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ZU S AMMEN FA S SUNG

Diese Arbeit untersucht die superkonforme N = 4 Yang-Mills-Theorie (N = 4 SYM) bei
schwacher Kopplung, mit dem Ziel eines tieferen Verständnisses von Größen der Theorie als
Zustände des integrablen Modells, von dem vermutet wird, dass es der planaren Theorie zu
Grunde zu liegt. Die Grundlage hierfür bilden moderne On-Shell-Methoden, insbesondere
für Formfaktoren und nicht-planare On-Shell-Diagramme. Die Untersuchung von Streuam-
plituden hat Verknüpfungen zwischen On-Shell-Methoden und der Yangschen Invarianz
der Theorie aufgezeigt; die am besten vom Blickwinkel der Integrabilität aus verstande-
nen Observablen sind hingegen die Zweipunktfunktionen zusammengesetzter Operatoren.
Formfaktoren interpolieren zwischen diesen Größen und sind deshalb ein vielversprechen-
der Untersuchungsgegenstand für eine einheitliche Beschreibung der integrablen Struktur
der Theorie.

Zu diesem Zweck leiten wir On-Shell-Diagramme für Formfaktoren des chiralen Energie-
Impuls-Tensor-Multipletts aus der Britto-Cachazo-Feng-Witten-Rekursion her, und untersu-
chen deren Eigenschaften. Sie erlauben die Herleitung eines Graßmannschen Integrals für
diese Formfaktoren, d.h. einer Darstellung als Konturintegral in Graßmann-Mannigfaltig-
keiten. Für Komponenten mit nächst-zu-maximaler Helizität (NMHV) bestimmen wir die
entsprechende Integrationskontur. Dies erlaubt es das Integral mit einer Twistor-String-
inspirierten Formulierung in Beziehung zu setzen. Mit Hilfe dieser On-Shell-Methoden
zeigen wir dass sowohl Formfaktoren des chiralen Energie-Impuls-Tensor-Multipletts, als
auch On-Shell-Funktionen mit Einfügungen beliebiger Operatoren Eigenzustände integ-
rabler Transfermatrizen sind. Die entsprechenden Eigenwertgleichungen verallgemeinern
die Yangsche Invarianz der On-Shell-Funktionen von Amplituden. Wir zeigen weiterhin
dass ein Teil der Yangschen Symmetrien trotz der Operatoreinfügung erhalten bleibt. Da
die On-Shell-Diagramme von Formfaktoren in einem gewissen Sinne nichtplanar sind, er-
weitern wir unsere Untersuchung auf allgemeine nichtplanare On-Shell-Funktionen. Wir
zeigen dass diese Funktionen, obwohl sie erst in höheren Ordnungen der 1/N -Entwick-
lung auftreten, einen Teil der Yangschen Symmetrien erhalten. Weitere, von Transfermatri-
zen generierte Symmetrien können ebenfalls hergeleitet werden, und zeigen insbesondere
dass Diagramme auf Zylindern als Intertwiner fungieren. Alle untersuchten Größen lassen
sich als Graßmannsche Integrale darstellen, deren Integranden, wie wir zeigen, selbst als
Zustände integabler Spinketten zu verstehen sind.

On-Shell-Diagramme basieren auf Größen der führenden Ordnung der Störungsrech-
nung. Als einen Schritt hin zur Berechnung der Eigenzustände des integrablen Modells zu
höheren Schleifenordnungen untersuchen wir zusammengesetzte Operatoren. Hier erlaubt
die Quanten-Spektral-Kurve (Quantum Spectral Curve, QSC) die nichtperturbative Berech-
nung ihres Spektrums, liefert jedoch keine Information zur Form der Zustände selbst. Die
QSC kann als algebraisches Q-System verstanden werden, welches in Operatorform durch
Baxter Q-Operatoren formulierbar sein sollte. Diese Formulierung enthielte die vollständi-
ge Information über die Eigenzustände. Um auf eine solche Operatorform der QSC hinzuar-
beiten untersuchen wir die Q-Operatoren nichtkompakter Superspinketten, insbesondere
jene welche N = 4 SYM zur führenden Schleifenordnung beschreibt. Wir entwickeln ein
effiziente Methode zur Berechnung der Matrixelemente der Q-Operatoren. Dies erlaubt es
das gesamte Q-System durch endliche Matrizen für jeden Anregungssektor zu realisieren,
und liefert die Grundlage für perturbative Rechnungungen mit der QSC in Operatorform.



S UMMARY

This thesis investigates weakly coupled N = 4 superconformal Yang-Mills theory (N = 4
SYM), aiming at a better understanding of on-shell and off-shell quantities as states of the
integrable model that is conjectured to underlie the planar limit of the theory. The basis
for this investigation are modern on-shell methods, in particular for form factors and non-
planar on-shell functions. The study of scattering amplitudes has revealed links between
on-shell methods and the Yangian symmetry of the model; the most well-understood ob-
jects from the viewpoint of integrability however are the two-point correlators of composite
operators. Form factor are quantities interpolating between off-shell correlation functions
and on-shell scattering amplitudes, and are therefore a promising subject of study for a
unified description of the integrable structure of the theory.

We use the Britto-Cachazo-Feng-Witten recursion relations to develop on-shell diagrams
for form factors of the chiral stress-tensor multiplet, and investigate their properties. The
diagrams then allow to derive a Graßmannian integral for these form factors, i.e. a repre-
sentation as a contour integral inside a Graßmannian. We show how to obtain the contour
of this integral for next-to-maximally-helicity-violating (NMHV) form factors, and use this
knowledge to relate the integral to a twistor string inspired formulation. Based on these
on-shell methods, we show that both form factors of the chiral stress-tensor multiplet as
well as on-shell functions with insertions of arbitrary operators are eigenstates of integrable
transfer matrices. The corresponding eigenvalue equations can be seen as symmetries gen-
eralizing the Yangian invariance of amplitude on-shell functions. In addition, a part of
these Yangian symmetries remain unbroken by the operator insertion. Motivated by the
fact that on-shell diagrams of form factors can be understood as being nonplanar, we con-
sider general nonplanar on-shell functions. Despite appearing in subleading contributions
of the 1/N -expansion, we prove that these quantities exhibit a partial Yangian invariance,
inherited from the integrability of the planar theory. We also derive symmetries generated
by transfer matrices, and show that on-shell diagrams on cylinders can be understood as in-
tertwiners. All these quantities can be written as Graßmannian integrals and interestingly,
their integrands can be regarded as states of integrable spin chains themselves.

On-shell diagrams involve quantities at lowest order in perturbation theory. To make
progress towards the calculation of the higher loop eigenstates of the integrable model, we
consider single trace operators, for which the Quantum Spectral Curve (QSC) exists as a
beautiful and concise way of determining the spectrum of these states non-perturbatively.
This formulation however carries no information about the form of the states. The QSC is
an algebraic Q-system, for which an operatorial form in terms of Baxter Q-operators should
exist, containing the complete information on the eigenstates in addition to the eigenval-
ues. To initiate the developments of an operatorial formulation of the QSC, we investigate
the Q-operators of non-compact super spin chains, in particular those of the integable spin
chain describingN =4 SYM at the one-loop level, and devise efficient methods to evaluate
their matrix elements. This allows to obtain the entire Q-system in terms of finite dimen-
sional matrices for each magnon sector. These can be used as input data for perturbative
calculations using the QSC in operatorial form.
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1
Introduction

Quantum field theories in general, and gauge theories in particular, have proven
to be the fundamental building blocks of our understanding of nature at mi-
croscopic scales. The Glashow-Weinberg-Salam model of the electroweak inter-
actions together with Quantum Chromodynamics describing the strong nuclear
force combine into the Standard Model of particle physics. This model success-
fully describes the dynamics of subatomic matter and after the discovery of the
Higgs particle1 has firmly been verified experimentally in its entirety, up to the 1 ATLAS Collaboration, Aad et al.,

“Observation of a new particle in
the search for the Standard Model
Higgs boson with the ATLAS detector
at the LHC”, 1207.7214; and CMS
Collaboration, Chatrchyan et al.,
“Observation of a new boson at a mass
of 125 GeV with the CMS experiment
at the LHC”, 1207.7235

TeV scale. Nevertheless, fundamental physics remains far from being fully un-
derstood. Some of its open problems will likely require new physics beyond the
Standard Model, such as the nature of dark matter, the hierarchy problem, and
the missing UV-complete description of quantum gravity. Other problems concern
the theoretical and formal depth of our knowledge: the dynamics of nonpertur-
bative and in particular strongly coupled gauge theories still remain poorly un-
derstood analytically; even perturbative calculations are extremely challenging
and have only been performed to very few orders for many processes.

Although some of its properties deviate from realistic gauge theories, the max-
imally supersymmetric Yang-Mills theory in four space-time dimensions (N =4
SYM) provides a unique opportunity to study a gauge theory in a far more com-
prehensive way. The large amount of symmetries of this theory facilitates many
practical calculations, often in unexpected ways. Via the AdS/CFT correspon-
dence, it does not only provide a nonperturbative definition of a string theory
and therefore for a quantum theory of gravity; it also opens a window into the
strong coupling dynamics of gauge theories. Most importantly, its conjectured
integrability in the planar limit allows to access many observables nonperturba-
tively, and promises to solve the theory exactly. It is therefore a powerful theo-
retical tool to advance our understanding of gauge theories in general.

