

For skin depths smaller than the atom-surface distance (dotted line in Fig. 4.5), 

the robustness of spatial coherence drops dramatically with increasing substrate 
thickness h until h, J. The number of fluctuating dipoles causing undesired spin 
flips increases with the thickness of the layer. Any increase beyond h-J does not 

add much disturbance as the additional fluctuations would not reach the substrate 

surface. Note also that the coherence length 11/2 levels out roughly at the value of 
the skin depth, 11/2 - J. For skin depths equal (dashed line in Fig. 4.5) or larger 

than the atom-surface distance (solid line), spatial coherence is robust over a wide 

range of substrate thicknesses h. 

4.2.2 Near-field coherence length 

So fax, spatial decoherence has been considered a serious threat to the atomic 

superposition of two different positions. It is worth changing for a moment the 

point of view and look at the loss of coherence from the perspective of near-field 
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correlation properties. In this respect, the lateral separation 11/2 plotted in Fig. 4.5 

can be regarded as the magnetic-field coherence length. It has become clear by 

now that the spatial coherence strongly depends on the distance from the substrate 

and on the substrate's skin depth. The skin depth 6 given in Eq. (1.41) is defined 

as the distance below the surface to which an incident electromagnetic radiation 

penetrates. The thickness of the layer emitting the fluctuating elect romagnetic 

field must then be of the same order of the skin depth, and it can be thought of 

as an ensemble of radiating dipoles. With this in mind, a visual interpretation 

attempt is presented in the following for each line appearing in Fig. 4.5. 
1112 (, UM) 

loo 

90 

70 

60 

50 

1 10 20 30 40 50 60 70 80 90 
h (pm) 

6 

h 

d5S 

Figure 4.6: The plot on the left represents the coherence length 11/2 as a function of 
the layer thickness h for an atom-surface distance d= 50 pm and a skin depth 6= 10 Pm. 
On the right, a schematic representation of the geometry of the system is given. 

Consider first the bottom (dotted) line of Fig. 4.5 which has been obtained for 

an atom-surface distance d= 50 pm and a skin depth 6= 10 pm, as depicted in 

Fig. 4.6. The emitting layer is much smaller than the height at which the atom 

is located. This causes the atom to see a very thin layer of radiating dipoles and 

each site experiences a different set of dipoles which acts incoherently. As soon 

as h>6, the coherence length 11/2 stops decreasing as the radiating layer is not 

increasing anymore. 

The second (dashed) line of Fig. 4.5 has been obtained for skin depth 6= 

50 prn as illustrated in Fig. 4.7. The coherence length still decreases as long as 

the substrate thickness is less than or comparable with the skin depth h, 6. 

Nevertheless, the decrease is not as dramatic as before and this may be ascribed 

to the dipoles located at the border of the skin depth layer which cannot be resolved 

1112 
A- 
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Figure 4.7: The plot on the left represents the coherence length 11/2 as a function of 
the layer thickness h for an atom-surface distance d= 50 pm and a skin depth 6= 50 Pm. 
On the right, a schematic representation of the geometry of the system is given. 

by each site and so act coherently. Finally, the top (continuous) line of Fig. 4.5 

corresponding to a skin depth 6= 100 pm is represented in Fig. 4.8. In such a 

thick layer of emitting dipoles, the ones located deeper in the substrate are far 

enough from the two sites that can in principle be regarded as a coherent source 

of the electromagnetic field fluctuations. 

11/2 (jUM) 

910 

'00 

80 

70 

60 

50 

1 10 20 30 40 50 60 70 80 90 
h (pm) 

Figure 4.8: The plot on the left represents the coherence length 11/2 as a function of the 
layer thickness h for an atom-surface distance d= 50 pm and a skin depth 6= 100 pin. 
On the right, a schematic representation of the geometry of the system is given. 

Obviously, this is an intuitive explanation of how the interplay of d and 6 

affects the coherence length 11/2 and does not pretend to be an accurate descrip- 

tion of reality. This discussion is still in agreement with the results presented in 

Ref. [50] about how small skin depths can boost the spin-flip lifetime of several 

orders of magnitude. A shorter skin depth is due to higher values of the conduc- 

tivity, according to Eq. (1.41). A higher conductivity gives a stronger confining 

current density and consequently a smaller resistivity. This permits shorter trap- 
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4.3 Summary 

ping distances, comparable or smaller than 5 which are beneficial for increasing 

the coherence length. 

4.3 Summary 

In conclusion, the loss of spatial coherence of atomic superpositions due to thermally- 

driven spin flips has been investigated. When atoms in magnetic traps are held 

close to dielectric surfaces they experience fluctuating magnetic fields. These fields 

are produced by thermally-induced noise currents in the material, and they can 
be strong enough to drive an atomic spin flip. In particular, an atom in a super- 

position of two lattice sites above a planar dielectric surface has been considered. 
Thermally-driven spin-flip transitions interfere with this superposition leading to a 

decoherence of the atomic spatial state. The coupling between the atomic magnetic 

moment and the fluctuating magnetic field has been discussed in the framework of 

the quantum electrodynamic theory for electromagnetic fields in dielectric bodies. 

The spatial coherence of the atomic system is described by the off-diagonal ele- 

ments of the density matrix. The analysis of the off-diagonal term as a function of 

the atom-surface distance shows that the spatial decoherence rate becomes smaller 

when the distance from the material increases. For small lateral sepaxations I of 

the atom's two possible positions, the spatial coherence decreases quadratically 

with 1 and is inversely proportional to the squared atom-surface distance d. For 

larger separations, a numerical study of a three-layer system shows that the coher- 

ence length 11/2 converges for thick intermediate layers to roughly the atom-surface 
distance d. 

The results obtained in this Chapter are in agreement with previous work 

carried out on the coherent transport of matter waves by Henkel et al. [47,481. 

Instead of working with the coherence function, Henkel and co-workers formulate 

a transport equation for the atomic density matrix and include the fluctuating 

environment via the magnetic noise spectrum. Here, the consistent quantization 

of the electromagnetic field in dielectric matter allows the derivation of the spatially 
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non local function using a first-principles approach. 

Finally, the possibility to express the spatial decoherence rate in terms of ex- 

perimental parameters, such as lifetime, lateral separation and atom-surface dis- 

tance, is important in quantum information processing. The results presented in 

this Chapter may prove useful when the decoherence rate needs to be maintained 

within a tolerance rate. In quantum information processing, spatial superposi- 

tions are used to encode quantum information or to generate entanglement. In 

such cases, a full quantum control over the atomic state is required which can be 

achieved by properly tailoring lateral separations and atom-surface distances. 

Outlook 

The framework adopted in this Chapter is quite general and can be easily extended 

to other decoherence phenomena by choosing the proper interaction Hamiltonian. 

Several implementations of quantum information processing rely on the resonant 
dipole-dipole interaction between two atomic qubits [28,31,34,36,159]. Two 

13) 

L02 

12) 

Figure 4.9: Schematic representation of a lambda system for a three-level atom, where 
the states 11) and 12) play the role of qubits. Fluctuating electromagnetic fields can 
induce transitions between those states and the decoherence of their superposition. 

hyperfine states are chosen as qubits as shown in Fig. 4.9, and their coupling via 
Raman transition is the fundamental tool to realize quantum gates. Near field 

noise can perturb the coherence properties of a superposition of those states by 

inducing Raman transitions. 
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4.3 Summaxy 

A suitable formulation of the coupling can be done by following Dung et al. 
[1601 and distinguishing between the on-resonant and off-resonant interaction. An 

effective interaction Hamiltonian needs to be derived and the corresponding density 

matrix equation will contain information about the coherence properties of the 

system. 
This system has been studied experimentally and for careful choice of the two 

states, the superposition state has been shown to be quite robust against ther- 

mal magnetic near field noise [32]. Coherence lifetimes longer that 1s have been 

measured at distances as small as d= 5pm from the chip surface. Ramsey oscilla- 

tions were observed as a function of d and the coherence lifetime appeared not to 

show a dependence on the atom-surface distance. However, amplitude and phase 
fluctuations of the interference signal were reported that can still be attributed 

to magnetic field fluctuations. The investigation of the lambda system presented 

above is then paxticularly interesting and may prove useful to understand the 

origin of phase noise in typical experimental realizations. 
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5 

Vortex noise in superconducting atom chips 

An atom close to a dielectric or metallic surface experiences magnetic field fluc- 

tuations arising from thermally-induced noise currents. The origin of those noise 

currents is connected with the finite resistivity and the skin depth of the substrate. 
As seen in Sec. 1.3, the spin-flip lifetime r depends on physical parameters such 

100 

T(S) 
10 

0.1 10 100 1000 
(p M) 

Figure 5.1: Spin-flip lifetime r as a function of the skin depth 8, from [501. Two 
different thicknesses h are considered: infinitely thick surface (solid line); 1-pm-thick 
surface (dotted line). The atom is located at a distance of 50 

jum 
from the surface, the 

transition frequency is w= 560 kHz, and the temperature is 300 K. 

as the skin depth J, the thickness of the substrate h and the distance from the 

surface d. The expression of r as a function of these parameters has been derived 
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by Scheel et al. in [50], and in Fig. 5.1 their plot is shown for a planar substrate 
(solid line) and a 1-pm-thick surface (dotted line). 

