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A B S T R A C T

One of the most important pathways for exposure to metals is drinking water ingestion. Chronic or acute ex-
posure to metals can endanger the health of the exposed population, and hence, estimation of human health risks
is crucial. In the current study for the first time, the concentrations of Mercury (Hg), Arsenic (As), Zinc (Zn), Lead
(Pb) and Cobalt (Co) in 120 collected tap water samples (2015, July–November) from Ilam city, Iran were
investigated using flame atomic absorption spectrophotometer. Also, the metal-induced carcinogenic and non-
carcinogenic risks for consumers exposed to tap drinking water were calculated. The average (range) con-
centrations of Hg, Zn, As, Pb and Co were defined as 0.40 ± 0.10 μg/L (ND-0.9 μg/L), 5014 ± 5707 μg/L
(2900.00–5668.33 μg/L), 21.008 ± 2.876 μg/L (3.5–62 μg/L), 30.38 ± 5.56 μg/L (6–87 μg/L), and
11.34 ± 1.61 μg/L (0.1–50 μg/L), respectively. Average concentrations of all examined metals were sig-
nificantly higher than WHO and national standard recommended limits. The ranking order of metals con-
centrations in the tap drinking water was Zn > Pb > As > Co > Hg. Except for Hg and Co, at least one age
group consumers were at considerable non-carcinogenic risks induced by Zn, As and Pb [Target Hazard Quotient
(THQ > 1)]. The rank order of age groups consumers based on THQ and Incremental lifetime cancer risk (ILCR)
was< 1 years> 1–9 years > 20 + years > 10–19 years. The calculated ILCR for As in all age groups were
higher than 10−3 value. All age groups of consumers in Ilam city, especially infants (< 1 years) and children
(1–10 years), are at considerable non-carcinogenic and carcinogenesis risk.

1. Introduction

Economic development, unprecedented industrial revolution, and
rapid population growth have raised serious concerns regarding con-
tamination of aquatic environments by various types of contaminants.

In this context, some investigations were conducted regarding the
measuring of metals (Abtahi et al., 2017; Adel et al., 2016b; Dadar
et al., 2017; Fakhri et al., 2017b; Farokhneshat et al., 2016; Longo et al.,
2013; Mirzabeygi et al., 2017; Shahsavani et al., 2017; Zafarzadeh
et al., 2018), polycyclic aromatic hydrocarbons (PAHs) (Heshmati
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et al., 2018; Hosseini et al., 2008; Karyab et al., 2016; Zhang et al.,
2014), residues of drugs (Avar et al., 2016; El Fellah et al., 2017; Fakhri
et al., 2017a; Franquet-Griell et al., 2016; Peng et al., 2016), pesticides
residue (Amirahmadi et al., 2017; Shoeibi et al., 2013; Yadolahi et al.,
2012). In recent years, metals contamination of water resources has
attracted global attention due to increase in their concentrations, toxic
effects, non-biodegradability, highly stable and persistent character-
istics among the process (Armitage et al., 2007; Dadar et al., 2016; Miri
et al., 2017; Pirsaheb et al., 2016b; Shadborestan et al., 2013; Sin et al.,
2001; Yuan et al., 2011). Although some metals in trace amount are
essential for proper functioning of living organisms, exposure to a
higher concentration of them is harmful to both human and aquatic life
(Adel et al., 2016a; Copat et al., 2014; Dórea, 2008; Hadiani et al.,
2015). Based on recommended classifications by International Agency
for Research on Cancer (IARC); Zn, Cu, Mn, Cr, and Cd were regarded as
non-carcinogenic metals, whereas As (group 1), Cr (group 2B), Ni
(group 2B), Cd (group 1), and Co (group 2B), Pb (group 2B) were
treated as potential carcinogen metals (EPA, 2004; IARC, 2002). Ex-
posure to toxic metals results in several adverse health consequences
including cardiovascular and skeletal diseases, neurotoxicity, infertility,
numerous liver and kidney problems (EPA, 2011; Fakhri et al., 2018;
Ghasemidehkordi et al., 2018; Mazzei et al., 2014; Pirsaheb et al.,
2016a). For instance, the elevated exposure to Pb causes gastro-
intestinal colitis and blood cerebral diseases (Flora et al., 2012), Cd
toxicity is responsible for cardiovascular diseases and bone pain (e.g.,
Itai-Itai disease) (Fagerberg et al., 2017; Kobayashi, 1978), Hg poi-
soning impairs senses of sight, hearing and touch (Duruibe et al., 2007;
Lohren et al., 2015), Cu toxicity damages kidneys and liver, and As
poisoning can result in lung, skin and other cancers (EPA, 2011; IARC,
2002).

