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ABSTRACT 

Extremely accurate speed of sound measurements have been performed on 

gaseous methane, propane and a methane-propane mixture, using a spherical resonator. 

The data have been analysed in order to obtain perfect gas heat capacities and second and 

third acoustic virial coefficients. 

A new integration technique has been developed by which the speed of sound data 

obtained for methane have been integrated to yield the compression factor. The 

propagation of error in the integration has been studied both numerically and analytically. 

It has been found that the integration is of increasing accuracy as the temperature 

increases. 

A new method has been also developed which allows second and third volumetric 

virial coefficients to be calculated by simultaneously fitting second and third acoustic virial 

coefficient data to a spherical intermolecular pair potential. The method is found to be 

accurate in predicting second and third volumetric virial coefficients for the monaton-k 

gas argon, the pseudosphefical gas methane as well as for the non-spherical nitrogen gas. 

The calculations involved employ the assumption that the dominant contribution to the 

non-pairwise-additive part of the potential of three molecules is the Axilrod-Teller triple- 

dipole term. This assumption has been confirmed for the case of argon. For the spherical 

substances studied the potentials derived from the fit are shown to be good 

approximations of the true potential. 

The same method has been applied to an argon-nitrogen mixture yielding second 

and third interaction volumetric virial coefficients. The accuracy of the second interaction 

volumetric virial coefficients obtained is estimated to be better than that of the values 

previously available, while third interaction volumetric virial coefficients are reported for 

first time over a wide temperature range. 
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CHAPTER I 

INTRODUCTION 

Accurate speed of sound data in gases are largely sought by the gas industry for 

calibration of flowmeters using sonic nozzles. The speed of sound data are of equally great 
importance for scientific purposes. The thermodynamic property of the speed of sound is 

particularly sensitive to the accuracy of volumetric data and therefore speed of sound data 

are used for testing equations of state. 

In this work extremely accurate acoustic measurements have been performed for 

gaseous methane, propane and a methane-propane mixture, using a spherical resonator, 

the description of which is found in chapter 4. Employing the acoustic model developed in 

chapter 3 the speed of sound was determined from the acoustic measurements. Depending 

mainly on the purity of the substances measured the speed of sound has been obtained 

with an estimated accuracy from 20 to 200 parts per million, as the analysis in chapter 5 

shows. In chapter 6a new method is presented by which one can obtain an equation of 

state using solely speed of sound measurements. The method is based on integrating the 

speed of sound data to obtain the compression factor using initial values at the lowest 

temperature of measurements. The propagation of error in this method has been studied 

both numericafly and analytically. It has been found that the method is of increasing 

accuracy when the temperature increases, a fact which allows the implementation of the 

method to a variety of substances provided initial values of the compression factor and its 

derivative with respect to the temperature exists at the lowest temperature of the 

integration. 

The speed of sound data when fitted into a virial series in the density yield acoustic 

virial coefficients which are related to the volumetric virial coefficients through ordinary 
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differential equations. Accordingly, the functional relationship between the volumetric 

virial coefficients and the intermolecular pair-potential, discussed in chapter 2, yields, 

through these differential equations, the functional relationship between the acoustic virial 

coefficients and the intermolecular pair-potential. Employing this relationship we have 

fitted simultaneously the second and third acoustic virial coefficients to a simple but 

flexible potential model in order to obtain the potential which best represents the two 

acoustic virial coefficients. 

The third volumetric virial coefficients are related in addition to the pair-potential, 

to the non-pairwise-additive part of the potential of three interacting molecules. This part 

of the potential in the present work has been approximated by the Axilrod-Teller triple- 

dipole term, assuming that the dominant contribution to the non-pairwise-additive part of 

the three-molecule-potential arises from the dispersion. This assumption which has been 

already tested for argon, was reconfirmed using accurate values of the third acoustic virial 

coefficients in conjuction with the most accurate available potential and was employed 

next for the analysis of the other substances. 

Subsequently, the potential which was found to represent best the second and third 

acoustic virial coefficients was employed for the calculation of the second and third 

volumetric virial coefficients and, independently', * the viscosity of the dilute gas. The 

excellent agreement between the calculated and experimental values obtained for these 

properties for the spherical substances studied is a strong indication that potentials derived 

using only accurate second acoustic virial coefficients are very good approximations of the 

true potentials. 
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CHAPTER 2 

BACKGROUND IN INTERMOLECULAR FORCES 

2.1 Introduction. 

The forces which act between pairs or greater clusters of molecules determine 
, to 

a large extent, the thermophysical properties of bulk materials. Statistical mechanical 

theory provides a direct final link between those intermolecular forces and the properties. 

Thus, in principle, if the intermolecular pair potentials for all molecular interactions in a 

system are known it should be possible to predict the properties of the material. ThE 

existence of such a procedure would mean that the needs of the chemical industry for 

thermophysical property data on a wide range of systems over a wide range of conditions 

could be met solely by calculation. In practice, the only intermolecular pair-potentials 

known with exactitude at present are these for monatomic species and thus the procedure 

set out above cannot yet be carried out. Instead it is useful to exploit measurements of 

some of the thermophysical properties of fluids in order to determine intermolecular 

potentials so that others may then be calculated without measurement. 

In this chapter we consider the origins of intermolecular forces and their 

quantitative nature as well as the sources of information about them that are available. In 

particular, in the context of the current work, we consider the use of the accurate 

measurements of acoustic virial coefficients made in this work to the determination of 

intermolecular forces. 

2.2 Intermolecular forces 

The intermolecular pair-potential energy for a system of two atoms describes the 

departure of the total energy of the two-atom system from its value when the two atoms 
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are infinitely separated. This energy difference is equal to the work needed to bring two 

atoms together from infinite separation to a separation r: 
r 

U(r) = -f F(r)dr 
co 

where F (r )= -dU / dr is the total intermolecular force at a separation r. By convention 

the intermolecular force is positive when it is repulsive and negative when it is attractive. 

The origins of intermolecular forces lie in electromagnetic interactions between 

charges on the electrons and nuclei of the molecules. According to the semi-classical 

approach, the electrons of an atom are supposed to be in continuous orbit about the 

nucleus so that these forces are expected to have a time-dependence, related to the 

velocity of the electronic motion. In the development of the above relation we assumed 

that the two atom were held stationary at the separation r, so that the resulting 

intermolecular force is the time average of the time-fluctuating forces. However, 

according to the molecular theory the atoms in matter are in continuous motion and not 

stationary. Since the electron velocities are always much larger than the atom velocities, 

we can indeed consider the two atoms to be stationary. This is the Born-Oppenheimer 

approximation, which results in a unique, velocity independent intermolecular pair- 

potentia I. 

The essential characteristics of an intermolecular pair-potential for a non-reactive 

system are taken to be: 

- the separation or at which the potential energy function crosses zero, 

- the separation r. at which the potential attains its minimum value and 

- the minimum value of the energy -. 6 itself known as the potential well depth. 

These characteristics are shown in figure 2.1 for a typical intermolecular pair-potential 

curve. 
For a system of two molecules, there are fluctuations in the intermolecular pair- 

potential arising from vibrations and rotations of the molecule. Within the 'rigid-molecule' 
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U(r) 

-c 

Figure 2.1. The intermolecular pair-potential of a spherically symmetric system as a 
function of the separation. 
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approximation, according to which there is no internal rotation of the molecules and the 

molecules are in their ground electronic and ground vibrational states [2], the potential 
depends only on the intermolecular separation r, and the relative orientation 0-) and we 

write U (r, o) For the general case of any space-fixed coordinate-system XYZ, the 
intermolecular pair-potential is expressed as U (r-, Col, 0)2 where r_ = r2- 71 is the 

vector of the molecular separation with respect to that system, and co, and W2 the 

orientations (the Euler angles [21) of molecules I and 2 respectively, with respect to that 

system. If the orientations of the two interacting molecules refer to the vector r- = 71 -r2 

as polar axis, we can express the intermolecular pair potential U (F-, a)jW2) as 
U (r, w'I, o)2 ), where r is the separation between the molecular centres and oj', and w2 

are the orientations of the two molecules with respect to the new coordinate system. As 

the molecular centre one often chooses the centre of mass, so that all molecular 

parameters, moments of inertia, multipole moments, etc., relate to one origin. 

2.2.1 Origins of intermolecular forces 

The forces between particles are classified into (1) strong nuclear forces, which are 

responsible for the binding of the neutrons and protons inside the nucleus and are 

significant over a range of order 10-4 nm , 
(2) weak nuclear forces, known to be 

electromagnetic in origin, acting in a sirailar short range, (3) electromagnetic forces and 

(4) gravitational forces [I]. 

Since the molecular dimensions are of order 0.5 nrn, the nuclear forces cannot 

contribute to the intermolecular force. On the other hand, gravitational forces, which are 

extremely long range, contribute a force some thirty orders of magnitude smaller than the 

observed intermolecular force, so that they are not responsible for intermolecular forces. 

Thus, the intermolecular forces must be electromagnetic in origin [I]. 

The qualitative diagram contained in figure 2.1, shows that the total intermolecular 

force at short range is repulsive, while at long range it is attractive. Therefore we can 
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discern at least two sources of contribution to the total intermolecular force and the 

corresponding intermolecular potential [I]. 

Qualitatively, the origin of repulsive forces is simpler to explain. When the electron 

clouds of two molecules approach each other sufficiently closely that they overlap, the 

Pauli excusion principle prohibits some electrons from occupying the overlap region 

reducing, as a consequence, the electron density in that region. The positively charged 

nuclei are thus incompletely shielded and therefore exert on each other a strong repulsive 

force. Such short range forces are referred to as overlap forces [1]. Modem methods of 

quantum chemistry permit numerical evaluation of these overlap forces for relatively 

simple molecules by means of appropriate solutions of the Schroedinger equation. 

The long range attractive component of the intermolecular force arises in a 

completely different manner and is significant when the overlap of the electron clouds is 

small. There are three possible contributions to the attractive force depending on the 

nature of the interacting molecules: 

(a) Electrostatic contributions. 

The electrostatic forces are important only between molecules possessing a 

permanent dipole moment such as HCI. As expected these forces are strongly dependent 

on the relative orientations of the two interacting molecules and therefore sometimes are 

called orientation forces. Since the interaction between the two dipoles takes place 

without a distortion of the electron-charge distribution on either molecule, the resulting 

energy is termed a first-order energy [I]. 

The electrostatic energy of two dipoles, having a linear charge distribution and 

total charges =o and Q'= Q, + Q' =0, for dipole I and dipole 2 Q= Q1 +Q2 2 

respectively, is, after averaging for all possible orientations using the Boltzmann weighting 

exp (- U,, l / kT ), given by the sum of terms [I]: 
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2p2 P2 

3r kT (4 IrCo) 

82 (P 2eP2 + pp2E)2) 
r kT (4 IWO) 
14 o2E)t2 

5r1 kT (4 IrE 0) 

where . 60 is the permittivity of free space, p and p' are the dipole moments and E) and 

E)' are the quadrapole moments, of dipole I and dipole 2 respectively. If we consider the 

charges QI and Q2 of dipole I lying on the z-axis, at distances -z I and z2 from the 

origin of the axis taken to be the centre of mass of the dipole, the dipole moment of I is 

defined as 
2z2 

P -QIZ I+ Q2Z 2 and the quadrapole moment of I as E) = Qlz I+ Q2 2. The 

terms (uel)., 
, 

(Uel),, 
g and (Uej%ý, are called the dipole-dipole, dipole-quadrapole and 

quadrapole-quadrapole contributions to the electrostatic energy respectively. All these 

contributions to the electrostatic energy are seen to be attractive and they vary as r- 31 

r- 8 and r- 10 respectively where r is the distance between the centres of mass of the two 

dipoles [1]. 

(b) Induction contributions- 

These forces arise from the interaction of a multipole on a molecule with a non- 

polar molecule. For example a dipole moment on one molecule distorts the electron 

charge distribution of the other molecule producing an induced dipole moment within it. 

This induced dipole then interacts vAth the inducing dipole to produce an attractive force. 

Because this contribution to the potential energy arises from distortion of the electron 

clouds it is termed a second-order energy. When two polar molecules interact the 

induction force is simultaneously present. 

The induction energy between a dipolar molecule and a non-polar molecule after 

averaging over all possible orientations, using the Boltzmann weighting, exp (-Ui,, dlkT ), 

is given by [I]-. 
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2 
at 

ind) 
(471-60) 2r6 (5) 

where p is the dipole moment of one molecule and a' is the static polarizability of the 

other. This expression is not temperature dependent, unlike the corresponding leading 

term in the electrostatic energy. When two polar molecules interact the orientationally 

averaged induction energy is [I]: 
(Uind )I--p2 at + PP2 a 

ALI (4 ireo) 2r6 (6) 

where a and a' are the static polarizabilities and u and u' the dipole moments of the 

two dipoles respectively. We see that in both cases the induced energy varies as r- 6. 

(c) Dispersion contributions: 

When two molecules possessing no permanent electric dipole or higher order 

moments interact, electrostatic and induction contributions to the intermolecular potential 

energy are absent and the interaction arises solely from the dispersion forces. The 

electrons of a molecule are in continuous motion so that the electron density oscillates 

continuously in time and space. Thus, at any instant, any molecule possesses an 

instantaneous dipole which fluctuates as the electron density fluctuates. This instantaneous 

dipole induces an instantaneous dipole in a second molecule. The induced dipole and the 

inducing dipole interact then to produce an attractive energy called the dispersion energy, 

which is, accordingly, a second-order energy. 

According to the simplified Drude model [I], which treats each molecule as a 

simple oscillator, or using exact quantum-mechanical methods, we obtain the expression 

of the dispersion energy between two identical spherically symmetric molecules as follows: 

U- 
C6 

+ 
C8 

+ 
CIO (7) disp : ": 

r6r8r 
10 

where the coefficients C6 ,q and clo correspond to the induced dipole-dipole, dipole- 

quadrapole and quadrapole-quadrapole interactions. The coefficient of the leading term is 

given by: 
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4 (4 7reo) 2 (8) 

where coo is the angular frequency of the simple oscillator and hh/2; r, with h being 

Planck's constant. London [1] estimated first the magnitude Of C6 by assuming that the 

angular frequency of the oscillator model wo was that corresponding to the energy of 

ionization of the molecule from its ground state, E, = hwo . 
This assumption was 

supported by the fact that an identical assumption was found to describe reasonably well 

the variation of the refractive index of a gas with the frequency of electromagnetic 

radiation (the so-called effect of dispersion). Accordingly we write: 
C6 

3 Ct2E, 
(9) 

4 (4 7r. 60; 
T 

The coefficient C6 called the two body dispersion energy coefficient, calculated In this 

manner for argon was found to be only 30 per cent smaller than the actual value. A full 

quantum-mechanical treatment yield expressions for C6 
) 

C8 
. and clo., from which they 

can be calculated using experimental data information on multipole oscillator-strengths 

[I]. 
The dispersion energy is the only contribution to the intermolecular pair-potential 

energy arising from the long-range forces for non-polar molecules, while it constitutes the 
, ve 

largest contribution to the attrad force it for the most polar molecules, except the most 

highly polar such as H 20 

2.2.2 Representation of the intermolecular pair-potential 

Many semiempirical models have been proposed in order to represent 

intermolecular pair-potential functions of spherically symmetric molecules [1], since an 

exact analytical expression is not yet feasible. One of the most popular potential models is 

the Lennard-Jones (n-6) potential. 
(n -6) [6(r. Ir )n -n (r,, / r) 

61 (10) 
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The characteristic of all these potential models is that they consist of two paW, `, a 

repulsive term and an attractive part usually varying as r- 6. The latter term is consistent 

with the theory outlined above but there is no justification for the form of the repulsive 

term. 

The representation of the intermolecular potentials of non-spherical molecules 

involves a consideration of the orientation dependence. One way of representing the 

intermolecular pair-potential of two non-spherical molecules U (r, 0)1,, C02 is the site-site 

model. This model assumes that the intermolecular pair-potential is the sum of the 

pairwise potentials u ap 
between individual sites on the two molecules. The sites are often 

coincident with the that make up the molecules: 
U (r, co 1,0)2 Ua, 

8 
(r. ) 

a, 8 
(11) 

For some applications it is convenient to separate the intermolecular pair-potential into 

isotropic and anisotropic parts. 
U (r 0)10)2 UO(r) + U. (r 0) 10-) 2) (12) 

where the isotropic potential uO depends only on the separation r. This decomposition is 

of course not unique, but the most convenient choice for UO is the unweighted 

orientational. average of the full potential: 
UO(r) = 

(U 
(r-CO P2 ))wlw2 

Accordingly, it should be: 
(Ua 

(F a) P 2)). " PI 2=0 

All potentials defined by equations (12) and (13) satisfy the condition of (14) [2]. 

An alternative means of representing non-spherical potentials which has been 

proved very useful for theoretical calculations, follows from a spherical harmonic 

expansion of the potential U (r-, O), , 0)2 ) [2]. Analytic statistical mechanical calculations 

are easily carried out, since the properties of the spherical harmonics, integration, 
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differentiation, rotation, etc., are well established. For molecules of an arbitrary shape, the 

spherical harmonic expansion of the potential is written: 
U (r 

I COI, 0-)2 )=1: 2: J: U (11121 ; nln2; r) 
1021 mPn2m nIn2 (15) 

XC (1 1 11 (0) 12 
1 21; M IM 2M) D )* Dy 

m In I M2P2(0)2) lm(O-))* 

where [1 =0,1,2, ---; m ;n 1 , 
C(11121 ; MIM2m is a Clebsch- 

Gordan coefficient, I D. (W)* (* indicates the conjugate) is a generalized spherical 

harmonic, Y,. (o-)) is a spherical harmonic and o) is the orientation (the polar angles [2]) 

of F with respect to the chosen XYZ coordinate system. The separation-dependent 

coefficients of the above expansion, U (11121 ; nln2; r), can be obtained [2] for each of the 

contributions to the intermolecular pair-potential (electrostatic or multipole, induction, 

dispersion, overlap), so that the fuH potential U (7a) 1012 ) can be obtained by performing 

the summation of (15). Employing symmetry properties of the system of molecules 

interacting equation (15) can be substantially simplified. For example for linear molecules 

equation (15) it is reduced to [2]: 
U (ro-)10-)2) =IIU (11121 ; r) C (11121 ;m Im 2m ) 

11121 mlm2m 

Xyy llml(0)1) l2m2('0)2)ylm(oj) 

where there is no ni dependence. This spherical harmonic expansion of the potential has 

been applied in attempts to determine the inten-nolecular pair-potential for the linear 

molecule of nitrogen, up to II= 12 =6 and I= 12 giving good convergence 

2.2.3 Non-additivity of the intermolecular potential 

It is often assumed that the total intermolecular potential energyU N (r- 
N, WN) , 

for 

-N = and O)N = 0) 0)21 0-) is simply the sum of the N molecules, where r-r, r2 rN 1, N) 

intermolecular potentials for isolated pairs of molecules, i. e. 
-N N UN(r 

, 0-) )=2: U (rij 
, O)i I, O)j ) 

i <j 

(17) 
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where u (r-ij , coi , coj ) is the potential for a pair of molecules i andj isolated from the other 

molecules, with the centre ofj at iij Fj Fj from i, and orientations co and coj , The rij : -- ri - ri i 

assumption of pairwise additivity is not exact because the presence of additional molecules 

near a pair distorts the electron-charge-distributions in the particular molecules i andj, and 
thus changes the intermolecular interaction between this pair from that appropriate when 
the pair is isolated. Thus, more precisely we write: 
UN (r N 

o-) N )=I: U(ij)+ I: U(ijk)+... 
i <j i <j <k 

(18) 

where u (ij u (r-ij , o-)i , o), ), U Qj kU (ii Fi Fj 0-) The term rij Irik Irjk IO)i 'Coi k) , etc. 

U Qj k) is the additional part of the potential not included in the sum of the isolated pair 

terms U (ij )+U (i k)+U (j k), and so on. For monatomic gases it seems that a 

description of most thermophysical properties can be achieved if the above equation is 

truncated at the triplet term. For polyaton-k fluids the situation is not yet clear [2]. 

The influence of the three-body tenn on physical properties has been studied for 

atomic fluids. In these studies the long-range Axilrod-Teller [1,2] triple-dipole dispersion 

term was found to be the most important part of the three-body interaction. An 

explanation of this is that configurations where three molecules overlap are rare, because 

of the strongly repulsive nature of the overlap potentials [2], so that the additional energy 

arises largely from the long range attractive contribution. 

The effect of the three-body term on the internal energy of the liquid is small even 

at the triple point; being only a few per cent [2] of the total configurational energy; for less 

dense fluids the effect is smaller. However, some properties are much more sensitive to 

the three-body forces. For example, the Axilrod-Teller [ 1,2] three-body interaction was 

shown to have a large effect on the third virial coefficient, especially at the lower 

temperatures [2]. The three-body interaction also has a large effect on other properties for 

atomic liquids, such as the surface energy and surface tension. The neglect of the three- 
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body forces produces an error of 25 per cent in the surface tension and 10 per cent in the 

surface energy of liquid argon. 

The Axilrod-Teller triple-dipole term is the leading correction term to the 

dispersion energy arising from the interaction of three molecules. For the particular case of 

spherically symmetric molecules it is given by: 

, 
&U =V 123( rl 2rI 3r23 )-3(l +3 cos 01 cos 02 cos 03) (19) 

where Oi are the interior angles of the three-body triangle and 
V123 3 

aC6 (20) 
4 

In equation (27) a is the zero frequency polarizability andC6 the two-body dispersion 

energy coefficient. 

2.3 Sources of information about the intermolecular pair-potential 

In this section we consider the properties which have been proved of greatest value 

in the determination of intermolecular pair-potentials for simple molecules. 

2.3.1 Second volumetric virial coetTicients 

The volumetric virial coefficients are the coefficients obtained by the expansion of 

the compressibility factor in density series- 

41- 
P-=I+ Bp. + Cý2n + 

PnRT 
(21) 

where z is the compressibility factor, p is the pressure, T is the temperature, R is the gas 

constant, p. is the amount of substance density and, B and C are the second and third 

volumetric virial coefficients respectively. These coefficients represent the effect of the 

intermolecular interactions; in the absence of intermolecular interactions equation (2 1) 

reduces to the perfect-gas equation of state. In particular, the second virial coefficient 

expresses the effect of interactions between pairs of molecules and thus is directly related 
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to the intermolecular pair-potential. For spherically symmetric molecules the second virial 

coefficient B (T ) is given in terms of the intermolecular pair potential U (r) as follows: 
CO 

B (T 2; rNof [I - exp (-U (r) /Ur2 dr (22) 
0 

where No is the Avogadro number. The calculation of B from an assumed intermolecular 

pair-potential is a straightforward procedure. The intermolecular pair-potential can be 

obtained from B, either by assuming a certain potential form and performing regression 

analysis to determine its parameters, or by inversion [4-9]. Since, the second virial 

coefficients are found to be quite insensitive to the potential form chosen, the first method 

does not lead to a unique potential. On the other hand, inversion techniques developed to 

determine the potential U (r) from B require extremely high accuracy of the latter [4-9j. 

For non-spherical molecules the same two methods are available to determine the 

potential. However, the meaning of the spherical potential derived by an application of the 

inversion process is not yet understood. One suggestion has been made that the potential, 

UB, obtained by inversion in such cases is related to the full anisotropic potential, 

u (T., w) , 
by the equations: 

(23) r., r. U B((F,,, 
(U 0j)) 

where 
j ir3 

(F� ý= wdw (24) 
do 

and r- is the separation at which the potential for an orientation co takes the value 
01 

U ('(O). 

We can see what type of information about the intermolecular pair-potential the 

second virial. coefficients provide if we write equation (18) in the equivalent form: 

B (T)= 
2 7dVO exp (c /U)f 

Aexp(-V/ T)dV+ 
00 

r3 exp (- 97 / T) dV (25) 
3T 

33 being the separations of the where V(r)=(U (r )+C)lk and A=rL - rR , rL and rR 

inner and the outer walls of the potential energy well at the energy V. The first term in 
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(25) corresponds to the contribution of the potential well to the virial coefficient at 
temperature T whereas the second term arises from the repulsive forces for r<a. At high 

temperatures the first term is negligible compared with the second, so that B (T) depends 

only on the repulsive region. Thus measurements of B (T) in that region theoretically can 

be used to determine U (r) explicitly. Unfortunately, the temperature range of the 

measurements restricts this method to the low energy repulsive region of the potential. At 

low temperatures B (T) is dominated by the first term so that measurements can provide 

information about the potential well [I). 

2.3.2 Transport properties of dilute gases 

All transport processes are associated with the flux of a dynamic property owing to 

the concentration gradient of this property. In the transport mechanism collisions between 

the molecules are directly involved. The outcome of these molecular collisions is 

controlled by the intermolecular forces acting between the molecules. When the gas is 

dilute the collisions occur only between pairs of molecules, so that the scattering of the 

collisions is determined by the intermolecular pair-potential. 

The transport properties of a gas of structureless, spherically symmetric molecules 

are related to the potential U(r) , through a series of collision integrals 920's)(T ) defined 

by the equations [I]: 
Go 

2 5+1 (T [(s + 1)! (kT )" ]-'f Q (') (E)E exp(-E / kT)dE (26) 
0 

(')(E) 2 7r 
[1- 

2(1+1) 
f (I - cd; r) bdb (27) 

;r (b 
,E)=v- 

2b 
Go dr /r2 (28) f 

[1-b 2/r2- U(r) / E]'/2 
r. 

where r, is the closest distance of approach in a binary collision having an impact 

parameter b and a relative kinetic energy E, X (b ,E) 
is the scattering angle and 

Q0 )(E ) is a transport cross-section. Measurements of the transport properties of a gas 
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are equivalent to measurements of the appropriate collision integral. Thus, the viscosity is 

given by: 
5(irmkT ) 1/2 

77(T )=--f 
16 n=)(T ) '7 (29) 

where m is the molecular mass and f, a correction factor near unity which accounts for 

kinetic theory approximations beyond the first. Because f, , 
is quite insensitive to the 

pair-potential, the viscosity can be used to evaluate the collision integral C2=)(T ) at each 

temperature. 

One method of obtaining the potential from the viscosity, is to assume a certain 

potential-function-model with some disposable parameters and perform non-linear 

regression analysis to determine these parameters. However, this method depends always 

on the form of the potential function chosen. Inversion techniques have also been 

developed [4-8], to yield the potential U(r directly ftom the collision integral 

Q(2,2) (T 

Application of the inversion process to the measured collision integrals of a 

polyatomic system necessarily yields a spherically symmetric result. The relationship 

between the effective spherical potential u. , obtained by inversion, and the true non- 

spherical potential is not yet fully understood. However, one suggested form of the 

relation is [4-7]: 

U, ((r. 
112 (30) ') )= (u 

where 
j i72 

i72 w. 
dw 

( 
W) f dco 

and F., is the separation at which the potential for an orientation co takes the value 

U (F», a). 