The lifetime 7- takes the highest values either for skin depths J much bigger or 

much smaller than the atom-surface distance. In particular, small skin depths are 

of great interest, and superconductors are the most likely materials to exhibit this 

property. A more detailed analysis shows that superconductors may prove useful 

to achieve longer spin-flip lifetimes while maintaining small trapping distances [50]. 

Recent experimental realizations [161,1621 show that neutral atoms can be trapped 

near superconducting surfaces. The lifetimes obtained axe similar to the ones 

obtained by Jones et al. [8] at higher temperatures which indicates the feasibility 

of superconducting atom chips. A significant increase of the lifetimes is expected 

after straightforward technical improvements such as using different lithographic 

techniques which would allow wires bearing an higher current density. 

As the resistance of a superconductor is ideally zero, there should be no thermally- 

induced noise and the cryogenic temperature will help reduce heating and back- 

ground collisions. However, most practical applications of superconductivity in- 

volving ac currents demonstrate that dissipation phenomena can take place in 

superconductors [163-166]. Theoretical estimations of the spin-flip lifetime have 

been presented by Scheel et al. in [50], and by Skagerstam et al. in [82]. The order 

of magnitude obtained depends strongly on the theoretical approach used to de- 

scribe the optical conductivity of the superconducting substrate. As highlighted 

in [83], a correct description of the problem and a realistic calculation of the con- 
ductivity require an elaborated theoretical framework, the Eliashberg theory [167], 

accounting for dissipative effects associated with the emission and absorption of 

phonons. 
The approaches mentioned above apply to three dimensional superconducting 

materials, while in microtraps thin films are normally used. Thin superconducting 
films can be regarded as two-dimensional (2D) systems and fluctuations resulting 
from bulk losses seem to be negligible [82] such that only 2D effects need to be 
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5.1 Superconductivity 

considered. The dominant noise source in thin superconducting films is given by 

vortex motion. This suggests the possibility to probe the dynamics of vortices by 

looking at the atom's relaxation time. Instead of going into the theory of thin 

superconducting films, this Chapter presents an estimation of spin-flip lifetime 

of an atom neax a superconducting film by referring to the experimental data 

obtained by Shaw et al. in [88]. 

The structure of this Chapter is the following. In Section 5.1, a brief introduc- 

tion to superconductors and a review of the most important properties is presented 

referring to [163-1661 with particular focus on vortex dynamics. In Section 5.2, 

the possibility of studying vortex noise with cold atoms is addressed. 

5.1 Superconductivity 

Zero resistance 

The phenomenon of superconductivity was discovered in 1911 by H. Kamerlingh- 

Onnes while investigating the residual resistance of metals at low temperatures. 

He found that the resistance of a mercury sample fell to zero at a temperature of 

approximately 4 K. Below a certain temperature, called the transition temperature 

Tc, the resistance drops below the sensitivity limit of the equipment and is no 
longer detected. However, this is not a definitive proof of superconductivity as it 

is impossible, in principle, to prove experimentally that the resistance has exactly 

zero value. Instead only an upper limit of the resistance of the superconductor can 

be determined. 

In metals, the conduction electrons move freely and are accelerated in an ap- 

plied electric field. After a certain time 7-, they collide with atoms and lose the 

energy gained from the electric field. The high conductivity in metals is then due 

to the existence of free caxriers interacting with the lattice of the metallic crys- 

tal. With the increase in temperature, the atomic vibrations in the lattice become 

more pronounced, in contrast to 0 temperature where you don't have this effect, 
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5.1 Superconductivity 

and the probability of collision of the electrons with the atoms increases which 
leads to an increase in the resistance. In this framework, it is incomprehensible 

how the energy exchange with the crystal lattice by means of collisions abruptly 

stops in a very small temperature interval around Tc. An intuitive explanation 

to the zero resistance behavior is provided by the two-fluid model developed by 

the brothers F. and H. London in 1935 and reviewed briefly here. Only later with 

the advent of the Ginzburg-Landau theory in 1950, the conductivity with zero 

electronic resistance is understood in terms of a collective quantum phenomenon, 

a coherent matter wave that propagates through the superconductor without any 
friction. A microscopic theory of superconductivity arrived later in 1957 with 
Bardeen, Cooper and Schrieffer (BCS) which explains from first principles the su- 

perconducting properties by looking at things on a microscopic scale. The BCS 

theory is not presented here as it is not needed to explained the work reported. 

Two-fluid model 

The two-fluid model is a phenomenological theory describing the electrodynamics 

of a superconductor by assuming that two types of conduction electrons, normal 

electrons and superconducting ones, coexist during the superconducting phase. Be- 

low the transition temperature TC, part of the electrons behave as super-electrons 

and their number density is denoted by n. (T). They move through the metal 

without resistance and are governed by the first London equation 

ais = ýýt- 4; E, (5.1) 

where,; is a constant depending on the superconducting material. The normal elec- 

trons with number density n,, (T) continue to act as if subject to a finite resistivity 

and obey to the usual Ohm's law 

in : -- UnE. (5.2) 
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5.1 Superconductivity 

The total density of conduction electrons at temperature T is n. (T) + nn(T) = no 

and the total current jý in +is is the sum of the supercurrent of Eq. (5.1) and 
the normal current of Eq. (5.2). At T=0K only superconducting electrons axe 

present, n, (O) = no, while at temperatures above the transition temperature T, 

only normal carriers appear, nn(T > T, ) = no. 
The parameter -; appearing in Eq. (5.1) is defined by London as 

n. (T) e' (5.3) 
m 

and the distance inside the surface of the superconductor over which an external 

magnetic field is screened out to zero is called penetration depth of the supercon- 
dutor and was defined by London as 

AL ý 1/(po,; )1/2. (5.4) 

The current carried by the flow of super electrons is assumed to short circuit 

the current arising from the flow of normal electrons, causing the resistance to 

disappear. 

5.1.2 Ideal Diamagnetism 

The vanishing of the electrical resistance below a critical temperature TC, is not the 

only unusual property of superconductors. An externally applied magnetic field 

can be expelled from the interior of superconductors except for a thin outer layer 

(an effect which is called ideal diamagnetism or Meissner-Ochsenfeld effect), or 

superconductors can concentrate the magnetic field in the form of flux tubes. The 

ideal magnetism of superconductors was discovered by Meissner and Ochsenfeld 

in 1933 and it is considered the fundamental proof for a material to be supercon- 
ducting. 

Ideal diamagnetism only exists within a finite range of magnetic fields and 
temperatures. One finds that there axe two different types of superconductors: 
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5.1 Superconductivity 

9 Type-I superconductors expel the magnetic field up to a maximum value HC, 

referred to as the critical field, and for larger fields superconductivity breaks 

down. 