Anthropogenic activities, such as municipal, untreated industrial,
and agricultural wastewater discharge, can dramatically increase the
metal concentrations (Rahman et al., 2009; Sadeghi et al., 2015; Saha
et al., 2016; Srebotnjak et al., 2012; Su et al., 2013). Moreover, the
release of toxic metals to drinking water from corroded distribution
pipes can trigger metal pollution (Faier et al., 2009; Kavcar et al., 2009;
Khan et al., 2015; Pirsaheb et al., 2014; Shanbehzadeh et al., 2014).

In recent years, estimation of carcinogenic and non-carcinogenic
health risks (e.g., heart and kidney diseases) has become important,
because many clinical symptoms have been observed at concentrations
lower than the prescribed limits (Çelebi et al., 2014; Saha and Zaman,
2013), while in some cases, exceedance of prescribed levels have not
caused human health problems. However, several studies have reported
metal content in drinking waters in Iran (Atapour, 2012; Malakootian
et al., 2014; Pirsaheb et al., 2013b), but those studies are only limited to
a comparison of metal concentrations with respective standard limits.
Therefore, a detailed estimation of carcinogenic and non-carcinogenic
health risks is critical to better inform the consumers and decision-
makers regarding the metal toxicity of drinking water in Iran.

Therefore, objectives of this study were to (1) determine con-
centrations of five metals (Hg, As, Zn, Pb, and Co) in tap water of Ilam
city, (2) compare their levels with guideline values prescribed by var-
ious agencies and (3) estimate and compare carcinogenic and non-
carcinogenic risk for different age groups of Ilam city, including < 1,
1–9, 10–19, and>20 years old consumers.

2. Materials and methods

2.1. Study area

Ilam city (33.6350° N, 46.4153° E), with an area of ∼36 km2, is
located in the west of Iran (Fig. 1). It has a population of ∼194,000.
Weather of this city is temperate mountainous with average precipita-
tion of 619.5 mm/y, and temperature ranges from −13.6 to 41.2 °C
(FRW, 2010).

2.2. Water sampling and pre-treatment

In a cross-sectional study in 2015 (July to November) the required
sampling procedure according to grab method (Novic et al., 2017) was
conducted over the course of five months. A total of 120 (6×20) tap
water samples were collected from water distribution networks of six
water resources, including Gham Gerdalan dam (GGD), Pich-e Ashoori
well (PAW), Ghoch Ali wells (GAW), Gol Gol spring (GGS), Haft
Cheshmeh well (HCW), and Naghlieh well (NW).

Samples were collected in pre-washed (with 20% HNO3) plastic
bottles and acidified with HNO3 to reach a pH < 2 to prevent pre-
cipitation and adsorption of metals to the inner surface of sample
holders (Buschmann et al., 2008). The collected samples were trans-
ported to Laboratory of Pharmacology (Ilam University of medical
sciences) followed by their preservation at 4 °C until metal analyses
(IWA, 2005).

2.3. Sample preparation and apparatus

Each 10mL water sample was digested with 5mL HCl and 5mL
HNO3 (Adel et al., 2016a; b) on a hot plate until yellow color fumes
ceased to evolve. The digested solution was subsequently filtered
through Millipore filter paper (Whatman filter Merck, 0.45) and diluted
with deionized water to a volume of 100mL. Concentrations of As, Zn,
Hg, Co, and Pb were analyzed using flame atomic absorption spectro-
photometer (AAS) (BRAIC WFX-130). Moreover, hydride vapor gen-
erator (HVG) was used with flame AAS to measure As concentrations. In
order to check the measurement precision, standard reference solutions
with known concentrations of the analyzed metals were used. The ac-
curacy of the method was checked by running control samples after
every three samples. Each sample was measured at least three times to
check the reproducibility of the measurement. Samples were reanalyzed
if the relative standard deviation of the measurement exceeded 10%.

The limit of detection (LOD) for Hg, As, Zn, Pb, and Co were de-
termined as 0.2, 0.05, 1.5, 15 and 0.15 μg/L, respectively. The Limit of
quantification (LOQ) for as 0.66, 0.17, 5.25, 42, 0.49 μg/L were for Hg,
As, Zn, Pb, and Co, respectively. Also, the range of precision of analysis
procedure was 94%–103%.

