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Abstract

In recent years it becomes more and more important to learn hidden and complex structures
from a given data set in an automatic and e�cient way. Here statistical machine learning
and in particular support vector machines are located. A lot of theoretical work on machine
learning has been done under the assumption that the observations are realisations of in-
dependent and identically distributed (i.i.d.) random variables. This assumption might be
mathematically convenient but it is often violated in practice or at least a doubtful assump-
tion. Recently some work has been done to generalize statistical machine learning theory
to non-i.i.d. stochastic processes, which also is the topic of this thesis.
Throughout this work we examine statistical robustness and consistency of estimators, in
particular of support vector machines, for data generating stochastic processes with dif-
ferent dependence structures. To get reasonable results, we �rst introduce stochastic pro-
cesses which provide convergence of their empirical measures to a limiting distribution. We
call such processes weak respectively strong Varadarajan processes. Examples are many
α-mixing processes, many Markov chains, and several weakly dependent processes. Con-
cerning qualitative robustness, we prove a generalization of Hampel's famous theorem to
Varadarajan processes. Estimators which are continuous and can be represented by a sta-
tistical operator on the space of probability measures are qualitatively robust if the data
generating stochastic process is a weak Varadarajan process. It is not even necessary to
strengthen the assumptions on the estimator, compared to those in Hampel's theorem for
the i.i.d. case.
Further, qualitative robustness of bootstrap approximations is a desirable property, as the
true distribution of the estimator is unknown in all cases of practical importance and there-
fore often replaced by a bootstrap approximation. Dropping the assumption of identical
distributions, we show that the bootstrap approximation is still qualitatively robust if the
empirical bootstrap is used and if the assumptions on the input space are strengthened.
Compared to the results of the i.i.d. case, we have the same assumptions on the estimators,
but require the process to be a strong Varadarajan process. Assuming uniform continuity
instead of continuity of the statistical operator and assuming the input space to be compact,
we achieve qualitative robustness for some α-mixing stochastic processes if the blockwise
bootstrap is used.

Besides statistical robustness, consistency is of course also an important property of a se-
quence of estimators. Therefore the second part of this thesis focusses on consistency of
support vector machines. We achieve consistency under common assumptions on the loss
function and on the kernel. The stochastic process is assumed to be asymptotically mean
stationary, which is implied by the Varadarajan property, and it is assumed to ful�l an
almost sure convergence condition, similar to a law of large numbers. We show that many
asymptotically mean stationary C-mixing, weakly dependent, and α-mixing processes pro-
vide this assumption and therefore support vector machines are consistent for such processes.
Compared to the i.i.d. case, our assumption on the convergence rate of the sequence of reg-
ularization parameters is only slightly stronger.





Zusammenfassung

Heutzutage wird es immer wichtiger, versteckte und komplexe Strukturen in Datensätzen
möglichst automatisch und e�zient zu �nden. Oft werden hierzu Methoden der maschinellen
Lerntheorie, zum Beispiel Support Vector Machines, eingesetzt. Die meisten theoretischen
Ergebnisse zu Support Vector Machines sind allerdings für den Fall von unabhängig iden-
tisch verteilten (u.i.v.) stochastischen Prozessen hergeleitet. Dieser ist zwar mathematisch
geeignet, in der Praxis ist die u.i.v.-Annahme aber häu�g verletzt oder es ist unklar ob
diese gilt. Deswegen versuchen wir zwei wichtige Eigenschaften von Schätzern, statistische
Robustheit und Konsistenz, für datenerzeugende stochastische Prozesse zu zeigen, die nicht
der u.i.v.-Annahme unterliegen. Dazu führen wir zunächst die sogenannten Varadarajan-
Prozesse ein, diese garantieren Konvergenz ihres empirischen Maÿes gegen eine Grenz-
verteilung. Beispiele für solche Prozesse sind einige α-mixing-Prozesse, Markov-Ketten und
schwach abhängige Prozesse. Angelehnt an das bekannte Theorem zur qualitativen Robus-
theit von Hampel betrachten wir Schätzer, die stetig sind und durch einen statistischen
Operator auf dem Raum der Wahrscheinlichkeitsmaÿe repräsentiert werden können. Für
solche Schätzer und schwache Varadarajan-Prozesse erhalten wir die qualitative Robustheit
des Schätzers. Im Vergleich zu Hampels Theorem für den u.i.v.-Fall ändert sich nur die
Voraussetzung an den stochastischen Prozess, die an die Schätzer bleibt gleich.
Zusätzlich ist die Verteilung der datenerzeugenden Prozesse oft unbekannt und wird mit
Hilfe eines Bootstrap-Verfahrens angenähert. Auch hierfür ist qualitative Robustheit eine
wünschenswerte Eigenschaft. Für den empirischen Bootstrap und stochastische Prozesse,
die zwar unabhängig aber nicht identisch verteilt sind, erhalten wir qualitative Robustheit
unter den gleichen Voraussetzungen an die Schätzer wie im u.i.v.-Fall, der stochastische
Prozess muss die Varadarajan Eigenschaft besitzen und die Voraussetzungen an den zu-
grundeliegenden Datenraum muss verstärkt werden. Auch für einige α-mixing-Prozesse
zeigen wir qualitative Robustheit der Bootstrap-Approximation. Hierzu nehmen wir gleich-
mäÿige Stetigkeit der Schätzer sowie einen kompakten Datenraum an. Die Approximation
wird hierbei durch einen �Block-Bootstrap� erreicht, dieser eignet sich besser für abhängige
Daten als der klassische empirische Bootstrap.

Neben der Robustheit ist auch Konsistenz eine zentrale Eigenschaft von Schätzern. Im
zweiten Teil der Arbeit zeigen wir Konsistenz für Support Vector Machines. Zusätzlich zu
den üblichen Voraussetzungen an den Kern und die Verlustfunktion, benötigen wir einen
stochastischen Prozess, der asymptotisch mittelwertstationär ist. Diese Eigenschaft wird
zum Beispiel durch die Varadarjan Eigenschaft impliziert. Weiterhin muss der Prozess eine
Konvergenzbedingung, ähnlich dem starken Gesetz der groÿen Zahlen, erfüllen. Für solche
Prozesse sind Support Vector Machines konsistent. Wir zeigen, dass einige schwach ab-
hängige, α- und C-mixing Prozesse diese Konvergenzbedingung erfüllen. Verglichen mit
u.i.v. stochastischen Prozessen muss die Folge der Regularisierungsparameter nur unmerk-
lich langsamer konvergieren, diese Voraussetzungen sind also fast identisch.
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Notation

Sets and spaces

((x1, y1), . . . , (xn, yn)) data set, consisting of n ∈ N data points
(Ω,A, µ) probability space
(ZN,B⊗N,M(ZN)) statistical model
A σ-algebra
B Borel σ-algebra
M (Z) space of all probability measures on Z
N positive integers, N = {1, 2, 3, ...}
R set of real numbers
ZN sample space
BL(Z) space of Lipschitz continuous functions f : Z → R with bounded

Lipschitz norm
wn = (z1, . . . , zn), n ∈ N tuple of points in Z
X ,Y,Z sets, often metric spaces
C1(Z) space of continuously di�erentiable functions f : Z → R
Cb(Z) space of bounded, continuous functions f : Z → R

Functions

Wn = (Z1, . . . Zn) vector of random variables Z1, . . . , Zn
fL,P,λ support vector machine
k : X × X → R kernel
L : X × Y × R→ [0,∞) loss function
L∗ : X × Y × R→ R shifted loss function
Lf : X × Y × R→ R abbreviated notation for loss function L(x, y, f(x))
R∗L,P Bayes risk
RL,P risk function
S :M(Z)→ H statistical operator
Z∗1 , . . . , Z

∗
n bootstrap sample

Zi : (Ω,A, µ)→ (Z,B) random variable
(Sn)n∈N , Sn : Zn → H sequence of estimators
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(Zi)i∈N stochastic process

Measures

KN, K̃N distributions on ⊗ki=1ZN, k ∈ N
µ general probability measure
⊗ni=1P

i, n ∈ N product measure of independent random variables, each with
distribution P i, i ∈ N

PN, QN probability measures inM(ZN)
PWn = 1

n

∑n
i=1 δZi empirical measure of (Z1, . . . , Zn), n ∈ N

Pwn = 1
n

∑n
i=1 δzi empirical measure of (z1, . . . , zn), n ∈ N

P probability measure inM(Z)
P i, i ∈ N distribution of Zi, i ∈ N
P ∗n , n ∈ N bootstrap approximation of Pn, n ∈ N
P⊗n, n ∈ N product measure of i.i.d. random variables which have distribu-

tion P
Pn, n ∈ N �nite joint distribution of (Z1, . . . , Zn), n ∈ N

Metrics andNorms

π or πdZ Prohorov metric (onM(Z, dZ))
| · |1 Lipschitz constant
|| · ||BL = || · ||∞ + | · |1 bounded Lipschitz norm
|| · ||∞ supremum norm
|| · ||TV total variation norm
|| · ||p Lp-norm
dBL bounded Lipschitz metric
dH metric on the space H
dn,p p-product metric
e, dZ metrics on Z

Miscellaneous

〈·, ·〉H inner product on H
−→D convergence in distribution (weak convergence)
−→P convergence in probability
]A number of elements of the set A
O(·) Landau symbol
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Chapter 1

Introduction

"If we have data, let's look at data. If all we have are opinions, let's go with

mine."

James L. Barksdale

Today, the question is, how to look at data? How to extract information from data? Often

the relations and questions are too complex to solve for a human being or the amount of

data or variables is too big. Here statistical machine learning is located. Machine learning

"gives computers the ability to learn without being explicitly programmed", see Samuel

(1959). The goal of supervised statistical learning is to �nd a function f : X → Y, X ,Y
sets, by using a given data set wn := ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n to learn the relation

between input values x ∈ X and output values y ∈ Y, see for example Vapnik (1995) or

Hastie et al. (2001). The learning algorithm is trained by a given data set, in order to be able

to predict the outcome of a new input value. Consider, for example, certain characteristics

of a vehicle, such as speed, height, or mass, used to assign the vehicle to di�erent groups, for

example "car" and "truck". After learning by means of some training data, where height,

speed, and mass (input variables) of the vehicle and the kind of vehicle (output variable) is

known, the algorithm should be able to classify every new, unknown combination of speed,

height, and mass to one of the two groups, with small error probability.

There are various types of machine learning algorithms, the one we focus on are support vec-

tor machines (SVMs), see e. g. Boser et al. (1992), Vapnik (1995, 1998), Poggio and Girosi

(1998), Schölkopf and Smola (2002), Cucker and Zhou (2007), and Steinwart and Christ-

mann (2008). Support vector machines are considered as a nonparametric learning method

1



2 CHAPTER 1. INTRODUCTION

and can, in the case of supervised learning, be used either for classi�cation, regression, or

quantile regression. Historically support vector machines have been introduced for classi-

�cation and linear functions only, see for example Vapnik (1995). Now, they are applied

in a much broader sense. In case of support vector machines the function f is implicitly

determined by a regularized optimization problem. Therefore we introduce the loss function

L, a non-negative measurable function, which measures the distance between the observed

output value and the predicted output value, and the risk, which is de�ned as the expected

loss. Given a data set, wn := ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n, the statistical estimate is

computed by minimizing the empirical risk added to a penalty term over a certain Hilbert

space H of functions:

fL,Pwn ,λ := argmin
f∈H

1

n

n∑
i=1

L(xi, yi, f(xi)) + λ‖f‖2H .

Note that the penalty term is added in order to prevent over�tting and is weighted by

λ > 0, more details can be found in Section 4.1. For the classi�cation example above, the

two groups "car" and "truck" would be labelled either "1" or "-1", and the SVM learned is

a function fL,Pwn ,λ : X → {−1, 1}.

From a theoretical point of view the de�nition can be generalized to arbitrary probability

measures P on X ×Y (and the corresponding σ-algebra), that is the risk is computed with

respect to the theoretical distribution P , λ ∈ (0,∞):

fL,P,λ := argmin
f∈H

∫
L(x, y, f(x)) dP (x, y) + λ‖f‖2H .

So far, the overwhelming part of theoretical works in machine learning has been done un-

der the assumption, that the data can be considered as realisations of independent and

identically distributed (i.i.d.) random variables. However, this assumption is not ful�lled

in many practical applications so that non-i.i.d. cases increasingly attract attention. In ad-

dition to estimators especially designed for certain non-i.i.d. cases, practitioners often also

use estimators originally designed for the i.i.d. case even if this assumption is violated. In

Mukherjee et al. (1997) and Müller et al. (1997), for example, support vector machines are

used for predicting time series with good results. Therefore this thesis focuses especially on

non-i.i.d. stochastic processes, for example mixing processes or weakly dependent processes

(in the sense of Doukhan and Louhichi (1999)). In particular, we mainly work with stochas-

tic processes (Zi)i∈N which provide convergence of the empirical measures PWn , n ∈ N,
Wn = (Z1, . . . , Zn), to a limiting distribution P on the space of probability measures, for
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example with respect to the Prohorov metric π. That is

π(PWn , P ) −→ 0 almost surely (or in probability), n→∞,

to which we refer as Varadarajan property, as it is similar to the result of Varadarajan's

theorem for i.i.d. random variables, see Dudley (1989, Theorem 11.4.1). There are many

stochastic processes which ful�l this assumption, for example many Markov chains, some

martingales, several mixing processes or several weakly dependent process, see Chapter 3.2.

Moreover we show: stochastic processes which ful�l a law of large numbers for events, in

the sense of Steinwart et al. (2009), are Varadarajan processes under weak assumptions, see

Theorem 3.2.1. An even weaker assumption on the stochastic process, also used here, is

asymptotically mean stationarity, which is implied by the weak Varadarajan property.

Throughout this thesis some important properties of estimators are shown for those pro-

cesses. A desirable property for estimators is qualitative robustness, which was �rst proposed

in Hampel (1968). Roughly speaking, statistical robustness in general means that the es-

timator is only rarely a�ected by outliers or other small violations. Qualitative robustness

in particular means, that the distributions of an estimator di�er only slightly, if the under-

lying distributions of the data generating stochastic process are close together. That is, we

assume a data set to be realisations of a stochastic process, with distribution PN, but the

real data set may contain some additional errors or the assumption on the distribution is

wrong. So the contaminated data set is generated by a stochastic process which may have a

slightly di�erent distribution QN. The goal of qualitative robustness is to guarantee that the

distribution of the estimator under the two distributions PN and QN are close, as long as the

distributions PN and QN are close. It is well known that many classical estimators are not

statistically robust, see for example Huber (1981), Hampel et al. (1986), Jure£ková and Picek

(2006), and Maronna et al. (2006) for some textbooks on robust statistics. The de�nition of

qualitative robustness can be found in Hampel (1968) for the i.i.d. case, some generalizations

can be found in Papantoni-Kazakos and Gray (1979), Cox (1981), and Boente et al. (1987).

Throughout this work we use a generalization of Hampel's concept of Π-robustness proposed

by Bustos (1980) to de�ne qualitative robustness for non-i.i.d. observations, see De�nition

3.1.1. In Theorem 3.1.3, we show that one of the classical results of qualitative robustness in

the i.i.d. case, Hampel's theorem, can be generalized to the non-i.i.d. case if the underlying

stochastic process ful�ls the Varadarajan property. Compared to the i.i.d. case we do not

strengthen the assumptions on the estimators and of course the i.i.d. case is included.

Moreover, the �nite sample distribution of the data generating stochastic process is com-
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monly unknown in practice. One way to get some information about this distribution are

bootstrap methods. Here the distribution of the data generating stochastic process is esti-

mated by resampling from the given observations. Historically, the bootstrap was introduced

for the i.i.d. case, see Efron (1979). But there are various kinds of bootstrap methods used

for di�erent kinds of not necessarily i.i.d. stochastic processes, see for example Efron and

Tibshirani (1993) and Shao and Tu (1995) for an introduction and an overview to the boot-

strap theory. Regarding the bootstrap approximation for the distribution of the estimator,

qualitative robustness is still desirable. The de�nition of qualitative robustness for boot-

strap approximations can be found in Cuevas and Romo (1993). In Christmann et al. (2013)

qualitative robustness for SVMs has been shown for the i.i.d. case. Our Theorem 3.4.2 gives

a generalization of this result to the case of independent, but not necessarily identically

distributed random variables. Additionally the assumptions on the sequence of estimators

are slightly weakened. Strengthening the assumptions on the sequence of estimators and

the assumptions on the stochastic process, we also achieve qualitative robustness for the

bootstrap approximations of some α-mixing sequences, see Theorem 3.4.5 and 3.4.6.

Whereas the �rst results cover a broader class of estimators than support vector machines,

the second part of this thesis focuses on robustness and consistency of support vector ma-

chines. For a given data set, the estimator can be computed with respect to this data

set, that is we compute the empirical SVM. But for every data generating stochastic pro-

cess, of course, there is the smallest possible risk, which relies on the distribution of this

process. This distribution is commonly unknown, and therefore the empirical estimate is

used. Hence, it is crucial to establish some kind of convergence of the empirical solution,

that is statistical consistency. Here, we again consider stochastic processes which have the

Varadarajan property or are asymptotically mean stationary. We examine convergence in

probability of the risk of the empirical SVMs computed with respect to the limiting distribu-

tion P to the Bayes-risk R∗L,P , which is de�ned as the smallest possible risk if all measurable

functions f : X → Y are considered:∫
L(x, y, fL,PWn ,λn

(x)) dP (x, y) −→ R∗L,P in probability, n→∞,

where the sequence of regularization parameters (λn)n∈N ⊂ (0,∞) is a suitable null-sequence.

This is called L-risk-consistency. For the i.i.d. case, consistency of support vector machines

is already shown, see for example Zhang (2004) and Christmann and Steinwart (2007)

and the references in Chapter 4.4. Also learning rates are provided in this case, see e. g.

Koltchinskii and Beznosova (2005), De Vito et al. (2005), and Blanchard et al. (2008). In

the non-i.i.d. case, there are also some results, which yield that support vector machines are
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still consistent and which provide learning rates. Therefore concentration inequalities for

di�erent dependence structures have been established, see for example Sun and Wu (2009)

and Hang and Steinwart (2015). In Steinwart et al. (2009) consistency of support vector

machines and of other regularized kernel methods is shown for a class of stochastic pro-

cesses which satisfy some mixing conditions, or more generally, ful�l a law of large numbers

for events. In Section 4.4, we show that support vector machines are consistent for some

α-mixing, several weakly dependent and some C-mixing processes, if they are additionally

asymptotically mean stationary.

The next chapters are organised as follows: Chapter 2 gives a short introduction to weakly

dependent processes in the sense of Doukhan and Louhichi (1999), α-mixing, and C-mixing

processes, as they are often used throughout this work. Chapter 3 focusses on qualitative

robustness, including the introduction and de�nition of qualitative robustness in Section

3.1 and our generalization of Hampel's theorem, see Theorem 3.1.3. Moreover Varadarajan

processes are introduced in this section. Examples for Varadarajan process, as well as the

relation between laws of large numbers and Varadarajan processes are included in Section

3.2, examples for qualitatively robust estimators can be found in Section 3.3. Section 3.4

contains the de�nition and the main results about qualitative robustness of the bootstrap

approximation, Theorem 3.4.2, Theorem 3.4.5, and Theorem 3.4.6.

The fourth chapter covers the results about support vector machines. A short introduction

to support vector machines and reproducing kernel Hilbert spaces is given in Section 4.1.

Results on qualitative robustness and the maximum bias of support vector machines are

given in Theorem 4.2.1 and Theorem 4.3.2. Consistency of support vector machines is shown

in Section 4.4. It contains a general result about consistency of support vector machines

requiring a convergence assumption on the stochastic process, Theorem 4.4.4, and examples

for stochastic processes which ful�l this assumption, see Theorem 4.4.6, Theorem 4.4.10,

and Theorem 4.4.12. We would like to mention, that some results of Chapter 3 as well as

Section 4.2 are already published in Strohriegl and Hable (2016), some parts of Section 3.4

are published in Strohriegl (2017) on arXiv. Concluding with Chapter 5 we give a short

summary and propose some future research problems.
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Chapter 2

Dependence structures

In order to work with general stochastic processes, a lot of di�erent dependence notions have

been introduced until now. For example Markov, mixing- and ergodic properties as well as

mixingale structures, associated processes or weakly dependent processes. Throughout this

thesis we regard qualitative robustness of estimators on general stochastic processes as well

as consistency of support vector machines for general stochastic processes and therefore try

to show our theorems for di�erent dependence structures. Mainly used are weak dependence,

mixing structures and C-mixing processes. These dependence notions are shortly introduced

in this chapter. Some results, for example the qualitative robustness, are more general and

also work for Markov chains or martingales. The proofs of the results mainly require limit

theorems, such as laws of large numbers or convergence conditions on empirical measures.

Therefore we regard processes which describe the dependence between "past events" and

"future events", which decreases when the gap between past and future increases. Roughly

speaking, processes which forget the "past" if only the time gap is big enough. Weak

dependence (in the sense of Doukhan and Louhichi (1999)) is based on the covariance

between events in the past and events in the future. Whereas the mixing notions used here

measure the dependence between the σ-algebras generated by the stochastic process. The C-
mixing structure is introduced separately, although it belongs to the mixing structures, but

has been introduced in the context of dynamical systems. The C-mixing coe�cient is based

on the covariance between the stochastic process and an arbitrary, bounded measurable

function with respect to the σ-algebra generated by the stochastic process.

7



8 CHAPTER 2. DEPENDENCE STRUCTURES

2.1 Weak dependence

This dependence notion has been introduced by Doukhan and Louhichi (1999) and Bickel

and Bühlmann (1999). Roughly speaking, the dependence structure of a weakly dependent

process is described through the covariance of a function f of "elementary events in the

past" and another function g of "elementary events in the future". A process is considered

to be weakly dependent if the covariance tends to zero as the distance between events in

"past" and "future" increases. There are di�erent types of weak dependence, named with

di�erent dependence coe�cients. For the following results, we only consider non causal

cases of weak dependence: η-, λ-, κ-, ζ- and θ-dependence. Therefore, we reduce the

de�nition of weak dependence from Dedecker et al. (2007, De�nition 2.2) to these cases.

Let (Ω,A, P ) be a probability space, Z a Polish space, and (Zi)i∈N, Zi : Ω → Z, i ∈ N,
a stochastic process. For every u, v ∈ N, let Fu and Gv be classes of measurable functions

f : Zu → R respectively g : Zv → R; de�ne F :=
⋃
u∈NFu, G :=

⋃
v∈N Gv and �x a function

Ψ : F ×G → (0,∞]. For every u, v ∈ N, let Γ(u, v, `) be the set of (i, j) ∈ Zu×Zv such that

i1 < . . . < iu ≤ iu + ` ≤ j1 < . . . < jv, ` ∈ N.
Then, the (F ,G,Ψ)-dependence coe�cient ε(`) for the stochastic process (Zi)i∈N is de�ned

by

ε(`) = sup
u,v∈N

sup
(i,j)∈Γ(u,v,`)

sup
f∈Fu,g∈Gv

∣∣Cov(f(Zi1 , ..., Ziu), g(Zj1 , ..., Zjv)
)∣∣

Ψ(f, g)
. (2.1)

The stochastic process (Zi)i∈N is called (F ,G,Ψ)-dependent if

lim
`→∞

ε(`) = 0 .

For our cases the functions f : Zu → R are Lipschitz continuous with respect to the

distance du,1 on Zu de�ned by du,1(z, z′) :=
∑u

i=1 dZ(zi, z
′
i), where dZ is a metric on Z, and

the class G equals F for the non causal cases. Depending on the choice of the function Ψ and

additional regularity assumptions on the functions in F , di�erent dependence coe�cients

are de�ned, see Dedecker et al. (2007): Here |f |1 := supz 6=z′
|f(z)−f(z′)|
dn,1(z,z′) denotes the Lipschitz

constant of f , ‖ · ‖∞ the supremum norm, and for f ∈ Fu, df := u.

• The coe�cient η corresponds to the choice Ψ(f, g) = df‖g‖∞|f |1 + dg‖f‖∞|g|1, and
Fu = Gu is the set of all bounded Lipschitz functions f : Zu → R .

• The coe�cient λ corresponds to the choice Ψ(f, g) = df‖g‖∞|f |1 + dg‖f‖∞|g|1
+ dgdf |g|1|f |1, and Fu = Gu is again the set of all bounded Lipschitz continuous

functions.
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• The coe�cient κ corresponds to the function Ψ(f, g) = dfdg|f |1|g|1 and Fu = Gu is

the set of all integrable Lipschitz continuous functions.

• The coe�cient ζ corresponds to the choice Ψ(f, g) = min{df , dg}|f |1|g|1 and Fu = Gu
is again the set of all integrable Lipschitz continuous functions.

• Finally, the coe�cient θ corresponds to the choice Ψ(f, g) = dg‖f‖∞|g|1, Fu is the

set of all bounded functions f : Zu → R and Gu is the class of Lipschitz continuous

functions g : Zu → R. Moreover the random variables Zi, i ∈ N, are assumed to be

L1 integrable.

A good overview of result and de�nitions as well as examples for weakly dependent processes

can be found in Dedecker et al. (2007).

2.2 Mixing processes

Another dependence structure which is used throughout this thesis are mixing processes.

Mixing conditions of a stochastic process (Zi)i∈N are de�ned via various mixing coe�cients

which quantify the degree of dependence of the process. There exist several types of mixing

coe�cients, but all of them are based on di�erences between probabilities µ(A1 ∩ A2) −
µ(A1)µ(A2). There is a large literature on this dependence structure. For a detailed overview

on mixing, see Bradley (2005), Bradley (2007a,b,c), and Doukhan (1994) and the references

therein. We mainly use the α-mixing structure, which has been introduced in Rosenblatt

(1956). Also examples of relations between dependence structures and mixing coe�cients

can be found in the references above.

Let Ω be a set equipped with two σ-algebras A1 and A2 and a probability measure µ. Let

Lp(A, µ,H) be the space of allH-valued, A-measurable, p-integrable functions. Analogously

to e. g. Bradley (2005), using the convention 0
0 = 0, we can de�ne the following measures

of dependence:

α(A1,A2, µ) := sup{|µ(A1 ∩A2)− µ(A2)µ(A2)| | A1 ∈ A1, A2 ∈ A2}, (2.2)

RR
∞(A1,A2, µ) := sup

{∣∣∣∣Eµfg − EµfEµg
‖f‖∞‖g‖∞

∣∣∣∣ ∣∣∣ f ∈ L∞(A1, µ,R), g ∈ L∞(A2, µ,R)

}
, (2.3)

φ(A1,A2, µ) := sup{|µ(A2|A1)− µ(A2)| | A1 ∈ A1, A2 ∈ A2, µ(A1) > 0}, (2.4)

ψ(A1,A2, µ) := sup

{∣∣∣∣ µ(A1 ∩A2)

µ(A1)µ(A2)
− 1

∣∣∣∣ ∣∣∣ Ai ∈ Ai, µ(Ai) > 0, i ∈ {1, 2}
}
, (2.5)
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ρ(A1,A2, µ) := sup{|Corr(f, g)| | f ∈ L2(A1, µ,R), g ∈ L2(A2, µ,R)}, (2.6)

β(A1,A2, µ) := sup
1

2

I∑
i=1

J∑
j=1

|µ(A1,i ∩A2,j)− µ(A1,i)µ(A2,j)|,

where the supremum is taken over all (�nite) partitions {A1,1, . . . , A1,I} and

{A2,1, . . . , A2,J} of Ω, such that A1,i ∈ A1, for all i and A2,j ∈ A2 for all j.

(2.7)

By de�nition the coe�cients equal zero, if the σ-algebras are independent. Moreover the

coe�cients, besides φ, are symmetric in A1 and A2. Among those mixing properties α-

mixing is the weakest condition:

2α(A1,A2) ≤ β(A1,A2) ≤ φ(A1,A2) (2.8)

4α(A1,A2) ≤ ρ(A1,A2) ≤ ψ(A1,A2),

see Bradley (2005, page 109). Again there are many other inequalities, which can be found

therein. An important relation for the proofs of qualitative robustness and for the consis-

tency of α-mixing sequences is the equivalence between the α-mixing coe�cient and the

RR
∞-coe�cient, see Bradley (1985), as it directly links the covariance to the α-mixing coef-

�cient. According to this we have:

RR
∞(A1,A2, µ) ≤ 2πα(A1,A2, µ). (2.9)

Moreover mixing can be de�ned for stochastic processes. We follow Steinwart et al. (2009,

De�nition 3.1):

De�nition 2.2.1 Let (Zi)i∈N be a stochastic process, Zi : Ω → Z, i ∈ N, and let σ(Zi) be

the σ-algebra generated by Zi, i ∈ N. Then the α-bi-, the α- and α-mixing coe�cients are

de�ned by

α((Z)i∈N, µ, i, j) = α(σ(Zi), σ(Zj), µ)

α((Z)i∈N, µ, n) = sup
i≥1

α(σ(Zi), σ(Zi+n), µ)

α((Z)i∈N, µ, n) = sup
i≥1

α(σ(Z1, . . . , Zi), σ(Zi+n, Zi+n+1, . . .), µ).
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A stochastic process (Zi)i∈N is called α- respectively α-mixing with respect to µ if

lim
n→∞

α((Z)i∈N, µ, n) = 0,

respectively lim
n→∞

α((Z)i∈N, µ, n) = 0.

It is called weakly α- respectively weakly α-bi-mixing with respect to µ if

lim
n→∞

1

n

n∑
`=1

α((Z)i∈N, µ, `) = 0,

respectively lim
n→∞

1

n2

n∑
i=1

i−1∑
j=1

α((Z)i∈N, µ, i, j) = 0.

Of course these de�nitions can be used similarly for other mixing coe�cients. Obviously

α((Z)i∈N, µ, n) ≤ α((Z)i∈N, µ, n). In most of the literature α-mixing for stochastic processes

is de�ned similar to the α-mixing coe�cient above. Also the inequalities can be expressed

in terms of random variables, important for our proofs is:

RR
∞(σ(Zi), σ(Zj), µ, ) ≤ 2πα(Z, µ, i, j). (2.10)

Similar to Steinwart et al. (2009), the following results only assume the process to be weakly

α-bi-mixing, which is a slightly weaker assumption than the usual α-mixing condition, and

is therefore introduced here.

2.3 C-mixing processes

C-mixing processes also belong to the group of mixing processes. They have been introduced

especially to cover dynamical systems, as there are several examples of dynamical systems

which are not α-mixing, see e. g. Doukhan and Louhichi (1999, page 41) and Dedecker

and Prieur (2005) for other examples of stochastic processes which are not α-mixing. In

Maume-Deschamps (2006), Hang and Steinwart (2015), and the references therein, examples

of C-mixing dynamical systems can be found. The C-mixing coe�cient as well as the α-

mixing coe�cient generalizes Φ-mixing. But in general neither C-mixing implies α-mixing

nor the other implication is right. According to Maume-Deschamps (2006, De�nition 1)

and Hang and Steinwart (2015, De�nition 2.5) we de�ne C-mixing for stochastic processes

(Zi)i∈N , Zi : Ω→ Z for a measurable space Z.
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Let C be the Banach space of bounded functions f : Z → R with respect to the C-norm
‖ · ‖C :

‖f‖C := ‖f‖∞ + ‖f‖ (2.11)

where ‖ · ‖∞ denotes the supremum norm and ‖ · ‖ is a semi-norm on a vector space of

bounded measurable functions f : Z → R. For example consider the space of Lipschitz con-

tinuous functions with semi-norm ‖f‖ = |f |1 = supx 6=y
|f(x)−f(y)|
d(x,y) , where |f |1 is the Lipschitz

constant of f , the space of C1 := {f : Z → R | f bounded and continuously di�erentiable}
functions on Z ⊂ R open, equipped with semi-norm ‖f‖ = supz∈Z |f ′(z)|, or the space of

functions with bounded total variation with ‖f‖ = ‖f‖BV. Moreover let C1 be the closed

unit ball of functions f with respect to ‖ · ‖C .
Let ‖ · ‖1 be the usual L1-Norm on Z, then C-mixing processes are de�ned as follows:

De�nition 2.3.1 (C-mixing processes) Let (Ω,A, µ) be a probability space and (Z,B)

be a measurable space. Let (Zi)i∈N, Zi : Ω → Z be a stochastic process and let A`i be the

σ-algebra on Ω generated by (Zi, . . . , Z`), i ≤ ` ∈ N. Now de�ne

• the C-mixing coe�cient by:

ΦC(Z, n) := sup {|E(f ◦ Zi+n)ϕ− EϕEf ◦ Zi+n| |

i ∈ N, f ∈ C1, ϕ (Ai1,B) measurable with ‖ϕ‖1 ≤ 1
}
, (2.12)

• the time reversed C-mixing coe�cient by:

ΦC,rev(Z, n) := sup {|E(f ◦ Zi)ϕ− Ef ◦ ZiEϕ| |

i ∈ N, f ∈ C1, ϕ (A∞i+n,B) measurable with ‖ϕ‖1 ≤ 1
}
. (2.13)

A stochastic process is called C-mixing or time reversed C-mixing if the coe�cients ΦC re-

spectively ΦC,rev are summable.

Throughout the thesis, we are concerned with C-mixing with respect to the class of bounded

Lipschitz functions BL(Z) := {f : Z → R | ||f ||BL <∞} and therefore have:

‖f‖C := ‖f‖∞ + |f |1 = ‖f‖BL,

where ‖ · ‖BL is called the bounded Lipschitz norm.



Chapter 3

Qualitative robustness

Qualitative robustness is a continuity property of the estimator and means roughly speaking:

small changes in the distribution of the data only lead to small changes in the distribution

(i. e. the performance) of the estimator. In this way the following kinds of "small errors"

are covered: small errors in all data points and large errors in only a small fraction of the

data points (gross errors, outliers). Qualitative robustness of estimators has been de�ned

originally in Hampel (1968) and Hampel (1971) in the i.i.d. case and has been generalized

to estimators for stochastic processes in various ways, for example, in Papantoni-Kazakos

and Gray (1979), Bustos (1980), which will be the one used here, Cox (1981), Boente et al.

(1987), Zähle (2015), and Zähle (2016), for a more local consideration of qualitative robust-

ness, see for example Krätschmer et al. (2017).

In the i.i.d. case, qualitative robustness is often proved by use of Hampel's theorem, see

Hampel (1971) and also Cuevas (1988), as it is usually hard to be shown directly. By

Hampel's theorem, qualitative robustness of an estimator is ensured if the estimator can be

represented by a continuous statistical operator on the space of all probability measures.

Here we generalize this theorem to those non-i.i.d. processes which provide convergence

of their corresponding empirical measure. We also show that the empirical measure con-

verges if the process satis�es a law of large numbers; this leads to various generalizations of

Varadarajan's theorem to non-i.i.d. cases. Alternative generalizations of Hampel's theorem

can be found in Zähle (2015) and Zähle (2016). Here only independence is weakened, while

the data still have to be identically distributed. For a slightly di�erent generalization of

qualitative robustness, Hampel's theorem has been formulated for strongly stationary and

ergodic processes in Cox (1981) and Boente et al. (1982); these processes are covered as a

special case of our result.

13
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3.1 Qualitative robustness for non-i.i.d. observations

Let (Z, dZ) be a complete separable metric space with Borel σ-algebra B. Denote byM(ZN)

the set of all probability measures on (ZN,B⊗N). Let (ZN,B⊗N,M(ZN)) be the underlying

statistical model. If nothing else is stated, we always use Borel σ-algebras for all topological

spaces. Let (Zi)i∈N be the coordinate process on ZN, that is Zi : ZN → Z, (zj)j∈N 7→ zi, i ∈
N. Then the process has law PN under PN ∈M(ZN). Moreover let Pn := (Z1, . . . , Zn)(PN)

be the n-th order marginal distribution of PN for every n ∈ N and PN ∈ M(ZN). We

are concerned with a sequence of estimators (Sn)n∈N on the stochastic process (Zi)i∈N.

The estimator may take its values in any complete separable metric space H; that is,

Sn : Zn → H for every n ∈ N.

Following Boente et al. (1987), we use a de�nition originating from Bustos (1980) which

generalizes Hampel's concept of Π-robustness:

De�nition 3.1.1 (Qualitative robustness (Bustos (1980))) Let πn be the Prohorov

metric on M(Zn) for every n ∈ N. Then, the sequence of estimators (Sn)n∈N is called

qualitatively (πn)n∈N-robust at PN if, for every ε > 0, there is a δ > 0 such that, for all

n ∈ N and QN ∈M(ZN),

πn(Pn, Qn) < δ ⇒ πdH (LPn(Sn),LQn(Sn)) < ε

where LPn(Sn) (and LQn(Sn)) denotes the distribution of the estimator Sn under Pn (and

Qn respectively) and πdH denotes the Prohorov metric onM(H).

Note that qualitative (πn)n∈N-robustness at PN is a local property.

Recall that the Prohorov metric πe of two probability measures P and Q on any metric

space (X , e) is given by

πe(P,Q) = inf
{
ε > 0 : P (A) ≤ Q(Aε) + ε for all measurable A ⊂ X

}
where Aε = {x ∈ X : e(x,A) < ε}.

Even in the i.i.d. case, it is usually hard to directly show qualitative robustness of estima-

tors. Instead, qualitative robustness in the i.i.d. case is typically shown by use of Hampel's

theorem (Hampel (1971, page 1892)); see also Cuevas (1988, Theorem 2) for estimators

taking values in an arbitrary complete separable metric spaces. This theorem applies to
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estimators which can be represented by a statistical operator S. This means, that there is

a map S :M(Z)→ H such that:

S
(
Pwn

)
= Sn(wn) = Sn(z1, . . . , zn) ∀wn = (z1, . . . , zn) ∈ Zn ∀n ∈ N (3.1)

where Pwn denotes the empirical measure de�ned by Pwn(B) := 1
n

∑n
i=1 IB(zi), B ∈ B, for

the observations wn = (z1, ..., zn) ∈ Zn. Then, according to Hampel's theorem, a sequence

of estimators which can be represented by a operator via (3.1) is qualitatively robust with

respect to the Prohorov metric π onM(Z) in the i.i.d. case if S is continuous (with respect

to the Prohorov metric onM(Z)).

The goal of this section is to obtain a similar result also in the non-i.i.d. case: accordingly,

we restrict our attention to estimators which can be represented by a statistical operator.

These estimators can be seen as plug-in estimators using the empirical measure. In case

of non-i.i.d. data, applying an estimator based on the empirical measure is not always

sensible because the empirical measure does not need to be meaningful then. However,

using the empirical measure is possible if it converges for increasing sample size n. As will

be seen, such a convergence of the empirical measure is the only assumption we need for

(Zi)i∈N, respectively PN. When working through the original proof of Hampel's theorem

in Hampel (1971), it turns out that the i.i.d. assumption is only needed in one step of

the proof in which Varadarajan's theorem is used: if Zi ∼ P i.i.d., then, for almost every

(zj)j∈N ∈ ZN, the empirical measure PWn(z1,...) converges weakly to P for n → ∞ and

Wn = (Z1, . . . , Zn). That is, in order to generalize Hampel's theorem, it is crucial to

generalize Varadarajan's theorem to the non-i.i.d. case. This is the goal of the following

section in which it is shown that Varadarajan's theorem can be generalized to many other

processes such as certain mixing processes, strongly stationary ergodic processes, and certain

weakly dependent processes. In particular, the independence assumption in Varadarajan's

classical theorem can be relaxed to pairwise independence. Recall that weak convergence

of probability measures on Polish spaces can be expressed by use of the Prohorov metric so

that a reformulated version of Varadarajan's theorem says that, for Zi ∼ P i.i.d.,

πdZ
(
PWn , P

)
−−−−→
n→∞

0 almost surely for Wn = (Z1, . . . , Zn) . (3.2)

As shown in Section 3.2, also many non-i.i.d. processes ful�l (3.2) and we call any such

process a (strong) Varadarajan process � and, if a.s.-convergence is replaced by convergence

in probability, we use the term weak Varadarajan process. Recall that the convergence above

depends on the probability measure, i. e. the Varadarajan property is a local property.
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De�nition 3.1.2 Let (Ω,A, µ) be a probability space and (Z, dZ) a separable metric space.