1.1 Superconformal Yang-Mills theory and the
AdS/CFT correspondence

The action ofN =4 SYM can be obtained from the 10-dimensional Yang-Mills the-
ory withN =1 supersymmetry by dimensional reduction.2 The massless Kaluza-

2 Brink, Schwarz, Scherk, “Supersym-
metric Yang-Mills Theories”, Nucl.
Phys. B121 (1977) 77–92

http://xxx.lanl.gov/abs/1207.7214
http://xxx.lanl.gov/abs/1207.7235
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Klein modes of the fields in 10D give rise to anN =4 multiplet in 4D, consisting
of the gluons, four Weyl fermionsψαA and their conjugates, as well as six scalars
φAB = −φBA; here A = 1,2, 3,4 is an index of the SU(4) R-symmetry. All these
fields transform in the adjoint representation of the gauge group SU(N). The
theory is conformally invariant,3 to all orders of perturbation theory;4 it is the

3 Sohnius, West, “Conformal Invariance
in N = 4 Supersymmetric Yang-Mills
Theory”, Phys. Lett. B100 (1981) 245

4 Green, Schwarz, Brink, “N = 4
Yang-Mills and N=8 Supergravity as
Limits of String Theories”, Nucl. Phys.
B198 (1982) 474–492; Grisaru, Rocek,
Siegel, “Zero Three Loop beta Function
in N = 4 Superyang-Mills Theory”,
Phys. Rev. Lett. 45 (1980) 1063–1066;
Mandelstam, “Light Cone Superspace
and the Ultraviolet Finiteness of the
N = 4 Model”, Nucl. Phys. B213 (1983)
149–168; and Brink, Lindgren, Nilsson,
“The Ultraviolet Finiteness of the
N = 4 Yang-Mills Theory”, Phys. Lett.
B123 (1983) 323–328

four-dimensional quantum field theory with the maximal amount of space-time
(super) symmetry.5 We note that the theory is furthermore invariant under S-

5 Haag, Lopuszanski, Sohnius, “All Pos-
sible Generators of Supersymmetries
of the S Matrix”, Nucl. Phys. B88 (1975)
257

duality, i.e. SL(2,Z) transformations of the complexified coupling constant.
Most remarkably, N = 4 SYM appears to be quantum integrable, at least in

the planar limit, i.e. for the leading contribution of the expansion in 1
N , where

N − 1 is the rank of the gauge group. This property, which will be the focus of
this work, will be explained in more detail shortly. It provides one of the main
reasons to study N =4 SYM. But also from a purely field theoretic perspective,
the theory has many special properties. Hidden in the perturbative expansion in
terms of Feynman diagrams, the theory is indeed much simpler than it appears
at first sight, and this simplicity is made explicit by modern on-shell techniques.6

6 Arkani-Hamed, Cachazo, Kaplan,
“What is the Simplest Quantum Field
Theory?”, 0808.1446

Finally, the arguably most spectacular aspect of the theory is its role in the
AdS/CFT correspondence. In his seminal work7 building up on previous obser-

7 Maldacena, “The Large N limit of
superconformal �eld theories and
supergravity”, hep-th/9711200, [Adv.
Theor. Math. Phys.2,231(1998)]

vations on the scattering from black branes,8 Maldacena conjectured that string

8 Gubser, Klebanov, Peet, “Entropy
and temperature of black 3-branes”,
hep-th/9602135; Gubser, Kle-
banov, Tseytlin, “String theory
and classical absorption by three-
branes”, hep-th/9703040; Klebanov,
“World volume approach to ab-
sorption by nondilatonic branes”,
hep-th/9702076; and Gubser, Kle-
banov, “Absorption by branes and
Schwinger terms in the world volume
theory”, hep-th/9708005

theories on anti-de-Sitter (AdS) backgrounds are dual to conformal field the-
ories (CFTs) on the boundary of the AdS space. The details of this conjecture
were quickly elaborated,9 in particular the mapping between observables. The

9 Witten, “Anti-de Sitter space and
holography”, hep-th/9802150; and
Gubser, Klebanov, Polyakov, “Gauge
theory correlators from noncritical
string theory”, hep-th/9802109

basic relation which underlies the duality is the identification of the partition
functions of the string and the CFT model:

Zstring/SUGRA[φ|z=0 = φ0] = ZCFT[J = φ0] . (1.1)

For the string partition function, one imposes boundary values φ0 at the bound-
ary of AdS5 (spatial infinity at z = 0) for the fields φ, which are interpreted as
sources J for composite operators with the same charges in the conformal field
theory. This identification rests on the basic fact that the isometries of AdS spaces
can be identified with the group of conformal transformations in the CFT, lead-
ing to an identical classification of states. For an extensive review of AdS/CFT
dualities, the reader is referred to Aharony et al. (2000).10

10 Aharony, Gubser, Maldacena, Ooguri,
Oz, “Large N �eld theories, string
theory and gravity”, hep-th/9905111

While many instances of this duality have been explored, such as the AdS4

case with a supersymmetric Chern-Simons theory on the boundary,11 the most

11 Aharony, Bergman, Ja�eris, Mal-
dacena, “N = 6 superconformal
Chern-Simons-matter theories,
M2-branes and their gravity duals”,
0806.1218

prominent and most well-studied example is the duality between N = 4 SYM
and type IIb string theory on AdS5 × S5. This string theory can be formulated as
a symmetric coset sigma model,12 with target space PSU(2,2|4)

SO(4,1)×SO(5) , such that its

12 Metsaev, Tseytlin, “Type IIB super-
string action in AdS5×S5 background”,
hep-th/9805028

symmetries match with the superconformal group PSU(2,2|4) which governs
N =4 SYM on the CFT side of the correspondence.

Defining the ’t Hooft coupling for N = 4 SYM as λ = g2
YMN where N is the

number of colors, and the effective string tension as T = R2/(2πα′), with α′

the inverse string tension and R the identical radii of AdS5 and S5, the coupling
constants of the theories can be related by

λ= 4π2T 2 ,
1
N
=

gstr

4π2T 2
. (1.2)

http://xxx.lanl.gov/abs/0808.1446
http://xxx.lanl.gov/abs/hep-th/9711200
http://xxx.lanl.gov/abs/hep-th/9602135
http://xxx.lanl.gov/abs/hep-th/9703040
http://xxx.lanl.gov/abs/hep-th/9702076
http://xxx.lanl.gov/abs/hep-th/9708005
http://xxx.lanl.gov/abs/hep-th/9802150
http://xxx.lanl.gov/abs/hep-th/9802109
http://xxx.lanl.gov/abs/hep-th/9905111
http://xxx.lanl.gov/abs/0806.1218
http://xxx.lanl.gov/abs/hep-th/9805028
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Therefore the AdS/CFT correspondence provides a weak-strong duality between
the models: for small λ, we have the picture of a perturbative field theory, while
the worldsheet theory is strongly coupled; for large λ the field theory is strongly
coupled, while worldsheet theory reduces to the supergravity limit. Amazingly
this identification of coupling constants shows that the AdS/CFT correspondence
provides a realization of the idea that quantum gravity is can be defined holo-
graphically,13 via the older intuition that the topological large-N expansion re- 13 Susskind, “The World as a hologram”,

hep-th/9409089lates Yang-Mills theories to string theories.14

14 ’t Hooft, “A Planar Diagram Theory
for Strong Interactions”, Nucl. Phys.
B72 (1974)a 461; and ’t Hooft, “A
Two-Dimensional Model for Mesons”,
Nucl. Phys. B75 (1974)b 461–470

The fact that the duality relates opposite extremes of the coupling constants
has different implications: On one hand, it allows to non-perturbatively define
a string theory for the first time, and provides insights into the strongly coupled
dynamics of a non-abelian gauge theory; on the other hand, it renders checks or
even a proof of the correspondence very difficult. Apart from quantities which are
protected by supersymmetry or have large charges, gauge and string theory cal-
culations do not provide answers in overlapping regions of the parameter space.
Here the integrability of the AdS5/CFT4 system15 comes into play, allowing to 15 For a extensive but not quite up-

to-date review see Beisert et al.,
“Review of AdS/CFT Integrability: An
Overview”, 1012.3982.

calculate and match other quantities at intermediate values of the coupling. Al-
though we will only be concerned with integrability of the field theory side of
the AdS/CFT correspondence, we note that the superstring on AdS5 × S5 is also
(classically) integrable.16 This is a general property of symmetric coset sigma 16 Bena, Polchinski, Roiban, “Hidden

symmetries of the AdS5 × S5 super-
string”, hep-th/0305116

models, for a compact review see Magro (2012).17

17 Magro, “Review of AdS/CFT Integrabil-
ity, Chapter II.3: Sigma Model, Gauge
Fixing”, 1012.39881.2 Integrability in N =4 SYM

The study of quantum integrable system has a long history, dating back to Bethe’s
seminal work18 proposing an elegant solution for the quantum mechanical prob- 18 Bethe, “Zur Theorie der Metalle”,

Zeitschrift für Physik 71 (1931), no. 3,
205–226

lem of a periodic one-dimensional magnet, i.e. a closed chain of spins with
nearest-neighbor exchange interactions. His method is now known as the Co-
ordinate Bethe Ansatz, and understood to belong to a whole family of related
techniques and concepts which allow to define and solve the special models ex-
hibiting quantum integrability. Works in this area range from the Quantum In-
verse Scattering method of the Leningrad school19 to the mathematical theory 19 Faddeev, “Instructive history of the

quantum inverse scattering method”,
Acta Applicandae Mathematicae 39
(1995) 69–84, 10.1007/BF00994626

of quantum groups,20 to experimental realizations of these models.21

20 Drinfeld, “Quantum groups”, J. Sov.
Math. 41 (1988) 898–915

21 Batchelor, Foerster, “Yang-Baxter
integrable models in experiments:
from condensed matter to ultracold
atoms”, 1510.05810

Despite being a rare property especially for realistic models, the stringent
mathematical structure of quantum integrability allowed to construct a large
class of integrable models. These models are always two-dimensional. This in-
cludes 1+1-dimensional discrete quantum systems such as spin chains, which
are closely related to statistical lattice models,22 but also two-dimensional field

22 Baxter, “Exactly solved models in
statistical mechanics”, 1982,

theories,see Dorey (1996)23 for an introduction. Quantum integrability allows

23 Dorey, “Exact S matrices”,
hep-th/9810026

to solve these models exactly, i.e. to compute the scattering matrices of excita-
tions, the eigenstates of the Hamiltonian and their energies, as well as the tower
of higher conserved charges which is the hallmark of integrability.