2.4. Estimation non-carcinogenic risk

2.4.1. Target Hazard Quotient (THQ)
The non-carcinogenic risk of metals in foods and drinking water can

be estimated by quantifying THQ using Equation (1) below (EPA, 2010,
2011; Fathabad et al., 2018). THQ value > 1 indicates potential non-
carcinogenic health risk of the exposed population (EPA, 2011;
Keramati et al., 2018; USEPA, 2000).

=
× × ×

×

×
−THQ E E W C

RfD AT
10F D IR

n

3
(1)

Where EF is the exposure frequency (365 days/year), ED is the exposure
duration (average lifetime Iranian population is 70 years), WIR is the
water ingestion rate, which is the water consumption per kg body
weight per day (mL/kg-d) according to EPA assumptions (EPA, 2011),
WIR for < 1, 1–10, 11–19,> 20 years age groups were considered 68,
25, 16, and 20 mL/kg-d, respectively (EPA, 2011; IRIS, 2010). C is the
concentration of the analyzed metals (μg/L), RfD is the oral reference
dose (mg/kg-d), and ATn (= EF×ED) is the average time for non-
carcinogen. RfD is the highest acceptable dose that does not cause any
health effect, exceedance of this limit may cause adverse health con-
sequences (EPA, 2018). RfD for Hg, Pb, As, Zn, and Co was 0.0003,
0.0005, 0.0003, 0.3 and 0.02 mg/kg-d, respectively (EPA, 2018; IRIS,
2010).

2.4.2. Total target hazard quotient (TTHQ)
Exposure to more than one metal contaminant may cause additive
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and/or interactive effects, and hence, cumulative health effect from
multiple metals' exposure was calculated by summing THQ value of
individual metal and expressed as TTHQ as follows (Equation (2)) (EPA,
2011; Fakhri et al., 2017b; USEPA, 2016):

TTHQ=THQPb + THQAs + THQZn + THQCo + THQHg (2)

TTHQ value > 1 indicates the probability of adverse health effects and
suggests the need for undertaking a farther investigation and possible
remedial action. However, TTHQ<1 represents no possible health
consequence from exposure of examined metals at current consumption
rate (EPA, 2010).

2.5. Estimation of carcinogenic risk

2.5.1. Estimated daily intake (EDI)
The EDI values for As was calculated using ) (EPA, 2011):

EDI=WIR×C (3)

WIR is the water ingestion rate (mL/kg-d); C is the average concentra-
tions of metals (μg/L).

2.5.2. Incremental lifetime cancer risk (ILCR)
Based on EPA human health risk models, the carcinogenic risk for

As was calculated using ILCR in ) (Cao et al., 2014; EPA, 2011; Sultana
et al., 2017; USEPA, 1997):

ILCR=EDI×CSF (4)

EDI is the estimated daily intake (mg/kg BW/day), and CSF is the
cancer slope factor (IRIS, 2010). The CSF values for As is 1.5 (mg/kg-
d)−1, respectively (EPA, 2010; IRIS, 2010). It is worth mentioning that,
CSF values are only available for As and thus, this study estimated ILCR
for As. The range of acceptable cancer risk to regulatory goals is 10−4 to
10−6 (EPA, 2011).

2.6. Statistical analysis

One sample T-test was performed to statistically compare the metal
concentrations with safe limits prescribed. The statistical significance
was considered at p < 0.05. All statistical tests were performed using
IBM SPSS Statistics 23.0 (IBM Corporation, Armonk, NY).

3. Result and discussion

3.1. Concentration of metals

The overall ranking order of the concentration of analyzed metals in
the tap water of Ilam city was Zn > Pb > As > Co > Hg.
Additionally, the constant exposure to Hg can pose some adverse effects
on the nervous, immune, and digestive systems along with kidneys,
lungs, eyes, and skin (WHO, 2017). Average concentration of Hg in the
tap drinking water was 0.40 ± 0.10 μg/L (ranged from ND to 0.9 μg/L)
(Table 1), which is ∼4 times higher than WHO recommended level
(0.1 μg/L) (WHO, 2004) but lower than national standard limit of
0.6 μg/L (IRISI, 1996) (Fig. 2). Concentrations of Hg in water samples
from four water resources were below instrumental detection limit,
while its concentration in samples from other two resources (GGD and
GGS) were higher than WHO recommended values (Table 1).