De�ne Wn = (Z1, . . . , Zn) for every n ∈ N. Then the stochastic process (Zi)i∈N , Zi :

Ω → Z, i ∈ N, is called (strong) Varadarajan process if there exists a probability measure

P ∈M(Z) such that

π(PWn , P ) −−−−→
n→∞

0 almost surely.

It is called weak Varadarajan process if

π(PWn , P ) −−−−→
n→∞

0 in probability,

where π is the Prohorov metric onM(Z).

Now, we can state our generalization of Hampel's theorem, which is one of our main results.

It says that, by use of our de�nition of Varadarajan processes, Hampel's theorem can be

generalized to Bustos' notion of qualitative robustness for dependent data. A second result,

stated later on (Theorem 3.2.1), then yields many examples for Varadarajan processes:

whenever a process ful�ls a law of large numbers, then it is a Varadarajan process. There

are di�erent kinds of generalizations of Hampel's theorem to the non-i.i.d. case. For example

Cox (1981, Corollary 1) and Boente et al. (1982, Theorem 4.3) derive qualitative robustness

at a probability measure PN for strongly stationary ergodic processes. The assumptions

on the statistical operator S and the estimator Sn, namely the continuity in PN and the

continuity on ZN, are the same as in Theorem 3.1.3 below. As shown in Section 3.2,

strongly stationary ergodic processes also have the Varadarajan property so that we cover

these processes as a special case for qualitative robustness in the sense of De�nition 3.1.

Theorem 3.1.3 Let Z, H be complete separable metric spaces. Let the sequence of estima-

tors (Sn)n∈N be represented by an operator S :M(Z)→ H via (3.1). Let PN ∈ M(ZN). If

(Zi)i∈N , Zi : ZN → Z, (zj)j∈N 7→ zi, i ∈ N is a weak Varadarajan process under PN with

limiting distribution P , S :M(Z) → H is continuous (with respect to the Prohorov metric

onM(Z)) in P and the estimators Sn : Zn → H, n ∈ N, are continuous, then the sequence

of estimators (Sn)n∈N is qualitatively (πdn)n∈N-robust at PN where the metric dn on Zn is

de�ned as

dn
(
(z1, . . . , zn), (z′1, . . . , z

′
n)
)

= inf
{
ε > 0 : ]{i : dZ(zi, z

′
i) ≥ ε}/n ≤ ε

}
. (3.3)

Before we prove the result, it is advisable to have a closer look on the metrics, which should

be used here. For the metric πn onM(Zn) it is tempting to use a p-product metric dn,p on
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Zn, that is,

dn,p
(
(z1, . . . , zn), (z′1, . . . , z

′
n)
)

=
∥∥(dZ(z1, z

′
1), . . . , dZ(zn, z

′
n)
)∥∥
p

(3.4)

where ‖ · ‖p is the pn-norm on Rn for 1 ≤ p ≤ ∞. For example, dn,2 is the Euclidean

metric and dn,∞
(
(z1, . . . , zn), (z′1, . . . , z

′
n)
)

= maxi dZ(zi, z
′
i); all these metrics are strongly

equivalent (see De�nition A1). However, some more care is needed here because, with these

common metrics, the sample mean would turn out to be qualitatively (πdn,p)n∈N-robust at

every PN ∈ M(ZN); see Proposition 3.1.4 below. Following Boente et al. (1987) again,

we use the metric dn on Zn de�ned in (3.3). This metric covers the intuitive meaning of

robustness: two points in Zn (i. e., two data sets) are close if only a small fraction of the

coordinates are far-o� (gross errors) and all other coordinates are close (small rounding

errors). The ordinary p-product metrics dn,p would only cover rounding errors but exclude

gross errors so that the sample mean becomes "robust", see Proposition 3.1.4. Though

dn is not strongly equivalent to dn,p in general, it is always topologically equivalent; see

Lemma 3.1.5 in the Appendix. This is important as we consider Zn as the n-fold product

space of the Polish space (Z, dZ). The product space Zn is again a Polish space (in the

product topology) and, according to Lemma 3.1.5, it is metrizable also with metric dn. By

use of πn = πdn in De�nition 3.1.1, this notion of qualitative robustness indeed generalizes

Hampel's Π-robustness: if (Zn)n∈N, Zi ∼ P i.i.d., then any sequence of estimators (Sn)n∈N

is qualitatively (πdn)n∈N-robust at PN if and only if it is Π-robust in P1; see Boente et al.

(1987, Theorem 3.1).

The following Proposition shows that the robustness of the sample mean depends on the

metric; in a somewhat di�erent setting, a similar result is given by Cox (1981, Proposition

3).

Proposition 3.1.4 Let Z = R, dZ(z, z′) = |z − z′| for all z, z′ ∈ R.

(a) The sample mean is (πdn,p)n∈N-robust at every PN ∈M(ZN).

(b) Let (ZN,B⊗N, PN), PN ∈ M(ZN) be an arbitrary probability space and let (Zi)i∈N, Zi :

ZN → Z, (zj)j∈N 7→ zi, i ∈ N, be a stochastic process. If (Zi)i∈N satis�es

1

n

n∑
i=1

Zi → c in probability

for a constant c > 0 then the sample mean is not (πdn)n∈N-robust at PN.
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Note that if the assumption in part (b) of Proposition 3.1.4 is violated for (Zi)i∈N, then

using the sample mean is pointless anyway.

To prove Proposition 3.1.4 we need the following lemma on the topological equivalence of

the metrics dn and dn,p, mentioned above.

Lemma 3.1.5 Let (Z, dZ) be a metric space. Then, for every n ∈ N and p ∈ [1,∞], the

metrics dn,p and dn de�ned in (3.4) and (3.3) are topologically equivalent on Zn.

Proof: Let w
(k)
n = (z

(k)
1 , . . . , z

(k)
n ) ∈ Zn for all k ∈ N and wn = (z1, . . . , zn) ∈ Zn.

First, let dn,p(w
(k)
n ,wn)→ 0 for k →∞. Then, according to (3.4) and (3.3) we have:

dn(w(k)
n ,wn) ≤ max

i∈{1,...,n}
dZ(z

(k)
i , zi) ≤ dn,p(w

(k)
n ,wn)→ 0, for k →∞.

Conversely let dn(w
(k)
n ,wn) → 0 for k → ∞. For every ε0 ∈ (0, 1

n) there is a k0 ∈ N such

that dn(w
(k)
n ,wn) ≤ ε0 for all k ≥ k0. Therefore the de�nition of dn yields:

]{i ∈ {1, . . . , n} | dZ(z
(k)
i , zi) ≥ ε0} ≤ ε0n < 1, for all k ≥ k0.

So, ]{i ∈ {1, . . . , n} | dZ(z
(k)
i , zi) ≥ ε0} = 0 and therefore d(z

(k)
i , zi) < ε0 for all i ∈

{1, . . . , n} and k ≥ k0. Hence,

dn,p(w
(k)
n ,wn) < n1/pε0, for all k ≥ k0. �

Now, we prove Proposition 3.1.4 concerning the qualitative robustness of the sample mean.

Proof of Proposition 3.1.4: For ε > 0, chose δ = 1
2ε. Let PN ∈ M(ZN) be an arbitrary

probability measure, (Zi)i∈N, Zi : ZN → Z, (zj)j∈N 7→ zi, i ∈ N, the i-th coordinate projec-

tion and de�ne Pn := (Z1, . . . , Zn)(PN). Now choose QN ∈M(ZN), Qn = (Z1, . . . , Zn)(QN),

such that πdn,p(Pn, Qn) < δ, for all n ∈ N and let the estimate Sn(wn) be the sample mean
1
n

∑n
i=1 zi. According to the de�nition of the Prohorov distance:

Pn(A) ≤ Qn(Aδ) + δ ∀A ∈ B⊗n, n ∈ N.

Hence with A := S−1
n (B), B ∈ B:

LPn(Sn)(B) = Pn(A) ≤ Qn(Aδ) + δ, n ∈ N.
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As dn,p(wn,w
′
n) < δ implies |Sn(wn) − Sn(w′n)| = | 1n

∑n
i=1(zi − z′i)| ≤ dn,p(wn,w

′
n) < δ,

we see Aδ ⊂ S−1
n (Bδ), n ∈ N. Therefore LPn(Sn)(B) ≤ Qn(S−1

n (Bδ)) + δ, respectively

πd(LPn(Sn)(B),LQn(Sn)(B)) ≤ δ < ε for all n ∈ N

which implies the qualitative robustness at PN and proves part (a) of Proposition 3.1.4.

For the second part choose ε = 1
4 and B = [c− 1, c+ 1].

We show that for every δ > 0, there is an n ∈ N and a Qn ∈M(Zn) such that πdn(Pn, Qn) <

δ but LPn(Sn)(B) > LQn(Sn)(Bε) + ε; this proves part (b). There is n1 ∈ N such that for

every n ≥ n1: LPn(Sn)(B) > 1
2 , as

1
n

∑n
i=1 Zi converges in probability to c. Furthermore

de�ne Qn = LQN(Z1, . . . , Zn) with Qn((z1 + 2n, z2, . . . , zn)) = Pn(z1, z2, . . . , zn). Hence

1

n

n∑
i=1

Zi −−−→
n→∞

c+ 2 in probability

and therefore there is n2 ∈ N such that for all n > n2: LQn(Sn)(Bε) < 1
4 .

Now choose an arbitrary δ > 0, and n3 ∈ N such that 1
n3
< δ.

Since dn((z1, . . . , zn), (z1 + 2n, z2, . . . , zn) ≤ 1
n < δ for every n ≥ n3 it follows,

Pn(B) ≤ Qn(Bδ) + δ, ∀B ∈ B⊗n,

respectively πdn(Pn, Qn) < δ, for all n ≥ n3. But for any n ≥ max{n1, n2, n3} we have:

LPn(Sn)(B) >
1

2
> LQn(Sn)(Bε) + ε

and therefore the sample mean is not qualitatively (πdn)n∈N-robust. �

The proof of Theorem 3.1.3 follows the lines of the proof of Hampel (1971, Theorem 1).

However, some care is needed as independence is dropped and we have to work with prob-

ability measures on the product space Zn and with the special metric dn. First, we need

the following Lemma which gives us a condition that implies qualitative robustness. It is

a generalization of Hampel (1971, Lemma 1) but the proof is only a variant of the original

proof. Let Z, H be complete separable metric spaces.

Lemma 3.1.6 Let (Sn)n∈N, Sn : Zn → H, be a sequence of estimators. Let PN ∈M(ZN)

be probability measures with n-th order marginal distribution Pn = (Z1, . . . , Zn)(PN), such
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that for all ε > 0 and for all η > 0, there exists a δ > 0 such that, for all n ∈ N, there is a

Bn ∈ B⊗n with the following properties

(i) Pn(Bn) > 1− η (3.5)

(ii) If dn(wn,w
′
n) < δ, wn ∈ Bn, w′n ∈ Zn then dH(Sn(wn), Sn(w′n)) < ε. (3.6)

Then the estimator Sn, n ∈ N, is qualitatively (πdn)n∈N-robust at PN.

Proof: Let ε > 0, n ∈ N and η := 1
2ε. By assumption, there is a δ > 0 such that (3.5) and

(3.6) applies. De�ne δ̃ := min{1
2δ,

ε
2} and choose QN ∈ M(ZN) such that πdn(Pn, Qn) ≤ δ̃,

n ∈ N. Then, according to Dudley (1989, Theorem 11.6.2), there exists Kn ∈M(Zn ×Zn)

with:

Kn(B1 ×Zn) = Pn(B1) ∀B1 ∈ B⊗n (3.7)

Kn(Zn ×B2) = Qn(B2) ∀B2 ∈ B⊗n (3.8)

Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dn(wn,w

′
n) > δ̃

})
< δ̃. (3.9)

With η = 1
2ε, it follows that

Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dH(Sn(wn), Sn(w′n)) ≤ ε

})
≥ Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dn(wn,w

′
n) < δ, wn ∈ Bn

})
≥ Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dn(wn,w

′
n) ≤ δ̃, wn ∈ Bn

})
= 1−Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dn(wn,w

′
n) > δ̃ or wn /∈ Bn

})
(3.7)

≥ 1−Kn

({
(wn,w

′
n) ∈ Zn ×Zn | dn(wn,w

′
n) > δ̃

})
− Pn(BC

n )

(3.9),(3.5)
> 1− δ̃ − η ≥ 1− ε

and Kn ({(wn,w
′
n) ∈ Zn ×Zn | dH(Sn(wn), Sn(w′n)) > ε}) < ε.

Now de�ne KN ∈ M(ZN × ZN) such that (Wn,Wn)(KN) = Kn, n ∈ N, where Wn =

(Z1, . . . , Zn) : ZN → Zn the projection on the �rst n coordinates.

Then we have:

(Wn,Wn)(KN)(B1 ×Zn) = Kn((B1 ×Zn) = Pn(B1) ∀B1 ∈ B⊗n

(Wn,Wn)(KN)(Zn ×B2) = Kn(Zn ×B2) = Qn(B2) ∀B2 ∈ B⊗n.
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The boundedness of the Prohorov metric by the Ky Fan metric, see Dudley (1989, Theorem

11.3.5), yields for the Prohorov distance:

πdH (Sn(Pn), Sn(Qn)) = πdH (Sn ◦Wn(PN), Sn ◦Wn(QN))

≤ inf{ε̃ > 0 |KN(dH(Sn ◦Wn, Sn ◦Wn) > ε̃) ≤ ε̃}

= inf
{
ε̃ > 0 | (Wn,Wn)(KN)({(wn,w

′
n) | dH(Sn(wn), Sn(w′n)) > ε̃}) ≤ ε̃

}
= inf

{
ε̃ > 0 | Kn({(wn,w

′
n) | dH(Sn(wn), Sn(w′n)) > ε̃}) ≤ ε̃

}
≤ ε

and therefore, the assertion. �

Proof of Theorem 3.1.3: As in the original proof of Hampel (1971, Theorem 1), we show

at �rst that the conditions of Lemma 3.1.6 are satis�ed for su�ciently large n.

Let ε > 0 and η > 0. With S being continuous at P , there exists a δ0 > 0 such that, for

every wn ∈ Zn:
π(P,Pwn) < 2δ0 ⇒ dH(S(P ), S(Pwn)) <

ε

2
. (3.10)

Now, let dZ denote the metric on Z and dn is de�ned as in (3.3). For wn = (z1, . . . , zn)

and w′n = (z′1, . . . , z
′
n), de�ne I = {i ∈ {1, . . . , n} | dZ(zi, z

′
i) ≥ δ0}. Then dn(wn,w

′
n) ≤ δ0

implies ]I ≤ nδ0 and therefore:

Pwn(B) =
1

n

n∑
i=1

IB(zi) =
1

n

∑
i/∈I

IB(zi)+
1

n

∑
i∈I

IB(zi) ≤
1

n

n∑
i=1

IBδ0 (z′i)+δ0 = Pw′n(Bδ0)+δ0.

With the de�nition of the Prohorov distance π it follows that:

dn(wn,w
′
n) < δ0 ⇒ πdZ (Pwn ,Pw′n) ≤ δ0. (3.11)

Knowing that (Zi)i∈N is a weak Varadarajan process, we can �nd an n0 ∈ N with

Pn ({wn ∈ Zn | πdZ (P,Pwn) ≥ δ0}) < η ∀n ≥ n0

De�ne the set Bn := {wn ∈ Zn | πdZ (P,Pwn) < δ0}, then: Pn(Bn) > 1− η.

Therefore, for wn ∈ Bn and w′n ∈ Zn with dn(wn,w
′
n) < δ0:

πdZ (Pw′n , P ) ≤ πdZ (Pwn , P ) + πdZ (Pwn ,Pw′n)
(3.11)
< 2δ0 as wn ∈ Bn.
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So, for every wn ∈ Bn,w′n ∈ Zn, (3.10) leads to:

dH(Sn(wn), Sn(w′n)) ≤ dH(Sn(wn), S(P )) + dH(Sn(w′n), S(P )) <
ε

2
+
ε

2
= ε. (3.12)

Due to Lemma 3.1.6 we can conclude: for all ε > 0, there is a δ0 such that for all n ≥ n0,

πdn(Pn, Qn) < δ0, Qn ∈M(Zn) ⇒ πdH (LPn(Sn),LQn(Sn)) < ε.

For n < n0 we proceed as follows: as wn 7−→ Sn(wn) = S(Pwn) is continuous, so is

Qn 7−→ LQn(Sn) with respect to the weak topology. To show this, consider a sequence

(Qn,k)k∈N ⊂M(Zn) with Qn,k → Qn,0 as k →∞ in the weak topology onM(Zn). Then,

for every continuous and bounded f, the composition f ◦Sn is again continuous and bounded

so that:∫
fd(Sn(Qn,k)) =

∫
f ◦ Sn dQn,k

k→∞−−−→
∫
f ◦ Sn dQn,0 =

∫
fd(Sn(Qn,0)).

So, for every n < n0, for every ε > 0 there exists a δn such that:

πdn(Pn, Qn) < δn ⇒ πdH (LPn(Sn),LQn(Sn)) < ε.

By choosing δ = min{δ0, δ1, . . . , dn0−1} the assertion of Theorem 3.1.3 follows. �

Another short remark should be made about the required continuity of Sn:

Remark 3.1.7 The continuity of Sn on Zn is with respect to the product topology on Zn

which is also generated by the p-metrics dn,p. As already mentioned above, these metrics

are topologically equivalent to dn. Continuity of Sn is automatically ful�lled if S is not only

continuous in P but on the whole domain M(Z). This follows from (3.11) and (3.12) in

the proof of the above theorem, as we can use the continuity of S to show the continuity of

wn → Sn(wn) there.

In many cases, estimators originally developed for i.i.d. data are also used by practition-

ers in their data analysis for non-i.i.d. data. In this situation, a pleasant consequence of

Theorem 3.1.3 is: any estimator which has been shown to be qualitatively robust by use

of Hampel's theorem in the i.i.d. case is also qualitatively robust for the non-i.i.d. case

without further ado � as long as (Zi)i∈N is a Varadarajan process on (ZN,B⊗N, PN). Note

that PN plays the role of the ideal, uncontaminated distribution and that we only assume
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the Varadarajan property for (Zi)i∈N for this ideal distribution. The observations may be

contaminated and, accordingly, come from a di�erent distribution QN. The observed, con-

taminated process (Zi)i∈N on (ZN,B⊗N, QN) does not need to be Varadarajan. In view of the

examples presented in the following section, this means that our results also cover violations

of properties such as stationarity, ergodicity, mixing etc. This is contrary to Zähle (2015)

and Zähle (2016) in which an alternative generalization of Hampel's theorem for non-i.i.d.

cases is shown. There, the empirical measure has to converge not only for the ideal, uncon-

taminated process (Zi)i∈N for PN but also for the observed, contaminated process (Zi)i∈N

on (ZN,B⊗N, QN) . Furthermore, only independence is dropped in Zähle (2015) and Zähle

(2016) but the Zi, i ∈ N, are still assumed to be identically distributed for PN as well as for

QN. However, the continuity assumption on S is less restrictive in Zähle (2015) and Zähle

(2016) than in our Theorem 3.1.3; it is only assumed that S is continuous in P .

Di�erent kinds of generalizations of Hampel's de�nition of qualitative robustness and their

relationship can be found in Cox (1981) and Boente et al. (1982).

3.2 Examples for Varadarajan processes

3.2.1 Glivenko-Cantelli theorems, laws of large numbers, and the Varadara-

jan property

In order to �nd examples for Varadarajan processes, we connect the Varadarajan property

to two classical concepts concerning convergence of the empirical distribution. Glivenko-

Cantelli theorems are the �rst concept. The classical Glivenko-Cantelli theorem assumes

i.i.d. stochastic processes with values in R, and states the uniform convergence of the em-

pirical distribution function Fn to the distribution function F :

sup
t∈R
|Fn(t)− F (t)| −→ 0 almost surely (3.13)

As we are especially interested in results for dependent observations, we now consider an

arbitrary stochastic process with values in R, that is a process which is not necessarily

i.i.d. If this process also ful�ls (3.13) as in the classical Glivenko-Cantelli theorem for i.i.d.

processes, then it easily follows (from the Portmanteau theorem) that the process is also a

a strong Varadarajan process. If convergence almost surely is replaced by convergence in

probability, then it is a weak Varadarajan process. It is even possible to reformulate the

de�nition of the Varadarajan property in terms of Glivenko-Cantelli theorems. A class F of
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measurable functions f : Z → R is called Glivenko-Cantelli class if there exists a probability

measure P ∈M(Z) such that: supf∈F | 1n
∑n

i=1 f(Zi)−
∫
f dP | → 0 almost surely, see e. g.

(van der Vaart, 1998, p. 269).

Now, let F := BL1(Z, dZ) = {f : Z → R | ‖f‖BL ≤ 1} be the set of bounded Lipschitz

functions with ‖f‖BL ≤ 1, where ‖ · ‖BL := | · |1 + ‖ · ‖∞ denotes the bounded Lipschitz

norm with |f |1 = supx 6=y
|f(x)−f(y)|
dZ(x,y) and ‖ ·‖∞ the supremum norm ‖f‖∞ := supx |f(x)| and

dZ is a metric on Z. Then, it follows from Dudley (1989) Theorem 11.1.2 that (Zi)i∈N is a

Varadarajan process if and only if F is a Glivenko-Cantelli class for (Zi)i∈N.

To verify that a stochastic process ful�ls a Glivenko-Cantelli theorem it is always necessary

to show uniform convergence of the empirical distribution function. As it is often hard to

show uniform convergence in applications we relate the Varadarajan property to a second

classical concept, namely laws of large numbers. Theorem 3.2.1 below shows that any

process which ful�ls a (weak) law of large numbers is a (weak) Varadarajan process. This

is of great practical value because, usually, it is much easier to show a non-uniform law of

large numbers than Glivenko-Cantelli theorems or convergence in the Prohorov distance.

According to De�nition 2.1 in Steinwart et al. (2009), a Z-valued stochastic process on a

measurable space (Z,B) satis�es the weak law of large numbers for events (WLLNE) if, for

all B ∈ B, there exists a constant cB ∈ R such that: 1
n

∑n
i=1 IB ◦ Zi −→ cB in probability

as n tends to in�nity. The process (Zi)i∈N is said to satisfy a strong law of large numbers

for events (SLLNE) if the above convergence applies almost surely.

Theorem 3.2.1 Let (Ω,A, µ) be a probability space, (Z, dZ) a separable metric space, and

(Zi)i∈N a stochastic process with Zi : Ω → Z.

(a) If (Zi)i∈N satis�es the SLLNE then (Zi)i∈N is a strong Varadarajan process.

(b) If (Zi)i∈N satis�es the WLLNE then (Zi)i∈N is a weak Varadarajan process.

This theorem does not only provide us with many examples of (weak) Varadarajan processes

in the next subsection, but is also interesting on its own as it can be seen as a generaliza-

tion of Varadarajan's theorem for non-i.i.d. cases. In particular, from Etemadi's law of

large numbers (see, e. g., Ho�mann-Jørgensen (1994, Chapter 4.12)) it follows then that the

assumption of independence in Varadarajan's theorem can be relaxed to pairwise indepen-

dence. Furthermore, from Birkho�'s ergodic theorem (see, e. g., Breiman (1968, Chapter 6)),

it follows that Varadarajan's theorem is also valid for strongly stationary ergodic processes.
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We need the following lemma which provides the fact that the set of bounded Lipschitz

functions BL(Z, e) := {f : Z → R | ‖f‖BL <∞} is separable with respect to ‖ · ‖∞ if (Z, e)
is totally bounded, in order to prove Theorem 3.2.1(a) and 3.2.1(b) The proof can be found

in Dudley (1989, included in the proof of Theorem 11.4.1).

Lemma 3.2.2 If (Z, e) is a totally bounded metric space, then BL(Z, e) is separable with

respect to ‖ · ‖∞.

With this result we can give the proof of Theorem 3.2.1(a) and 3.2.1(b) for processes (Zi)i∈N

with values in arbitrary separable metric spaces (Z, dZ).

Proof of Theorem 3.2.1(a): According to Dudley (1989, Theorem 2.8.2) we can �nd a

metric e on Z de�ning the same topology as dZ such that (Z, e) is totally bounded. Then

Lemma 3.2.2 yields existence of a countable and dense subset G of BL(Z, e) with respect

to ‖ · ‖∞. As (Zi)i∈N satis�es the SLLNE, there exists a probability measure P such that,

for all f ∈ L∞(Z):

EP f = lim
n→∞

1

n

n∑
i=1

f ◦ Zi µ-almost surely,

see Steinwart et al. (2009, Lemma 2.5). Then, for all g ∈ G, we have a subset Ng ∈ A with

µ(Ng) = 0 such that

EP g = lim
n→∞

1

n

n∑
i=1

g ◦ Zi(w) ∀ω ∈ Ω\Ng (3.14)

Due to the countability of G, we �nd N =
⋃
g∈GNg with µ(N) = 0 and for all ω ∈ Ω\N ,

g ∈ G, (3.14) applies.
Let f be in BL(Z, e), then for every ε > 0 there is a gε ∈ G such that ‖f − gε‖∞ < ε and∣∣∣∣∣EP f − 1

n

n∑
i=1

f ◦ Zi

∣∣∣∣∣
≤ |EP f − EP gε|+

∣∣∣∣∣ 1n
n∑
i=1

(f ◦ Zi − gε ◦ Zi)

∣∣∣∣∣+

∣∣∣∣∣EP gε − 1

n

n∑
i=1

gε ◦ Zi

∣∣∣∣∣
≤ 2‖f − gε‖∞ +

∣∣∣∣∣EP gε − 1

n

n∑
i=1

gε ◦ Zi

∣∣∣∣∣ .
Hence, it follows from the de�nition of N and (3.14) that
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lim sup
n→∞

∣∣∣∣∣EP f − 1

n

n∑
i=1

f ◦ Zi(ω)

∣∣∣∣∣ ≤ 2ε ∀ε > 0, ∀ω ∈ Ω\N

and, therefore,

µ

({
ω ∈ Ω

∣∣∣ lim
n→∞

1

n

n∑
i=1

f ◦ Zi(ω) =

∫
Z
f dP, f ∈ BL(Z, e)

})
= 1.

Due to the Portmanteau theorem, e. g. see Dudley (1989, Theorem 11.3.3), this implies

PWn(ω) → P weakly for almost every ω ∈ Ω, i. e., if Cb(Z) is the set of all continuous and

bounded functions f : Z → R:

µ

({
ω ∈ Ω | lim

n→∞

∫
f dPWn(ω) =

∫
f dP, f ∈ Cb(Z)

})
= 1.

Now the continuity of a function is a topological property and does not depend on the metric

dZ or e, if they de�ne the same topology. Then we follow, again with the Portmanteau

theorem, µ
({
ω ∈ Ω | limn→∞ πdZ (P,PWn(ω)) = 0

})
= 1 and therefore, the assertion. �

To prove the second part of Theorem 3.2.1 we need the following lemma:

Lemma 3.2.3 Let BL1 := {f ∈ BL(Z, e) | ‖f‖BL ≤ 1}. If (Z, e) is a totally bounded

metric space, then BL1(Z, e) is totally bounded.

Proof: Let (C, e0) be the completion of (Z, e), according to Dudley (1989, Theorem 2.5.1).

That is, there is a bijective isometry I: (Z, e) → (A, e0) such that A ⊂ C is dense. With

(Z, e) being totally bounded, (A, e0) is also totally bounded. This applies, because for every

ε > 0 there are xε1, ..., x
ε
k ∈ (Z, e) such that for every y ∈ (Z, e) there is a j ∈ {1, ..k} such

that e(y, xεj) < ε.

Now, choose an arbitrary ε > 0 and de�ne sε1 := I(xε1), ..., sεk := I(xεk). For every s ∈ A
there is a x ∈ Z with I(x) = s and there is a xεj with e1(x, xεj) < ε. Then, applying that I

is an isometry, e2(s, sεj) = e2(I(x), I(xεj)) = e1(x, xεj) < ε. So, for every ε > 0 one can �nd

sε1, ..., s
ε
k such that A ⊂

⋃k
i=1Bε(s

ε
i ) where Bε(s) denotes the ball around x with radius ε.

So, the completion (C, e0) is compact, as A is dense in C. De�ne the set G := {g ∈
BL(A, e0) | ‖g‖BL(A,e0) ≤ 1}. Then we see from Dudley (1989, Proposition 11.2.3) that

every g ∈ G has an extension h ∈ BL(C, e0) with h|A = g and ‖h‖BL(C,e0) = ‖g‖BL(A,e0).

Moreover, the set H := {h ∈ BL(C, e0) | h is an extension of g ∈ G} is uniformly bounded
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in C (C), where C (C) denotes the set of all continuous functions f : C → R because

‖h‖∞ ≤ ‖h‖BL(C,e0) = ‖g‖BL(A,e0) ≤ 1 for every h ∈ H, and H is equicontinuous as ev-

ery h ∈ H is Lipschitz with |h|1 ≤ ‖h‖BL ≤ 1. Applying the Arzelà-Ascoli theorem, see

e. g. Conway (1985, Theorem VI 3.8), the set H, considered as a subset of C(C), is totally

bounded with respect to ‖ · ‖∞. i. e., for every ε > 0 there is a k = kε ∈ N such that there

are hε1, ..., h
ε
k such that H ⊂

⋃k
i=1Bε(h

ε
i ).

De�ne gε1 := hε1|A , ..., g
ε
k := hεk|A for every ε > 0. Using that H is totally bounded, we

can �nd, for every g ∈ G, a j ∈ {1, . . . , k} such that ‖g − gεj‖∞ = sups∈A |g(s) − gεj (s)| =

sups∈A |h(s)−hεj|A(s)| ≤ sups∈C |h(s)−hεj(s)| < ε. So G is totally bounded with respect to

‖ · ‖∞.
A simple computation using the properties of I shows that, for all g ∈ G, the composi-

tion g ◦ I is an element of BL(Z, e) with ‖g ◦ I‖BL(Z,e) = ‖g‖BL(A,e0) ≤ 1. And therefore

{g ◦ I |g ∈ G} ⊂ BL1. An analogous computation shows that, for every f ∈ BL1(Z, e), the
composition f ◦I−1 is an element of BL(A, e0) with ‖f‖BL(Z,e) = ‖f ◦I−1‖BL(A,e0) and there-

fore, f ◦I−1 ∈ G. Hence we �nd, for every f ∈ BL1(Z, e), a g ∈ G such that g = f ◦I−1 and

therefore, f = g ◦ I, respectively BL1(Z, e) = {f ∈ BL(Z, e) | ‖f‖BL ≤ 1} ⊂ {g ◦ I |g ∈ G}.
So both sets are equal. Now de�ne, for every ε > 0, f ε1 := gε1 ◦ I, ..., fεk := gεk ◦ I. As G

is totally bounded we �nd, for every ε > 0 and every g ∈ G, a j ∈ {1, . . . , k} such that

‖g−gεj‖∞ < ε. As there is, for every f ∈ BL1(Z, e), a g such that f = g ◦ I we can conclude

for all f ∈ BL1(Z, e): ‖f − gεj ◦ I‖∞ = ‖g ◦ I − gεj ◦ I‖∞ < ε, i. e. BL1(Z, e) is totally

bounded. �

Proof of Theorem 3.2.1(b): Using that (Z, dZ) is a separable metric space, Dudley

(1989, Theorem 2.8.2) states that there is a metric e de�ning the same topology as dZ such

that (Z, e) is totally bounded.

As required the process (Zi)i∈N satis�es the WLLNE, and therefore, see Steinwart et al.

(2009, Lemma 2.5), for all ε > 0 and for all f ∈ L∞(Z):

lim
n→∞

µ

({
ω ∈ Ω

∣∣∣ ∣∣∣∣∣EP f − 1

n

n∑
i=1

f ◦ Zi(ω)

∣∣∣∣∣ > ε

})
= 0.

Particularly this is true for every f ∈ BL1(Z, e). Because the space BL1(Z, e) is totally

bounded, see Lemma 3.2.3, for every ε > 0, there are k = kε ∈ N and f εj , . . . , f
ε
k ∈ BL1(Z, e)
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such that, for every f ∈ BL1(Z, e) we can �nd a j ∈ {1, . . . , k} with ‖f − f εj ‖∞ ≤ ε.∣∣∣∣∫
Z
f dP −

∫
Z
f dPwn

∣∣∣∣ ≤ ∣∣∣∣∫
Z

(f − f εj ) dP

∣∣∣∣+

∣∣∣∣∫
Z

(f − f εj ) dPwn

∣∣∣∣
+

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPwn

∣∣∣∣
≤ 2‖f − f εj ‖∞ +

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPwn

∣∣∣∣ .
Hence, for all ε > 0 :

sup
f∈BL1

∣∣∣∣∫
Z
f dP −

∫
Z
f dPwn

∣∣∣∣ ≤ 2ε+ max
j∈{1,...,k}

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPwn

∣∣∣∣
and, for all ε′ > 0

µ

({
w ∈ Ω

∣∣∣ max
j∈{1,...,k}

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPWn(ω)

∣∣∣∣ > ε′
})

≤
k∑
j=1

µ

({
ω ∈ Ω

∣∣∣ ∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPWn(ω)

∣∣∣∣ > ε′
})
−→ 0, n→∞

because of the required properties of (Zi)i∈N .

For all ε′ > 0 we obtain with ε = ε′

3 :

µ

({
ω ∈ Ω

∣∣∣ sup
f∈BL1

∣∣∣∣∫
Z
f dP −

∫
Z
f dPWn(ω)

∣∣∣∣ > ε′

})

≤ µ

({
ω ∈ Ω

∣∣∣ 2ε+ max
j∈{1,...,k}

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPWn(ω)

∣∣∣∣ > ε′
})

= µ

({
ω ∈ Ω

∣∣∣ max
j∈{1,...,k}

∣∣∣∣∫
Z
f εj dP −

∫
Z
f εj dPWn(ω)

∣∣∣∣ > ε′

3

})
−→ 0, n→∞.

We choose the metric βe on the set of all distributions on (Z, e):

βe(P,Q) := sup

{∣∣∣∣∫
Z
f dP −

∫
Z
f dQ

∣∣∣∣ : f ∈ BL(Z, e), ‖f‖BL ≤ 1

}
.

Then the above convergence yields: for all ε > 0, µ ({ω ∈ Ω | βe(P,Pwn) > ε})→ 0 for n→
∞, see e. g. Dudley (1989, Proposition 11.3.2 and Theorem 11.3.3). It is also shown there
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that for two distributions P and Q:

πe(P,Q) ≤ C(βe(P,Q))
1
2

for some constant C ∈ (0,∞). Therefore, for all ε > 0 and n→∞:

µ
({
ω ∈ Ω | πe(P,PWn(ω)) > ε

})
−→ 0. (3.15)

The last step is to show that this applies not only for the metric e, but also for dZ . Therefore,

we choose an arbitrary subsequence of Pwn . As this subsequence satis�es the convergence

in (3.15), there has to be a sub-subsequence (Pwnk
)nk∈N which converges almost surely, that

is µ
({
ω ∈ Ω | limnk→∞ πe(P,PWnk

(ω)) = 0
})

= 1. According to Dudley (1989, Theorem

11.3.3) this is equivalent to

µ

({
ω ∈ Ω | lim

nk→∞

∫
Z
f dPWnk

(ω) =

∫
Z
f dP, f ∈ Cb(Z)

})
= 1

where Cb(Z) denotes the set of all continuous and bounded functions on Z. As the metrics

dZ and e de�ne the same topology on Z, it follows again from Dudley (1989, Theorem

11.3.3) that µ
({

(ω ∈ Ω | limnk→∞ πdZ (P,PWnk
(ω)) = 0

})
= 1. So, for every subsequence

of Pwn there always exists a sub-subsequence Pwnk
with limnk→∞ πdZ (P,Pwnk

) = 0 µ-almost

surely. Hence, we can conclude that the whole sequence satis�es for all ε > 0:

µ
({
ω ∈ Ω | πdZ (P,PWn(ω)) > ε

})
= 0,

which means, (Zi)i∈N is a weak Varadarajan process. �

The proofs above show, that the process has to satisfy, for all ε > 0 and for all f ∈ BL(Z, e):

lim
n→∞

1

n

n∑
i=1

f ◦ Zi = EP f µ-almost surely

respectively, for all ε > 0 and for all f ∈ BL1(Z, e):

lim
n→∞

1

n

n∑
i=1

f ◦ Zi = EP f in probability,

in order to be a strong, respectively a weak Varadarajan process. This is a slightly weaker

condition which follows from the SLLNE, respectively the WLLNE property, see Steinwart

et al. (2009, Lemma 2.5). Therefore we can weaken the assumptions in Theorem 3.2.1:
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Theorem 3.2.4 Let (Ω,A, µ) be a probability space, (Z, e) be totally bounded, and (Zi)i∈N

a stochastic process with Zi : Ω → Z.

(a) If there is a probability measure P on (Z,B) such that (Zi)i∈N satis�es

EP f = lim
n→∞

1

n

n∑
i=1

f ◦ Zi µ-almost surely

for all f ∈ BL(Z, e), then (Zi)i∈N is a strong Varadarajan process.

(b) If there is a probability measure P on (Z,B) such that (Zi)i∈N satis�es

EP f = lim
n→∞

1

n

n∑
i=1

f ◦ Zi in probability

for all f ∈ BL1(Z, e), then (Zi)i∈N is a weak Varadarajan process.

3.2.2 Examples

In the following, we brie�y list examples for processes which satisfy a law of large numbers.

The examples listed in Subsection 3.2.2 are all taken from Steinwart et al. (2009, Section

2.2 and 3.1). Then, we show in Subsection 3.2.2 that weakly dependent processes in the

sense of Doukhan and Louhichi (1999) also satisfy a law of large numbers and, therefore,

have the Varadarajan property. Here (Zi)i∈N is always a stochastic process with values in a

Polish metric space Z equipped with some metric dZ .

Stationary ergodic processes, Markov chains and mixing processes

Let (Zi)i∈N be a strongly stationary ergodic process. Then, for every measurable f : Z → R,
the process (f ◦ Zi)i∈N is again strongly stationary and ergodic. (Stationarity is an easy

consequence of the de�nition; for ergodicity, see, e. g., Krengel (1985, Proposition 4.3)).

Accordingly, it follows from Birkho�'s ergodic theorem (see, e. g., Breiman (1968, Chapter

6)) that

1

n

n∑
i=1

f ◦ Zi −−−−→
n→∞

Ef ◦ Z1 almost surely

provided that E|f ◦Z1| <∞. Hence, by choosing indicator functions f = IB, it follows that

(Zi)i∈N satis�es the SLLNE and, therefore, is a strong Varadarajan process.
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Markov chains are another example; these are often used when a future event depends only

on the current state, and not on the past. We assume that (Zi)i∈N is a strongly stationary

Markov chain so that, in particular, µ
(
Zn+1 ∈ B

∣∣Zn) = µ
(
Z2 ∈ B

∣∣Z1) for every n ∈ N
and assume that the so-called "Doeblin condition" is ful�lled: there is a �nite measure

Q on B, an n ∈ N, and an ε > 0 such that, for all B ∈ B with Q(B) ≤ ε, we have

µ(Zn+1 ∈ B |Z1 = ·) ≤ 1− ε. Then, (Zi)i∈N satis�es the SLLNE and, therefore, is a strong

Varadarajan process; see Steinwart et al. (2009, Theorem 2.12) and the references therein.