Despite the fact that the ’t Hooft limit and the description by a string sigma
model via the AdS/CFT correspondence provide N =4 SYM with a two-dimen-

http://xxx.lanl.gov/abs/hep-th/9409089
http://xxx.lanl.gov/abs/1012.3982
http://xxx.lanl.gov/abs/hep-th/0305116
http://xxx.lanl.gov/abs/1012.3988
http://xxx.lanl.gov/abs/1510.05810
http://xxx.lanl.gov/abs/hep-th/9810026
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sional structure, the appearance of integrability in the planar limit is truly remark-
able. Since the theory is conformal, the state-operator map allows to describe the
Hilbert space via the gauge invariant composite operators of the theory. In the
planar limit, only single trace operators play a role, as interactions between dif-
ferent traces are 1

N -suppressed. These operators are color traces over products of
the fundamental fields of the theory, evaluated at the same point in space-time.
The two-point correlation functions of these operators are fixed by conformal
symmetry, up to a scalar value, the anomalous dimension. The operators acquire
these anomalous dimensions via quantum corrections: they need to be renor-
malized, and the leading poles in the corresponding Z-factors give rise to the
anomalous scaling behavior. Importantly, operators with the same charges under
the symmetry generators will typically mix in this process, giving the Z-factors
a matrix structure. This defines the dilatation operator, the diagonalization of
which is called the spectral problem. Since the anomalous dimensions together
with the structure constants in the Operator Product Expansion (OPE) in prin-
ciple determine the theory completely, their calculation is – or maybe was – an
important problem, and the first one to be tackled by integrability.

Lipatov first conjectured planarN =4 SYM to be a quantum integrable model
in 1997.24 Concrete evidence was found a few years later when Minahan and

24 Lipatov, “Evolution equations in QCD”,
in “Perspectives in hadronic physics.
Proceedings, Conference, Trieste, Italy,
May 12-16, 1997”, pp. 413–427, 1997

Zarembo discovered that the one-loop dilatation operator, acting on states in the
so6 subsector composed of single trace operators involving only the six scalars of
the theory, is in fact identical to the Hamiltonian of an integrable spin chain with
so6 symmetry.25 Here the “spins” on the chain are so6 vectors, and their space

25 Minahan, Zarembo, “The Bethe
ansatz for N = 4 Super Yang-Mills”,
hep-th/0212208; we also refer
the reader to earlier work on the
integrability of the renormalization of
certain operators in QCD, see Braun,
Derkachov, Manashov, “Integrability
of three particle evolution equations
in QCD”, hep-ph/9805225.

is spanned by the different scalar fields, or rather their flavor structure. Only
nearest-neighbor interactions can occur, since other Feynman diagrams are 1

N -
suppressed. Due to the cyclicity of the color trace, the spin chain obeys periodic
boundary conditions, and only the cyclic states with zero total lattice momentum
correspond to operators in the field theory. This result was shown to generalize
to the full theory, where the dilatation operator can be understood as the Hamil-
tonian of a non-compact psu2,2|4 spin chain.26 This system can be diagonalized

26 Beisert, “The complete one loop
dilatation operator of N = 4 Super
Yang-Mills theory”, hep-th/0307015;
Beisert, Staudacher, “The N = 4
SYM integrable super spin chain”,
hep-th/0307042; and Beisert, Krist-
jansen, Staudacher, “The Dilatation
operator of conformal N = 4 Super
Yang-Mills theory”, hep-th/0303060

by the Bethe Ansatz, such that the one-loop anomalous dimensions can conve-
niently be obtained by solving the Bethe equations.27

27 Beisert, Staudacher, “The N = 4
SYM integrable super spin chain”,
hep-th/0307042; we note that
the problem of solving the Bethe
equations e�ciently has recently
been addressed in Marboe, Volin,
“The full spectrum of AdS5/CFT4 I:
Representation theory and one-loop
Q-system”, 1701.03704.

Compared to the models studied in the literature on integrability, the N =4
SYM spin chain is characterized by some unusual features, which first appear at
the two-loop level. In particular, the Hamiltonian, i.e. the dilatation operator, is
not invariant under the symmetry algebra, but rather a generator of it. It further-
more receives perturbative quantum corrections which therefore also affect the
other generators. From the field theoretical structure of the perturbative expan-
sion it follows that these corrections contain long-range interactions, and even
interactions changing the number of sites on the spin chain, such that the length
ceases to be a good quantum number. While length-changing structures do ap-
pear in a variety of integrable spin chain models,28 the situation is much more

28 Fendley, Schoutens, Nienhuis, “Lattice
fermion models with supersymmetry”,
cond-mat/0307338; Hagendorf, “Spin
chains with dynamical lattice super-
symmetry”, 1207.0357; Meidinger,
Mitev, “Dynamic Lattice Super-
symmetry in gl(n|m) Spin Chains”,
1312.7021; Hagendorf, Liénardy,
“Open spin chains with dynamic
lattice supersymmetry”, 1612.02951;
and Matsui, “Spinon excitations in
the spin-1 XXZ chain and hidden
supersymmetry”, 1607.04317

involved for N =4 SYM. A considerable amount of work on the integrability of
N = 4 SYM concerned possible Bethe Ansatz descriptions for these long-range
and length-changing interactions.29

29 Beisert, Dippel, Staudacher, “A
Novel long range spin chain and
planar N = 4 super Yang-Mills”,
hep-th/0405001; Bargheer, Beis-
ert, Loebbert, “Boosting Nearest-
Neighbour to Long-Range Inte-
grable Spin Chains”, 0807.5081;
Beisert, Erkal, “Yangian symmetry
of long-range gl(N) integrable spin
chains”, 0711.4813; and Beisert,
“The su(2|3) dynamic spin chain”,
hep-th/0310252

http://xxx.lanl.gov/abs/hep-th/0212208
http://xxx.lanl.gov/abs/hep-ph/9805225
http://xxx.lanl.gov/abs/hep-th/0307015
http://xxx.lanl.gov/abs/hep-th/0307042
http://xxx.lanl.gov/abs/hep-th/0303060
http://xxx.lanl.gov/abs/hep-th/0307042
http://xxx.lanl.gov/abs/1701.03704
http://xxx.lanl.gov/abs/cond-mat/0307338
http://xxx.lanl.gov/abs/1207.0357
http://xxx.lanl.gov/abs/1312.7021
http://xxx.lanl.gov/abs/1612.02951
http://xxx.lanl.gov/abs/1607.04317
http://xxx.lanl.gov/abs/hep-th/0405001
http://xxx.lanl.gov/abs/0807.5081
http://xxx.lanl.gov/abs/0711.4813
http://xxx.lanl.gov/abs/hep-th/0310252
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To circumvent these difficulties, Staudacher proposed to apply an “Asymptotic
Bethe Ansatz”, i.e. to study the S-matrix of magnons scattering on spin chains of
infinite length.30 Based on the available data for subsectors, this allowed to con-

30 Staudacher, “The Factorized S-matrix
of CFT/AdS”, hep-th/0412188

jecture all loop asymptotic Bethe equations.31 Bootstrapping the exact S-matrix

31 Beisert, Staudacher, “Long-range
psu(2,2|4) Bethe Ansätze for gauge
theory and strings”, hep-th/0504190

from symmetries, and determining the dressing phase, then allowed to derive
these equations.32 Despite neglecting finite size effects, the Asymptotic Bethe

32 Beisert, “The SU(2|2) dynamic S-
matrix”, hep-th/0511082; Beisert,
Eden, Staudacher, “Transcendentality
and Crossing”, hep-th/0610251;
Janik, “The AdS5 × S5 superstring
worldsheet S-matrix and crossing
symmetry”, hep-th/0603038;
and Volin, “Minimal solution of
the AdS/CFT crossing equation”,
0904.4929

Ansatz not only formed the basis for later non-approximate methods, but also
allowed to derive exact results. The most noteworthy example is the BES equa-
tion.33 It determines the cusp anomalous dimension, i.e. the divergence of a

33 Beisert, Eden, Staudacher, “Tran-
scendentality and Crossing”,
hep-th/0610251; and Eden, Stau-
dacher, “Integrability and transcen-
dentality”, hep-th/0603157

cusped Wilson line or equivalently the soft-collinear IR behavior of scattering
amplitudes to all loop orders.

Finite size effects can perturbatively be incorporated via Lüscher corrections.34

34 Lüscher, “Volume Dependence of
the Energy Spectrum in Massive
Quantum Field Theories. 1. Stable
Particle States”, Commun. Math. Phys.
104 (1986) 177; and Janik, “Review of
AdS/CFT Integrability, Chapter III.5:
Lüscher Corrections”, 1012.3994

The Thermodynamic Bethe Ansatz35 (TBA) provides a way of systematically re-

35 Zamolodchikov, “Thermodynamic
Bethe Ansatz in Relativistic Models.
Scaling Three State Potts and Lee-
Yang Models”, Nucl. Phys. B342 (1990)
695–720; and Bajnok, “Review of
AdS/CFT Integrability, Chapter III.6:
Thermodynamic Bethe Ansatz”,
1012.3995

summing these corrections and has been used extensively in the study of N =4
SYM. The TBA equations are notoriously difficult to solve, or even to define for
all states. Building on a large corpus of work dedicated to the search for more
compact representations of the TBA, the Quantum Spectral Curve36 (QSC) was

36 Gromov, Kazakov, Leurent, Volin,
“Quantum Spectral Curve for Planar
N = Super-Yang-Mills Theory”,
1305.1939; and Gromov, Kazakov,
Leurent, Volin, “Quantum spectral
curve for arbitrary state/operator in
AdS5/CFT4”, 1405.4857

derived recently. The QSC poses the spectral problem as a Riemann-Hilbert prob-
lem for a small number of functions. It combines the system of Q-functions on an
algebraic level with a specification of the analytic structure of these functions via
their asymptotics – encoding the charges of the states – and their singularities.
The core equations algebraically relate the branches of different functions. The
QSC has proved to be an efficient method for obtaining operator dimensions
at very high loop orders, or non-perturbatively via numerical solutions, and is
generally considered to be the final solution of the spectral problem.