The viscosity of a gas is dominated by collisions at an energy ;t 3kT . 
Low 

temperature measurements can be therefore used to test the intermolecular potential 
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energy function at long range (r > r. ). On the other hand at high temperatures the 

viscosity is dominated by the low-energy repulsive region of the potential and thus 

experimental measurements can be used to determine the potential in that region. 

Other transport properties can also yield infon-nation of the pair potential but the 

available experimental techniques were, until recently, not as accurate as those for the 

viscosity. 

2.3.3 Molecular beam scattering 

A. s. already discussed the progress of collisions in a dilute gas is determined by the 

intermolecular pair-potential. The techniques of molecular beam scattering allows the 

study of molecular collisions without the energy averaging implicit in the measurement of 

a transport property. A molecular beam is a well-collimated stream of atoms or molecules 

which are at sufficiently low density and have sufficiently low velocities relative to each 
do 

other so that they not collide together, so that the spatial and velocity broadening of the 

beam is minimized. In practical applications of molecular beam scattering the beam 

produced in a supersonic moves in high vacuum in order to reduce the frequency of 

unwanted collisions with the beam. The beam impinges on a target of another set of 

molecules or a second beam from which the scattering can be monitored by a suitable 

detector. Statistically such molecular beam experiments are equivalent to carrying out a 

large number of collisions between just two molecules over a range of impact parameters; 

the impact parameter represents the distance by which the two molecular centres would 

miss if there were no interaction. By using monoenergetic molecular beams, which is a 

recent technological development [1], one can obtain the integral scattering cross-section 

Q (E ) and the differential scattering cross-section a(X, E). The fraction of molecules in 

an incident beam of energy E which suffer any scattering, which is also the probability of 

scattering, is determined by the integral cross-section Q (E ). The fraction of molecules 

which are scattered into a unit solid angle about the deflection angle X is determined by 
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the differential scattering cross-section cr(X, E) .A 
full quantum mechanical analysis of 

the dynamics of two-molecule encounter can relate both a(, X, E) and Q (E ) to the 

intermolecular pair-potential [I]. 

2.3.4 Spectroscopy of van der Waals dimers 

Two molecules under appropriate conditions can form physically bound dimers. 

For example, when three molecules approach each other with low energy one of these 

molecules can remove kinetic energy of the other two which themselves become trapped 

in their intermolecular potential well, thus forming a dimer. The intermolecular pair- 

potentia energy of the two molecules differs from the 'effective' intermolecular pair- 

potential of the dimer by a factor depending on the angular momentum of the dimer and 

the separation of the two molecules forming the dimer (for the particular case of 

spherically symmetric interactions). Within the well of that 'effective' potential a number of 

discrete vibration and rotation states exist as for a chemically bound molecule. The 

energies and spacing of these states are characteristic of the potential well, which thus can 

be deterrnined. The physically bound dimer system, called often Van der Waals dimer, has 

many similarities with a chemically bound system and theoretically its rotation and 

vibration spectra can be studied accordingly. However, only just recently experimental 

techniques have been developed which make this study possible, the main reasons being 

the very small concentration of van der Waals dimers in given species, the extremely short 

life of the dimers under normal conditions and the fact that the dimers of the inert gas 

atoms possess no dipole moment and therefore they are not active in the infrared region of 

the spectrum. In order to prolong the dimer's life high vacuum is required, which on the 

other hand generates the need of an extremely long path-length in the spectrometer. 

The spectroscopy of the van der Waals dimers is a very good source of 

information about the potential well. It is a very promising method but for the time being 

is restricted to very simple molecules [1]. 
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2.3.5 Solid state properties 

The lattice energy, the dimensions and properties such as the compressibility of 

molecular crystals can be directly related to the intermolecular forces. The arrangement of 

the molecules in the lattice represents a balance of the repulsive and attractive forces, 

which is such that the total potential energy is minimized. The calculation of the 

intermolecular pair-potential from solid state properties involves an assumption about the 

pair-potential model and should take into account the non-pairwise-addititivity of the 

potential [1]. The solid state properties are thus mostly regarded as a test of the 

intermolecular pair-potentials obtained from other sources. 
W 

2.3.6 Ab initio calculations 

Another way to establish the intermolecular pair-potential is quantum-mechanical 

calculations called 'ab initio' calculations. In order to obtain the pair-potential by the 'ab 

initio' calculations one requires the wave function for the two interacting monomers in 

their ground and all excited states. In general, these wave functions are not known exactly 

for atoms with many electrons, because of the impossibility of obtaining an exact solution 

of the Schroedinger wave equation for these systems [1]. However, these wave functions 

can be obtained for atoms or simple molecules like nitrogen, using theoretical models such 

as the uncoupled Hartee-Fock perturbation method, or the time-dependent uncoupled 

Hartee-Fock method [3 ]. In this manner the 'ab initio' calculations yield the full anisotropic 

interactions of the pair-potential. Unfortunately, for more complicated molecules the 'ab 

initio' calculations yield very poor results [ 1,2] at present. 

2.3.7 Molecular properties 

A number of indirect methods are available for the experimental determination of 

dipole, quadrapole and higher moments (used in the calculation of the electrostatic 
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contribution to the pair-potential), including measurements of pressure and dielectric 

second virial coefficients, heats of sublimation and other crystal properties, pressure- 

broadening in microwave, infrared and Raman spectra, collision-induced vibrational, 

rotational and translational absorption spectra, ion-molecule scattering in gases, non-linear 

light scattering and molecular beam scattering [2]. All these methods have the 

disadvantage that the values of the moments depend on the assumed form of the 

intermolecular pair-potential. In addition they yield only the magnitude, and not the sign, 

of the moment [2]. 

2.4 Intermolecular forces and virial coefficients 

The second and third volumetfic vifial coefficients of pure substances and mixtures 

are directly related to the intermolecular pair potentials (as we have already seen for the 

second). In the following it will be shown how these coefficients are obtained from the 

canonical partition function and the way they are related to the intermolecular pair 

potentials. Finally, the acoustic virial coefficients will be presented which constitute a new 

source of information about intermolecular pair-potentials. 

2.4.1 Volumetric virial coefficients from the partition function 

For a system of N indistinguishable molecules the canonical partition function 

[2,10] can be separated into a molecular part Q.., and a configurational integral QN as 

follows: 

Q ":: Qmol QN /N! (32) 

The molecular part depends only on one-molecule properties such as mass, moment of 

inertia etc. The configurational integral counts for the presence of the intermolecular 

forces and, for the simplified case of spherical molecules, which will be of interest here, is 

given by: 
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QAf f exp (-UNIkT)di; N 

(V) 
(3 3 ý-'s 

where N is the number of molecules, UN =UN (r; 711 ; r72, ' 'r7N )is the total intermolecular 
th potential of the N molecules , rj=rj(xj, yj, zj) is the position vector of the i molecule and 

dr N= 
d- d- d- where d-ri = dx idy idz The N-fold volume integral is performed over rt r2 rN 

all possible positions F of every molecule in the system. 
The first term Q, of the QN series is simply 
Q, f exp(-U, / U) &71 =V 

(V) 
(34) 

since the intermolecular potential for one molecule u, is by definition zero. The second 

term., which involves the intermolecular potential of two moleculesU2 is given by: 
Q2 f exp(-U2 / kT) dr-, dF2 (35) 

(V) 

and the third term which involves the intermolecular potential of three molecules U3 is 

given by 
Q3 f exp(-U3 / kT)aVdF2dF3 

(V) 

(36) 

Statistical mechanics [2,10] also leads to the result that the pressure is related to the 

canonical partition function as follows: 
an 

p= kT 
'VQ 0 NT 

(37) 

where k is the Boltzmann constant. Since the molecular part of the partition function is not 

volume dependent, the above equation can be written 

p= kT 
O'n QN 

OV 

I 

NT 
(38) 

Expanding equation (3 8) in density series and comparing with (2 1) we obtain the relations 

for the second and third volumetric virial coefficients [10]: 
No 2 

B 
2V 

(Q2 - Ql) (39) 

N 
Q3) Q2)2 C=- 22[V(Q3-3Q2QI+2 

I -3(Q2 1 
(40) 

3V 
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2.4.1.1 Second volumetric virial coefficient 

In order to calculate the second volumetric virial coefficient from equation (39), 

one needs to obtain U. . 
According to the assumption of spherical molecules, U. involves 

only central forces and one can write U2 = U, 2(rl2). where r, 2 rl - r-2 

molecule separation. After some algebra equation (39) becomes: 

2 B=2, -dVO f [I - exp(-U,, / kT)]r2dr, 2 
0 

2.4.1.2 Third volumetric virial coefficient 

is the two 

(41) 

In order to obtain the third virial coefficient one needs the quantity U3 . The 

intermolecular potential of three molecules is given as the sum of pairwise additive terms, 

Uij , plus an extra term, AU, to account for the non-additivity, as discussed previously: 

U3 =U 12 + U13 + U23 +'AU (42) 

Inserting equation (32) into the expression for Q3 , and substituting to (40), one obtains 

the expression for the third volumetric virial coefficient as a sum of two terms related to 

the intermolecular pair potential as follows: 

C=C add +Ac (43) 

c add _ _. 

87r -2N 
02 fff [I - exp(-U, 2 /kT)][1-exp(-U, 3 / kT)] (44) 3 

x exp(-U23 / kT)]r, 
2r, 3r23dr, 2dr, 3dr23 

AC 
81zýNO2 fff exp[-(U12 + U13 + U23)IkT] 

3 (45) 

x [exp(-AU/kT)-1 I r, , r, 
AA, 2drA23 

where uij and rij are the pair potential and the separation between molecules i and 

respectively. 
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2.4.1.3 Volumetric virial coefficients of mixtures 

The volumetric virial coefficients for mixtures can be easily obtained from the 

grand partition function approach [10). The expression derived for the second volumetric 

second virial coefficients of a binary mixture is the following 
22 Bm = x, B,, + 2XIX2BI2 + x2B22 (46) 

where BM is the volumetric second virial coefficient of the mixture, xi and Bij are the 

mole fraction and the volumetric second virial coefficient of the pure component i, and 
Bij is the volumetric interaction second virial coefficient, for interactions between two 

molecules of components i andj. 

The expression derived for the volumetric third virial coefficient for a binary 

mixture is given by: 
3223 Cm= x, Cll+3xX2C112+3X, X2C, 22+ x 2C222 (47) 

where cM is the volumetric third vifial coefficient of the mixture, ciii is the volumetric 

third virial coefficient of the pure component i and Ciij is the volumetric interaction third 

virial coefficient, for the interactions of two molecules of component i with one molecule 

of componentj. 

2.4.2 Acoustic virial coefficients 

The fundamental equation of the speed of sound (discussed in chapter 3) 
2 AP) (48) 

where u is the speed of sound, p is the mass density and s denotes entropy, after standard 

thermodynamic manipulations yields: 

U2= (RT /MMZ+ P-(Cl: / dPn)TI + (R / c,,, n) 
[z+ T(a / 0"'F),, ] 2 (49) 

with 
pol 

= cO +f/ i9p,, )T dp C"M -*,, m 
0 

and 

(50) 
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(&v, 
m 

/ '9Pn)T = -(R / Pn) [2 T(a / t>T)p +T 2(0-2Z / 0-t2)pl (51) 

where M is the molar mass, c is the molar isochoric heat capacity and cvO. is the value V, M vTn 

of cvm at zero density. 

By substituting the virial expression of the compressibility factor (2 1) into equation (49) 

we obtain the following relation for the speed of sound 

U2=Ao(, +, B 
ap + yaý2 +... ) (52) 

with 
DLY 

A0= 
RTy-- (53) 

m 

where A0 is the value of u2 at zero density, yP9 is the perfect gas heat capacity ratio and 

, 8,, and y. are the second and third acoustic virial coefficients respectively. 

The second and third acoustic virial coefficients are related to the volumetric virial 

coefficients by the differential equations [I I] as can be shown by: 

fla = 2B + 2(, YP9 - I)T 
dB 

+ 
(, Vpg _ 1)2_ 

T2d2B (54) 
dT Y P9 dT 2 

7= 
(y, - 1) 

B+ (2yP9 - I)T 
dB+ (Ypg 

_ 
I)T2d 

2B+ 

a P9 
7--T 

I 

yI dT T 
(55) 

(I + 2, vPg) (Ypg)2 
_I dC (Ypg 

_ 
1)2 

2d 
2C 

P9 P9 2 
7r dT 2yP9 dT 

Taken together with equations (41) and (43), these equations relate the second and third 

acoustic virial coefficients to the intermolecular potential between the molecules in the 

fluid. 
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2.5 Intermolecular forces from the speed of sound 

Until recently [12-14] the analysis of the speed of sound data have been 

constrained to simple fits of the square of the speed of sound to pressure or density series 
in order to obtain the perfect gas heat capacity and the second and third acoustic virial 

coefficients. Where available , accurate potentials have been used [12,15] to check the 

validity of the second acoustic virial coefficient data, such as BFD-B2 [16] and BBMS 

[ 17] for argon. Some attempts have been made [ 18-2 1] to derive second volumetric virial 

coefficients by fitting second acoustic virial coefficients to the crude, but flexible, square- 

well potential model [I ]. This potential model was regarded suitable for fitting second 

virial coefficients over a limited temperature range [22]. More recently Ewing and Trusler 

a Y, [23,24] calculated second volumetric virial coefficients for nitrogen from fit to a site-site 

Maitland-Smith [25) potential model function. The same authors modified the HFD-B2 

potential for argon to fit the second acoustic virial coefficient data. They also calculated 

interaction second virial coefficients for argon-nitrogen mixtures using again a site-site 

potential model for the argon-nitrogen interactions. 

In a subsequent work [ 16] the calculation of the whole p, p, T surface has been 

performed , through numerical integration of the differential equation relating the speed of 

sound with the compressibility factor. The method has been found to be successful but the 

requirement of initial values for the integration restricts its applicability to substances for 

which the compressibility factors and their derivatives with respect to the temperature are 

available at the lowest temperature of the numerical integration. 
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CHAPTER 3 

ACOUSTIC MODEL 

3.1 Introduction. 

The objective of this chapter is to introduce the basic concepts and the 

methodology involved in deriving the speed of sound in a fluid from the acoustic 

measurements performed with the apparatus described in chapter 4. 

An acoustic model is presented which relates the speed of sound to the resonance 
frequencies and halfwidths of the spherical resonator employed; suitable corrections are 

applied to account for the non-idealities in the fluid and the apparatus. 

3.2 The speed of sound as a thermodynamic property. 

The fundamental relation between the speed of sound u and the thermodynamic 

property (4 / i9p). is[ I]: 

U2 =(4, / OP) 
S (1) 

where p is the pressure, p is the mass density and s denotes entropy. Generally the speed 

of sound depends on the frequency and amplitude of the sound wave. It will be shown that 

the above expression is exact only in the limit of small amplitudes and frequencies. In 

practice the former limit is easily achieved while the latter is usually achieved. 

3.3 Wave equation of an idealized fluid 

The starting point for the description of an acoustic process is the derivation of an 

equation for the transmission of an acoustic pressure wave through an idealized fluid. The 

fluid is ideal in the sense that its thermal conductivity and viscosity are negligibly small. 
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Under the additional assumption that local equilibrium in the fluid is achieved 

instantaneously, the acoustic process is also an adiabatic one. Thus, with the aid of an 

adiabatic equation of state for the fluid, the equation of continuity and a momentum 

conservation equation (Euler's equation for an inviscid fluid) it is possible to derive a wave 

equation for the propagation of sound in a fluid. In the particular case where the 

disturbances caused by the propagation are small this equation is particularly simple as is 

shown in the next section. 

3.3.1 The equation of state 

Small adiabatic acoustic disturbances result in small fluctuations in the pressure 
). The disturbances in the and the density from their equilibrium values (p,, and p, 

instantaneous pressure, p, and density, p, are related through the partial derivative 

Op) as follows: 

P- Pe 140 P)s(P-Pe) 

The fluctuation in the pressure p. =p-p, ý 

(2) 

is called the acoustic pressure and the 

fluctuation in the density p. =p-p, is called the acoustic density. Equation (2) written in 

terms of the acoustic quantities, yields- 

pa = (4 / 40P)SPa (3) 

which is a linear relationship between the acoustic pressure and density. Fluctuations in the 

temperature, T, are determined accordingly by the equation, T. = (OT / 0p), p. , 
but this 

expression will not be needed in the analysis following. 

The fluctuations caused in any property of the fluid by the acoustic disturbances 

such as p. and p. , are assumed to be small enough that second order terms can be 

considered negligible. 
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3.3.2 The equation of continuity 

The mass balance over a volume element AV fixed in space, through which the 

fluid is flowing yields the equation of continuity for the density. Assuming there is no mass 

production within that volume element, the equation of continuity is given by [2-41 - 
99P 

-V (P (4) 
ii 

or 
f9pa 

=-Pv-u -U-vp=-Pv. u -U-Vpa ci 
(5) 

where u- is the vector of the fluid velocity. Since the fluid velocity at equilibrium, Ue , 
is 

zero, so that the second order term -u- - Vp. can be neglected. Thus U= Ue + U& = Ua 

equation (5) reduces to. 
00pa +pV--u= 0 
a 

(6) 

which is the linearized continuity equation. This equation provides a functional 

relationship between the fluid velocity U and the acoustic density p. to be used in the 

following for the derivation of the wave equation. 

3.3.3 Euler's equation 

The momentum balance over a volume element fixed in space AV yields the so- 

called equation of motion of the fluid [2,4]. In the absence of viscosity and external forces 

the equation of motion [2,4] reduces to Euler's equation: 
Cru- -I + (U - V)U-= --VP (7) 
ii p 

By neglecting the small second order term (u- - V) u- = (u. - V) u. equation (7) yields the 

linear Euler's equation: 
'V 

p0- -Vpa 
a 

(8) 
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3.3.4 Wave equation 

The three equations, equation of state, equation of continuity and Euler's equation, 

must be combined to yield a single differential equation with one variable. This equation 

will be shown to have a wave nature and therefore it is called the wave equation. 

Taking the divergence of (8) and neglecting second order terms in the acoustic 

quantities we get: 
x 

= -V. (V PV. 
ol 

pa) = _V2pa 

Employing the property V- (X / ci) = 61V - U) / ii equation (9) is written: 
P9 --(V'U) = _V2 Pa (10) 

ci 

If we differentiate the linearized continuity equation, equation (6), with respect to time and 

combine it with equation (10) we obtain- 
002pa 

= V2 pa 
OTT 

Use of the equation of state (3) to eliminate p. yields: 

V2pa =I 
on? -Pa 

(12) 
c2 a2 

where c is given by 

C= VF(4 / OPS 

Equation (12) is the linearized wave equation for the propagation of sound in fluids. Since 

the acoustic pressure p. and acoustic density p. are proportional according to (3), the 

acoustic density also satisfies the wave equation. Similar mathematical manipulations 

employing equations (6) and (8) demonstrate that the fluid velocity U and the acoustic 

temperature T. also satisfy the wave equation [I]. 

3.3.5 Velocity potential 

It is more convenient to express all the acoustic quantities in terms of a single 

quantity which is such that if it satisfies the wave equation, then so do all the acoustic 

quantities. It will be shown here that this quantity is the velocity potential. 
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Employing the properties Vx Vf =0 and Vx (& / ii) = cl Vx u-) / cl , equation 

(8) yields Vx u- = 0. This means that the fluid velocity is irrotational and thus, it can be 

expressed as the gradient of a scalar function. This function is called the velocity potential 

which we denote by T and we write: 

-VT 
Combining equations (8) and (14) we get: 
V(pOT / ci - p. ) = 

(14) 

(15) 

If we express the acoustic pressure in terms of the velocity potential by setting 

Pa =P (16) 

then we can rewrite the wave equation, equation (12), neglecting second order terms in 

the acoustic quantities, as follows: 

(Cg/ j) iV2T_ (I /c 2) ( CnYIT/ tj2), = (17) 

It is obvious now fTom (17) that if the velocity potential satisfies the wave equation then 

so does the acoustic pressure and, according to linear relationship of (4), so does the 

acoustic density. In addition by writing the wave equation for the fluid velocity 
v2- -2 Opl- I a2 = _V [V2T -2T/ a2), 0 U (I /C )U _(I / C2) (0 (18) 

it is demonstrated that if the velocity potential satisfies the wave equation then so do the 

fluid velocity and all other acoustic quantities. 

3.3.6 The wave nature of the wave equation solution 

It was mentioned above that equation (12), has a wave nature and this is the 

reason it is called the wave equation. The wave nature of equation (12) as well as the 

physical interpretation of the constant c of equation (13) will be demonstrated in the 

following. 
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If all the acoustic variables are functions of only one spatial coordinate, then Ylie 

phase of any variable is constant on any plane perpendicular to this coordinate and the 

waves are called plane waves. In that case equation (12) is written: 
e2 Pa g2 Pa (19) 

22 
C2 

The general solution of this partial differential equation (a general solution in 3-D is 

discussed by Landau and Lifshitz in [5]) is: 

Pa (z 
It) ý-- f 1(ct -Z)+f 2(ct (20) 

We consider the solution fI (c, -z). At time t, the acoustic pressure at zI is 

fl(al-zl) . At time t2 this particular acoustic pressure (or any other acoustic 

quantity, since all satisfy the wave equation) has moved a distance: 

Z2-ZI:: -::: c (t 2-t 1) (21) 

Since the particular acoustic pressure was chosen arbitrarily any acoustic pressure will 

move with the same speed c. This is also the case for all the acoustic quantities. Thus, we 

can say that in the limit of small amplitudes, so that the acoustic quantities can be 

considered small, and small frequencies, so that the assumption about equilibrium is valid, 

the speed of sound u in a non-dissipative, inviscid fluid is equal to c/ -Op), 
. That 

forms the proof of equation (1). 

3.4 Wave equation of a dissipative fluid 

In a real fluid, of course, neither the viscosity nor the thermal conductivity are zero 

so that dissipative processes are possible. In this section we consider the wave equation 

for a dissipative fluid while retaining the assumption that the acoustic quantities all have a 

small magnitude. 
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3.4.1 Navier-Stokes equation 

If the effects of ffiction are considered the momentum balance, which for the 
idealized case reduces to Euler's equation, results in Navier-Stokes equation [2]: 

p -Vp + (4 /3 11+ 77b) V(V 17 Vx (V x u-) (22) 
ti 

where 17 is the shear viscosity coefficient and 17b is called the bulk viscosity. According 

to equation (3) the acoustic density is proportional to the acoustic pressure as: 
pa = Ksppa (23) 

where K, =i/p (Op / 4), is the isentropic compressibility. By differentiating equation 

(23) with respect to time and neglecting second order terms in the acoustic quantities we 

get: 

19P. / 01 = K. P4. / 01 (24) 

which combined with equation of continuity, equation (6), yields: 
t1pa V. U (25) 
Ci KS 

From the above equation it is shown that the rate of change in the compression is 

proportional to V- u- . The acoustic disturbances cause sound waves and thus set the fluid 

into oscillation. Whenever a real body it is set into oscillation, as here the fluid is set by the 

acoustic disturbance, dissipative forces arise, which result in a damping of the oscillations 

[3]. These forces are assumed to be proportional to the rate of change of the property 

which oscillates; for a spring this property is the displacement, for a fluid we can consider 

the pressure. Thus, we may express this opposing force as 
F -- -A 

Av- 
U- (26) 

OPP KS 

where A is the proportionality constant, and the term to be included in the stress tensor of 

the fluid is - y7b V-u [2]. The bulk viscosity i7b represents in this way a compressional 

resistance. For dilute monatomic gases the bulk viscosity is practically zero but it may be 

quite large in polyaton-k gases at certain frequencies. The physical mechanism of its effect 
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is related to the time required to establish thermodynamic equilibrium between the 

translational and the rotation-vibration motions of the gas molecules [2,6,7]. 

Any vector function of position such as U can always be uniquely separated into a 
longitudinal (or lamellar) part U, , 

for which the curl is zero, and a transverse (or 

rotational) part Wt 
, 

for which the divergence is zero [2]. Since the gradient of a scalar 

function is entirely longitudinal (V x Vf =0 for any fi, the Navier Stokes equation of 

motion, equation (22), can be split into two separate equations, one relating p. to the 

longitudinal part of the fluid velocity, the other giving the behaviour of the transverse part, 

unrelated to pressure waves, 
17)V2- P 

cl 
= -VP. + (17b +4/3 U1 (27) 

X. V2 U (28) 77 Vx (V x 

Thus the two parts of the velocity solution u-, and u-t , can be solved for separately and 

need not be combined until we come to satisfy the boundary conditions. Equation (27) will 

be employed in the following for the derivation of the solution of the propagational mode 

of the wave equation. The transverse part solution will be shown to be important only near 

the boundafies. 

3.4.2 Thermal conduction 

Another matter we have to consider is the existence of non-zero thermal 

conductivity in a real fluid. The fluctuations in the pressure caused by sound are 

accompanied by fluctuations in the temperature. As soon as there are temperature 

gradients in the fluid, heat will flow irreversibly from regions of higher temperatures to 

those of lower temperatures. As a consequence the acoustic cycle is not purely adiabatic 

[2]. 

From Fourier's law of heat conduction, the heat flux is proportional to the 

temperature gradient: 
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K (29) 

where Yc is the coefficient of thermal conductivity and T. is the fluctuation of the 

equilibrium thermodynamic temperature, which we call the acoustic temperature. 

Denoting the heat transferred per unit mass by q. , and neglecting viscous dissipation 

terms, which are of second order in the fluid velocity U, we apply the general equation of 

continuity [2] to the acoustic heat density pq. 

acoustic quantities we find [I]: 
p _V _ jh = KV2 Ta 

To a first order approximation in the 

(30) 

Since the rate of entropy production per unit mass is ds--dqlT, we write 
4OSa 

- 
K_ V2T, (31) 

Ci PT a 

where Sa is the fluctuation in the entropy from the equilibrium thermodynamic value or 

simply the acoustic entropy. Combining the above equation with the equation of state 

relating the change in entropy with the change in pressure and temperature 
a 'OS ds - dT + dp 
OT P4T 

or for the acoustic problem: 
19S 4a S-T, + (32) 

a 
C-? T 

Pa OOP T 

Pa 

we obtain the second-order diffusion equation 

D V2 T= (0 / ii) (T,, (y - 1) / Y)61 P. ) (33) 
ha 

where 8 or)p , 
Dh =K/ PC 

p 
is the thermal difibsivity, cp=T (A / O-T) p 

is the 

isobaric heat capacity and y is the ratio of the isobaric to the isochoric heat capacity. 

3.4.3 Equation of continuity 

Based on the separation of the fluid velocity into a longitudinal and a rotational 

part, since the divergence of the rotational part is zero, we can write the equation of 

continui y as 
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apa 

(34) 
ii 

+pV-Ui =0 

where p. is the acoustic density. 