Type-Il superconductors show ideal diamagnetism for magnetic fields below 

a so-called "lower critical magnetic field" HC1. Superconductivity is de- 

stroyed for magnetic fields laxger than a so-called "upper critical magnetic 
field" HC2 > HC1. For values of the applied field such that H< Hcj, the 

superconductors show the Meissner effect. However, for the case H> HC1, 

the magnetic field starts entering the superconductor. In this regime, often 

referred to as "Shubnikov phase" or "mixed state", the magnetic field pen- 

etrates the superconducting substrate and a system of flux lines, known as 
Abrikosov vortices, is generated. A more accurate treatment is based on the 

Ginzburg-Landau theory that shows that, on a length scale ýGL (known as 

the Ginzburg-Landau coherence length), superconductivity vanishes as one 

approaches the vortex axis. 

The Ginzburg Landau theory 

The Ginzburg-Landau (GL) theory was originally introduced as a phenomenolog- 
ical theory describing the passage from the normal metallic state to the supercon- 
ducting state in terms of a thermodynamic phase transition. It starts from the 

argument that the normal-superconducting transition in the absence of a magnetic 
field can be described as a second-order phase transition. Landau had developed 

a theory for such transitions. The theory defines a paxameter, called order pa- 

rameter, which (during the superconducting phase) increases from 0 at Tc, up 
to the value 1 at T=0. Ginzburg and Landau introduced a function T(r) as 

the order parameter to describe the superconducting state. The quantity 191(r)ll 

is interpreted as the density of the superconducting charge caxriers n, (T) and it 

must approach zero for T --+ TC. 

Two are the characteristic lengths of the Ginzburg-Landau theory: the Lon- 

99 



5.1 Superconductivity 

don penetration length AL and the Ginzburg-Landau coherence length ýGL. To 

understand the meaning of the coherence length ýGL, consider a superconductor 

extending in the x direction from x=0 to x -+ oo, then 

ql(x) = tanh(x/V2ýGL)- (5.5) 

According to Eq. (5.5), T(x) first increases linearly from zero, and then approaches 

the limiting value of I in the superconductor. The coherence length ýGL can be 

then interpreted as the characteristic length within which the order parameter T 

changes. Depending on the superconducting material, this length ranges between 

a few and a few hundred nanometers and similarly to the London penetration 
depth, is temperature dependent. 

The ratio 
AL 

ýGL 
(5.6) 

is usually referred to as the Ginzburg-Landau parameter. Type-I and type-II 

superconductors are distinguished by the value of %: 

type - I: r. <1/ v/2-, (5.7) 

type - II r., >1/ V2. (5.8) 

This discrimination is valid only near TC. For T< TC and values of K slightly 
larger than 1/výr2-, there exists a transition into a state in which both the Meissner 

phase and the Shubnikov phase appeax next to each other. 
In the Shubnikov phase magnetic flux penetrates into the superconductor in 

the form of quantized flux lines or vortices. A vortex is described as a singularity 

of the order parameter T. Each vortex carries a quantum flux 

4)o =h=2.07 x 10-7 Wb, 
2e 

or an integer number of the elementary flux quantum. The highest field is in 
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the vortex center and decreases towards the outside. The central core of normal 

material is surrounded by a region of radius AL within which magnetic flux and 

screening currents flowing around the core are present together. A stable state 
is reached for a triangulax vortex lattice system with one flux quantum at each 
lattice site. 

5.1.3 Thin superconducting layer 

In a thin superconducting layer of thickness d the circulating currents around the 

vortex decay with a characteristic length A, ff = A'/d from the axis towards the L 
outside, and for d< AL the length A, ff can become much larger than AL- 

Due to thermal fluctuations, the vortices can move around their equilibrium 
lattice site without leaving it. If the fluctuations around the equilibrium site be- 

come compaxable to the distance between the vortices, then vortices will leave their 

lattice site and melt into a vortex liquid. It turns out that for two-dimensional or 

one-dimensional systems these fluctuations can become sufficiently large to destroy 

the macroscopic wave function characterizing the superconducting state. This re- 

sult was described by Hoenberg, Mermin and Wagner in Refs. [168,169]. 

In the absence of an external magnetic field, positive and negative vortices will 
be generated spontaneously in equal numbers such that the average magnetization 

of the sample vanishes. If the vortices can move independently of each other, 
they result in dissipation and, hence, in a finite resistance. It is widely accepted 
that the zero-field transition in superconducting films of thickness less than the 

penetration length AL, is described by the Berezinskii-Kosterlitz-Thouless (BKT) 

theory [85-87,170]. They studied this transition in detail associating the phase 
transition with the emergence of a topological disorder due to the pairing of vortices 

and antivortices. 
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5.2 Vortex Noise 

The Kosterlitz-Thouless-Berezinskii theory 

According to the Berezinskii, Kosterltz and Thouless (BKT) theory [85-87), there 

is a sharply defined temperature TBKT < TC at which vortex pairs dissociate 

into a vortex plasma because of thermal fluctuations. Above TBKTt there is an 

equilibrium population of unbound vortices, which gives a linear resistance shown 

to vary as e-"'-I""7--TB--KT. 
Below the transition temperature TBKT, the whole system is superconducting 

and phase coherence is established in the thin film. In this phase, vortices and 

antivortices, described as topological defects of the order parameter, are generated 
in pairs and are bound together. Thermal energy is not sufficient to allow the 

vortices to unbind and the density of free vortices is zero. If a magnetic field is 

applied perpendicular to the layer, free vortices appear with their orientation given 
by the applied field. 

The BKT theory is well understood in superfluid helium films [171] and in su- 

perconducting transitions in arrays of Josephson junctions [172]. Indirect evidence 

of the BKT transition can be obtained by looking at the macroscopic properties 

of these systems, however, the microscopic origin of the transition has not been 

explained completely and atomic clouds appeax to be well suited to test theories 

of many-body physics and detect individual vortices [1731. 

5.2 Vortex Noise 

The aim of this Section is to address the possibility of detecting vortex noise with 

cold atoms trapped near a thin superconducting film. The estimations presented 
in the following Section have been guided by experimental data obtained by Shaw 

et al. [88]. 

The objective of their experiment was to study the vortex density fluctuations 

at the Berenzinskii-Kosterlitz-Thouless (BKT) transition in Josephson junction 

arrays, which were used as a model system of a two-dimensional superconductor. 

102 



5.2 Vortex Noise 

Early experimental studies at the BKT transition involved electrical resistance and 
the application of an external force to the system. The transition to the resistive 

state takes place because of the dissociation of the vortex pairs due to thermal 

fluctuations. Therefore, external forces may induce pairs dissociation and affect 

the measurements. The best way to study the BKT transition is then to use a 

non-invasive probe. 
Vortex dynamics at the BKT transition is typically studied by monitoring 

the superconductor surface with a superconducting quantum interference device 

(SQUID) [65]. A SQUID is a superconducting ring in which two Josephson junc- 

tions are integrated. A transport current flows along the ring and the maximum 

current oscillates as a function of the magnetic flux through the ring. A varia- 

tion of the magnetic flux can be detected by measuring the voltage drop across 

the Josephson junction. This is a noninvasive probe because it does not affect 

the vortex behaviour while detecting magnetic flux variations. However, the noise 

processes which limit the measuring sensitivity of this device are numerous and 

complex. Some are intrinsic to the SQUID coil such as thermal noise, Nyquist 

voltage and current fluctuations associated with the normal state resistance, while 

others originate in the circuit associated with the coil [65]. Cold atoms are ex- 

tremely sensitive to magnetic field variation and they may prove useful as a non- 
invasive measurement device of vortex dynamics as they can be positioned with 
high precision and their interaction with a magnetic field is well understood. 

5.2.1 Magnetic flux noise 

Vortex motion induces a change in the magnetic flux through the SQUID which 
is detected as an output current. A perpendicular and spatially homogeneous 

magnetic field B through a pick-up loop of area A is detected as a magnetic flux 

(D =AB. In the general case of an axbitrarily oriented and spatially inhomoge- 
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neous magnetic field B (r, t) , one must integrate over the area of the loop 

(D (t) =i dr n- B(r; t), (5.9) 
A 

where n is a unitary vector normal to the surface. For a pick-up loop placed 

parallel to a thin superconducting film, as schematically depicted in Fig. 5.2, only 

the perpendiculýir component of the magnetic field Induces it current. The flux 

di 

Figure 5.2: Schematic representation of the system geometry. A SQUID is placed at 
a distance d from a superconducting film. A magnetic flux variation is detected ws a 
voltage in the SQUID. 

correlation function in the time domain is then given by 

CD(t) = (5.10) 

and the flux noise spectrum is defined as 

S. p (w) =1 dt e-'wtCq>(t) 

= 27r 
1d2 

xd 
2y ffiz (x, d; w) il (y, d; w) ý, (5.11) 

A 

where 1ý. is the operator for the magnetic field component normal to the tool), x 

and y are vectors parallel to the plane of the surface and d the distance from the 

surface. 
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The experimental values of Sq, (. ý)) obtained iii [88] are reported in Fig,. 5.1. 