Zn is one of the essential elements for the health of the human body
in higher concentrations may cause diarrhea depression, hair loss, and
poor wound healing (Deshpande et al., 2013). Concentrations of Zn
varied from 2900.00 to 5668.33 μg/L with an average concentration of
5014 ± 564 μg/L (Table 1), which is higher than both WHO guideline
and national standard limit (500 μg/L) for drinking water (Fig. 2) (IRIS,
2010; IRISI, 1996; WHO, 2017). Based on Zn concentrations water re-
sources are ranked as NW > PAW > HCW > GGS > GAW > GGD
(Table 1).

Arsenic is one of the most toxic metalloids that originated from both
anthropogenic and natural sources (Muhammad et al., 2010). Its

Fig. 1. Locations of water reservoirs in Ilam city, Iran.
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Table 1
Concentrations of heavy metal (μg/L) in the tap drinking water related to water resources supply of Ilam city.

Heavy metals Water resources Sample size Average (SD) Minimum Maximum

Hg Gham Gerdalan dam 20 0.605 ± 0.19 0.30 0.90
Pich Ashoori well 20 ND ND ND
Haf Cheshmeh well 20 ND ND ND
Ghoch Ali wells 20 ND ND ND
Naghlieh well 20 ND ND ND
Gol Gol spring 20 0.21 ± 0.02 ND 0.90
Average 0.40 ± 0.10 ND 0.90

Zn Gham Gerdalan dam 20 4404 ± 1022 2900.00 5800.00
Pich Ashoori well 20 5094 ± 206 4800.00 5500.00
Haf Cheshmeh well 20 5074 ± 493 4700.00 5710.00
Ghoch Ali wells 20 4694 ± 396 4000.00 5600.00
Naghlieh well 20 6044 ± 680 4500.00 5800.00
Gol Gol spring 20 4794 ± 622 3600.00 5600.00
Average 5014 ± 564 2900.00 5668.33

As Gham Gerdalan dam 20 50.75 ± 7.15 35.00 62.00
Pich Ashoori well 20 9.50 ± 1.53 7.00 12.00
Haf Cheshmeh well 20 6.20 ± 0.34 5.80 7.00
Ghoch Ali wells 20 5.10 ± 0.74 3.50 6.10
Naghlieh well 20 3.80 ± 0.20 30.00 4.20
Gol Gol spring 20 50.70 ± 7.29 3.50 36.00
Average 21.00 ± 2.87 3.50 62.00

Pb Gham Gerdalan dam 20 67.70 ± 10.67 50.00 85.00
Pich Ashoori well 20 16.88 ± 1.16 15.00 18.60
Haf Cheshmeh well 20 7.50 ± 0.82 6.00 8.90
Ghoch Ali wells 20 15.91 ± 3.53 10.00 22.00
Naghlieh well 20 7.89 ± 0.91 6.00 8.90
Gol Gol spring 20 66.40 ± 16.82 45.00 87.00
Average 30.38 ± 5.56 6.00 87.00

Co Gham Gerdalan dam 20 14.12 ± 4.07 9.00 20.00
Pich Ashoori well 20 8.90 ± 0.83 7.00 10.00
Haf Cheshmeh well 20 1.89 ± 0.16 1.30 2.20
Ghoch Ali wells 20 0.45 ± 0.08 0.30 0.60
Naghlieh well 20 42.30 ± 4.35 35.00 50.00
Gol Gol spring 20 0.37 ± 0.16 0.10 0.70
Average 11.34 ± 1.61 0.10 50.00

Fig. 2. Comparison of metal concentrations in tap drinking water of Ilam city with WHO guideline and national standard limits.
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elevated concentration in drinking water can cause melanosis, skin le-
sion, vascular disease, hypertension, hyperkeratosis and cancer (Ali and
Tarafdar, 2003; Muhammad et al., 2011; Rahman et al., 2009). The
average (± SD) concentration of As in the analyzed tap water was
21.008 ± 2.876 μg/L (range 3.5–62 μg/L) (Table 1). The concentration
of As in tap drinking water was higher than WHO and national standard
limit (10 μg/L) (Fig. 2) (IRISI, 1996; WHO, 2004). Based on As con-
centrations, the water resources are ranked as: GGD≈GGS >
PAW > HCW > GAW > NW (Table 1).