3.4.4 Equation of state 

In order to relate the acoustic quantities of the pressure, density and temperature 

we write the thermodynamic equation of state 
pT pa =AT =(y/C2)(pa 

19P 

? 
lTpa 

+P 

where the constant c is as defined in equation ( 13). 

3.4.5 The wave equation 
51 

So far we have involved four acoustic quantities, namely the acoustic pressure 

temperature and density and the particle velocity. There are also four equations available 

interrelating the acoustic quantities: 

- Navier Stokes (22) 

- equation of state (35) 

equation of continuity (34) 

second order diffusion equation (33) 

Combining the equation of continuity (34) with equations (27) and (35) we obtain 

[1,2] 
v2p, = 

YI(g2l a 2) 
- D, (dl a) V21(pa (36) 

2 
c 

where Dv = (477 /3+ F7b) /P- 

This equation can be solved simultaneously with equation (33) to yield the solution for the 

acoustic pressure and temperature, and, with the aid of the equation of state (35), the 

solution for the density. 

Also, combining (27) with (34) and (35) we obtain the expression for the longitudinal fluid 

velocity 

(35) 
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ýý' : -: - (p. / p) + (yD, / pc 2 )(191 ") (pa (37) 
ol 

Equation (36) is the wave equation modified for the effects of viscosity and thermal 

conduction. If there were no thermal conductivity then Dh =o and thus from equation 

(33) T. = (y - i)p. y, 8 
, which is equivalent to y (p& -)6Ta) = pa . 

If there were also no 

viscosity then Dv 0, and equation (36) reduces to the simple wave equation of the 

idealized fluid, equation (12), for which we have illustrated that the speed of sound u=c. If 

the thermal conductivity were infinite then, from equation (33), T. =o. In that case, from 

equation (36), the speed of sound u=c/ j- 
, the isothermal speed of sound. For 

intermediate cases the pressure and temperature are coupled together. 

3.4.6 Simple-harmonic wave motion 

The wave equation is a partial differential equation and, in order to solve it, we 

must make assumptions about the form of the solution. For the case that the acoustic 

disturbance is simple-harmonic, which is our case, the solution we have to consider is that 

for simple-harmonic wave motion. In addition, since any wave may be expanded into 

harmonic components of various frequencies using a Fourier series analysis a treatment 

using simple-harmonic wave motion places no constraints whatsoever on the solutions we 

obtain. In a simple harmonic wave motion all the small acoustic quantities vary with time 

as exp (ico I) , where w is the angular frequency of the sound. 

Accordingly, we can express the acoustic pressure p. , as 

p,, = P,, exp(icot) (38) 

where P. is the amplitude of the acoustic pressure. By differentiating the above equation 

with respect to time we find 

'WPa (39) 

Thus, if we express the wave equation as follows. 

v2 pa = (k 2 02Pa (40) 
a2 
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it is a prerequisite that the acoustic pressure satisfies also: 
(, V2 +k 2)P8 

=0 (41) 

f. ) 

where k is called the propagation constant. Equation (41) is called the Helmholtz equation 

and has eigenvalues -k 2 [1]. 

Equation (40) has the form of the wave equation for the idealized fluid, equation 

(12), in which co /k is equal to the speed of sound c. It is now necessary to obtain the 

relationship between k and (o for the case of the dissipative fluid, known as the 'dispersion 

relation' [I ]. 

It is convenient to introduce the dimensionless reduced propagation constant 

F= kc /w [2] defined such that it takes the value unity for an ideal fluid. Inserting _I-2 
for (c 2/ OJ2), V2 and ioj for 0161 

, as equations (39) and (41) imply, into equation (36) 

we o tain: 
(1-2 + jo) 1-2 T_ Y)pa + (y _ ioj Týr 2) BT =0 (42) 

v0a 

where rv = Dv /c2. Similarly, from equation (33) we obtain, 

(I - iw%]F 2 )T' -[(Y- I)/ Y'8 
lpa 

=0 (43) 

where -rh = Dh /C2. Combining equations (42) and (43) we find, 

r4 2TvTh 
_ jO)T -2(l ( YOJ h) +r+ 'YO-)Th + 'O)Tv) -0 

(44) 

There are two solutions for 1-2 : 

1-2 = 
-i I+ iO)rv + 'YOjTh ±D 

(45) 
2 OjTh I+ iya)TV 

where D is given by 

D2 : --- (1 + '0), rv - 'YO) ýrh )2+ 4i (y - 1)0)ý, (46) 

Usually the effects of thermal conductivity and viscosity are slight and the quantities corh 

and wr, correspondingly small so that second order terms involving these quantities can 

be neglected. Thus, in a first order approximation, equations (45) and (46) yield the 

solution for -D: 
1-2 [O)lv + OV - 1)0)r h (47) 
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or 
k2 

0) 2 
0) 20 

22' L"'V + 1)0)lb 
cc 

(48) 

This solution is called the propagational mode of sound and the propagation constant k is 

generally a complex quantity given by 
w k=-- ia (49) 
UP 

where up is called the phase speed and a is the sound absorption coefficient. 

In order to make equation (49) clear we consider the solution of the wave equation 

for simple harmonic motion: 

p,, =A exp[i (wt-kz)] (50) 

If k is complex it can be written k= Re (k) + Im (k) and therefore equation (50) yields 

Pa =A exp[Im(k)z ] exp[ico I-i Re(k)z ] (51) 
is clear from (5 1) the amplitude of the sound wave decreases (if Im(k) is negative 

quantity) with distance z from the source as exp [ Im (k)z ] Therefore we can identify 

a=- Im (k ) as the sound absorption coefficient. It can be also easily shown (using the 

same method employed in 3.3.6) that the phase of the sound wave o) I- Re(k )z travels 

with speed up = 0) / Re(k) so that Re(k) = 0) / up . 

From equations (48) and (49), by equating real and imaginary parts and assuming that the 

square of the sound absorption coefficient is a negligible quantity, we find that up =C=UI 

where u= o) /k is the speed of sound in the fluid, which is identical with that for the 
44C 

idealized fluid, but the amplitude of the sound wave is minimized by sound absorption 

coefficient given by: 

(o) 
2/ 2c)[, rv + (, v - 1) Th I (52) 

The defivation given here has been performed for the propagational mode. The 

wave equation, equation (40), generalized for all the acoustic quantities, has solutions for 

all the different modes of k. The total solution for the acoustic quantities is obtained by the 

summation of the solutions corresponding to the different modes [1]. In the following we 
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will derive the solution for the acoustic quantities for each of the modes involved 

separately. 

3.4.6.1 Propagational mode 

By substitution of the value of F obtained for the propagational mode, equation 

(47), into equations (43) and (37), we obtain the contributions of the propagational mode 

to the acoustic temperature and longitudinal velocity: 

T =[(y-1)1, vý6 p+ 'O)Th) Pp 

U I, p O)A (1 +i co -rv) Vp 
p 

(53) 

(54) 

where the notation p in the acoustic quantities implies the propagational mode solutions. 

The propagational mode solution is the only significant solutions in the bulk of the fluid 

(away from the boundafies) [8,9]. 

3.4.6.2 Thermal mode 

The second solution of equation (45) is obtained for +D. A first order 

approximation to equation (45) yields 
2 

(O)T h) (55) 

This solution is called the thermal mode. The reduced propagation constant Fh has equal 

real and imaginary parts. This results in a rapid attenuation of the thermal waves. 

Substituting equation (55) into equations (42) and (37) we obtain the contribution of the 

thermal mode to the acoustic pressure and longitudinal velocity: 

Ph _'Y186) ( "'h - TO Th (56) 

(57) UI, h (Yfth 1 P) VT h 

where the subscript h indicates the thermal mode solutions. 

The thermal and the shear waves treated below are found [8,9] to be important 

only near to the boundaries enclosing the fluid and not in the bulk of the fluid. The thermal 
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wave solution will be used in order to satisfy the boundary condition that the temperature 

is continuous at the boundary. 

3.4.6.3 Shear mode 

A third solution can be derived from the rotational part of the fluid velocity. 
Inserting - IF, 2 for (C2 / 0)2)V2 and io) for 01 A in equation (28) 

1-2 (OjTS) 
S (58) 

where r, =D3/C2. and D. =n/p is the kinematic viscosity. There is no corresponding 

contribution to the acoustic temperature or pressure. This third solution is called the shear 

mode. As for the thermal mode, the reduced propagation constant IF, has equal real and 

imaginary part, which indicates rapid attenuation of this mode. 

3.5 Wave equation solutions for a spherical cavity 

When sound waves are produced in a region completely enclosed by walls, all 

wave motion is a standing-wave motion determined by the geometry and nature of the 

enclosing walls. If the excitation frequency of the sound source in such a cavity coincides 

with the natural frequency of the enclosure then resonance occurs. When the enclosure is 

of simple geometry and the wall properties are known, solutions of the wave equation can 

be found that satisfy the boundary conditions at the walls. Since we shall be employing a 

spherical enclosure, described in chapter 4, for the measurements reported here we must 

consider the eigenvalues of the wave equation for a spherical cavity. 

3.5.1 Free oscillations - Normal modes 

A ewe have already seen in section (3.3.5) all acoustic quantities can be expressed J Uý 
in terms of the velocity potential T(r-, t) , where r- is the position vector. If a velocity 

potential can be found which satisfies the wave equation and the boundary conditions 
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imposed by the enclosure, then the problem is solved and all the acoustic quantities can be 

calculated. For the velocity potential to satisfy the wave equation 
IV2 +(k / 0)) 2( OnI 1 012 )1 T(r, t) (59) 

it should be an eigenfunction of the Helmholtz equation 

(V2 +k2 )T(r, t) =0 (60) 

Since the time dependence of a simple harmonic standing wave is spatially uniform the 

velocity potential can be written: 
T(F, 1) =A (D(F) exp(ico t) (61) 

where (D(F) is a dimensionless spatial distribution function of the wave field and A is a 

constant determining the overall amplitude. It is obvious that if T(r-, t) is an eigenfunction 

of the Helmholtz equation then so is O(F) and therefore equation (60) can be simplified 

to 

(V2 +k 2)41)( 
r) =0 (62) 

In the following we will find the solutions ON (T ) of the wave equation and the 

corresponding eigenvalues -K 
2 

of the Helmholtz equation that satisfy the boundary N 

conditions (N stands for a triplet of numbers n 1, n2, n3 as required for a three dimensional 

wave). 

If the motion of any element of the non-rigid enclosure is assumed to depend only 

on the acoustic pressure acting there, then the boundary is said to be of local reaction. The 

boundary conditions at an interface between a fluid and solid walls are that: (1) the 

tangential component of the fluid velocity on the surface is zero, and (2) that the boundary 

is of local reaction [1,2]. The latter is not a boundary condition itself, rather it is a 

prerequisite for the separation of wall motion from fluid motion. 

Based on the second boundary condition we can write [ 1,2]: 

un(rd = P, (r-) Y (r, 'O') 
(63) 

where u. (-) is the outward pointing normal component of the fluid velocity at position 

on the surface S, p. is the acoustic pressure and 
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Y (is, 0» =y (r-. 
' oi) / (pu) (64) 

is the acoustic admittance of the surface, y being the dimensionless specific acoustic 

admittance of the surface, since pa is the characteristic acoustic impedance of the fluid. 

When the acoustic admittance is zero then the surface is said to be rigid. In that case the 

fluid velocity vanishes at the boundary. When the acoustic admittance is infinite, the 

pressure vanishes at the boundary, which is then said to have pressure release [I]. 

Using equations (14) and (16), which relate the velocity and the acoustic pressure 

to the velocity potential, equation (63) is written 
a 

(D , (f, w) = -i (a) / u) (D., (F, oj) y(, F,, oj) 
C 

(65) 

We shall seek for an infinite set of solutions that are orthogonal, finite and continuous 

within R (the space enclosed by the surface S). These solutions define the normal modes of 

the cavity and it will be shown that they may be used to construct any physically- 

significant solution of the wave equation. 

The orthogonality condition is interpreted as 
fff ON (F, ou) (Dý (F, w)dV =VA, (w) b(N - M) (66) 

where * denotes the conjugate, 
AN (01) is the normalization constant and 

S(N - M) = i5(n, - MO 802 
- M2)i5(n3 -M3) is the product of three Dirac delta functions. 

The effect of the boundary conditions is to constrain k to discrete values KN - 
Thus, from equation (49), where up =c=u, we obtain for k=KN the corresponding 

complex eigenfrequencies FN 

FN ý= fN +'9N = -(KN +'a) 
u 

2 Ir 
(67) 

Free oscillations of the fluid inside the enclosure can only occur at these discrete 

frequencies, called the natural frequencies of the cavity. The normal modes TN Will 

oscillate with a time dependence exp (i 2 ; rFNt) = exp (i 2 ; rfNt) exp (-2 7rg Nt) . Thus the free 

oscillations will decay with time as exp (- 2; rgW) . 
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The normal-mode solutions are employed in the following in order to derive the steQtdy 

state response of the cavity to a simple-harmonic source of sound. 

3.5.2 Forced oscillations - Steady-state response of the cavity 

The normal modes define only the form of the free oscillations allowed within the 

cavity whereas we require the steady-state response (forced oscillations). However, it will 

be shown that all the acoustic properties of the cavity, including both the transient and 

steady-state response to a source of sound, can be expressed in terms of the normal-mode 

solutions. In this section we consider the response of the cavity to a continuous simple- 

harmonic source of sound, the case in which we are interested in the present work. The 

velocity potential for a cavity driven in the steady state by an infinitesimally small source 

of strength S. placed at position - will be denoted by [ 1,21 ro 

T, (i; l -, t) = S, G, (PI -) exp (ico t) ro ro (68) 

where G. (r-jrO) is the spatial distribution function of the wave field produced by the 

source. The spatial distribution of the wave field G. (r-jrO) of the driven cavity differs from 

that of the undriven cavity because it is discontinuous at the source point. Therefore it is 

not a solution of the homogeneous Helmholtz equation, and obviously the velocity 

potential is not a solution of the homogeneous wave equation. However, G. (r-jrO) 

satisfies the inhornogeneous equation [2] 
(V2 +k2 )G,, (FIFO) =- 8(F - FO) (69) 

From the boundary conditions we obtain, in the same way as for the undriven cavity, 

G, (r ro = -i (w / u) G, ( ro (70) i-IFO)lr=rS -)Y (r-,, 0)) 

Whatever the form of Go ) 
it can be expanded in infinite series of orthogonal functions. 

Thus in terms of the normal modes of the cavity, which are the natural choice of 

orthogonal functions, the expansion yields [2]- 

G. (rlr,, ) = 1: 22 
N VA, [Ký(w)-k 

60 



Using equations (16), (68) and (71), we calculate the spatial distribution of the acoustic 

pressure of the driven cavity 

P, (F I FO i OJPSI) E 'I, IV 
(F, W)(Dý (F,,, CO) 

,, VA, [K,, (co)-k'] 
(72) 

The amplitude of p. (r-lro) , 
lp. (r-lro) 1, is maximum when IK 2(o)) 

-k 
21 is rnirýrnurn. The N 

term [K2-k21 is given by N(01) 

[K 2 (0j) -k 
2]= (2; rF /u- ia) 2_ (2 Irf u- ia)2 NN 

22f24 
lra (2/7) 2 

2fNgN +47, 
ra 

9N 

(73) 

2 U4 -(fN-f)+'- 2 uuuu 

From the above relation it is obvious that, lp. (r- / TO) I is maximum, and thus any mode N 

is resonant, when the frequency of the source, f is near to fr4 , the real part of the natural 

frequencyFN 
. Figure 3.1 illustrates how the amplitude of p. (r / ro) varies with frequency 

near resonance. The ratio QN= fN /29N, which is the quality factor of the mode N[I], 

typically has large values of the order 103 . Consequently, since a is also a very small 

quantity, the term 4 ; rag N1U can be considered negligibly small. Near resonance f ; tý fN 

so that the term -i (4; ra / u) (fN -f) also becomes negligible. The imaginary term 

i (2 7r / u) 
2 2fN9N prevents the denominator from ever becoming zero. 

The summation in (72) is to be carried out over all modes N with frequencies fN 

near f It is found that the number of modes within a certain frequency range increases 

when the frequency increases [1,2]. However, in the frequency range of interest, up to 

about 40000 Hz here, the modes are most likely to be well resolved and thus a single 

mode or a group of degenerate modes can be studied in near isolation, the only 

contribution of other nearby modes being a small background. Thus, using the 
22_22 

approximation of equation (73), (u /2 ir) (K Nk)= Fý f2, equation (72) is rewritten 

as: 
p= 

N2 AN 
+B+ C(f -fo) 

w 
I- 

2_ 
NI (FN 1 f) 

(74) 
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Figure 3.1. Amplitude of the acoustic pressure p. as a function of the frequency, near 

resonance. 
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where the summation is over the number of degenerate modes occuring at one frequency, 

and the terms after the summation are background contributions expanded in a Taylor 

series about some frequency fo near to the resonance frequency. The coefficients 

AN, B, C, ---, which are complex constants for a fixed source, as well as the complex 

natural frequency FN , can be determined by fitting (74) to experimental values of the 

phase and amplitude of the acoustic pressure at different driving frequencies. 

Near resonance the term [(FN / f)2 _ 11 in equation (74) is almost equal to 

2VN19N +'(f - fN)l If there is no background, at f= fN ± 9N the amplitude of p. in 

(74) is reduced to 1 -%12 of its maximum at f= fN (see figure 3.1). Since these are the 

half-power points, 9N is referred to as the half-width of the resonance. 

In order to obtain the speed of sound, u, from the values of FN determined in this 

manner it is necessary to employ equation (67) together with independently determined 

values of KN , 
The values of KN for a real spherical cavity and their relation to those for 

an idealized cavity (zero surface admittance and perfect geometry) are considered in the 

next section. 

3.5.3 Normal modes for idealized and real cavities. 

So far we have derived the boundary conditions for the wave field in a driven and 

an undriven cavity. Based on these boundary conditions a relation has been obtained, 

between the normal modes of a cavity with idealized properties, i. e. cavities of perfect 

geometry and zero surface admittance, and the modes of the real cavity. The effects of the 

imperfection for the real cavity have been evaluated as perturbations [1,2]. 

For the idealized case the eigenfunctions of the Helmholtz operator are denoted by 

ýr the corresponding eigenvalues -k 2 and the normalization constant M. 
. 

In a first 
N( ), 

) NN 

order approximation, assuming that r. ) (DN( r. ) are the (D J, 
(r) ON (, 

where 

eigenfunctions of the real cavity, the eigenvalues -K 
2f the real cavity are obtained in N0 

terms of those of the idealized cavity [ 1,2] as: 
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K =k +i1(2VAýN)ffy(F, )j0,, (-)j'dS NN (75) 
s 

In the defivation of this expression the effect of the imperfection in the geometry of the 

cavity, has not been taken into account. For the particular frequency modes of interest 

(radial modes) it can be shown [10] that to a first order approximation the shift in the 

eigenvalues vanish if shape changes which preserve the volume of the cavity are 

considered. In practice, it is relatively straightforward to ensure that deviations from 

perfect geometry are sufficiently small that the first-order result is adequate. 

3.5.4 Ideal spherical cavity solutions Jý 

Given that it is possible to evaluate the eigenvalues for a real cavity from those of 

the ideal cavity, we now consider the eigenfunctions Fr) and eigenvalues -k 
2 for the ON( 
N 

idealized spherical cavity. 

The region of the cavity is defined by a sphere of radius a centered at the origin 

and described in a spherical polar coordinate system. In this coordinate system the 

wavefunctions can be written as a product of three separable terms, with each term being a 

function of only one variable: 
ON(r, 0, ý) = RN(r)PN(O)QN(ý) (76) 

When this product is substituted in the Helmholtz equation it yields three independent 

equations: 
d2R dR 22 (I / R) ; -2 +(2 IrR)-+k 1(1+1)lr =0 (77) 

r dr 
d2p+ Cos 0 dP 

++ 1) -m2/ sin 
2 olp =0 (78) ý-& 

sin OdO 

dQ 
+m 2Q =0 (79) 

d ý2 

The boundary condition for zero surface admittance of equation (65) is then- 
do 

= 
dR 

=0 (80) 
dr 

lr=a 

dr -- a 
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since the normal to the surface component is the radial component. By substituting x for 
kr in equation (77) we obtain the solution R=j, (x) , which is the sphefical Bessel 

function of order 1. Thus equation (80) yields 
j, (kr )=0 (81) 

dr 

lr=a 

The roots of this equation are VIn= kNa and can be found in the literature [2]. 

The overall solution for the eigenfunctions and eigenvalues of the ideal spherical cavity is 

given by 

ON(r, 0,4) = j, ( Vlnr / a) Ylrn(0,4) 

kN = Vln /a 

(82) 

(83) 

where I= 0,1,2, -. -, Im I =0, ± 1, ± 2, -.,, ±1, and n=1,2,3, -.. So the modes with a given/ 

are (21+1)-fold degenerate. The modes with 1=0 are non-degenerate and are called radial 

modes. The spherical harmonic term, Y,. (O, ý) , originates from the solution of the two 

other equations (78) and (79). The eigenfunctions of equation (82) are orthogonal and the 

normalization constant obtained is [2] 

=31- 
41 + 1) / V21n (I + IM IP 

2 42 
(21+1) (1 - 

IM 1)! 
il ( Vid (84) 

Since the turning points of the Bessel function v,. are real quantities so too are the 

eigenvalues kN of the ideal spherical cavity. For this special case equation (67) leads to 

the resonance frequencies 

fin = V,. (u /2 Ira) 

and the only contribution to the halfwidths g,. 

9b = (u / 2n)a . 

3.5.5 Real spherical cavity solutions 

(85) 

is the bulk absorption term 

The eigenfunctions and eigenvalues obtained for the ideal cavity will be used to 

obtain the eigenvalues and natural frequencies of a cavity vAth non-zero surface 
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admittance. The surface integral for the perturbed eigenvalues appearing in equation (ý5) 

yields for the radial modes, 

ff, 
V(ý)02 2j2( 

V2 

ir K 

N 
(F)dS = ya 0fd, --' 

f sin OdO (86) On) -Iýj 
S00 

and VA 2 7ra 
3j 2( 

v") (87) On 00 

where y, is the effective specific acoustic admittance of the surface, which has been 

derived assuming y(F ,) to be uniform all over the surface. Thus, from equation (67), we 

can derive the perturbed eigenvalues and the natural frequencies of the radial modes for a 

real cavity as 
Eon =: Jon +'90n= (u / 2; ra) 

(Von+ iy, + iaa) 

3.5.6 Perturbation terms 

(88) 

The effective specific acoustic admittance y. has been calculated considering all 

possible contributions to it, and applying suitable boundary conditions [2,6]. The 

contributions were found to arise mainly from three sources; the existence of a thermal 

boundary layer at the interface between the fluid and the walls of the cavity, coupling of 

the fluid and the shell motion and existence of openings in the wall of the cavity. Thus, 

equation (88) results in 

fon + ig 
On : -- (U /2 77 CO VOn + (Afh +A (89) fsh +A fo) + '(gh + gsh + go + gb) 

where the terms Afh , A& and Afo are the shifts to the resonance frequency away from 

the unperturbed value (ul2; za)vo,, arising from the thermal boundary layer effect 

(subscript h) [11], the coupling of the fluid and shell motion (subscript sh) and from the 

openings on the resonator wall (subscript o) [I I]. The terms gh ý 9, h and go are the 

corresponding contributions to the halfwidth. The bulk absorption term9b is discussed 

previously. 
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3.5.6.1 Thermal boundary layer 

The thermal boundary layer perturbation terms have been found to be [2,6] 
A f, - 21h / SO 

: /n 7-- -90 (90) 

gh ý (Y - 1)(f / 2a) 45h (91) 

where 45h = (Dh / 7rf) 1/2 and 1h =(Klp)(zMT / 2R )1/2(y_, ) /(y+1)(2 -h) Ih, h being 

the thermal accommodation coefficient. Since Sh varies as p- 1/2 
, and also 1h varies as 

p- I, the shift to the resonance frequencies arising from the thermal boundary layer is 

most important at lower pressures. The term involving ih is negligible except at very low 

pressures. 

3.5.6.2 Coupling of fluid and shell motion 

In the approximation that the shell is uniform and perfectly isotropic and its motion 
is radial and undamped, Greenspan [1,9,11] derived the following expression for the 

elastic response of the resonator's wall: 
Afsh = -fpu 

2 Co 111 - (f / Abd 21 (92) 

in which CO =a-1 (06 / 4) is the shell compliance 

C =(I +2t 3)/ 2(t 3_ I)PWU 2 (93) 
0WWW 

and 
= ((13 _ t3 )) 1/2(uw 

w 
1) /2 92(t,,,, (I +2w/ a) (94) 

is the lowest radially symmetric ('breathing mode') resonance frequency of the shell, t,, is 

the ratio of the outer and inner radii and the subscript uý denotes properties of the wall 

material. 

Since Afsh is directly proportional to the density, its significance is greater at 

higher pressures. The shell motion is assumed to be undamped and therefore there is no 

contribution to the halfwidth. The assumptions made in deriving the above perturbation 

term cannot be fulfilled in a real cavity. Thus, slight errors in the calculation of this term 
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are expected at the high pressures. However, the correction itself is always small so that 

the error propagated to the final speed of sound is even smaller. 

3.5.6.3 Openings in the resonator wall 

A further perturbation to the resonance frequencies arises from the opening of the 

fluid inlet tube. At measurement frequencies close to the tube resonance frequencies the 

specific acoustic admittance of the tube y. can be very large [ 1,11]. However, by an 

appropriate choice of the tube dimensions the tube resonance frequencies can be shifted 

away from the measurement frequencies. It is then possible to arrange that perturbation 

term Af. + ig. is very much smaller than either the thermal boundary layer perturbation or 

the perturbation because of the coupling of the fluid and shell motion. 
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CHAPTER 4 

EXPERIMENTAL METHOD 

4.1 Introduction. 

Speed of sound measurements in a number of different gases have been performed 
in this work. The measurements have been carried out in a spherical resonator. Spherical 

resonators have replaced cylindrical interferometers [1,2], as the preferred means of 

measurement of sound speed because they have proven much more precise [3-5]. 

It is now possible to manufacture spherical resonators which adhere exactly to the 

theoretical model set out in chapter 3. So far, spherical resonators have been used 

successfully for measurements of the sound speed in hydrocarbons such as methane [6,7], 

dimethylpropane [8], n-butane [9], n-pentane [ 10] and ethane [II], as well as in polar 

molecules such as methanol [12] and reffigerants such as CF4 [13] and R134a [14]. 

Argon has also been studied frequently mostly as a calibration gas [15-16]. Speed of 

sound measurements in argon obtained in a spherical resonator at the triple point of water 

have been used to determine the universal gas constant more accurately than ever before 

[17]. Finally spherical acoustic resonators have been employed in field of thermometry for 

the measurement of the triple point of gallium [ 18]. 