Shaw and co-kvorkers measured the spectral density of flux noise at t1w HNT 

transition in a Josephson junction array. The array has dimensions of' 1 111111 xI 

inni and consists of niobium islands deposited on a copper fifin, as illusirated in 

Fig. 5.3(a). The SQUID used was a superconducting Square witil illiler and outer 
dimensions 1, = 180pni and 1, = 900pni and was held at a distance d- 100pin 

from the array as depicted in Fig. 5.3(b). The spectral densitY offlic magnetic flux 

(b) 

QUID 

Figure 5.3: Reprodilced froin Ref. (a) Schematic represelitatioll of I ]w ; )I ra , v. I Ile 
niobinin islands are the cross shapes and the area between the crosses is copper. (b) 
Schematic representation of the SQUID at a distance (I from the array and with inner 
and witer dimensions denoted by li and 10 and 12 mr 

noise is plotted in Fig. 5.4 for 15 temperatures above the transition temperature 

T13K-,,, but below the bulk transition temperature, as a function offrequency. The 

average separation between free vortices is described bY the length parameter 

and for a temperature T -ý TBIý,,,, ý diven), -es. 

Thermal fluctuations perturb the equilibrillill of the vortex delisitY aild the 

whole system relaxes through some local dynninic process. Therefore, ;i rehixntion 

time 7- (xvith corresponding frequency fý I Oc T)ý cim be defilled as the I illic required 

for the disturbance of the vortex deiisity to propi, nite ýicross the distimce ý. It' 

diverges, which ineans that the average separation between vortices diverges, then 

the relaxation time 7 (fý') diverges as Nvell therebY sigilif. vilig a cril ical slow dowil 

of the relaxation dynamics. 
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5.2 Vortex Noise 

At a given temperature, two different regimes of the spectral density SD(W) 

occur for f< ff and f> ff. The spectral density SD(w) appeaxs to be white for 

f< ff, while it scales as 11f for f> ft. The authors gave explanation for the two 

regimes in terms of the observation time scale compared with the time required 

for the disturbance to travel over the distance ý. For f<& the observation time 

scale is longer than the relaxation time -r and the system appears disordered, with a 

white spectral density. Instead, for f> ft the observation time is shorter than the 

relaxation time and the system appears to be critical. The difference between the 

two power spectra reflect the fundamental differences in the relaxation dynamics 

of the two phases. 
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Figure 5.4: Reproduced from Ref. [88]. Spectral density of magnetic flux noise, 
S4ý(f), versus frequency f= wl21r for 15 temperatures above the Kosterlitz-Thouless- 
Berezinskii transition temperature. Dashed lines have slope -1 and 0. 

5.2.2 Flux noise spectrum and spin flip rate 

As shown in Chapter 2, the cross correlation function of the magnetic field at two 

distinct points x and y is proportional to the imaginaxy part of the Green function 

evaluated at the two positions. In thermal equilibrium, the integrand in Eq. (5.11) 
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can be written as 

0 (T --+ 

(f3. (x, d; w)#, t(y, d; w)) 
LIL 

Ith + 1)IM Vx G(x, d; y, d; w) x (5.12) 
7r 

I 

zz 

where fith is the mean thermal photon number, and the flux noise spectrum can 
be expressed as 

d2 
xd 

2 
YIM V, xG(x, d; y, d; w)x+V] (5.13) S4ý(w) = 

2hpo(ýIth + 1) 

A 

The central idea of this work is to connect the spectral density S4, (w) with the 

spin-flip rate ]P_. 

2 
0 12 (5.14) (fith + 1)IM[V x G(rA, rA, W) XV 

zz 

where P12 is the magnetic dipole matrix element corresponding to the transition 

between the initial and final Zeeman sublevels 11) and 12), rA is the position of the 

atom and w is the spin transition frequency. The spectral density of Eq. (5.13), 

and the spin-flip rate r.. of Eq. (5.14), are both proportional to the zz-component 

of the cross-correlation function of the magnetic field, i. e. the imaginaxy part of 

the double curl of the Green function. In physical terms, an atom trapped above a 
thin superconducting film experiencing the magnetic field of the vortices is subject 
to spin-flip transitions. The spin-flip lifetime measured experimentally is due to 

all the magnetic field components. Here, the quantization axis is taken along 
the x direction and the only nonzero spin matrix elements are (11ý,,, 12). As a 

consequence, only the yy and zz components of Im Vx G(rA, rA, wV 
I)X 

are 

necessary. Symmetry considerations for the planar surface yield 

Im VXGXV] - Im 21m IV 
xGx V]zz I 

xx 
ý 

IV xG x'v]Yy: 

which leads to the following relation: IP = 3/21P... 
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Neglecting the contribution of the vacuum Green tensor and using the Weyl 

expansion for the scattering part of the Green tensor, as presented in Appendix B, 

allows Eq. (5.13) to be rewritten as 

2hito(iith + 1)IM d2 xd 
2yfd2 k1l 

e 
ikil *('-Y) r 

TE ik, 21 
e 

2ikzd] 
, (5.15) (27)2 12 - 

If 

2k;, 

and Eq. (5.14) as 

22 ik, 21 2poP12 
(TIth + 1)IM d kll 

r 
TE 

e 
2ik, d] (5.16) 

h 

11 
(27r)2 12 2k;, 

where k.. k 12 , and r, 2' is the Fresnel reflection coefficient for s-polarized 

waves, whose electric vector is perpendicular to the plane of incidence. The struc- 
ture of Eqs. (5.15)-(5.16) differs only by the integration over the area of the SQUID 

but some algebraic manipulation permits SD to be written in terms of the integral 

appearing in Eq. (5.16), so that it can be related to r, 

The integration is performed for a circular pick-up coil of radius R. After 

switching to polar coordinates, the integration is carried out by means of the 

following identity for Bessel functions 

27r 
I 

dýp e 
ikll . (x-y) 

= 2rJo(k), (5.17) 

0 

where kil -(x-y) = k1l I cosýp with 1= Ix-yj and Jo(k) is the zeroth-order Bessel 

function. The integration over the radial variables is performed by using the Bessel 
function integration properties 

R 

dl Uo (kl) =RJ, (kR) (5.18) 
k 

0 
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permitting Eq. (5.15) to be written as 

2J2 (kR) ik 2 

S. b(w) = 
2hMo(iith + 1) IM (27r)3 dk 

kR1r TE 
e 

2ikzdl 
. 

(5.19) 1Z-27)1 
k2 12 ý7k 

The factor A' = (7rR')', which is the squared area of the loop, can be extracted 
from Eq. (5.19) which finally leads to 

167rA 2 dk j2 TE 2ik. d S. b 
(w) = hPO(fith + 1) IM k1 (kR) rie (5.20) 

R2 

[l 
T2- -7r) 2 12 2k,., 

1- 

The separation z between the trapped atoms and the surface (typically 1-100 pm) 
is very small when compared with the spin-flip transition wavelength in free space. 
Similaxly to Chapter 4, the transition wavelength A= cl(27rw) (typically 3 cm- 

300 m) is the largest length scale in the system such that the integral over k is 

dominated by the region in which k' > W2 /c2 and the approximation 0 ;: -, -k2 1z 
holds, permitting to simplify Eq. (5.20) even further as 

se(W) = 
167rA2 

hl£O(iith + 1) 
dk 

J, 2(kR) IM [, rTE] 
e-2kd. (5.21) 

R2 

1 

(21r)2 12 2 

The same approximation allows the spin-flip rate of Eq. (5.16) to be written as 

2 2kd 47rM0912 
, dk 2 IM TE, e- rz -h flth + 1) 

1 

(27r)2 k [r12 

2 
(5.22) 

which is similar to Eq. (5.21) except for an additional factor kI in the integrand. 