As the Doeblin condition does not imply ergodicity, these processes are not covered by the

example above.

Finally, many mixing processes also have the Varadarajan property. Mixing conditions of

a process (Zi)i∈N are de�ned via various mixing coe�cients which quantify the degree of

dependence of the process. There exist several types of mixing coe�cients but all of them are

based on di�erences between probabilities µ(A∩B) and µ(A)µ(B). According to Steinwart

et al. (2009, Proposition 3.2), a weakly α-bi-mixing processes (Zi)i∈N satis�es the WLLNE

if it is also asymptotically mean stationary, i. e., limn→∞
1
n

∑n
i=1 EIB ◦ Zi exists for every

B ∈ B. For example, let (Zi = T i−1)i∈N be an asymptotically mean stationary dynamical

system, with strong mixing property limn→∞ supA,B∈A |µ(T−nA∩B)−µ(T−nA)(µ(B))| = 0.

Then the process is α-mixing and therefore satis�es the WLLNE and hence is a weak

Varadarajan process. Although strong mixing for asymptotically mean stationary dynamical

systems implies ergodicity, see Gray (1988, p. 212) these processes are, due to the non-

stationarity, not covered by the results of Cox (1981) and Boente et al. (1982).

Additionally, Bradley (2005, Theorem 3.3) shows, that for Markov chains boundedness of

some mixing coe�cients, such as ψ, φ or ρ- mixing, implies exponentially fast decay of these

mixing coe�cients, which implies α-mixing, see Bradley (2005, p. 112). If the Markov chains

are additionally asymptotically mean stationary, they also satisfy the WLLNE. Obviously,

any strongly stationary process is asymptotically mean stationary, so these processes are

covered, too. If α-bi-mixing is replaced by α-mixing, then (Zi)i∈N even satis�es the SLLNE;

see Steinwart et al. (2009, �3.1) and the references cited therein.

Weakly dependent processes

Another dependence structure which often leads to the Varadarajan property is the concept

of weak dependence, introduced by Doukhan and Louhichi (1999) and Bickel and Bühlmann

(1999). As introduced in Section 2.1 we examine the non-causal case of weak dependence,

in particular η-, λ-, ζ-, κ-mixing, and θ-mixing processes.
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The following theorem shows the Varadarajan property for strongly stationary processes,

which are weakly dependent.

Theorem 3.2.5 Let (Ω,A, µ) be a probability space, (Z, dZ) be totally bounded and let

(Zi)i∈N , Zi : Ω → Z, i ∈ N, be a stochastic process. If the process (Zi)i∈N is strongly

stationary and weakly dependent for one of the cases mentioned above, then it is a weak

Varadarajan process.

Proof of Theorem 3.2.5: The proof shows that a stochastic process whose dependence

coe�cients behave as required ful�ls the conditions of Theorem 3.2.4, and therefore is a

weak Varadarajan process. As the proofs for the di�erent dependence coe�cients follow the

same lines we will treat the coe�cients separately only where necessary.

Due to the stationarity of (Zi)i∈N,

lim
n→∞

1

n

n∑
i=1

Eµ1B ◦ Zi = Eµ1B ◦ Z1;

In particular, the limit exists for every B ∈ B.

Let f : Z → R be a function in BL1(Z, dZ) = {f : Z → R | ‖f‖BL ≤ 1}, such that f is not

constant, i. e. f 6= c, c ∈ R. For all f ∈ BL1(Z, dZ), which are constant, the condition of

Theorem 3.2.4 is clearly right. As convergence in Lp(µ) implies convergence in probability

we compute:

E

(
1

n

n∑
i=1

f ◦ Zi − Eµf ◦ Z1

)2

=

=
1

n2
E

 n∑
i=1

(f ◦ Zi − Eµf ◦ Z1)2 + 2

n∑
i=1

i−1∑
j=1

(f ◦ Zi − Eµf ◦ Z1) (f ◦ Zj − Eµf ◦ Z1)


=

1

n2

 n∑
i=1

Var(f ◦ Zi) + 2

n∑
i=1

i−1∑
j=1

Cov(f ◦ Zi, f ◦ Zj)


=

1

n2

 n∑
i=1

Var(f ◦ Zi) + 2
n∑
i=1

i−1∑
j=1

Ψ(f, f)
Cov(f ◦ Zi, f ◦ Zj)

Ψ(f, f)


≤ 1

n2

n+ 2Ψ(f, f)
n∑
i=1

i−1∑
j=1

Cov(f ◦ Zi, f ◦ Zj)
Ψ(f, f)

 .
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Note that the assumption, that f is not constant, yields ‖f‖∞ > 0 and |f |1 > 0. This

implies Ψ(f, f) > 0. Also f ∈ BL1(Z, dZ) implies Var(f ◦ Zi) ≤ 1.

Moreover f ∈ BL1(Z, dZ) yields Ψ(f, f) ≤ 3, for every considered dependence coe�cient,

i. e. the function Ψ(f, f) is uniformly bounded for every f ∈ BL1(Z, dZ).

Therefore we have:

E

(
n∑
i=1

f ◦ Zi − Eµf ◦ Z1

)2

≤ 1

n

1 +
6

n

n∑
i=1

i−1∑
j=1

|Cov(f ◦ Zi, f ◦ Zj)|
Ψ(f, f)


≤ 1

n

(
1 +

6

n

n∑
`=1

(n− `)ε(`)

)

≤ 1

n

(
1 + 6

n∑
`=1

ε(`)

)
−→ 0, n→∞,

where the convergence of the second term follows from the fact, that the sequence ε(`)

converges to 0 for `→∞ and, accordingly, the arithmetic mean 1
n

∑n
`=1 ε(`) converges to 0

for n→∞, by Kronecker's Lemma, see Ho�mann-Jørgensen (1994, Theorem 4.9, Equation

4.9.1). Applying Theorem 3.2.4 yields, the weak Varadarajan property of the stochastic

process (Zi)i∈N. �

C-mixing processes

Another example for weak Varadarajan processes are C-mixing processes, which are in-

troduced in Section 2.3. We use Cc-mixing with respect to the space of bounded, Lips-

chitz continuous functions f : Z → R. That is the class C of functions equals the set of

bounded Lipschitz functions BL := {f : Z → R | ||f ||BL <∞} equipped with semi-norm

‖f‖C := ‖f‖BL = ‖f‖∞ + |f |1.

Theorem 3.2.6 Let (Ω,A, µ) be a probability space, let (Z, dZ) be a totally bounded mea-

surable space, and let (Zi)i∈N be an asymptotically mean stationary and C-mixing stochastic

process with Zi : Ω → Z, i ∈ N. Then (Zi)i∈N is a weak Varadarajan process.

Before we proof the result above, we need the following technical lemma which generalizes

the AMS property to bounded and continuous functions.
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Lemma 3.2.7 Let Z be a metric space and let (Zi)i∈N be an asymptotically mean stationary

stochastic process with limiting distribution P . Then, for every bounded and continuous

function f : Z → R:

lim
n→∞

1

n

n∑
i=1

Eµf ◦ Zi = EP f. (3.16)

Proof: Since (Zi)i∈N is asymptotically mean stationary we have

lim
n→∞

1

n

n∑
i=1

EµIB ◦ Zi = P (B), for all B ∈ B.

Let f : Z → R be a continuous bounded function. As every measurable function can be

approximated by simple functions, see for example Denkowski et al. (2003, Theorem 2.1.

68) we have: for every ε > 0, there is a simple function g =
∑`

j=1 ajIAj , ` ∈ N, Aj ⊂ Z,
aj ∈ R, j ∈ {1, . . . , `}, such that ‖f − g‖∞ ≤ ε.

Hence,∣∣∣∣∣ 1n
n∑
i=1

Eµ(f ◦ Zi)− EP f

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

Eµ(f ◦ Zi − g ◦ Zi)

∣∣∣∣∣+

∣∣∣∣∣ 1n
n∑
i=1

Eµ(g ◦ Zi)− EP g

∣∣∣∣∣+ |EP (g − f)|

‖f−g‖∞≤ε
≤ 2ε+

∣∣∣∣∣∣ 1n
n∑
i=1

Eµ

∑̀
j=1

ajIAj ◦ Zi

− EP

∑̀
j=1

ajIAj

∣∣∣∣∣∣
≤ 2ε+

∣∣∣∣∣∣
∑̀
j=1

aj

(
1

n

n∑
i=1

(
EµIAj ◦ Zi − EP IAj

))∣∣∣∣∣∣ .
As limn→∞

1
n

∑n
i=1 EµIB ◦ Zi = P (B), for all B ∈ B, we have

lim
n→∞

1

n

n∑
i=1

Eµf ◦ Zi = EP f. �

Proof of Theorem 3.2.6: Let Aki be the σ-algebra on Ω generated by (Zi, . . . , Zk), i ≤
k ∈ N. As (Zi)i∈N is asymptotically mean stationary, there exists a probability measure
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P ∈M(Z) such that

lim
n→∞

1

n

n∑
i=1

EµIB ◦ Zi = P (B) for all B ∈ A.

With Lemma 3.2.7, we have for every f ∈ Cb(Z):

lim
n→∞

1

n

n∑
i=1

Eµf ◦ Zi = EP f.

Respectively, there is nf0 ∈ N such that for all n ≥ nf0 :∣∣∣∣∣ 1n
n∑
i=1

Eµf ◦ Zi − EP f

∣∣∣∣∣ ≤ ε

4
. (3.17)

As (Z, dZ) is a totally bounded metric space Lemma 3.2.3 yields that BL1(Z, dZ) is totally

bounded with respect to ‖ · ‖∞. That is, there is a �nite subset G ⊂ BL1(Z, dZ) such that

for every ε > 0 and for every f ∈ BL1(Z, dZ) there is gε ∈ G such that

‖f − gε‖∞ ≤
ε

4
.

Hence,∣∣∣∣∣ 1n
n∑
i=1

f ◦ Zi −
∫
f dP

∣∣∣∣∣
≤ 1

n

n∑
i=1

‖f ◦ Zi − gε ◦ Zi‖∞ +

∣∣∣∣∣ 1n
n∑
i=1

gε ◦ Zi −
∫
gε dP

∣∣∣∣∣+

∫
‖f − gε‖∞ dP

≤ ε

2
+

∣∣∣∣∣ 1n
n∑
i=1

gε ◦ Zi −
∫
gε dP

∣∣∣∣∣ .
And therefore

sup
f∈BL1(Z)

∣∣∣∣∣ 1n
n∑
i=1

f ◦ Zi −
∫
f dP

∣∣∣∣∣ ≤ ε

2
+ max

g∈G

∣∣∣∣∣ 1n
n∑
i=1

g ◦ Zi −
∫
g dP

∣∣∣∣∣ . (3.18)
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Now, (3.17) , (3.18) and Markov's inequality, see for example Ho�mann-Jørgensen (1994,

Theorem 3.9) yield for all n ≥ maxg∈G{ng0}:

µ

({
ω ∈ Ω | sup

f∈BL1

∣∣∣∣∣ 1n
n∑
i=1

f ◦ Zi(ω)−
∫
f dP

∣∣∣∣∣ > ε

})
(3.18)

≤ µ

({
ω ∈ Ω | max

g∈G

∣∣∣∣∣ 1n
n∑
i=1

g ◦ Zi(ω)−
∫
g dP

∣∣∣∣∣ > ε

2

})

≤
∑
g∈G

µ

({
ω ∈ Ω |

∣∣∣∣∣ 1n
n∑
i=1

g ◦ Zi(ω)−
∫
g dP

∣∣∣∣∣ > ε

2

})
(3.17)

≤
∑
g∈G

µ

({
ω ∈ Ω |

∣∣∣∣∣ 1n
n∑
i=1

g ◦ Zi(ω)− 1

n

n∑
i=1

Eµg ◦ Zi

∣∣∣∣∣ > ε

4

})

≤
∑
g∈G

16

ε2
Eµ

(
1

n

n∑
i=1

g ◦ Zi −
1

n

n∑
i=1

Eµg ◦ Zi

)2

≤
∑
g∈G

16

ε2n2

[
n∑
i=1

Eµ (g ◦ Zi − Eµg ◦ Zi)2

+2

n−1∑
i=1

n∑
j=i+1

Eµ(g ◦ Zi − Eµg ◦ Zi)(g ◦ Zj − Eµg ◦ Zj)

 .
As g ∈ BL1(Z, dZ), we have ‖g‖∞ ≤ 1 and therefore for every g ∈ G:

n∑
i=1

Eµ (g ◦ Zi − Eµg ◦ Zi)2 ≤ 4n.

Moreover (Zi)i∈N is C-mixing by assumption, that is

∞∑
`=1

sup {|Eϕ(f ◦ Zi+`)− EϕEf ◦ Zi+`| ;

i ∈ N, f ∈ C1, ϕ (Ai1,B) measurable with ‖ϕ‖1 ≤ 1
}
<∞,

see De�nition 2.12 in Section 2.3.
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Now, ‖g‖∞ ≤ 1 implies ‖g‖1 ≤ 1. Hence, we have for the sum of covariances above:

n∑
i=1

n∑
j=i+1

Eµ(g ◦ Zi − Eµg ◦ Zi)(g ◦ Zj − Eµg ◦ Zj)

=

n∑
i=1

n−i∑
k=1

Eµ(g ◦ Zi − Eµg ◦ Zi)(g ◦ Zi+k − Eµg ◦ Zi+k)

=
n∑
i=1

n−i∑
k=1

Eµ(g ◦ Zi)(g ◦ Zi+k)− Eµ(g ◦ Zi)Eµ(g ◦ Zi+k)

≤ n
n∑
k=1

sup
i∈{1,...,n}

|Eµ(g ◦ Zi)(g ◦ Zi+k)− Eµ(g ◦ Zi)Eµ(g ◦ Zi+k)|

≤ n
n∑
k=1

sup
i∈{1,...,n}, ϕ

|Eµ(ϕ(g ◦ Zi+k))− EµϕEµ(g ◦ Zi+k)|

for Ai1-measurable functions ϕ with ‖ϕ‖1 ≤ 1.

Moreover as the process is C-mixing the last sum is �nite.

Therefore:

µ

({
ω ∈ Ω | sup

f∈BL1

∣∣∣∣∣ 1n
n∑
i=1

f ◦ Zi(ω)−
∫
f dP

∣∣∣∣∣ > ε

})

≤
∑
g∈G

16

ε2n2

[
n∑
i=1

Eµ (g ◦ Zi − Eµg ◦ Zi)2

+2

n∑
i=1

n∑
j=i+1

Eµ(g ◦ Zi − Eµg ◦ Zi)(g ◦ Zj − Eµg ◦ Zj)


≤

∑
g∈G

16

ε2n2
[4n+ 2n

n∑
`=1

ΦC(Z, `)]

<
C

n
−→ 0, n→∞,

for a constant C > 0. Hence, (Zi)i∈N is a weak Varadarajan process. �
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3.3 Examples for qualitatively robust estimators

In this chapter estimators which are qualitatively robust even for non-i.i.d. observations are

given. Another example are support vector machines or, more generally, regularized kernel

methods, which are discussed in Section 4.2.

A �rst example for qualitatively robust estimators are maximum likelihood type estimators

(M-estimators). These are de�ned as solutions of

n∑
i=1

ρ(zi, Sn) = min!

or implicitly by
n∑
i=1

ψ(zi, Sn) = 0,

see Huber (1981). Especially we consider estimators for location, that is ψ(z, Sn) = ψ(z −
Sn). In Hampel (1971) these estimators are already taken as examples for qualitatively

robust estimators in the i.i.d. case. As we are not requiring additional properties on the

estimators then those needed in the i.i.d. case, M-estimators are also qualitatively robust for

the non-i.i.d. case. We take a result from Huber (1981): If S :M(X)→ X is the operator

representing the estimators Sn i. e. S is the solution of
∫
ψ(z − S(P )) dP = 0, it is shown

in Huber (1981, Chapter 3, Theorem 2.6 and Example 2.2) that this operator is continuous

for every P as long as ψ is bounded and strictly monotone and if the solution of the "true"

distribution P0 is unique. Examples for suitable functions ψ are the Huber estimators see

Hampel (1971) or the Φ-estimator, see Hampel (1968). Therefore, according to Theorem

3.1.3, these estimators are also qualitatively robust in the non-i.i.d. case.

A second example are R-estimators. R estimators are based on a rank test for two indepen-

dent samples of size m and n and of shifted distributions F (x) and G(x) = F (x−∆). The

test statistic for a rank test for ∆ = 0 versus ∆ > 0 is

Sm,n =
1

m

m∑
i=1

ai(Ri) (3.19)

and is based on the ranks Ri of one sample in the combined sample and on the scores ai, i ∈
{1, . . . ,m}. The scores ai are determined by a function J , which is (m+n)

∫ i/(m+n)
i−1/(m+n) J(s)ds,

moreover
∫
J(s)ds = 0.

According to Hampel et al. (1986, De�nition 3), an estimator Sn of location can be de�ned
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such that (3.19) is almost zero for the samples X1, . . . , Xn and 2Sn − X1, . . . , 2Sn − Xn.

Hence the estimator derives from a statistical operator S(F ) which is de�ned implicitly by:∫
J

(
1

2
[s+ 1− F (2S(F )− F−1(s))]

)
ds = 0. (3.20)

According to Huber (1981, Chapter 3, Theorem 4.1) the operator S is continuous at F as

long as the function J is monotone increasing, integrable, and symmetric J(1 − t) = J(t),

and as long as it is uniquely de�ned by (3.20). Hence the estimate is qualitatively robust

due to Hampel's theorem for i.i.d. observations, see Hampel (1968, Example 7(iii)) and due

to Theorem 3.1.3 it is also qualitatively robust for Varadarajan processes.

More examples can be found in Hampel (1968, Section 7). Moreover, qualitative robustness

for support vector machines, is shown in Chapter 4.2.1, Theorem 4.2.1.

3.4 Qualitative robustness for bootstrap estimators

Often the �nite sample distribution of the estimator or of the stochastic process of interest is

unknown, hence an approximation of the distribution is needed. Commonly, the bootstrap

is used to receive an approximation of the unknown �nite sample distribution by resampling

from the given sample.

The classical bootstrap, also called the empirical bootstrap, has been introduced by Efron

(1979) for i.i.d. random variables. This concept is based on drawing a bootstrap sample

(Z∗1 , . . . , Z
∗
m) of size m ∈ N with replacement out of the original sample (Z1, . . . , Zn), n ∈

N, and approximate the theoretical distribution Pn of (Z1, . . . , Zn) using the bootstrap

sample. For the empirical bootstrap the approximation of the distribution via the bootstrap

is given by the empirical distribution of the bootstrap sample (Z∗1 , . . . , Z
∗
m), hence P ∗n =

⊗ni=1

(
1
m

∑m
i=1 δZ∗i

)
. The bootstrap sample itself has distribution ⊗mi=1

(
1
n

∑n
i=1 δZi

)
.

For an introduction to the bootstrap see for example Efron and Tibshirani (1993) and van der

Vaart (1998, Chapter 3.6). Besides the empirical bootstrap many other bootstrap methods

have been developed in order to �nd good approximations also for non-i.i.d. observations,

see for example Singh (1981), Lahiri (2003), and the references therein. In Section 3.4.2 the

moving block bootstrap introduced by Künsch (1989) and Liu and Singh (1992) is used to

approximate the distribution of an α-mixing stochastic process.
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It is, also in the non-i.i.d. case, still desirable that the estimator is qualitatively robust

even for the bootstrap approximation. That is, the distribution of the estimator under the

bootstrap approximation LP ∗n (Sn), n ∈ N, of the assumed, ideal distribution Pn should still

be close to the distribution of the estimator under the bootstrap approximation LQ∗n(Sn),

n ∈ N, of the real contaminated distribution Qn. Remember that this is a random object as

P ∗n respectively Q∗n are random. For notational convenience all bootstrap values are noted

as usual with an asterisk. To show qualitative robustness often generalizations of Hampel's

theorem are used. Accordingly we try to �nd results similar to Hampel's theorem for the case

of bootstrap approximations. Cuevas and Romo (1993) describes a concept of qualitative

robustness of bootstrap approximations for the i.i.d. case and for real valued estimators.

Also a generalization of Hampel's theorem to this case is given. In Christmann et al. (2013,

2011) qualitative robustness of Efron's bootstrap approximation is shown for the i.i.d. case

for a class of regularized kernel based learning methods, i. e. not necessarily real valued

estimators. Moreover Beutner and Zähle (2016) describes consistency of the bootstrap for

plug in estimators. In this chapter estimators with values in a complete separable metric

space, which can be represented by a continuous statistical operator on the space of all

probability measures are considered.

Based on the generalization of Hampel's concept of Π-robustness from Bustos (1980), we

de�ne qualitative robustness for bootstrap approximations for non-i.i.d sequences of random

variables. The stronger concept of Π-robustness is needed here, similar to De�nition 3.1.1

in Chapter 3, as we do not assume to have i.i.d. random variables, which are used in Cuevas

and Romo (1993).

Therefore the de�nition of qualitative robustness stated below is stronger than the de�nition

in Cuevas and Romo (1993), i. e. if we use this de�nition for the i.i.d. case the assumption

dBL(Pn, Qn) = dBL(⊗ni=1P,⊗ni=1Q) < δ implies dBL(P,Q) < δ. This can be seen similar to

the proof of Lemma 3.4.4 in Section 3.4.1.

Remember the statistical model from Chapter 3: (ZN,B⊗N,M(ZN)), where (Z, dZ) is a

complete separable metric space and (Zi)i∈N is the coordinate process on ZN. (Sn)n∈N

is a sequence of estimators on the stochastic process (Zi)i∈N. The estimator may take

its values in any complete separable metric space H; that is, Sn : Zn → H for every

n ∈ N. Moreover let P ∗N be the approximation of PN with respect to the bootstrap. De-

�ne the bootstrap sample (Z∗1 , . . . , Z
∗
n) as the �rst n coordinate projections Z∗i : ZN → Z,

where the law of the stochastic process (Z∗i )i∈N has to be chosen according to the boot-

strap procedure. For the empirical bootstrap, for example, the bootstrap sample is chosen

via drawing with replacement from the given observations z1, . . . , z`, ` ∈ N. Hence the
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distribution of the bootstrap sample is ⊗n∈N 1
`

∑`
i=1 δzi , with �nite sample distributions

⊗nj=1
1
`

∑`
i=1 δzi = (Z∗1 , . . . , Z

∗
n)
(
⊗n∈N 1

`

∑`
i=1 δzi

)
.

Contrarily to the classical case of qualitative robustness the distribution of the estimator un-

der P ∗n , LP ∗n (Sn) is a random probability measure, as the distribution P ∗n = ⊗ni=1
1
`

∑`
i=1 δZ∗i ,

Z∗i : ZN → Z, is random. Hence the mapping zN 7→ LP ∗n (Sn), zN ∈ ZN, is itself a random

variable with values in M(H), i. e. on the space of probability measures on H, equipped

with the weak topology onM(H). The measurability of this mapping is ensured by Beutner

and Zähle (2016, Lemma D1).

Contrarily to the original de�nitions of qualitative robustness in Bustos (1980) the bounded

Lipschitz metric dBL is used instead of the Prohorov metric π for the de�nition of qualitative

robustness of the bootstrap approximation below. This is equivalent to Cuevas and Romo

(1993). Let X be a separable metric space, then the bounded Lipschitz metric on the space

of probability measuresM(X ) on X is de�ned by:

dBL(P,Q) := sup

{∣∣∣∣∫ f dP −
∫
f dQ

∣∣∣∣ ; f ∈ BL(X ), ‖f‖BL ≤ 1

}

where ‖·‖BL := |·|1+‖·‖∞ denotes the bounded Lipschitz norm with |f |1 = supx 6=y
|f(x)−f(y)|
d(x,y)

and ‖ · ‖∞ the supremum norm ‖f‖∞ := supx |f(x)|. This is due to technical reasons only.

Both metrics metricize the weak topology on the space of all probability measuresM(X ),

for Polish spaces X , see, for example, Huber (1981, Chapter 2, Corollary 4.3) or Dudley

(1989, Theorem 11.3.3), and therefore can be replaced while adapting δ on the left hand-

side of implication (3.21). If X is a Polish space, so is M(X ) with respect to the weak

topology, see Huber (1981, Chapter 2, Theorem 3.9). Hence the bounded Lipschitz metric

on the right-hand side of implication (3.21) operates on a space of probability measures on

the Polish spaceM(X ). Therefore the Prohorov metric and the bounded Lipschitz metric

are again strongly equivalent and can be replaced while adapting ε in (3.21). Similar to

Cuevas and Romo (1993) the proof of the theorems below rely on the fact that the set

of bounded Lipschitz functions BL is a uniform Glivenko-Cantelli class (see De�nition A3),

which implies uniform convergence of the bounded Lipschitz metric of the empirical measure

to a limiting distribution, see Dudley et al. (1991). Therefore the de�nition is given with

respect to the bounded Lipschitz metric.

De�nition 3.4.1 (Qualitative robustness for bootstrap approximations)

Let Z, H be complete separable metric spaces. Let PN ∈M(ZN) and let P ∗N ∈M(ZN) be the

bootstrap approximation of PN. Let P ⊂ M(ZN) with PN ∈ P. Let Sn : Zn → H, n ∈ N,
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be a sequence of estimators. Then the sequence of bootstrap approximations (LP ∗n (Sn))n∈N

is called qualitatively robust at PN with respect to P if, for every ε > 0, there is δ > 0 such

that there is n0 ∈ N such that for every n ≥ n0 and for every QN ∈ P,

dBL(Pn, Qn) < δ ⇒ dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε. (3.21)

Here L(LP ∗n (Sn)) (respectively L(LQ∗n(Sn))) denotes the distribution of the bootstrap approx-

imation of the estimator Sn under P ∗n (respectively Q∗n).

This de�nition of qualitative robustness with respect to the subset P indicates that we do

not show (3.21) for arbitrary probability measures QN ∈M(ZN). All of our results require

the contaminated process to at least have the same structure as the ideal process. This is

due to the use of the bootstrap procedure. The empirical bootstrap, which is used below,

only works well for a few processes, see for example Lahiri (2003), hence the assumptions

on the contaminated process are necessary. To our best knowledge there are no results

concerning qualitative robustness of the bootstrap approximation for general stochastic

processes without any assumptions on the second process and it is probably very hard

to show this for every QN ∈ M(ZN), respectively P = M(ZN). Another di�erence to

De�nition 3.1.1 is the restriction to n ≥ n0. As the results for the bootstrap are asymptotic

results, we can not achieve the equicontinuity for every n ∈ N, but only asymptotically.

The next two sections establish results about qualitative robustness of the bootstrap approx-

imation. First we examine stochastic processes with independent but not necessarily iden-

tically distributed random variables, the second kind of stochastic processes are α-mixing

processes.

3.4.1 Qualitative robustness for independent not necessarily identically

distributed stochastic processes

In this section we relax the i.i.d. assumption in view of the identical distribution. We as-

sume the random variables Zi, i ∈ N, to be independent, but not necessarily identically

distributed.

The result below generalizes Christmann et al. (2013, Theorem 3) and Christmann et al.

(2011), as the assumptions on the stochastic process are weaker as well as those on the

statistical operator. Compared to Theorem 3 in Cuevas and Romo (1993), which shows

qualitative robustness of the sequence of bootstrap estimators with values in R, we have
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to strengthen the assumptions on the sample space, but do not need the estimator to be

uniformly continuous. But keep in mind, that the assumption dBL(Pn, Qn) < δ implies

dBL(P,Q) < δ, which is used for the i.i.d. case, in Christmann et al. (2013) and Cuevas and

Romo (1993).

Theorem 3.4.2 Let the sequence of estimators (Sn)n∈N be represented by a statistical oper-

ator S :M(Z)→ H via (3.1) for a complete separable metric space (H, dH) and let (Z, dZ)

be a totally bounded metric space.

Let PN = ⊗i∈NP i, P i ∈ M(Z) be an in�nite product measure such that the coordinate pro-

cess (Zi)i∈N, Zi : ZN → zi, i ∈ N, is a strong Varadarajan process with limiting distribution

P . Moreover de�ne P :=
{
QN ∈M(ZN); QN = ⊗i∈NQi, Qi ∈M(Z)

}
. Let S : M(Z) →

H be continuous at P with respect to dBL and let the estimators Sn : Zn → H, n ∈ N, be
continuous.

Then the sequence of bootstrap approximations (LP ∗n (Sn))n∈N, is qualitatively robust at PN

with respect to P.

Remark 3.4.3 The required properties on the statistical operator S and on the sequence of

estimators (Sn)n∈N in Theorem 3.4.2 ensure the qualitative robustness of (Sn)n∈N, as long

as the assumptions on the underlying stochastic processes are ful�lled.

The proof shows that the bootstrap approximation of every sequence of estimators (Sn)n∈N

which is qualitatively robust in the sense of the de�nitions in Bustos (1980) and De�nition

3.1.1 is qualitatively robust in the sense of Theorem 3.4.2.

All estimators (Sn)n∈N which are mentioned in Section 3.3 and support vector machines, see

Theorem 4.2.1, are included. Hence Hampel's theorem for the i.i.d. case can be generalized to

bootstrap approximations and to the case of not necessarily identically distributed random

variables if qualitative robustness is based on the de�nition of Π-robustness.

Unfortunately, the assumption on the space (Z, dZ) to be totally bounded seems to be

necessary. In the proof of Theorem 3.4.2 we use a result of Dudley et al. (1991) to show

uniformity on the space of probability measures M(Z). This result needs the bounded

Lipschitz functions to be a uniform Glivenko-Cantelli class, which is equivalent to (Z, dZ)

being totally bounded, see Dudley et al. (1991, Proposition 12). In order to weaken the

assumption on (Z, dZ), probably another way to show uniformity on the space of probability

measuresM(Z) has to be found.
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Before proving Theorem 3.4.1, we state a rather technical lemma, connecting the prod-

uct measure ⊗ni=1P
i ∈ M(Zn) of independent random variables to their mixture measure

1
n

∑n
i=1 P

i ∈M(Z). Let (Z, dZ) be a Polish space.

Lemma 3.4.4 Let Pn, Qn ∈ M(Zn) such that Pn = ⊗ni=1P
i and Qn = ⊗ni=1Q

i, P i, Qi ∈
M(Z), i ∈ N. Then for all δ > 0:

dBL(Pn, Qn) ≤ δ ⇒ dBL

(
1

n

n∑
i=1

P i,
1

n

n∑
i=1

Qi

)
≤ δ.

Proof: By assumption we have dBL(Pn, Qn) ≤ δ. Moreover for a function f : Z → R:∫
Z
f(zi) dP

i(zi) =

∫
Zn−1

∫
Z
f(zi) dP

i(zi) d
(
⊗j 6=iP j(zj)

)
. (3.22)

Then,

sup
f∈BL1(Z)

∣∣∣∣∣
∫
Z
f(zi) d

[
1

n

n∑
i=1

P i(zi)

]
−
∫
Z
f(zi) d

[
1

n

n∑
i=1

Qi(zi)

]∣∣∣∣∣
= sup

f∈BL1(Z)

∣∣∣∣∣ 1n
n∑
i=1

[∫
Z
f(zi) dP

i(zi)−
∫
Z
f(zi) dQ

i(zi)

]∣∣∣∣∣
(3.22)

= sup
f∈BL1(Z)

∣∣∣∣∣ 1n
n∑
i=1

[∫
Zn−1

∫
Z
f(zi) dP

i(zi) d
(
⊗j 6=iP j(zj)

)
−
∫
Zn−1

∫
Z
f(zi) dQ

i(zi) d
(
⊗j 6=iQj(zj)

)]∣∣∣∣
= sup

f∈BL1(Z)

∣∣∣∣∣ 1n
n∑
i=1

[∫
Zn
f(zi) d

(
⊗nj=1P

j(zj)
)
−
∫
Zn
f(zi) d

(
⊗nj=1Q

j(zj)
)]∣∣∣∣∣

≤ 1

n

n∑
i=1

sup
f∈BL1(Z)

∣∣∣∣∫
Zn
f(zi) d

(
⊗nj=1P

j(zj)
)
−
∫
Zn
f(zi) d

(
⊗nj=1Q

j(zj)
)∣∣∣∣ .

Now every function f ∈ BL1(Z) can be identi�ed as a function f̃ : Zn → Z, (z1, . . . , zn) 7→
f̃(z1, . . . , zn) := f(zi). This function is also Lipschitz continuous on Zn :

|f̃(z1, . . . , zn)−f̃(z′1, . . . , z
′
n)| = |f(zi)− f(z′i)|

≤ |f |1d(zi, z
′
i) ≤ |f |1(dZ(z1, z

′
1) + . . .+ dZ(zi, z

′
i) + . . .+ dZ(zn, z

′
n)),
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where dZ(z1, z
′
1) + . . . + dZ(zi, z

′
i) + . . . + dZ(zn, z

′
n) induces the product topology on Zn.

That is f̃ ∈ BL1(Zn). Note that this is also true for every p-product metric dn,p in Zn,
1 ≤ p ≤ ∞, as they are strongly equivalent. Hence,

dBL

(
1

n

n∑
i=1

P i,
1

n

n∑
i=1

Qi

)
≤ 1

n

n∑
i=1

sup
g∈BL1(Zn)

∣∣∣∣∫
Zn
g dPn −

∫
Zn
g dQn

∣∣∣∣
≤ 1

n

n∑
i=1

dBL (Pn, Qn) ≤ δ,

which yields the assertion. �

Proof of Theorem 3.4.2: To prove Theorem 3.4.2 we �rst use the triangle inequality to

split the bounded Lipschitz distance between the distribution of the estimator Sn, n ∈ N,
into two parts regarding the distribution of the estimator under the joint distribution Pn of

(Z1, . . . , Zn):

dBL(LP ∗n (Sn),LQ∗n(Sn)) ≤ dBL(LP ∗n (Sn),LPn(Sn))︸ ︷︷ ︸
I

+ dBL(LPn(Sn),LQ∗n(Sn))︸ ︷︷ ︸
II

.

Then the representation of the estimator Sn by the statistical operator S and the conti-

nuity of this operator in P together with the Varadarajan property and the independence

assumption on the stochastic process yield the assertion.

First we regard part I: De�ne the distribution PN ∈ M(ZN) and let P ∗N be the bootstrap

approximation of PN. De�ne, for n ∈ N, the random variables

Wn : ZN → Zn, Wn = (Z1, . . . , Zn), zN 7→Wn(zN) = wn = (z1, . . . , zn), and

W′
n : ZN → Zn, W′

n = (Z ′1, . . . , Z
′
n), zN 7→ w′n,

such that Wn(PN) = Pn and W′
n(P ∗N) = P ∗n .

Denote the bootstrap sample by W∗
n := (Z∗1 , . . . , Z

∗
n), W∗

n : ZN → Zn, zN 7→ w∗n.

As Efron's empirical bootstrap is used, the bootstrap sample, which is chosen via resampling

with replacement out of Z1, . . . , Z`, ` ∈ N, has distribution Z∗i ∼ PW`
= 1

`

∑`
j=1 δZj , i ∈ N,

respectively W∗
n := (Z∗1 , . . . , Z

∗
n) ∼ ⊗ni=1PW`

. The bootstrap approximation of P`, ` ∈ N,
is the empirical measure of the bootstrap sample P ∗` = ⊗`i=1

1
n

∑n
j=1 δZ∗j .

Further denote the joint distribution of WN, W
∗
N, and W′

N by KN ∈ M(ZN × ZN × ZN).

Then, KN has marginal distributions KN(B1 × ZN × ZN) = PN(B1) for all B1 ∈ B⊗N,
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KN(ZN × B2 × ZN) = ⊗i∈NPWn(B2) for all B2 ∈ B⊗N, and KN(ZN × ZN × B3) = P ∗N(B3)

for all B3 ∈ B⊗N.

Then,

LPn(Sn) = Sn(Pn) = Sn ◦Wn(PN) and LP ∗n (Sn) = Sn(P ∗n) = Sn ◦W′
n(P ∗N)

and therefore

dBL(LP ∗n (Sn),LPn(Sn)) = dBL(L(Sn ◦W ′n),L(Sn ◦Wn)).

By assumption the coordinate process (Zi)i∈N consists of independent random variables,

hence we have Pn = ⊗ni=1P
i, for P i = Zi(PN), i ∈ N.

Moreover (Z, dZ) is assumed to be a totally bounded metric space. Then, due to Dudley

et al. (1991, Proposition 12), the set BL1(Z, dZ) is a uniform Glivenko-Cantelli class (see

De�nition A3). That is, if Zi ∼ P i.i.d. i ∈ N, we have for all η > 0:

lim
n→∞

sup
P∈M(Z)

PN

({
zN ∈ ZN | sup

m≥n
dBL(PWm(zN), P ) > η

})
= 0.

Applying this to the bootstrap sample (Z∗1 , . . . , Z
∗
m), m ∈ N, which is found by resampling

with replacement out of the original sample (Z1, . . . , Zn), we have, for all wn ∈ Zn,

lim
n→∞

sup
Pwn∈M(Z)

⊗i∈NPwn

({
zN ∈ ZN | sup

m≥n
dBL(PW∗

m(zN),Pwn) > η

})
= 0.

Let ε > 0 be arbitrary but �xed. Then, for every δ0 > 0 there is n1 ∈ N such that for all

n ≥ n1 and all Pwn ∈M(Z):

⊗ni=1Pwn

({
w∗n ∈ Zn | dBL(Pw∗n ,Pwn) ≤ δ0

4

})
≥ 1− ε

8
. (3.23)

And, using the same argumentation for the sequence of random variables Z ′i, i ∈ N, which
are i.i.d. and have distribution 1

n

∑n
i=1 δZ∗i = PW∗

n
:

lim
n→∞

sup
Pw∗n∈M(Z)

P ∗N

({
zN ∈ ZN | sup

m≥n
dBL(PW′

m(zN),Pw∗n) > η

})
= 0.
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Respectively, for every δ0 > 0 there is n2 ∈ N such that for all n ≥ n2 and all Pw∗n ∈M(Z):

P ∗n

({
w′n ∈ Zn | dBL(Pw′n ,Pw∗n) ≤ δ0

2

})
≥ 1− ε

8
. (3.24)

As the process (Zi)i∈N is a strong Varadarajan process by assumption, there exists a prob-

ability measure P ∈M(Z) such that

dBL(PWn , P ) −→ 0 almost surely with respect to PN, n→∞.

That is, for every δ0 > 0 there is n3 ∈ N such that for all n ≥ n3:

Pn

({
wn ∈ Zn | dBL(Pwn , P ) ≤ δ0

2

})
≥ 1− ε

4
. (3.25)

The continuity of the statistical operator S : M(Z) → H in P ∈ M(Z) yields: for every

ε > 0 there exists δ0 > 0 such that for all Q ∈M(Z):

dBL(P,Q) ≤ δ0 ⇒ dH(S(P ), S(Q)) ≤ ε

4
. (3.26)

As the Prohorov metric πdH is bounded by the Ky Fan metric, see Dudley (1989, Theorem

11.3.5) we conclude:

πdH (LP ∗n (Sn),LPn(Sn)) = πdH (Sn ◦W′
n, Sn ◦Wn)

≤ inf
{
ε̃ > 0 | KN

({
dH(Sn ◦W′

n, Sn ◦Wn) > ε̃
})
≤ ε̃
}

= inf
{
ε̃ > 0 | (Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

dH(Sn(w′n), Sn(wn)) > ε̃,w∗n ∈ Zn
})
≤ ε̃
}
. (3.27)

Due to the de�nition of the statistical operator S, this is equivalent to

inf
{
ε̃ > 0 | (Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

dH(S(Pw′n), S(Pwn)) > ε̃,w∗n ∈ Zn
})
≤ ε̃
}
.