The spherical resonator used in this work is the latest and most sophisticated 

development in a series of acoustic interferometers [1,2,4-6,13,19,20]. The whole system 

is able of operating at temperatures between 80 to 500 K and at pressures up to 20 NTa, 

which is the widest range of operation ever achieved with spherical resonators, 

In the following section the entire apparatus is described. Details are also given of 

the experimental procedure followed in order to obtain the acoustic measurements. The 
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measurement and control of the temperature and the pressure, which are essential 
independent variables in the measurements are also discussed. 

4.2 Apparatus 

The apparatus used for speed of sound measurements in this work has been based 

on the design of Ewing and Trusler [13]. It consists of a stainless-steel spherical resonator 
housed in a thermostat (figure 4.1) with a high degree of temperature uniformity and 

stability. A short description of the various parts of the apparatus is presented in the 

following sections. 

4.2.1 The sphere 

The sphere was fabricated from two stainless-steel hemispheres of i. d. 80 mm and 

wall thickness 10.5 mm. The two hemispheres were joined together with a6 mm deep 

electron-beam weld to form a vacuum- and pressure-tight seal around the equator. The 

outer surface of the sphere was also machined to spherical geometry, as the acoustic 

model requires (see chapter 3), except for the cylindrical bosses used to hold the sphere 

hemispheres during fabrication. These two pieces, shown at each pole (figure 4.1), were 

not removed for practical reasons. 

Before welding the geometry of the inside surface of the sphere was investigated 

by studying the spectrum of microwave resonances [21], which indicated a deviation from 

sphericity of the order of io um . 
This is the best that can be achieved using conventional 

machine-shop equipment and is more than adequate for speed of sound measurements of 

part-per-million accuracy. However, during the welding procedure the sphere suffered a 

slight distortion, as indicated from the subsequent observation of the microwave spectrum. 

The measured distortions, which were of the order of ioo pm , are sufficient to cause 

observable perturbations to the acoustic resonance frequencies. 
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Figure 4.1. The spherical resonator and its thermal environment 
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The effect of the geometric imperfections, which is still no greater than 50 parts 

per million in the speed of sound, may be minimized by the application of suitable 

corrections (see chapter 5). 

The radius of the sphere at zero pressure was accurately obtained by calibration 

with argon gas (see chapter 5). 

4.2.2 The gas-entry port 

The gas-entry port was a 41 mrn long stainless tube I mrn in diameter embedded in 

the upper boss of the sphere. The upper face of the boss served as a flange to which the 

mating flange of the gas-inlet tube was bolted and sealed by a nitrogen-filled O-ring. The 

internal diameter of the gas-inlet tube (2.6 mm) was sufficient to accommodate the section 

of the gas-entry port protruding from the top of the boss. 

The length of the gas-entry port was chosen to be nearly equal to the internal 

radius of the sphere. By virtue of this choice, the resonance frequencies of the tube are 

arranged not to interfere with the resonance frequencies of the radial modes of the sphere 

[13,22]. 

4.2.3 The thermostat 

The thermostat was designed for operation up to 500 K. The gas-inlet tube and all 

the wires passing through the central access tube to the resonator were thermally anchored 

to the top copper block (figure 4.1). This block was equipped with a platinum resistance 

thermometer and heater which were used to control the heat flow to the sphere. The 

copper post interconnecting the top copper block with the lower copper block (figure 4.1) 

where the upper boss was clamped, served as a controlled heat leak. At steady state the 

temperature of the top copper block was approximately 60 mK below the set temperature. 

In certain cases it was necessary to raise the temperature of the sphere rapidly. For 

this purpose a heater was attached around the equator of the sphere, being controlled by 
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the temperature reading of the two platinum resistance thermometers located on the 

northern and southern hemýispheres, discussed in section 4.5. This control system will be 

referred to in the following as the servo control system. 

The side and base of the isothermal aluminium shield, shown in figure 4.1, were 
both controlled at the set temperature. The thermostat was operated under vacuum to 

reduce the heat transfer between the resonator and the shield. Heat loss from the shield 

was further reduced by use of superinsulation consisting of 10 alternating layers of 

aluminium foil and glass fibre., on the outside surface of the shield. 

All temperature-control loops were operated under computer control using an a. c. 

resistance bridge, channel scanner (switch unit) and power supplies. 

For operation below room temperature the whole thermostat system was immersed 

into a Dewar filled with liquid nitrogen. 

4.3 Transducers 

Two transducers have been used., one for the generation (source transducer) and 

one for the detection of sound (detector transducer). The transducers (figure 4.2) were 

located on the upper part of the resonator, 90 0 apart and symmetrically with respect to 

the resonator's polar axis. By locating the source transducer go' apart from the detector 

transducer we reduce the interference between the lowest radial mode (0,2) and the nearby 

non-radial (3,1) mode which, in a perfect sphere, has a node at that point [3,23]. Both 

transducers were of essentially the same design, each consisted of a thin dielectric 

membrane clamped by a ceramic sleeve within a stainless-steel housing. The front of the 

housing exposed a circular area of the membrane of about 3 mm in diameter, arranged to 

be nearly flush with the resonator's surface. 
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Figure 4.2. Electroacoustic transducer assembly fabricated in the wall of the resonator [6]. 
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4.3.1 Source transducer 

The moving element of the source transducer was a 12 pm thick Kapton 

membrane, coated with gold on the surface in contact vAth the resonator. The source 

transducer, which acts as a point source [24], was excited with a synthesized signal of 
frequencyf, accurate to ± 1.10-7 _f . The signal was fed to the source after amplification 

to 180 V r. m. s. Under these conditions, the source transducer electrostatic force drives the 

membrane to produce sound at a frequency 2f. 

4.3.2 Detector transducer 

The moving element of the detector transducer was also a 12 pm thick Kapton 
3ý 

membrane, gold coated on the surface in contact with the resonator, used with a dc bias of 
100 V. 

The detector had an active capacitance of only a few pF and it therefore acted as a 

very high impedance signal source when the source-membrane is set in motion by audio- 

frequency sound. Therefore a preamplifier was required very close to the detector to 

prevent division of the signal by the large ratio of stray-to-active capacitance that would 

result even from a few centimeters of coaxial cable [13]. Thus the output voltage of the 

transducer was buffered by a NET follower (figure 4.3), soldered directly to the outside 

of the feedthrough pin (figure 4.2), and fed via a miniature coaxial cable, through the 

vacuum enclosure, to the lock-in amplifier, where its phase and amplitude were measured. 

The simple JFET follower circuit discussed above is not suitable for operation at 

temperatures higher than 375 K because the signal-to-noise ratio becomes quite small. 

One solution to this problem is to place the preamplifier outside of the thermostated area. 

However, this is only feasible if the effective capacitance of the cable transferring the 

signal from the detector is very small. For this purpose a triaxial cable (guarded coaxial 

cable) has been constructed to transfer the signal from the feedthrough pin of the detector 
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Figure 4.3. Preamplifier circuit used inside the thermostat. 
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Figure 4.4. Preamplifier circuit used outside the thermostat. 
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to the preamplifier outside of the thennostat. The preamplifier circuit constructed for Pus 

case is shown in figure 4.4. 

The amplitude of the signal received for both of the preamplifier arrangements was 

always much larger than the noise of the electronics. 

4.4. Excitation and detection of sound 

The excitation signal was produced by a function synthesizer. During the 

measurements, the excitation frequency was increased in discrete steps of 9N /5, from 

aboutfN-gN to aboutfN +9N , wheregN is the halfwidth of the resonance (see chapter 

3). At each point the amplitude and phase of the received signal was measured with the 

lock-in amplifier. In order to account for any possible drifts with a linear time-dependence, 

the resonances were first scanned with increasing frequency and then with decreasing 

frequency. The measured average of the signals obtained by the two scans corresponds to 

the conditions prevailing at the time the frequency step was reversed. 
The theoretically predicted function which relates the resonance frequencies fN 

and halfwidths g. to the acoustic pressure has been alrea0y discussed in section 3.5.2. 

The acoustic pressure is transformed through the detector transducer to an electrical signal 

of amplitude and phase proportional to that of the acoustic pressure. Thus, for a resolved 

single mode the measured complex signals w (f) are analyzed in terms of the function: 
A' 

+B+C(f -f,, ) 
IV 

/f)2 w (f (F 

by non-linear regression analysis to determine FN , 
A' 

,B and C. The relative uncertainty 

in the resonance frequencies obtained was estimated in the analysis and found to be 

±1 -10- 
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4.5 Temperature measurements 

The temperature of the gas was measured from the mean value of the reading of 

two capsule-type platinum resistance thermometers, located on the northern and southern 

hemispheres (figure 4.1). 

These thermometers were calibrated on ITS-90 [25], by comparison with another 

thermometer calibrated on ITS-90 at the U. K. National Physical Laboratory. The 

thermometers were checked at the triple point of water before and after each set of 

measurements. Triple point cells of water were constructed for the calibration purposes 

based on the design of Ambrose et al. [26] 

The temperature difference between the two platinum resistance thermometers 

located on the northern and southern hemispheres was always less than 5 mK, while the 

fluctuations in the mean temperature were never more than 0.5 mK, during a 

measurement. Since the calibration accuracy of these thermometers is about ±5 mK the 

overall uncertainty in the temperature is estimated ±7 mK . 

4.6 Pressure measurements 

For the pressure measurements two pressure transducers were used, one for 

pressures up to 20 NVa and one for pressures up to 1.4 Wa. The transducers were 

connected into the external tubing, which was maintained at room temperature. 

(a) High pressure transducer: 

The high pressure transducer was a resonant quartz-crystal manometer (Digiquarz 

model 43KT) with a precision of 40 Pa. When calibrated in pressure range 0 to 15 Mpa 

the manometer was found to have a reproducibility of ± 0.5 kPa, provided that the period 

of oscillation under vacuum was monitored regularly. The overall uncertainty in that 

pressure measurements was estimated to be ±i kPa. 
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(b) Low pressure transducer: 

Since data were also taken at pressures as low as 20 kPa a high precision 

transducer was necessary for the low pressure range. The transducer used here was also a 

resonant quartz-crystal manometer (Digiquarz model 2200AT) of 1.4 NVa full scale. Its 

estimated accuracy is ± o. oi per cent of full scale which is about ± 0.2 kPa. 

4.7 Gas samples 

The gaseous samples used for the measurements and their purities are discussed in 

the following. 

(a) Argon: 

'Zero grade' argon was supplied by British Oxygen with a specified mole fraction 

purity of at least 0.99998. Information provided by the manufacturer indicated that the 

main impurity is air. A mole-fraction of air even of 0.00002, would have a negligible effect 

upon the measured speed of sound in argon. 

(b) Methane: 

The methane gas was supplied by Union Carbide with a specified mole-fraction 

purity of at least 0.99995. Analysis xArith gaseous chromatography revealed no impurities. 

However, using as upper limits for the mole fractions of some possible impurities, the 

detection thresholds in g. c., it was found that the possible shift to the speed of sound 

could not be more than a few parts per million. 

(c) Propane: 

The propane gas was supplied by Union Carbide with a specified purity of at least 

0.9995. Analysis with gaseous chromatography showed that the largest impurity was 

methane. The effect of this impurity in the speed of sound is discussed analytically in 

chapter 

(d) Methane-propane: 
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Two sets of measurements were performed with a methane-propane mixture, one 
set along isochores, reaching up to 5 mol / dm 3, and one along seven isotherms from 225 

to 375 K at pressures up to 1.4 Wa. 

The mixture was prepared in a 0.5 dm 3 stainless-steel cylinder previously baked 

under vacuum. Starting with both the resonator and the sample cylinder under vacuum at 

approximately 300 K, methane was admitted to a pressure calculated to correspond to an 

amount-of-substance 3.61 mol. The cylinder was then cooled in liquid nitrogen so as to 

condense the sample and isolated from the sphere by closing a valve. Propane was then 

admitted to the sphere to a pressure calculated to correspond to 0.128 mol. This gas was 

then condensed into the sample cylinder and the process repeated four times so as to 

meter a total of 0.64 mol of propane. At the conclusion of this procedure, the sample 

cylinder contained approximately 4.25 mol of (0.85 CH4 + 0'15 C 3H 8) 1 sufficient to 

reach a density in the entire system greater than the required, 5 mol / dm 3. 

The mixture to be used in the isothermal measurements was prepared in the same 

manner but for an amount-of-substance corresponding to 1.5 times the amount needed to 

fill the sphere for each of the seven isotherms up to about 1.4 Wa. 

Convective mixing was used to obtain a homogeneous sample. Large temperature 

gradients were established across the sample cylinder to obtain mixing of the gas. After 24 

h, the resonator was filled with gas from the cylinder, up to a pressure corresponding to a 
density of 5 mol / dm 3 for the case of isochoric measurements, or up to the maximum 

pressure (here 1.4 NTa), for the case of the isothermal measurements. Additional 

convective mixing was then promoted by maintaining a temperature difference between 

the top and the bottom of the resonator of about IK for a further 24 h. 
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4.8 Experimental procedure 

Isothermal and isochoric measurements were performed in this work and they are 

discussed separately. 

(a) Isothermal measurements: 

Gas from the commercial gas cylinder was transfered into a sample cylinder by 

condensation with liquid nitrogen. For the particular case of propane and methane- 

propane mixture, after the desired pressure was reached, a degasing procedure followed in 

order to remove any uncondensable impurities. Subsequently, the gas was passed into the 

sphere, already evacuated and flushed with gas several times, through a series of manual 

valves. After filling the resonator to the maximum pressure, the desired temperature was 
3-1 

set and the temperature control program started. When the steady state was reached, i. e. 

the mean temperature of the sphere was stabilized, measurements of the resonance 

frequencies were taken. The pressure was then lowered in preparation for the next set of 

measurements. This was done either by condensing gas from the sphere into the sample 

cylinder, which was immersed into a liquid nitrogen bath, or by pumping the gas out 

through the vacuum pumps. The expansion produced a decrease in the temperature. 

Therefore the servo control system discussed previously was used in order to bring the 

temperature of the sphere back to the set value. During the measurements the vacuum 

reading of the thermostat was 10-5 Torr. The vacuum reading of the thermostat was used 

to test if there is any leak in the thermostated area. After the lower pressure was reached 

and the data taken, the system was pressurized again to the highest pressure and set for 

the next temperature. 

For measurements below room temperature the thermostat was immersed in liquid 

nitrogen. The cooling procedure when the thermostat is under vacuum is very slow. 

Therefore a helium supply unit was constructed, which allowed helium gas to pass into the 

space around the resonator, to provide the medium for the heat to be transfered. However, 

this unit was seldom used, because it was proved difficult to control. 
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(b) Isochoric measurements: 

Isochoric measurements were only taken for one of the methane-propane mixtures. 

These measurements proceeded along the isochores at amount of substance densities 5,4, 

3,21 1 and 0.085 moi / dm 3. Measurements were performed at temperatures of 280,300, 

325,350 and 375 K on each isochore. The system was then returned to 280 K for a check 

measurement before reducing the gas density in preparation for the next isochore. 

Measurements were only taken with the system in full thermal equilibrium and 

approximately 12 h were required to traverse each isochore followed by 12 h of cooling to 

return to the initial temperature. 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

5.1 Introduction. 

In chapter 3 an acoustic model has been developed which allows the speed of 

sound in a fluid to be determined from the measurements of the complex resonance 
frequencies FO. = fo. + igo. of the radial modes of a spherical resonator enclosing a test 

fluid. Using exactly the methodology set out in that chapter the speed of sound in gaseous 
methane, propane and a binary mixture (0.85 CH4+ 0.15 C 3H 8) has been determined. The 

present chapter presents the results for the speed of sound and various derived quantities 

obtained by an appropriate analysis. 

5.2 Analysis of the acoustic measurements. 

According to the acoustic model established in chapter 3 the speed of sound u is 

related to the resonance frequencies fo,, of the radial modes (O, n) by 

2 Ka (f(,, - Af, j) / vo" (1) 
where a is the radius of the sphere, which is a function of the pressure, vo. is an 

eigenvalue of the ideal spherical cavity, which results from the turning points of the 

fj = Afh+ Afh+ Af. is the sum of spherical Bessel function of zeroth order, and A 

small correction terms to account for the thermal boundary layer at the resonator wall, the 

coupling of the fluid and the shell motion and the tubular opening on the resonator wall 

through which the gas was admitted. For the case of methane the above equation requires 

further correction for dispersion Afdis associated with vibrational relaxation in the gas [I]. 

At high pressures the most important correction is that arising from the coupling of 

ýh . 
For example we mention that for methane at 300 K the shell and the fluid motion, Af, 
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and 10 NVa the correction Afh to the (0,4) mode was 225 parts per million, while the 

correction arising from the thermal boundary layer, Afh 
, was just 15 parts per million. The 

values of Young's modulus E and Poisson's ratio a needed for the calculation of A fsh 

were taken from fit to data given by Ledbetter et al. [2,3]. 

At low pressures the most significant correction is that for the thermal boundary 

layer, Afh , which for methane at 125 K and 0.02 NTa this correction to the (0-4) mode 

was 90 parts per million. The correction for dispersion Afdi, is equally important at low 

pressures for the case of methane. For the calculation of the correction for the thermal 

boundary layer, values of the thermal conductivity as well as the isobaric and isochoric 

heat capacity are required. In addition, values for the viscosity of the fluid are required for 

the calculation of the correction arising from the tubular opening Af. 
. 

The values of the 

thermodynamic properties as well as of the density and the speed of sound, which also 

appear in some of the correction terms, are presented below when each individual system 

is considered. 

5.2.1 Calibration 

Calibration measurements with argon were performed, in order to obtain the radius 

of the sphere at zero pressure ao . This value is needed for the calculation of the actual 

radius of the sphere a at any pressure. The calibration measurements were also utilized to 

derive corrections to account for imperfections in the geometry of the sphere. 

For the calibration purposes the first five radial modes were measured at the 

temperatures and pressures of interest. The thermodynamic properties required for the 

calculation of the correction terms Afj were obtained as described in [4]. 

5.2.1.1 Calibration for geometric imperfections 

After applying all the calculated corrections into equation (1), the fight handside of 

the equation did not give the same result for all five modes (0, n) measured. As discussed 
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in chapter 4, this is a consequence of the fact that the spherical resonator employed here, 

has suffered some distortion during the welding, as the microwave spectrum indicated. 

Since the welding was performed by an electron beam around the equator, the most likely 

effect on the resonator was to make it prolate or oblate, as a result of stresses created 

during the cooling (which followed the welding process). According to Mehl [5], the 

existence of geometric imperfections in the resonator results in a shift of the eigenvalues 

vo. of the perfect sphere, which for prolate or oblate spheroids, is given by: 

)e 2V2 
On + 0(, 63) V(). / Von = (4 / 135 (2) 

where e indicates a first order perturbation of the sphere radius. If we suppose that the 

eigenvalues are shifted to the value vo,, (i +A0. ), where 'On :: -- A VOn 1 von , due to the 
J. " 

geometrical imperfections of the present resonator, then substitution of this value into 

equation (1) in place of the unperturbed eigenvalues vo. should yield the correct value u 

for the speed of sound, which would be the same for all modes (O, n). The corrected form 

of equation (1) would then be: 

2 7ra (fo. -&fj )/I Von (1 +A OnA (3) 

By plotting the fractional deviations 50, = (uO, - (u)) / (u) 
, of the value for the speed of 

sound uO. obtained from equation (1) for the (0, n) modes measured in argon, from the 

mean value (u) 
, against the eigenvalue von , the dependence shown in figure 5.1 was 

obtained. This dependence was found to be quite independent of temperature and 

pressure. Thus, equation (1) could be written as follows: 

(u) =2 Ira (fon - Afj )/[ Von 0+ Son)] (4) 

Comparing equations (3) and (4) we obtain 

U0+ AOd = (U )(1 + Son) (5) 

Assuming that the correct speed of sound u equals the mean value (u) 
, then equation (5) 

yields that the shift to the eigenvalues A 0. is equal to j5O. . Based on this assumption the 

mean values of 460,,, obtained by averaging the fractional deviations at the different 
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Figure 5.1. Fractional deviations go. = (u,,,, - (u)) / (u) of sound speeds uo,, determined 

from the (0, n) radial modes from the mean value (u) for modes with n= 2) 3,..., 6 before 

corrections for imperfect geometry. o, Average of 13 determinations in argon covering the 

pressure range 0.1 Wa to 0.5 NVa and the temperature range 275 to 375 K. 
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temperatures and pressures, were treated as a set of corrections to the eigenvalues v, 0 to ID, 

yield the corrected eigenvalues ko. given by 

kOn =(I+ go. ) V.. (6) 
The eigenvalueS kon were used instead of von in equation (1) in all subsequent 

measurements. The corrections 6ý, are presented in table 5.1. Although, according to 

equation (2) Jon should vary as ýý , which is not exactly the behaviour illustrated in 

figure 5.1; the correction we applied for imperfect geometry seems to work. This can be 

asserted because following application of this correction to the speed of sound 

measurements for other gases, the fractional deviations of the speeds of sound calculated 
from the different modes from the mean value were usually only a few part in- 10-6 . 
Inconsistencies found in some cases between the speeds of sound obtained from the 

different modes in excess of this level were always attributed to causes other than 

geometrical imperfections and they will be discussed for each substance in the 

corresponding section. 

5.2.1.2 Determination of the sphere radius at zero pressure. 

In order to obtain the speed of sound from equation (1) after it is corrected for 

imperfect geometry, one needs also to calculate the sphere radius a. As will be shown in 

the next section the sphere radius a can be calculated from ao , the Poisson's ratio and the 

Young's modulus. Fitting of the available now values of (u ao) 
2 into a polynomial of the 

2 
pressure or the density, yields the value of the intercept A0 ao (see section 5.3). For the 

case of argon A0= RTyP9 /M is known since for monatomic substances )vPg =5/3. 

Thus for every temperature T, at which the speed in argon is measured, one can obtain the 

values for ao - Calibration measurements of the speed of sound in argon at the 

temperatures 275,325 and 375 K and pressures 0.1 to 0.5 NVa, gave values for ao 

represented by the quadratic interpolation formula: 

ao /m= 40.152 _ 10 -3 (1 + 15.94 ., 0 - 6t (T / K) - 300 1 +1.6 - 10 -8[(T / K) - 300 12) 
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This equation represents the values of ao better than ± 0.0005 per cent which results in a 

fractional error in the speed of sound of ± 5.10 -6. The above calibration equation was 

used in deriving the speed of sound of methane in the temperature range 275 to 375 K and 

pressures up to 10 Wa [6], and the speed of sound of the methane-propane mixture at 
temperatures 280 to 375 K and pressures up to 12 M[Pa. Before going to low 

temperatures (about 120 K) the change in the sphere radius was always less than 5 parts 

per million, over a period of one year. However, after going to low temperatures the 

sphere exhibit some hysteresis and recalibration became necessary. 

Calibration in the temperature range 120 to 400 K yield the equation 

ao /m= 40.1718 - 10 - 3(1 + 15.58 ., 0 - 6t (T /K)- 300 ] +1.08 - 10 -8[ (T /K)- 300 ] 

This equation represents the values of ao within an error of ± 0.003 per cent which 

results to a fractional error in the speed of sound of ± 30 . 10-6 . It was used to obtain the 

speed of sound of methane in the temperature range 125 to 250 K and at pressures up to 

1.4 NTa,, the speed of sound of propane at temperatures between 225 and 375 K and at 

pressures up to 0.85 NVa and the speed of sound of the methane-propane mixture at 

temperatures between 225 and 375 K and at pressures up to 1.4 MEN. In the derivation of 

equation (8) fit of ao data in a narrower temperature range did not improve the quality of 

the fit and thus the fractional error of ± 30 . 10-6 could not be avoided. 

5.2.2 Effect of pressure on radius 

As mentioned before calibration with argon yield ea the radius of the sphere at zero 

pressure ao . This value was needed for the calculation of the sphere radius a at any 

pressure. The radius of the sphere a is related to ao using the shell compliance c. by 

a= ao(I + C. p) 

The shell compliance is obtained from the equation [2,3 ] -. 

Co = [(I + a) *q 
3 +2(l -2 a)] 1[2E(q 3_ 1), 

(9) 

(10) 
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where q is the ratio of the outside diameter to the inside diameter of the sphere, a is 

Poisson's ratio and E is the Young's modulus. Fit to the data of Ledbetter et al. [2,3] yield 

the equations predicting a and E for the material of the sphere (type 321 stainless-steel): 

Or= ao[l + at(T /K- 300 )l (11) 

with CTO =0.297 and at = 1.8-10-4 and 

E =Eo- 
Et 

exp (s / T) -I 
9f . 

11. 
with Eo = 212 - 10 , Et = 2.812 - 10 and s--37 

5.3 Perfect-gas heat capacities and acoustic virial coefficients. 

As shown in chapter 2, the square of the speed of sound can be expanded in a 

virial series in powers of the density as follows: 

u2=A0 (1 + flaPn + YaP! +'- -) (13) 

with 
A 

RT rpg 

m 

Here p. is the amount-of- substance density, P. and y. are the second and third acoustic 

virial coefficients respectively, R is the gas constant, T is the temperature, M is the molar 

mass and rP9 is the perfect-gas heat-capacity ratio. 

Equation (13) can also be written as an expansion in terms of the pressure p as 

follows: 

u2= AO+ Alp +A2P 2+... 

The coefficients of the above expansion are given by 

AI =)6aypg /M (16) 

A2= (ya - B, 8a) ypg / RM (17) 

where B is the second volumetric virial coefficient, defined in chapter 2. 
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The expressions in equations (16) and (17) can be readily derived by substituting 

into equation (15) the virial expansion of the pressure in terms of the density 

P/ (P. RT) =I+ Bp. + CP! +--- and by comparing equation (15) with equation (13). 

As equations (13) and (15) imply, fitting of values obtained for u2 into a 

polynomial of the density or the pressure, yields values for A0 and the second and third 

acoustic virial coefficients. 

5.4 Methane 

Two sets of data were taken for methane; the first in the temperature range 275 to 

375 K and at pressures 0.4 to 10 NVa (high temperature-pressure range), and the second 

in the temperature range 125 to 250 K and at pressures up to 1.4 NTa (low temperature- 

pressure range). The speed of sound was always obtained from the first three radial 

modes, (0,2), (0,3) and (0,4), which lie at frequencies 5000 to 21000 Hz, throughout the 

temperature and pressure range measured. 
The thennal boundary layer correction Afh was calculated using values for the 

thermal conductivity obtained from the correlation of Younglove and Ely [7]. The isobaric 

and isochoric heat capacities, the density and the speed of sound, which were also required 

for the corrections, were calculated by the equation of state proposed by Setzmann and 

Wagner [8]. Values for the viscosity, which were needed for the calculation of the 

correction ansing from the tubular opening on the resonator wall Af. , were also taken 

from the correlation of Younglove and Ely [7]. 