The integration over k cannot be done in closed form. In order to express Eq. (5.21) 

as a function of the integral in Eq. (5.22), the Bessel function is expanded in power 

series in k such that 

j12 (P) 
00 

p 2j+l) 
2 oo qC 

_1 p2q+2, 
1: 

ej 
EECI 

q (5.23) 
j=o q=O 1=0 

with 

ci 
(-W 

- (5.24) 22j+lj! (i + 1)! 
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The sum over I in Eq. (5.23) can be simplified by using the Gamma function 

IF(n) = (n - 1)!. Once substituted in Eq. (5.23) this gives 

00 
jý2(p) ý P2 

E Cq p2qj (5.25) 
q=o 

with 

Cq = 

(_I)q]p (q + 3/2) (5.26) 
Vi-rr(q + 1)]P(q + 2)r(q + 3)' 

and Eq. (5.21) can then be written as 

00 -2kd 
S4, (w) = 167rA 2h/lo(fltll + 1) 1' CqR 2q dk 

k2k 2q IM [, 
rTE] e. (5.27) f 

(27r)2 12 2 
q=O 

The factor k Iq in Eq. (5.27), which results from the expansion of Bessel function, 

can be converted into a differentiation with respect to the atom-surface distance d. 

The replacement k= -1-2- allows the flux noise spectrum to be written as 2 Od 

2h 
0 

00 (R) 2 

167rA / (fith + 1) Z cq 

q=o 
92q (1 dk 

2 IM TE, e -2kd 
, äj-q T2-7T2 k [r12 

2) 
(5.28) 

and it is finally possible to obtain the following expression 

ST, 
4A2h2 Oc3 

C. 
(R ) 2q 02q 

(5.29) FT ad2q 
(W) 

R12 

q=-O 

which constitutes the main result of this Chapter. In the asymptotic regimes 

reported in Eq. (1.40) from Scheel et al. [50], r.. can be expressed as a monomial 
r,. oc d-' with respect to the atom-surface distance d. The derivatives in Eq. (5.29) 

then become 
02q (n + 2q - 1)! r. 

-r =- (5.30) ýýd-2q z (n - 1)! d2q 
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5.2 Vortex Noise 

and performing the summation over q in Eq. (5.29), one obtains 

h2A2 3 n+1 n {2,3}, 
R2 

S'D(W) = 7- r. 3F2 , ý11 - (5.31) R12 
[ý2 

2 71 

where 3F2 denotes a hypergeometric function. Flux noise spectrum and spin-flip 

rate are then related via Eq. (5.31), which is the main result of this Chapter. 

Physical parameters such as atom-surface distance, skin depth of the substrate 

and SQUID dimensions enter in this relation via the argument (R/d)2 of the hy- 

pergeometric function and the power law associated with the spin-flip rate. 

Comparison with experimental geometry 

In order to compaxe Eq. (5.31) with real geometries, the hypergeometric function 

is approximated for two limiting situations: R<d when the size of the loop is 

small compaxed to the distance from the surface, or the opposite limit R>d 

when the loop is located very close to the superconducting surface, as illustrated 

in Fig. 5.5. 

(b) 
R/d << I R/d >> 1 

Figure 5.5: Schematic representation of the geometry of the system. A circular SQUID 
of radius R is located at a distance d from the surface and it measures any variation in the 
magnetic flux. In (a) and (b), the magnetic field lines of a single vortex are illustrated 
for two limiting situations: in the limit Rld <1 (a), corresponding to the case of a 
small pick-up loop located far from the surface, and in the opposite limit Rld >1 (b), 
corresponding to the case of a pick-up loop located very close to the surface such that 
its radius is greater that the height. 

In the limit Rld < 1, the hypergeometric function in Eq. (5.31) can be ap- 
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5.2 Vortex Noise 

proximated [174] by 

3 n+l nR2 R<d n(n + 1) R2 (R4), 

3F2 
[1 

-2 , -2 , -ýl 1 
12,3}, - ýF 

I 
; _- 1- 

16 d2 T4 (5.32) 

which means that the largest contribution to the flux noise spectrum is propor- 
tional to the squared area of the pick-up loop times the spin-flip rate. In this limit, 

the loop is small enough to sample only the local magnetic field. However, the 
flux measurements reported in [88] were made in the opposite limit Rld > 1, 

with a laxge pick-up loop located very close to the surface. Assuming a power law 

r. oc Ild 4 (valid in the case J<d, with J being the penetration depth of the 

substrate material [45,47,50,51]), the following limiting behaviour is obtained 

3Fý 
ý, ý, 2 12,31, -R22 F1 

[3, '5,3, _R 
21 [ý2 

21 T2 T2 

R>d 16 d3 4 d' 
5+6 log 

d+0(d 7) 
(5.33) 7F3 i T77 r 4R 37r 

+ 57T 

The presence of the factor (dlR)' in the limit R>d, (and its absence in the 

opposite limit) can be understood by comparing the radius of the pick-up loop with 

the coherence length of the magnetic field. In Section 4.2, the lateral separation 

11/2 has been regarded as a measure of the magnetic field coherence length. It has 

been shown that 11/2 drops off over a distance d from the surface comparable with 

the skin depth ý, which for niobium is of the order of a few pm. In the experiment 

considered here, the pick-up loop radius is of the order of 200 /Im and then much 

bigger than both J and 11/2. The spectrum of the magnetic field is not constant 

within the area of the coil in the limit R>d as it decays over a distance = J. 

The length scales involved are then RIJ and d1J which explain the dependence on 

the ratio Rld in the spectral density. On the other hand, it is now clear that in 

the limit R<d the loop is small compared to the magnetic field coherence length 

and the measured flux does not vary over the loop's radius. 
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5.2 Vortex Noise 

5.2.3 Spin-flip relaxation time 

In order to caxry out a quantitative compaxison with the experimental data, the 

transition between Zeeman sublevels 11) = IF = 2, MF = 2) and 12) = IF = 

2, MF = 1) of a ground-state rubidium atom is considered. The corresponding 

magnetic dipole matrix element is P12 = 9SPB(11, ýý12) = IJB12 and Eq. (5.31) 

becomes 
16 M2 2f (5.34) 

e2 

where e and m, are the charge and mass of the electron and f (d, R) denotes the 

function in Eq. (5.33). The flux measurements reported in Ref. [88] and reproduced 
=X 2 in Fig. 5.4, axe expressed in terms of the flux quantum (Do = hl (2e) as Sjý (w) (Do 

where x is the proportionality factor with units of Hz. This gives 

Ir 2h2 d<R 37r 3h 2 (R) 3 

rz =x 16, M2A2f (d, R) =x 256 m, 2A2 d 
(5.35) 

e 

The pick-up loop used to measure the flux had an area A=1, ff ; z: ý 2 10-7 M2 and a 

ratio Rld > 2.3, giving a spin-flip rate of 

r,. > x2 106S-1. 

Clearly, it makes no physical sense to speak of a spin-flip lifetime r= IF,, as 

the lifetime observed experimentally is due to all the magnetic field components. 

However, the total spin-flip rate r can be obtained from r., via the relation r= 

3/2r-. as seen before, hence they have the same order of magnitude. Spin-flip 

transition frequencies are usually above 10 kHz and for those frequencies the value 

of x shown in Fig. 5.4 is below 10' Hz. It corresponds to a spin-flip rate IF,. > 

2 10' s-1 and to a spin-flip lifetime greater than rl = 1/r = 500 s. This means 

that atoms can be trapped above a superconducting surface long enough to be 

manipulated and this result is particularly interesting when combined with the 

fact that the heating noise is almost completely suppressed in a cryostat. 
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5.2 Vortex Noise 

Given the rather long relaxation time rl, cold atomic clouds may provide an 

useful way to image the vortices. The typical vortex separation is of the order of 
ý ! -- 2 /-zm and at a distance from the surface d ce- ý, the field of each vortex is of the 

order of -Do/(7rý') =1G. The effect of the vortex motion is to alter the trapping 

potential and this provokes changes in the density distribution of the atoms. If 

an atomic cloud can be held close to the surface long enough to study its density 

distribution, the motion of a single vortex would be ideally reflected in a pattern 

on the atomic cloud. 