The triangle inequality

dH(S(Pw′n), S(Pwn)) ≤ dH(S(Pw′n), S(P )) + dH(S(P ), S(Pwn)),
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and the continuity of the statistical operator S, see (3.26), then yield, for all ε > 0,

(Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dH(S(Pw′n), S(Pwn)) >

ε

2
,w∗n ∈ Zn

})
≤ (Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dH(S(Pw′n), S(P )) >

ε

4

or dH(S(P ), S(Pwn)) >
ε

4
,w∗n ∈ Zn

})
(3.26)

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dBL(Pw′n , P ) > δ0

or dBL(P,Pwn) > δ0,w
∗
n ∈ Zn}) .

Using the triangle inequality,

dBL(Pw′n , P ) ≤ dBL(Pw′n ,Pw∗n) + dBL(Pw∗n , P ) (3.28)

and dBL(Pw∗n , P ) ≤ dBL(Pw∗n ,Pwn) + dBL(Pwn , P ), (3.29)

gives for all n ≥ max{n1, n2, n3}:

(Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dBL(Pw′n , P ) > δ0

or dBL(P,Pwn) > δ0,w
∗
n ∈ Zn})

(3.28)

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dBL(Pw′n ,Pw∗n) >

δ0

2

or dBL(Pw∗n , P ) >
δ0

2
or dBL(P,Pwn) > δ0

})
(3.29)

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dBL(Pw′n ,Pw∗n) >

δ0

2

or dBL(Pw∗n ,Pwn) >
δ0

4
or dBL(P,Pwn) >

δ0

4

})
≤ P ∗n

({
w′n ∈ Zn | dBL(Pw′n ,Pw∗n) >

δ0

2

})
+ Pn

({
wn ∈ Zn | dBL(Pwn , P ) >

δ0

4

})
+⊗ni=1Pwn

({
w∗n ∈ Zn | dBL(Pw∗n ,Pwn) >

δ0

4

})
(3.23),(3.24),(3.25)

<
ε

8
+
ε

4
+
ε

8
=

ε

2
.
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Hence, for all ε > 0 there are n1, n2, n3 ∈ N such that vor all n ≥ max{n1, n2, n3}, the
in�mum in (3.27) is bounded by ε

2 . Therefore

πdH (LP ∗n (Sn),LPn(Sn)) <
ε

2
.

The equivalence between the Prohorov metric and the bounded Lipschitz metric for Polish

spaces, see Huber (1981, Chapter 2, Corollary 4.3), yields the existence of n0,1 ∈ N such

that for all n ≥ n0,1 :

dBL(LP ∗n (Sn),LPn(Sn)) <
ε

2
. (3.30)

To prove the convergence of the term in part II, consider the distribution QN ∈M(ZN) and

let Q∗N be the bootstrap approximation of QN. De�ne, for n ∈ N, the random variables

W̃n : ZN → Zn, W̃n = (Z̃1, . . . , Z̃n), zN 7→ w̃n with distribution W̃n(QN) = Qn,

W̃′
n : ZN → Zn, W̃′

n = (Z̃ ′1, . . . , Z̃
′
n), zN 7→ w̃′n, with distribution W̃′

n(Q∗N) = Q∗n, and

the bootstrap sample W̃∗
n : ZN → Zn, W̃∗

n = (Z̃∗1 , . . . , Z̃
∗
n), zN 7→ w̃∗n, with distribution

⊗ni=1QW̃`
= ⊗ni=1

1
`

∑`
i=1 δZ̃i .

Moreover let K̃N ∈ M(ZN × ZN × ZN × ZN) denote the joint distribution of WN, W̃N,

W̃∗
N, and W̃′

N. Then, K̃N ∈ M(ZN × ZN × ZN × ZN) has marginal distributions PN, QN,

⊗i∈NQW̃n
, and Q∗N.

First, similar to the argumentation for part I, Efron's bootstrap and Dudley et al. (1991,

Proposition 12) give for w̃n ∈ Zn:

lim
n→∞

sup
Qw̃n∈M(Z)

⊗n∈NQw̃n

({
zN ∈ ZN | sup

m≥n
dBL(QW̃∗

m(zN),Qw̃n) > η

})
= 0.

Hence, for arbitrary, but �xed ε > 0, for every δ0 > 0 there is n4 ∈ N such that for all

n ≥ n4 and all Qw̃n ∈M(Z):

⊗ni=1Qw̃n

({
w̃∗n ∈ Zn | dBL(Qw̃∗n ,Qw̃n) ≤ δ0

6

})
≥ 1− ε

10
. (3.31)

Further,

lim
n→∞

sup
Qw̃∗n∈M(Z)

Q∗N

({
zN ∈ ZN | sup

m≥n
dBL(QW̃′

m(zN),Qw̃∗n) > η

})
= 0.
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Respectively, for every δ0 > 0 there is n5 ∈ N such that for all n ≥ n5 and all Qw̃∗n =
1
n

∑n
i=1 δz̃∗i ∈M(Z):

Q∗n

({
w̃′n ∈ Zn | dBL(Qw̃′n ,Qw̃∗n) ≤ δ0

6

})
≥ 1− ε

10
. (3.32)

Moreover, as the random variables Zi, Zi ∼ P i, i ∈ N, are independent, the bounded

Lipschitz distance between the empirical measure and 1
n

∑n
i=1 P

i can be bounded, due to

Dudley et al. (1991, Theorem 7). As totally bounded spaces are particularly separable,

see Denkowski et al. (2003, below Corollary 1.4.28), Dudley et al. (1991, Proposition 12)

provides that BL1(Z, dZ) is a uniform Glivenko-Cantelli class. The proof of this proposition

does not depend on the distributions of the random variables Zi, i ∈ N, and is therefore also

valid for independent and not necessarily identically distributed random variables. Hence

Dudley et al. (1991, Theorem 7) yields for all η > 0:

lim
n→∞

sup
(P i)i∈N∈(M(Z))N

PN

({
zN ∈ ZN | sup

m≥n
dBL

(
PWm(zN),

1

n

n∑
i=1

P i

)
> η

})
= 0,

as long as the assumptions of Proposition 12 in Dudley et al. (1991) apply. As BL1(Z, dZ)

is bounded, we have F0 = BL1(Z, dZ), see Dudley et al. (1991, page 499, before Proposition

10), hence it is su�cient to show that BL1(Z, dZ) is image admissible Suslin (see De�nition

A5). By assumption (Z, dZ) is totally bounded, hence BL1(Z, dZ) is separable with respect

to ‖ · ‖∞, see Lemma 3.2.3. As f ∈ BL1(Z, dZ) implies ‖f‖∞ ≤ 1, the space BL1(Z, dZ)

is a bounded subset of (Cb(Z, dZ), ‖ · ‖∞), which is due to Dudley (1989, Theorem 2.4.9) a

complete space. Now, BL1(Z, dZ) is a closed subset of (Cb(Z, dZ), ‖ · ‖∞) with respect to

‖ · ‖∞. Hence BL1(Z, dZ) is complete, due to Denkowski et al. (2003, Proposition 1.4.17).

Therefore BL1(Z, dZ) is separable and complete with respect to ‖ · ‖∞ and particularly a

Suslin space (see De�nition A4), see Dudley (2014, p.229). As Lipschitz continuous functions

are also equicontinuous, Dudley (2014, Theorem 5.28 (c)) gives that BL1(Z, dZ) is image

admissible Suslin.

Hence, Dudley et al. (1991, Theorem 7) yields

sup
(P i)i∈N∈(M(Z))N

dBL

(
PWn ,

1

n

n∑
i=1

P i

)
−→ 0 almost surely with respect to PN, n→∞,
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and

sup
(Qi)i∈N∈(M(Z))N

dBL

(
QW̃n

,
1

n

n∑
i=1

Qi

)
−→ 0 almost surely with respect to QN, n→∞.

That is, there is n6 ∈ N such that for all n ≥ n6

Pn

({
wn ∈ Zn | dBL

(
Pwn ,

1

n

n∑
i=1

P i

)
≤ δ0

6

})
≥ 1− ε

10
, (3.33)

and Qn

({
w̃n ∈ Zn | dBL

(
Qw̃n ,

1

n

n∑
i=1

Qi

)
≤ δ0

6

})
≥ 1− ε

10
. (3.34)

Moreover, due to Lemma 3.4.4, we have

dBL(Pn, Qn) ≤ δ0

6
⇒ dBL

(
1

n

n∑
i=1

P i,
1

n

n∑
i=1

Qi

)
≤ δ0

6
. (3.35)

Then the strong Varadarajan property of (Zi)i∈N yields that there is n7 ∈ N such that for

all n ≥ n7 :

Pn

({
wn ∈ Zn | dBL(Pwn , P ) ≤ δ0

6

})
≥ 1− ε

10
. (3.36)

Similar to the argumentation for part I we conclude, using again the boundedness of the

Prohorov metric πdH by the Ky Fan metric, see Dudley (1989, Theorem 11.3.5):

πdH (LPn(Sn),LQ∗n(Sn)) = πdH (Sn ◦Wn, Sn ◦ W̃′
n)

= inf{ε̃ > 0 | (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(Sn(wn), Sn(w̃′n)) > ε̃, w̃n, w̃
∗
n ∈ Zn

})
≤ ε̃}.

Due to the de�nition of the statistical operator S, this is equivalent to

inf{ε̃ > 0 | (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(Qw̃′n)) > ε̃, w̃n, w̃
∗
n ∈ Zn

})
≤ ε̃}.

Moreover the triangle inequality yields

dH(S(Pwn), S(Qw̃′n)) ≤ dH(S(Pwn), S(P )) + dH(S(P ), S(Qw̃′n)).
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Hence, for all n ≥ max{n4, n5, n6, n7}, we obtain

(Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(Qw̃′n)) >
ε

2
, w̃n, w̃

∗
n ∈ Zn

})
≤ (Wn,W̃n,W̃

∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(P )) >
ε

4
or dH(S(P ), S(Qw̃′n)) >

ε

4
, w̃n, w̃

∗
n ∈ Zn

})
.

The continuity of the statistical operator S in P , see (3.26), gives

dBL(P,QW̃′
n
) ≤ δ0 ⇒ dH(S(P ), S(QW̃′

n
)) ≤ ε

4
,

and dBL(P,PWn) ≤ δ0 ⇒ dH(S(P ), S(PWn)) ≤ ε

4
.

Further, the triangle inequality yields

dBL(P,Qw̃′n) ≤ dBL(P,Pwn) + dBL

(
Pwn ,

1

n

n∑
i=1

P i

)
+ dBL

(
1

n

n∑
i=1

P i,
1

n

n∑
i=1

Qi

)

+ dBL

(
1

n

n∑
i=1

Qi,Qw̃n

)
+ dBL(Qw̃n ,Qw̃∗n) + dBL(Qw̃∗n ,Qw̃′n). (3.37)

Therefore we conclude, for all n ≥ max{n4, n5, n6, n7},

(Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(P )) >
ε

4
or dH(S(P ), S(Qw̃′n)) >

ε

4
, w̃n, w̃

∗
n ∈ Zn

})
(3.26)

≤ (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dBL(Pwn , P ) > δ0 or dBL(P,Qw̃′n) > δ0, w̃n, w̃
∗
n ∈ Zn

})
(3.37)

≤ (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dBL(Pwn , P ) >
δ0

6
or dBL

(
Pwn ,

1

n

n∑
i=1

P i

)
>
δ0

6

or dBL

(
1

n

n∑
i=1

P i,
1

n

n∑
i=1

Qi

)
>
δ0

6
or dBL

(
1

n

n∑
i=1

Qi,Qw̃n

)
>
δ0

6

or dBL(Qw̃n ,Qw̃∗n) >
δ0

6
or dBL(Qw̃∗n ,Qw̃′n) >

δ0

6

})
.
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Now, assume dBL(Pn, Qn) ≤ δ0
6 , then (3.35) yields dBL

(
1
n

∑n
i=1 P

i, 1
n

∑n
i=1Q

i
)
≤ δ0

6 , there-

fore this term can be omitted. Note that this is only proven for the p-product metrics on

Zn and not for the metric dn from (3.3). For this metric we need a di�erent argumentation,

which is stated below the next calculation.

Hence, for all n ≥ max{n4, n5, n6, n7},

(Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(Qw̃′n)) > ε, w̃n, w̃
∗
n ∈ Zn

})
(3.35)

≤ (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dBL(Pwn , P ) >
δ0

6
or dBL

(
Pwn ,

1

n

n∑
i=1

P i

)
>
δ0

6
or dBL

(
1

n

n∑
i=1

Qi,Qw̃n

)
>
δ0

6

or dBL(Qw̃n ,Qw̃∗n) >
δ0

6
or dBL(Qw̃∗n ,Qw̃′n) >

δ0

6

})
≤ Pn

({
wn ∈ Zn | dBL(Pwn , P ) >

δ0

6

})
+ Pn

({
wn ∈ Zn | dBL

(
Pwn ,

1

n

n∑
i=1

P i

)
>
δ0

6

})

+Qn

({
w̃n ∈ Zn | dBL

(
1

n

n∑
i=1

Qi,Qw̃n

)
>
δ0

6

})

+⊗ni=1Qw̃n

({
w̃∗n ∈ Zn | dBL

(
Qw̃n ,Qw̃∗n

)
>
δ0

6

})
+Q∗n

({
w̃′n ∈ Zn | dBL

(
Qw̃∗n ,Qw̃′n

)
>
δ0

6

})
(3.31),(3.32)(3.33),(3.34),(3.36)

<
ε

10
+

ε

10
+

ε

10
+

ε

10
+

ε

10
=
ε

2
.

In order to show the above bound for the metric dn, see (3.3), on Zn, we use another variant
of the triangle inequality in (3.37):

dBL(P,Qw̃′n) ≤ dBL(P,Pwn) + dBL (Pwn ,Qw̃n) + dBL(Qw̃n ,Qw̃∗n) + dBL(Qw̃∗n ,Qw̃′n).

(3.38)

Assume dBL(Pn, Qn) ≤ δ20
64 . Then, the strong equivalence between the Prohorov metric

and the bounded Lipschitz metric on Polish spaces, see Huber (1981, Chapter 2, Corollary

4.3), yields πdn(Pn, Qn) ≤
√
dBL(Pn, Qn) ≤ δ0

8 . Due to Dudley (1989, Theorem 11.6.2),
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πdn(Pn, Qn) ≤ δ0
8 implies the existence of a probability measure µ ∈ M(Zn × Zn) with

marginal distributions Pn andQn, such that µ
({

(wn, w̃n) ∈ Zn ×Zn | dn(wn, w̃n) > δ0
8

})
≤

δ0
8 . As dn(wn, w̃n) ≤ δ0

8 implies πdn
(

1
n

∑n
i=1 δzi ,

1
n

∑n
i=1 δz̃i

)
≤ δ0

8 , see (3.11), we have:

µ

({
(wn, w̃n) ∈ Zn ×Zn | πdn(Pwn ,Qw̃n) >

δ0

8

})
≤ δ0

8
.

Again the equivalence between the metrics π and dBL yields:

µ

({
(wn, w̃n) ∈ Zn ×Zn | dBL(Pwn ,Qw̃n) >

δ0

4

})
≤ δ0

8
.

Now we choose the joint distribution K̃N of WN, W̃N, W̃
∗
N, and W̃′

N such that the distri-

bution of (Wn,W̃n) : ZN ×ZN → Zn ×Zn is µ ∈M(Zn ×Zn). Then we conclude:

(Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dH(S(Pwn), S(P )) >
ε

4
or dH(S(P ), S(Qw̃′n)) >

ε

4
, w̃n, w̃

∗
n ∈ Zn

})
(3.26),(3.38)

≤ (Wn,W̃n,W̃
∗
n,W̃

′
n)(K̃N)

({
(wn, w̃n, w̃

∗
n, w̃

′
n) ∈ Zn ×Zn ×Zn ×Zn |

dBL(Pwn , P ) >
δ0

4
or dBL (Pwn ,Qw̃n) >

δ0

4

or dBL(Qw̃n ,Qw̃∗n) >
δ0

4
or dBL(Qw̃∗n ,Qw̃′n) >

δ0

4

})
.

≤ Pn

({
wn ∈ Zn | dBL(Pwn , P ) >

δ0

4

})
+ µ

({
(wn, w̃n) ∈ Zn ×Zn | dBL (Pwn ,Qw̃n) >

δ0

4

})
+⊗ni=1Qw̃n

({
w̃∗n ∈ Zn | dBL

(
Qw̃n ,Qw̃∗n

)
>
δ0

4

})
+Q∗n

({
w̃′n ∈ Zn | dBL

(
Qw̃∗n ,Qw̃′n

)
>
δ0

4

})
.

Now, adapting the inequalities in (3.31), (3.32), and (3.36) in ε respectively n yields the

boundedness of the above term by ε
2 for dBL(Pn, Qn) ≤ δ20

64 and for all n ≥ {n4, n5, n7}.

Now we can go on with the proof similar for both kinds of metrics on Zn.

The equivalence between the Prohorov metric and the bounded Lipschitz metric on Polish

spaces, see Huber (1981, Chapter 2, Corollary 4.3), yields the existence of n0,2 ∈ N such
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that for all n ≥ n0,2, dBL(Pn, Qn) ≤ δ0
6 (respectively dBL(Pn, Qn) ≤ δ20

64) implies

dBL(LPn(Sn),LQ∗n(Sn)) <
ε

2
. (3.39)

Now, (3.30) and (3.39) yield for all n ≥ max{n0,1, n0,2}:

dBL(LP ∗n (Sn),LQ∗n(Sn)) < ε. (3.40)

Recall that LP ∗n (Sn) =: ζn and LQ∗n(Sn) =: ξn are random quantities with values inM(H).

Hence (3.40) is equivalent to

E
[
dBL(LP ∗n (Sn),LQ∗n(Sn))

]
< ε, for all n ≥ max{n0,1, n0,2},

respectively

E [dBL(ζn, ξn)] < ε, for all n ≥ max{n0,1, n0,2}.

Therefore, for all f ∈ BL1(M(Z)) and for all n ≥ max{n0,1, n0,2}:∣∣∣∣∫ fd(L(ζn))−
∫
fd(L(ξn))

∣∣∣∣ = |Ef(ζn)− Ef(ξn)| ≤ E |f(ζn)− f(ξn)|

≤ E (|f |1 dBL(ζn, ξn)) < ε,

by a variant of Strassen's Theorem, see Huber (1981, Chapter 2, Theorem 4.2, (2)⇒(1)).

That is,

dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε for all n ≥ max{n0,1, n0,2}.

Hence for every ε > 0 we �nd δ = δ0
6 and n0 = max{n0,1, n0,2} such that for all n ≥ n0:

dBL(Pn, Qn) < δ ⇒ dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε,

which yields the assertion. �

The next part gives two examples of stochastic processes of independent, but not necessarily

identically distributed random variables, which are Varadarajan processes. In particular

these stochastic processes even satisfy a strong law of large numbers for events (SLLNE)

in the sense of Steinwart et al. (2009) and therefore are, due to Theorem 3.2.1, strong

Varadarajan processes. The �rst example is rather simple and describes a sequence of

univariate normal distributions.
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Example 1 Let (ai)i∈N ⊂ R be a sequence with limi→∞ ai = a ∈ R and let |ai| ≤ c, for

some constant c > 0 for all i ∈ N. Let (Zi)i∈N, Zi : Ω → R, be a stochastic process where

Zi, i ∈ N, are independent and Zi ∼ N(ai, 1), i ∈ N. Then the process (Zi)i∈N is a strong

Varadarajan process.

Proof: Without any restriction we assume a = 0. Otherwise regard the process Zi − a,
i ∈ N. By assumption, the random variables Zi, i ∈ N, are independent. Hence IB ◦ Zi,
i ∈ N, are independent, see for example Ho�mann-Jørgensen (1994, Theorem 2.10.6) for all

measurable B ∈ B, as IB is a measurable function. According to Steinwart et al. (2009,

Proposition 2.8), (Zi)i∈N satis�es the SLLNE if there is a probability measure P inM(Z)

such that limn→∞
1
n

∑n
i=1 EµIB ◦ Zi = P (B) for all measurable B ∈ B. Hence:

1

n

n∑
i=1

EµIB ◦ Zi =
1

n

n∑
i=1

∫
IB dZi(µ) =

1

n

n∑
i=1

∫
IBfi dλ

1,

where fi(x) = 1√
2π
e−

1
2

(x−ai)2 denotes the density of the normal distribution N(0, 1) with

respect to the Lebesgue measure λ1. Moreover de�ne g : R→ R by

g(x) =


e−

1
2

(x+c)2 , x < −c
1√
2π
, −c ≤ x ≤ c

e−
1
2

(x−c)2 , c < x

x ∈ R.

Therefore |fi| ≤ |g|, for all i ∈ N, g is integrable and due to Lebesgue's Theorem, see for

example Ho�mann-Jørgensen (1994, Theorem 3.6):

lim
n→∞

1

n

n∑
i=1

∫
IBfi dλ

1 = lim
n→∞

∫
1

n

n∑
i=1

IBfi dλ
1 =

∫
lim
n→∞

1

n

n∑
i=1

IBfi dλ
1. (3.41)

We have fi → f0, where f0 = 1√
2π
e−

1
2
x2 for all x ∈ R, as ai → 0 and therefore the Lemma of

Kronecker, see for example Ho�mann-Jørgensen (1994, Theorem 4.9, Equation 4.9.1) yields:

limn→∞
1
n

∑n
i=1 fi(x) = f0(x) for all x ∈ X .

Now (3.41) yields the SLLNE:

lim
n→∞

1

n

n∑
i=1

∫
IBfi dλ

1 =

∫
IBf0 dλ

1 = P (B), for al B ∈ B.

With Theorem 3.2.1 the Varadarajan property is given. �
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The second example are stochastic processes where the distributions of the random variables

Zi, i ∈ N, are lying in a so-called shrinking ε-neighbourhood of a probability measure P .

Example 2 Let (Z,B) be a measurable space and let (Zi)i∈N be a stochastic process with

independent random variables Zi : Ω→ Z, Zi ∼ P i, where

P i = (1− εi)P + εP̃ i

for a sequence εi → 0, i→∞, εi > 0 and P̃ i, P ∈M(Z), i ∈ N. Then the process (Zi)i∈N

is a strong Varadarajan process.

Proof: Similar to the proof of Example 1, we �rst show the SLLNE, that is there exists a

probability measure P ∈M(Z) such that

lim
n→∞

1

n

n∑
i=1

∫
IB ◦ Zi dµ = P (B), for all measurable B ⊂ Ω.

Now let B ⊂ Ω be an arbitrary measurable set. Then:

lim
n→∞

1

n

n∑
i=1

∫
IB ◦ Zi dµ = lim

n→∞

1

n

n∑
i=1

∫
Z
IB dP

i = lim
n→∞

1

n

n∑
i=1

∫
Z
IB d[(1− εi)P + εiP̃

i]

= lim
n→∞

1

n

n∑
i=1

∫
Z
IB dP − lim

n→∞

1

n

n∑
i=1

εi

∫
Z
IB dP + lim

n→∞

1

n

n∑
i=1

εi

∫
Z
IB dP̃

i. (3.42)

As, 0 ≤ 1
n

∑n
i=1 εi

∫
IB dP ≤ 1

n

∑n
i=1 εi and εi → 0, we have

lim
n→∞

1

n

n∑
i=1

εi

∫
IB dP ≤ lim

n→∞

1

n

n∑
i=1

εi −→ 0, n→∞

and similarly

lim
n→∞

1

n

n∑
i=1

εi

∫
IB dP̃

i ≤ lim
n→∞

1

n

n∑
i=1

εi −→ 0, n→∞.

Hence (3.42) yields

lim
n→∞

1

n

n∑
i=1

IB ◦ Zi = lim
n→∞

1

n

n∑
i=1

∫
IB dP = P (B)

and therefore, due to Theorem 3.2.1, the assertion. �
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In the next chapter a result for more general stochastic process, namely α-mixing processes,

is established. Due to the possible dependence, stronger assumptions on the statistical

operator are required.

3.4.2 Qualitative robustness for the moving block bootstrap of α-mixing

processes

Dropping the independence assumption we now focus on real valued mixing processes, in

particular on strongly stationary α-mixing or strong mixing stochastic processes. The mixing

notion is an often used and well-accepted dependence notion which quanti�es the degree of

dependence of a stochastic process.

Instead of Efron's empirical bootstrap another bootstrap approach is used in order to rep-

resent the dependence structure of an α-mixing process. Künsch (1989) and Liu and Singh

(1992) introduced the moving block bootstrap (MBB). Often resampling of single observa-

tions can not preserve the dependence structure of the process, therefore they decided to

take blocks of length b of observations instead. The dependence structure of the process is

preserved, within these blocks. The block length b increases with the number of observa-

tions n for asymptotic considerations. A slight modi�cation of the original moving block

bootstrap, see for example Politis and Romano (1990) and Shao and Yu (1993), is used in

the next two theorems in order to avoid edge e�ects.

The following proofs are based on central limit theorems for empirical processes. There are

several results concerning the moving block bootstrap of the empirical process in case of mix-

ing processes, see for example Bühlmann (1994), Naik-Nimbalkar and Rajarshi (1994), and

Peligrad (1998, Theorem 2.2) for α-mixing sequences and Radulovi¢ (1996) and Bühlmann

(1995) for β-mixing sequences. To our best knowledge there are so far no results concerning

qualitative robustness for bootstrap approximations of estimators for α-mixing stochastic

processes. Therefore, Theorem 3.4.5 shows qualitative robustness for a stochastic process

with values in R. The proof is based on Peligrad (1998, Theorem 2.2), which provides

a central limit theorem under assumptions on the process, which are weaker than those

in Bühlmann (1994) and Naik-Nimbalkar and Rajarshi (1994). In the case of Rd-valued,
d > 1, stochastic processes, stronger assumptions on the stochastic process are needed, as

the central limit theorem in Bühlmann (1994) requires stronger assumptions, see Theorem

3.4.6.
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Let Z1, . . . , Zn, n ∈ N, be the �rst n projections of a real valued stochastic process (Zi)i∈N

and let b ∈ N, b < n, be the block length. Then, for �xed n ∈ N, the sample can be

divided into blocks Bi,b := (Zi, . . . , Zi+b−1). If i > n − b + 1, we de�ne Zn+j = Zj , for the

missing elements of the blocks. To get the MBB bootstrap sample W∗
n = (Z∗1 , . . . , Z

∗
n), `

numbers I1, . . . , I` from the set {1, . . . , n} are randomly chosen with replacement. Without

loss of generality it is assumed that n = `b, if n is not a multiple of b we simply cut

the last block, which is usually done in literature. Then the sample consists of the blocks

BI1,b, BI2,b, . . . , BI`,b, that is Z
∗
1 = ZI1 , Z

∗
2 = ZI1+1, . . . , Z

∗
b =I1+b−1, Z

∗
b+1 = ZI2 , . . . , Z

∗
`b =

ZI`+b−1.

As we are interested in estimators Sn, n ∈ N, which can be represented by a statistical op-

erator S : M(Z) → H via S(Pwn) = Sn(z1, . . . , zn), for a complete separable metric space

H, see (3.1), the empirical measure of the bootstrap sample PW∗
n

= 1
n

∑n
i=1 δZ∗i should

approximate the empirical measure of the original sample PWn = 1
n

∑n
i=1 δZi . Contrarily

to qualitative robustness in the case of independent and not necessarily identically dis-

tributed random variables (Theorem 3.4.2), the assumptions on the statistical operator S

are strengthened for the case of α-mixing sequences. In particular the statistical operator

S is assumed to be uniformly continuous for all P ∈ (M(Z), dBL). For the �rst theorem

we assume the random variables Zi, i ∈ N, to be real valued and bounded. Without loss

of generality we assume 0 ≤ Zi ≤ 1, otherwise a transformation leads to this assumption.

For the bootstrap for the true as well as for the contaminated process, we assume the block

length b(n) and the number of blocks `(n) to be sequences of integers satisfying

nh ∈ O(b(n)), b(n) ∈ O(n1/3−a), for some 0 < h <
1

3
− a, 0 < a <

1

3
,

b(n) = b(2q) for 2q ≤ n < 2q+1, q ∈ N, b(n)→∞, n→∞ and b(n) · `(n) = n, n ∈ N.

Theorem 3.4.5 Let PN ∈ M(RN) be a probability measure on (RN,B⊗N) such that the

coordinate process (Zi)i∈N, Zi : RN → R is bounded, strongly stationary, and α-mixing with∑
m>n

α(σ(Z1, . . . , Zi), σ(Zi+m, . . .), PN) = O(n−γ), i ∈ N, for some γ > 0. (3.43)

Let P ⊂ M(RN) be the set of probability measures such that the coordinate process ful�ls

the properties above for the same γ > 0. Let (H, dH) be a complete separable metric space,

let (Sn)n∈N be a sequence of estimators which can be represented by a statistical operator

S :M(R)→ H via (3.1). Moreover let Sn be continuous and let S be additionally uniformly
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continuous with respect to dBL. Then the sequence of estimators (Sn)n∈N is qualitatively

robust at PN with respect to P.

The assumptions on the stochastic process are on the one hand, together with the assump-

tions on the block length, used to ensure the validity of the bootstrap approximation and

on the other hand, together with the assumptions on the statistical operator, respectively

the sequence of estimators, to ensure the qualitative robustness.

Proof of Theorem 3.4.5: Let P ∗N, Q
∗
N ∈ M(ZN) be the bootstrap approximations of the

true distribution PN and the contaminated distribution QN. First, the triangle inequality

yields:

dBL(LP ∗n (Sn),LQ∗n(Sn))

≤ dBL(LP ∗n (Sn),LPn(Sn))︸ ︷︷ ︸
I

+ dBL(LPn(Sn),LQn(Sn))︸ ︷︷ ︸
II

+ dBL(LQn(Sn),LQ∗n(Sn))︸ ︷︷ ︸
III

.

First, we regard the term in part II. Let σ(Zi), i ∈ N, be the σ-algebra generated by Zi.

Due to the assumptions on the mixing process
∑

m>n α(σ(Z1, . . . , Zi), σ(Zi+m, . . .), PN) =

O(n−γ), i ∈ N, γ > 0, the sequence (α(σ(Z1, . . . , Zi), σ(Zi+m, . . .), µ))m∈N is a null se-

quence. Moreover it is bounded by the de�nition of the α-mixing coe�cient which, due to

the strong stationarity, does not depend on i. Therefore

1

n2

n∑
i=1

n∑
j=1

α((Zi)i∈N, PN, i, j) =
1

n2

n∑
i=1

n∑
j=1

α(σ(Zi), σ(Zj), PN)

≤ 2

n2

n∑
i=1

n∑
j≥i

α(σ(Zi), σ(Zj), PN)

≤ 2

n2

n∑
i=1

n∑
j≥i

α(σ(Z1, . . . , Zi), σ(Zj , . . .), PN)

=
2

n2

n∑
i=1

n−i∑
`=0

α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN)

stationarity
≤ 2

n

n∑
`=0

α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN), i ∈ N

−→ 0, n→∞.

Hence, the process is weakly α-bi-mixing with respect to PN, see De�nition 2.2.1. Due to the

stationarity assumption, the process (Zi)i∈N is additionally asymptotically mean stationary,
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that is limn→∞
1
n

∑n
i=1 EIB◦Zi = P (B) for all B ∈ A for a probability measure P . Therefore

the process satis�es the WLLNE, see Steinwart et al. (2009, Proposition 3.2), and therefore

is a weak Varadarajan process, see Theorem 3.2.1.

As the process is assumed to be a Varadarajan process and due to the assumptions on

the sequence of estimators (Sn)n∈N, qualitative robustness of (Sn)n∈N is ensured by The-

orem 3.1.3. Together with the equivalence between the Prohorov metric and the bounded

Lipschitz metric for Polish spaces, see Huber (1981, Chapter 2, Corollary 4.3), it follows:

For every ε > 0 there is δ > 0 such that for all n ∈ N and for all Qn ∈M(Zn) we have:

dBL(Pn, Qn) < δ ⇒ dBL(LPn(Sn),LQn(Sn)) <
ε

3
.

This implies

E [dBL(LPn(Sn),LQn(Sn))] <
ε

3
. (3.44)

Hence the convergence of the term in part II is shown.

To prove the convergence of the term in part I, consider the distribution PN ∈ M(ZN)

and let P ∗N be the bootstrap approximation of PN, via the blockwise bootstrap. De�ne, for

n ∈ N, the random variables

Wn : ZN → Zn, Wn = (Z1, . . . , Zn), zN 7→ wn = (z1, . . . , zn), and

W′
n : ZN → Zn, W′

n = (Z ′1, . . . , Z
′
n), zN 7→ w′n,

such that Wn(PN) = Pn and W′
n(P ∗N) = P ∗n .

Moreover denote the bootstrap sample by W∗
n : ZN → Zn, W∗

n := (Z∗1 , . . . , Z
∗
n), zN 7→ w∗n,

and the distribution of W∗
n by Pn. The blockwise bootstrap approximation of Pm, m ∈ N,

is P ∗m = ⊗mj=1
1
n

∑n
i=1 δZ∗i , m ∈ N. Note that the sample Z∗1 , . . . , Z

∗
n depends and on the

blocklength b(n) and on the number of blocks `(n).

Further denote the joint distribution of WN, W
∗
N, and W′

N by KN ∈ M(ZN × ZN × ZN).

Then, KN has marginal distributions KN(B1 × ZN × ZN) = PN(B1) for all B1 ∈ B⊗N,
KN(ZN × B2 × ZN) = PN(B2) for all B2 ∈ B⊗N, and KN(ZN × ZN ×B3) = P ∗N(B3) for all

B3 ∈ B⊗N.
Then,

LPn(Sn) = Sn(Pn) = Sn ◦Wn(PN) and LP ∗n (Sn) = Sn(P ∗n) = Sn ◦W′
n(P ∗N)
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and therefore

dBL(LP ∗n (Sn),LPn(Sn)) = dBL(L(Sn ◦W ′n),L(Sn ◦Wn)).

By assumption we have 0 ≤ zi ≤ 1, i ∈ N. Hence Zi(zN) = zi ∈ [0, 1], i. e. Z = [0, 1], which

is a totally bounded metric space. Therefore the set BL1([0, 1]) is a uniform Glivenko-

Cantelli class, due to Dudley et al. (1991, Proposition 12). Similar to part I of the proof of

Theorem 3.4.2, the blockwise bootstrap structure and the Glivenko-Cantelli property yield:

lim
n→∞

sup
Pw∗n∈M(Z)

P ∗N

({
zN ∈ ZN | sup

m≥n
dBL(PW′

m(zN),Pw∗n) > η

})
= 0.

Respectively, for �xed ε > 0, for every δ0 > 0 there is n1 ∈ N such that for all n ≥ n1 and

all Pw∗n ∈M(Z):

P ∗n

({
w′n ∈ Zn | dBL(Pw′n ,Pw∗n) ≤ δ0

2

})
≥ 1− ε

6
. (3.45)

Regard the process Gn(t) = 1√
n

∑n
i=1 I{Z∗i ≤t}−

1√
n

∑n
i=1 I{Zi≤t}, t ∈ R. Due to the assump-

tions on the process and on the moving block bootstrap, Theorem 2.3 in Peligrad (1998)

yields the almost sure convergence in distribution to a Brownian bridge G:

1√
n

n∑
i=1

I{Z∗i ≤t} −
1√
n

n∑
i=1

I{Zi≤t} −→D G(t), t ∈ R (3.46)

almost surely with respect to PN, n→∞, in the Skorohod topology on D[0, 1]. Here −→D
indicates convergence in distribution and D[0, 1] denotes the space of cadlag functions on

[0, 1], for details see for example Billingsley (1999, p. 121).

This is equivalent to

1√
n

n∑
i=1

I{Z∗i ≤t} −
1√
n

n∑
i=1

I{Zi≤t} −→D G(t), almost surely with respect to PN, n→∞,

for all continuity points t of G, see Billingsley (1999, (12.14), p. 124).

Multiplying by 1√
n
yields for any �xed continuity point t ∈ R :

1

n

n∑
i=1

I{Z∗i ≤t} −
1

n

n∑
i=1

I{Zi≤t} −
1√
n
G(t) −→D 0 almost surely with respect to PN, n→∞.
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As convergence in distribution to a �nite constant implies convergence in probability, see

for example van der Vaart (1998, Theorem 2.7(iii)), and as 1√
n
G(t) → 0 in probability, for

all t ∈ R:

1

n

n∑
i=1

I{Z∗i ≤t} −
1

n

n∑
i=1

I{Zi≤t} −→P 0 almost surely with respect to PN, n→∞,

for all continuity points t of G, where −→P denotes the convergence in probability.

Hence, Dudley (1989, Theorem 11.12) yields the convergence of the corresponding proba-

bility measures:

dBL

(
1

n

n∑
i=1

δZ∗i ,
1

n

n∑
i=1

δZi

)
−→P 0 almost surely with respect to PN, n→∞.

Respectively

dBL(PW∗
n
,PWn) −→P 0 almost surely with respect to PN, n→∞.

De�ne the set Bn =
{
wn ∈ Zn | dBL(PW∗

n
,Pwn) −→P 0, n→∞

}
. Hence,

Pn(Bn) = PN

({
zN ∈ ZN |Wn(zN) ∈ Bn

})
= 1 (3.47)

and, for all wn ∈ Bn, there is n2,wn ∈ N such that for all n ≥ n2,wn ∈ N:

Pn

({
w∗n ∈ Zn | dBL

(
Pw∗n ,Pwn

)
>
δ0

4

})
<
ε

6
. (3.48)

By assumption we have 0 ≤ zi ≤ 1, i ∈ N. Hence the space of probability measures

{Pwn | wn ∈ [0, 1]n} is a subset ofM([0, 1]) and therefore tight (see De�nition A6), as [0,1]

is a compact space, see e. g. (Klenke, 2013, Example 13.28). Then Prohorov's Theorem, see

for example Billingsley (1999, Theorem 5.1) yields relative compactness of M([0, 1], dBL)

and in particular the relative compactness of the set {Pwn | wn ∈ [0, 1]n}. AsM([0, 1], dBL)

is a complete space, see Dudley (1989, Theorem 11.5.5), relative compactness equals total

boundedness. That is, there exists a �nite dense subset P̃ of {Pwn | wn ∈ [0, 1]n} such that

for all ρ > 0 and Pwn ∈ {Pwn | wn ∈ [0, 1]n} there is P̃ρ ∈ P̃ such that

dBL(P̃ρ,Pwn) ≤ ρ. (3.49)
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The triangle inequality yields:

dBL
(
Pw∗n ,Pwn

)
≤ dBL

(
Pw∗n , P̃ρ

)
+ dBL

(
P̃ ρ,Pwn

)
.

De�ne ρ = δ0
4 . Then (3.48) yields for every P̃ρ ∈ P̃ the existence of an integer n ≥ n2,P̃ ∈ N

such that, for all n ≥ n2,P̃ and all wn ∈ Bn:

Pn

({
w∗n ∈ Zn | dBL

(
Pw∗n ,Pwn

)
>
δ0

2

})
≤ Pn

({
w∗n ∈ Zn | dBL

(
Pw∗n , P̃ρ

)
>
δ0

4
or dBL

(
P̃ρ,Pwn

)
>
δ0

4

})
(3.49)

≤ Pn

({
w∗n ∈ Zn | dBL

(
Pw∗n , P̃ρ

)
>
δ0

4

})
(3.48)
<

ε

6
.