5.4.1 Dispersion correction 

For methane, the sound speeds obtained from equation (1) after corrected for 

imperfect geometry, required further correction for dispersion associated with vibrational 

relaxation [1] in the gas. Fortunately the measurements were conducted at frequencies and 
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densities where the main consequence of Vibrational relaxation is enhanced sound 

absorption and the associated dispersion is small. In the temperature range 275 to 375 K 

Wýre we have worked at comparatively high pressures, the vibrational relaxation time was 

always less than o. 5 ps . 
However, at densities as low as 40 mol /M3 and temperatures as 

low as 125 K, the vibrational relaxation time reached 8/& . 
The value of 8/A for the 

vibrational relaxation time could also be considered small compared to the period of the 

sound waves which was between 45 and 200 /& . However, at densities below 

100 MO, _M -3 and at temperatures below 275 K the speeds of sound calculated from the 

different modes showed a considerable disagreement. 

The vibrational relaxation time r, which is needed for the calculation of the 
91 

dispersion correction, was obtained by analysis of the experimental half-widths of the 

resonances, assunung that the product rp is independent of the density p. For this 

purpose, we first subtracted the other known contributions from the half-widths gon 
(90n :- gh + go + gb )measured; these arise from the thermal boundary layer gh ') the 

dissipation in the tubular opening g. and the classical viscothermal sound absorption 

9d = 9b - grel 
* The remaining half-width arises from the contribution of vibrational 

relaxation g,,, which is given by [1]: 

grel / An = (Y- I) A O)T+ 0(0)1, -1) 
2 

(18) 

where A =Crel / Cp is the fraction of the constant-pressure heat capacity undergoing 

relaxation and w=2; rf is the angular frequency (f is the source transducer frequency, 

which is almost equal to fo. at resonance). 

Equation (18) was derived assuming that the vibrational-to-vibrational energy 

transfer is rapid compared with the translational-to-vibrational energy exchange, so that 

the entire vibrational contribution to the heat capacity relaxes with a single relaxation time 

r, and neglecting rotational relaxation. This assumption was already employed for the 
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case of pentane [9], butane [ 101, dimethylpropane [II] and CF4 [12], which has a similar 

molecular structure to methane. 

The terms of order (coz) 3 are found to be negligible under the conditions of our 

measurements and therefore we were able to analyse the residual experimental half-widths 

in terms of the equation 

grel / fon : --: f (Y - I)AKfon / P) bo + bb (19) 

where bo = rp and bb is an empirical background term that accounts for most of the 

unexplained additional loss mechanisms in the resonator. 
-3 The values of r obtained for a density of I kg m are given in table 5.2 for the 

temperature range 200 to 375 K. These values were compared with the data presented in 

[ 13 ] and the agreement was found very satisfactory. The vibrational relaxation times at the 

temperatures below 200 K were obtained by extrapolation of the values at 200 to 375 K. 

The extrapolation equation used is the following 

, rp = 1079 / 62.5 exp (- T/ 105.1) (/A - kg _M -3 ) (20) 

and represents the vibrational relaxation times at the temperatures between 200 and 375 K 

within their estimated error. At the temperatures 125 to 175 K the vibrational relaxation 

times obtained from the fit of the resonance half-widths were found to be substantially 

lower than the values predicted by equation (20). In fact the vibrational relaxation times 

were found to be decreasing as the temperature decreases, while all eight values obtained 

in the temperature range 200 to 375 K were found to be increasing according to the 

simple exponential equation (20). A logical explanation of the deviations noticed is that at 

the temperatures 125 to 175 K and at the densities at which the fit was performed the 

order of magnitude of the background term (10-6) mentioned above, is the same with 

that of grj / fo, , 
fact which causes large uncertainty in the fitting coefficient bo which 

provides the vibrational relaxation time. 

The dispersion correction Afdi, at an angular frequency co was calculated from the 

relation [ 11: 

95 



Af. 12+ 0(0)3, r3) ; /dis / fOn ý'-- -(Y - OA (0)") (1 - A(I + 3y 4) (21 
2 

using the derived values for the relaxation times. 

5.4.2 Error analysis 

Having obtained corrected values of the sound speed for each of the first three 

radial modes of the spherical resonator, we next consider the level of agreement between 

them as well as the effect of all the other possible sources of error in the speed of sound. 
(a) High temperature-pressure range: 

In the temperature range 275 to 375 K the agreement between the three modes is 

generally within ±5- 10 -6 over the whole pressure range. For the isotherm at 300 K the 

situation is slightly less satisfactory. The agreement at low pressures remains good but, at 

higher pressures, the sound speed determined by the (0,4) mode departs systematically 

from the mean of (0,2) and (0,3) modes by an amount that reaches about 20 - io -' at 

p= 10 MPa . 
This is far too large to arise from errors in the elastic constants within the 

estimated bounds for such errors [2]. Indeed a change in the elastic constants greater than 

these bounds would destroy the good agreement still observed between the results of the 

(0,2) and (0,3) modes. This deviation of the (0,4) mode was therefore interpreted as 

coupling between the (0,4) mode and a relatively nearby resonance of the shell and thus 

the (0,4) mode at 300 K was rejected. Similar deviations at high pressures were observed 

for the (0,4) mode at 350 K and 375 K where it was also rejected. 

The fractional uncertainty in the above speed of sound data, resulting from small 

inconsistencies between the modes, including uncertainties propagated from the calibration 

measurements, is estimated to be ±7- 10 -6 at low pressures. The maximum uncertainty 

of ±I kPa in the pressure gives rise to an additional fractional uncertainty which never 

exceeds ± 10 . 10 -6- All the possible impurities listed in table 5.3, heavier than methane, 

would cause a decrease in the sound speed, since, as equation (Eýý, ) indicates, u2 OC M- 
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Although there is no evidence that the actual impurity levels approach the upper bounds 

given in table 5.3. the greatest possible depression of the speed of sound at 300 K from 

this substances would be 29 . 10 -6. The main effect of the plausible impurity levels would 

be the introduction of small errors into the derived perfect-gas properties, as it will be 

shown later for the case of propane. Finally there is an uncertainty, significant at the higher 

pressures, which arises from possible errors of up to 5 per cent in Young's modulus. Since 

the net effect of the fractional uncertainty along the isobar at 10 NTa is approximately 

constant and equal to 14 . 10 -6 the overall fractional error bound is estimated to be 

.61:! ý (7 2 +102 +292 + 2(p / MPa )2)112 . 10 -6 (22) 

The estimated error bound for the highest pressure of 10 NVa does not exceed 35 - 10 -6. 

(b) Low temperature-pressure range: 

In the temperature range 125 to 250 K the agreement of the three modes was 

better than ±7.1 0-6 over the whole pressure range, except at pressures corresponding to 

densities lower than 100 M01 _M -3 . where the deviation could become as large as 

± 25 - 10 -6. At those very low densities the dispersion correction and the correction for 

the thermal boundary layer become very important. The relative contributions of Afh and 

Mis to the resonance frequencies of the (0,4) mode, varied from 93 - 10 -6 and 

- 88 -10- 
6 at 125 K and 0.020 M[Pa, to 50 . 10 -6 and - 67 - 10 -6 at 250 K and 0.198 

Wa, respectively. Both correction contributions being of order 100 . 10 -6 at the lower 

pressures, small errors in them could produce quite considerable error in the speed of 

sound. However, the model for the thermal boundary correction has been well tested 

[9-12,14), a further test being the very good agreement between the modes of propane at 

the very low densities as shown in the following, a fact which leaves the dispersion 

responsible for the observed deviations. When the vibrational relaxation time is 

comparable with the period of the sound waves then the assumption made in deriving the 

acoustic model (chapter 3) employed in present measurements, about local equilibrium is 

no longer valid and thus neither is the model. 
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Accordingly, for the speed of sound data obtained at the temperatures between 

125 and 250 K the fractional estimated error is given by: 
je 1: 9 [7 2 

+3 ()2 + 1()2 +292 + (5.3 T/ p) 
2 ]1/2 

.1 ()-6 (23) 

where the f *i ve values in the parenthesis account for the small disagreements between the 

modes, the error arising from the quality of the fit of the ao data obtained from the 

calibration, the uncertainty in the pressure measurements, the uncertainty in the purity of 

the methane sample and finally the uncertainty caused by the vibrational relaxation at the 

very low densities. The net effect of the disagreement between the modes caused by 
a AewA 43 

vibrational relaxation at 125 K and 0.040 Wa, which corresponds to 39 mol /m is a 

fractional uncertainty of ± 17 . 10-6 in the sound speed. Based on the observation that the 

uncertainty increases as the density decreases and the temperature increases, we calculated 

the term f 17 - (T / 125 )/ (p / 39 )) = (5.3 T/ p), which was found to be consistent for the 

other temperatures and densities measured (corresponding to the pressures measured). 

The maximum fractional estimated error according to equation (23) is then, that occuring 

at 250 K and 0.099 NTa (p = 47.6 mol /m3), which is 5o . 10-6 . 

5.4.3 Internal consistency of the results 

With the exception of the situation at the very low densities at the temperatures 

below 275 & where the assumption of local equilibrium is questionable, the agreement at 

low pressures confirms that the corrections for dispersioný imperfect geometry and the 

thermal boundary layer have been applied with adequate accuracy, while the agreement at 

high pressures suggests that the model of shell motion and the values used for the elastic 

constants are adequate. 

The mean speeds of sound determined from the average of the selected modes at 

each temperature and pressure are presented in table 5.4. The pressures given here include 

small corrections for the hydrostatic head between the mid-point of the resonator and the 

pressure transducer. 
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As a further test of internal consistency of the results, u2 was fitted along each 
isotherm to polynomials in the pressure or the density. The data of U2 obtained in the 

temperature range of 275 to 3 75 K which reach up to a pressure of 10 NVa were fitted to 

a polynomial in the pressure. It was found that 5 to 7 terms were needed to accommodate 

all the results, but fractional deviations of less than ±6 . 10-6 were then obtained. The 

data of U2 obtained in the temperature range of 125 to 250 K and at pressures up to 1.4 

NTa were fitted to a polynomial of the density. In this case 3 terms were enough to 

accommodate the data within the fractional deviations shown in table 5.5. 

5.4.4 Comparison of the results 

The speed of sound results in the temperature range 275 to 375 K are illustrated in 

figure 5.2 together with those obtained earlier by Goodwin [15] at 300 K and 350 K using 

a spherical resonator at p :ý7 MPa [8]. At 300 K where a reliable value of the radius of 

Goodwin's resonator was available, the two sets of results differ by less than 0.003 per 

cent from above I NVa. The agreement at 350 K is slightly less good; here Goodwin's 

results are lower than the present ones by 0.022 per cent at 1.3 Nva and by 0.007 per cent 

at 7.2 Wa. Gammon and Douslin [16] have also reported speeds of sound in methane, 

which at 298.15 K, overlap the pressure range of the present work. Despite the need for 

dispersion corrections much greater than in the present work, their value at 2.4 NTa lies 

only 0.020 per cent below that interpolated from our results, while at 5.6 and 10.5 NTa 

the differences are just 0.003 per cent. 

The results in the present range of temperatures and pressures (275 to 375 K and 

up to 10 NTa) are also in good agreement with most recent equations of state for methane 

In particular, the wide ranging equation of Setzmann and Wagner [8] predicts results that 

deviate only very slightly from these measurements. The worst deviation, just -0.03 per 

cent, occurs at 275 K and 10 NTa, while for the three isotherm above 300 K the 

deviations are all better than ± O. oi per cent. The GRI [17] equation of state applied to 
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0 
pure methane also predicts sound speeds which agree with experiment to within ± 0.03 

per cent on the isotherm of 275 K and to better than 0.01 per cent above 300 K. The data 

obtained at 275 to 375 K and at pressures up to 10 Wa were also compared with the 

values predicted by GERG [18] equation of state and Friend's [19] equation of state. The 

predictions of GERG were found very poor, showing deviations on the 10 Nva isobar of 

+2 per cent at 275 K and -2.2 per cent at 325 K. The equation of Friend et al agrees to 

within ± 0.04 per cent at 275 K but gives values at higher temperatures which lie up to 

0.08 per cent below experiment. 

The low pressure data obtained at temperatures between 125 and 250 K were 

compared with the values predicted by GRI equation of state [17]. The agreement was 

found to be excellent throughout the temperature and pressure range. At 125 K the 

deviation was always less than 0.02 per cent, at 175 and 200 K the deviation was always 

less than ± mi and 0.01 per cent respectively, while at 225 and 250 K the maximum 

deviation was 0.005 per cent occuring at the highest pressure. However, at the 

temperature of 150 K the deviation was 0.01 per cent at the six lowest pressures, while it 

varied from -0.0 1 per cent at 0.6 Wa to -0.11 per cent at 0.92 M[Pa. In that case either the 

equation of state employed is not very accurate close to saturation, or precondensation 

effects. ) which were decreasing as the pressure was lowered, perturbed our values for the 

speed of sound. 

5.4.5 Regression analysis 

The speed of sound data obtained in the temperature range 275 to 375 K and at 

pressures truncated up to 2.8 NVa were fitted in terms of equation (15) (pressure series) 

to yield the perfect-gas heat capacities and the second and third acoustic virial coefficients. 

Even in this truncated pressure range, four terms were required for every case, except at 

375 K were three- and four-term fit gave almost identical results. The second virial 
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Figure 5.2. Speeds of sound in methane along the five isotherms. The results are plotted as 

u(T, p) / u(T, p -+ 0) where values of u'(T, p -* 0) =A0 are given in table 5.5. T =: e, 

275 K; P3 00 K; A, 3 25 K; V, 350K; *, 3 75 K. Open symbols are Goodwin's results [ 15 ]. 
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coefficients B used for the calculation of the third acoustic virial coefficients from equation 
(17), were obtained from the data of Douslin et al. [20]. 

The speed of sound data obtained at the temperatures between 125 and 250 K 

were fitted in terms of equation (13) (density series). The perfect-gas heat capacities and 

the acoustic virial coefficients obtained from the two fits are tabulated in table 5.5 together 

with their uncertainties and the fractional deviations of U2 from the fit. In figure 5.3 the 

fractional deviations of u2 from the fit are plotted against the density for the isotherm of 

250 K. The perfect-gas heat capacities were compared with the values proposed by 

Setzmann and Wagner [8], which are based on spectroscopic data. The deviations were 
found always less than ± 0.002 R, 

In the following chapter, the second and third acoustic virial coefficients obtained 

by the regression analysis of the speeds of sound are simultaneously fitted to spherical 

potentials to yield values for the second and third volumetric virial coefficients as well as 

for the viscosity. 
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Figure 5.3. Fractional deviations Of U2 from values obtained from the three term fit 

against the density at 250 K, for methane. 
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5.5 Propane 

Measurements were performed in propane gas along seven isotherms between 225 

and 375 K and at pressures 0.010 to 0.850 Wa. At each point the resonance frequencies 

and halfwidths of the lowest five radial modes of the gas-filled resonator were measured. 
Under the conditions of the measurements, the resonance frequencies fell between 4000 

and 19000 Hz. 

The pressure was always kept below 85 per cent of the saturation pressure in order 
to avoid precondensation phenomena [1]. The variation of temperature and pressure 

during the acoustic cycle at conditions close to the saturation could cause condensation on 

the surface of the resonator. The thin liquid film formed on the surface perturbs the 
.w 

specific acoustic admittance of the surface. It was found that the specific acoustic 

admittance could increase by an order of magnitude above the corresponding value 

without precondensation [21]. 

The thermal boundary layer correction was calculated using values for the thermal 

conductivity taken from the correlation of Younglove and Ely [7]. The isobaric and 

isochoric heat capacity, the density and the speed of sound, required for the calculation 

corrections, were calculated from the Lee-Kessler equation of state [22]. This equation, 

which was derived on the corresponding-states principal, operates using values of the 

critical pressure, critical temperature and of the acentric factor. Mthough not as accurate 

as the equation employed for the case of methane, the accuracy of this equation is 

adequate for the calculation of the correction terms in equation (1). The viscosity values 

required for the calculation of the correction for the tubular opening in the resonator wall, 

were obtained also from the correlation of Younglove and Ely [7]. 

5.5.1 Error analysis 

Generally, the agreement between all five modes was excellent throughout the 

temperature and pressure range of the measurements. At the temperatures of 225,300 and 
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325 K, all five modes agreed better than ±5 10 -6. At 250 and 275 K the four modes 
(0,2) to (0,5) agreed better than ±5 . 10 -6 while mode (0,6) showed a systematic 

deviation from the average of the other four and has been excluded. The most probable 

explanation for this systematic deviation is the coupling of the (0,6) mode with a nearby 

shell resonance. At the temperature of 350 K the mode (0,2) and at 375 K the modes (0,2) 

and (0,3) were not measured because of a strong noise signal picked up by the receiver 

transducer at the corresponding frequencies. The agreement between the remaining modes 

at 350 and 375 K was better than ±7.10 -6 and ±5.10 -6 respectively. 

The very good agreement between the modes measured in this low pressure range 

verifies the accuracy of the thermal boundary layer correction Afh , which for the (0,2) 

mode reached up to 75 - 10 -6f at 225 K and 0.020 Wa. A dispersion correction was not 

taken into account since, as the results from the excess half-vAdths indicate, the vibrational 

relaxation time is too small to produce considerable dispersion. The relative contribution 

of the correction arising from the coupling of the fluid and the shell motion Af, to the sh 

resonance frequencies was always less than io - io -6 

5.5.2 Regression analysis 

Fitting of the values u2 obtained, (shown in table 5.6) in terms of equation (13) 

yield the values for the perfect gas heat capacities and the second and third acoustic virial 

coefficients. In all cases a good fit was obtained using the first three terms of the density 

series expansion. This behaviour was expected, since the data lie at very low densities, 

which however, were high enough to yield significant values for the third acoustic virial 

coefficients. The perfect-gas heat capacities as well as the acoustic virial coefficients 

derived by the regression analysis are presented in table 5.7, together with the estimated 

uncertainties obtained from the fit. 
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5.5.3 Discussion of the results 

The speeds of sound obtained from the average of the modes selected are 

presented in table 5.6. The present data were compared with the values predicted by the 

GRI equation of state [17] applied to pure propane. Systematic positive deviations were 
found, which at 300 K varied from 0.01 per cent at 0.02 NVa to 0.30 per cent at 0.8 NVa 

whereas at 375 K varied from 0.00 per cent at 0.02 N4Pa to 0.07 per cent at 0.8 NIPa. 

These errors are much larger (by a factor of 10 at the largest pressure) than the estimated 

uncertainty of our speed of sound data, as is shown in the following. 

The isochoric perfect-gas heat capacities obtained here were compared with the 

values predicted by the correlation of Younglove and Ely [7], based on spectroscopic data 

and were found systematically negative, from -0.25 up to a maximum of -0.70 per cent 

occuring at 300 K. At 300 K our value was found also to deviate from the spectroscopic 

value of Chao et al. [23] by -0.40 per cent. It is worth noticing here that the value of 

Younglove and Ely [7] and that of Chao et al. [23], both based on spectroscopic data 

which are considered to be the best source of information, differ by 0.30 per cent, which 

implies that the spectroscopic data available for propane show inconsistencies of the same 

order as our deviations. Our isochoric perfect-gas heat capacity values were also 

compared with the values at 250 and 300 K obtained by Malik [24] also from fit to speed 

of sound data. The agreement was found to be better than -0.10 per cent for both 

temperatures, which is of the same order as that found for the values of methane 

compared to the data of Setzmann and Wagner [8] (± 0.05 per cent). 

Deviations of the experimental perfect-gas heat capacity values from those 

predicted by spectroscopic data were expected as the natural consequence of the impurity 

of the propane gas sample. The mole fraction purity of propane was of the order 0.9995. 

Gas chromatography indicated that the main impurity was methane. Making thus the 

assumption that the impurity is only methane, we calculated the effect that could have on 

the perfect-gas heat capacities. At 300 K it was calculated a value for the isochoric 
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perfect-gas heat capacity of 0.31 per cent higher than the value obtained assuming pure 

propane, which explained indeed the negative deviations found in the experimental 

perfect-gas heat capacities. The corresponding effect of the methane impurity on the speed 

of sound at 300 K was found to be a fractional increase of 180 . 10-6 . 
Finally the total fractional error e in the speed of sound data is estimated to be 

je 1: 5 22 1/2 -6 10 2+7+ 30 2+ 180 1.10 (24) 

where the four values in the parenthesis account for uncertainties in the pressure, 

disagreement between the different modes in the calculation of the speed of sound, 

uncertainty in the sphere radius and finally effects of impurities which were found to be 

quite independent of the temperature. According to equation (24) the maximum fractional 

uncertainty in the speed of sound is about i8o . 10-6 . 

5.6 0.85 Methane-0.15 propane 

Two sets of speed of sound measurements have been performed in a binary 

gaseous mixture of 85 per cent methane and 15 per cent propane. In the first set, the 

measurements proceeded along the isochores at amount-of-substance densities of 5,4,3, 

2) 1 and 0.085 moi / dm 3 at temperatures 280 to 375 K and pressures up to 12 Wa. In 

the second set the speed of sound was measured along the isotherms of 225 to 375 K and 

at pressures up to 1.4 NVa. 

Thermodynamic properties required for the calculation of the corrections 

appearing in equation (1) were obtained from the Lee-Kessler corresponding states 

equation of state [221 with interaction parameters from Plocker et al. [25]. The values for 

the perfect gas heat capacities of the mixture used for this calculation were obtained from 

the values we derived for the pure substances. Thermal conductivity and viscosity were 

obtained from the suitably-modified rigid sphere model of Vesovic and Wakeham [26,27]. 
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5.6.1 First set of measurements 

During the first set of the measurements an error occured in the temperature 

control of the system which caused a partial condensation of the gas. After that accident, 

the sample inside the resonator was remixed for two days through convection. However, 

some parts of the apparatus, such as the inlet tube through which the gas was introduced 

into the resonator, never recovered after the condensation, as a result of the very slow 

diffusion mechanism in these parts. This lead to an unstable composition of the mixture 

throughout the isochofic measurements. As obtained from the following analysis, the 

composition calculated from the average of the values derived at each temperature, was 

x=0.15089 ± 0. OW5 . 
This deviation can perturb the speed of sound by ± o. 04 per cent 

which is still very small. 

The speed of sound has been calculated here for the (0,2), (0,3) and (0,4) 

frequency modes. The agreement between the speeds of sound obtained from the three 

modes was always of the order 10.1 0-6 in the whole pressure range. Since the effect of 

the condensation is by far the most significant source of error in the speed of sound, the 

maximum fractional error in the speed of sound is estimated to be ± 0.04 per cent. 

The speed of sound data obtained from the average of the selected modes are 

presented in table 5.8. These results were compared with the GRI equation of state [17] 

which was developed especially for natural gas systems. This equation of state predicts 

p (T, pn ) values for methane-fich gas mixtures such as ours that agree with experimental 

results to better than ± 0.1 per cent under the conditions of the present measurements. 

The deviations of the present speed of sound data from those calculated from the GRI 

equation of state are illustrated in figure 5.4. We see that the agreement is within ± o. i 

per cent only up to densities of around 2 mol / dm 3 and that the deviations increase to 

nearly 0.50 per cent at 5 mol / dm 3. It would appear therefore that the GRI equation 

predicts sound speeds with considerably less accuracy than is achieved for the pressure. 
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We expect that significant improvements in the reliability of equations of state will follow 

from the inclusion of more extensive speed of sound data in the fitting process. 

The speed of sound data obtained were initially fitted to equation (13) in order to 

yield perfect-gas heat capacities, and second and third acoustic virial coefficients. 

However, the limiting slope analysis was proved more successful in fitting the data. The 

lin-titing slope analysis has been used before by Douslin et al. [28] for deriving the second 

and higher volumetric virial coefficients from his compressibility data. According to this 

method the coefficients of a virial series are determined based on their definition, which 

for the second acoustic virial coefficient is: 
fla = lim (U 2/A0- 1) /Pn (25) 

PW-*O 

Thus the speed of sound data were analysed in terms of the equation: 
(U 2/A0- 

1) 1 Pn =A+ Y&Pn +- (26) 

For the purpose of the regression analysis in terms of equation (26), the density 

has been calculated from the GRI equation of state [17]. The fitting coefficients obtained 

are presented in table 5.9. In order to check the sensitivity of the fit to the density values 

used, the fit was again performed having the density calculated from the less accurate Lee- 

Kessler equation of state. The deviations between the two sets of fitting coefficients 

obtained were found to be within their estimated uncertainty. 

The constants A0 determined from the fit, w ere used for deriving the 

composition using equation (14), which for the mixture is written: 
RT(xmCP9 +xpCP9) 

A0= 
PM PP (27) 

(xMCPg +xpCpg- R)(xMMM +xpMp) 
PM PP 

In the above equation the notations M and P stand for methane and propane respectively. 

The perfect-gas heat capacities cPP, 9 of the pure substances were taken from our 

experimental values. The compositions derived are given in table 5.9 resulting in an 

average value of x=0.15089 ± 0.0005 . 
This relatively large deviation (compared to the 

deviation obtained in the second set of measurements) is a consequence of the 
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condensation occured during the measurements in some part of the apparatus as 

mentioned above. 

5.6.2 Second set of measurements 

The speed of sound data in this set of measurements were obtained from the 

measurements of the resonance frequencies of the modes (0,2) to (0,5). The agreement 

between the speeds of sound determined from the different modes was always better than 

±8_ 10 -6. The data were compared with values predicted by the GRI equation of state 

[17]. At 225 K the expefimental data were found by 0.01 per cent more positive than 

those predicted by GRI [16]. At 250 K the experimental data for the speed of sound werý 

found to be systematically more negative than the calculated by 0.01 per cent. Negative 

deviations up to 0.01 per cent were generally noticed at the other temperatures, the only 

exception being a deviation of -0.02 per cent at 1.2 and 1.4 MIN at the temperatures of 

325ý 350 and 375 K. 

The speed of sound data obtained (shown in table 5.10) were fitted to equation 

(13) in order to yield perfect-gas heat capacities, and second and third acoustic virial 

coefficients. For the purpose of the regression analysis in terms of equation (13), the 

density has been calculated from the GRI equation of state [ 16]. The fitting coefficients 

obtained are presented in table 5.11. In order to check the sensitivity of the fit to the 

density values used, the fit was again performed having the density calculated from the less 

accurate Lee-Kessler equation of state. The deviations between the two sets of fitting 

coefficients obtained were found to be within their estimated uncertainty. 

The composition derived from equation (27) are given in table 5.11. As it can be 

seen the agreement between the compositions calculated at each isotherm for the second 

set of measurements is excellent (x = 0.14908 ±0- 0001 ). This fact implies that the 

mixture was kept well mixed so that no composition changes took place throughout the 

measurements. It is also a test for internal consistency, meaning that the values of the 
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perfect-gas heat capacities of the pure components employed and the constant A0) 

determined from fit the speed of sound data of the mixture, converge yielding a constant 

composition throughout the temperature range. However, the success of this internal 

consistency test does not necessarily mean that the values employed are the correct ones. 