5.2.4 Dephasing time 

Additional information on vortex dynamics can be obtained by looking at the phase 

noise induced between two Zeeman sublevels 11) and 12). To study the coherence 

of the two Zeeman sublevels, a coherent superposition 11) + 12) is prepared and the 

phase between 11) and 12) evolves coherently with their energy difference. However, 

the interaction with a fluctuating environment introduces an additional relative 

phase factor ýo that evolves incoherently and leads to dephasing, or phase noise. 
The extra phase factor eiP between the levels 11) and 12) due to the fluctuations 

of the magnetic field, can be written as 

T 

v(T) - 
G122 A"! I 

dt j;, (t), (5.36) 

0 

with j,, (t) the normal field component and /. zjj ý 9SAB(j%jj). The phase variance 

is given by o, [V]2 = ((p2)_(ý0)2, but (ýp) =0 as the average over the field fluctuations 

is zero and this leads to 

TT 

2= 
(P22 

h2 
jill)2 f 

dt 
f 

dt'(j,, (t) j.. (t')) (5.37) 

00 
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5.2 Vortex Noise 

Again, only the normal contribution of the magnetic field is considered in order to 

give an estimation of the dephasing time 7-2 based on existent experimental data. 

Equation (5.37) is proportional to the correlation function of the magnetic field. 

The phase variance can be easily related to the spin flip rate r, by relating b. (t) 

and f3,, (w) via the Fourier transform 

00 
f3. (t) =f dw [bý, (w) e-"t + h. c. 

] (5.38) 

0 

The phase variance can then be expressed as 

TT 00 co 

a[w(T)]2 _ 

(A22 - pll)2 
dt dt' dw d2 h2 

Ifff 

0000 

))e-'Ljt+'w'tt + (5.39) (b. (Lj) 
f3zt(C4) ,it 

Combining together Eq. (5.12) and Eq. (5.14) allows one to write 

and 

such that 

'(w'» = ö(w - w') 
h 

r� (w, T= o), (5.40) -äz 2 21W12 

h2 iýth 

22 7rM12 fith +1 

0 f3. nth 
(5.42) 

z fith +1 

The integration over t and t' gives 

TT 

dt 
f 

dt'el"('-") =21- 
coswT (5.43) 

f 

W2 
00 
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5.2 Vortex Noise 

leading to 

00 
U[V(T)]2 = 

(M22 _ p11)2 
dýv r, (w) 1+ 

iith 2(1 - coswT). (5.44) 
27rM 2 W2 12 

iith +1 
0 

Note that the Dirac delta function can be defined as 

5(wo - w) =2 lim 
2(1 - cos[(wo - w)T]) (5.45) 

7r Týoo (WO 
- W)2 

and given any function f (w) of w non-singular at w= wo, it satisfies the integral 

relation 

f (WO) =2 lim 
W2 

dwf (w) 2(1 - cos[(wo - w)TI) (5.46) 
ir Týoo 

I 

(WO 
- W)2 

W1 

where w, < WO < W2. For large enough observation times T, the integral in 

Eq. (5.44) can thus be rewritten as [175] 

00 

u[ýp(T)]2 
(A22 

-2 1111)2 
dw r.. (w) 1+ 

f1th 
TJ(w) 

21z12 

i 
Tt-h +1 

0 
(A22 -2 /111) 2 

r,, (o)T. (5.47) 
2pl2 

The result of integration in Eq. (5.44) is proportional to r.. (o), as the integral is 

completely dominated by the low frequency region. In this range, the spectral den- 

sity S4, (w) is constant up to a characteristic frequency f4 = w4127r, as represented 

in Fig. 5.4. The relation between the spin-flip rate r,, (w) and S4ý(w) shown in 

Eq. (5.34), leads to IF,, (w) ; zý IP,, (0) for frequencies w< Wý. Above wý, IF,, (W) decays 

roughly as l1w, such that the largest contribution to the integral in Eq. (5.44) is 

given by frequencies in the range 0<w 
-< 

27r/T. The approximation r,, (w) = r(o) 

holds as long as the observation time T satisfies T> 11& Indeed, as ft exceeds 
100 Hz, this is the case for T> 10 ms. 

Supposing once again that the states 11) and 12) are the ground states IF = 
2, MF = 2) and IF = 2, MF = 1) of a rubidium. atom, then (P22 - pll)2 = j12 3/4 B 
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5.3 Summary 

and a particulaxly simple result can be obtained as 

U[ýo(T)]2 = IP, (0) T f-- 106 x (0) T. (5.48) 

Since the value of x(O) reported in [88] is in the range 10-'-10-', the corresponding 

dephasing time r2 =- 2/a[ý02]2 is in the range 0.2 s- 2000 s. This provides a very 

convenient time scale for the study of vortex noise using Ramsey interferometry, 

in which atoms prepared in a coherent superposition of Zeeman sublevels are later 

interrogated to measure the time-evolution of the coherence. The vortex field noise 

would be manifested as a loss of Ramsey fringe visibility, which could be studied 

as a function of the atom-surface distance. 

5.3 Summary 

To conclude, neutral atoms can act as sensitive probes in the detection of vortex 
dynamics in thin superconducting films. Magnetic field noise due to the vortex 

motion can be sampled by observing the spin-flip lifetime. This lifetime can be 

obtained from existing experimental data and the relation between the spectral 
density of the magnetic flux noise to the spin-flip rate consists the main result of 

this Chapter. The relation obtained depends on physical paxameter such as the 

distance from the surface and the SQUID dimensions. Depending on the ratio 

of those parameters, two different limiting regimes occur and two corresponding 

power laws are encountered. The two power laws are compared and understood in 

terms of the electromagnetic field coherence length encountered in Chapter 4 and 

of its decay over a distance of the order of the skin depth. 

For a separation from the surface of 100 ym, the lifetime appears to be longer 

than 500 s. This is long enough to keep atoms trapped above a superconducting 
film. Moreover, mapping of vortices could be achieved by means of cold atomic 

clouds or Bose Einstein condensates, as they axe well known to feature simulta- 

neously high spatial resolution and high field sensitivity. Magnetic fields from 
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5.3 Summary 

vortices alter the trapping potential and this would reflect on the density profile 

of the atomic cloud, which is measurable with high resolution imaging. 

Fýirther information about vortex dynamics can be inferred by studying the 

dephasing time of a coherent superposition of Zeeman sublevels by Ramsey in- 

terferometry. The fringe visibility would be affected with time and the coherence 

lifetime could be measured. The vaxiance of the phase induced by magnetic field 

fluctuations can be expressed in terms of the spin-flip rate and estimates of the 

relaxation time can be obtained by looking at the flux noise spectrum provided by 

experimental data. 

The result obtained is also interesting for cold atoms trapped in atom chips 

using dielectric or conducting substrates. In quantum information processing, long 

coherence lifetimes are of fundamental importance to realize a phase gate and the 

interaction of neutral atoms with the chip surface results in a reduction of this 

lifetime. The ability to describe the loss of coherence in terms of the distance from 

the surface and other experimental length scale is then extremely important. 
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Conclusions and Outlooks 

It was the intention of this thesis to investigate relaxation phenomena due to the 

interaction of an atom with different substrates. A magnetically trapped neutral 

atom is subjected to near-field magnetic noise when it is held close to a dielectric 

or metallic surface. The origin of the magnetic noise lies in thermally induced 

currents originating in the substrate which result in magnetic-field fluctuations 

near the surface. These fluctuations can be strong enough to drive spin transitions 

to non-trapped states of the atom. This problem is relevant to proposals and 

experiments concerned with achieving both long trapping lifetimes and robust 

manipulation of neutral atoms. 
The work presented in this thesis aims at giving a better understanding of de- 

coherence processes induced by near-field magnetic noise and at suggesting novel 

ways or realising atomic microchip traps. The latter has been addressed in Chap- 

ter 3 by considering an atom trapped neax a carbon nanotube. In Chapter 4, 

spatial decoherence has been investigated for an atom in a superposition of two 

distinct positions. Previous theoretical and experimental studies have shown the 

dependence of the spin-flip lifetime on the skin depth of the materials adopted 

showing that superconductors are expected to boost this lifetime by several orders 

of magnitude. Although thermal noise is in principle absent in superconductors, in 

the superconducting thin films adopted in atom chips the dominant noise source 

will be vortex motion and this issue is addressed in Chapter 5. In the following a 

summary of the results obtained is given. 
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Chapter 3 

The realization of a wire-based atom chip where a caxbon nanotube is used instead 

of a macroscopic current-carrying wire has been the focus of Chapter 3. Carbon 

nanotubes have two main advantages. First, their small dimensions would ideally 

permit the next step towards miniaturization of atomic traps. This appear to be 

relevant in order to obtain strong trapping potentials and also to realize integrable 

microstructured devices. Secondly, the carbon nanotube is a graphene sheet rolled 

up into a cylinder which menas that it consists of a reduced amount of matter and 
for this reason is less likely to induce inhomogeneities in the trapping potential. 