Hence, for all n ≥ n2 := maxP̃∈P̃{n2,P̃ } and for all wn ∈ Bn, we have:

sup
Pwn∈M(Z)

Pn

({
w∗n ∈ Zn | dBL

(
Pw∗n ,Pwn

)
>
δ0

2

})
<
ε

6
. (3.50)

Due to the uniform continuity of the operator S, for every ε > 0 there is δ0 > 0 such that

for all P,Q ∈M(Z) :

dBL(P,Q) ≤ δ0 ⇒ dH(S(P ), S(Q)) ≤ ε

3
. (3.51)

Moreover, the triangle inequality yields:

dBL(Pw′n ,Pwn) ≤ dBL(Pw′n ,Pw∗n) + dBL(Pw∗n ,Pwn). (3.52)

Again we use the relation between the Prohorov metric πdH and the Ky Fan metric, Dudley

(1989, Theorem 11.3.5):

πdH
(
LP ∗n (Sn), LPn(Sn)) = πdH (Sn ◦W′

n, Sn ◦Wn)

≤ inf
{
ε̃ > 0 | KN

({
dH(Sn ◦W′

n, Sn ◦Wn) > ε̃,w∗N ∈ ZN
})
≤ ε̃
}

= inf
{
ε̃ > 0 | (Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

dH(Sn(w′n), Sn(wn)) > ε̃,w∗n ∈ Zn
})
≤ ε̃
}
.
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Due to the de�nition of the statistical operator S, this is equivalent to

inf{ε̃ > 0 | (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

dH(S(Pw′n), S(Pwn) > ε̃,w∗n ∈ Zn
})
≤ ε̃}.

Due to the uniform continuity of S, see (3.51), we obtain, for all n ≥ max{n1, n2} :

(Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dH(S(Pw′n), S(Pwn)) >

ε

3
,w∗n ∈ Zn

})
(3.51)

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | dBL(Pw′n ,Pwn) > δ0,w

∗
n ∈ Zn

})
= (Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

{wn /∈ Bn, dBL(Pw′n ,Pwn) > δ0} or {wn ∈ Bn, dBL(Pw′n ,Pwn) > δ0},w∗n ∈ Zn
})

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

wn /∈ Bn, dBL(Pw′n ,Pwn) > δ0,w
∗
n ∈ Zn

})
+(Wn,W

∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

wn ∈ Bn, dBL(Pw′n ,Pwn) > δ0,w
∗
n ∈ Zn

})
(3.47)

= (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn |

wn ∈ Bn, dBL(Pw′n ,Pwn) > δ0,w
∗
n ∈ Zn

})
.

The triangle inequality, (3.52), then yields for all n ≥ max{n1, n2}:

(Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn| wn ∈ Bn, dBL(Pw′n ,Pwn) > δ0,w

∗
n ∈ Zn

})
(3.52)

≤ (Wn,W
∗
n,W

′
n)(KN)

({
(wn,w

∗
n,w

′
n) ∈ Zn ×Zn ×Zn | {wn ∈ Bn

and dBL(Pw′n ,Pw∗n) >
δ0

2
} or {wn ∈ Bn and dBL(Pw∗n ,Pwn) >

δ0

2
}
})

≤ P ∗n
({

w′n ∈ Zn | wn ∈ Bn, dBL(Pw′n ,Pw∗n) >
δ0

2

})
+ Pn

({
w∗n ∈ Zn | wn ∈ Bn, dBL(Pw∗n ,Pwn) >

δ0

2

})
(3.45),(3.48)

<
ε

6
+
ε

6
=

ε

3
.

The equivalence between the Prohorov metric and the bounded Lipschitz metric on Polish

spaces, see Huber (1981, Chapter 2, Corollary 4.3), yields the existence of ñ1 such that for
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every n ≥ ñ1 :

dBL(LP ∗n (Sn),LPn(Sn)) <
ε

3
.

And therefore

E
[
dBL

(
LP ∗n (Sn),LPn(Sn)

)]
<
ε

3
. (3.53)

For the convergence of the term in part III the same argumentation as for part I can be

applied, as the assumptions on QN and Q∗N are the same as for PN and P∗N. In particular for

every ε > 0 there is ñ2 ∈ N such that for all n ≥ ñ2:

dBL
(
LQ∗n(Sn),LQn(Sn)

)
<
ε

3
,

respectively

E
[
dBL

(
LQ∗n(Sn),LQn(Sn)

)]
<
ε

3
. (3.54)

Hence, (3.44), (3.53), and (3.54) yield, for all n ≥ max{ñ1, ñ2}:

E
[
dBL

(
LP ∗n (Sn),LQ∗n(Sn)

)]
<
ε

3
+
ε

3
+
ε

3
= ε.

As LP ∗n (Sn) and LQ∗n(Sn) are random variables itself we have, due to Huber (1981, Chapter

2 Theorem 4.2, (2)⇒(1)), for all n ≥ max{ñ1, ñ2}:

dBL
(
L(LP ∗n (Sn)),L(LQ∗n(Sn))

)
< ε.

Hence, for all ε > 0 there is δ > 0 such that there is n0 = max{ñ1, ñ2} ∈ N such that, for

all n ≥ n0:

dBL(Pn, Qn) < δ ⇒ dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε

and therefore the assertion. �

The next theorem generalizes this result to stochastic processes with values in [0, 1]d, d > 1,

instead of [0, 1] ⊂ R. Therefore, for example, the bootstrap version of the SVM estimator

is qualitatively robust under weak conditions. The proof of the next theorem follows the

same lines as the proof of the theorem above, but another central limit theorem, which is

shown in Bühlmann (1994), is used. Therefore the assumptions on the mixing property of

the stochastic process are stronger and the random variables Zi, i ∈ N, are assumed to
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have continuous marginal distributions. Again the bootstrap sample results of a moving

block bootstrap where `(n) blocks of length b(n) are chosen, again assuming `(n) · b(n) = n.

Moreover, let b(n) be a sequences of integers satisfying

b(n) = O(n
1
2
−a) for some a > 0.

Theorem 3.4.6 Assume Z = [0, 1]d, d > 1. Let PN be a probability measure such that the

coordinate process (Zi)i∈N, Zi : ZN → Z, is strongly stationary and α-mixing with

∞∑
m=0

(m+ 1)8d+7(α(σ(Z1, . . . , Zi), σ(Zi+m, . . .), PN))
1
2 <∞, i ∈ N. (3.55)

Assume that Zi has continuous marginal distributions for all i ∈ N. De�ne the set of

probability measures P ⊂ M(Z) such that the coordinate process is strongly stationary and

α-mixing as in (3.55).

Let (H, dH) be a complete separable metric space, (Sn)n∈N be a sequence of estimators such

that Sn : Zn → H is continuous and assume that Sn can be represented by a statistical

operator S : M(Z) → H via (3.1) which is additionally uniformly continuous with respect

to dBL.

Then the sequence of estimators (Sn)n∈N is qualitatively robust at PN with respect to P.

Proof of Theorem 3.4.6: The proof follows the same lines as the proof of Theorem 3.4.5

and therefore we only state the di�erent steps. Again we start with the triangle inequality:

dBL(LP ∗n (Sn),LQ∗n(Sn))

≤ dBL(LP ∗n (Sn),LPn(Sn))︸ ︷︷ ︸
I

+ dBL(LPn(Sn),LQn(Sn))︸ ︷︷ ︸
II

+ dBL(LQn(Sn),LQ∗n(Sn))︸ ︷︷ ︸
III

.

To proof the convergence of the term in part II, we need the weak Varadarajan property

of the stochastic process. Due to the de�nition α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), µ) ≤ 2 for all

` ∈ N, i ∈ N, and obviously:

α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN) ≤ `+ 1, ` > 0. (3.56)
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Hence, due to the strong stationarity of the stochastic process, we have:

1

n2

n∑
i=1

n∑
j=1

α((Zi)i∈N, PN, i, j) =
1

n2

n∑
i=1

n∑
j=1

α(σ(Zi), σ(Zj), PN)

≤ 2

n2

n∑
i=1

n∑
j≥i

α(σ(Zi), σ(Zj), PN)

≤ 2

n2

n∑
i=1

n∑
j≥i

α(σ(Z1, . . . , Zi), σ(Zj , . . .), PN)

=
2

n2

n∑
i=1

n−i∑
`=0

α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN)

stationarity
≤ 2

n

n∑
`=0

α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN), i ∈ N

=
2

n

n∑
`=0

(α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN))
1
2 (α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN))

1
2 , i ∈ N

(3.56)

≤ 2

n

n∑
`=0

(`+ 1) (α(σ(Z1, . . . , Zi), σ(Zi+`, . . .), PN))
1
2 , i ∈ N

(3.55)−→ 0, n→∞.

Now, the same argumentation as in the proof of Theorem 3.4.5 yields the weak Varadarajan

property and therefore, for all ε > 0,

E [dBL(LPn(Sn),LQn(Sn))] <
ε

3
. (3.57)

Regarding the term in part I, we use a central limit theorem for the blockwise bootstrapped

empirical process by Bühlmann (1994, Corollary 1 and remark) to show its convergence.

Again, regard the distribution PN ∈M(ZN) and let P ∗N be the bootstrap approximation of

PN, via the blockwise bootstrap. De�ne, for all n ∈ N, the random variables

Wn : ZN → Zn, Wn = (Z1, . . . , Zn), zN 7→ wn, and

W′
n : ZN → Zn, W′

n = (Z ′1, . . . , Z
′
n), zN 7→ w′n,

such that Wn(PN) = Pn and W′
n(P ∗N) = P ∗n .

Moreover denote the bootstrap sample by W∗
n : ZN → Zn, W∗

n := (Z∗1 , . . . , Z
∗
n), zN 7→

w∗n, and the distribution of W∗
n by Pn. The bootstrap approximation of Pm is P ∗m =

⊗mj=1
1
n

∑n
i=1 δZ∗i = ⊗mj=1PW∗

n
, m ∈ N, by de�nition of the bootstrap procedure. Note that
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the sample Z∗1 , . . . , Z
∗
n depends and on the blocklength b(n) and on the number of blocks

`(n).

Further denote the joint distribution of WN, W
∗
N, and W′

N by KN ∈ M(ZN × ZN × ZN).

Then, KN has marginal distributions KN(B1 × ZN × ZN) = PN(B1) for all B1 ∈ B⊗N,
KN(ZN ×B2 × ZN) = PN(B2) for all B2 ∈ B⊗N, and KN(ZN × ZN ×B3) = P ∗N(B3) for all

B3 ∈ B⊗N.

Then,

LPn(Sn) = Sn(Pn) = Sn ◦Wn(PN) and LP ∗n (Sn) = Sn(P ∗n) = Sn ◦W′
n(P ∗N)

and therefore

dBL(LP ∗n (Sn),LPn(Sn)) = dBL(L(Sn ◦W ′n),L(Sn ◦Wn)).

As Z = [0, 1]d is compact, it is in particular totally bounded. Hence the set BL1(Z, dZ)

is a uniform Glivenko-Cantelli class, due to Dudley et al. (1991, Proposition 12). Similar

to part I of the proof of Theorem 3.4.5, the bootstrap structure and the Glivenko-Cantelli

property given above yield for arbitrary, but �xed ε > 0:

for every δ0 > 0 there is n0 ∈ N such that, for all n ≥ n0 and all Pw∗n ∈M(Z),

P ∗n

({
w′n ∈ Zn | dBL(Pw′n ,Pw∗n) ≤ δ0

2

})
≥ 1− ε

6
.

Now, regard the empirical process of (Z1, . . . , Zn). Set t = (t1, . . . , td) ∈ Rd. Moreover

t < b means ti < bi for all i ∈ {1, . . . , d}. Hence we can de�ne the empirical process and

the blockwise bootstrapped empirical process by

1

n

n∑
i=1

I{Zi≤t} and
1

n

n∑
i=1

I{Z∗i ≤t}.

Regard the process Gn(t) = 1√
n

∑n
i=1 I{Z∗i ≤t}−

1√
n

∑n
i=1 I{Zi≤t}, t ∈ [0, 1]d. Now, due to the

assumptions on the stochastic process and on the moving block bootstrap, Bühlmann (1994,

Corollary 1 and remark) yields the almost sure convergence in distribution to a Gaussian

process G:

1√
n

n∑
i=1

I{Z∗i ≤t} −
1√
n

n∑
i=1

I{Zi≤t} −→D G(t), t ∈ [0, 1]d,
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almost surely with respect to PN, n→∞, in the (extended) Skorohod topology onDd([0, 1]).

The space Dd([0, 1]) is a generalization of the space of cadlag functions on [0, 1], see Billings-

ley (1999, Chapter 12), and consists of functions f : [0, 1]d → R. A detailed description

of this space and the extended Skorohod topology can be found in Straf (1972, 1969a) and

Bickel and Wichura (1971). The de�nition of the space Dd([0, 1]) can, for example, be found

in Bickel and Wichura (1971, Chapter 3).

Straf (1972, Lemma 5.4) yields, that the above convergence in the Skorohod topology is

equivalent to the convergence for all continuity points t of G. Hence,

1√
n

n∑
i=1

I{Z∗i ≤t} −
1√
n

n∑
i=1

I{Zi≤t} −→D G(t) almost surely with respect to PN, n→∞,

for all continuity points t of G.

Multiplying by 1√
n
yields, for every continuity point t of G,

1

n

n∑
i=1

I{Z∗i ≤t} −
1

n

n∑
i=1

I{Zi≤t} −
1√
n
G(t) −→D 0 almost surely with respect to PN, n→∞.

As convergence in distribution to a constant implies convergence in probability, see e. g.

van der Vaart (1998, Theorem 2.7(iii)) and as 1√
n
G(t) converges in probability to 0, for all

�xed continuity points t ∈ [0, 1]d of G:

1

n

n∑
i=1

I{Z∗i ≤t} −
1

n

n∑
i=1

I{Zi≤t} −→P 0 almost surely with respect to PN, n→∞.

This yields the convergence of the corresponding probability measures, see for example

Billingsley (1995, Chapter 29) for a theory on Rd:

dBL(
1

n

n∑
i=1

δZ∗i ,
1

n

n∑
i=1

δZi) −→P 0 almost surely with respect to PN, n→∞,

respectively

dBL(PW∗
n
,PWn) −→P 0 almost surely with respect to PN, n→∞.

As the space [0, 1]d is compact, we can use an argumentation similar to the proof of Theorem
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3.4.5. Then, for every ε > 0, there is n1 ∈ N such that for all n ≥ n1

dBL
(
LP ∗n (Sn),LPn(Sn)

)
<
ε

3
,

respectively,

E
[
dBL

(
LP ∗n (Sn),LPn(Sn)

)]
<
ε

3
. (3.58)

The convergence of the term in part III follows simultaneously to part I for the distributions

QN and Q∗N. Hence, for every ε > 0, there is n2 ∈ N such that for all n ≥ n2

E
[
dBL

(
LQ∗n(Sn),LQn(Sn)

)]
<
ε

3
. (3.59)

The combination of (3.57), (3.58), and (3.59) yields for all n ≥ max{n1, n2}:

E
[
dBL

(
LP ∗n (Sn),LQ∗(Sn)

)]
<
ε

3
+
ε

3
+
ε

3
= ε.

As LP ∗n (Sn) and LQ∗n(Sn) are random variables itself we have, due to Huber (1981, Chapter

2, Theorem 4.2, (2)⇒(1)), for all n ≥ max{n1, n2} :

dBL
(
L(LP ∗n (Sn)),L(LQ∗n(Sn))

)
< ε.

Hence, for all ε > 0 there is δ > 0 such that there is n0 = max{n1, n2} ∈ N such that for all

n ≥ n0 :

dBL(Pn, Qn) < δ ⇒ dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε.

This yields the assertion. �

Although the assumptions on the statistical operator S, compared to Theorem 3.4.2, were

strengthened in order to generalize the qualitative robustness to α-mixing sequences in The-

orem 3.4.6 and 3.4.5, the M-estimators introduced in Chapter 3.3 are still an example for

qualitative robust estimators if the sample space (Z, dZ), Z ⊂ R is compact. The com-

pactness of (Z, dZ) implies the compactness of the space (M(Z), dBL), see Parthasarathy

(1967, Theorem 6.4). As the statistical operator S is continuous, the compactness ofM(Z)

implies the uniform continuity of S. Another example of M-estimators which are uniformly

continuous even if the input space is not compact is given in Cuevas and Romo (1993, The-

orem 4). Chapter 4.2.1 shows, that the SVM estimator is still qualitatively robust for the

empirical bootstrap. If the space Z = X × Y ⊂ Rd, d ≥ 1, is compact, the same holds for

the blockwise bootstrap for the given α-mixing sequences.
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Chapter 4

Support vector machines

The following chapter contains robustness and consistency results concerning support vec-

tor machines. First we give a short introduction to SVMs, the ensuing section contains

robustness and the last sections gives the consistency result. Again, if nothing else is stated

we consider Borel σ-algebras throughout this chapter.

4.1 A short introduction to support vector machines

In recent years statistical machine learning and hence support vector machines became

more and more important. A lot of introductory literature on support vector machines is

available, for example Vapnik (1995, 1998) and Schölkopf and Smola (2002), Cristianini and

Shawe-Taylor (2000), and Cucker and Zhou (2007). Most of the de�nitions below can be

found in Steinwart and Christmann (2008). The goal of SVMs is to learn a relation between

input variables x ∈ X and output variables y ∈ Y, that is a function f : X → Y, X ,Y
sets. This function should give a prediction of the output value y for a given input value x.

Therefore the algorithm is given a set of training data, consisting of pairs of input values

and output values (xi, yi), i ∈ {1, . . . , n}, n ∈ N. Then, based on the knowledge of the

training data, the predictor f is learned. The quality of the prediction is given in terms of

the loss function L and the risk R. The loss function L measures the distance between the

true value y and the predicted value f(x) and is de�ned as follows:

De�nition 4.1.1 (Loss function) Let X be a measurable space and Y ⊂ R a closed subset,

then a function L : X × Y × R→ [0,∞) is called loss function if it is measurable.

73
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Obviously a perfect prediction, i. e. the prediction equals the true value, should not be

punished. Therefore it is assumed, that L(x, y, y) = 0 for all (x, y) ∈ X × Y, that is the
loss is zero if the prediction equals the true value. A few useful properties and examples of

common loss functions are stated later. By means of the expected loss, the risk, a predictor

f is considered to be "good" or "bad". The risk is de�ned as follows:

De�nition 4.1.2 (Risk) Let L : X × Y × R → [0,∞) be a loss function and P be a

probability distribution on X × Y, where Y is a Polish space. For a measurable function

f : X → Y, the L-risk is de�ned by

RL,P (f) :=

∫
X×Y

L(x, y, f(x)) dP (x, y) =

∫
X

∫
Y
L(x, y, f(x)) dP (y|x) dPX (x), (4.1)

where PX denotes the marginal distribution on X and P (·|x) denotes the regular conditional

probability for a given X = x ∈ X on Y.

Moreover we de�ne the smallest possible risk, the so-called Bayes risk R∗L,P , by R
∗
L,P (f) :=

inf{RL,P (f) | f : X → R measurable}. A measurable function f∗ : X → R such that

RL,P (f∗) = R∗L,P is called a Bayes decision function.

Instead of minimizing over all measurable functions, the support vector machine minimizes

over a special Hilbert space consisting of functions, a so-called reproducing kernel Hilbert

space (RKHS)H with corresponding kernel k. Some properties of RKHS are listed below, for

a detailed description see Berlinet and Thomas-Agnan (2004) and Steinwart and Christmann

(2008, Chapter 4) for an overview.

This leads to the de�nition of the support vector machine:

De�nition 4.1.3 (Support vector machine) Let L : X × Y × R → [0,∞) be a loss

function and let H be a reproducing kernel Hilbert space. Let P be a probability distribution

on X × Y and let λ ∈ R, λ > 0 be an integer. Then the support vector machine fL,P,λ is

de�ned via:

fL,P,λ := arg inf
f∈H

RL,P (f) + λ‖f‖2H . (4.2)

Additionally to the risk RL,P the de�nition of the SVM includes a regularization term ‖f‖2H
to prevent over�tting.



4.1. A SHORT INTRODUCTION TO SUPPORT VECTOR MACHINES 75

Moreover, for a given data set wn = ((x1, y1), . . . , (xn, yn)) ∈ (X ×Y)n the SVM computed

with respect to the empirical measure Pwn = 1
n

∑n
i=1 δ(xi,yi) is called the empirical SVM:

fL,Pwn ,λ = arg inf
f∈H

1

n

n∑
i=1

L(xi, yi, f(xi)) + λ‖f‖2H . (4.3)

To justify this de�nition for the non-i.i.d. case we again regard stochastic processes which

are Varadarajan processes or ful�l a law of large numbers. Then, the existence of a limiting

distribution P of the empirical measure is assured. The even weaker assumption of an

asymptotically mean stationary process is used in Chapter 4.4 to show consistency of the

SVM, that is stochastic convergence of the risk of the empirical estimate to the Bayes risk.

Steinwart and Christmann (2008, Lemma 5.1) provides the uniqueness of a SVM under

some mild conditions on the loss function L and the risk RL,P . Existence of a SVM is,

again under mild conditions on the loss function L, also shown in Steinwart and Christmann

(2008, Theorem 5.2).

Moreover representer theorems for the empirical SVM and for general SVMs are shown in

Steinwart and Christmann (2008, Theorem 5.8 and Theorem 5.6) and in De Vito et al.

(2003/04). In Steinwart et al. (2009) the representer theorems are also used for the non-

i.i.d. case.

While working with SVMs, often assumptions on the existence of moments with respect

to P are needed. As these assumptions restrict the applicability of SVMs, often the trick

of shifting the loss function L is used. Then the shifted loss L∗ : X × Y × R → R =

L(x, y, t)− L(x, y, 0) is used instead of the loss function L. For details on this concept see

Huber (1981) and Christmann et al. (2009).

For the shifted loss L∗ existence and uniqueness as well as a representer Theorem can

be found in Christmann et al. (2009, Theorem 5,6,7) if the loss function L is Lipschitz

continuous. This concept is applied in Section 4.2 and 4.3 to show that the SVM estima-

tor is qualitatively robust under some assumptions on the statistical operator S for weak

Varadarajan processes and to give bounds on the maxbias.

As those results do not depend on the distribution of the data, they are also valid for general

stochastic process (Xi, Yi)i∈N. In particular the proofs of these results do not rely on an

i.i.d. assumption of the stochastic process.
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Some properties of loss functions and reproducing kernel Hilbert spaces

Due to computational feasibility convex losses are often used, moreover continuity and

especially Lipschitz continuity are useful properties of loss functions:

De�nition 4.1.4 Let L : X × Y × R→ [0,∞) be a loss function, then

L is said to be convex if L(x, y, ·) : R→ [0,∞) is convex for all (x, y) ∈ X × Y.

L is said to be continuous if L(x, y, ·) : R → [0,∞) is continuous for all (x, y) ∈
X × Y.

L is said to be locally Lipschitz continuous if for all a > 0:

|L|a,1 = sup
t,t′∈[−a,a], t 6=t′

sup
(x,y)∈X×Y

|L(x, y, t)− L(x, y, t′)|
|t− t′|

<∞. (4.4)

L is said to be Lipschitz continuous if |L|1 := supa>0 |L|a,1 <∞.

There are several examples of loss functions. For example the classi�cation loss L(y, t) =

1(−∞,0](ysign(t)), which is not convex. Therefore, often the hinge loss L(y, t) = max{0, 1−
yt}, y = ±1, t ∈ R, is used as a surrogate loss. Moreover it is distinguished between

supervised losses L : Y × R → [0,∞), which are independent of the input value x, and

unsupervised losses L : X × R → [0,∞), which are independent of the output value y. In

the following only supervised losses are considered. Examples of supervised losses are the

least squares loss L(y, t) = (y−t)2, which is strictly convex but not Lipschitz continuous, the

logistic loss for regression L(y, t) = − ln 4ey−t

(1+ey−t)2 and classi�cation L(y, t) = ln(1 + e−yt),

which are Lipschitz continuous and strictly convex. For more examples see Steinwart and

Christmann (2008, Chapter 2). According to their applicability the supervised losses can

be margin-based, used for classi�cation problems, or distance-based, used for regression

problems:

De�nition 4.1.5 (Margin- and distance-based losses) A supervised loss L : Y ×R→
[0,∞) is called

margin-based, if there exists a representing function ψ : R→ [0,∞) such that

L(y, t) = ψ(yt), y ∈ Y, t ∈ R.
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distance-based, if there exists a representing function ψ : R→ [0,∞) such that ψ(0) =

0 and

L(y, t) = ψ(y − t), y ∈ Y, t ∈ R.

Examples of margin-based losses are the hinge loss, the logistic loss for classi�cation, or

the least squares loss ψ(y − t) = (1 − yt)2, y = ±1, t ∈ R. For distance-based losses and

y, t ∈ R there is the least squares loss ψ(y − t) = (y − t)2, the logistic loss for regression

ψ(y− t) = − ln ey−t

(1+ey−t)2 , the ε-insensitive loss ψ(y− t) = max{0, |y− t|−ε}, and the pinball

loss

ψ(y − t) =

{
−(1− τ)(y − t), if(y − t) < 0

τ(y − t), if(y − t) ≥ 0
.

The representing function ψ inherits some properties from the loss function L, in the margin-

based, as well as in the distance-based case. For example ψ is continuous, Lipschitz contin-

uous, and convex if and only if L is continuous, Lipschitz continuous, and convex, see e. g.

Steinwart and Christmann (2008, Lemma 2.25 and 2.33).

Another important tool for the analysis of SVMs is the reproducing kernel Hilbert space H,

respectively the corresponding reproducing kernel k. For detailed information on kernels

and RKHS see Berlinet and Thomas-Agnan (2004), Aronszajn (1950), and Steinwart and

Christmann (2008, Chapter 4). A kernel is de�ned as follows:

De�nition 4.1.6 (Kernel) Let X be a non-empty set. Then a function k : X ×X → R is

called a kernel on X if there exists a R-Hilbert space H and a map Φ : X → H such that

for all x, x′ ∈ X we have

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
.

We call Φ a feature map and H a feature space of k.

There are several examples of kernels, a kernel which is often used in practice is the Gaussian

RBF kernel kγ,Rd(x, x
′) = exp(−‖x−x

′‖22
γ2

), γ > 0.

In general the feature space and the feature map are not uniquely determined. Therefore

the reproducing kernel Hilbert space (RKHS) is de�ned, which is in some sense a canonical

choice of feature space and uniquely determined.

De�nition 4.1.7 (Reproducing kernel) Let X 6= ∅ and H be a R-Hilbert function space

over X , i. e., a R-Hilbert space that consists of functions mapping from X into R.
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A function k : X × X → R is called a reproducing kernel of H if k(·, x) ∈ H for all

x ∈ X and the reproducing property

f(x) = 〈f, k(·, x)〉H

applies for all f ∈ H and all x ∈ X .

The space H is called a reproducing kernel Hilbert space (RKHS) over X if for all

x ∈ X the Dirac functional δx : H → R, de�ned by

δx(f) = f(x), f ∈ H,

is continuous.

The canonical feature map Φ : X → H is given by

Φ(x) = k(·, x), x ∈ X .

In Steinwart and Christmann (2008, Theorem 4.20 and Theorem 4.21) the correspondence

between kernels and RKHS is given. Every RKHS corresponds to exactly one reproduc-

ing kernel, which is a kernel, and every kernel has exactly one RKHS, for which it is a

reproducing kernel.

The next theorem states a few inequalities, which are frequently used in the next sections.

Theorem 4.1.8 Let X be topological space and k a kernel on X with RKHS H.

Then k is bounded and k(·, x) : X → R is continuous for all x ∈ X if and only if every

f ∈ H is a bounded and continuous function.

Then we have

‖f‖∞ ≤ ‖f‖H‖k‖∞, (4.5)

‖Φ‖∞ = sup
x′∈X

|Φ(x)(x′)| ≤ ‖k‖2∞ and (4.6)

‖Φ(x)‖2H = 〈Φ(x),Φ(x)〉 = k(x, x) ≤ ‖k‖2∞. (4.7)

For the proofs of this results, see Steinwart and Christmann (2008, Lemma 4.23 and 4.24).

Continuity of the kernel k : X×X → R as well as measurability and further useful properties

of RKHS and kernels can also be found in Steinwart and Christmann (2008, Chapter 4).
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4.2 Qualitative robustness of support vector machines

In this chapter, we use Theorem 3.1.3 to show qualitative robustness of support vector ma-

chines for non-i.i.d. observations, that is, we show that the estimator Sn can be represented

by a functional S, which is continuous in P . For SVMs the estimator Sn maps the training

data ((x1, y1), . . . , (xn, yn)) to a function fL,Pwn ,λ ∈ H and is given by the function which

minimizes λ‖f‖2H + 1
n

∑n
i=1 L(xi, yi, f(xi)).

To use Theorem 3.1.3 we would like to consider a statistical operator S : M(X × Y) →
H, P 7→ fL,P,λ, but the SVM need not exist for every P ∈M(X×Y). By using the L∗-trick,

see Section 4.1, we gain the existence of a SVM fL∗,P,λ for every P ∈M(X ×Y), where the

SVM fL∗,P,λ is analogously de�ned as fL,P,λ with the use of L∗ instead of L. Therefore, it

is easy to see: if fL,P,λ exists it equals fL∗,P,λ, see Christmann et al. (2009).

Now we can de�ne a statistical operator by

S : M(X × Y)→ H (4.8)

P 7→ fL∗,P,λ

in the sense that S(Pwn) = Sn(wn) = fL∗,Pwn ,λ.

Using the shifted loss function L∗, qualitative robustness of the SVM estimator (Sn)n∈N is

ensured for any �xed regularization parameter λ > 0 and under mild conditions on the loss

L and the kernel k, see Hable and Christmann (2011, Theorem 3.1).

However, the estimators (Sn)n∈N are not consistent for �xed regularization parameter λ. To

obtain consistency the �xed λ has to be replaced by a sequence λn converging to zero, as n

tends to ∞, see e. g. Steinwart and Christmann (2008). But then Hable and Christmann

(2011, Proposition 5.2) yields that this sequence of estimators is not qualitatively robust

any more. This is not a special property of SVMs but an unavoidable consequence of the

fact that risk minimization is an ill-posed problem. For such a problem it follows from

Hampel's second theorem that no estimator can simultaneously be consistent and robust,

see Hable and Christmann (2013). In order to �nd a good compromise between consistency

and robustness, we �x a possibly small λ0 > 0 and allow for a sequence of regularization

parameters with λn → λ0. Then, the following theorem shows qualitative robustness for

the sequence of estimators Sλn : wn 7→ fL,Pwn ,λn , even in the non-i.i.d. case.
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Theorem 4.2.1 Let Z, H be complete separable metric spaces, let (Zi)i∈N, Zi : Ω → Z =

X × Y, be a stochastic process satisfying the weak Varadarajan property, Y ⊂ R closed,

(λn)n∈N a sequence of positive real valued numbers with λn → λ0, n→∞, for a λ0 > 0. Let

Sλn : (X × Y)n → H be the SVM estimator, which maps wn to fL∗,Pwn ,λn for a continuous

and convex loss function L : X × Y × R → [0,∞). Assume that L(x, y, y) = 0 for every

(x, y) ∈ X × Y, that L is additionally Lipschitz continuous in the last argument, and that

the kernel k is continuous and bounded.

Then, the sequence of estimators (Sλn)n∈N is qualitatively (πdn)n∈N-robust at PN.

Remember, that the metric πdn is de�ned by:

dn
(
(z1, . . . , zn), (z′1, . . . , z

′
n)
)

= inf
{
ε > 0 : ]{i : dZ(zi, z

′
i) ≥ ε}/n ≤ ε

}
.

Proof of Theorem 4.2.1: To prove qualitative robustness of the SVMs we choose an

arbitrary ε > 0. Similarly to Hable (2013, Lemma 9(b)(i)) we have:

‖fL∗,Pwn ,λn − fL∗,Pwn ,λ0‖H ≤
λn − λ0

λnλ0
2|L|1‖k‖∞, (4.9)

where L∗ is the shifted loss function and |L|1 denotes the Lipschitz constant of L respectively

L∗. In Hable (2013, Lemma 9(b)(i)) the above result is given for the regular loss L, but

the proof is the same for the shifted loss L∗ except for the last step. Here ‖fL∗,Pwn ,λ0‖H ≤
1
λ0
‖L‖L‖k‖∞, see Christmann et al. (2009, Proposition 3(iv)), can be used instead of the

corresponding bound by use of the risk.

According to (4.9), with λn → λ0, there exists n0 ∈ N such that, for every n ≥ n0, wn ∈ Zn:
‖fL∗,Pwn ,λn − fL∗,Pwn ,λ0‖H ≤

ε
3 . Now let n < n0. Due to the regularity assumptions on the

loss function L and the kernel k, the qualitative (πdn)n∈N-robustness for the estimator

wn 7→ arg inff∈H λ‖f‖2H + 1
n

∑n
i=1 L

∗(x, y, f(x)) follows from Hable and Christmann (2011,

Theorem 3.1). Hence we have for the estimator Sn : wn 7→ fL∗,Pwn ,λn : for every ε > 0 and

for every n < n0 there is δn > 0 such that:

πdn(Pn, Qn) ≤ δn ⇒ πdH (Sn(Pn), Sn(Qn)) ≤ ε.

For n ≥ n0, choose δn0 such that πdn(Pn, Qn) ≤ δn0 implies πdH (Sλ0n (Pn), Sλ0n (Qn)) ≤ ε
3 ,

where Sλ0n : wn 7→ fL∗,Pwn ,λ0 for the �xed λ0, which is again possible due to Hable and

Christmann (2011, Theorem 3.1). Now let a measurable A ⊂ H be arbitrarily chosen and
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de�ne Dλn := S−1
n (A), then

Sn(Pn)(A) = Pn(S−1
n (A)) = Pn(Wλn) ≤ Pn((Sλ0n )−1(Aε/3))

because ‖Sn(wn) − Sλ0n (wn)‖H = ‖fPwn ,λn − fPwn ,λ0‖H ≤
ε
3 by assumption and therefore

Wλn ⊂ (Sλ0n )−1(Aε/3). Remember, that Aε = {x ∈ H : dH(x,A) < ε}. By use of the

qualitative robustness of Sλ0 and the choice of δn0 it follows, that:

Sn(Pn)(A) ≤ Pn((Sλ0n )−1(Aε/3)) ≤ Qn((Sλ0n )−1(Aε/3+ε/3)) +
ε

3

and with the same argument as before: Qn((Sλ0n )−1(A2ε/3)) ≤ Qn(S−1
n (A2ε/3+ε/3)). So,

Sn(Pn)(A) ≤ Qn(S−1
n (Aε)) + ε/3 ≤ Qn(S−1

n (Aε)) + ε

and therefore for every n ≥ n0: if πdn(Pn, Qn) ≤ δn0 , then πdH (Sn(Pn), Sn(Qn)) ≤ ε. Now

choose δ = min{δ1, . . . , δn0}. �

The proof above shows, if we have qualitative robustness for the sequence of estimators

Sn : Zn → H, wn 7→ fL∗,Pwn ,λ for �xed λ > 0, the sequence of estimators Sn : Zn →
H, wn 7→ fL∗,Pwn ,λn is also qualitatively robust for λn → λ0, n → ∞, λ0 > 0. A

similar argument as above can be used to show qualitative robustness of the bootstrap

approximation for the SVM estimator for independent, not necessarily identically distributed

stochastic processes, see Theorem 3.4.2, Chapter 3.4.

Corollary 4.2.2 Let PN = ⊗i∈NP i, P i ∈ M(Z) be an in�nite product measure such that

the coordinate process (Zi)i∈N is a strong Varadarajan process. De�ne the set of product

measures on ZN, P :=
{
QN ∈M(ZN); QN = ⊗i∈NQi, Qi ∈M(Z)

}
. Let (λn)n∈N be a se-

quence of positive real valued numbers with λn → λ0, n → ∞, for a λ0 > 0 and let

Sλn : (X × Y)n → H be the SVM estimator, which maps wn to fL∗,Pwn ,λn for a continuous

and convex loss function L : X×Y×R→ [0,∞). Let L(x, y, y) = 0 for every (x, y) ∈ X ×Y,
let L be Lipschitz continuous in the last argument, and let the kernel k be continuous and

bounded.

Then the sequence of bootstrap approximations (LP ∗n (Sn))n∈N is qualitatively robust at PN

with respect to P.

Proof: The regularity assumptions on the loss function L and the kernel k imply the

continuity of the statistical operator S :M(X ×Y)→ H, see Hable and Christmann (2011,
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Theorem 3.2), as well as the continuity of the estimators Sn : (X × Y)n → H, wn 7→
fL∗,Pwn ,λn for every λn ∈ (0,∞), n ∈ N. Hence, for �xed λ the bootstrap approximation

of the SVM estimator Sn : wn 7→ fL∗,Pwn ,λ is qualitatively robust, that is, for every ε > 0

there is δ > 0 such that there is n0 ∈ N such that for all n ≥ n0 and for all QN ∈ P:

dBL(Pn, Qn) < δ ⇒ dBL(L(LP ∗n (Sn)),L(LQ∗n(Sn))) < ε.

Moreover the proof of Theorem 3.4.2, (3.40), and the strong equivalence between the

bounded Lipschitz metric and the Prohorov distance on Polish spaces, see e. g. Huber

(1981, Chapter 2, Corollary 4.3), yield: for every ε > 0 there is δ > 0 such that there is

n0 ∈ N such that for all n ≥ n0 and if dBL(Pn, Qn) ≤ δ:

π(LP ∗n (Sn),LQ∗n(Sn)) < ε almost surely.

Similarly to the proof above, for every ε > 0 there is nε such that for all n ≥ nε:

‖fL∗,Pwn ,λn − fL∗,Pwn ,λ0‖H ≤
ε

3
.

Now, the same argumentation as in the proof above for the cases n0 ≤ n ≤ nε and n > nε

for the sequence of estimators Sλn : wn 7→ fL,Pwn ,λn yields the assertion. �

As already described for M -estimators at the end of Chapter 3.4.2, the statistical operator

S : M(Z) → H is uniformly continuous if the space Z is compact. Therefore qualitative

robustness of the bootstrap approximation of the SVM estimator for α-mixing sequences

with values in [0, 1]d, d ≥ 1, follows in the same way as above. By assuming the space X ×Y
to be compact, Theorem 3.4.5 and 3.4.6 yield the qualitative robustness of the bootstrap

approximation for the SVM estimator for �xed regularization parameter λ under the as-

sumptions on the kernel and the loss function given above. Then the same argumentation

as above yields the qualitative robustness of the bootstrap approximation of (Sλn)n∈N.

4.3 Quantitative robustness of support vector machines - max-

imum bias

Besides qualitative robustness we shortly regard the maximum bias of SVMs, which is a

quantitative approach to robustness. Quantitative robustness describes the in�uence of a

small change in the underlying distribution to the test statistic Sn : Zn → H or to the
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distribution of the estimator L(Sn). This can be useful, for example, to select a statisti-

cal procedure, whereas the qualitative robustness does not give a quantitative measure to

compare two stochastic procedures. There are many more di�erent kinds of quantitative

robustness, for example the in�uence function, the sensitivity curve, and the breakdown

point, see Huber (1981, Chapter 1.4 and 1.5) for a detailed description.

Again we are concerned with the SVM estimator Sn : Zn → H, wn 7→ fL∗,Pwn ,λ for �xed

λ > 0 and a dataset wn = ((x1, y1), . . . , (xn, yn)), respectively the operator S : M(Z) →
H, P 7→ fL∗,P,λ, see (4.8).