In fact, by employing the values for the heat capacity suggested by Younglove and Ely [7] 

instead of the experimental ones, in equation (27) we obtain values for the composition at 

each temperature which are also in excellent agreement between them 

(x = 0.14887 ± 0.0001 ). The fractional error for the speeds of sound calculated for this 

mixture is therefore estimated from 
je 1: 9 [8 2+ 1()2 +3 02 + 8()2 ]1/2 . 1()-6 (28) 

where the four terms in the parenthesis account for the small disagreement between the 

modes, the uncertainty in the pressure measurements, the uncertainty in the sphere radius 

and the error in the composition (a change by -0.0001 in the composition results in a 

fractional increase in the speed of sound 80 . 10-6 ) respectively. In fact', at 225 K the 

composition calculated differs by - o. oooi from the average value which was used for the 

speed of sound calculation by GRI equation of state [17]. According to the above scheme 

that could lead to values of the speed of sound by 80 . 10-6 higher than those obtained for 

the average value. This explains the positive deviations of order 0.01 per cent of our 

experimental data at 225 K from the values calculated by GRI. On the other hand, at 250 

K the composition calculated differs by 0.0001 from the average value. This difference 

should accordingly lead to speed of sound values by about 80 .1 0-6 lower than those 

obtained by employing the average value. Indeed at 250 K the deviations of the 

experimental values from those predicted by GRI were found of the order -0.01 per cent. 

After this analysis it is made clear that the deviations observed comparing our data with 

the calculated from GRI values, are attributed to the incorrect composition specification 

when comparing with the GRI values. Thus, the estimated fractional error of the speed of 

sound data in table 5.10 is given by: 
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1.6 1! ý [8 2 +102 +3 02 ]1/2 
. 10-6 (29) 

0 
if at each temperature we employ the corresponding value derived for the composition 

(presented in table 11). According to equation (29) the maximum estimated fractional 

error is only ± 32 . 10-6 . 
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Figure 5.4. Percentage deviations of the experimental speed of sound values from values 

calculated from the GRI equation of state for the methane-propane mixture. * 280 K, a 

300 &A 325 K, V 350 &* 375 K. The gas densities were also obtained from this 

equation of state. 
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Table 5.1. Fractional deviations of the sound speeds go. = (uN - (u)) / (u) of sound 
speeds u0n determined from the (O, n) radial modes from the mean value (u) for modes 2- 
6 before correction for imperfect geometry. The values of 6ý. tabulated are the average 
of 13 determinations in argon covering the pressure range 0.1 to 0.5 Wa and the 
temperature range 275 to 375 K. 

n 2 3 4 5 6 
10 6* 

450n -45.9 -18.0 -1.6 19.4 43.2 

Table 5.2. Vibrational relaxation times -r in methane at density p=I kg -m -3 . 

TIK T/ Ats TIK -r / /A T/K T/ ps 

200 2.56± 0.045 275 1.273± 0.015 350 0.614± 0.009 

225 2.160± 0.016 300 0.997± 0.006 375 0.494± 0.006 

250 1.632± 0.024 325 0.783 ± 0.007 

Table 5.3. Upper bounds for the mole fractions XB of possible impurities in methane gas 

sample. 

B: N2 02 C02 H20 CA Other hydrocarbons 
6 10 XB <4 <4 <6 <6 <5 <7 

B) -0.1 -0.3 -0.9 0.0 -1.1 -2.3 
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Table 5.4. The speeds of sound u in methane at temperatures T and pressures p. 

plWa U/(M-Sý5 p/NTa U/(M. S-l ) p/NTa U/(M-S-l ) p/NTa U/(m. S-I) 

T=125.000 K 
0.21092 283.9857 0.15022 286.9818 0.08989 289.8259 0.03988 292.0970 
0.18037 285.5093 0.12030 288.4056 0.06002 291.1923 0.02022 292.9637 

7'--150.000 K 
0.91895 291.4732 0.70155 299.7986 0.39966 310.0220 0.09928 319.0897 
0.85288 294.1095 0.60015 303.3809 0.30039 313.1236 0.04954 320.5030 
0.79899 296.1873 0.50077 306.7409 0.19962 316.1635 

T=175.000 K 

1.39933 317.8105 0.95249 328.2269 0.49901 337.8398 0.19439 343.8687 
1.25666 321.2568 0.79890 331.5768 0.40036 339.8263 0.09861 345.7038 
1.10382 324.8183 0.65038 334.7220 0.29880 341.8367 

T=200.000 K 

1.38887 352.3081 0.95056 358.5078 0.49934 364.6808 0.20026 368.6625 
1.24945 354.3035 0.79787 360.6193 0.40082 366.0016 0.09762 370.0137 

1.10081 356.4061 0.64501 362.7099 0.29974 367.3473 

T=225.000 K 

1.38915 380.4423 0.99716 384.0758 0.59939 387.7564 0.19953 391.4444 

1.30093 381.2603 0.90091 384.9672 0.50091 388.6663 0.09937 392.3679 

1.20278 382.1699 0.79838 385.9164 0.40059 389.5907 

1.09881 383.1334 0.69882 386.8374 0.30009 390.5178 

T=250.000 K 

1.36099 404.9890 0.89916 407.8788 0.44925 410.7454 0.09866 413.0000 

1.19790 406.0023 0.74892 408.8304 0.29880 411.7130 

1.04960 406.9310 0.59800 409.7928 0.19891 412.3553 
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Table 5.4. continue 

T=275.000 K 
10.03660 419.4693 6.79170 412.9209 3.59523 418.4386 1.59567 425.5683 
9.28123 416.5507 5.99172 413.4119 2.78223 421.0833 1.20231 427.1919 
8.48529 414.4408 5.17575 414.5824 2.39056 422.4883 0.81522 428.8466 
7.55257 413.1386 4.38058 416.2865 1.99285 423.9925 0.38910 430.7198 

T=300.000 K 

9.96690 444.5084 6.80724 438.8416 3.59759 441.0621 1.60162 445.4003 
9.23575 442.3876 6.00990 438.7382 2.79741 442.5757 1.20625 446.4657 
8.38280 440.5471 5.20812 439.0979 2.40724 443.4274 0.80836 447.5973 
7.61667 439.4563 4.40630 439.8821 2.00355 444.3816 0.40237 448.8030 

T=325.000 K 

10.00958 467.1599 6.79616 461.1911 3.60018 461.1382 1.60087 463.5166 

9.19295 465.0207 5.98937 460.6722 2.80071 461.8932 1.18571 464.2038 

8.42680 463.4061 5.19704 460.5084 2.39559 462.3782 0.79938 464.8981 

7.64200 462.1393 4.39606 460.6707 1.99953 462.9154 0.39338 465.6774 

T=350 K 

9.99178 487.2842 6.78365 481.0220 3.62073 479.3302 1.57626 480.2834 

9.22309 485.3390 6.00128 480.2127 2.75485 479.5542 1.20488 480.6084 

8.38278 483.5357 5.18819 479.6527 2.37593 479.7369 0.80234 481.0094 

7.59459 482.1499 4.39378 479.3682 1.99204 479.9721 0.40123 481.4545 

T=375 K 

10.13942 506.0105 6.80446 499.0455 3.62002 496.0944 1.60248 495.9161 

9.17623 503.5756 6.00088 497.9725 2.84282 495.8799 1.22021 496.0175 

8.40282 501.8701 5.20716 497.1360 2.43474 495.8413 0.79453 496.1778 

7.24325 499.7280 4.34932 496.4693 1.97507 495.8591 0.40305 496.3696 
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Table 5.5. Perfect-gas heat capacities cpP., g. and second 8. and third y. acoustic virial 
'm 

coefficients of methane. 

T/K A /m 2. 
s-2 0 Cpjg /R 

prn 
ß. / (cm 3 /mol) (cm 6 /mol 2) 1()6., ä 

125 86348± 1 4.0041 -307.41± 0.32 -244± 1350 13 

150 103615± 1 4.0044 -215.64± 0.04 10535± 38 8 

175 120801± 1 4.0127 -156.80± 0.01 10188± 8 3 

200 137852± 1 4.0308 -116.8± 0.02 8965± 23 5 

225 154667± 1 4.0640 -87.30± 0.02 7939± 17 3 

250 171103 ±1 4.1193 -65.28± 0.03 6967± 40 4 

275 187034± 2 4.2021 -48.16± 0.05 5766± 90 5 

300 202544± 2 4.3037 -34.94± 0.07 5510± 124 5 

325 217606± 2 4.4258 -24.36± 0.06 5440± 108 5 

350 232272± 3 4.5653 -15.44± 0.07 5104± 146 5 

375 246621± 4 4.7182 -8.15± 0.12 5345± 250 5 
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Table 5.6. Speeds of sound u in propane at temperatures T and pressures p. 

p/NVa U/(M-S-ý p/NVa U/(M. S-5 p/NVa U/(M. S-l ) plWa U/(M-S-l ) 

T=225.000 K 

0.06978 217.4059 0.05011 218.7241 0.03003 220.0304 0.01011 221.2981 

0.05921 218.1212 0.04008 219.3807 0.02017 220.6613 

T=250.000 K 

0.20032 222.3661 0.10981 227.2341 0.03987 230.7526 

0.17019 224.0320 0.07920 228.7961 0.01989 231.7263 

0.14017 225.6444 0.06012 229.7524 0.01008 232.2013 

T=275.000 K 

0.45021 223.6321 0.30043 230.6135 0.14921 237.0187 0.02488 241.8957 

0.40080 226.0171 0.24872 232.8673 0.10024 238.9743 

0.35038 228.3649 0.19999 234.9281 0.05018 240.9264 

T=300.000 K 

0.79099 224.3083 0.49887 235.9146 0.19909 246.2697 0.02426 251.7741 

0.70190 228.0445 0.39752 239.5636 0.09917 249.4564 

0.60117 232.0512 0.29828 242.9846 0.04923 251.0071 

T=325.000 K 

0.83543 238.5395 0.59859 245.7250 0.29722 254.1324 0.04960 260.5389 

0.80091 239.6234 0.50015 248.5538 0.19829 256.7408 0.02363 261.1893 

0.69981 242.7236 0.39727 251.4222 0.09985 259.2707 

T=350.000 K 

0.85130 251.7667 0.59873 257.7199 0.29849 264.4079 0.04924 269.6813 

0.79928 253.0195 0.49909 259.9834 0.19949 266.5306 0.02446 270.1944 

0.69739 255.4324 0.39858 262.2217 0.09916 268.6435 

T=375.000 K 

0.83358 264.2474 0.59885 268.6638 0.29797 274.1239 0.04960 278.4757 

0.80077 264.8735 0.50008 270.4805 0.19894 275.8749 0.02510 278.8986 

0.69987 266.7808 0.39983 272.2996 0.09896 277.6208 

117 



c 

Table 5.7. Perfect-gas heat capacities c P9 and second 6. and third y. acoustic virial P, M 
coefficients of propane. 

T/K A /m 2 
s-2 0 Cpg /R 

pin 
ß. / (cm 3/ 

mol ) y� /(cm 6 /mol 2) 10 6. A 

225 49252± 1 7.2112 -1044.64± 2.41 -130760± 54500 15 

250 54140± 1 7.7295 -850.50± 0.80 55641± 7358 19 

275 58968± 0.7 8.2838 -706.25± 0.26 68928± 1130 14 

300 63760± 0.8 8.8604 -597.27± 0.16 73072± 440 17 

325 68526± 0.3 9.4538 -511.41± 0.05 70312± 130 5 

350 73277± 0.2 10.0572 -441.22± 0.04 63748± 113 3 

375 78025± 0.2 10.6590 -382.90± 0.04 57109± 120 3 
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Table 5.8. Speeds of sound u in ((i - x) CH4 +XC 3H, ) withx--0.15089. 

p/NTa u/ (m - S-ý pftvlPa u/ (m - 5-ý p/NTa u/ (m - S-ý 

T=280 K 

7.80470 337.408 5.49900 342.449 2.14965 363.859 

6.74970 338.105 3.96000 351.123 0.20070 378.833 

T=300 K 

8.92730 362.152 6.12920 362.339 2.32815 378.434 

7.62490 360.468 4.34974 368.361 0.21489 390.977 

T=325 K 

10.29350 389.500 6.89650 384.885 2.54861 395.415 

8.68895 385.552 4.82600 388.166 0.23221 405.332 

T=350 K 

11.62970 414.122 7.64565 405.499 2.76536 411.286 

9.72940 408.262 5.29408 406.451 0.24030 418.889 

T=375 K 

12.93435 436.680 8.38160 424.632 2.98023 426.253 

10.74525 429.189 5.75285 423.544 0.26625 431.720 
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Table 5.9. Isotherm parameters determined in the analysis of ((I - x) CH4 +XC3H8) with 

r--O. 15089. 

T/K A0/m2 -s -2 ß. / (cm 3 /mol) ra / (cm 6 /mol 2) 

280 144710 -96.14 10941± 68 

300 153900 0.15065 -78.57 9514± 101 

325 165180 0.15066 -62.90 9123± 15 

350 176194 0.15086 -48.61 8224± 15 

375 186946 0.15139 -35.84 7206± 54 
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Table 5.10. Speeds of sound u in (0 - x) CH 4+xC 3H 8) with x--O. 14908. 

p/NVa u /(M-S-ý p/NTa u /(M -S-ý p/NPa u /(M-S-ý p/NTa u /(M -S-ý 

T=225.000 K 

0.44812 337.7642 0.30065 340.0230 0.14954 342.3026 

0.40024 338.5015 0.24996 340.7912 0.09981 343.0414 

0.34926 339.2825 0.19976 341.5478 0.04933 343.7866 

7'-250.000 K 

1.36430 346.3807 0.80106 352.8212 0.34588 357.8798 0.04949 361.1903 

1.20087 348.2635 0.65114 354.5127 0.20059 359.5325 

1.00244 350.5338 0.50073 356.1995 0.09984 360.6411 

T=275.000 K 

1.36553 366.5639 0.80050 371.1944 0.35035 374.9012 0.04977 377.3722 

1.20123 367.9067 0.65067 372.4273 0.20017 376.1383 

1.00346 369.5266 0.50057 373.6637 0.09979 376.9639 

T=300.000 K 

1.40275 384.2685 0.80094 387.8688 0.35010 390.6278 0.04940 392.4818 

1.20009 385.4689 0.65019 388.7860 0.19981 391.5557 

0.99964 386.6682 0.49906 389.7112 0.09953 392.1753 

T=325.000 K 

1.41436 400.5680 0.80011 403.2625 0.34980 405.3113 

1.20053 401.4912 0.64998 403.9396 0.19975 406.0068 

1.00047 402.3698 0.50013 404.6212 0.09996 406.4704 

T=350.000 K 

1.39956 415.7214 0.80052 417.6322 0.35044 419.1434 0.05011 420.1765 

1.20061 416.3423 0.65026 418.1297 0.19967 419.6617 

0.99992 416.9825 0.50023 418.6336 0.10003 420.0058 

T=375.000 K 

1.36317 429.9377 0.80039 431.2160 0.34962 432.3079 0.04837 433.0637 

1.20093 430.2954 0.65054 431.5733 0.20029 432.6818 

1.00106 430.7483 0.49977 431.5733 0.09989 432.9364 
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Table 5.11. Results of the regression analysis for f(I -x)CH 4 +XC3H8) withx--0.14908. 

T/K A0/m -s ß. / (cm 3/ 
mol ) Y. / (cm 6 /mol 2) 10 6 

., A 

225 118690± 1 0.14900 -159.49± 0.17 10099± 610 8 

250 130852± 1 0.14918 -125.76± 0.05 11286± 65 9 

275 142722± 1 0.14906 -99.68± 0.06 10521± 85 9 

300 154286± 1 0.14910 -79.03 ± 0.08 9561± 125 12 

325 165600± 1 0.14909 -62.45± 0.03 8893± 52 4 

350 176699± 1 0.14909 -48.62± 0.07 8137± 131 9 

375 187655± 1 0.14904 -37.07± 0.06 7596± 122 6 
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CHAPTER6 

NUMERICAL INTEGRATION OF THE SPEED OF SOUND 

6.1 Introduction. 

A method is presented in this chapter by which the speed of sound data can be 

integrated to yield the compressibility factor. 

A substance is completely characterized from the thermodynamic point of view 

when a functional relationship exists between its pressure (p), temperature (7) and density 

(p) in addition to the knowledge of its heat capacity at zero density. The ppT properties 

(usually known as pVT, where V=i/p is the volume) are therefore of great importance 

for scientific as well as industrial purposes. Most equilibrium properties such as the 

compression factor, the internal energy, the enthalpy, the entropy, the free energy, the 

isobaric and isochoric heat capacity, etc., which find large demand in the industry are 

obtained from the ppT surface. Second and third volumetric virial coefficient may also be 

derived from ppT data by regression analysis. 

It takes great efforts to derive accurate ppT data. For the purpose of measuring 

accurate ppT data several experimental techniques have been developed, many of them 

very sophisticated. For example we can refer to the simple Amagat's methods [1], the 

several Burnett's methods [2-5], pycnometer methods [6] and the more sophisticated 

methods developed recently such as those based on the buoyancy principle [7-9] or 

refractive-index measurements [10]. 

Some properties which relate to the derivatives of the ppT properties, such as the 

speed of sound u (u 2= (4 / Op. where s is the entropy) are particularly sensitive to the 

accuracy of ppT data. In fact such properties are so sensitive to the accuracy of the latter 
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ACY 
that are used to test equations of state (usually functional relationships between the ppT 
data). 

It will be shown that the proposed method for the determination of the 
compression factor z=p/ pRT by integration of the speed of sound data is very accurate 

and moreover its accuracy is increasing when the temperature increases. 

The method is applied to pure methane and the compression factor is obtained in 

the temperature range 275 to 375 K and at pressures up to 10 Wa. This numerical 

procedure yield simultaneously values for the isobaric and isochoric heat capacity, for 

which experimental data are not available in the literature. 

6.2 Method of analysis 

The fundamental equation for the speed of sound u is 
OP)s (1) 

where p is the pressure, p is the density and s indicates entropy. After some algebra 

employing standard thermodynamic relations [11], equation (1) may be written in terms of 

the compression factor z and its partial derivatives with respect to the temperature T and 

the pressure p as follows: 
2T21 M)fZ -T)P, 2)-l 

z P(eq P,, )[z + T(Olz u =(R z1 40P)TI - (R /C /0 

with 
OCpým / 44 = -(R / p) [2 T(Olz / o! ýr) 

p+T 
2(0-2Z / O-y2 )PI (3) 

where C is the isobaric molar heat capacity and CP9 is the perfect gas (zero density) 
P'M P'M 

isobaric molar heat capacity. 

Equations (2) and (3) may be solved simultaneously to yield the compressibility factor, the 

isobaric molar heat capacity and, employing the equation 
2 'ýh1 CVin /R= Cpjn /R- [z + T(OI / 091')pl / [Z - P(a /0 (4) 

the isochoric molar heat capacity Cvm inside the region in which u (T, p) is known. 
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For this purpose two initial values are required, selected from z, (o2z / or)p , 
(0-2Z / 0-ý, 2) 

p, Cpm 1, and cvm at the starting temperature of the integration and at all 

pressures. The choice of the initial values is based entirely on the available data. From the 

above set of the data which can be used as initial values, most likely to be available in the 
literature are z and (a / o"'F)p . 

Thus, for example, let us choose the initial values, z and 

(o'l / Or) 
P, at the starting temperature, To From the initial values of z along the starting 

isotherm To , 
it is possible to calculate 09Z 44 and then, using the experimental values 

for the speed of sound, obtain from (2) the values for cp, m and from (4) those of CvIM I 
By differentiating c PM with respect to the pressure, (gZ / 4ýýr 2) 

P 
is obtained from 

equation (3). The values of z and (ol / O-T) p along the new isotherm T, = To + or can be 

readily obtained by means of a Taylor expansion about To . 

If instead of (2) and (3), equation (1) was employed for performing the integration, 

then initial values of the density would be required at the lowest temperature. This can be 

justified as follows: 

Equation (1) is rewritten 

[dp= u- 
2 dp I (5) 

In order to obtain the density from equation (5) we perform integration starting from the 

point where initial values of the density are available. In a (p, T) diagram such as that of 

figure 6.1 this point will be called (po, TO) . 
At this point the corresponding speed of sound 

and density are uo and po respectively and the isentrope passing through that point so . 
The integration proceeds by calculating the density (po + dp) at the new point 

(po + dp, To + dT) as follows: 

po + dp = po + uO 
2 [(po + dp) - po along the isentrope so (6) 

Since the integration takes place along isentropes, it is obvious that in order to obtain the 

density throughout the (p, 7) region where the speed of sound is known, initial values of 

the density po are needed along a path which crosses all isentropes passing through that 

region. if this path is chosen to be an isotherm, the only isotherm satisfying this 
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requirement is, as shown in figure 6. L, the one of the lowest temperature. However, when 
the integration is performed using equations (2) and (3) such restriction is not required 

and the initial values can essentially be chosen at any temperature. 

In a following section it will be shown that the proposed integration method is of 
increasing accuracy when the integration proceeds in the direction of increasing 

temperature. 

6.3 Error propagation 

Since the initial values discussed in the previous section are not exactly known it is 

important to examine the propagation of error in the solution obtained. This can be donp 

either numerically, applying known perturbations in the initial values or an analytical 

method, in which case approximations are essential. In this section we derive the analytical 

solution of the homogeneous equation relating the speed of sound to the compressibility 

factor and its derivatives, for the simplified case of the monatomic argon, for which the 

perfect-gas heat-capacity is temperature independent. 

If instead of pressure and temperature, as independent variables are selected the 

density and the temperature, equation (2) results in: 
2 '11 '9Pn) TI- (R / CV,,,, ) [Z+T (ii / OT),, 12 (7) U= (RT / M) (1Z + Pn(O 

where 
PR 

C=C P9 +f (6cv gpA,, ) I. dp,, 
V, m 'V, m 

0 

with 
0 'IC7Vrn Ia -(R / Pn) [2 T(a / 02r)p +T 2(0-2Z / O-T2 Pn)T )PI 

where p. is the amount of substance density. 

We define the function F (z) as follows: 

F(Z) = (RT / M) (1Z +Pn(191 14POTI - (R / Cv,. n)[z + T(63z / 0-T),, ] 2) 
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Equations (7) to (9) are coupled and can be combined into a single 'integro-differential' 

non-linear equation by substituting (9) into (8) and (8) into (7). The resulting equation has 

the particular solution zP obtained by specific initial values. If the initial values are 

perturbed by a small amount, then another solution z is obtained which can be written as 

follows: 

Z= ZP +Z, (11) 
where zP is the particular solution and z, would be the solution of the homogeneous 

version of equation (7), if equation (7) were linear. Here z, is the perturbation in the 

particular solution arising from perturbation in the initial values. 

Since zP is a solution of (7) one can write using (10) 

2 F(zp) U (12) 

Also since zp + z, is a solution of (7) as well then: 

F(zp + zj) =u2 

From the definition of the function in equation (10) we have: 

F(zp + z, ) = (RT / M) {[(zp + z) +p,, 4Z., + z, ) / dp,, 1 

- [R / C,,. (zp + z, )] [(zp + z, ) +T týzp + z, ) / af) 

where, using equations (8) and (9): 

p 

C,,. (zp+zl)=CvPý-Rf [2T4zp+z, )lo7+T 2 
0, *ý (Zp + z, ) / N]dp,, lp,, 

0 

Also from equations (8-10) we obtain 

F(zp)=(RTIM) ([zp +p,, ap Idp,, ]-[RIC,,. (zp)l [zp +Tap IR]') 

and 

, 
)=C, P, 9-Rf [2To-. ', Plo7+T 

20-ýZ / 
072]dp, 7 

/ pn C,,. (z p 
(17) 

0 
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Since from equations (12) and (13) we have 

F(zP + zj) = F(zp) 

equations (15) and (17) imply that 

(18) 

Pft 

(z, + z, ) =1/ [C�. (z, ) -Rf (2 T&, / o7 + T'olz, / o7')dp� / p� 

U 

Since in this analysis the quantity z, is treated as the error accompanying the particular 

solution zp , elimination of second- and higher-order terms in z, , results in negligible 

error. Thus eliminating second order terms equation (19) is reduced to the simplest form: 

A 

C,.,,, (z,, + z, ) = [Cv.. (zp) + Rf (2Tal / o-T+ T2 C-IZI / 072 )dp" / Pn CV2. 
m 

(Zp (20) 
0 

Equations (14), (16), (18) and (20) yield after elimination of second- and higher-order 

terms the following relation 

aý ) 2R -11 ) 
zi +P, + 

(z, 
+ T-! 

ý-) (z, 
+T dp" C,,,. (zP) 

o7 o7 

+-R2z+ Tap) 
(2Ta+ 

Vtý'z') dpn 
=0 C2. 

m 
(Z p 

07 07 072 
p)(0P, v 

For the case of the perfect monatomic gas, z=i and c P9 =3/2R so that equation (2 1 
P V'm 

and (17) give 

_A, 
)+4(ZI )+ 4f2 iýz, dp� 

= () Z] + p� +T 
(2 

+T 
iýT2 i9p" 3 o7 90 c7 

) 

Pn (22) 

which when differentiated with respect to the density, yields: 
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+2 
d'z, 4 

P" 
A, 

P" 2p,, a' 
+T 

)+4 
2 

OZI)=o 

Op" 
P" +- 

(2Ta+T 
(23) 

3 TO 9 07 072 OP, P? 
I 

Equation (23) can be readily expressed in the form 

4 15ýz' + 12 +9+4+21 0ý' 
=0 (24) &2 & 0ý 0-ý 

2& AY 

where x= tn T and y= tn pn . 
The solution of the above equation zI is given [ 12] by the 

sum of terms: 

., 
[cexp (ax +py)]i (25) ZI = 1] 

i 

where c is an arbitrary constant and a and 8 are related through the equation 

4a 2 +12 a, #+ 9P2 +4 a+ 2lj6= 0 (26) 

or 
-(l + 3p) ± 11 

- 15,8 
a=- (27) 

2 

When, 8> i/ 15 one can wfite 

exp (ox +, By) = exp [-(I + 3,8)x /2 +)9y ±i V15,8- Ix / 21 (28) 

which after substitution of x and y by their equals yields: 

c exp (ax +, 8y) = T-('+"6)"p: [c, cos(VI -5,8- 1 In T/ 2) + c, sin (11 -5,8- 1 In T/ 2)] (29) 

When 6<I/ 15 the exponential term is given by- 

8y) = c, T -(1+3fi)/2+VF--IV/2 'T -(1+3#)/2-, 11---IV/2 (30) 
c exp (ax +, Pn6 +2 Pn' 
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The number of terms in the summation of equation (25) as well as the values of the 
coefficients cl and C2 are specified by the initial conditions. For example, at the starting 
temperature To let the error in the compressibility factor be 

z, (pn 
5 
T,, ) =kp, ' , (31) 

and the error in the first derivative of the compressibility factor with respect to the density 
&I (p, TO) /07=0 (32) 

Equation (3 1), since it is valid for every density p. , restricts the number of terms in the 

summation of equation (25) to the two terms varying as pn' , as given by equation (29) or 
(30). In addition equation (3 1) provides a first relation between the coefficients c, and 

C2 *A second relation between the two coefficients is obtained by equation (32). The two 

relations suffice for the two coefficients to be calculated. Thus the quantity z, and 

through it the propagation of error in the quantities z, 6j / OT , 6ý-z / or 2, a/ Op and 

Cvým are completely defined. 