High Pb concentrations in drinking water may be attributed to
agriculture, industrial activities or domestic wastewater discharges in
Ilam city. Lead is one of the most toxic metals, and infants are very
sensitive to Pb toxicity. It may cause memory problems, behavioral
disturbances, anemia, lung cancer, nerve damages, hypertension, sto-
mach cancer, headache, kidney damage, asthma and abdominal pain
irritability (Farkhondeh et al., 2015; Järup, 2003; Patrick, 2006;
Steenland and Boffetta, 2000). The average (± SD) concentration of Pb
in the tap water was 30.38 ± 5.56 μg/L (ranged from 6 to 87 μg/L)
(Table 1), which is higher than WHO guideline (10 μg/L) but lower than
national standard limit (50 μg/L) (Fig. 2) (IRISI, 1996; WHO, 2017).
The ranking order of water resources, based on concentrations of Pb, is
GGD > GGS > PAW > GAW > NW > HCW (Table 1).

Although cobalt has been mentioned as an essential element in vi-
tamin B12 synthesis, it's high concentration can have adverse health
effects, including endocrine and cardiovascular deficits and neurolo-
gical (e.g., visual and hearing) impairment (Leyssens et al., 2017). The
average (± SD) concentration of Co in the tap water was
11.34 ± 1.61 μg/L with minimum and maximum concentrations of
0.1 μg/L and 50 μg/L, respectively (Table 1). The concentration of Co
was higher than the national standard limit (5 μg/L) (Fig. 1) (IRISI,
1996). The ranking order of water resources based on Co concentrations
is NW > GGD > PAW > HCW > GAW > GGS (Table 1).

(Kavcar et al., 2009) study indicated that corrosion of distribution
water systems is an important source metal in tap drinking water.
(Alidadi et al., 2014) reported the concentration of Pb
(11.95 ± 6.68 μg/L) in tap drinking water in Mashhad city in the
northeast Iran, which was lower than our study. (Pirsaheb et al., 2013a)
examined metal concentrations in tap drinking water of Kermanshah
city, Iran and reported that average concentrations of As, Pb, Hg, Zn,
and Co was 0.328 ± 0.70, 2.22 ± 1.97, 0.006 ± 0.021,
45.29 ± 72.8, and 2.25 ± 8.22 μg/L, respectively. Their values were
lower than the values found in this study (Pirsaheb et al., 2013c). The
ranking order of metals in the tap water of Kermanshah city was
Zn > Co > Pb > As > Hg, which is almost similar to our study.
(Khan et al., 2015) reported that concentration of As, Zn, and Pb in tap
drinking water of Nowshera District, Pakistan ranged from 0.01 to 17.5,
10–500, 20–300 μg/L, respectively. The concentration of Pb in our
study is lower than (Khan et al., 2015). However, concentrations of As
and Zn were higher (Khan et al., 2015). Orhan (Gunduz et al., 2010)
presented As concentrations data in tap water in Simav plain, Turkey.
Their average As concentration was 99 μg/L and maximum concentra-
tion was 561 μg/L, which is higher than our study. Similar to our study

(Mosaferi et al., 2003),reported As concentrations higher than standard
limits in the tap water of 50 villages in Hashtrood, Iran. (Karim, 2011),
examined the metal concentrations in the tap drinking water of the
Karachi, Pakistan. The results of that study indicated that concentra-
tions of Pb and Co were 6.05 ± 4.14 and 2.24 ± 1.23 μg/L, respec-
tively, which was lower than our study. (Nguyen et al., 2009), reported
the average concentration of As in drinking water of three regions of Ha
Nam province, Vietnam and their values (211, 348 and 325 μg/L, re-
spectively) were higher than our study.

High concentration of metals in tap drinking water of Ilam city may
be correlated to natural geologic and/or human-made sources
(Fallahpour, 2016). High levels of metal in groundwater of Kurdistan
province, the neighboring city of Ilam, was attributed to geologic
sources (Aldin Ebrahimi et al., 2015; Mosaferi et al., 2003). Over-
utilization of agrochemicals and industrial discharge may have a minor
influence on higher metal concentrations in drinking water sourced
from groundwater. Also, corrosion of pipes in water supply network
may have significant influence in metal contamination of tap water.

3.2. Non-carcinogenic risk assessment

Except for 11–19 years old consumers, THQ values of Pb for other
three groups were higher than 1 (Table 2). A striking feature of this
study is that THQ values of As for all age groups exceeded the non-
carcinogenic threshold value of 1, indicating that population should
consume water from this area with caution. Estimated THQ values of
other metals were lower than 1, except for Zn in<1-year-old group
(Table 2).