To describe the term "small change" of the underlying distribution, neighbourhoods of the

true distribution P are investigated. Commonly used neighbourhoods, see for example

Huber (1981), are the contamination neighbourhood Ncon

Ncon,ε(P ) := {Pε | Q = (1− ε)P + εQ, Q ∈M(Z)} , (4.10)

which is not a neighbourhood in the topological sense. And the total variation neighbourhood

NTV

NTV,ε(P ) := {Q ∈M(Z) | dTV (P,Q) ≤ ε} , (4.11)

where ε > 0 and

dTV(P,Q) := sup
A∈B(Z)

‖P (A)−Q(A)‖ = sup
‖f‖∞≤1

1

2

∣∣∣∣∫ f dP −
∫
f dQ

∣∣∣∣
is the total variation metric. Note that dTV(P,Q) ≤ 1, for every P,Q ∈M(Z).

A characteristic which is often used to describe quantitative robustness is the maximum

bias. An estimator is said to be quantitative robust if the maximum bias is bounded for

su�ciently large ε. To compare two statistical methods the estimator with the smaller

maximum bias is considered to be better. The following de�nition is a straight forward

modi�cation of the de�nition in Huber (1981, p.11) to our set-up.

De�nition 4.3.1 (Maximum bias) Let Z, H be complete separable metric spaces, let S :

M(Z)→ H be a statistical operator, then the maximum bias of S is de�ned by:

b(ε, P ) := sup
Q∈Nε

‖S(P )− S(Q)‖H . (4.12)
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The following theorem shows, that there exists a linear bound on the maximum bias of the

SVM estimator S : P 7→ fL∗,P,λ. This result is similar to the results in the i.i.d. case which

also provide a linear bound on the maxbias, see e. g. Christmann and Steinwart (2004,

Remark 14) and Christmann et al. (2009, Theorem 12).

Theorem 4.3.2 Let Z = X × Y be a complete separable metric space, Y ⊂ R, let S :

M(Z) → H, P 7→ fL∗,P,λ be the SVM operator in (4.8), let L : X × Y × R → [0,∞[ be a

convex, Lipschitz continuous loss function and L∗ : X ×Y×R→ R the shifted loss function,

let H be the RKHS to a continuous, bounded kernel k : X × X → R and λ > 0, then the

maximum bias b(ε, P ) is bounded:

i) for the contamination neighbourhood

bcon(ε, P ) ≤ 1

λ
Cε, (4.13)

ii) for the total variation neighbourhood

bTV(ε, P ) ≤ 1

λ
Cε, (4.14)

where C > 0 depends on the loss function L and the kernel k.

Proof: The proof of Theorem 4.3.2 is based on the representer theorem which can be found

in Christmann et al. (2009, Theorem 6).

i): Let P ∈ M(X × Y) be a �xed probability measure. Then for every ε > 0, for every

Pε ∈ Ncon,ε(P ), i. e. for every Pε = (1 − ε)P + εQ, Q ∈ M(X × Y), the maximum bias is

given by:

bcon(ε, P ) = sup
Pε∈Ncon,ε

‖S(P )− S(Pε)‖H

= sup
Pε∈Ncon,ε

‖fL∗,P,λ − fL∗,Pε,λ‖H .

The representer theorem, see Christmann et al. (2009, Theorem 6), ensures the existence

of a bounded function hP : X × Y → R, element of the subdi�erential (see De�nition A8)
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∂L(x, y, fL∗,P,λ(x)) of the loss function L, such that for all λ > 0:

‖fL∗,P,λ − fL∗,Pε,λ‖H ≤
1

λ
‖EPhPΦ− EPεhPΦ‖H

=
1

λ

∥∥∥∥∫
X×Y

hPΦ dP −
∫
X×Y

hPΦd ((1− ε)P + εQ)

∥∥∥∥
H

=
1

λ

∥∥∥∥∫
X×Y

hPΦ d(ε(P −Q))

∥∥∥∥
H

=

∥∥∥∥ε∫
X×Y

hPΦ d(P −Q)

∥∥∥∥
H

≤ 1

λ
ε‖hP ‖∞ sup

x∈X
‖Φ(x)‖HdTV (P,Q).

As L is Lipschitz continuous, the function h is bounded by the Lipschitz constant |L|1 of L,

respectively L∗, see Christmann et al. (2009, Theorem 6). Moreover ‖Φ(x)‖H ≤ ‖k‖∞, see
(4.7), and dTV (P,Q) ≤ 1, for all P,Q ∈M(X × Y). Hence:

bcon(ε, P ) ≤ 1

λ
ε|L|1‖k‖∞.

The proof of part ii) is similar to the �rst part: Fix any P ∈ M(X × Y) and λ > 0. Then,

for every ε > 0, for every Q ∈ Nε,TV, i. e. for every Q ∈M(X × Y), with dTV(P,Q) ≤ ε:

bTV(ε, P ) := sup
Q∈NTV,ε

‖S(P )− S(Q)‖H

= sup
Q∈NTV,ε

‖fL∗,P,λ − fL∗,Q,λ‖H

≤ sup
Q∈NTV,ε

1

λ
‖EPhPΦ− EQhPΦ‖H

≤ 1

λ
‖hP ‖∞ sup

x∈X
‖Φ(x)‖HdTV (P,Q)

(4.7)

≤ 1

λ
ε|L|1‖k‖∞.

�

Clearly, the maximum bias b is bounded if the kernel k is bounded, and therefore the SVM

fL∗,P,λ is bounded.

As the computation of empirical SVMs is based on a data set, we shortly discuss the max-

imum bias for two empirical measures: Let Pwn be the empirical measure for the data set

(z1, . . . , zn) and Pw′
n′

the empirical measure for (z′1, . . . , z
′
n′).
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If (z′1, . . . , z
′
n′) equals (z1, . . . , zn) except from a fraction α, then the maximum bias, anal-

ogously to the theorem above, is bounded by 1
λCα. That means, if an experiment is done

twice for the same input variables x and the output values are the same except from a few,

then the bias of the estimates is smaller then 1
λCα. This can be seen by following the proof

of Theorem 4.3.2 and by computing dTV(Pwn , Pw′n) = sup||f ||∞≤1
1
2

∣∣ 1
n

∑n
i=1 f(zi)− f(z′i)

∣∣ ≤
1

2n

∑
i,zi 6=z′i

|f(zi)− f(z′i)| ≤ α.
Regarding rounding errors, that is the di�erence between the observations |zi − z′i| of two
data sets is smaller than δ for all i ∈ 1, . . . , n, the maximum bias b is smaller than 1

λC.

Again computing dTV: dTV(Pwn , Pw′n) = sup||f ||∞≤1
1
2

∣∣ 1
n

∑n
i=1 f(zi)− f(z′i)

∣∣ ≤ 1 leads the

assertion.

Now assume, that (z′1, . . . , z
′
n′) results from (z1, . . . , zn) by adding n′−n, n′ > n data points,

then b < 1
λC ·

n′−n
n′ .

Besides robustness another important property of an estimator is consistency. The next

chapter introduces L-risk-consistency of support vector machines, which justi�es, that the

estimate f can be learned on a given data set and converges to the theoretical solution.

4.4 Consistency of support vector machines

As the theoretical distribution of the data generating random variables is commonly un-

known, the predictor f is learned from a given data set. That is, an empirical estimate

is used instead of the theoretical solution. Therefore it is crucial to claim some kind of

convergence of the empirical result to the true theoretical solution, that is consistency in

a probabilistic sense. Here, we examine L-risk-consistency of support vector machines, i. e.

convergence in probability of the expected loss of the empirical estimate to the theoretically

expected loss.

In the i.i.d. case the risk RL,P (f) is computed with respect to the distribution P = L(Zi), i ∈
N. For general stochastic processes we do not require the random variables to be identically

distributed and independent, so no intuitive choice of distribution exists. Moreover, as

working with the empirical SVM, we need to ensure that this de�nition is reasonable for

the non-i.i.d. case. Hence, we assume convergence of the empirical measure to a limiting

distribution. Therefore we work with processes which are asymptotically mean stationary

(AMS). Remember from Chapter 3.2.2, a process is called asymptotically mean stationary,
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if there exists a probability measure P ∈M(Z) such that

P (B) = lim
n→∞

1

n

n∑
i=1

EµIB ◦ Zi, for all B ∈ B. (4.15)

In particular, every strongly stationary process is AMS. The AMS property indicates that

there exists a limiting distribution P such that the distribution of the random variables

asymptotically equal each other, hence this choice intuitively implies the computation of

the risk with respect to the limiting distribution P .

AMS processes are introduced for dynamical systems in Gray (1988) and are used for general

stochastic processes in Steinwart et al. (2009). Many examples for AMS processes are

provided via Varadarajan processes, see Chapter 3.2, and processes which satisfy a law of

large numbers for events, see Steinwart et al. (2009). Both notions imply convergence of the

empirical measure to a limiting distribution P and the AMS property, see (Steinwart et al.,

2009, Theorem 2.4) and Lemma 4.4.1 below.

Additionally, a process which satis�es a (weak) law of large numbers for events is a (weak)

Varadarajan process, see Theorem 3.2.1. Examples are α-mixing processes, certain Markov

chains, weakly dependent processes or strongly stationary ergodic processes, see Steinwart

et al. (2009) and Chapter 3.2.1 for more examples.

Lemma 4.4.1 Let (Ω,A, µ) be a probability space and let Z be a Polish space equipped with

the Borel σ-algebra B. Then, for a stochastic process (Zi)i∈N, Zi : Ω→ Z, i ∈ N, the weak

Varadarajan property implies the AMS property. That is:

π(PWn , P ) −→ 0 in probability ⇒ lim
n→∞

1

n

n∑
i=1

EµIB ◦ Zi = P (B), for all B ∈ B,

where P is the limiting distribution of the Varadarajan process.

Proof of Lemma 4.4.1: Let B ∈ B be a Borel set. Therefore, countable many open

subsets Bi ⊂ Z, i ∈ N, exist such that B =
⋃
i∈NBi. Without loss of generality we assume

Bi to be pairwise disjoint. Hence IB(z) =
∑

i∈N IBi(z).

By assumption (Zi)i∈N is a weak Varadarajan process, that is, due to Dudley (1989, Theorem
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11.3.3), equivalent to

lim
n→∞

1

n

n∑
i=1

f ◦ Zi =

∫
f dP in probability, for all f ∈ Cb(Z).

Hence, for all f ∈ Cb(Z), there is m ∈ N such that for all n > m:

µ

({
ω ∈ Ω

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

f ◦ Zi(ω)−
∫
f dP

∣∣∣∣∣ > ε

})
≤ ε. (4.16)

Now for every Bi, i ∈ N, de�ne the function fi,n : Z → R, fi,n(z) = min{1, nd(z,Bc
i )},

n ∈ N, where Bc
i = Z\Bi and d(z,Bc

i ) := inf z̃∈Bci dZ(z, z̃) measures the distance between

the point z ∈ Z and the set Bc
i ⊂ Z and dZ denotes a metric on Z. It can easily be seen,

that this function is continuous and for every δ > 0 and i ∈ N there exists ni ∈ N such that

‖IBi−fi,ni‖∞ ≤ δ. Then, for every ε > 0 there are ni ∈ N such that ‖
∑

i∈N fi,ni−IB‖∞ ≤
ε
2 .

By choosing a suitable partial sum we approximate
∑

i∈N fi,ni as follows: for every ε > 0

there exists n0 ∈ N such that ‖
∑

i∈N fi,ni −
∑n0

i=1 fi,ni‖∞ ≤
ε
2 .

Therefore, for every ε > 0 there is n0 ∈ N and there are positive integers n1, n2, . . . , nn0

such that

‖
n0∑
i=1

fi,ni − IB‖∞ ≤ ε.

The function
∑n0

i=1 fi,ni := F is continuous as it is a �nite sum of continuous functions. Addi-

tionally |F | ≤ 1 by de�nition of the functions fi,ni . Hence, for all n ≥ max{n0, n1, . . . , nn0 ,m},
n ∈ N0, the triangle inequality yields:∣∣∣∣∣ 1n

n∑
i=1

EµIB ◦ Zi − P (B)

∣∣∣∣∣ =

∣∣∣∣∣
∫

1

n

n∑
i=1

IB ◦ Zi dµ−
∫
IB dP

∣∣∣∣∣
=

∣∣∣∣∣
∫

1

n

n∑
i=1

[
IB ◦ Zi −

∫
IB dP

]
dµ

∣∣∣∣∣
≤

∫
1

n

n∑
i=1

|IB ◦ Zi − F ◦ Zi| dµ+

∣∣∣∣∣
∫ [

1

n

n∑
i=1

F ◦ Zi −
∫
F dP

]
dµ

∣∣∣∣∣
+

∫ [∫
|F − IB| dP

]
dµ

≤ 2ε+

∣∣∣∣∣
∫ [

1

n

n∑
i=1

F ◦ Zi −
∫
F dP

]
dµ

∣∣∣∣∣ .
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Due to the Varadarajan property and the continuity and boundedness of F , (4.16), yields

for Aε :=
{
ω ∈ Ω

∣∣ ∣∣ 1
n

∑n
i=1 F ◦ Zi(ω)−

∫
F dP

∣∣ > ε
}
and Acε = Ω\Aε:∣∣∣∣∣

∫ [
1

n

n∑
i=1

F ◦ Zi −
∫
F dP

]
dµ

∣∣∣∣∣
≤

∣∣∣∣∣
∫
Aε

[
1

n

n∑
i=1

F ◦ Zi −
∫
F dP

]
dµ

∣∣∣∣∣+

∣∣∣∣∣
∫
Acε

1

n

n∑
i=1

(
F ◦ Zi −

∫
F dP

)
dµ

∣∣∣∣∣
(4.16)

≤ ε+

∫
Acε

∣∣∣∣∣ 1n
n∑
i=1

F ◦ Zi −
∫
F dP

∣∣∣∣∣ dµ
≤ 2ε.

Therefore, for all B ⊂ B,

lim
n→∞

∣∣∣∣∣ 1n
n∑
i=1

∫
IB ◦ Zi −

∫
IB dP

∣∣∣∣∣ dµ = 0. �

Now, we de�ne L-risk-consistency of SVMs for AMS stochastic processes with di�erent

dependence structures. Using the empirical SVM fL,PWn ,λn
as an estimate for the true

solution fL,P,λn , it is important to show consistency. In our case we require the L-risk-

consistency of the SVM. That is the stochastic convergence of the risk computed for the

empirical SVM to the Bayes risk.

De�nition 4.4.2 (L-risk-consistency of support vector machines) Let P be a prob-

ability distribution on a Polish space Z = X × Y and let L : X × Y × R → [0,∞) be a loss

function. Then a learning method is said to be L-risk-consistent for P if, for every ε > 0,

RL,P (fPWn ,λn
)→ R∗L,P in probability, n→∞,

where R∗L,P is the Bayes risk. Moreover, the learning method is called universally L-risk-

consistent if it is L-risk-consistent for all probability distributions P on Z.

For general stochastic processes this de�nition is only reasonable if the distribution P is

related to the process (Zi)i∈N. Hence processes which are asymptotically mean stationary

and therefore provide the existence of a limiting distribution P are regarded. Then the risk

is computed with respect to this distribution.
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As explained in Section 4.1, instead of searching for the minimizer f among all measurable

functions, SVMs are computed for a RKHS of functions. Informally spoken, we can still

achieve convergence against the Bayes risk if the RKHS is large enough. The term "large

enough" can for example be de�ned via universal kernels:

De�nition 4.4.3 (Universal kernel) A continuous kernel k on a compact metric space

(X , dX ) is called universal if the RKHS H of k is dense in C(X ), i. e. for every function

g ∈ C(X ) and all ε > 0 there exists f ∈ H such that

‖f − g‖∞ ≤ ε.

For universal kernels, Steinwart and Christmann (2008, Corollary 5.28) shows that the Bayes

risk can be approximated by the minimal risk computed over all functions in the RKHS,

for continuous integrable Nemitsky losses, in particular for Lipschitz continuous losses. The

Gaussian RBF kernel and the exponential kernel, for example are universal, see Steinwart

and Christmann (2008, Corollary 4.58).

For the i.i.d. case universal L-risk-consistency, also for non-compact input spaces X , is for
example established in Steinwart (2002), Zhang (2004), Steinwart (2005), and Christmann

and Steinwart (2007). Moreover learning rates for SVMs corresponding to di�erent loss

functions can be found in Koltchinskii and Beznosova (2005), Steinwart and Scovel (2007),

Blanchard et al. (2008), for classi�cation, and in De Vito et al. (2005), Steinwart and

Christmann (2011), and Eberts and Steinwart (2011) for regression. Unfortunately, universal

consistency, that is consistency for general stochastic processes, can not be achieved without

any assumptions for the non-i.i.d. case. In Steinwart et al. (2009, Theorem 2.2), for example,

it is shown that it is impossible to show universal consistency for processes which satisfy a

law of large numbers for events. Therefore special classes of dependencies, namely α-mixing,

C-mixing and weakly dependent processes (in the sense of Doukhan and Louhichi (1999))

are investigated throughout the next chapters.

Often consistency is proven via concentration inequalities, for example using Hoe�ding's

inequality or Bernstein-type inequalities, in order to additionally achieve learning rates,

see Boucheron et al. (2013) for an overview of di�erent concentration inequalities. For the

non-i.i.d. case there has been some e�ort in showing consistency of SVMs via concentration

inequalities. A dependence notion which is widely used, is the mixing notion. In Xu and

Chen (2008), Sun and Wu (2009), Pan and Xiao (2009) consistency and learning rates

are achieved for SVMs using the least squares loss function under α-mixing conditions.
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The article Hang and Steinwart (2015) shows a Bernstein-type inequality for α- and C-
mixing, which implies the consistency of empirical risk minimization (ERM) algorithms and

support vector machines, while Kulkarni et al. (2005) establishes consistency of regularized

boosting algorithms for β-mixing sequences. Zou et al. (2009a) gives generalization bounds

of ERM for α-mixing sequences and Zou et al. (2009b) provides consistency of the ERM

algorithm for uniformly ergodic Markov chains. Based on Markov's inequality, Steinwart

et al. (2009) presents consistency of support vector machines for α-mixing processes, which

provide an uniform decay of the mixing coe�cients and a stability assumption. In Smale and

Zhou (2009) consistency for regularized online learning for Markov chains is given. Fender

(2003) examines ERM for martingale and mixingale structures. As the properties of these

dependence structures are hard to transfer to the loss function, the dependence structures

therein are not de�ned for the observations but for the losses. Moreover a Bernstein-type

inequality for weakly dependent random variables is shown in Doukhan and Louhichi (1999,

Theorem 4.5). As we have a slightly di�erent consistency result we do not work with

this Bernstein-type inequality but show consistency for weakly dependent processes using

Markov's inequality.

The consistency for SVM estimators is established, in Theorem 4.4.4, under common as-

sumptions on the reproducing kernel k and on the loss function L. Moreover we assume

almost sure convergence of 1
n1−r

∑n
i=1 Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ −→ 0, n → ∞, for some

0 < r < 1
2 and for uniformly bounded functions fn, n ∈ N. The proof is based on Markov's

inequality and the convergence above. Contrarily to Steinwart et al. (2009), where consis-

tency of the SVM estimator for α-mixing processes is shown in a similar way, we do not

need strict assumptions on the stochastic process or on the decay of the mixing coe�cients,

but require the stochastic process to be asymptotically mean stationary, as long as the con-

vergence assumption is ful�lled. On the other hand our restriction on the input space X
to be compact is stronger than in Steinwart et al. (2009). Theorem 4.4.10 shows that an

assumption on the α-mixing process, as used in Steinwart et al. (2009, Theorem 3.4), al-

ready leads to the required convergence (4.17) and therefore guarantees consistency without

additional assumptions on the process. In particular we need the AMS property as well

as either the convergence assumption or certain dependence conditions on the stochastic

process. Theorem 4.4.6 and Theorem 4.4.12 show that several weakly dependent (in the

sense of Doukhan and Louichi) and C-mixing processes satisfy (4.17). That is again, conver-

gence is given by conditions on the weak dependence coe�cients respectively on the mixing

coe�cients. Moreover Theorem 4.4.12 covers Lipschitz continuous loss functions, whereas

the L-risk-consistency which is shown in Hang and Steinwart (2015) via the Bernstein-type
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inequality, applies for the least squares loss, which is not Lipschitz continuous. Also (4.19)

covers more processes, as the assumptions on the process are weaker, see also Theorem

4.4.12. But, unlike Hang and Steinwart (2015), we do not achieve learning rates.

For notational convenience we write: Lf ◦ Zi := L(Xi, Yi, f(Xi)) and Eµf ◦ Zi =
∫
f dP i.

Theorem 4.4.4 (L-risk-consistency of support vector machines) Let (Ω,A, µ) be a

probability space, let (Z, dZ) = (X × Y, dX×Y) be a separable metric space, let (X , dX ) be

compact, and let Y ⊂ R be closed. Let L : X × Y × R → [0,∞) be a convex and Lips-

chitz continuous loss function which is also continuous in (x, y) for all (x, y) ∈ X × Y, and
sup(x,y)∈X×Y L(x, y, 0) ≤ S, for some constant S ∈ (0,∞). Moreover let H be the repro-

ducing kernel Hilbert space of a bounded continuous kernel k : X × X → R and let (Zi)i∈N,

Zi : Ω → Z be an asymptotically mean stationary stochastic process. Let 0 < r < 1
2 be a

real number such that:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ

)
−→ 0 almost surely, n→∞, fn ∈ G, (4.17)

where G is any uniformly bounded subset of functions f ∈ H, i. e. there is a constant M > 0

such that ‖f‖H ≤M for all f ∈ G.
Let (λn)n∈N ⊂ (0,∞) such that λn → 0 and λnn

r →∞, and let the sequences (f 1
n

∑
P i,λn

)n∈N

and (fPWn(ω),λn)n∈N be bounded for all ω ∈ Ω, i. e. there are constants M,M̃ > 0 such that

‖f 1
n

∑
P i,λn

‖H ≤M and ‖fPWn(ω),λn‖H ≤ M̃ , n ∈ N.

Then:

RL,P (fPWn ,λn
)→ R∗L,P,H in probability, n→∞, (4.18)

where R∗L,P,H := inff∈H
∫
L(x, y, f(x)) dP is the Bayes risk over H.

Remark 4.4.5 For practical purposes, convexity and Lipschitz continuity are common as-

sumptions on the loss function L.

Moreover the continuity assumption in (x, y) on the loss function L is not restrictive. For

example, every supervised, distance-based continuous loss is also continuous in (y, t). As

(y, t) 7→ y− t is continuous and ψ(r) is continuous the composition is also continuous. The

same applies for continuous margin-based loss functions, as again (y, t) 7→ yt is continuous.

As we also assume the loss function L to be continuous in the last argument we implicitly

ensure the continuity of the representing function ψ.

The assumption on the uniform boundedness of the sequences of SVMs (f 1
n

∑
P i,λn

)n∈N and

(fPWn(ω),λn)n∈N for all ω ∈ Ω with respect to ‖ · ‖H , however is not easy to check in practice.
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Proof of Theorem 4.4.4: With help of the triangle inequality we split the proof in two

parts:

∣∣RL,P (fPWn ,λn
)−R∗L,P,H

∣∣
≤
∣∣∣RL,P (fPWn ,λn

)−RL,P (f 1
n

∑n
i=1 P

i,λn
)
∣∣∣︸ ︷︷ ︸

I

+
∣∣∣RL,P (f 1

n

∑n
i=1 P

i,λn
)−R∗L,P,H

∣∣∣︸ ︷︷ ︸
II

(4.19)

where 1
n

∑n
i=1 P

i = 1
n

∑n
i=1 Zi(µ).

Part I: The �rst part of the proof shows the convergence in probability of term I in (4.19).

By assumption the kernel k is bounded. Therefore f ∈ H is bounded, see Steinwart and

Christmann (2008, Lemma 4.23). Hence, the function L(·, ·, f(·)) satis�es for all f ∈ H:

sup
(x,y)∈X×Y

L(x, y, f(x)) ≤ sup
(x,y)∈X×Y

|L(x, y, f(x))− L(x, y, 0)|+ sup
(x,y)∈X×Y

|L(x, y, 0)|

≤ |L|1‖f‖∞ + S <∞,

because sup(x,y)∈X×Y L(x, y, 0) ≤ S by assumption. Using (4.5), ‖f‖∞ ≤ ‖k‖∞‖f‖H , we
have:

sup
(x,y)∈X×Y

L(x, y, f(x)) ≤ S + |L|1‖f‖H‖k‖∞ <∞. (4.20)

Moreover, this yields RL,Q(f) <∞ for all probability measures Q ∈ M(Z), f ∈ H, and in

particular the existence of the risk RL, 1
n

∑
P i(0) for every 1

n

∑n
i=1 P

i.

Additionally for a uniformly bounded (with respect to ‖ · ‖H ) class of functions G ⊂ H,

this yields the existence of a constant CL > 0 such that

sup
(x,y)∈X×Y

L(x, y, f(x)) ≤ CL.

That is L(·, ·, f(·)) is uniformly bounded for all f ∈ G.
According to the Lipschitz continuity of L we have:

µ
({
ω ∈ Ω |

∣∣∣RL,P (fPWn (ω),λn)−RL,P (f 1
n

∑
P i,λn

)
∣∣∣ ≥ ε})

≤ µ(
({
ω ∈ Ω | |L|1

∥∥∥fPWn (ω),λn − f 1
n

∑
P i,λn

∥∥∥
∞
≥ ε
})

(4.5)

≤ µ
({
ω ∈ Ω | |L|1‖k‖∞

∥∥∥fPWn (ω),λn − f 1
n

∑
P i,λn

∥∥∥
H
≥ ε
})

.
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Markov's inequality, see for example Ho�mann-Jørgensen (1994, Theorem 3.9), and the

boundedness of the functions f ∈ H, due to the boundedness of the kernel, see (Steinwart

and Christmann, 2008, Lemma 4.23), yields:

µ
({
ω ∈ Ω

∣∣∣ |L|1 ∥∥∥fPWn (ω),λn − f 1
n

∑
P i,λn

∥∥∥
H
≥ ε
})

≤ |L|
2
1‖k‖2∞
ε2

Eµ
∥∥∥fPWn ,λn

− f 1
n

∑
P i,λn

∥∥∥2

H
. (4.21)

Now, as X is compact and therefore separable, the RKHS H is separable, see Steinwart

and Christmann (2008, Lemma 4.33). According to the generalized representer theorem

in Steinwart and Christmann (2008, Theorem 5.10) and due to the Lipschitz continuity of

the loss function L, there is a function hQ : Z → R, Q ∈ M(Z), which is element of the

subdi�erential (see De�nition A8) ∂L(x, y, ·) of L(x, y, fQ,λn(x)), such that:

fQ,λn = − 1

2λn
EQ (hQΦ) , for all Q ∈M(Z).

Here Φ : X → H denotes again the canonical feature map of the kernel k and the integral

with respect to Q is a Bochner integral. In particular we have

fPWn ,λn
= − 1

2λn
EPWn

(
hPWn

Φ
)
and f 1

n

∑
P i,λn

= − 1

2λn
E 1
n

∑
P i

(
h 1
n

∑
P iΦ

)
. (4.22)

Hence,∥∥∥fPWn ,λn
− f 1

n

∑
P i,λn

∥∥∥2

H
= 〈fPWn ,λn

− f 1
n

∑
P i,λn

, fPWn ,λn
− f 1

n

∑
P i,λn

〉H
(4.22)

= 〈fPWn ,λn
− f 1

n

∑
P i,λn

,− 1

2λn
EPWn

(
hPWn

Φ
)

+
1

2λn
E 1
n

∑
P i

(
h 1
n

∑
P iΦ

)
〉H

=
1

2λn
〈fPWn ,λn

− f 1
n

∑
P i,λn

,E 1
n

∑
P i

(
h 1
n

∑
P iΦ

)
〉H

− 1

2λn
〈fPWn ,λn

− f 1
n

∑
P i,λn

EPWn

(
hPWn

Φ
)
〉H . (4.23)

Now the reproducing property

f(x) = 〈f,Φ(x)〉H = 〈f, k(·, x)〉H , x ∈ X , f ∈ H, (4.24)
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of the kernel and (4.23) yields∥∥∥fPWn ,λn
− f 1

n

∑
P i,λn

∥∥∥2

H

=
1

2λn

(
E 1
n

∑
P i

(
h 1
n

∑
P i

(
fPWn ,λn

− f 1
n

∑
P i,λn

))
+ EPWn

(
hPWn

(
f 1
n

∑
P i,λn

− fPWn ,λn

)))
.

(4.25)

As the functions hPWn
, h 1

n

∑
P i : X × Y → R are elements of the corresponding subdi�er-

entials ∂L(x, y, ·), the following inequalities apply, see Denkowski et al. (2003, De�nition

5.3.20),

hPWn
(x, y)

(
f 1
n

∑
P i,λn

(x)− fPWn ,λn
(x)
)
≤ L(x, y, f 1

n

∑
P i,λn

(x))− L(x, y, fPWn ,λn
(x)),

h 1
n

∑
P i(x, y)

(
fPWn ,λn

(x)− f 1
n

∑
P i,λn

(x)
)
≤ L(x, y, fPWn ,λn

(x))− L(x, y, f 1
n

∑
P i,λn

(x)),

for all (x, y) ∈ X × Y. Using this, (4.25) gives:

E 1
n

∑
P i

(
h 1
n

∑
P i

(
fPWn ,λn

− f 1
n

∑
P i,λn

))
+ EPWn

(
hPWn

(
f 1
n

∑
P i,λn

− fPWn ,λn

))
≤ E 1

n

∑
P i

(
LfPWn

,λn
− Lf 1

n
∑
Pi,λn

)
+ EPWn

(
Lf 1

n
∑
Pi,λn

− LfPWn
,λn

)
=

1

n

n∑
i=1

(∫
LfPWn

,λn
dP i − LfPWn

,λn
◦ Zi + Lf 1

n
∑
Pi,λn

◦ Zi −
∫
Lf 1

n
∑
Pi,λn

dP i
)
.

(4.26)

Applying (4.23), (4.25), and (4.26) to (4.21) we have:

µ
({
ω ∈ Ω | |L|1‖k‖∞

∥∥∥fPWn(ω),λn − f 1
n

∑
P i,λn

∥∥∥
H
≥ ε
})

(4.21)

≤ |L|21‖k‖2∞
ε2

Eµ
∥∥∥fPWn ,λn

− f 1
n

∑
P i,λn

∥∥∥2

H

(4.23)

≤ |L|21‖k‖2∞
2ε2λn

Eµ
[
〈fPWn ,λn

− f 1
n

∑
P i,λn

,E 1
n

∑
P ih 1

n

∑
P iΦ〉H

−〈fPWn ,λn
− f 1

n

∑
P i,λn

,EPWn
hPWn

Φ〉H
]

(4.25),(4.26)

≤ |L|21‖k‖2∞
2ε2λn

Eµ

[
1

n

n∑
i=1

(∫
LfPWn

,λn
dP i − LfPWn

,λn
◦ Zi

+Lf 1
n

∑
Pi,λn

◦ Zi −
∫
Lf 1

n
∑
Pi,λn

(x) dP
i

)]
=

|L|21‖k‖2∞
2ε2λn

Eµ

[
1

n

n∑
i=1

∫
LfPWn

,λn
dP i − 1

n

n∑
i=1

LfPWn
,λn
◦ Zi

]
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=
|L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

(∫
LfPWn

,λn
dP i − LfPWn

,λn
◦ Zi

)]
.

Contrarily to f 1
n

∑n
i=1 P

i,λn
, the function fPWn ,λn

is a random element with respect to µ.

By assumption the kernel k is continuous. Therefore every f ∈ H is continuous, see Berlinet

and Thomas-Agnan (2004, Theorem 17), in particular every SVM fPWn ,λn
.

Let K :=
{
fPWn(ω),λn , ω ∈ Ω | n ∈ N

}
be the set of support vector machines for the prob-

ability measures PWn(ω), ω ∈ Ω, n ∈ N. By assumption the sequence (fPWn(ω),λn)n∈N is

bounded by M̃ , for all ω ∈ Ω, and therefore K is a uniformly bounded subset of H.

The reproducing property of the kernel yields the equicontinuity of the functions f ∈ K:
Let dX be the metric on X . By assumption the kernel k is continuous, that is, for every

ε > 0, there is δ > 0 such that for all x′ ∈ X :

dX (x, x′) ≤ δ ⇒ ‖k(·, x)− k(·, x′)‖H ≤ ε.

Due to the reproducing property of the kernel, see (4.24), we have for x′ ∈ X with dX (x, x′) ≤
δ:

|f(x)− f(x′)| (4.24)= |〈f, k(·, x)〉H − 〈f, k(·, x′)〉H | = |〈f, k(·, x)− k(·, x′)〉H |

≤ ‖f‖H‖k(·, x)− k(·, x′)‖H ≤ ‖f‖Hε.

And by assumption ‖f‖H is bounded by M̃ , hence

|f(x)− f(x′)| ≤ ‖f‖Hε ≤ M̃ε.

Hence K ⊂ C(X ) is equicontinuous. As X is compact and K uniformly bounded by assump-

tion, the Theorem of Arzelà-Ascoli, see for example Dudley (1989, Theorem 2.4.7), states:

K is totally bounded with respect to ‖ · ‖∞ on X . That is for every ε > 0 there is a �nite

subset K ⊂ K such that for every f ∈ K there is gε ∈ K such that ‖f − gε‖∞ ≤ ε.

In particular, for every n ∈ N there is a �nite subset Kn of K such that for all n ∈ N and

for all functions fPWn(ω),λn , there is a function gn,ω ∈ K such that

‖fPWn(ω),λn − gn,ω‖∞ ≤
1

nr
. (4.27)
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Note, that gn,ω depends on n and ω as it is the corresponding function to fPWn(ω),λn , but is

an element of a �nite subset Kn ⊂ K. And remember, that the loss function L is Lipschitz

continuous.

Then,

|L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

(∫
LfPWn

,λn
dP i − LfPWn

,λn
◦ Zi

)]

=
|L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

[(∫
LfPWn

,λn
dP i −

∫
Lgn,ω dP

i

)
+

(∫
Lgn,ω dP

i − Lgn,ω ◦ Zi
)

+
(
Lgn,ω ◦ Zi − LfPWn

,λn
◦ Zi

)]]
≤ |L|21‖k‖2∞

2ε2λnnr
Eµ

[
1

n1−r

n∑
i=1

(∣∣∣∣∫ LfPWn
,λn

dP i −
∫
Lgn,ω dP

i

∣∣∣∣
+

(∫
Lgn,ω dP

i − Lgn,ω ◦ Zi
)

+
∣∣∣Lgn,ω ◦ Zi − LfPWn

,λn
◦ Zi

∣∣∣)]
≤ |L|21‖k‖2∞

2ε2λnnr
Eµ

[
1

n1−r

n∑
i=1

(∫
|L|1‖fPWn ,λn

− Lgn,ω‖∞ dP i

+

∫
Lgn,ω dP

i − Lgn,ω ◦ Zi + |L|1‖gn ◦ Zi − fPWn ,λn
◦ Zi‖∞

)]
(4.27)

≤ |L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

(
2|L|1
nr

+

∫
Lgn,ω dP

i − Lgn,ω ◦ Zi
)]

≤ |L|31‖k‖2∞
ε2λnnr

+
|L|21‖k‖2∞
2ε2λnnr

Eµ max
g∈Kn

[
1

n1−r

n∑
i=1

(∫
Lg dP

i − Lg ◦ Zi
)]

.

Now, Assumption (4.17) yields the existence of a set N ⊂ Ω with µ(N) = 0 for every

arbitrary sequence (fn)n∈N, fn ∈ H, which is uniformly bounded, such that:

1

n1−r

n∑
i=1

(∫
Lfn dP

i − Lfn ◦ Zi(ω)

)
−→ 0 for all ω ∈ Ω\N, n→∞.

Choose fn := argmaxg∈Kn
1

n1−r
∑n

i=1

(∫
Lg dP

i − Lg ◦ Zi
)
, i ∈ N. By construction Kn,

n ∈ N, are subsets of K, and therefore for every n ∈ N uniformly bounded by the same

constant. Hence the sequence (fn)n∈N is uniformly bounded and a subset of H.
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Then,

Eµ

[
1

n1−r

n∑
i=1

(∫
Lfn dP

i − Lfn ◦ Zi
)]

=

∫
Ω\N

[
1

n1−r

n∑
i=1

(∫
Lfn dP

i − Lfn, ◦ Zi
)]

dµ
(4.17)−→ 0, n→∞ (4.28)

and, due to the implications given above and the assumption λnn
r →∞, n→∞:

µ
({
ω ∈ Ω

∣∣∣ |L|1‖k‖∞ ∥∥∥fPWn(ω),λn − f 1
n

∑
P i,λn

∥∥∥
H
≥ ε
})

≤ |L|31‖k‖2∞
ε2λnnr

+
|L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

(∫
LfPWn

,λn
dP i − LfPWn

,λn
◦ Zi

)]

≤ |L|31‖k‖2∞
ε2λnnr

+
|L|21‖k‖2∞
2ε2λnnr

Eµ

[
1

n1−r

n∑
i=1

(∫
Lfn dP

i − Lfn ◦ Zi
)]

(4.28)−→ 0, n→∞.

This proves part I.

The next part proves the convergence of the term in part II of (4.19):∣∣∣RL,P (f 1
n

∑n
i=1 P

i,λn
)−R∗L,P,H

∣∣∣ −→ 0, n→∞.

First we show that there is a weakly convergent subsequence of
(
f 1
n

∑
P i,λn

)
n∈N

converging

to the Bayes decision function f∗ inH, then we conclude the strong convergence of f 1
n

∑
P i,λn

to f∗ and therefore the convergence of the risks.

By assumption the sequence (f 1
n

∑
P i,λn

)n∈N is uniformly bounded, i.e. ‖f 1
n

∑
P i,λn

‖H ≤
M . Since H is a Hilbert space and therefore re�exive, see Dunford and Schwartz (1958,

Theorem II.4.6), there exists, according to Dunford and Schwartz (1958, Theorem II.3.28),

a subsequence (f 1
nk

∑
P i,λnk

)nk∈N which converges weakly in H. i. e. there exists f̃ ∈ H

such that

〈f 1
nk

∑
P i,λnk

, f〉H −→ 〈f̃ , f〉H , nk →∞, (4.29)

for all f ∈ H, see Dunford and Schwartz (1958, De�nition 3.25). Moreover Dunford and

Schwartz (1958, Lemma II.3.27) yields

‖f̃‖H ≤ lim inf
nk→∞

‖f 1
nk

∑
P i,λnk

‖H . (4.30)
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The sequence

(
‖f 1

nk

∑
P i,λnk

‖H
)
k∈N

is bounded by assumption. As it is a sequence in

R, the Bolzano-Weierstrass theorem yields the existence of a convergent subsequence of(
‖f 1

nk

∑
P i,λnk

‖H
)
k∈N

. Hence there exists a weakly convergent subsequence, which addi-

tionally to (4.30) possesses the following property:

‖f 1
nkl

∑
P i,λnkl

‖H −→ c, for a constant c > 0. (4.31)

Now, (4.30) yields for this sub-subsequence:

‖f̃‖H ≤ c. (4.32)

Following the Riesz' Representation theorem, see for example Conway (1985, Theorem 3.4),

the weak convergence in (4.29) is equivalent to:

lim
nkl→∞

h∗(f 1
nkl

∑
P i,λnkl

) −→ h∗(f̃), for all h∗ ∈ H∗,

where H∗ denotes the dual space of H. As the Dirac functional δx(f) = f(x) is continuous

on H, see Berlinet and Thomas-Agnan (2004, Lemma 8), it is an element of H∗, see Dudley

(1989, Theorem 6.1.2). Then the above convergence implies for all x ∈ X ,

f 1
nkl

∑
P i,λnkl

(x) = δf 1
nkl

∑
Pi,λnkl

(x) −→ δf̃ (x) = f̃(x), nkl →∞

i. e. the pointwise convergence of f 1
nkl

∑
P i,λnkl

(x) to f̃(x), x ∈ X .