The characteristic of the solution obtained for z, is that for all positive values of 

,6 the quantity z, is ultimately decreasing when the temperature increases. In the case of a 

polyatornic gas CPý>312R which results in much faster decrease of z, when the 

temperature increases. In this way the monatomic perfect-gas case sets the upper error 

bound. This can be illustrated in figures 6.2 and 6.3. In figure 6.2 the error in the initial 

values of the compression factor is taken to be proportional to the density, while the error 

in the initial values of its derivative with respect to the temperature is taken to be zero. In 

figure 6.3 the error in the initial values of the compression factor was taken to be zero, 

while the error in the initial values of its derivative with respect to the temperature was 

taken proportional to the density. In both figures it is shown, that the same initial error for 

both substances decreases more rapidly for methane than it does for argon as the 

temperature increases. The numerical simulation for methane was based on the GRI 

equation of state [13]. For monatomic perfect gas the analytical form of the error was 

employed as derived in equation (29). 
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For 8=i, which means that the error is proportional to the density, we obtain for 

z, the solution- 

z,:, --p, T -2 [C 
, cos(-jF3-. 5 In 7)+, c 2cos(V-3.5 In 7)] (33) 

In this case there is z, =B, p,, and the above equation yields the expression of the 
homogeneous solution B, of the linear differential equation relating the second acoustic 

virial coefficient 8. to the second volumetric virial coefficient B (see chapter 2) for the 

case of a monatornic gas. 

The argument that z, =Bp,, is justified as follows: 

The particular solution zP can be written 

zp =I+ Bpp. + CP, 07. +-- (34) 

where for the present case of the perfect gas BP =CP=... =o If a perturbation z, in the 

initial value of the compressibility factor zP is applied which is proportional to the density, 

then zP is perturbed to the value z given by: 

2 
z=zp+.,,, =zp+cp, =1+(Bp+c)p, +Cpp4+--- (35) 

where 6 is the proportionality factor (independent of density). The new solution z can be 

also expanded in virial series as follows: 

I+B2 , on + CPn- + (36) 

AC 
., Ls derived in chapter 2 the differential equation which relates the second acoustic virial 

coefficients 8,, to the second volumetric virial coefficients B is 

P, =2B+2(yPg-I)T 
dB (Y pg_1)2 

pd2B 
dT YP9 dT2 

(37) 

where B=Bp+. 6 . 
The above equation is satisfied for B=Bp for the case z=zp , 

Any other 

solution of equation (37) is given by 

B =BP+B, (38) 

where B, is the homogeneous solution of (37). Thus, c= B, and accordingly 

B, p, =Ep, =zl (39) 
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As derived above for the simplified case of the monatornic perfect gas the 

numefical integration of speed of sound data is a method which for certain kinds of density 

dependence of the error, is of increasing accuracy as the temperature increases. Of course, 

it is never possible to know which exactly is the density dependence of the error in the 

initial values used. As it results from equation (30) if the error varies as P. ' where 6<07 

it could be increasing in a catastrophic manner as the temperature increases. However, this 

error dependence can be easily avoided if the initial values z and (oz / 05ýr), are 

smoothened by fitting z in a virial series of the density with the boundary condition z -+ I 

as p,, -+ 0. Then since the particular solution zP is by definition a virial series of the 

density (in which for this case of perfect gas the coefficients are zero) the error z, 

according to the above proof for B, , 
is forced to be a linear combination of the 

homogeneous solutions B, p,, , 
C, p2, etc., which all decrease as the temperature n 

increases. Here C, is the homogeneous solution of the linear part of the differential 

equation relating the third acoustic virial coefficient y. with the third volumetric virial 

coefficient C (see chapter 2). The proof of the above argument is as follows: 

if z, +, 6, p, +--- then according to equations (54) and (5 5) of chapter 2 we may 

write for the perfect gas case (z 
P= 

Il so that z=I+. 6, p,, +. 6, ý' +---, and u' = A,, ): 

0=2e +2(yPg-I)TdE' + 
(Ypg 

_ 
1)2 

-T 
2d 

261 

(40) 
1 dT y P9 dT 2 

2 

0 El + (2, v' - 1) + (y' - 1) P 
dT2 

+ 

y P9 

I 

dT 

_ 
1)2 2,62 

(41) 
(I + 2, vp') 

62+ 
(Ypg )2 

-1T de 2+ 
(Ypg 

P9 -T 
2d 

2 

IV 
P9 YP9 dT 2y dT 

In (40) . 6, is by definition the homogeneous solution B, which for the monatomic case 

has the temperature dependence predicted for 8= I. Since c, is an error term, it is 

considered to be small enough so that second order terms can be neglected in (4 1). 
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Consequently, 
'62 is equal to C, as defined above, which for the monatomic case has the 

temperature dependence predicted for 8=2. 

6.4 Application of the method to methane 

The compression factor of methane was calculated using equations (2) to (4) 

exactly as described in section 6.2. The initial values for this integration were chosen to be 

z and (a / OT)p at 275 K, which was the lowest temperature measured. From the initial 

values of z along the isotherm of To = 275 Ký (01Z / OP)T was calculated and then, using 

the experimental values of the speed of sound, CP, m was obtained from (2) and 

subsequently CVm -from 
(4). By differentiating c P, m with respect to the pressure, 

(02Z / 0-T2)p was obtained from equation (3). 

The values of z and (a / OT)p along the new isotherm T, To + 6'r were initially 

obtained by means of a Taylor expansion about To (Euler method 14]). It was found that 

there is some advantage in using the predictor-corrector algorithm in place of the simple 
Euler method. In the predictor-corrector method, one seeks to estimate (cý-z I or 2) 

P, not 

at To , but midway from To and T, before evaluating the new starting values at T, 

required for the next step. Use of this mid-point value of the second derivative reduces the 

truncation error of the Taylor expansion from O(ST') to 0(gT 4) [14]. The method is to 

"predict" z and (ol / o-T)p on the new isotherm at T, by using the simple Euler method 

described above, and to proceed through the next step until (On2Z / 0-T2) P 
has been 

obtained. One then estimates the mid-point second derivative as the mean of the values at 

To and T, and obtains "corrected" values of z and (4z / OT)p at T, . 
The method was 

found to be very efficient and in a numerical simulation, where all quantities (speed of 

sound and initial values) were calculated by the GRI equation of state for reasons of 

of 10-3T internal consistency, a step size (here Tc is the critical temperature) was small 

enough for a numerical accuracy of io -5 in z. 
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0 
In order to implement the integration with equations (2) to (4), a table of the slow 

varying ftinction (To / T) u2 (T, p) was compiled at the five temperatures and at 25 round 

values of the pressure 0.4 NTa apart. For this purpose, 3-point interpolation was used 

where the required value of the pressure were nominally coincident with an experimental 

one; otherwise the 4-point Lagrangian formula [14] was used. The numerical integration 

was performed along these isobars so that no further interpolation was required. For 

interpolation of (To / T) u2 (T, p) between isotherms 5-point Lagrangian formula was used. 

Temperature increments of 0.05 K and 0.1 K both gave identical results [ 15 ]. 

6.4.1 Initial values 

The initial values z and (olz / OT) 
p were taken from the very accurate equation of 

Pieperbeck et al. [7]. This equation was based on IPTS-68, while the speeds of sound of 

the present work were measured on ITS-90. Therefore, values of (4z / ZT68) P computed 

by the equation were adjust to the 1990 scale by use of the factor (dT90 / dT68) , where T6, 

and Tgo denote temperatures measured on the 1968 and 1990 temperature scales 

respectively. At 275 K that correction factor is 1.00024 [16]. The difference (T -T 90 60 at 

275 K is so small that z itself required no correction. 

6.4.2 Derived properties 

The results of the numerical integration of the speed of sound data, for the 

compressibility factor, the molar isobaric heat capacity and the molar isochoric heat 

capacity are presented in tables 6.1,6.2 and 6.3 respectively. 

Since the effects of changes in the speed of sound within its estimated uncertainty 

± 0.0"2 u, were negligible compared with the uncertainty in the initial values, the 

propagation of errors is attributed to the effects of the latter. The estimated largest error in 

the initial values of z calculated from Pieperbeck et al. is ± 0.00015 z [7]. The 

corresponding largest error in (o-i / O-T) P 
is taken to be 10 times that in z itself If the 
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assumption is made that the errors in the initial values increase linearly with pressure, 

reaching their estimated largest values at p= 10 Wa, then the resulting fractional errors in 

the solutions of z and cp, m 
behave along the isobars of 2,6 and 10 NVa as illustrated in 

figures 6.4 and 6.5 respectively. 

In figure 6.6, the results derived for z are compared with the values obtained from 

the ppT measurements of Pieperbeck et al. [7] and Kleinrahm et al. [8]. Those 

measurements were made in the same laboratory using two different magnetically coupled 

buoyancy balances operating at temperatures up to 323.15 K. Not surprisingly, since the 

initial conditions were based on fit to these results, the deviations are very small at 283.15 

K (the lowest isotherm shown in figure 6.4). At higher temperatures, the direct 

measurements tend to be slightly greater than those obtained by the integration, but to an 

extent less than the estimated uncertainties. 

In figure 6.7 the integration results are compared with those of Douslin et al. [61- 

Except at the highest temperature, these results tend to lie somewhat below those of the 

present work, but in no case are the deviations worse than ± 0.00015 z; very small 

compared with the estimated accuracy of ± 0.0003 z given by Douslin et al. [6]. 
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Table 6.1. Compressibility factor z(Tp) for methane 

T/K 

plWa 

275.0 287.5 300.0 312.5 325.0 

z 

337.5 350.0 362.5 375.0 

1 0.97703 0.98038 0.98322 0.98564 0.98771 0.98949 0.99104 0.99239 0.99356 
2 0.95408 0.96094 0.96670 0.97158 0.97574 0.97932 0.98240 0.98508 0.98742 
3 0.93125 0.94175 0.95051 0.95789 0.96416 0.96953 0.97415 0.97815 0.98163 

4 0.90868 0.92293 0.93475 0.94465 0.95303 0.96018 0.96631 0.97161 0.97620 

5 0.88651 0.90461 0.91951 0.93194 0.94241 0.95131 0.95893 0.96549 0.97118 

6 0.86496 0.88693 0.90491 0.91983 0.93236 0.94298 0.95204 0.95984 0.96658 

7 0.84428 0.87008 0.89108 0.90843 0.92295 0.93522 0.94569 0.95466 0.96242 

8 0.82476 0.85425 0.87815 0.89783 0.91425 0.92811 0.93990 0.95001 0.95872 

9 0.80673 0.83965 0.86625 0.88811 0.90633 0.92167 0.93472 0.94588 0.95551 

10 0.79054 0.82648 0.85553 0.87939 0.89924 0.91596 0.93016 0.94232 0.95279 
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Table 6.2. Molar heat capacity at constant pressure Cp, m(T, p) for methane 

T/K 

plWa 

275.0 287.5 300.0 312.5 325.0 
Cpým /R 

337.5 350.0 362.5 375.0 

1.0 4.343 4.375 4.415 4.463 4.517 4.577 4.641 4.710 4.783 

2.0 4.502 4.512 4.536 4.569 4.612 4.662 4.719 4.781 4.848 

3.0 4.680 4.664 4.666 4.683 4.752 4.752 4.799 4.854 4.914 

4.0 4.878 4,829 4.806 4.804 4.818 4.844 4.882 4.927 4.981 

5.0 5.097 5.007 4.954 4.930 4.927 4.940 4.966 5.002 5.049 

6.0 5.338 5.198 5.112 5.062 5.040 5.039 5.052 5.080 5.117 

7.0 5.597 5.401 5.276 5.198 5.156 5.138 5.141 5.156 5.187 

8.0 5.871 5.613 5.445 5.338 5.273 5.240 5.228 5.235 5.254 

9.0 6.151 5.829 5.618 5.479 5.392 5.340 5.316 5.311 5.324 

10.0 6.427 6.046 5.790 5.620 5.509 5.441 5.403 5.388 5.392 
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Table 6.3. Molar heat capacity at constant volume Cvm(T, p) for methane. 

TIK 

p/NTa 

275.0 287.5 300.0 312.5 325.0 

CV, 
m 

/R 
337.5 350.0 362.5 375.0 

1.0 3.225 3.269 3.321 3.378 3.440 3.507 3.577 3.651 3.729 

2.0 3.250 3.291 3.339 3.394 3.454 3.519 3.589 3.662 3.738 

3.0 3.276 3.313 3.358 3.410 3.468 3.531 3.600 3.672 3.748 

4.0 3.303 3.335 3.376 3.426 3.482 3.544 3.610 3.681 3.757 

5.0 3.330 3.358 3.395 3.442 3.496 3.556 3.621 3.691 3.765 

6.0 3.357 3.380 3.414 3.458 3.510 3.568 3.632 3.701 3.774 

7.0 3.385 3.402 3.432 3.473 3.523 3.580 3.643 3.710 3.783 

8.0 3.411 3.424 3.450 3.489 3.536 3.592 3.653 3.720 3.790 

9.0 3.435 3.445 3.468 3.503 3.549 3.602 3.663 3.728 3.799 

10.0 3.456 3.464 3.485 3.518 3.561 3.613 3.672 3.737 3.806 
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Figure 6.1. Isentropic lines calculated from van der Waals equation of state for a diatomic 

fluid with vP9 = 1.4 and plotted as function of reduced temperature TI T 
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perturbation in the initial values equal to their estimated accuracy, (0.0 15 per cent in z and 

0.15 per cent in &/ o7 ), from the unperturbed yalues. The numerical simulation is based 

on the equation of Pieperbeck et al. [7]. 
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Figure 6.5. Fractional deviations ACP / CP of the isobaric heat capacity CP obtained by 

perturbation in the initial values equal to their estimated accuracy, (0.0 15 per cent in z and 
0.15 per cent in &/ 07 ), from the unperturbed values. The numerical simulation is based 

on the equation of Pieperbeck et al. [7]. 
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CHAPTER 7 

INTERMOLECULAR FORCES FROM THE SPEED OF SOUND 

7.1 Introduction. 

In this chapter we present, for first time, a new method by means of which very 

good approximations to the true intermolecular pair-potential can be obtained. It is shown 

that the potentials of spherical substances can be derived using only accurate values of the 

second and third acoustic virial coefficients of a gas such as these reported in chapter 5. 

This method is based on fitting simultaneously the second and third acoustic virial 

coefficients to a chosen potential model such as that of Maitland-Sn-&h [1]. It is found that 

the potential which best represents both the second and third acoustic virial coefficients, 

also represents very satisfactorily the second and third volumetric virial coefficients and 

independently, the viscosity of the dilute gas. 

An essential step in the implementation of this method is the calculation of the 

third acoustic virial coefficients. These coefficients, as shown in chapter 2, are related to 

the second and third volumetric virial coefficients through ordinary differential equations, 

with temperature as the independent variable. The expressions given in chapter 2 for the 

third volumetric or acoustic virial coefficients make it clear that these quantities depend 

not only upon the pair-potential but also upon a non-additive three-body potential. The 

calculation of the third virial coefficients therefore involves two steps. First, an assumption 

must be made about the non-pairwise-additive term of the potential when three molecules 

interact. Secondly, multiple (three-fold) integration, over all possible separations between 

the three interacting molecules must be performed. 

The problem generated by the requirement for multiple integration was solved by 

using Gaussian quadrature [2], in place of the more commonly employed Simpson's rule 
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[3,4-6]. The technique adopted proved very much faster than the use of Simpson's rule 

and rendered routine evaluations of the third virial coefficients tractable. The most 
important step was the assumption about the non-additive term of the three-body 

potential. It is known for the case of argon (7] that the dominant contribution to the non- 

pairwise additive part of the three-body potential is the Axilrod-Teller triple-dipole term, 

presented in chapter 2. The conclusion about the dominance of this particular term in the 

three-body energy has relied upon measurements of third volumetric virial coefficients [7]. 

New experimental data [8] on the third acoustic virial coefficients provide a means of 

conducting a very much more severe test of the adequacy of the Axilrod-Teller triple- 

dipole term in repredicting the non-additivity of three-body potentials. It will be shown 

that the Axilrod-Teller term does indeed provide an excellent description of the third 

acoustic virial coefficients of argon when used in conjunction with the best available pair- 

potential for the same substance. The success of the Axilrod-Teller triple-dipole term for 

argon encourages the belief that the same term will be adequate for the description of non- 

additive three-body forces in other molecular systems. Adoption of this hypothesis allows 

us to develop the method by which second and third acoustic virial coefficients for a 

number of gases and gas mixtures can be used to elucidate the pair-potentials for a number 

of systems. 

In order to demonstrate the viability of the proposed technique it has been first 

applied to argon. That is, simply ftom the experimental measurements of the second and 

third acoustic virial coefficients of argon we have derived an intermolecular pair-potential 

over a limited range of separations. The potential derived is consistent with the best 

available pair-potential for argon. Subsequently, the same technique has been applied to 

pure methane, which can be quite realistically treated as a spherical molecule. 

For interactions that are not spherically symmetric it is strictly necessary to 

consider the orientation dependence of the potential as discussed in chapter 2. In this 

work,, which is mainly concerned with the development of methodology, we consider 
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instead the elucidation of effective spherical potentials for moderately anisotropic systems. 
However, the basis will be laid for future work making use of non-spherical potential 
models and, importantly, it will be demonstrated that effective potentials can be found 
from acoustic measurements, which enable the accurate calculation of several gaseous 

properties such as the second and third volumetric virial coefficients and the dilute gas 
viscosity. The latter point is significant because it permits evaluation of quantities not 

always accessible to direct measurement. 

Included in the systems studied by this technique are nitrogen-nitrogen and argon- 

nitrogen. By an appropriate adaptation of the method developed to the latter case it has 

been possible for the first time to derive interaction third volumetric virial coefficients over 

a vAde range of temperatures. 
-W 

In the following sections the development of the methodology is presented 

together with the treatment and results for each individual system. 

7.2 Method of analysis 

In this analysis the pure substances argon, methane and nitrogen and the mixture of 

argon-nitrogen were studied. 

The potential model chosen for the analysis is that of Maitland and Smith [I] 

U(r) = [6(r,, / 0' -n (r.. / r) 6 
n6 

with 

n =m +, V(r I r, - I) 

where e is the potential well depth, r. is the separation at which the potential attains its 

minimum value, -c . and m and y are two shape parameters. This potential was chosen 

for its simplicity and simultaneously for its flexibility (by having four disposable 

parameters). As the test with argon shows this potential model is capable of reproducing 

very satisfactorily the well region of the potential on which the second and third acoustic 
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virial coefficients are found to depend. The simpler Lennard-Jones (n, 6) potential model 
[9], to which the Maitland-Smith potential is reduced for y=o, was found inappropriate 

for the analysis of argon. 
The method begins by fitting the second acoustic virial coefficients 8. to several 

M-S potential models, with different values for the shape parameters y and m. The fit 

yields the values of the scaling parameters of each potential model, e and r,,, 
Next, the third acoustic virial coefficients y. are calculated for each of the M-S 

(y - m) potentials that P. were fitted to and then the calculated values are compared 

with the experimental ones. It is found for all substances studied that there is a certain set 

of (y - m) values for which both second and third acoustic virial coefficients are best 

represented. It is also found that this minimum coincides with the overall minimum of the 

standard deviations for each acoustic virial coefficient. 

The M-S (y - m) potential which corresponds to the minimum standard deviation 

was employed for the calculation of other properties, those being the second B and third C 

volumetric virial coefficients and the viscosity. 

The excellent agreement of the calculated properties with the experimental ones is 

a strong argument in support of the statement that the simultaneous fit of the second and 

third acoustic virial coefficients yields a good effective spherical potential. 

7.2.1 Fitting of the second acoustic virial coefficients 

As it is shown in chapter 2 the second acoustic virial coefficient 8. is given by- 
dB (Ypg _ 1)2 2d2B 2B + 2(, Vpg - I)T 
dT 

+r 
P9 -T dT 2 

(3) 

where T is the temperature and vP9 is the perfect gas heat capacity ratio. The second 

volumetric virial coefficient B is given in terms of a spherical intermolecular pair-potential 

as follows: 
co 

B= 27dVof P -exp(-U]2 / kT)]r 2 dr, 2 12 

0 

(4) 
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where N0 is the Avogadro constant and, U, 2 and r12 are the intermolecular PIA. jr- 

potential and the distance between molecules I and 2. 

The derivatives dB / dT and d2B/ dT 2 were calculated by differentiating equation (4) 

with respect to the temperature, in order to obtain from (3) the expression of j6. in terms 

of the potential U, 2 
CO 

fl. = 27dVof(l-[I+(P. -2Q. )(U IkT)+Qa(Ul2lkT)2 ] exp(-U, 2 / kT))r 2 dr, 2 (5) 12 12 
0 

where P. = (yP9 - i) and Q, = (yP9 - 1) 
2/2 

yP9 . The integral in equation (5) was being 

evaluated using a simple Simpson method [9]. The integration region 0 :! ý r, 2:! ý 00 was 

reduced to rrnin:! ý r12 :5r.,,,. The contribution to the integral for r12< rmin , was calculated 

analytically assuming U12(rI2) =oo and found to be 2)rNO rý" /3. For r12> r.,, the 

potential U is given approximately by the dispersion contribution, /r6 where 12(r12) -C6 12 ) 

C6 is the two-body dispersion energy coefficient. SinceC6 is not known, in the general 

case, it has been approximated by a Taylor expansion aboutC6,1 = -r 
6 U(rl): I 

C6(rI2) = C6J + (r12 - rj) 
C6,2 - C6,1 

(6) 

r2 - rl 

6 
where r, =r. x , r2=1. lrl and C6,2 = -r2 U(r2) 

. The integration lin-tits were held 

constant for all substances studied to the values rinin =0.5 a and r fflax = 15 a. Larger 

values for rmin and smaller values for rnux which were also tested yield the same results. 

The experimental values of fl. were fitted (non-linear regression analysis [9]) in 

terms of equation (5) using potentials from the Maitland-Smith [1] fan-lily with different 

values of y and m (these values were kept fixed for each fit) and values of the scaling 

parameters .6 and r. were obtained for each potential of the M-S family. 

The M-S (y - m) potential functions obtained in this manner, were employed for 

the calculation of the third acoustic virial coefficients as is described in the following. 
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7.2.2 Calculation of the third acoustic virial coefficients 
In this section, the integration method is presented which was used in the 

calculation of the third virial coefficient C and its derivatives with respect to the 
temperature, dC / dT and d 2C / dT 2, from a spherical potential function, in order to 

obtain the third acoustic virial coefficient y. 

As already discussed in chapter 2, the expression which yields the third volumetric 

virial coefficient in terms of a spherical intermolecular pair-potential is: 

C add + Ac (7) 

with 
cadd _ _8; 

r 
2NO2 

fff exp (-U12 / kT)][I - exp(-U, 
3 / kT)] 

3 
x [I - exp(-U23 / kT)] r, 2 r, 3r23dr, 2drl3dr23 

and 

AC fffexp[-(U12 + UB + U23)/ kT] 
3 

x [exp(-AU/kT)-11 r, 2r, 3r23dr, 
AA23 

where uij and rij are the pair potential and the separation between molecules i and 

respectively and Au is the non additive term of the potential discussed previously in 

chapter 2. The formula for AU employed for these calculations is presented in the next 

section. 

The third volumetric virial coefficient C was differentiated analytically with respect 

to the temperature, to yield dC / dT and d 2C / dT 2, which were required for the 

calculation of the third acoustic virial coefficient y. from the following expression (see 

chapter 2): 

B+(2, vPg-I)T 
dB 

+ (, vPg - 1) T' 
d2B 

y P9 

I 

dT dT2 

(1+2y') C+ 
(Y, ), 

-IT dC 
+y 

pg 
_ 

1)2. 

T 2d 
2C 

r P9 YP9 dT 2v P9 dT2 

(10) 
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The region of integration in equations (8) and (9) includes all the values of the rij which 

form a triangle, and thus the three-fold integral appearing in (8) and (9) is equivalent to: 
CO CID r12+rI3 
fff 

00 jr12-rI31 

By holding r23 ý! r13 ý! r12 we can reduce the integration region to one sixth. The new 

integration limits may be understood by inspection of figure 7.1 [3], where the variables of 
the integration rij have been changed to: 

r, = r23 

r13 / r23 

r12 / r23 

with x ý: - y<i. 

(12) 

Employing this new set variables the integral in equations (8) and (9) can be thus written 

as 
Go co 

rl2+rl3 00 1y 

fff 
=6f 

ff 

00 jr, 2 -rl3l 
0 0.5 1-Y 

(13) 

For the numerical implementation of the integration, we kept rcore :! ý rI:!! ý r .,, and 

calculated analytically the contribution of the core (i. e. for r, < rc .) 
by taking 

.. re 
U23(rj) == U13(yrl) = U12(xrl) = 00 . 

Thus the integral in the fight part of equation (13) 

was substituted by: 
co IYr.. I 

6f ff 
=6 

ff 

0 0.5 I-y r,,,, 0.5 

y 
f +(core contribution) 
1-Y 

(14) 

ForCadd this contfibution was found: 

8 7? N' rcolT y8N2 (r 65 

00 core Ccore=6- fffr, 
2r, 3r23dr, 2dr, 3dr23= 6 

300.5 1 -Y 
36 48 

(15) 

while for Ac and for the derivatives Of C, dd or AC with respect to the temperature the 

I core contribution' was found to be zero. 

The three-fold integration involved in the calculation of C and its derivatives with 

respect to the temperature, was performed using Gaussian quadrature [2]. In the 
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integration, rcore and rmax were chosen from 0.5CT<rcOM<o. qu and 3u<rmax<5U, 

depending each time on the substance under study. The adequacy of the particular values 

chosen was checked by repeating the integration employing a smaller value for rc., e and a 

larger value for rmax 11 and independently, more Gaussian quadrature points. The 

convergence of the integration, was checked by performing the integration in the same 

integration limit but with a larger (or smaller) number of quadrature points. For example 

for methane rcore was chosen 0.3 nm o. 80 and rmax 1.4 run (- 40. For this 

integration range a grid of 100- 10- 10 points quadrature yield the same result with a grid of 

less points, 80-10-10, or more points, 120-20-20, a fact which verified the convergence. 

For the same number of quadrature points integration in the range 0.25 nm to 1.65 nm 

yield exactly the same result, a fact which verified the adequacy of the integration range. 