Based on THQ, the age groups are ranked as:< 1 years> 1–10
years > 20+ years> 11–19 years. Since WIR for< 1-year consumers
was lower than others age groups, their THQ value was higher. Since
WIR for 11–19 year age group was lower than 20 + age groups
(U.S.EPA, 2004), they had higher THQ. The contribution of metals to
TTHQ is ranked as (47.9%) > Pb (40.7%) > Zn (11.2%) > Hg
(0.9%) > Co (0.4%) (Table 2, Fig. 3). THQ of metals in the drinking
water depends on ingestion rate, toxicity, and concentration (Kapaj
et al., 2006). Similar to our study (Muhammad et al., 2010),
Muhammad et al. (2010) and Khan et al. (2015) found THQ higher than
1 value in Pakistan (Kapaj et al., 2006; Muhammad et al., 2011). TTHQ
in all age groups was higher than 1 (Table 2, Fig. 3). Since WIR in the
11–19 years age group was lower than 20 + age groups, they had lower
THQ. Since the RfD value of AS is much lower than other metals

Table 2
Non-carcinogenic risk of heavy metals in population of different age groups of
Ilam city.

Age consumer THQ TTHQ

Pb As Hg Co Zn

<1 4.131 4.760 0.090 0.038 1.136 10.157
1–10 1.519 1.750 0.033 0.014 0.417 3.734
11–19 0.972 1.120 0.021 0.009 0.267 2.390
> 20 1.215 1.400 0.026 0.011 0.334 2.987

All age 1.960 2.258 0.043 0.018 0.539 4.817

Fig. 3. TTHQ of metals (Pb, As, Hg, Zn, and Co) for consumers of different age
groups in Ilam city.
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(USEPA, 1997a, 2016), estimated THQ for As is much higher than that
of other metals, although its measured concentration was compara-
tively lower than other metals (see Fig. 4).

3.3. Carcinogenic risk assessment

As is categorized as carcinogens by the IARC (IARC, 2004). Since
CSF value for Cd is not available, we excluded Cd from quantifying
ILCR. The minimum and maximum ILCR of As was observed in the
10–19 (1.99E-01) and<1 (8.44E-01) year age group consumers, re-
spectively (Table 3). Since WIR in the<1 years consumers were higher
than the other age groups, the ILCR was high in them (EPA, 2011).
When ILCR>10−3, ILCR>10−4, and ILCR<10−6 consumers are in
the considerable risk range, threshold risk range and safe range, re-
spectively (EPA, 2011). ILCR for all age group consumers from As
were> 10−3 (Table 3). Similar to our study, CR of As in (Khan et al.,
2015) (ranged from 1.5E-09 to 1.3E+06) and (Nguyen et al., 2009)
(average 4E-4) was higher than 10−6.

4. Conclusions

In the current study for the first time, the concentrations of Mercury
(Hg), Arsenic (As), Zinc (Zn), Lead (Pb) and Cobalt (Co) in 120 col-
lected tap water samples (2015 July–November) from Ilam city, Iran
were investigated using flame atomic absorption spectrophotometer.
Also, the metal-induced carcinogenic and non-carcinogenic risks for
consumers exposed to tap drinking water were calculated. Average
concentrations of all metals investigated (Zn, Pb, As, Co, and Hg) in tap
drinking water of Ilam city were significantly higher than WHO and
national standard recommended limits. Moreover, the rank order of
metals based on quota in the TTHQ was As > Pb > Zn > Hg > Co.
All age consumers are at considerable non-carcinogenic risk of metals in
the tap drinking water (TTHQ > 1). Additionally, all age consumers
are at considerable carcinogenic risk of As in the tap drinking water of

Ilam (ILCR > 10−3). Generally speaking, the results of this study in-
dicated that drinking water consumers in Ilam, especially infants (< 1
years) and children (1–10 years), are at serious non-carcinogenicity and
carcinogenesis risks. To minimize the health threats of the local popu-
lation of Ilam city, appropriate water treatment policy should be im-
plemented to ensure safe water supply. Integrated water management
approach should be employed to prevent contamination of water supply
system and to protect the source water from anthropogenic metal pol-
lution, which can be achieved by identifying the uses of chemicals
through regular inspection of the catchment areas.
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