As the kernel k is continuous, f is continuous, see Berlinet and Thomas-Agnan (2004,

Theorem 17).

Due to the assumptions on the continuity of the loss function L for all (x, y) ∈ X × Y, the
function L ◦ f is continuous. Then the dominated convergence theorem, see for example

Ho�mann-Jørgensen (1994, Theorem 3.6), yields:

lim
nkl→∞

RL,P (f 1
nkl

∑
P i,λnkl

) = lim
nkl→∞

∫
Lf 1

nkl

∑
Pi,λnkl

dP (4.33)

=

∫
lim

nkl→∞
L(x, y, f 1

nkl

∑
P i,λnkl

(x)) dP (x, y)

=

∫
X×Y

L(x, y, f̃(x)) dP (x, y) = RL,P (f̃). (4.34)
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Now we show the convergence of the risks

RL, 1
nkl

∑
P i(f 1

nkl

∑
P i,λnkl

)−RL,P (f 1
nkl

∑
P i,λnkl

) −→ 0, nkl →∞.

Regard the set U :=
{
f 1
n

∑
P i,λn

: X → R, n ∈ N
}
of support vector machines for the prob-

ability measures 1
n

∑
P i, n ∈ N. The same argumentation as in part I shows the equicon-

tinuity of U . As U is uniformly bounded and X compact by assumption, the Theorem of

Arzelà-Ascoli, see e. g. Dudley (1989, Theorem 2.4.7), states the uniform boundedness of U
with respect to ‖ · ‖∞. That is for every ε > 0 there is a �nite dense subset U ⊂ U such

that for every f ∈ U there is gε ∈ U such that ‖f − gε‖∞ ≤ ε.

Hence the triangle inequality yields:∣∣∣∣RL, 1
nkl

∑
P i(f 1

nkl

∑
P i,λnkl

)−RL,P (f 1
nkl

∑
P i,λnkl

)

∣∣∣∣
=

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lf 1

nkl

∑
Pi,λnkl

dP i −
∫
Z
Lf 1

nkl

∑
Pi,λnkl

dP

∣∣∣∣∣
=

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z

(
Lf 1

nkl

∑
Pi,λnkl

− Lgε

)
dP i

∣∣∣∣∣+

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lgε dP

i −
∫
Z
Lgε dP

∣∣∣∣∣
+

∣∣∣∣∣
∫
Z

(
Lgε − Lf 1

nkl

∑
Pi,λnkl

)
dP

∣∣∣∣∣ .
Due to the Lipschitz continuity of L in the last argument and the approximation of the

SVM by gε we obtain∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z

(
Lf 1

nkl

∑
Pi,λnkl

− Lgε

)
dP i

∣∣∣∣∣+

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lgε dP

i −
∫
Z
Lgε dP

∣∣∣∣∣
+

∣∣∣∣∣
∫
Z

(
Lgε − Lf 1

nkl

∑
Pi,λnkl

)
dP

∣∣∣∣∣
L Lipschitz
≤ 1

nkl

nkl∑
i=1

∫
Z
|L|1‖f 1

nkl

∑
P i,λnkl

− gε‖∞ dP i +

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lgε dP

i −
∫
Z
Lgε dP

∣∣∣∣∣
+

∫
Z
|L|1‖gε − f 1

nkl

∑
P i,λnkl

‖∞ dP
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‖f−gε‖∞≤ε
≤ 2|L|1ε+

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lgε dP

i −
∫
Z
Lgε dP

∣∣∣∣∣
≤ 2|L|1ε+ max

g∈U

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lg dP

i −
∫
Z
Lg dP

∣∣∣∣∣ . (4.35)

By assumption L is continuous in (x, y) ∈ X × Y and gε ∈ U is continuous by construc-

tion. Hence Lgε : X × Y → R is continuous in (x, y) ∈ X × Y, and due to (4.20) Lgε is

bounded, even uniformly bounded, as U is. Since additionally (Zi)i∈N is asymptotically

mean stationary by assumption, Lemma 3.2.7 yields:∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lgε dP

i −
∫
Z
Lgε dP

∣∣∣∣∣ −→ 0, nkl →∞.

And as U is a �nite set:

max
g∈U

∣∣∣∣∣ 1

nkl

nkl∑
i=1

∫
Z
Lg dP

i −
∫
Z
Lg dP

∣∣∣∣∣ −→ 0, nkl →∞.

Applying this to (4.35) shows:∣∣∣∣RL, 1
nk

∑
P i(f 1

nkl

∑
P i,λnkl

)−RL,P (f 1
nkl

∑
P i,λnkl

)

∣∣∣∣ −→ 0, nkl −→∞. (4.36)

Now we consider the minimal risk R∗L,P,H over functions f in H. By de�nition of R∗L,P,H
we have for all f̃ ∈ H:

0 ≤ RL,P (f̃)−R∗L,P,H
(4.32)

≤ λc2 +RL,P (f̃)−R∗L,P,H
(4.31),(4.34)

= lim
nkl→∞

λnkl‖f 1
nkl

∑
P i,λnkl

‖2H +RL,P (f 1
nkl

∑
P i,λnkl

)−R∗L,P,H

(4.36)
= lim

nkl→∞
λnkl‖f 1

nkl

∑
P i,λnkl

‖2H +RL, 1
nkl

∑
P i(f 1

nkl

∑
P i,λnkl

)−R∗L,P,H

= lim
nkl→∞

inf
f∈H

λnkl‖f‖
2
H +RL, 1

nkl

∑
P i(f)−R∗L,P,H .

For �xed f ∈ H, regard the functions λ 7→ λ‖f‖2H + RL, 1
nkl

∑
P i(f), λ > 0 and Q 7→

λnkl‖f‖
2
H + RL,Q(f), Q ∈ M(Z). As λ 7→ λ‖f‖2H + RL, 1

nkl

∑
P i(f) is a linear function

in λ, it is continuous. Moreover for every sequence (Qn)n∈N ⊂ (M(Zn))n∈N, Qn  Q is

equivalent to
∫
g dQn →

∫
g dQ for every continuous and bounded function g by de�nition.

Hence Q 7→ λnkl‖f‖
2
H + RL,Q(f) is continuous for �xed f ∈ H, since L is continuous by



102 CHAPTER 4. SUPPORT VECTOR MACHINES

assumption and bounded by (4.20).

Therefore limnkl→∞ inff∈H

(
λnkl‖f‖

2
H +RL, 1

nkl

∑
P i(f)

)
−R∗L,P,H is upper semicontinuous,

see Denkowski et al. (2003, Theorem 1.1.36).

Then,

lim
nkl→∞

inf
f∈H

(
λnkl‖f‖

2
H +RL, 1

nkl

∑
P i(f)

)
−R∗L,P,H

= lim sup
nkl→∞

inf
f∈H

(
λnkl‖f‖

2
H +RL, 1

nkl

∑
P i(f)

)
−R∗L,P,H

≤ inf
f∈H

(
λ‖f‖2H +RL,P (f)

)
−R∗L,P,H ,

as λnkl −→ λ, nkl → ∞, and due to the AMS property of the process and Lemma 3.2.7,

which implies 1
nkl

∑nkl
i=1

∫
f dP i −→

∫
f dP , for f bounded and continuous.

Now λ = 0 yields:

0 ≤ RL,P (f̃)−R∗L,P,H ≤ inf
f∈H

RL,P (f)−R∗L,P,H .

Hence f̃ = arg inff∈HRL,P (f), i. e. f̃ is a minimizer of RL,P,H . Then Steinwart and Christ-

mann (2008, Lemma 5.16) yields ‖f̃‖H ≥ ‖f∗‖H , where f∗ is the Bayes decision function in

H.

With λ > 0 we can conclude:

0 ≤ RL,P (f̃)−R∗L,P,H ≤ inf
f∈H

λ‖f‖2H +RL,P (f)−R∗L,P,H ,

that is f̃ is a minimizer of λ‖f‖2H +RL,P (f) and therefore ‖f̃‖H ≤ ‖f∗‖H .

Combining these two observations, we have: ‖f̃‖H = ‖f∗‖H and due to the uniqueness

of the Bayes decision function in H, see Steinwart and Christmann (2008, Lemma 5.16):

f̃ = f∗.

Furthermore, the preliminary considerations show,

0 ≤ λc2 +RL,P (f̃)−R∗L,P,H ≤ inf
f∈H

λ‖f‖2H +RL,P (f)−R∗L,P,H

= λ‖f̃‖2H +RL,P (f̃)−R∗L,P,H .

Thus ‖f̃‖2H ≥ c2, with (4.32) actually equality is given. The convergence in (4.31) then
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yields limnkl→∞ ‖f 1
nkl

∑
P iλnkl

‖H −→ ‖f̃‖H = c, nkl → ∞. Convergence of the norm and

the weak convergence in (4.29) imply:∥∥∥∥f 1
nkl

∑
P i,λnkl

− f̃
∥∥∥∥2

H

= ‖f̃‖2H − 2

〈
f 1
nkl

∑
P i,λnkl

, f̃

〉
H

+ ‖f 1
nkl

∑
P i,λnkl

‖2H

(4.29)−→ ‖f̃‖2H − 2
〈
f̃ , f̃

〉
H

+ ‖f̃‖2H = 0, nkl →∞.

Therefore, f 1
nkl

∑
P i,λnkl

−→ f̃ = f∗, nkl −→ ∞ in H. Assume that f 1
n

∑
P i,λn

does not

converge to f∗, hence there exists a subsequence which does not converge to f∗. As this

subsequence is bounded, the result above shows the existence of a sub-subsequence which

converges strongly to f∗. This leads to a contradiction. Hence,∣∣∣RL,P (f 1
n

∑
P i,λn

)−R∗L,P,H
∣∣∣ =

∣∣∣∣∫
Z
L ◦ f 1

n

∑
P i,λn

dP −
∫
Z
L ◦ f∗ dP

∣∣∣∣
≤ |L|1‖k‖∞

∫
Z
‖f 1

n

∑
P i,λn

− f∗‖H dP

−→ 0, n→∞.

Using part I and part II yields the assertion of Theorem 4.4.4. �

The next section links assumptions on the dependence structure of a stochastic process

to (4.17). If such stochastic processes are additionally asymptotically mean stationary,

the SVM estimator is consistent. For weakly dependent processes and C-mixing processes,

the speed of the decay of the dependence coe�cients does not in�uence the choice of the

sequence (λn)n∈N directly. If the coe�cients are summable, the consistency is ensured for

every 0 < r < 1
2 , as long as λnn

r −→∞, n→∞. In all cases the condition on the sequence

(λn)n∈N nearly equals the condition for the i.i.d. case, which is r = 1
2 , that is the SVM

estimator is rather robust against violations of the i.i.d. assumption.

4.4.1 Weakly dependent processes

The �rst example are weakly dependent processes, introduced by Doukhan and Louhichi

(1999) and Bickel and Bühlmann (1999). They satisfy the almost sure convergence in (4.17)

as long as their dependence coe�cient ε(`), ` ∈ N, decreases fast enough to be summable.

Theorem 4.4.6 Let (Ω,A, µ) be a probability space, let (X , dX ) be compact and (Y, |·|) ⊂ R,
Y closed, and let (Z, dZ) = (X × Y, dX×Y), with dX×Y((x, y), (x′, y′)) = d(x, x′) + |y − y′|
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be a separable, metric space. Let L : X × Y × R → [0,∞) be a distance-based, Lipschitz

continuous loss function with sup(x,y)∈X×Y L(x, y, 0) ≤ S, for a constant S ∈ (0,∞), and

|L|1 > 0. Let k be a continuous, bounded kernel with corresponding RKHS H. Further let

(Zi)i∈N, Zi : Ω → X × Y, be a η-, λ-, ζ-, κ- or θ-weakly dependent stochastic process with∑∞
l=1 ε(`) <∞. Then for 0 < r < 1

2

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
−→ 0 almost surely, n→∞, fn ∈ G,

where G ⊂ H is any uniformly bounded subset of functions f ∈ H, i. e. there is a constant

M > 0 such that ‖f‖H ≤M for all f ∈ G.

The metric dX×Y on the space X ×Y is chosen for technical reasons. Due to the de�nition of

weak dependence, Lipschitz continuous functions are needed. In the proof of Theorem 4.4.6

the Lipschitz continuity of a distance-based loss function Lf with respect to dX×Y is shown

if L, respectively ψ, and f are Lipschitz continuous. It is tempting to expect the p-product

metric d((x, y), (x′, y′)) =
√
dX (x, x′)2 + dY(y, y′)2 instead of dX×Y = d(x, x′) + |y − y′|,

but we need to choose a metric for which we can guarantee the Lipschitz continuity of

L(·, ·, f(·)) : X ×Y → R. If X ⊂ R we can for example use the Euclidean metric, due to the

strong equivalence of the metrics on R or, for X ⊂ Rd, we can choose a p-product metric

on Rd+1.

Without loss of generality |L|1 > 0 is assumed. |L|1 = 0 implies the function L to be

constant with respect to the last argument, hence L(x, y, t) = L(x, y, t′) for all t, t′ ∈ R.
This leads to a risk which does not depend on the prediction f(x) and therefore is not useful

for practical purposes.

In order to prove Theorem 4.4.6 the following technical Lemmata are needed. As we are

going to use a moment inequality of the maximum of a sum of random variables by Ser�ing

(1970) (see Theorem A10) we use Lemma 4.4.7 to introduce a certain function h, depending

on the joint distribution of arbitrary random variables Zi, i ∈ N. Let Pa,n be the joint

distribution of (Za+1, . . . , Za+n), a, n ∈ N, n > 1.

Lemma 4.4.7 Let Z1, . . . , Za+n be square integrable random variables and f : Z → R a

measurable, square integrable function. Then the function

ha,n(Pa.n) :=

a+n∑
i=a+1

Var(f ◦Zi) + 2

a+n−1∑
i=a+1

a+n∑
j=i+1

|Cov(f ◦Zi, f ◦Zj)|, a, n ∈ N, n > 1, (4.37)
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has the following properties for a, k, n ∈ N, n, k > 1:

ha,k(Pa,k) + ha+k,n(Pa+k,n) ≤ ha,k+n(Pa,k+n),

and Eµ

(
a+n∑
i=a+1

(f ◦ Zi − Eµf ◦ Zi)

)2

≤ ha,n(Pa,n).

Proof: The proof of both properties is straightforward. Let a, k, n ∈ N and n, k > 1. Then

ha,k(Pa,k)+ha+k,n(Pa+k,n) =

a+k∑
i=a+1

Var(f ◦ Zi) + 2

a+k−1∑
i=a+1

a+k∑
j=i+1

|Cov(f ◦ Zi, f ◦ Zj)|

+

a+k+n∑
i=a+k+1

Var(f ◦ Zi) + 2

a+k+n−1∑
i=a+k+1

a+k+n∑
j=i+1

|Cov(f ◦ Zi, f ◦ Zj)|

≤
a+k+n∑
i=a+1

Var(f ◦ Zi) + 2

a+k+n−1∑
i=a+1

a+k+n∑
j=i+1

|Cov(f ◦ Zi, f ◦ Zj)|

= ha,k+n(Pa,k+n).

And

Eµ

(
a+n∑
i=a+1

(f ◦ Zi − Eµf ◦ Zi)

)2

=

a+n∑
i=a+1

Var(f ◦ Zi) + 2

a+n−1∑
i=a+1

a+n∑
j=i+1

Cov(f ◦ Zi, f ◦ Zj)

≤ ha,n(Pa,n). �

Lemma 4.4.7 is also used to prove the almost sure convergence in (4.17) of C-mixing and

α-mixing random variables in Theorem 4.4.12 and 4.4.10.

Lemma 4.4.8 gives a bound on the Lipschitz constant of a family of Lipschitz continuous

and equicontinuous (see De�nition A9) functions.

Lemma 4.4.8 Let G be a family of equicontinuous and Lipschitz continuous functions fi :

X → R, i ∈ N, where (X , dX ) is a metric space. Then

sup
fi∈G
{|fi|1} <∞.
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Proof: By assumption fi is Lipschitz continuous. Hence for every fi ∈ G there is |fi|1 :=

supx,x′∈X
|fi(x)−fi(x′)|
dX (x,x′) , x 6= x′, such that

|fi(x)− fi(x′)| ≤ |fi|1dX (x, x′), for all x, x′ ∈ X .

Note that we do not need to consider functions with Lipschitz constant |fi|1 = 0, as they

do not change the supremum in Lemma 4.4.8. Due to the Lipschitz continuity of fi the

function is also uniformly continuous, as for every ε > 0, δi := ε
|fi|1 gives:

dX (x, x′) ≤ ε

|fi|1
⇒ |fi(x)− fi(x′)| ≤ |fi|1dX (x, x′) ≤ ε, for all x, x′ ∈ X .

In particular the de�nition of the Lipschitz constant as smallest upper bound on |fi(x)−fi(x′)|
dX (x,x′) ,

x 6= x′, implies, that there is no δ > ε
|fi|1 such that the above equation applies.

Moreover the set G is equicontinuous by assumption, hence for every ε > 0, for every x ∈ X ,
there is δ̃ > 0 such that for all x′ ∈ X with:

|x− x′| ≤ δ̃ ⇒ |fi(x)− fi(x′)| ≤ ε, for every fi ∈ G.

Due to the uniform continuity the family of functions G is uniformly equicontinuous. In

particular δ̃ ≤ δi, i ∈ N. Assume that the sequence |fi|1 is unbounded. Then we obtain

δ = 0, which is a contradiction to the equicontinuity of G. Hence the set {|fi|1 | fi ∈ G} is
bounded. �

Now we can prove Theorem 4.4.6.

Proof of Theorem 4.4.6: We have:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ

)
=

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
.

(4.38)

Let G ⊂ H be a set of uniformly bounded functions f ∈ H. Since X is a compact space

by assumption, Dudley (1989, Theorem 11.2.4) states, that the space of bounded Lipschitz

functions BL(X ) = {f : X → R | f Lipschitz and ‖f‖BL <∞} is dense in C(X ) with respect

to ‖ ·‖∞. Moreover Dudley (1989, Corollary 11.2.5) states the separability of (C(X ), ‖ ·‖∞).

As G ⊂ H ⊂ C(X ) and as (C(X ), ‖ · ‖∞) is a metric space, G is separable with respect

to ‖ · ‖∞, see Denkowski et al. (2003, Corollary 1.4.12). Therefore the set BL(X ) ∩ G is

dense in G with respect to ‖ · ‖∞. Then, for every ρ > 0 and for every fn ∈ G there is
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gρ,n ∈ BL(X ) ∩ G such that:

‖fn − gρ,n‖∞ ≤ ρ. (4.39)

Now, for any �xed n ∈ N and for fn ∈ G, the triangle inequality and the approximation

(4.39) above yield:∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣ ≤ 1

n1−r

n∑
i=1

∣∣Lfn ◦ Zi − Lgρ,n ◦ Zi∣∣
+

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ,n ◦ Zi −

∫
Lgρ,n dP

i

)∣∣∣∣∣+
1

n1−r

n∑
i=1

∣∣∣∣∫ Lgρ,n dP
i −
∫
Lfn dP

i

∣∣∣∣
L Lipschitz
≤ 1

n1−r

n∑
i=1

|L|1‖fn − gρ,n‖∞ +

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ,n ◦ Zi −

∫
Lgρ,n dP

i

)∣∣∣∣∣
+

1

n1−r

n∑
i=1

∫
|L|1‖f − gρ,n‖∞ dP i

(4.39)

≤ 2nr|L|1 · ρ+

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ,n ◦ Zi −

∫
Lgρ,n dP

i

)∣∣∣∣∣ .
De�ne ρ(n) = 1

n1+r . Therefore the above computation leads the following bound on (4.38):∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣
≤ 2nr|L|1ρ(n) +

∣∣∣∣∣ 1n
n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣
ρ(n)=1/n1+r

≤ 2|L|1
n

+

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣ . (4.40)

To show the almost sure convergence of the last part we follow the same lines as the proof

of Hu et al. (2008, Theorem 1). We split the sum in two parts and show that both parts

converge almost surely. For every n > 1 choose s ∈ N such hat 2s−1 < n ≤ 2s. Then,∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣
=

1

n1−r

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)
+

n∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣
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≤ 1

n1−r

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)

+ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣
n>2s−1

≤ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II

. (4.41)

The almost sure convergence of the terms in part I and II is shown via the boundedness of

the sum of covariances
∑b−1

i=a+1

∑b
j=i+1 Cov(Lgρ(n),n ◦Zi, Lgρ(n),n ◦Zj) for a, b ∈ N, a < b−1.

In particular we show that the bound does not depend on the function gρ(n),n, respectively

n. The next part of the proof leads to this bound.

By assumption the loss function L is Lipschitz continuous and distance-based, i. e. there

exists a function ψ : Y×R→ [0,∞) such that L(x, y, t) = ψ(y−t), for all (x, y, t) ∈ X×Y×R
and ψ(0) = 0. The Lipschitz continuity of L is equivalent to the Lipschitz continuity of ψ in

t, see Steinwart and Christmann (2008, Lemma 2.33). Hence, for all (x, y, t) ∈ X × Y × R:

∣∣ψ(y − t)− ψ(y′ − t′)
∣∣ =

∣∣ψ(y − t)− ψ(y − (y − y′ + t′))
∣∣ ≤ |ψ|1 ∣∣t− (y − y′ + t′)

∣∣
≤ |ψ|1

∣∣y′ − y + t− t′
∣∣ ≤ |ψ|1 (∣∣y − y′∣∣+

∣∣t− t′∣∣) .
That is ψ is Lipschitz continuous with respect to the metric given by dY×R((y, t), (y′, t′)) =

|y − y′|+ |t− t′|. Using the Lipschitz continuity of gρ(n),n ∈ BL(X ) with respect to dX , we

have for all x, x′ ∈ X , y, y′ ∈ Y:

∣∣L(x, y, gρ(n),n(x))− L(x′, y′, gρ(n),n(x′))
∣∣ =

∣∣ψ (y − gρ(n),n(x)
)
− ψ

(
y′ − gρ(n),n(x′)

)∣∣
≤ |ψ|1

(
|y − y′|+ |gρ(n),n(x)− gρ(n),n(x′)|

)
gρ(n),n∈BL(X )

≤ |ψ|1
(
|y − y′|+ |gρ(n),n|1dX (x, x′)

)
≤ max{|ψ|1 · |gρ(n),n|1, |ψ|1} ·

(
|y − y′|+ dX (x, x′)

)
.

(4.42)
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Hence the function Lgρ(n),n is Lipschitz continuous with respect to dX×Y((x, y), (x′, y′)) =

dX (x, x′) + |y − y′|. Therefore the function Lgρ(n),n is an element of F1, where F1 is the

function class de�ned for the λ-, η-, ζ-, and κ-dependence coe�cients in Section 2.1, re-

spectively, in case of θ-dependence, the function Lgρ(n),n belongs to both required function

classes F1 and G1.

Due to the uniform boundedness of G and due to gρ(n),n ∈ BL(X ) ∩ G ⊂ H we have

‖gρ(n),n‖H ≤M . Now Inequality (4.20), leads to the boundedness of Lgρ(n),n by a constant

CL > 0:

‖Lgρ(n),n‖∞ ≤ S + |L|1‖gρ(n),n‖∞
(4.20)

≤ S + |L|1‖gρ(n),n‖H‖k‖∞
≤ S + |L|1M‖k‖∞ ≤ CL. (4.43)

Furthermore,

Var(Lgρ(n),n ◦ Zi) ≤ ‖Lgρ(n),n‖
2
∞ ≤ C2

L (4.44)

and
∑n

i=1 Var(Lgρ(n),n ◦ Zi) ≤ C2
Ln. Note that the constant CL does not depend on n and

that the boundedness of ‖Lgρ(n),n‖∞ by CL implies the boundedness of the �rst element

(n = 1) of the sequence
∣∣∣ 1
n1−r

∑n
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i
)∣∣∣ by 2CL.

In order to relate the covariances to the di�erent dependence coe�cients, we need to regard

the function Ψ: F1 × F1 → R, which depends on the type of weak dependence, i. e. on the

dependence coe�cients, see 2.1.

The function Ψ(f, f) varies for the di�erent dependence coe�cients ε(`), but always depends

on ‖f‖∞ and on the Lipschitz constant |f |1 of f , see Doukhan and Louhichi (1999, page

12) and Section 2.1. As ‖Lgρ(n),n‖∞ ≤ CL, for all gρ(n),n ∈ G, we get that, for every

considered dependence coe�cient, the function Ψ(Lgρ(n),n , Lgρ(n),n) is bounded by a constant

C, depending on M , ‖k‖∞ and |Lgρ(n),n |1:

for η-weakly dependent processes we have for f = Lgρ(n),n :

Ψ(f, f) = 2‖f‖∞|f |1 ≤ 2CL|Lgρ(n),n |1;

for λ-weakly dependent processes we have for f = Lgρ(n),n :

Ψ(f, f) = 2‖f‖∞|f |1 + |f |1|f |1 ≤ 2CL|Lgρ(n),n |1 + |Lgρ(n),n |
2
1;
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for κ- and ζ-weakly dependent processes we have for f = Lgρ(n),n :

Ψ(f, f) = |f |21 ≤ |Lgρ(n),n |
2
1.

for θ-weakly dependent processes we have for f = Lgρ(n),n :

Ψ(f, f) = ‖f‖∞|f |1 ≤ CL|Lgρ(n),n |1.

Similar to the proof of Theorem 4.4.4, the reproducing property of the kernel yields the

equicontinuity of the functions f ∈ G: Let dX be the metric on X . By assumption the

kernel k is continuous, that is, in particular, for every ε > 0, there is δ > 0 such that for all

x′ ∈ X
dX (x, x′) ≤ δ ⇒ ‖k(·, x)− k(·, x′)‖H ≤ ε.

Due to the reproducing property of the kernel, (4.24), for all x′ ∈ X with dX (x, x′) ≤ δ:

∣∣f(x)− f(x′)
∣∣ (4.24)=

∣∣〈f, k(·, x)〉H −
〈
f, k(·, x′)

〉
H

∣∣ =
∣∣〈f, k(·, x)− k(·, x′)

〉
H

∣∣
≤ ‖f‖H‖k(·, x)− k(·, x′)‖H ≤Mε.

Hence BL(X ) ∩ G is equicontinuous. As (X , dX ) is a compact metric space by assumption,

Dudley (1989, Theorem 2.4.5) yields the uniform equicontinuity of BL(X ) ∩ G with respect

to ‖ · ‖∞.

Due to Lemma 4.4.8 the set {|gρ(n),n|1 | gρ(n),n ∈ BL(X ) ∩ G} of Lipschitz constants of

the functions gρ(n),n is uniformly bounded. Hence
{
|Lgρ(n),n |1, gρ(n),n ∈ BL(X ) ∩ G

}
is

uniformly bounded, see (4.42). Therefore there exists, separately for every dependence

coe�cient, a constant CΨ, depending on the kernel and the function class G such that

Ψ(Lgρ(n),n , Lgρ(n),n) ≤ CΨ for all n ∈ N. In particular CΨ does not depend on the choice of

gρ(n),n, respectively of n.

Without loss of generality we assume for the next calculations that there is (x, y) ∈ X × Y
such that Lgρ(n),n(x, y) 6= 0, i. e. Lgρ(n),n 6= 0. Together with the assumption |L|1 > 0, this

implies that Ψ(Lgρ(n),n , Lgρ(n),n) > 0 for all n ∈ N. If Lgρ(n),n equals the null-function, which

is denoted by Lgρ(n),n = 0, the calculations in (4.48) and (4.49) on the next page are trivial.
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Hence we have for a < b− 1, a, b ∈ N, and for all n ∈ N such that Lgρ(n),n 6= 0:

b−1∑
i=a+1

b∑
j=i+1

Cov
(
Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj

)
Ψ>0
≤

b−1∑
i=a+1

b∑
j=i+1

Ψ(Lgρ(n),n , Lgρ(n),n)
Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)

Ψ(Lgρ(n),n , Lgρ(n),n)

≤ Ψ(Lgρ(n),n , Lgρ(n),n)
b−1∑
i=a+1

b∑
j=i+1

Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)
Ψ(Lgρ(n),n , Lgρ(n),n)

. (4.45)

Now (4.45), the assumption on the dependence coe�cients
∑∞

`=1 ε(`) ≤ C̃ for a constant

C̃ < ∞, and the Lipschitz continuity of Lgρ(n),n yield for a < b − 1, a, b ∈ N, and for all

n ∈ N such that Lgρ(n),n 6= 0:

b−1∑
i=a+1

b∑
j=i+1

Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)

(4.45)

≤ Ψ(Lgρ(n) , Lgρ(n))
b−1∑
i=a+1

b∑
j=i+1

Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)
Ψ(Lgρ(n),n , Lgρ(n),n)

≤ CΨ

b−1∑
i=a+1

b∑
j=i+1

sup
f∈F1

|Cov(f ◦ Zi, f ◦ Zj)|
Ψ(f, f)

(2.1)

≤ CΨ

b−a−1∑
`=1

(b− a− `)ε(`)

b−a−`≤b−a
≤ CΨ(b− a)

∞∑
`=1

ε(`) (4.46)

≤ C̃CΨ(b− a). (4.47)

To show almost sure convergence of the term in (4.41) part I, we show for all ε > 0:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε


 <∞.

(4.48)

Then the Lemma of Borel-Cantelli, see e. g. Ho�mann-Jørgensen (1994, Theorem 2.11),

yields 1
2(s−1)·(1−r)

∣∣∣∑2s−1

i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i
)∣∣∣ to 0, almost surely, n→∞.
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A short note should be done on the argumentation. Remember that s is chosen such that

2s−1 < n ≤ 2s. Regarding the sum over s, we do not cover every element of the sequence
1

n1−r
∑n

i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i
)
. The last computation shows that the sum of covariances

does not depend on n, but only on the number of summands. To get the sequence for n ∈ N,
you only add, for every s ∈ N, at most countable many elements, which are bounded by

the given element for s ∈ N. Hence, if the almost sure convergence for the sequence in s is

shown, the almost sure convergence of 1
n1−r

∑n
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i
)
is still implied.

By Markov's inequality, see for example Ho�mann-Jørgensen (1994, Theorem 3.9), we have,

for all ε > 0, s > 1 and for all n ∈ N such that Lgρ(n),n 6= 0:

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




Markov
≤ 1

ε2
Eµ

 1

2(s−1)·(1−r)

2s−1∑
i=1

[
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

]2

=
1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Eµ(Lgρ(n),n ◦ Zi −
∫
Lgρ(n),n dP

i)2

+ 2
2s−1−1∑
i=1

2s−1∑
j=i+1

Eµ
(

(Lgρ(n),n ◦ Zi −
∫
Lgρ(n),n dP

i)(Lgρ(n),n ◦ Zj −
∫
Lgρ(n),n dP

j)

)
=

1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Var(Lgρ(n),n ◦ Zi) + 2

2s−1−1∑
i=1

2s−1∑
j=i+1

Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)


(4.49)

(4.44),(4.47)

≤ 1

ε2

[
1

2(s−1)·(1−2r)
C2
L + 2

1

2(s−1)·(2−2r)
CΨC̃2s−1

]
≤ 1

ε2

1

2(s−1)·(1−2r)

˜̃C,

for a constant ˜̃C := C2
L + 2CΨC̃ > 0.

If there exists n ∈ N such that Lgρ(n),n = 0, the calculation above easily yields

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




Lgρ(n),n=0

= 0 ≤ 1

ε2

1

2(s−1)·(1−2r)

˜̃C.
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For s = 1 we obtain

µ

({
ω ∈ Ω

∣∣∣∣ ∣∣∣∣Lgρ(n),n ◦ Z1(ω)−
∫
Lgρ(n),n dP

1

∣∣∣∣ > ε

})
≤ 1

ε2
Var(Lgρ(n),n ◦ Z1)

(4.44)

≤
C2
L

ε2
.

(4.50)

As 1
21−2r < 1 for all 0 < r < 1

2 , the series above equals a geometric series and therefore is

convergent:

∞∑
s=1

(
1

ε2

1

2(s−1)·(1−2r)

˜̃C

)
=

1

ε2
˜̃C
∞∑
s=0

(
1

2(1−2r)

)s
<

1

ε2
˜̃C

1

1− 1
21−2r

< ∞.

Hence the term in part I in (4.41) converges almost surely to zero.

The almost sure convergence of the second part in (4.41) is shown via a maximal inequality

and again the application of the Borel-Cantelli Lemma. It is to show, that for all ε > 0

∞∑
s=1

µ

ω ∈ Ω | 1

2(s−1)·(1−r) max
1≤q≤2s−1

∣∣∣∣∣∣
2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




(4.51)

is �nite.

Again Markov's inequality yields:

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




≤ 1

ε2

(
1

2(s−1)·(1−r)

)2

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)2

. (4.52)

Moreover we assume Lgρ(n),n 6= 0, n ∈ N, similar to the �rst part.

Now we can use a generalization of the Rademacher-Mensov-Inequality in Ser�ing (1970,

Theorem A). We choose the function

ha,m(Pa,m) :=

a+m∑
a+1

Var(f ◦ Zi) + 2

a+m−1∑
i=a+1

a+m∑
j=i+1

|Cov(f ◦ Zi, f ◦ Zj)|,

a ∈ N, m > 1, which has due to Lemma 4.4.7 the required properties for Ser�ing (1970,

Theorem A).
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Hence, we have, for all n ∈ N and s > 1 such that Lgρ(n),n 6= 0,

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)2

Serfling
≤ (log2(2 · 2s−1))2h2s−1,2s−1(P2s−1,2s−1)

= (log2(2 · 2s−1))2

 2s∑
2s−1+1

Var(Lgρ(n),n ◦ Zi)

+2

2s−1∑
i=2s−1+1

2s∑
j=i+1

|Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)|

 . (4.53)

Now,

log2(2 · 2s−1)2 ≤ (1 + log2 2s−1)2 ≤ C(log2 2s−1)2, s > 1, C := 4. (4.54)

For s = 1, we have log2(2 · 2s−1) = 1 and

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)2

= Var(Lgρ(2),2 ◦ Z2) ≤ ‖Lgρ(2),2‖
2
∞

(4.43)
= C2

L <∞. (4.55)

Then, we get with Markov's inequality (4.52) and (4.53), for all Lgρ(n),n 6= 0:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




(4.52),(4.53),(4.55)

≤
C2
L

ε2
+

∞∑
s>1

1

ε2

(
1

2(s−1)·(1−r)

)2

(log2(2 · 2s−1))2 ·

 2s∑
2s−1+1

Var(Lgρ(n),n ◦ Zi)

+2

2s−1∑
i=2s−1+1

2s∑
j=i+1

|Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)|


(4.54)

≤
C2
L

ε2
+

∞∑
s>1

C

ε2

(
1

2(s−1)·(1−r)

)2

(log2 2s−1)2

 2s∑
2s−1+1

Var(Lgρ(n),n ◦ Zi)

+2
2s−1∑

i=2s−1+1

2s∑
j=i+1

|Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)|
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(4.44),(4.46)

≤
C2
L

ε2
+
∞∑
s>1

C

ε2

(
1

2(s−1)·(1−r)

)2

(log2 2s−1)2

[
2s−1C2

L + 2(2s − 2s−1)
∞∑
`=1

CΨε(`)

]
(4.47)

≤
C2
L

ε2
+
C

ε2

∞∑
s>1

(log2 2s−1)2

(2(s−1)·(1−r))2
2s−1 ˜̃C ≤

C2
L

ε2
+
C ′

ε2

∞∑
s>1

(log2 2s−1)2

2(s−1)·(1−2r)

≤
C2
L

ε2
+
C ′

ε2

∞∑
s>1

(s− 1)2

2(s−1)·(1−2r)
< ∞ (4.56)

for a constant C ′ := C2
L + 2CΨ

∑∞
`=1 ε(`) > 0.

Note that the same argumentation as in part I yields for Lgρ(n),n = 0:

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




Lgρ(n),n=0

= 0 ≤ C ′

ε2

(s− 1)2

2(s−1)·(1−2r)
,

respectively for s = 1:

µ

({
ω ∈ Ω

∣∣∣∣ ∣∣∣∣(Lgρ(n),n ◦ Zi(ω)−
∫
Lgρ(n),n dP

i

)∣∣∣∣ > ε

})
Lgρ(n),n=0

= 0.

The convergence of the last series in (4.56) follows directly via the ratio test:

(s+1)2

(2s+1)1−2r

s2

(2s)(1−2r)

≤
(

1 +
1

s

)2 1

2(1−2r)
, 0 < r <

1

2
.

As (1 + 1
s )2 −→ 1, s → ∞ and 1

2(1−2r) < 1, for every 1
2(1−2r) < a < 1, there exists s ∈ N

such that (1 + 1
s )2 · 1

2(1−2r) < a. Hence the series converges and we have the almost sure

convergence of the term in part II in (4.41).

Then, the almost sure convergence in (4.38) is implied, n > 1:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
(4.40)

≤ 2|L|1
n

+

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣
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(4.41)

≤ 2|L|1
n

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I −→0 almost surely

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II −→0 almost surely

−→ 0 almost surely.

This proves the assertion. �

Corollary 4.4.9 Let (Ω,A, µ) be a probability space, let (X , dX) be compact and (Y, | · |) ⊂
R, Y closed, and let (Z, dZ) = (X ×Y, dX×Y), dX×Y((x, y), (x′, y′)) = d(x, x′)+ |y−y′| be a
separable, metric space. Let L : X×Y×R→ [0,∞) be a convex, distance-based and Lipschitz

continuous loss function, which is additionally continuous in (x, y) for all (x, y) ∈ X × Y,
with sup(x,y)∈X×Y L(x, y, 0) ≤ S for some constant S ∈ (0,∞), and |L|1 > 0. Moreover

let H be a reproducing kernel Hilbert space of an universal, bounded and continuous kernel

k : X × X → R. Let (Zi)i∈N, Zi : Ω → Z, i ∈ N, be an asymptotically mean stationary,

η-, λ-, ζ-, κ- or θ-weakly dependent stochastic process with dependence coe�cients ε(`)

such that
∑∞

`=1 ε(`) < ∞. Let (λn)n∈N ⊂ (0,∞) such that λn → 0 and λnn
r → ∞, for

some 0 < r < 1
2 , and let the sequences (f 1

n

∑
P i,λn

)n∈N and (fPWn(ω),λn)n∈N be bounded

for all ω ∈ Ω, i. e. there are constants M,M̃ > 0 such that ‖f 1
n

∑
P i,λn

‖H ≤ M and

‖fPWn(ω),λn‖H ≤ M̃ , n ∈ N.

Then:

RL,P (fPWn ,λn
)→ R∗L,P in probability, n→∞.

That is, the SVM estimator is L-risk-consistent for asymptotically mean stationary weakly

dependent processes, which have summable dependence coe�cients, given the assumptions

on k, L, and X . The sequence (λn)n∈N has to satisfy λnn
r → ∞, n → ∞, for some

0 < r < 1
2 , which is stronger than the assumption λ2

nn→∞ for the i.i.d. case. In particular

the proof shows that, given the assumptions, (4.17) is ful�lled for every 0 < r < 1
2 . For

r = 1
2−ε,

1
2 > ε > 0, the assumptions on the sequence (λn)n∈N is only slightly stronger than

the assumption for the i.i.d. case. We can still weaken the assumptions on the stochastic

process. As long as
∑∞

s=1
(s−1)2

21−2r

∑
ε(`) <∞, the proof can easily be adapted. Moreover, the
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smaller the constant r the weaker the assumption on the process, but the sequence (λn)n∈N

has to converge appropriately slow, such that λrnn→∞, which is a stronger assumption.