The calculation of the spin-flip lifetime has been presented for a conducting 

carbon nanotube of radius RCN. This lifetime increases with the atom-surface 
distance and values of a few seconds are achievable for distances of the order 

of ý_- 5RCN. The estimation of the spin-flip lifetime is very promising, but the 

close proximity of the atom to the carbon nanotube surface has suggested that 

the attractive Casimir-Polder potential may modify significantly the trapping po- 

tential. The Casimir-Polder potential has been added to the (repulsive) trapping 

potential revealing that an atom can tunnel through the potential barrier and get 

stuck at the nanotube surface. In particulax, the height and width of the potential 
barrier vary with the trapping distance and below certain distances the barrier 

disappears. Only for trapping distances that are several multiples Of RCN, the 

total potential shows a pronounced minimum where the atom can be placed. The 

tunnelling lifetime through such a potential barrier has been evaluated by adopt- 
ing the WKB approximation and the results for a ground-state atoms show that 

the Casimir-Polder potential imposes more severe limitations on the minimum 
trapping distance. 

Finally, the fact that an atom trapped in such a potential occupies resonant 

states and has no true bound states has been discussed. This lead to addressing 
the possibility of having bound states for distances below the trapping ones such 
that the atom would be trapped between the caxbon nanotube surface, considered 
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as a delta potential, and the Casimir-Polder potential. In order to estimate the 

energy of the first bound state, it has been necessary to approximate the Casimir- 

Polder potential as a power law of the distance from the surface and numerical 

interpolations has shown a 1/rI dependence. According to the description adopted 

here, the wavelength associated to such a state would bee too big and this suggests 

that no bound state exists. 

Chapter 4 

In Chapter 4 the loss of spatial coherence due to thermally-induced spin-flip tran- 

sitions has been investigated. The evolution of a macroscopic quantum coherence 

state has been studied by considering an atom in a double-well potential above a 
dielectric surface. The atom, in a superposition of the two sites, experiences a loss 

of its spatial coherence due to thermally-induced spin-flip transitions. Magnetic 

field fluctuations act incoherently at the two atomic positions and this represents 

a concern in experiments requiring high degree of coherence. 
The spatial coherence of the atomic system has been described by the off- 

diagonal elements of the atomic density matrix from which a decoherence rate has 

been extracted. Calculations have been caxried out for a planax substrate and the 

corresponding Green tensor has been expressed in terms of the Weyl expansion. 
The spatial decoherence rate obtained decreases with the distance from the surface 

and with the lateral separation of the atom's positions. The decay of the spatial 

coherence staxts off rather slowly as spin-flip transitions are induced coherently at 
both sides for lateral separations below the coherence length of the electromagnetic 
field. For the spin-flip transition considered in this thesis, it has been observed 
that the transition wavelength is the biggest length scale in the system. This 

approximation allows the Green tensor to be written in a simplified form such 

that an analytical expression of the spatial decoherence rate is obtained for small 
lateral separations. In this limit, the decoherence rate has been written as an 

explicit function of the atom-surface distance and the separation between the sites 
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of the double-well. The expression obtained in terms of experimental paxameters 

may prove very useful in tailoring microstrucured devices in order to maintain the 

decoherence rate within a tolerance range. 
A numerical study of the decoherence rate for a three layer system has been 

presented for laxger sepaxations. In particular, the lateral separation at which the 

spatial coherence drops to half of its initial value has been plotted as a function of 

the layer thickness and for different skin depths of the substrate. This separation 
has been regarded as a measure of robustness against decoherence and it reveals 

that the robustness of the spatial coherence drops dramatically for thicknesses of 

the order of the skin depth. An intuitive explanation of the behaviour encountered 
for different skin depths has been attempted at the end of Chapter 4 by considering 

the skin depth as a layer of radiating dipoles. 

Chapter 5 

Understanding the origin of microscopic vortex noise was beyond the scope of this 

thesis and the focus of Chapter 5 has then become to address the possibility of 

probing vortex dynamics with cold neutral atoms. This has been done by estimat- 
ing the spin-flip lifetime and the dephasing time. The estimates have been guided 
by existing experimental data on the spectral density of the magnetic flux noise. In 

the experiment considered, magnetic flux variations due to vortex dynamics were 

measured by monitoring a Josephson junction with a superconducting quantum 
interference device (SQUID). 

A relation between the noise spectrum and the spin-flip rate has been derived 

and it depends on physical paxameters such as the distance from the surface and 
the SQUID dimensions. Two different limiting situations have been considered 
depending on the ratio between those parameter and the case of a laxge SQUID 

close to the surface has been studied in more detail. In this case the assumption 
introduced in Chapter 4 about the spin-flip transition wavelength being the biggest 

length scale of the system can be safely applied. 
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A rather long spin-flip lifetime has been obtained which suggests that atoms 

can be held and manipulated above a superconducting thin film. Nevertheless, 

this lifetime is short enough to be observed and the imaging of vortices could be 

in principle possible by studying the density distribution of an atomic cloud. Ad- 

ditional information on vortex dynamics are provided by the phase noise induced 

between two Zeeman sublevels. A superposition of those levels has been consid- 

ered and the variance of the phase induced by magnetic field fluctuations has been 

calculated, which is proportional to the magnetic field correlation function. The 

variance can then be expressed in terms of the spin-flip rate and estimates of the 

relaxation time has been, again, guided by experimental data. The dephasing time 

obtained appears to be long enough to perform Ramsey interferometry and so to 

obtain information about phase coherence by looking at the interference pattern. 

Ouflook 

In Chapter 3 there are two open questions. First of all, the power law of the 

atom-surface distance encountered for the Casimir-Polder potential needs to be 

investigated in more detail. The power law obtained here (for very short distances 

from the carbon nanotube surface) is typical of the interaction of an atom with 

a half space while in this situation one would expect the power law associated 
to the interaction of an atom with a thin wall. This leads to a second wider 
issue regarding the validity of the electrodynamic in dielectric media in the close 

proximity of a substrate where the atomic structure can be resolved. 
The study presented in Chapter 4 needs to consider additional decoherence 

mechanism to be complete, such as thermally-induced Raman transitions between 

two hyperfine states. The same theoretical framework presented in Chapter 4 

can be used once a proper interaction Hamiltonian has been derived. A suitable 
formulation of the coupling between the atomic system and the fluctuating elec- 
tromagnetic field will distinguish between the on-resonant and the off-resonant 
interaction. A decoherence rate can be derived by looking at the off-diagonal el- 
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ement of the atomic density matrix. This study, together with the results about 

spatial decoherence, will prove useful in the understanding of amplitude and phase 

fluctuations occurring in typical experimental realizations. 

Regarding the detection of vortices addressed in Chapter 5, a step further would 

be to describe the magnetic flux of a single vortex as if radiating from an individ- 

ual magnetic dipole. This would allow a first principle derivation of the spectral 

density of the magnetic flux noise and a better understanding of the power laws 

obtained when considering a large SQUID placed very close to the surface or the 

opposite limiting situation. An additional prospect would be to estimate the res- 

olution provided by an atomic cloud compared with superconducting interference 

devices. Cold atomic clouds have the potential to provide high resolution and 

high sensitivity when a magnetic field is applied and they could provide a deeper 

understanding of the vortex dynamics. 