Although the progress of using the integrability of planar N = 4 SYM was
most spectacular for the calculation of anomalous dimensions or equivalently the
two-point functions of single trace operators, many other quantities have been
investigated successfully from the integrability perspective. One important class
of such quantities are three-point functions of these operators, which are com-
pletely determined by the anomalous dimensions and the structure constants
of the theory. Together with the two-point functions, they thus contain all the
data needed to employ the OPE for the calculation of any correlator. Based on
early work calculating the lowest order contributions to these structure constants
as overlaps of spin chain states,37 recently a framework was proposed for for-

37 Escobedo, Gromov, Sever, Vieira,
“Tailoring Three-Point Functions and
Integrability”, 1012.2475

mulating these overlaps non-perturbatively in the coupling.38 It decomposed

38 Basso, Komatsu, Vieira, “Structure
Constants and Integrable Bootstrap
in Planar N = 4 SYM Theory”,
1505.06745the structure constants into hexagon form factors (worldsheet form factors of

twist operators), which can be bootstrapped using integrability. These ideas are
currently being considered as tools to obtain also higher-point correlation func-
tions directly, circumventing the OPE.39 Another very interesting class of observ-

39 Fleury, Komatsu, “Hexagonalization of
Correlation Functions”, 1611.05577;
Basso, Coronado, Komatsu, Lam,
Vieira, Zhong, “Asymptotic Four Point
Functions”, 1701.04462; and Eden,
Sfondrini, “Tessellating cushions:
four-point functions in N = 4 SYM”,
1611.05436

ables, especially from the viewpoint of the AdS/CFT correspondence, are smooth
Maldacena-Wilson loops, which are likely the quantities making the hidden sym-
metries of the theory as manifest as possible.40 These symmetries, generated by

40 Müller, Münkler, Plefka, Pollok,
Zarembo, “Yangian Symmetry of
smooth Wilson Loops in N = 4 super
Yang-Mills Theory”, 1309.1676;
and Beisert, Müller, Plefka, Vergu,
“Integrability of smooth Wilson loops
in N = 4 superspace”, 1509.05403

the Yangian of the superconformal algebra, play a distinct role for a particularly
important quantity, the S-matrix of the theory.

http://xxx.lanl.gov/abs/hep-th/0412188
http://xxx.lanl.gov/abs/hep-th/0504190
http://xxx.lanl.gov/abs/hep-th/0511082
http://xxx.lanl.gov/abs/hep-th/0610251
http://xxx.lanl.gov/abs/hep-th/0603038
http://xxx.lanl.gov/abs/0904.4929
http://xxx.lanl.gov/abs/hep-th/0610251
http://xxx.lanl.gov/abs/hep-th/0603157
http://xxx.lanl.gov/abs/1012.3994
http://xxx.lanl.gov/abs/1012.3995
http://xxx.lanl.gov/abs/1305.1939
http://xxx.lanl.gov/abs/1405.4857
http://xxx.lanl.gov/abs/1012.2475
http://xxx.lanl.gov/abs/1505.06745
http://xxx.lanl.gov/abs/1611.05577
http://xxx.lanl.gov/abs/1701.04462
http://xxx.lanl.gov/abs/1611.05436
http://xxx.lanl.gov/abs/1309.1676
http://xxx.lanl.gov/abs/1509.05403
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1.3 Scattering amplitudes: on-shell methods and
integrability

Scattering amplitudes are perhaps the most basic quantities in quantum field
theories, and the last decades have seen a rapid advance of the methods to
calculate them. Many novel techniques have been developed that far surpass
standard perturbative calculations based on Feynman diagrams in terms of ef-
ficiency. They follow a general pattern, avoiding Feynman diagrams and more
generally all quantities which are not gauge invariant; they exploit the analytic
structure of the S-matrix, and make use of the tools of complex analysis. Note-
worthy examples of these developments are the generalized unitarity method41

41 Bern, Dixon, Dunbar, Kosower,
“One loop n point gauge theory
amplitudes, unitarity and collinear
limits”, hep-ph/9403226; and Bern,
Dixon, Dunbar, Kosower, “Fusing
gauge theory tree amplitudes into
loop amplitudes”, hep-ph/9409265

and the Britto-Cachazo-Feng-Witten (BCFW) recursion relations.42 These and

42 Britto, Cachazo, Feng, “New recursion
relations for tree amplitudes of
gluons”, hep-th/0412308; and Britto,
Cachazo, Feng, Witten, “Direct proof
of tree-level recursion relation in
Yang-Mills theory”, hep-th/0501052

other methods have also led to novel and far more compact representations of
the amplitudes, often making use of better variables to express them, such as in
the spinor-helicity and twistor space formalisms. In this respect, it was Witten’s
proposal of formulating gauge theory amplitudes as correlators of a topological
string model on twistor space43 which resulted in an ongoing stream of works

43 Witten, “Perturbative gauge theory
as a string theory in twistor space”,
hep-th/0312171

deriving novel representations of amplitudes: from the connected prescription44

44 Roiban, Spradlin, Volovich, “On the
tree level S matrix of Yang-Mills
theory”, hep-th/0403190

and its generalization to all space-time dimensions and many theories in the
CHY formulation based on the scattering equations45 to a general resurrection

45 Cachazo, He, Yuan, “Scattering
equations and Kawai-Lewellen-Tye
orthogonality”, 1306.6575

of twistor space ideas. These included a geometric understanding of certain am-
plitudes in twistor space as volumes of polytopes,46 as well as formulations of

46 Hodges, “Eliminating spurious poles
from gauge-theoretic amplitudes”,
0905.1473

gauge theories directly in twistor space.47 It also paved way for the discovery of

47 Adamo, “Twistor actions for gauge
theory and gravity”, PhD thesis, Cam-
bridge U., DAMTP, 2013, 1308.2820,

on-shell diagrams and Graßmannian integral representations of amplitudes,48

48 Arkani-Hamed, Cachazo, Cheung,
Kaplan, “A Duality For The S Matrix”,
0907.5418; and Arkani-Hamed, Bour-
jaily, Cachazo, Goncharov, Postnikov,
Trnka, “Scattering Amplitudes and the
Positive Grassmannian”, Cambridge
University Press, 2016, 1212.5605

which will play a key role in the following, and subsequently to the amplituhe-
dron proposal, defining amplitudes in purely geometric terms.49 It is important

49 Arkani-Hamed, Trnka, “The Am-
plituhedron”, 1312.2007; and
Arkani-Hamed, Trnka, “Into the
Amplituhedron”, 1312.7878

to note that while many of these techniques are available for various theories,
N = 4 SYM often played a crucial role in their development. Moreover, it are
these techniques which make the hidden simplicity of the theory manifest.

The integrability of planarN =4 SYM also governs the scattering amplitudes
of the theory. In contrast to the spectral problem, where the starting point for
the investigation of integrability was the observation that the spectral problem
admits an integrable spin chain description, for amplitudes the most important
manifestation of integrability comes in the form of hidden symmetries. As a con-
sequence of the Ward identities following from the superconformal invariance of
the action, tree-level scattering amplitudes in N =4 SYM are also superconfor-
mally invariant. The duality between scattering amplitudes and lightlike polyg-
onal Wilson loops50 was a strong motivation to consider scattering amplitudes

50 Brandhuber, Heslop, Travaglini,
“MHV amplitudes in N = 4 super
Yang-Mills and Wilson loops”,
0707.1153; Drummond, Henn,
Korchemsky, Sokatchev, “On planar
gluon amplitudes/Wilson loops
duality”, 0709.2368; and Alday,
Roiban, “Scattering Amplitudes,
Wilson Loops and the String/Gauge
Theory Correspondence”, 0807.1889

formulated in terms of dual momenta, i.e. the momenta naturally associated to
the dual graphs, and to the Wilson loop picture. It was found that tree-level am-
plitudes are indeed covariant under the action of the superconformal algebra
in this dual space.51 The Yangian of psu2,2|4 emerges as the closure of this dual

51 Drummond, Henn, Korchemsky,
Sokatchev, “Dual superconformal
symmetry of scattering amplitudes
in N = 4 super-Yang-Mills theory”,
0807.1095; and Brandhuber, Heslop,
Travaglini, “A Note on dual supercon-
formal symmetry of the N = 4 super
Yang-Mills S-matrix”, 0807.4097

superconformal symmetry and the ordinary one.52 This infinite-dimensional sym-52 Drummond, Henn, Plefka, “Yangian
symmetry of scattering amplitudes
in N = 4 super Yang-Mills theory”,
0902.2987

metry algebra extends the ordinary Lie symmetry by a tower of higher levels of
non-local generators and is the hallmark symmetry of integrable models. While

http://xxx.lanl.gov/abs/hep-ph/9403226
http://xxx.lanl.gov/abs/hep-ph/9409265
http://xxx.lanl.gov/abs/hep-th/0412308
http://xxx.lanl.gov/abs/hep-th/0501052
http://xxx.lanl.gov/abs/hep-th/0312171
http://xxx.lanl.gov/abs/hep-th/0403190
http://xxx.lanl.gov/abs/1306.6575
http://xxx.lanl.gov/abs/0905.1473
http://xxx.lanl.gov/abs/1308.2820
http://xxx.lanl.gov/abs/0907.5418
http://xxx.lanl.gov/abs/1212.5605
http://xxx.lanl.gov/abs/1312.2007
http://xxx.lanl.gov/abs/1312.7878
http://xxx.lanl.gov/abs/0707.1153
http://xxx.lanl.gov/abs/0709.2368
http://xxx.lanl.gov/abs/0807.1889
http://xxx.lanl.gov/abs/0807.1095
http://xxx.lanl.gov/abs/0807.4097
http://xxx.lanl.gov/abs/0902.2987
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it is typically not a symmetry of finite size spin chains, it nevertheless underlies
the entire construction via the Quantum Inverse Scattering method. The Yangian
will play an important role also in this work, and will be discussed in more detail
later. For a general overview of Yangian symmetry in N = 4 SYM, we refer the
reader to Beisert (2011);53 for a recent investigation of this symmetry on the

53 Beisert, “On Yangian Symmetry in
Planar N = 4 SYM”, 1004.5423

level of the action of N =4 SYM see Beisert et al. (2017).54

54 Beisert, Garus, Rosso, “Yangian
Symmetry and Integrability of Planar
N = 4 Supersymmetric Yang-Mills
Theory”, 1701.09162

Importantly, the formulation of scattering processes which makes Yangian
symmetry most easily accessible are on-shell diagrams and the Graßmannian
integral.55 Each on-shell diagram contributing to the amplitude via the BCFW

55 Drummond, Ferro, “Yangians, Grass-
mannians and T-duality”, 1001.3348;
and Drummond, Ferro, “The Yangian
origin of the Grassmannian integral”,
1002.4622

recursion relations is itself a Yangian invariant. There is also on-going work con-
sidering the role of the Yangian in the amplituhedron picture, see Ferro et al.
(2016).56 In the spectral problem, the symmetry generators of N = 4 SYM re- 56 Ferro, Łukowski, Orta, Parisi, “Yangian

Symmetry for the Tree Amplituhe-
dron”, 1612.04378ceive quantum corrections, since the dilatation operator has continuous eigen-

values which depend on the coupling constant, and the closure of the algebra
propagates these corrections to the other generators. Something analogous hap-
pens for scattering amplitudes, where the source of these anomalies are the IR
divergences which are inherently part of loop corrections to the amplitudes.57