For all substances a quadrature of 100-10-10 points was found more than adequate. The 

integration time for the calculation of the additive and non-additive part of C, dC / dT 

and d2C/ dT 2, for 100- 10- 10 points was less than 10 seconds per isotherm. The same 

integration using Simpson's rule required about 30 minutes per isotherm to achieve the 

same accuracy. 

As mentioned before, the values of C, dC / dT and d2C IdT 2 were used to 

obtain y. from equation (10). These values of y. were compared with the experimental 

ones, and that M-S (, v - m) potential was chosen which simultaneously represents best 

the experimental 8. and y. data. 

7.2.3 Approximations to Au 

In the present calculations the non-additive part of the potential of three interacting 

molecules AU , was approximated by the Axilrod-teller triple-dipole term. This term, 

previously discussed in chapter 2, constitutes the leading correction term to thedispersion 
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energy ansing from the three atom interaction. In the present case this term was applied to 

three molecule spherically symmetric interaction: 
AU = V, 23(r, 2r, 3r23)- 

3 (1 +3 cos 01 cos 02 cos 03) 

using for v, 23 the Midzuno-Kihara formula[ 10], 

V123 = aC6 (17) 
4 

where rij is the distance between molecules i andj, Oi are the interior angles of the three 

body triangle, a is the zero frequency polarizability of the molecule assumed to be 

spherically symmetric, andC6 is the two-body dispersion energy coefficient. For the case 

of non-alike interactions v, 23 was approximated by [I I]: 
VI 23 : -- 2 SIS2S3 - 

SI+S2+S3 
(18) 

(SI + S2)(SI + S3)(S2 + S3) 
Jý 

withSI ---ý C6,1, a2a3 / a, and similar expressions for S2 and S3 
, where ai and C6, jj are 

the zero frequency polarizability and the two-body dispersion energy coefficient of 

substance i respectively. This formula has been tested for the case of neon-helium 

interactions and was found very accurate [12]. However, for the case of polyatonfic 

molecules (our case), it remains an approximation. 

The two-body dispersion energy coefficient C6 appearing in equations (17) and 

(18) is not generally known. In the present calculations this coefficient was approximated 
-6 by the ratio -U., ij (rij) / rij , where U.., is the part of the potential model which 

represents molecular attraction. The same approximation has been used by Sherwood and 

Prausnitz [8], in their calculation of third volumetric virial coefficients. In the 

following chapter the above approximations are tested with argon. 

7.2.4 Test of the Axilrod-Teller term using third acoustic virial coefficients 

Third acoustic virial coefficients determined from extremely accurate speed of 

sound measurements provide the means of more severe test of the adequacy of the 
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Axilrod-Teller term in describing the three-body interactions, provided they are used in 

con . unction with an equivalently accurate pair-potential. j 

This test is performed here for argon using the very accurate third acoustic virial 

coefficient data [8] and the best available intermolecular pair-potential [13]. The zero 
frequency polarizability a was taken from [7]. 

The calculated values for this potential employing the Axilrod-Teller triple-dipole 

term to represent the non-additive part of the three body potential are shown in table 7.1. 
Figure 7.2 illustrates how successfully the experimental values of y. were represented. In 

figure 7.3 the third volumetric virial coefficients are presented together with experimental 

values taken from Dymond and Smith [14]. In both cases the agreement is well within 

experiment accuracy. 

The dashed lines in figures 7.2 and 7.3 are the values for y. and C respectively, 

calculated using the approximation for the two-body dispersion energy coefficient, C6 - 't 

can be seen that the agreement at the higher temperatures is well within experimental 

accuracy, while at lower temperatures it tends to deviate from the experimental values. 

The reason for this is that at the very low temperatures the contribution of the non- 

pairwise additive term of the potential to the third volumetric virial, coefficient and 

accordingly to the third acoustic virial coefficient becomes enormous. Thus, small errors in 

the calculation of this term arising from the approximation to C6 result in a significant 

error in C and hence y. . 
For example, at 90.06 K the non-additive contribution to C, 

Ac= C- Cadd 
1, 

is 4000 cm 
6/ 

mol 2 when C is -6000 cm 6/ mol 2, while at 189.98 K it is 

400 cm 
6/ 

Mol 
2PC being 1700 cm 

6/ 
Mol 

2. We see that even at the higher temperatures 

the contribution of the non-additive contribution is very significant, a fact which leads to 

the conclusion that the non-additive term of the potential cannot be ignored. Because of 

the error occuring from the approximation of c6 at the very low temperatures, in the 

application of the proposed method of analysis, the experimental values of y. at the 
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lowest temperatures are given a larger uncertainty which results in a smaller weight in Yfle 

fitting procedure. 

7.3 Application of the method to pure substances 

7.3.1 Argon 

In this section the proposed method of analysis is applied to argon in order to 

obtain the (y - m) M-S potential which best represents its second and third acoustic virial 

coefficients. The second and third acoustic virial coefficients used for the potential analysis 

were taken from the data of Ewing and Trusler [8]. 

Based on the proposed method, the experimental 8. values were fitted in terms of 
M-S (y - m) potentials, to yield the scaling parameters .6 and rm for each potential. 

Subsequently, the third acoustic virial coefficients were calculated for each of these M-S 

(y - m) potentials. The standard deviations of fl. and y. values calculated for m-s 

potentials Akrith different values of m and y are illustrated in figures 7.4 and 7.5 

respectively. It can be easily seen that both standard deviations of 8. and y. have a 

minimum for the M-S potential with m= 14.5 and y=5. At this minimum the standard 

deviation of 8. is only 0.20 cm 3/ moi and that of y. , 
500 cm 6/ mol 2 which for both 

cases is very close to the average reported uncertainty of the coefficients, 0.10 and 3 00 

respectively [8]. Because of the error arising from the C6 approximation at the very low 

temperatures, when fittingya the experimental values at the two lower temperatures were 

given an uncertainty of 3000 and 1500 cm 
6/ 

M01 
2. for the values of -15800 and -5400 

cm 6/ mol 2 respectively, which resulted in a significant reduction of their weight, 

weight =I/ (uncertainty )2, in the fitting. 

Next, the chosen potential, M-S (5-14.5) was employed for the calculation of the 

second and third volumetric virial coefficients and, independently, the viscosity of the 
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dilute gas, Y7. The scaling parameters of the potential M-S (5-14.5) were found 

rm = 0.3683 nm and 6/k= 145.37 K. 

Figure 7.6 illustrates the deviations of the calculated values of B from those 

proposed by Dymond and Smith [14]. At the low temperatures the calculated values are 

found to be a little more positive than the reported experimental ones by an amount of 

about twice the uncertainty of the latter. At the temperatures 150 to 1000 K the 

agreement was excellent. CI 
In figure 7.7 the calculated values of the third volumetric virial coefficients are 

presented together with experimental points over a wide range of temperatures. In the 

temperature range '140 to 400 K the agreement of the calculated with the experimental 

values was well within the estimated uncertainty of the latter. The calculated B and C are 

shown in tables 7.2 and 7.3 respectively. 

Finally, the percentage deviation of the viscosity calculated from M-S (5-14.5) 

from accurate experimental values js plotted in figure 7.8. Throughout the temperature 

range 120 to 1600 K the viscosity was represented within an error of less than ±I per 

cent, except at the very low temperatures where the error reached up to 2.3 per cent. In 

the temperature range 400 to 1600 K the error in the viscosity calculation was always less 

than ± 0.: 5 per cent. Since, as discussed in chapter 2, the viscosity and the second 

volumetfic virial coefficients depend on different parts of the potential for the same 

temperature range, the so good representation of the viscosity obtained by the potential 

chosen is a strong indication that our potential is close to the true one. 

7.3.2 Methane 

In the following, the method was applied to methane. In the analysis of methane 

the experimental acoustic virial coefficients were taken from the values reported in chapter 

5. Accordingly, the experimental #,, values were fitted in terms of M-S (y - m) 

potentials, to yield the scaling parameters .6 and rn, for each potential. Subsequently, the 
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third acoustic virial coefficients were calculated for each potential. The standard 

deviations of the second and third acoustic virial coefficients calculated for these potentials 

from the corresponding experimental values are plotted in figures 7.9 and 7.10. The 

standard deviations of 6. and r. are both minimized for m= 19 and r=o. The 

minimum corresponds to a standard deviation of 8. of only 0.11 cm 3/ mol and a 

6 standard deviation of r. of just 150 CM I mol 2. Both standard deviations are very small 

compared with the reported uncertainty of the acoustic virial coefficients. For this 

potential which has scaling parameters r,,, = 0.3953 and 6/k= 204.50 K, we calculated 

the second and third volumetric virial coefficients and the viscosity. 

Figure 7.11 illustrates the deviation of the calculated values of B from the values 

proposed in [14]. The agreement is excellent throughout the temperature range. In fact at 

all temperatures the deviations of the calculated B from the experimental ones were less 

than half the uncertainty of the latter. 

In figure 7.12 the values of the third volumetric virial coefficients calculated are 

presented together with experimental data. The agreement is very satisfactory at all 

temperatures. Especially at temperatures higher than 273.15 the agreement with Douslin's 

data [Z3] is excellent. In tables 7.4 and 7.5 we present the values of B and C calculated 

from the potential M-S (0-19). 

In figure 7.13 the percentage deviation of the calculated viscosity is plotted against 

the temperature. The error was found to vary from -I per cent at 120 K to -2.5 per cent at 

500 K. The potential obtained from the fit to second and third acoustic virial coefficients is 

very close to the potential M-S (0-20) which was found to represent the potential obtained 

by inversion of viscosity data, with e/k= 217 K and rm = 0.3879 nm [9,16], the error 

in the viscosity being ± om per cent. This simply means that by an appropriate 

adjustment of the potential parameters one can obtain a potential which lies very close to 

that already obtained, which fits simultaneously very well all the properties mentioned 

above. 
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7.3.3 Nitrogen 

In the following the proposed method is applied to the moderately anisotropic 

nitrogen-nitrogen system. A successful implementation of the method for this system 

would mean that a similar analysis which takes into account the orientation dependence is 

very likely to provide very close approximations to the true potential. 

The second and third acoustic virial coefficients employed for the analysis of 

nitrogen were taken from [8]. Based on the proposed method the second acoustic virial 

coefficients 8. were fitted to M-S potentials with different values for y and m. 

Subsequently, the third acoustic virial coefficients were calculated for these potentials. 
Figures 7.14 and 7.15 show the standard deviations of the calculated values of 8. and 7. 

from the experimental values [8] for the different M-S (; v -m) potentials. A common 

minimum in the standard deviations is obtained for m= ig and v= io . 
This corresponds 

to a standard deviation forfl, of 0.30 cm 3/ mol and a standard deviation for v, of 600 

CM 6/ M01 2 which are about twice the estimated uncertainty of the latter, still very small. 

The M-S (10-19) potential, with parameters rm =0.3862 andc = 136 . 59 1 was employed 

for the calculation of the second and third acoustic virial coefficients and the viscosity. 

In figure 7.16 the deviations of the calculated second volumetric virial coefficients 

from the experimental values quoted in [14] are plotted against the temperature. The 

agreement of the calculated with the experimental values of B was found excellent 

throughout the temperature range 75 to 400 K, the deviations being always less than half 

of the uncertainties of the quoted experimental values. 

In figure 7.17 the calculated third virial coefficients are illustrated together with 

reliable experimental results. The M-S (10-19) potential was found to represent the 

experimental data within their uncertainty. The calculated values for B and C are listed in 

tables 7.6 and 7.7 respectively. 
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The percentage deviation of the calculated viscosity is plotted in figure 7.18 over 

the temperature range 100 to 1500 K. In the temperature range 300 to 1500 K the error 

was found less than -2.5 per cent while at temperatures below 300 K the error was less 

than -3.5 per cent. 

In general the non-spherically symmetric nitrogen is well represented by the very 

simple potential model M-S (10-19), which was solely obtained based on second and third 

acoustic virial coefficient data. The values calculated for B with the non-spherical potential 

of van der Avoird based on 'ab initio' calculations [17] are found systematically more 

negative from those proposed by Dymond and Smith [14], while our values are found to 

be almost in exact agreement. This proposed method sets the groundwork for potential 
. 1ý 

calculations based on simple models which also take into account the orientation 

dependence. After the success of the method at least in predicting accurately second and 

third volumetfic virial coefficients, we applied it to the also moderately anisotropic argon- 

nitrogen system. 

7.4 Application of the method to mixtures 

The acoustic virial coefficients for a mixture are given as the acoustic virial 

coefficients of a pure substance, by equation (3), where the perfect gas heat capacity ratio, 

rP9 , 
is that for the mixture, ymPg [18]. As discussed in chapter 2, the second volumetric 

virial coefficients of a mixture are given by: 
22 Bm = x, B I, +2xIX2B12 +X2B22 (19) 

where Bij are the second volumetric virial coefficients for the pure substances, and Bij 

are the second interaction volumetric virial coefficients. An analogous expression we may 

write for the acoustic second virial coefficient of the mixture: 
202 

)6m = x1fil I 
+2XIX2)612 +x ý8; 

2 
(20) 
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where according to (3) the coefficients 6i*i (the superscript * indicates that these are not 

the acoustic virial coefficients of the pure components) are obtained by: 
(, Vpg - 02 2 BM 

=2B +2(, vP9-1)Tý-i -2d 
BI, 

M dT P9 
T 

dT 2 (21) 
M 

andfl, 2 by: 

+(ypg-1 

22 

=2B +2(, Vpg-I)TdB'2 m )- 
T2d 

B12 
(22) P12 

12 m dT Y P9 dT 2 
m 

The interaction second virial coefficients B, 2 are obtained from equation (4), in which the 

potential between molecules I and 2, U12 , stands this time for non-alike molecules. The 

coefficients 8i*, can be calculated from the second volumetric virial coefficients of the 

pure components, Bij , and their derivatives with respect to the temperature, using the 

potentials derived for the pure components, as shown previously. Thus, from equation 

(20), we may obtain the coefficients 612 
. Substituting into (22) the expression of B12 in 

terms of the potential U, 2 . we get the expression of)612 in terms of the potentialU, 2 - In 

the following, using the Maitland-Smith potential model we fit theA2 values, to obtain 

the fitting parametersof U, 2 . TheU12 potentials obtained from the fit are employed next 

for the calculation of the third acoustic vinal coefficients of the mixture. 

The third acoustic virial coefficients of a mixture are given from the same relation 

as those of the pure substances, equation (10), where all properties referring to the pure 

substances are substituted with those for the mixture. As discussed in chapter 2, the third 

volumetric virial coefficient of a mixture is given by: 
3223 CM x, C, 11+3xlx2CI12+3xlx2CI22+x2C222 

(23) 

where the coefficients Ciii are the third volumetric virial coefficients of the pure 

substances, while C, 2 and C, 22 are the third interaction volumetric virial coefficients. 

The third interaction volumetric virial coefficients may be obtained from equation (7), 

using in equations (8) and (9), the appropriate interaction potentials. For example, for 

evaluating the coefficient C112 for A-A-B interactions we correspond the set 

(U121, UI31 u23) in (8) and (9), to WAA, UAAýUAB) where UAA is the intermolecular 
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potentia between two molecules of the substance A and UAB is the intermolecular 

potential between a molecule of the substance A and a molecule of the substance B. Since 
the intermolecular potential of the pure substances can be derived as shown previously, 
and the potential uAja can be obtained from fit of theA2 values, we may proceed to the 

calculation of the acoustic third virial coefficients for the mixture of interest. 

7.4.1 Argon-nitrogen 

In the analysis of the argon-nitrogen interactions we employed the values for the 

second and third acoustic virial coefficients reported in [18] for a (0.50 argon-0.50 

nitrogen) mixture. According to the method outlined above, we calculated the coefficients 

)612 from the second acoustic virial coefficients of the mixture 6m and the values of '8 
*ij 

for argon and nitrogen using equation (20). The values 8*,, for argon and nitroge .n were 

calculated from the potentials obtained for the pure substances, M-S (5 - 14.5) and M-S 

(10-19) respectively. The values of A2 obtained were fitted to Maitland-Smith potentials 

with different values of y and m. Subsequently, the third interaction volumetric virial 

coefficients were calculated using for the alike interactions the potentials derived for the 

pure substances and for the non-alike interactions the M-S (y -m) potentials derived 

from the fit of 8,2 
. From the third interaction volumetric virial coefficients and the third 

volumetric virial coefficients of the pure substances we calculated the third volumetric 

virial coefficients of the mixture and hence using equation (10) the third acoustic virial 

coefficients of the mixture. 

Figures 7.19 and 7.20 illustrate the standard deviationsof A2 and ym calculated 

from the interaction potentials for different values of y and m, from the experimental 

ones. It can be readily seen that for the M-S potential with m= 16 and y= io the 

standard deviation for both acoustic virial coefficients attains its minimum value. At this 

minimum the standard deviation of)6,2 is 0.35 cm 3/ mol , while the standard deviation of 

ym is 580 cm 
6/ 

Mol 
2. These standard deviations are very satisfactory compared with 
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the uncertaintiesof A2 and ym , about 0.30 CM 3/ 
moi and 400 Cm 

61 
MO, 

2 
respectively. 

As for the treatment of argon, for the purposes of the fit, the experimental ym value at 

the lowest temperature (90.06 K) was given an uncertainty double that quoted in [18]. 
Subsequently, the potential M-S (10-16) with scaling parameters rm=0.3785 and 

,6/k= 140 . 26 K was used for the calculation of the second and third interaction 

volumetric virial coefficients. 

In figure 7.21 the calculated second interaction virial Coefficients B, 2 are 

presented together with available experimental data. Our potential was found to represent 

the experimental values reported well within their estimated uncertainties, about 

±4 cm 3/ moi . By analogy with the deviations in B values obtained for the pure 

substances, we can claim for temperatures higher than 120 K, an uncertainty of 

±I Cm 3/ mol in B12 The calculated values of B1. are listed in table 7.8. 

The third interaction volumetric virial coefficients calculated are presented in table 

7.9. It is the first time that third interaction volumetric virial coefficients have been 

reported over a wide range of temperatures. These coefficients are believed to be as 

accurate as the third volumetric virial coefficients of the pure substances, at least at 

temperatures higher than 120 K where the non-additive contribution to the third 

interaction virial coefficients becomes less important. 

The potential obtained for the argon-nitrogen interactions has the scaling 

parameter r,,, almost equal to the arithmetic mean (0.3772 nm) and the scaling parameter 

e/k almost equal to the geometric mean (140.9 K) of the corresponding parameters of 

the pure substances. 
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Table 7.1. Third acoustic virial coefficients y. for argon calculated from HFDID I 

potential for argon [13], together with experimental values taken from [8]. 

calc exp y'y 'ei 
cm 

6 /mol 2 
cm 

6/ 
mo, 

2 

90.06 -15716 -15800 
99.58 -5539 -5400 
118.88 1131 1800 
149.88 2931 3100 
189.98 2966 3300 
240.28 2748 2600 
300.61 2564 3000 

373.15 2431 3000 

168 



Table 7.2. Second volumetric virial coefficients B of argon calculated from potential M-S 
(5-14.5). 

cm 
3 /mol 

70 -358.45 
75 -318.19 
81 -268.73 
85 -245.10 
90 -220.08 
95 -199.01 
100 -181.03 
110 -152.03 
125 -120.32 
150 -85.64 
200 -48.78 
250 -27.67 
300 -15.29 
400 -0.98 
500 6.92 

600 11.85 

700 15.17 

800 17.53 

900 19.26 

1000 20.58 
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Table 7.3. Third volumetric virial coefficients C of argon calculated ftom potential M-S 
(5-14.5). 

cm 
6 

mol 
2 

81 -13890 
90 -4257 
100 -3 
110 1640 
125 2350 
150 2254 
200 1634 
250 1268 
300 1071 
400 913 
500 821 
600 780 
700 747 
800 755 
900 722 

1000 709 
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Table 7.4. Second volumetric virial coefficients B of methane calculated from potential M- 
S(O-19). 

K 

B 

cm 
3/ mo, 

110 -325.16 
120 -274.79 
130 -236.01 
140 -205.28 
150 -180.38 
160 -159.79 
180 -127.80 
200 -104.11 
225 -82.61 
250 -65.35 
275 -52.38 
300 -42.00 
350 -26.45 
400 -15.39 
500 -0.77 
600 8.39 
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Table 7.5. Third volumetric virial coefficients C of methane calculated from potential M-S 
(0-19). 

K cm 
6 /mol 2 

110 
-16177 

120 -5106 
130 42 

140 2465 

150 3566 

160 4007 

180 4047 

200 3721 

225 3254 

250 2853 

275 2536 

300 2293 

350 1959 

400 1757 

500 1547 

]600 1453 
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Table 7.6. Second volumetric virial coefficients B of nitrogen calculated from potential M- 
S(10-19). 

cm 
3 /mol 

75 -277.12 
80 -244.21 
90 -194.62 
100 -159.16 
110 -132.59 
125 -103.34 
150 -71.05 
200 -35.43 
250 -16.36 
300 -4.57 
400 9.09 
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Table 7.7. Third volumetric virial coefficients C of nitrogen calculated from potential M-S 
(10-19). 

T C 
cm 

6 /mol 2 

80.05 -4970 
90.06 683 

99.99 2506 

119.81 3034 

149.85 2479 

189.99 1867 

240.28 1484 

300.62 1283 

373.16 1184 
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Table 7.8. Second interaction volumetric virial coefficients B, 2 for argon-nitrogen 
interactions calculated from potential M-S (10 - 16). 

B12 

K cm 
3 /mol 

75 -294.62 
80 -259.73 
90 -207.43 
100 -170.21 
110 -142.45 
125 -112.01 
150 -78.57 
200 41.91 
250 -22.39 
300 -10.35 
400 3.54 

Table 7.9. Third interaction volumetric virial coefficients C, 2 andC122 for argon-argon- 

nitrogen and for argon-nitrogen-nitrogen interactions respectively, calculated from 

potential M-S (10 - 16). 

Cl 
12 

C122 

cm 
6 /mol 2 

cm 
6 /mol 2 

90.06 -2452 -746 
100.00 547 2260 

119.83 2013 3512 

149.90 1869 3070 

189.99 1400 2362 

240.31 1064 1859 

300.62 880 1562 

373.15 786 1389 
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Figure 7.2. Third acoustic virial. coefficients y. for argon calculated from HYDIDI 
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Figure 7.4. Standard deviations of the calculated 8,, for argon from M-S potentials with 

different values of v and m from the experimental values [8]. 
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Figure 7.5. Standard deviations of the calculated y,, for argon from M-S potentials With 

different values of y and m from the experimental values [8]. 
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Figure 7.6. Deviations of the calculated values of B for argon from M-S (5-14-5) from the 

values proposed in [14]. 
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Figure 7.7. Third volumetric virial coefficients C for argon calculated from M-S (5-14.5) 
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Figure 7.8. Percentage deviations of the viscosity q of argon calculated from M-S (5- 

14.5) from values quoted in [3]. 
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Figure 7.9. Standard deviations of the calculated 8. for methane from M-S potentials 

with different values of y and m from the experimental values obtained in this work. 
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Figure 7.10. Standard deviations of the calculated y,, for methane from M-S potentials 

with different values of y and m from the experimental values obtained in this work. 
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Figure 7.11. Deviations of the calculated values of B for methane from M-S (0-19) from 

the values proposed in [14]. 
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Figure 7.12. Third volumetric virial coefficients C for methane calculated from M-S (o- 19) 
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Figure 7.14. Standard deviations of the calculated 8,,, for nitrogen from M-S potentials 

with different values of v and m from the experimental values [8]. 
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Figure 7.15. Standard deviations of the calculated y,, for nitrogen from M-S potentials 

with different values of y and m from the experimental values 
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Figure 7.16. Deviations of the calculated values of B for nitrogen from M-S (10-19) from 

the values proposed in [ 14]. 
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Figure 7.17. Third volumetric virial coefficients C for nitrogen calculated from M-S (10- 

19) together with experimental values; Ao [25]., A [28]. 
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Figure 7.18. Percentage deviations of the viscosity 77 of nitrogen calculated from M-S 

(10- 19) from values quoted in f-9]. 
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Figure 7.19. Standard deviations of the calculatedA2 for the argon-nitrogen system from 

M-S potentials with different values of v and m from the experimental values [18]. 
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Figure 7.20. Standard deviations of the calculated y,,, for the argon-nitrogen mixture from 
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CHAPTER 8 

CONCLUSIONS 

Speed of sound measurements have been performed on gaseous methane, propane 

and a mixture of 85 per cent methane and 15 per cent propane. The estimated accuracy of 

the data obtained is 20 to 200 parts per million, depending on the purity of the samples 

used. The extremely high accuracy of the present speed of sound data allows them to be 

employed for improving existing state-of-the-art equations of state. 

A method has been developed by which speed of sound data are integrated to yield 

the compression factor. The propagation of error of this method has been studied 

numerically as well as analytically for the simplified model of a perfect monatornic gas. It 

has been found that the method is of increasing accuracy, when the integration proceeds 

from lower to higher temperatures. Subsequently, the method has been successfully 

applied to the high accurate (20 parts per million) speed of sound data of methane. This 

also opens the possibility for the implementation of the method to other substances. 

The speed of sound data were fitted into a virial series in the density yielding 

second and third acoustic virial coefficients and the perfect-gas heat capacity. The perfect 

gas heat capacities obtained have an accuracy which is comparable with that of data 

obtained from spectroscopic measurements. Second and third acoustic virial coefficients 

of these substances are reported for first time. 

Based on the functional relationship of the second and third acoustic virial 

coefficients to the intermolecular pair-potential, a new methodology has been developed 

which allows approximate potential determinations. According to this methodology 

second and third acoustic virial coefficients were fitted simultaneously to a simple but 

flexible spherical potential model. The non-pairwise additive part of the three-body 
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potential was approximated by the Axi rod-Teller triple-dipole term, the adequacy 
() 

of 

which has been tested for argon. The intermolecular pair potentials obtained for the 

spherical substances of argon and methane were found to be very good approximations of 

the true potential, as the calculations of the second and third volumetric virial coefficients 

and, independently, of the viscosity confirmed. 

In order to check the possibility of a successful adaptation of the method to non- 

spherical substances, it has been applied to the moderately anisotropic nitrogen. In this 

case, the calculation of the second and third virial coefficients was proven equally 

successful with that for spherical substances. This fact is a strong indication that a similar 

methodology which in addition takes into account the orientation dependence of the 

substances may be established to provide good approximations to the true potential for 

non-spherical substances. 

Application of the method to an argon-nitrogen system yields second and third 

interaction volumetric virial coefficients. The accuracy of the second interaction 

volumetric vifial coefficients obtained is estimated to be better than the accuracy of values 

previously reported. Third interaction volumetric virial coefficients are reported for first 

time over a wide range of temperatures. Such derivations, without the need of explicit 

experimental measurements, are extremely important for the development of equations of 

state for gaseous mixtures. 
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