124 



A 

Axial conductivity and dielectric permittiv- 

ity of a carbon nanotube 

In this appendix, the frequency dependence of the axial surface conductivity o-(W) 

and of the dielectric permittivity c(w) for a single-wall carbon nanotube (CN) axe 
briefly reviewed following the work presented in [130,132]. 

A single-wall carbon nanotube can be though of as a layer of graphene rolled 

up into a cylinder. The carbon nanotube energy bands derive from the 7r orbits 
(7r bands) and a orbits (o, bands) of the graphene sheet. Due to the cylindrical 

symmetry of the system, the electron wave number perpendicular to the CN axis, 

p-L, is quantised and needs to satisfy the boundaxy condition 27rRCNP-L = 2rj, 

wehre RCN is the nanotube radius and j is an integer. A graphene sheet consists 

of an hexagonal lattice structure with a carbon atom sitting at each vertex and the 

structure of a carbon nanotube can be specified by a lattice vector between two 

hexagons defined aS Ra, b = ax: + by where a and b are integer numbers and x and 

y are the unit vectors of the two-dimensional graphene lattice as shown in Fig. 3.2. 

The conduction properties of a carbon nanotube depend on the way it is rolled 

and this reflects on the relation between a and b. In the following the tubule index 
(a, b) is adopted and a nanotube (a, b) is said to be conducting when 2a +b= 3n 
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with n an integer. A carbon nanotube (a, b) has a one-dimensional energy bands 

27rN a+t E± (N, p) = ±to 1+4 cos 
Lpt 

cos 
L' +4 COS2 

Lt (A. 1) 
(a 

2a 22 

where I=2.13 A is 1 times the interatomic distance, to = 4.32 x 10" J is the 2 

tunnelling energy of the electrons along the lattice sites [130], N=0,1, ..., a-1, 

and 7r/t <p< 7r/f with p the electronic wave number. The corresponding Fermi 

distribution function is f (E) = 1/lexp[O(E - p)] + 1} with inverse temperature, 3 

and chemical potential ji. 
The dielectric permittivity of a conducting carbon nanotube is well described 

by the Drude relation 
d 

(hW 
PI 

)2 

fr(w) =- (A. 2) Tw(r, w T in/Tr), 

with wp, the plasma frequency 

üj21 = _(eh 
)2 2pc 1: '/' 

dp [ImKo(N, p)]2 -72 
fir/1 

mN 

x ff'(E+(Np» + f'(E-(N, p»}, (A. 3) 

where pC = 2apT = (7rvf3-)/(21? CN f2) is the density of carbon atoms per volume 
[133] and PT is the volume density. The quantity KO(Np) corresponds to the 

(dimensionless) matrix element of the momentum operator and is expressed as 

3 

Ko(N, k) = e-iO(Nk) 1: e-"'-'(N, k)[Ji cos 77, \ + J2(1 - cos77, \))2]ý, \, (A. 4) 
A=1 

where the subscripts A =1,2 and 3 correspond to three different nearest neighbour 

pairs and 0 is the argument of 

exp 
[_, (27rN 

_b kl) 
I+ 

exp(-iki) +1 
1aaI- 

For the sake of simplicity, the tables of the auxiliaxy variables Ox(N, k), 77, x and ý, \, 
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and of the matrix elements of the momentum operator J, and J2 are not reported 
here and can be found in [130]. 

For high frequency regimes transitions between conduction and valence bands 

become important and an additional term cb needs to be considered in the total r 
dielectric permittivity 

=, E"(w) +er '(W), (A. 5) 

with the interband transition term given by 

b+ eh2 
2 4pc 

er m at N 
7rll f (E+ (N, p)) -f (E- (N, p)) 

-'7r/I 
ap E+ (N, p) - E- (N, p) 

X (ry 
[ReKo(N, p)]2 (A. 6) 

. 4))2 + ih2L, )/, rr - [E+ (N, p) - E- (N, p)]21 

where, r, is a phenomenological relaxation time such that hlr, = 4.8 X 10" J [1301. 

2 
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Figure A. 1: Real part of the axial conductivity as a function of the frequency for a 
(9,0) carbon nanotube with radius RCN = 3.52 A. 

The axial conductivity for a single wall nanotube can then be expressed as 

UZZ (R, w) =- 
zw60 er (R, w) 1) (A. 7) 

PT 

and the frequency dependence of the real part of the parallel conductivity for a 
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metallic nanotube (9,0) is shown in Fig. A. 1. The growth of the conductivity at 
low frequency is due to the Drude term of Eq. (A. 2). The peaks appearing for 

larger frequencies correspond to interband transitions. In particular, the parallel 
dielectric function, and as a consequence the axial conductivity, exhibits a plasmon 

peak at about w= 2to/h L- 1.31015 Hz which is due to the 7r electrons. 
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B 

Green tensor of planar multilayers 

Here, the calculation of the Green function for planar multilayers is reviewed fol- 

lowing [74,157]. The notation adopted for planar layers is slightly different from 

the one used for carbon nanotubes in Section 3.1.1 and the reason is merely re- 
lated to a question of simplicity in choosing the labels. The dyadic Green function 

for the electromagnetic field scattering from a material interface can always be 

decomposed into 

G(r, r, w) 
G(l)(r, r, w)+R(12)(r, r, w), r, rEV, 
T(12) (r, rI, W), rE Vl, r' E V2 

where GM(r, r, w) denotes the solution to the inhomogeneous Helmholtz equa- 
tion with the source in region V1, which in the present case is the vacuum with 

cl(w) =- 1. The two scattering terms R(12)(r, r', w) and T(12) (r, r, w) have to 

be introduced to satisfy the boundary conditions for the electromagnetic field at 
the interface and they represent the reflection and transmission parts of the total 

scattering Green function, respectively. 
For an atom located in the vacuum above the substrate material, only the 

reflection part R(12)(r, r', w) needs to be considered as the contribution to the 

spin flip rate and spatial decoherence given by the vacuum part GM (r, r', w) can 
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be neglected. The translational invariance in two spatial directions, say in the 
(x, y)-plane, allows one to write the Green function in terms of its Weyl expansion 

R(") 
k 11 R(12) (kll, w; z, z')e 

ikll . (p-p) (B. 2) (27rT 

where p= (x, y) and k1l = (k.,, ky) are the position vector and the wave-vector, 

respectively, in the (x, y)-plane. The matrix components of R(12) (k1j, w; z, z) can 
be read off from [741 as (here the arguments are omitted to enhance readability) 

R (12) 
xx e 

ikl. (z+z) 

2k,, 

222 

r 
Tm kl., k x+r TE 

kY 

12 -ý? -k3 2 12 
lkl 

R (12) 
xy 

ie ikl, (z+z') 

2k,,. r Tm k, 2;, k., ky 
r TE kx kY 

12 k2-k2 12 
1 

(12) R, 
i 

ikl. (z+z') 
e 

,;, k 
Tmk r12 

2k, 
ý, 

2 

R (12) 
e ikl. (z+z') TM 

k 
12, 
-I 12 

Ir 1 

zz 2kiz T? 
1 

R 12) ( 12) R ( 
z x x zI 

R (12) 
= -R(12) 

R(12) 
-R(12) zx xz zy yz 7 

R 12) 12) 12) 12) 
= Rx(x (kx +-* ky), R( = R( (k +-+ ky), (B. 3) yy yz xz x 

2= W2 2 
where ki ycj(w) and kj2, = kj2 -k C 

The functions r 
TE T 
12 and r ý" denote the Fresnel reflection coefficients for TE 12 

and TM waves, respectively, and axe defined by 

TE klý, - 
k2z 

TM e2 (w) ki, - ei (w) k2, 

,x+ k2z (B. 4) 'r12 = Z- 'r12 = 

x+ 
k2, e2 (w) ki, + ei (w) k2z ' 

The Fresnel coefficients obey certain recursion relations that permit one to calcu- 
late the dyadic Green function for arbitrarily multi-layered materials [140,157,176]. 

In particulax, the generalized Fresnel coefficient for a three-layer geometry reads 
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(for both TE and TM polaxizations) 

r12 + r23e 2ik2zh 

r12 1 --rmr2e2ik2ýh (B. 5) 

where h is the thickness of the intermediate layer indicated by the label 2. 
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