57 Bargheer, Beisert, Loebbert, “Exact Su-
perconformal and Yangian Symmetry
of Scattering Amplitudes”, 1104.0700

This structure is believed to determine scattering amplitudes to all loop order.58
58 Caron-Huot, He, “Jumpstarting the
All-Loop S-Matrix of Planar N = 4
Super Yang-Mills”, 1112.1060

The Yangian can be formulated in terms of monodromy matrices which play a
key role in the Quantum Inverse Scattering method. These matrices combine all
Yangian generators into a single operator depending on a spectral parameter. In
the context of scattering amplitudes inN =4 SYM, this RTT formulation allowed
to give tree-level amplitudes an interpretation as special spin chains states, invari-
ant under the action of the monodromy matrix.59 This opened up the possibility

59 Chicherin, Derkachov, Kirschner,
“Yang-Baxter operators and scattering
amplitudes in N = 4 super-Yang-
Mills theory”, 1309.5748; Frassek,
Kanning, Ko, Staudacher, “Bethe
Ansatz for Yangian Invariants: To-
wards Super Yang-Mills Scattering
Amplitudes”, 1312.1693; Ferro,
Łukowski, Meneghelli, Plefka, Stau-
dacher, “Spectral Parameters for
Scattering Amplitudes in N = 4
Super Yang-Mills Theory”, 1308.3494;
Broedel, de Leeuw, Rosso, “A dictio-
nary between R-operators, on-shell
graphs and Yangian algebras”,
1403.3670; and Kanning, Łukowski,
Staudacher, “A shortcut to general
tree-level scattering amplitudes
in N = 4 SYM via integrability”,
1403.3382

to investigate the invariants using Bethe Ansatz techniques, but also allowed to
construct them via special R-matrices. Remarkably, these R-matrices turned out
to be deformations of BCFW-bridges, which can be used to build up the on-shell
diagrams appearing from the BCFW recursion relations. This means that each
such on-shell diagram is Yangian invariant on its own, and connects on-shell
methods with the integrability and spin chain perspective. This construction nat-
urally introduces deformations, related to inhomogeneities of the spin chain sites.
These deformations can be interpreted as spectral parameters, such that the de-
formed amplitudes can themselves be given an interpretation as R-matrices, or
generalizations of such operators.

Independently of these developments investigating scattering amplitudes from
the spin chain point of view, a framework for computing amplitudes – or rather
polygonal Wilson loops – was proposed in Basso et al. (2013, 2015a,b).60 This

60 Basso, Sever, Vieira, “Spacetime
and Flux Tube S-Matrices at Finite
Coupling for N = 4 Supersymmetric
Yang-Mills Theory”, 1303.1396;
Basso, Caetano, Cordova, Sever, Vieira,
“OPE for all Helicity Amplitudes”,
1412.1132; and Basso, Caetano,
Cordova, Sever, Vieira, “OPE for all
Helicity Amplitudes II. Form Factors
and Data Analysis”, 1508.02987

approach computes the Wilson loop by considering the propagation of excita-
tions on the flux tube between the sides of the Wilson loop, regarded as probe
quarks. The pieces of this propagation are glued together using the Wilson loop
OPE developed in Alday et al. (2011),61 while the flux tube excitations and their 61 Alday, Gaiotto, Maldacena, Sever,

Vieira, “An Operator Product Expan-
sion for Polygonal null Wilson Loops”,
1006.2788

scattering are bootstrapped assuming integrability, as excitations on top of the
GKP string. The excitations are described by a generalization of the BES result
for the cusp anomaly.62 This formulation is inherently non-perturbative in the

62 Basso, “Exciting the GKP string at any
coupling”, 1010.5237coupling constant, but perturbative in the number of excitations.

http://xxx.lanl.gov/abs/1004.5423
http://xxx.lanl.gov/abs/1701.09162
http://xxx.lanl.gov/abs/1001.3348
http://xxx.lanl.gov/abs/1002.4622
http://xxx.lanl.gov/abs/1612.04378
http://xxx.lanl.gov/abs/1104.0700
http://xxx.lanl.gov/abs/1112.1060
http://xxx.lanl.gov/abs/1309.5748
http://xxx.lanl.gov/abs/1312.1693
http://xxx.lanl.gov/abs/1308.3494
http://xxx.lanl.gov/abs/1403.3670
http://xxx.lanl.gov/abs/1403.3382
http://xxx.lanl.gov/abs/1303.1396
http://xxx.lanl.gov/abs/1412.1132
http://xxx.lanl.gov/abs/1508.02987
http://xxx.lanl.gov/abs/1006.2788
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1.4 Overview

These developments show that modern on-shell methods are not only useful
tools for the calculation of scattering amplitudes – in the case ofN =4 SYM they
provide representations directly linking these quantities to integrability. Indeed,
work in this area does not only indicate that integrability determines the the-
ory outside of the spectral problem, but also shows that other quantities can be
accommodated as states in the integrable model at weak coupling. Even more
importantly, on-shell methods seem to provide the best language to make integra-
bility – which is obscured in the perturbative expansion via Feynman diagrams
– manifest, as for example in the case of the Yangian invariance of on-shell di-
agrams. For correlators of composite operators and other off-shell objects, such
methods have not yet been developed to the same extent as for amplitudes. On
the other hand, this is the area where the structure of integrability has been un-
covered in most detail, with the Quantum Spectral Curve providing a completely
non-perturbative description of the eigenfunctions of the Q-operators and trans-
fer matrices which determine the spectrum of these states.

The aim of this thesis is to extend these developments in two directions, and
to bring both into closer proximity. We first develop on-shell methods, including
on-shell diagrams and Graßmannian integrals, for form factors. These quantities
describe the overlap of on-shell states with the states created by composite op-
erators. They therefore provide a bridge between fully on-shell amplitudes and
off-shell correlation functions. We use these on-shell representations to derive
identities for form factor on-shell functions which can be considered as novel,
integrability-related symmetries, but also allow to give these quantities an inter-
pretation as spin chain states, bridging the gap between amplitudes and compos-
ite operators from this viewpoint. The form factor diagrams can be understood
as inherently nonplanar; this motivates the study of general nonplanar on-shell
diagrams, appearing as leading singularities in loop calculations. We remarkably
find that they are still partially Yangian invariant. This provides a hint that inte-
grability leaves its traces beyond the planar limit. The identities we find also al-
low to think of some of the functions as intertwiners of the integrable spin chain.
We finally consider the Baxter Q-operators of non-compact super spin chains, and
develop methods to calculate them explicitly. In particular this allows to consider
the one-loop spectral problem in N = 4 SYM, and is an important first step to
lift the Quantum Spectral Curve to the operatorial level, and to determine the
eigenstates of the model at higher loop order, where the spin chain picture starts
to break down.

This thesis consists of three parts, each beginning with a chapter reviewing the
necessary background, followed by chapters containing the original contribu-
tions of the author.63,64 The detailed structure of this work is as follows:65

63 These chapters aim at answering
one speci�c question each, and are
written to be as self-contained as
possible. We therefore included also
slightly longer calculations in the main
text, instead of putting them into
appendices.

64 As the reader certainly has already
noticed, we put (abbreviated) refer-
ences into sidenotes (in lighter font
compared to actual “footnotes”) wher-
ever they are cited. This is meant for
the ease of reading and to prevent an-
noying page-skipping. Note that this
implies that some references appear
at multiple places. A complete, alpha-
betically sorted list of references with
the full bibliographical information
can be found on page 199.

65 In the following, we indicate the
original paper by the author each
chapter is based on via its arXiv
number, cf. the list of publications
preceding this chapter. Some text of
these publications has been used in
the respective chapters.

In Part I, we develop several on-shell formulations for tree-level form factors of
the chiral stress-tensor multiplet in N =4 SYM; in analogy to the case of ampli-
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tudes, these representations will be a good starting point for the investigation of
form factors from the viewpoint of integrability.

Chapter 2 presents background on scattering amplitudes and some of the on-
shell techniques for calculating them, with a focus on on-shell diagrams and their
Graßmannian integral representations.

Chapter 3 [1506.08192] We show that form factors of the chiral stress-tensor
multiplet can be represented by simple generalizations of on-shell diagrams with
the minimal form factor as an additional vertex. We discuss some of the proper-
ties of these diagrams, present a way to directly relate them to amplitude dia-
grams, and show that in contrast to amplitudes, multiple “top-cell” diagrams are
needed to encode a full tree-level form factor.

Chapter 4 [1506.08192] Based on the on-shell diagrams we then derive a
Graßmannian integral representation for form factors. We first discuss how to
accommodate the off-shell kinematics of the operator insertion in the Graßmann-
ian picture, and then show how to obtain the Graßmannian integral by gluing
together the on-shell part of the diagram with the minimal form factor. This al-
lows to find top-dimensional forms on the Graßmannian, leading to integrals in
spinor-helicity as well as twistor and momentum twistor variables. Some exam-
ple form factors are then calculated based on this representation.

Chapter 5 [1707.00443] As its amplitude counterpart, the Graßmannian in-
tegral for form factors does not include a description of the “contour”, i.e. the
combination of residues which combine into the tree-level form factor. In this
chapter we derive this contour for NMHV form factors, based on the BCFW re-
cursion relations and the resulting geometry in the Graßmannian.

Chapter 6 [1707.00443] For amplitudes, there exists an alternative represen-
tation in terms of Graßmannian integrals which can directly be derived from
Witten’s twistor string. This formulation includes a precise description of the
contour. Recently a similar formulation was proposed for form factors. In this
chapter we first write this formula for the NMHV case in Graßmannian form,
and show that it has a recursive structure identical to its amplitude counterpart.
This provides an interpretation of the recursion as adding particles via inverse
soft factors. We then discuss the relation of this Graßmannian formulation to the
integral based on on-shell diagrams.

Part II is dedicated to the investigation of the integrability properties of on-shell
functions, beyond planar amplitude functions. We discover new symmetries for
these functions, and discuss their interpretation as spin chain states.