Theorem 4.4.4 shows the convergence of the empirical risk to the minimal risk with respect

to the function space H. Since k is a universal kernel, even the convergence to the Bayes risk

R∗L,P over all measurable functions f : X → R is ensured, see Steinwart and Christmann

(2008, Corollary 5.29).

4.4.2 α-mixing processes

The next example are α-mixing processes. In Steinwart et al. (2009, Theorem 3.3) L-risk-

consistency of SVMs for α-mixing processes under some assumptions on the dependence

coe�cient is shown. The process is assumed to be asymptotically mean stationary and α-

bi-mixing with a special rate and needs to ful�l a stability assumption. For a compact input

space X , the next theorem shows that, to ensure consistency of SVMs, the assumptions on

the stochastic process can be reduced to the AMS property and an assumption on the α-bi-

mixing. Of course the compactness of X assumed in Theorem 4.4.4 is restrictive, however

this assumption is easy to check. Note that α-bi-mixing is a slightly weaker assumption on

a stochastic process, than the commonly used α-mixing assumption.

Theorem 4.4.10 Let (Ω,A, µ) be a probability space and Z = X × Y a Polish space,

Y ⊂ R closed. Let L : X × Y × R → [0,∞) be a Lipschitz continuous loss function such

that sup(x,y)∈X×Y L(x, y, 0) ≤ S, for some constant S ∈ (0,∞). Let H be a Hilbert space

consisting of bounded measurable functions f : X → R. Moreover let (Zi)i∈N, Zi : Ω → Z,
i ∈ N, be a stochastic process such that there is a constant Cα > 0 with:

1

n2

n∑
i=1

i−1∑
j=1

α(Z, µ, i, j) ≤ Cα
n
, n ∈ N. (4.57)

Then, for 0 < r < 1
2 ,

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
−→ 0 almost surely, n→∞, fn ∈ G,

where G ⊂ H is any uniformly bounded subset of functions f ∈ H, i. e. there is a constant

M > 0 such that ‖f‖H ≤M for all f ∈ G.
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The assumption on the α-mixing process in Theorem 4.4.10 can be weakened, depending on

the constant r. For every a ∈ (2r, 2), r ∈ (0, 1
2), the almost sure convergence of the sequence

1
n1−r

∑n
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
−→ 0, n → ∞, fn ∈ G, can be shown in

the same way as below if

1

n2

n∑
i=1

n−i∑
j=1

α((Z, µ, i, j) ≤ Cα
na
, n ∈ N.

Only the exponents have to be adapted. Again, the choice of r can weaken the assumptions

on the process but then strengthens the assumption on the sequence (λn)n∈N. For a = 1 we

get r = 1
2−ε, ε > 0. Compared to Steinwart et al. (2009, Theorem 3.3), this results in almost

the same assumptions on the convergence rate of the sequence (λn)n∈N, λnn
1
2
−ε → ∞,

although we do not require a stability assumption.

Proof of Theorem 4.4.10: The proof follows the same lines as the proof of the consis-

tency for weakly dependent processes, see Theorem 4.4.10. Therefore some calculations are

shortened.

Let G ⊂ H be a set of uniformly bounded functions f ∈ H. Similar to the proof of Theorem

4.4.6, (4.41), we split the sequence 1
n1−r

∑n
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
in two

parts for n > 1:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)

≤ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II

. (4.58)

Again the Lemma of Borel-Cantelli is used to show the almost sure convergence of part I,

that is we show that for all ε > 0:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε


 <∞.
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Since sup(x,y)∈X×Y L(x, y, 0) is bounded by assumption and G is uniformly bounded, there

is a constant CL > 0 such that

‖Lfn‖∞ := sup
(x,y)∈X×Y

|L(x, y, f(x)| ≤ CL, (4.59)

for all fn ∈ G, see (4.44). For n = 1 this yields the boundedness of the �rst element of the

sequence:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
n=1
≤ 2CL.

By Markov's inequality, see for example Ho�mann-Jørgensen (1994, Theorem 3.9), we have:

for s = 1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε


 <

C2
L

ε2

and

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε




≤
C2
L

ε2
+
∞∑
s>1

1

ε2
Eµ

 1

2(s−1)·(1−r)

2s−1∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)2

=
C2
L

ε2
+
∞∑
s>1

1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Eµ(Lfn ◦ Zi −
∫
Lfn dP

i)2

+ 2

2s−1∑
i=1

i−1∑
j=1

Eµ
(

(Lfn ◦ Zi −
∫
Lfn dP

i)(Lfn ◦ Zj −
∫
Lfn dP

j)

) . (4.60)

Without loss of generality we assume ‖Lfn‖∞ > 0, n ∈ N. ‖Lfn‖∞ = 0 implies that Lfn = 0,

as L : X × Y × R→ [0,∞). Then we easily obtain

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε


 = 0.
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Moreover we use that the covariance of a stochastic process is related to the RR
∞-mixing

coe�cient, see De�nition 2.3, which is on the other hand related to α-mixing, see (2.10).

Then for all n ∈ N such that ‖Lfn‖∞ 6= 0:

C2
L

ε2
+
∞∑
s>1

1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Eµ(Lfn ◦ Zi −
∫
Lfn dP

i)2

+ 2

2s−1∑
i=1

i−1∑
j=1

Eµ
(

(Lfn ◦ Zi −
∫
Lfn dP

i)(Lfn ◦ Zj −
∫
Lfn dP

j)

)
(4.59)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

C2
L

+ 2

2s−1∑
i=1

i−1∑
j=1

‖Lfn‖2∞
Eµ(Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ)(Lfn ◦ Zj −

∫
Lfn ◦ Zj dµ)

‖Lfn‖∞‖Lfn‖∞


(4.59),(2.3)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

( 1

2(s−1)·(1−r)

)2

2s−1C2
L + 2

(
CL

2(s−1)·(1−r)

)2 2s−1∑
i=1

i−1∑
j=1

RR
∞


(2.10)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

 1

2(s−1)·(1−2r)
C2
L + 4π

(
CL

2(s−1)·(1−r)

)2 2s−1∑
i=1

i−1∑
j=1

α(Z, µ, i, j)

 .
Assumption (4.57) gives 1

n2

∑n
i=1

∑i−1
j=1 α(Z, µ, i, j) ≤ Cα

n . Hence
∑n

i=1

∑i−1
j=1 α(Z, µ, i, j) ≤

Cn. Therefore,

C2
L

ε2
+

1

ε2

∞∑
s>1

 1

2(s−1)·(1−2r)
C2
L + 4π

(
CL

2(s−1)·(1−r)

)2 2s−1∑
i=1

i−1∑
j=1

α(Z, µ, i, j)


(4.57)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

[
1

2(s−1)·(1−2r)
C2
L + 4π

(
CL

2(s−1)·(1−r)

)2

Cα · 2s−1

]

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

1

2(s−1)·(1−2r)
C̃,

where C̃ := (1 + 4πCα)C2
L > 0. As 1

21−2r < 1 for all 0 < r < 1
2 , the series equals a geometric

series and therefore is convergent:

1

ε2

∞∑
s=1

1

2(s−1)·(1−2r)
C̃ =

1

ε2
C̃

∞∑
s=0

(
1

2(1−2r)

)s
<∞.
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This implies the almost sure convergence of the term in part I.

For the second term we show that again the generalization of the Rademacher-Menosv-

Inequality by Ser�ing (1970, Theorem A) leads the almost sure convergence.

First Markov's inequality, see Ho�mann-Jørgensen (1994, Theorem 3.9), gives:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε




≤ 1

ε2

∞∑
s=1

(
1

2(s−1)·(1−r)

)2

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)2

.

For s = 1 we obtain

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)2

= Eµ

(
2∑
i=2

Lfn ◦ Zi −
∫
Lfn dP

i

)2

≤ ‖Lfn‖2∞
(4.59)

≤ C2
L. (4.61)

Again we assume ‖Lfn‖∞ 6= 0, n ∈ N. If there exists n ∈ N such that ‖Lfn‖∞ = 0 the

calculations are again trivial. The maximal inequality by Ser�ing (1970) for the function

h2s−1,2s−1 , see Lemma 4.4.7, and the de�nition of the mixing coe�cient RR
∞, De�nition (2.3),

and Inequality (2.10), yield:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi(ω)−

∫
Lfn dP

i

)∣∣∣∣∣∣ > ε




Lem (4.4.7),(4.61)

≤
C2
L

ε2
+

∞∑
s>1

(
1

ε2(s−1)·(1−r)

)2

(log2(2 · 2s−1))2

 2s∑
2s−1+1

Var(Lfn ◦ Zi)

+2

2s−1∑
i=2s−1+1

2s∑
j=i+1

|Cov(Lfn ◦ Zi, Lfn ◦ Zj)|


(4.59)

≤
C2
L

ε2
+
∞∑
s>1

C

(
1

2(s−1)·(1−r)

)2

(log2 2s−1)2

[
2s−1C2

L +

+ 2

2s∑
i=2s−1+1

i−1∑
j=2s−1+1

‖Lfn‖2∞
Eµ(Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ)(Lfn ◦ Zj −

∫
Lfn ◦ Zj dµ)

‖Lfn‖∞‖Lfn‖∞

]
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(2.3),(2.10),(4.54)

≤
C2
L

ε2
+ C

∞∑
s>1

(
log2 2s−1

2(s−1)·(1−r)

)2
2s−1C2

L + 4πC2
L

2s∑
i=2s−1+1

i−1∑
j=2s−1+1

α(Z, µ, i, j)


(4.57)

≤
C2
L

ε2
+ C

∞∑
s>1

(log2 2s−1)2

(2(s−1)·(1−r))2

[
2s−1C2

L + 4πC2
LCα(2s − 2s−1)

]
≤

C2
L

ε2
+ C ′

∞∑
s>1

(s− 1)2

2(s−1)·(1−2r)
<∞,

for a constant C ′ := (1 + 4πCα)CC2
L > 0. The convergence again follows via the ratio test,

similar to (4.56).

Hence,

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
(4.58)

≤ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I −→0 almost surely

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II −→0 almost surely

−→ 0 almost surely. �

The L-risk-consistency is ensured for the following assumptions:

Corollary 4.4.11 Let (Ω,A, µ) be a probability space, let (Z, dZ) = (X × Y, dX×Y) be a

separable, metric space and let X be compact and Y ⊆ R closed. Let L : X ×Y×R→ [0,∞)

be a loss function which is convex and Lipschitz continuous in the last argument, continuous

in all (x, y) ∈ X × Y and sup(x,y)∈X×Y L(x, y, 0) ≤ S, for a constant S ∈ (0,∞). Let

H be a reproducing kernel Hilbert space of an universal, bounded and continuous kernel

k : X × X → R. Let (Zi)i∈N, Zi : Ω → Z, be an asymptotically mean stationary, α-mixing

stochastic process such that there is a constant C > 0 with:

1

n2

n∑
i=1

i−1∑
j=1

α(Z, µ, i, j) ≤ C

n
, n ∈ N.
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Let (λn)n∈N ⊂ (0,∞) such that λn → 0 and λnn
r → ∞ for some 0 < r < 1

2 . Let the

sequences (f 1
n

∑
P i,λn

)n∈N and (fPWn(ω),λn)n∈N be bounded for all ω ∈ Ω, i. e. there are

constants M,M̃ > 0 such that ‖f 1
n

∑
P i,λn

‖H ≤M and ‖fPWn(ω),λn‖H ≤ M̃ , n ∈ N.

Then:

RL,P (fPWn ,λn
)→ R∗L,P in probability, n→∞.

The L-risk-consistency in H follows directly from Theorem 4.4.4 and 4.4.10. As k is a

universal kernel by assumption and X is compact, the convergence to the Bayes risk R∗L,P
follows by Steinwart and Christmann (2008, Corollary 5.28).

4.4.3 C-mixing processes

Another example for processes which guarantee almost sure convergence in (4.17) are cer-

tain C-mixing processes. The next theorem shows that C-mixing processes on the space of

Lipschitz continuous, bounded functions comply with (4.17). That is the class C of functions
equals the set of bounded Lipschitz functions BL(Z) := {f : Z → R | ||f ||BL <∞} equipped
with semi-norm ‖f‖C := ‖f‖BL = ‖f‖∞ + |f |1. Hang and Steinwart (2015, Theorem 4.7)

show a Bernstein-type inequality for strongly stationary (time reversed) geometrically C-
mixing processes, that is ΦC ≤ c exp (−bnγ), γ, b, c > 0. Moreover learning rates for support

vector machines for the least squares loss and for the pinball loss are achieved. This implies

the L-risk-consistency of the SVM estimator under this C-mixing condition. Hence, con-

cerning L-risk-consistency, we regard other loss functions. Contrary to Hang and Steinwart

(2015), Theorem 4.4.4 does not cover the least squares loss, as it is not Lipschitz continu-

ous, but the pinball loss and other Lipschitz continuous losses. The theorem below shows

that (4.17) covers more processes than the Bernstein-type inequality in Hang and Steinwart

(2015). We do not need an exponential decay of the mixing coe�cients, but require that ΦC

is summable. Furthermore we require the AMS property, see (4.15), instead of the station-

arity of the stochastic process. That is we require the existence of a probability measure

P ∈M(Z) such that P (B) = limn→∞
1
n

∑n
i=1 EµIB ◦Zi, for all B ∈ B. The AMS property

is not necessary if the process is strongly stationary. Due to the weaker assumptions on the

process it covers more processes than the Bernstein-type inequality in Hang and Steinwart

(2015), but we do not achieve learning rates or a concentration inequality.

Theorem 4.4.12 Let (Ω,A, µ) be a probability space and let (Z, dZ) = (X × Y, dX×Y) be

a measurable space, (X , dX ) compact and Y ⊂ R closed. Let L : X × Y × R → [0,∞) be a
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distance-based Lipschitz continuous loss function with sup(x,y)∈X×Y L(x, y, 0) ≤ S, for some

constant S ∈ (0,∞), and |L|1 > 0. Let k : X × X → R be a continuous and bounded kernel

with RKHS H. Moreover let C = BL(Z) be the space of Lipschitz continuous, bounded

functions Z → R. Let (Zi)i∈N, Zi : Ω→ Z, be a C-mixing stochastic process.

Then, for 0 < r < 1
2 ,

1

n1−r

n∑
i=1

Lfn ◦ Zi −
∫
Lfn ◦ Zi dµ −→ 0 almost surely, n→∞, fn ∈ G, (4.62)

where G ⊂ H is any uniformly bounded subset of functions f ∈ H, i. e. there is a constant

M > 0 such that ‖f‖H ≤M for all f ∈ G.

Proof of Theorem 4.4.12: The proof follows the same lines as the proof of Theorem 4.4.6

and 4.4.10, Therefore some calculations are again shortened. We have

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn ◦ Zi

)
=

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)
. (4.63)

Analogously to the proof of Theorem 4.4.6, (4.39) and (4.38), for any ρ(n) = 1
n1+r , n ∈ N,

there is a function gρ(n),n ∈ BL(X ) ∩ G such that

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
Lfn dP

i

)
≤ 2|L|1

n
+

1

n1−r

n∑
i=1

∣∣∣∣Lgρ(n),n ◦ Zi − ∫ Lgρ(n),n dP
i

∣∣∣∣ .
The last term on the right hand side can be split up for n > 1, see (4.41):

1

n1−r

∣∣∣∣∣
n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣
≤ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II

. (4.64)
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Now the almost sure convergence of the terms on the right hand side follows, as the sum of

covariances

Eµ

 b−1∑
i=a+1

b∑
j=i+1

(
Lgρ(n),n ◦ Zi − EµLgρ(n),n ◦ Zi

)(
Lgρ(n),n ◦ Zj − EµLgρ(n),n ◦ Zj

) ,

a, b ∈ N, a < b − 1, is bounded under the assumptions on the C-mixing coe�cients. For

n = 1 the boundedness of Lgρ(n),n , see the proof of Theorem 4.4.6, (4.43), yields

1

n1−r

∣∣∣∣∣
n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣ n=1
≤ 2CL,

i. e. the boundedness of the �rst element of the sequence.

Calculation (4.42) in the proof of Theorem 4.4.6 shows that the function Lgρ(n),n is Lipschitz

continuous with respect to dX×Y((x, y), (x′, y′)) = dX (x, x′) + |y− y′| as L is distance-based

and Lipschitz continuous. Again the same argumentation as in the proof of Theorem 4.4.6

and Lemma 4.4.8 ensures the existence of a constant M ′ > 0 such that |gρ(n),n|1 ≤ M ′

and therefore |Lgρ(n),n |1 ≤
˜̃M for a non-negative constant ˜̃M := max{|L|1, |L|1 · |gρ(n),n|1} =

max{|L|1, |L|1 ·M ′}, see (4.42). In particular this constant does not depend on n respectively

on gρ(n),n ∈ BL(X ) ∩ G. Further

‖Lgρ(n),n‖C := ‖Lgρ(n),n‖BL = ‖Lgρ(n),n‖∞ + |Lgρ(n),n |1 ≤ M̃, (4.65)

where

M̃ := S + |L|1M‖k‖∞ + ˜̃M > 0 (4.66)

is a constant, which again does not dependent on n. Also ‖Lgρ(n),n‖BL > 0, as |L|1 > 0 by

assumption. Hence Lgρ(n),n ∈ BL(X × Y) and

Lgρ(n),n
‖Lgρ(n),n‖BL

∈ BL1(X × Y). (4.67)

Moreover

∣∣∣∣∣∣∣∣ Lgρ(n),n
‖Lgρ(n),n‖BL

∣∣∣∣∣∣∣∣
1

≤ 1, as

∣∣∣∣∣∣∣∣ Lgρ(n),n
‖Lgρ(n),n‖BL

∣∣∣∣∣∣∣∣
∞
≤ 1.

Now Lgρ(n),n : X × Y → R is continuous by assumption and therefore measurable with

respect to the Borel σ-algebras on X × Y and R, hence Lgρ(n),n ◦ Zi is measurable with

respect to (Aii,B), i ∈ N, where Aii is the σ-algebra generated by Zi, i ∈ N, on Ω. In

particular each function Lgρ(n),n ◦ Zi is measurable with respect to (Ai1,B), i ∈ N, where
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Ai1 = σ(Z1, . . . , Zi). Hence, for all a, b ∈ N, a < b− 1,

Eµ

 b−1∑
i=a+1

b∑
j=i+1

(
Lgρ(n),n ◦ Zi − EµLgρ(n),n ◦ Zi

)(
Lgρ(n),n ◦ Zj − EµLgρ(n),n ◦ Zj

)
=

b−a−1∑
`=1

b−∑̀
i=a+1

Eµ(Lgρ(n),n ◦ Zi) · (Lgρ(n),n ◦ Zi+`)− Eµ(Lgρ(n),n ◦ Zi)Eµ(Lgρ(n),n ◦ Zi+`)

≤
b−a−1∑
`=1

(b− `− a) sup
i=a+1,...,b−`

∣∣∣Eµ(Lgρ(n),n ◦ Zi) · (Lgρ(n),n ◦ Zi+`)

−Eµ(Lgρ(n),n ◦ Zi)Eµ(Lgρ(n),n ◦ Zi+`)
∣∣∣

(2.12),(4.67)

≤
b−a−1∑
`=1

(b− `− a)(‖Lgρ(n),n‖BL)2ΦC(Z, `)

(4.65),(4.66)

≤
b−a−1∑
`=1

(b− `− a)M̃2ΦC(Z, `). (4.68)

Now, we can use the same argumentation as in the proof of Theorem 4.4.6 to show the

almost sure convergence of the terms in part I and II. For part I we have, see (4.49), for

every ε > 0 and s > 1,

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




Markov
≤ 1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Eµ(Lgρ(n),n ◦ Zi −
∫
Lgρ(n),n dP

i)2

+ 2

2s−1−1∑
i=1

2s−1∑
j=i+1

Eµ
(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)(
Lgρ(n),n ◦ Zj −

∫
Lgρ(n),n dP

j

)
(4.68)

≤ 1

ε2

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Var(Lgρ(n),n ◦ Zi) + 2

2s−1−1∑
`=1

(2s−1 − `)M̃2ΦC(Z, `)

 . (4.69)

For s = 1 we obtain

µ

({
ω ∈ Ω

∣∣∣∣ ∣∣∣∣(Lgρ(n),n ◦ Z1(ω)−
∫
Lgρ(n),n dP

i

)∣∣∣∣ > ε

})
≤ 1

ε2
Var(Lgρ(n),n ◦ Z1). (4.70)
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As (Zi)i∈N is C-mixing, i. e.
∞∑
`=1

ΦC(Z, `) ≤ CΦ <∞, (4.71)

and due to the uniform bound on the variance, see (4.44), we have:

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




(4.69),(4.70)

≤ 1

ε2
Var(Lgρ(n),n ◦ Zi)

+
1

ε2

∞∑
s>1

(
1

2(s−1)·(1−r)

)2
2s−1∑
i=1

Var(Lgρ(n),n ◦ Zi) + 2

2s−1−1∑
`=1

(2s−1 − `)M̃2ΦC(Z, `)


(4.44)(4.71)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

[(
1

2(s−1)·(1−r)

)2 [
2s−1C2

L + 2 · 2s−1M̃2CΦ

]]

≤
C2
L

ε2
+

1

ε2

∞∑
s=1

[
1

2(s−1)·(1−2r)

[
C2
L + 2M̃2CΦ

]]
<∞,

where the last sum again is a geometric series and therefore �nite for 0 < r < 1
2 . Hence the

almost sure convergence of the term in part I follows.

For part II, again Markov's inequality, see Ho�mann-Jørgensen (1994, Theorem 3.9), and

the maximal inequality by Ser�ing (1970) for the function h2s−1,2s−1 , see Lemma 4.4.7, are

used. For s = 1 we have, similar to (4.55),

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(2),2 ◦ Zi −

∫
Lgρ(2),2 dP

i

)2

≤ ‖Lgρ(2),2‖
2
∞

(4.44)
= C2

L <∞.

(4.72)

Then,

∞∑
s=1

µ

ω ∈ Ω

∣∣∣∣∣∣ 1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi(ω)−

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣ > ε




Markov
≤ 1

ε2

∞∑
s=1

(
1

2(s−1)·(1−r)

)2

Eµ

 max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)2
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Serfling,(4.72)

≤
C2
L

ε2
+

1

ε2

∞∑
s>1

(
1

2(s−1)·(1−r)

)2

(log2(2 · 2s−1))2

 2s∑
2s−1+1

Var(Lgρ(n),n ◦ Zi)

+ 2

2s−1∑
i=2s−1+1

2s∑
j=i+1

|Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)|


(4.54)

≤
C2
L

ε2
+
C

ε2

∞∑
s>1

(
1

2(s−1)·(1−r)

)2

(log2 2s−1)2

 2s∑
2s−1+1

Var(Lgρ(n),n ◦ Zi)

+ 2
2s−1∑

i=2s−1+1

2s∑
j=i+1

|Cov(Lgρ(n),n ◦ Zi, Lgρ(n),n ◦ Zj)|


(4.44),(4.68)

≤
C2
L

ε2
+
C

ε2

∞∑
s>1

(
1

2(s−1)·(1−r)

)2

(log2 2s−1)2

[
2s−1C2

L + 2s−1 · 2M̃
∞∑
`=1

ΦC(Z, `)

]

≤
C2
L

ε2
+
C

ε2

∞∑
s>1

(
log2 2s−1

2(s−1)·(1−r)

)2

2s−1
[
2M̃CΦ + C2

L

]
≤

C2
L

ε2
+
C ′

ε2

∞∑
s>1

(s− 1)2

2(s−1)·(1−2r)
< ∞,

for a constant C ′ := 2M̃CΦ + C2
L > 0. The convergence again follows via the ratio test,

similar to (4.56), as 0 < r < 1
2 .

Combining these results, the assertion follows:

1

n1−r

n∑
i=1

(
Lfn ◦ Zi −

∫
L(x, y, fn(x)) dP i(x, y)

)
(4.63)

≤ 2|L|1
n

+

∣∣∣∣∣ 1

n1−r

n∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣
(4.64)

≤ 2|L|1
n

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣
2s−1∑
i=1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
I −→0 almost surely

+
1

2(s−1)·(1−r)

∣∣∣∣∣∣ max
1≤q≤2s−1

2s−1+q∑
i=2s−1+1

(
Lgρ(n),n ◦ Zi −

∫
Lgρ(n),n dP

i

)∣∣∣∣∣∣︸ ︷︷ ︸
II −→0 almost surely

−→ 0 almost surely, n→∞. �
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Therefore, the SVM is consistent also for C-mixing stochastic processes.

Corollary 4.4.13 Let (Ω,A, µ) be a probability space and let (Z, dZ) = (X × Y, dX×Y) be

a separable, metric space, let (X , dX ) be compact and Y ⊂ R closed. Let L : X × Y × R →
[0,∞) be a distance-based loss function which is convex and Lipschitz continuous in the last

argument, continuous in (x, y) for all (x, y) ∈ X × Y and sup(x,y)∈X×Y L(x, y, 0) ≤ S, for

some constant S ∈ (0,∞), and |L|1 > 0. Moreover let H be the reproducing kernel Hilbert

space of an universal, bounded and continuous kernel k : X ×X → R. Let C be the space of

Lipschitz continuous functions Z → R and let (Zi)i∈N , Zi : Ω → Z, be an asymptotically

mean stationary and C-mixing stochastic process.

Let (λn)n∈N ⊂ (0,∞) such that λn → 0 and λnn
r → ∞, for some 0 < r < 1

2 , and let

the sequences (f 1
n

∑
P i,λn

)n∈N and (fPWn(ω),λn)n∈N be bounded for all ω ∈ Ω, i. e. there are

constants M,M̃ > 0 such that ‖f 1
n

∑
P i,λn

‖H ≤M and ‖fPWn(ω),λn‖H ≤ M̃ , n ∈ N.

Then:

RL,P (fPWnλn
)→ R∗L,P in probability, n→∞.

Again the proof of this corollary follows directly from Theorem 4.4.12 and 4.4.4 and the

assumption, that k is a universal kernel.
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Chapter 5

Conclusion and outlook

Throughout this thesis we generalize properties of support vector machines (SVMs), in

particular robustness and consistency, to data generating stochastic processes which are not

necessarily independent and identically distributed. In case of qualitative robustness our

results are more general and can be applied to a larger class of estimators than just SVMs.

To operate the dependence of the data generating stochastic process, we introduce strong

respectively weak Varadarajan processes in Chapter 3. These are stochastic processes which

provide almost sure convergence, respectively convergence in probability, of their empirical

measures PWn , n ∈ N, to a limiting distribution P with respect to the Prohorov metric

or with respect to the bounded Lipschitz metric. Examples are stochastic processes which

ful�l a law of large numbers for events, for example many Markov chains, many α-mixing

processes or some strongly stationary ergodic processes, as well as several weakly dependent

processes or some C-mixing processes. Both properties, statistical robustness as well as

consistency, rely on the empirical distribution of the data generating stochastic process,

which justi�es the above de�nition.

For the i.i.d. case a lot of theory on robustness properties, consistency, and learning rates

of SVMs is available, see e. g. Christmann and Steinwart (2004), Hable and Christmann

(2011) for robustness of SVMs and Koltchinskii and Beznosova (2005), Christmann and

Steinwart (2007), and Eberts and Steinwart (2011) for consistency and learning rates. Also

in the non-i.i.d. case, some e�ort has been done in order to �nd concentration inequalities

for di�erent kinds of dependence structures and hence to obtain consistency and learning

rates, see e. g. Xu and Chen (2008) and Pan and Xiao (2009).
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Concerning qualitative robustness, a lot of generalizations of the original de�nition in Ham-

pel (1968), which also apply for non-i.i.d. cases, have been proposed, but there is not so much

literature which deals with these cases. Papantoni-Kazakos and Gray (1979) and Bustos

(1980) for example introduce di�erent kinds of qualitative robustness. Some generaliza-

tions of Hampel's theorem for qualitative robustness can be found in Cox (1981), Boente

et al. (1982), and Zähle (2015). Qualitative robustness of the bootstrap approximation is

also introduced in the i.i.d. case, see Cuevas and Romo (1993), but, to my knowledge, not

generalized to non-i.i.d. observations.

In this thesis we generalize Hampel's theorem for qualitative robustness of estimators to

Varadarajan processes. That is, Theorem 3.1.3 shows that a sequence of continuous esti-

mators (Sn)n∈N which can be represented by a statistical operator S, which is continuous

in the limiting distribution P , is qualitatively robust for weak Varadarajan processes. Re-

garding support vector machines, we show that the sequence of estimators which maps the

given data set wn to the SVM fL,Pwn ,λn is qualitatively robust under common assumptions

on the kernel and the loss function, as long as the sequence of regularization parameters

(λn)n∈N ⊂ (0,∞) converges to λ0 6= 0, n → ∞, see Theorem 4.2.1. Compared to consis-

tency, where λn ↘ 0 is required, we can not achieve qualitative robustness in this case. This

is due to the problem, which is a so-called ill-posed problem. This implies that consistency

and qualitative robustness can not be achieved simultaneously, see Hable and Christmann

(2013). Therefore we regard qualitative robustness for the sequence of estimators where the

sequence (λn)n∈N ⊂ (0,∞) converges to a positive but small value.

Moreover we generalize qualitative robustness to bootstrap approximations in Theorem

3.4.2, 3.4.5, and 3.4.6. We have to strengthen the assumptions on the stochastic process

and the sample space Z and for the last two results the statistical operator is assumed to be

uniformly continuous on the space of probability measures on Z. The �rst theorem refers

to the case of independent, but not necessarily identically distributed random variables, the

last two results cover some α-mixing processes.

The second part of this thesis, i.e. Chapter 4, focusses on consistency of support vector

machines for data generating stochastic processes with di�erent dependence structures. We

show that SVMs are L-risk-consistent for such processes in Theorem 4.4.4, under common

assumptions on the loss function and on the kernel and under the assumptions that the

stochastic process is asymptotically mean stationary and ful�ls a convergence condition

similar to a law of large numbers. Moreover we assume the sequences of empirical estimates

fL,PWn(ω),λn , ω ∈ Ω, n ∈ N, as well as the sequence of theoretical estimates fL, 1
n

∑n
i=1 P

i,λn
,
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n ∈ N, to be uniformly bounded. Consistency is achieved for many C-mixing, α-mixing and

η-, λ-, ζ-, κ- and θ-weakly dependent stochastic processes.

Hence, statistical robustness and consistency can also be shown for non-i.i.d. observations,

which enlarges the applicability of SVMs to a broader class of stochastic processes. Of course

there are still several open questions concerning consistency and robustness of support vector

machines or more general of estimators for non-i.i.d. observations.

A �rst one is the generalization to other dependence structures, for example, some martin-

gales or other mixing structures might also be Varadarajan processes. In Steinwart et al.

(2009) it is shown that some martingales ful�l a law of large numbers for events and therefore

Theorem 3.2.1 shows that they are Varadarajan processes, but, from my point of view, the

assumption on the process is very strong. So the question in case of martingales is, weather

these assumptions can be considerably weakened. We have not been working with these

dependence structures as their properties are hard to transfer from the original stochastic

process (Zi)i∈N to the stochastic process (f ◦Zi)i∈N, if f is a continuous function for example.

Qualitative robustness of the bootstrap approximation for α-mixing processes is achieved if

the statistical operator is uniformly continuous. For independent not necessarily identically

distributed random variables this assumption was weakened, see Theorem 3.4.2. It would

also be of interest to weaken the assumption of uniform continuity for α-mixing processes,

one way might be to achieve a uniform continuity of the bootstrap approximation. Moreover

the assumptions on the input space to be totally bounded or compact are strong. These

assumptions should also be weakened if possible.

Our proof of consistency of support vector machines is based on two convergence prop-

erties of the stochastic process: the AMS property and the almost sure convergence of
1

n1−r
∑n

i=1

(
Lfn ◦ Zi −

∫
Lfn ◦ Zi dµ

)
to 0, n → ∞, 0 < r < 1

2 , where we do not assume

any convergence rates. Hence, we do not achieve learning rates. Trying to assume rates

of convergence for the AMS property and for the almost sure convergence could lead to a

learning rate. But probably the learning rates would be very bad compared to the i.i.d. case

and those which are achieved via other concentration inequalities, see for example Sun and

Wu (2009) and Hang and Steinwart (2015).

Moreover both parts, statistical robustness and consistency require the stochastic process to

be either asymptotically mean stationary or a Varadarajan process. These properties yield

convergence of the mixture distribution 1
n

∑n
i=1 P

i, respectively convergence of the empirical

distribution of the stochastic process to a limiting distribution. It would be interesting if
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these properties are in general implied by the dependence structure of the process, without

assuming stationarity or identical distributions.

Also some numerical simulations should be done in order to illustrate qualitative robustness

and consistency of SVMs for �nite n ∈ N, under di�erent dependence assumptions on the

data generating stochastic process.



Appendix A

On the following pages some de�nitions which are used in di�erent meanings in the literature

or might not be immediately remembered by the reader, can be found.

De�nition A 1 (strong equivalence of metrics, Sutherland (1975), p.39) Two met-

rics dX and d′X on a topological space are called strongly or Lipschitz equivalent if there exist

strictly positive constants m,M such that for all x, x′ ∈ X

md′X (x, x′) ≤ dX (x, x′) ≤Md′X (x, x′).

De�nition A 2 (strong stationarity, Krengel (1985) p.25) Let (Ω,A, P ) be a prob-

ability space. A stochastic process (Xi)i∈N on (Ω,A, P ) is called stationary or strongly

stationary, if the distribution of (Xs+i)i∈N does not depend on the shift s. That is

P (Xt1 ∈ A1, Xt2 ∈ A2, . . . , Xtn ∈ An) = P (Xt1+s ∈ A1, Xt2+s ∈ A2, . . . , Xtn+s ∈ An),

applies for all n, s ∈ N, for all A1, . . . .An ∈ A and all ti ∈ N, i ∈ N.

De�nition A 3 (uniform Glivenko-Cantelli class, Dudley et al. (1991) p.2) Let Z
be a separable metric space and P ∈M(Z). A class of functions F := {f : Z → R} is called
a uniform Glivenko-Cantelli class if

lim
n→∞

sup
P∈M(Z)

Pr

{
sup
m≥n
‖Pwm − P‖F > ε

}
= 0.

Where Pr denotes the outer probability and Pwn = 1
n

∑n
i=1 δzi an empirical measure of

i.i.d. random variables Zi ∼ P . ‖G‖F := sup {G(f), f ∈ F} , G : F → R, here ‖Pwm −
P‖F = supf∈F |

∫
f dPwm −

∫
f dP |.
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De�nition A 4 (Suslin space, Dudley (1989) p.229) A separable and measurable space

(Y, S) is called a Suslin space if there is a Polish space X and a Borel measurable map from

X to Y.

De�nition A 5 (image admissible Suslin, Dudley (1989) p.229) Let (Ω,A) be a mea-

surable space and F a set. Then a real valued function X : (f, ω) 7→ X(f, ω) is called image

admissible Suslin via (Y, S, T ) if (Y, S) is a Suslin space, T is a function from Y to F , and
(y, ω) 7→ X(T (y), ω) is jointly measurable on Y × Ω.

De�nition A 6 (tight, Billingsley (1999), p.8, p.59) A probability measure P on a met-

ric space (X , dX ) is tight if for each ε > 0 there exists a compact set K ⊂ X such that

P (K) > 1− ε.
A family P of probability measures is tight if for every ε > 0 there exists a compact set

K ⊂ X such that P (K) > 1− ε for every P ∈ P.

De�nition A 7 (totally bounded, Dudley (1989) p.35) Let (X , dX ) be a metric space.

The space (X , dX ) is called totally bounded if for every ε > 0 there is a �nite set Y ⊂ X
such that for every x ∈ X , there is some y ∈ Y with d(x, y) ≤ ε.

De�nition A 8 (subdi�erential, Denkowski et al. (2003) De�nition 5.3.20) Let X

be a Banach space and X∗ the topological dual, f : X → R∪ {∞} be a convex function, and

let x ∈ X with f(x) <∞. Then the subdi�erential ∂f of f at x is de�ned by

∂f(x) = {x∗ ∈ X , 〈x∗, y − x〉 ≤ f(y)− f(x) for all y ∈ X} .

De�nition A 9 (equicontinuous, Dudley (1989) p.39/40) A collection of functions

F from a topological space X into Y, where (Y, dY) is a metric space, is called equicon-

tinuous if for every x ∈ X there is a neighborhood U of x such that dY(f(x), f(x′)) ≤ ε for
all x′ ∈ U and all f ∈ F .
If (X , dX ) is a metric space and for every ε > 0 there is a δ > 0 such that dX (x, x′) ≤ δ

implies dY(f(x), f(x′)) ≤ ε for all x and x′ in X and all f ∈ F is called uniformly equicon-

tinuous.

Theorem A 10 (maximal inequality Ser�ing (1970)) Let ν ≥ 2. Let Pa,n be the joint

distribution of random variables (Za+1, . . . , Za+n), a, n ∈ N. Suppose that there exists a
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function h(Pa.n), such that

h(Pa,k) + h(Pa+k,n) ≤ h(Pa,k+n), a, k, n ∈ N, 1 ≤ k < k + n

and E
∣∣∑a+n

i=a+1 Zi
∣∣ν ≤ h

1
2
ν(Pa,n), a, n ∈ N, n ≥ 1.

Then,

E

(
max

1≤q≤n

∣∣∣∣∣
a+q∑
i=a+1

Zi

∣∣∣∣∣
)ν
≤ (log2(2n))νh

1
2
ν(Pa,n).

The space Dp[0, 1](see Bickel and Wichura (1971) p. 1662)

The following descriptions and de�nition of the space Dd(T ) can be found in Bickel and

Wichura (1971, Chapter 3, p. 1662):

Let T denote the unit cube [0, 1]d . Call a function X : T → R a step function if x is a

linear combination of functions of the form

t 7→ IE1×E2×...×Ep(t),

where each Ep is either a left-closed, right-open subinterval of [0, 1], or the singleton {1}
and where IE denotes the indicator of the set E. Let Dd be the uniform closure, in the

space of all bounded functions from T to R, of the vector subspace of simple functions. The

functions in Dd may be characterized by their continuity properties, as follows. If t ∈ T and

if, for 1 ≤ p ≤ d, Rp is one of the relations < and ≥, let QR1,...,Rd(t) denote the quadrant

{(s1, . . . , sd) ∈ T ; spRptp, 1 ≤ p ≤ d}

Then (see Neuhaus (1969), Straf (1969b)), page 29) x ∈ Dd i� for each t ∈ T
(a) xQ = lims→t, s∈Q x(s) exists for each of the 2d quadrants QR1,...,Rd(t), and

(b) x(t) = xQ≥,...,≥ .

In this sense, the functions of Dd are "continuous from above, with limits from below". One

can introduce a metric topology on Dd which for d = 1 coincides with Skorohod's well-

known and useful J1-topology (see Billingsley (1999), for example). For this, let Λ be the

group of all transformations λ : T → T of the form λ(t1, . . . , td) = (λ(t1), . . . , λ(td)), where

each λp : [0, 1]→ [0, 1] is continuous, strictly increasing, and �xes zero and one. De�ne the

"Skorohod" distance between x and y in Dd to be

d(x, y) = inf{min(‖x− yλ‖, ‖λ‖) : λ ∈ Λ},



138 APPENDIX A. APPENDIX

where ‖x − yλ‖ = sup{|x(t) − y(λ(t))|, t ∈ T} and ‖λ‖ = sup{|λ(t) − t|, t ∈ T}. With

respect to the corresponding metric topology (S-topology), Dd is separable and topologi-

cally complete, and the Borel σ-algebra Dd coincides with the σ-algebra generated by the

coordinate mappings (Billingsley (1995), Neuhaus (1969), Straf (1969b). Consequently, a

stochastic process (X(t))t∈T taking values in Dd is Dd-measurable.
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