Chapter 7 reviews quantum integrability in general and RTT realization of the
Yangian in particular. We define monodromy and transfer matrices in the repre-
sentation needed for on-shell functions, using spinor-helicity variables. We also
review inhomogeneous versions of these constructions, leading to deformations
of physical scattering amplitudes which recently received a lot of interest. The
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spin chain monodromies allow to define Yangian invariants elegantly as their
eigenvectors. We then show how the R-operator construction for on-shell func-
tions can be used to prove their Yangian invariance.

Chapter 8 [1506.08192] We then show that a similar construction in terms of
R-operators can be used for form factor on-shell functions. In contrast to ampli-
tudes, these are not Yangian invariants. The integrability-based formulation how-
ever allows to show that they are nevertheless eigenstates of integrable transfer
matrices; this can be viewed as a manifestation of hidden symmetries, but also
allows to interpret these functions as well-defined spin chain states. We discuss
that these statements are not particular to form factor on-shell functions of the
chiral stress-tensor multiplet, but apply to arbitrary operator insertions.

Chapter 9 [1603.00088] Another exciting generalization of the on-shell for-
malism are nonplanar on-shell diagrams, appearing as leading singularities in
higher-loop calculations of 1

N -suppressed contributions to scattering amplitudes.
We show that one can sensibly define the action of the Yangian on the corre-
sponding on-shell functions. Remarkably, Yangian invariance turns out to be only
partially broken. We derive the remaining hidden symmetries, and in particular
present an exact intertwining relation for diagrams on cylinders, which shows
that these diagrams can be regarded as members of the family of commuting
operators of the integrable model related to the Yangian.

Chapter 10 [unpublished] Using the strategies developed for nonplanar on-
shell diagrams, we return to form factor on-shell functions and prove that – apart
from being transfer matrix eigenstates – they also retain invariance under the
higher levels of the Yangian.

Chapter 11 [unpublished] presents the observation that Graßmannian inte-
grals with arbitrary integrand, such as those appearing for form factors and non-
planar on-shell diagrams, provide a map between certain states of non-compact
glk spin chains (with k the MHV degree), and the spin chain of N = 4 SYM.
Concretely we show that it maps the transfer matrices of these models into each
other. We describe the resulting spin chain models and show that in the MHV
case, the model is a spin chain which previously appeared in the context of high
energy scattering in QCD.

In the final Part III of this thesis, we consider states of theN =4 SYM spin chain
corresponding to single trace operators. On the eigenvalue level, these states are
described non-perturbatively by the Quantum Spectral Curve, which is based on
a Q-system. With the aim of lifting the QSC to the operatorial level, and to find
the eigenstates of the integrable model behind N =4 SYM at higher loop order,
we define the operatorial Q-system of non-compact super spin chains, such as
N =4 SYM at one-loop. We focus on the calculation of explicit matrix represen-
tatives of the Q-operators in individual magnon blocks. For non-compact spin
chains, these calculations are rather involved. Still they are a necessary prereq-
uisite to employ perturbative solution methods of the QSC.
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Chapter 12 We first review composite single trace operators in N = 4 SYM
and their oscillator representation. The determination of the anomalous scal-
ing dimensions of these operators constitutes the spectral problem, to which the
Quantum Spectral Curve provides a concise solution. This formulation, which we
briefly describe in this chapter, is based on a system of Q-functions. These in turn
are known to be the eigenvalues of Baxter Q-operators. We give a short introduc-
tion to the monodromy, or oscillator construction of these operators, which will
form the basis of the following work.

Chapter 13 [1706.02320] We then give a derivation of the Lax operators used
in this construction, for rational super spin chains with arbitrary representations
of Jordan-Schwinger type at the sites of the spin chain. These are then used to
construct the Q-operators. For the case of representations of the non-compact
algebras up,q|r+s, the Lax operators, in the form in which they can be derived
from a Yang-Baxter equation, contain infinite sums. These make it difficult to
use them in explicit calculations, and result in Q-operators which are given in
terms of special functions with poles in the spectral parameter. To showcase these
properties, we discuss spin −s Heisenberg models in detail. We then give an
overview over general non-compact Q-systems, highlighting which Q-operators
are non-rational functions of the spectral parameter.

Chapter 14 [1706.02320] To make an application to N = 4 SYM possible, it
is necessary to find an efficient method to explicitly evaluate the Q-system, in
particular the non-rational Q-operators. To this end, we derive a compact integral
representation for the Lax-operators of the lowest level, from which the matrix
elements of the operators can easily be determined. It also provides a way of
writing the non-rational operators in terms of finite sums. We then show how
to evaluate the supertraces over the auxiliary Fock spaces to obtain the matrix
elements of the lowest level Q-operators. For each magnon block, this yields
these operators in the form of explicit finite-dimensional matrices. Finally we
show how the entire Q-system can be determined from this data, solving the
functional relations in an efficient way.

Chapter 15 [1706.02320 & unpublished] In this chapter we show how to spe-
cialize these more generally applicable methods to theN =4 SYM spin chain and
consider some single trace operators to discuss a variety of phenomena which
are important for the QSC. As an example of how the method can be applied to
obtain the one-loop Q-functions of an entire class of states, we calculate them
for the BMN vacuum of arbitrary length in the fully twisted theory. Due to the
twists, these Q-functions are already rather involved. We furthermore discuss a
magnon block with excitations. This allows to showcase the mixing of states, the
emergence of local charges and the untwisting limit. We also discuss the param-
etrization of the twists which has an impact on the interpretation of the states as
single trace operators in the non-commutative field theory. This is an important
ingredient for the twisted QSC.

We summarize our findings in chapter 16, and discuss open questions.
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2
On-shell methods for
scattering amplitudes

Scattering amplitudes are perhaps the most important quantities of any QFT in
particle physics, and directly relevant for experimental measurements. Neverthe-
less, they are notoriously hard to calculate using the standard techniques of per-
turbative QFT. Since the 1980s, a new set of techniques has gradually emerged,
that involve no Feynman diagrams. These methods use only on-shell quantities,
and in particular avoid non-gauge-invariant quantities even in intermediate steps
of the calculation. A key role is played by the analytic structure of the S-matrix.

In this chapter we want to discuss some of these developments. We first intro-
duce useful variables for the description of the scattering of massless particles,
and discuss the on-shell superfield ofN =4 SYM. After some general remarks on
the structure of scattering amplitudes, we describe some techniques that allow to
calculate them efficiently, in particular the Britto-Cachazo-Feng-Witten (BCFW)
recursion relations and the generalized unitarity method. We then come to the
topics that are most important for the following chapters: The representation of
scattering amplitudes via on-shell diagrams, and the Graßmannian integral.

Of course this chapter can only give a brief outline of this field of research.
We aim at providing an overview which introduces the necessary notation, tech-
niques and formulas to compare the results for form factors in the next chapters
with similar results for amplitudes. Fortunately, in-depth reviews are available on
this subject; apart from the references in this chapter, we refer the reader to the
excellent books Elvang and Huang (2013, 2015)1 and Henn and Plefka (2014).2 1 Elvang, Huang, “Scattering Ampli-

tudes”, 1308.1697; and Elvang,
Huang, “Scattering Amplitudes in
Gauge Theory and Gravity”, Cam-
bridge University Press, 2015,

2 Henn, Plefka, “Scattering Amplitudes
in Gauge Theories”, Lect. Notes Phys.
883 (2014) pp.1–195

2.1 Kinematics & on-shell super�elds

Scattering amplitudes in Yang-Mills theories are parametrized in terms of the
kinematics of the particles participating in the scattering process. For n particles
there are n massless four-momenta pµ = (p0, pi) = (E, pi) obeying momentum
conservation,

p1 + p2 + · · ·+ pn−1 + pn = 0 , p2 = ηµνpµpν = 0 , (2.1)

http://xxx.lanl.gov/abs/1308.1697
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with the Minkowski metric ηµν = diag(+1,−1,−1,−1). Furthermore, each of
the particles carries a specific helicity which needs to be specified. For any Yang-
Mills theory there are at least two gluon states with helicity ±1; if the theory is
supersymmetric, there are further fermion and possibly scalar states with helicity
± 1

2 and zero, respectively.
A substantial part of the recent progress in the study of scattering amplitudes

is based on some reparametrizations of this kinematical data, which automati-
cally satisfy either momentum conservation or the masslessness condition, and
on which the symmetries of scattering amplitudes act in simpler way compared
to momentum space. Therefore these choices of variables can simplify practical
calculations and sometimes open up avenues for entirely new formal develop-
ments. This section introduces spinor-helicity and supertwistor variables. They
are fundamental to the on-shell techniques for form factors we develop in the fol-
lowing chapters as well as for the investigation of their integrability properties.

spinor-helicity variables

Any four-momentum can equivalently be written as a two-by-two hermitian ma-
trix, by defining

pαα̇ = pµσαα̇µ =

�

p0 + p3 p1 − ip2

p1 + ip2 p0 − p3

�

(2.2)

where σµ are the Pauli matrices

σ0 =

�

1 0

0 1

�

, σ1 =

�

0 1

1 0

�

, σ2 =

�

0 −i

i 0

�

, σ3 =

�

1 0

0 −1

�

. (2.3)

The Lorentz group acts by conjugation as SL(2,C) on the momenta in the form
(2.2). The invariant p2 = m2 is given by the determinant in this representation,

det(pαα̇) = (p0)2 − (p1)2 − (p2)2 − (p3)2 = m2 . (2.4)

For the massless particles of Yang-Mills theory, this implies that the determinant
of the matrix pαα̇ vanishes; the matrix is thus of rank one and can be written as
an outer product

pαα̇ = λαλ̃α̇ . (2.5)

The variables λα and λ̃α̇ are called spinor-helicity variables and are two compo-
nent spinors; note that they are commuting, i.e. they have bosonic statistics.33 To our knowledge, the �rst paper to

describe the use of these variables
for the calculation of scattering
amplitudes is Kleiss, Stirling, “Spinor
techniques for calculating pp̄ →
W±/Z0 + jets”, Nuclear Physics B 262
(1985), no. 2, 235 – 262.

They automatically implement the masslessness condition of on-shell momenta,
and allow to write scattering amplitudes in vastly simpler forms.

The decomposition of the momentum implies that scalings of the spinors of
the form

(λ, λ̃) 7→ (tλ, t−1λ̃) =⇒ p 7→ p (2.6)

leaves the momentum they represent unchanged. This invariance is called lit-
tle group scaling. For real momenta in Minkowski signature, the spinor-helicity
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variables satisfy

λ= ±(λ̃)∗ (2.7)

where the plus sign is for positive and the minus sign for negative energy states.
This constrains the little group scalings (2.6) to be pure phases.

For each type of spinor, we can use the SU(2)-invariant ε tensor,

εαβ = εα̇β̇ =

�

0 1

−1 0

�

, (2.8)

to construct Lorentz invariants. These are typically denoted by angle and square
brackets

〈i j〉= εαβλαi λ
β
j = λ

1
i λ

2
j −λ

2
i λ

1
j , [i j] = εαβ λ̃

α
i λ̃
β
j = λ̃

1
i λ̃

2
j − λ̃

2
i λ̃

1
j , (2.9)

and are antisymmetric

〈 ji〉= −〈i j〉 , [ ji] = − [i j] , 〈ii〉= [ii] = 0 . (2.10)

We can express the usual Mandelstam invariants using the spinor-helicity vari-
ables as

si j = (pi + p j)
2 = 〈i j〉 [ ji] . (2.11)

A useful formula for many practical calculations is the Schouten identity

〈i j〉〈kl〉= 〈ik〉〈 jl〉+ 〈il〉〈k j〉 (2.12)

which expresses the fact that any three two-vectors are linearly dependent.
The polarization vectors needed in Feynman diagram calculations can also

be represented via the spinors (2.5). We refer the reader to the introductory
literature on modern methods for scattering amplitudes such as Dixon (2014,
1996)4 for further information on this topic, since the direct methods we present 4 Dixon, “A brief introduction to modern

amplitude methods”, 1310.5353; and
Dixon, “Calculating scattering ampli-
tudes e�ciently”, hep-ph/9601359

in the following calculate the amplitude directly, without reference to Feynman
diagrams.

On-shell super�elds

All on-shell states of the component fields of N =4 SYM can be combined into
a chiral superfield.5 Introducing Graßmann variables η̃A, with A = 1, · · · , 4, we 5 Nair, “A Current Algebra for Some

Gauge Theory Amplitudes”, Phys. Lett.
B214 (1988) 215–218

define the superfield by

Ψ = g+ + η̃Aψ̄A+
1
2!
η̃Aη̃BφAB +

1
3!
εABC Dη̃

Aη̃Bη̃CψD + η̃1η̃2η̃3η̃4 g− (2.13)

Here g± are the gluon states with helicity ±1, ψ̄A and ψD are the four plus four
gluinos with helicity ±1/2, and φAB = −φBA are the six scalars. The variables
η̃ can be thought of as carrying helicity 1/2; therefore we can define superam-
plitudes of the superfield with homogeneous helicity. The complete set of kine-
matical data for these amplitudes are then the super spinor-helicity variables
{λαi , λ̃α̇i , η̃A

i }, and the η̃ variables can be used to pick out component amplitudes.

http://xxx.lanl.gov/abs/1310.5353
http://xxx.lanl.gov/abs/hep-ph/9601359
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Twistors

It is important to note that the superconformal algebra psu2,2|4 is not realized
linearly in the spinor-helicity variables (or momentum space, for that matter).
For example, the generators of translations are realized by λαλ̃α̇, i.e. by multi-
plication with the momentum, while the special conformal transformations are
second order differential operators ∂ 2/∂ λα∂ λ̃α̇.

In (+ +−−) signature,6 the spinor-helicity variables λ and λ̃ would be real6 Note that at tree-level, the reality
conditions on the spinors do not
in�uence the analytic expressions
for the amplitudes, and therefore the
choice of signature does not matter. If
explicit numerical values are desired,
one of course needs to analytically
continue to Minkowski signature.

and independent, with real little group scaling. Therefore, in this signature it is
possible to perform a Fourier transformation on the λ variables alone,

• →
∫

d2λ j exp(−iµ̃αj λ jα) • . (2.14)

This results in the superconformal algebra acting linearly as sl4|4 on the super-
twistor variables

Wi = (µ̃i , λ̃i , η̃i) . (2.15)

The observation that scattering amplitudes can be obtained from a string theory
in twistor space7 led to renewed interest in the use of twistor variables, and to7 Witten, “Perturbative gauge theory

as a string theory in twistor space”,
hep-th/0312171

entirely new representations of scattering amplitudes. Twistors were originally
introduced in Penrose (1967),8 for reviews see Penrose (1999); Huggett and Tod

8 Penrose, “Twistor algebra”, J. Math.
Phys. 8 (1967) 345

(1994).9 The supersymmetric extensions was first considered in Ferber (1978).10

9 Penrose, “The Central programme of
twistor theory”, Chaos Solitons Fractals
10 (1999) 581–611; and Huggett, Tod,
“An Introduction to Twistor Theory”,
1994

10 Ferber, “Supertwistors and Conformal
Supersymmetry”, Nucl. Phys. B132
(1978) 55–64

Region momenta

Another important set of variables are the so-called region, or dual momenta yi .
They can be defined, together with dual supermomenta ϑi , by

pi = λiλ̃i = yi − yi+1 ,

qi = λiη̃i = ϑi − ϑi+1 .
(2.16)

Note that this implies that

yi − y j = pi + · · ·+ p j−1 . (2.17)

As we will see, the color structure of (super) Yang-Mills scattering amplitudes
provides an ordering of the momenta pi at tree-level and for planar loop inte-
grands, which fixes the dual momenta (2.16) up to translation invariance. Note
that the term “dual momenta” stems from the fact that they are the natural vari-
ables associated to the dual Feynman graphs.

p1

p2
p3

p4

p5p6

y1

y2

y3

y4

y5

y6

Figure 2.1: The dual momenta yi can
be understood as the vertices of a
lightlike polygon, with edges given by
the null momenta pi .

Provided that we impose the periodicity condition yn+1 = y1, the definition
(2.16) of the dual momenta automatically implies momentum conservation for
the original momenta pi . Due to this cyclicity, one can think of the momenta as
describing the (light-like) edges of a polygon in y-space, the vertices of which
are given by the yi , see figure 2.1. Although the dual momenta still have mass-
dimension one, they can be interpreted as points in a configuration space. This is

http://xxx.lanl.gov/abs/hep-th/0312171
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the kinematic basis of the duality between scattering amplitudes and light-like
polygonal Wilson loops.11 11 Brandhuber, Heslop, Travaglini, “MHV

amplitudes in N = 4 super Yang-
Mills and Wilson loops”, 0707.1153;
Drummond, Henn, Korchemsky,
Sokatchev, “On planar gluon am-
plitudes/Wilson loops duality”,
0709.2368; Drummond, Korchemsky,
Sokatchev, “Conformal properties of
four-gluon planar amplitudes and
Wilson loops”, 0707.0243; Alday,
Roiban, “Scattering Amplitudes,
Wilson Loops and the String/Gauge
Theory Correspondence”, 0807.1889;
and Berkovits, Maldacena, “Fermionic
T-Duality, Dual Superconformal Sym-
metry, and the Amplitude/Wilson Loop
Connection”, 0807.3196

The observation that tree-level scattering amplitudes are covariant under su-
perconformal transformations in the dual y-space (the dual superconformal sym-
metry12), was the starting point for the investigation of scattering amplitudes

12 Drummond, Henn, Korchemsky,
Sokatchev, “Dual superconformal
symmetry of scattering amplitudes
in N = 4 super-Yang-Mills theory”,
0807.1095; and Brandhuber, Heslop,
Travaglini, “A Note on dual supercon-
formal symmetry of the N = 4 super
Yang-Mills S-matrix”, 0807.4097

from the viewpoint of integrability, which we will discuss in chapter 7.

Momentum twistors

Starting from the dual (super) momenta, we can define another set of twistor
variables, the momentum twistors,13 which we define to be

13 Hodges, “Eliminating spurious poles
from gauge-theoretic amplitudes”,
0905.1473

Zi = (λi ,µi ,ηi) (2.18)

where λi is the holomorphic spinor for momentum pi , and µi , ηi are given via
the incidence relations

µi = λi yi = λi yi+1 , ηi = λiϑi = λiϑi+1 . (2.19)

This definition maps the point (yi ,ϑi) in super Minkowski space to a line in
momentum twistor space CP3|4, given by (2.18) and (2.19) and parametrized
by λi ∈ CP1. The incidence relations can be inverted in order to express λ̃ and
η̃ in terms of the components of the supertwistors,

λ̃i =
〈i+1 i〉µi−1 + 〈i i−1〉µi+1 + 〈i−1 i+1〉µi

〈i−1 i〉〈i i+1〉
,

η̃i =
〈i+1 i〉ηi−1 + 〈i i−1〉ηi+1 + 〈i−1 i+1〉ηi

〈i−1 i〉〈i i+1〉
.

(2.20)

Just as for the twistors defined above, there is a sl4|4 acting linear on these
variables. For momentum twistors, this sl4|4 however does not correspond to the
superconformal, but to the dual superconformal algebra. Defining the bosonic
part of the supertwistors (2.18) as Zi = (λi ,µi), we see that the bosonic invari-
ants of this action are given by

〈i j k l〉= det(Zi Z j ZkZl) = εABC DZA
i ZB

j ZC
k Z D

l . (2.21)

These four-bracket can be related to the kinematic invariants via

(yi − y j)
2 = (pi + · · ·+ p j−1)

2 =
〈i−1, i, j−1, j〉
〈i−1 i〉〈 j−1 j〉

. (2.22)

This equation furthermore shows that since (yi − yi+1)2 = p2
i = 0, the lines

(i − 1, i) and (i, i + 1) intersect.

2.2 Scattering amplitudes

Scattering amplitudes are the transition amplitudes of free asymptotic states in
the infinite past to those in the infinite future. On can use crossing symmetry to

http://xxx.lanl.gov/abs/0707.1153
http://xxx.lanl.gov/abs/0709.2368
http://xxx.lanl.gov/abs/0707.0243
http://xxx.lanl.gov/abs/0807.1889
http://xxx.lanl.gov/abs/0807.3196
http://xxx.lanl.gov/abs/0807.1095
http://xxx.lanl.gov/abs/0807.4097
http://xxx.lanl.gov/abs/0905.1473
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put all n particles into the final state, defining the amplitude as

An = out〈1, · · · , n|0〉in = 〈1, · · · , n|S|0〉 , (2.23)

where in the second equality we introduced the scattering operator, or S-matrix,
which is the time evolution operator from t = −∞ to t = +∞. The states are
composed out of n on-shell fields defined in (2.13).

Using standard field theory techniques, scattering amplitudes can be calcu-
lated using the momentum-space Feynman diagrams of the corresponding cor-
relation function, with external legs amputated by the LSZ reduction.14 These14 Lehmann, Symanzik, Zimmermann,

“Zur Formulierung quantisierter
Feldtheorien”, Il Nuovo Cimento
(1955-1965) 1 (1955), no. 1, 205–225

calculations typically involve an extremely large number of diagrams which are
not individually gauge invariant. In the following, we will mostly consider the
tree-level contributions to scattering amplitudes.

Note that the amplitudes as we defined them are really super amplitudes that
contain all amplitudes of the component fields when expanded in the Graßmann
variables. In components, the generators measuring the helicity of individual
particles are given by hi = −

1
2 (λ

α
i
∂
∂ λαi
− λ̃α̇i

∂

∂ λ̃α̇i
); in the supersymmetric setting,

we can define the superhelicity by

hi = −
1
2

�

λαi
∂

∂ λαi
− λ̃α̇i

∂

∂ λ̃α̇i
− η̃A

i
∂

∂ η̃A
i

�

. (2.24)

Comparing with (2.13), we see that the on-shell superfield carries superhelic-
ity +1, such that the full amplitude is homogeneous:

hAn =
n
∑

i=1

hi An =
n
∑

i=1

An = nAn . (2.25)

In N =4 SYM all fields are in the adjoint representation of the gauge group
which we take to be SU(N). If we call the generators of this representation T a,
with commutation relations [T a, T b] = i

p
2 f abc T c , then each three-point ver-

tex contributes a factor of the structure constant f abc and each four-point ver-
tex a factor f abe f cde when calculating a Feynman diagram. The structure con-
stants can be eliminated in favor of traces of the generators using i

p
2 f abc =

Tr(T aT bT c)−Tr(T aT c T b). One can show that after performing further color al-
gebra, tree-level amplitudes have a color structure without products of traces,

An = gn−2
∑

σ∈Sn/Zn

Tr(T aσ(1) · · · T aσ(n)) An(σ(1), · · · ,σ(n)) , (2.26)

where g =
p
λ

4π . The traces differ only by permutations of the labels, and therefore
the same is true for the coefficients An, which are called partial, or color-ordered
amplitudes. The external legs of these quantities carry a fixed cyclic ordering
inherited from the color trace. It is generally simpler to calculate An(1, · · · , n)
which is a singlet in color space, and recover the full amplitude via (2.26).

The partial superamplitudes can furthermore be expanded into terms with a
homogeneous degree in the Graßmann variables,

An = An,2 + An,3 + · · ·+ An,n−3 + An,n−2 , (2.27)
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where An,k∝ η̃4k are R-symmetry singlets. The term An,2 is called the MHV am-
plitude, because it contains the amplitude with two negative and n− 2 positive
helicity gluons as a component. Using crossing symmetry, the two negative helic-
ity gluons can be interpreted as two incoming gluons with positive helicity, and
then the total helicity changes by the maximal amount from the incoming to the
outgoing state. Following this terminology, An,3 is called next-to-MHV or NMHV
and in general An,k is an Nk−2MHV amplitude. The term with the highest power
of Graßmann variables, An,n−2, is referred to as MHV.

The Parke-Taylor amplitude

The MHV amplitudes are considerably simpler than those with a higher MHV
degree.15 It is sometimes useful to factor this part of the amplitude out of the 15 Of course, by parity, the same can

be said starting from the MHV
amplitudes.

expansion (2.27) and to write the amplitude as

An = An,2(1+Pn,3 + · · ·+Pn,n−2) . (2.28)

A particularly simple expression exists for these MHV amplitudes with an
arbitrary number of legs. This so-called Parke-Taylor formula states that

An,2(1, . . . , n) =
δ4(P)δ8(Q)

〈12〉〈23〉 · · · 〈n−1 n〉〈n1〉
. (2.29)

Here P and Q are the total momentum and super momentum,16 16 Note that a fermionic delta function,
such as δ8(Q), is identical to its
argument: δ8(Q) =

∏

α,A QαA.
Pαα̇ =

n
∑

i=1

λαi λ̃
α̇
i , QαA =

n
∑

i=1

λαi η̃
A
i . (2.30)

Parke and Taylor17 originally found the absolute value squared of this am- 17 Parke, Taylor, “An Amplitude for n
Gluon Scattering”, Phys. Rev. Lett. 56
(1986) 2459

plitude (in the non-supersymmetric version) in terms of four momenta. Using
(2.11) and (2.7) one can see that this square has the same structure as (2.29),
with the denominator given in terms of the products pi ·pi+1. spinor-helicity vari-
ables thus allowed “to take the square root” of this amplitude squared, resulting
in the compact formula (2.29), which, for large enough n, would take pages to
write down using products of momenta.

Three-point amplitudes

It is a basic fact that scattering amplitudes of three massless particles vanish
identically for kinematical reasons. One can easily see this going to the center-
of-momentum frame of two incoming particles; momentum conservation then
implies that the outgoing particle has p = 0.

If, however, the momenta of the particles are complexified, three-particle mo-
mentum conservation allows for two discrete kinematical solutions.18 To deter- 18 Indeed these constraints determine

the three-point amplitudes of any
massless theory uniquely. In particular
this implies that they are protected
from loop corrections, up to the
renormalization of the coupling
constant.

mine these solutions, we note that momentum conservation simultaneously im-
plies the following conditions:

p1 = −p2 − p3 =⇒ (p2 + p3)
2 = 〈23〉 [32] = 0 ,

p2 = −p3 − p1 =⇒ (p3 + p1)
2 = 〈31〉 [13] = 0 ,

p3 = −p1 − p2 =⇒ (p1 + p2)
2 = 〈12〉 [21] = 0 .

(2.31)
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These equations have two solutions for complexified momenta,

all 〈i j〉= 0 or all [i j] = 0 , (2.32)

i.e. either all the spinors λi are collinear or all λ̃i . Lorentz invariance, the scaling
property (2.25) and the requirement that the expressions are non-singular for
these special kinematics then fix the three-point amplitudes to be

A3,2 =
δ4(λ1λ̃1 +λ2λ̃2 +λ3λ̃3)δ8(λ1η̃1 +λ2η̃2 +λ3η̃3)

〈12〉〈23〉〈31〉
,

A3,1 =
δ4(λ1λ̃1 +λ2λ̃2 +λ3λ̃3)δ4([12] η̃3 + [23] η̃1 + [31] η̃2)

[12] [23] [31]
.

(2.33)

The MHV amplitude A3,2 constrains λ̃1 ∝ λ̃2 ∝ λ̃3, while the MHV amplitude
A3,1 enforces λ1 ∝ λ2 ∝ λ3. Even though they are not physical, these ampli-
tudes play an important role for the techniques presented in the following. In
particular we will use a graphical notation, denoting them by black and white
vertices,

1

3 2
= A3,2(1, 2,3) ,

1

3 2
= A3,1(1, 2,3) . (2.34)

2.3 On-shell techniques

We next discuss some on-shell techniques for the calculation of scattering ampli-
tudes: BCFW recursion relations, their generalization to all loop-orders in planar
N =4 SYM, and the generalized unitarity method.

BCFW recursion relations

The discovery of the BCFW recursion relations,19 which we present here in their19 Britto, Cachazo, Feng, “New recursion
relations for tree amplitudes of
gluons”, hep-th/0412308; and Britto,
Cachazo, Feng, Witten, “Direct proof
of tree-level recursion relation in
Yang-Mills theory”, hep-th/0501052

supersymmetric version,20 marked a milestone in the renewed interest in meth-

20 Brandhuber, Heslop, Travaglini,
“A Note on dual superconformal
symmetry of the N = 4 super
Yang-Mills S-matrix”, 0807.4097;
Arkani-Hamed, Cachazo, Kaplan,
“What is the Simplest Quantum Field
Theory?”, 0808.1446; and Elvang,
Freedman, Kiermaier, “Recursion
Relations, Generating Functions, and
Unitarity Sums in N = 4 SYM Theory”,
0808.1720

ods to determine the S-matrix directly, exploiting it’s analytic properties. The
idea behind this method is to make use of the universal factorization behavior of
scattering amplitudes, which is made manifest in their representation in terms
of Feynman diagrams, via the tools of complex analysis.

Consider some color-ordered amplitude at tree-level. Although the recursion
relations aim at calculating without using Feynman diagrams, the existence of
a representation in terms of these diagrams implies that the amplitude factor-
izes into two sub-amplitudes whenever a propagator in one of these diagrams
diverges because the momentum flowing through it hits the mass shell. Since we
are considering partial amplitudes which impose a cyclic order on the external
momenta, this only happens when the sum of a number of consecutive momenta
has vanishing norm. The aim of the BCFW recursion relations is to exploit this
universal behavior in order to reconstruct the full amplitude from the set of these

http://xxx.lanl.gov/abs/hep-th/0412308
http://xxx.lanl.gov/abs/hep-th/0501052
http://xxx.lanl.gov/abs/0807.4097
http://xxx.lanl.gov/abs/0808.1446
http://xxx.lanl.gov/abs/0808.1720
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factorization channels, which only involve amplitudes with fewer legs. To access
the factorization poles in a controlled way, the momenta have to be complexified;
this allows to perform a shift on two of the momenta,

λ̂i = λi −αλ j , ˆ̃λi = λ̃i , ˆ̃ηi = η̃i ,

λ̂ j = λ j , ˆ̃λ j = λ̃ j +αλ̃i , ˆ̃η j = η̃ j +αη̃ j ,
, (2.35)

which simultaneously respects momentum conservation and preserves the on-
shell condition, p̂2

i = p̂2
j = 0. In the following we indicate that this shift has

been performed on some quantity by hats, i.e. for f = f (λ, λ̃, η̃), we denote
f̂ = f (λ̂, ˆ̃λ, ˆ̃η). We furthermore assume that the particles i and j are adjacent in
the color ordering, j = i + 1.

If this shift is applied to a scattering amplitude, the undeformed amplitude
can be recovered by a contour integral around zero

An,k =

∮

α=0

Ân,k(α)

α
. (2.36)

The basic idea of the BCFW recursion is to use the residue theorem to write
the integral as a sum over the residues of all other poles of Ân,k in the complex
α plane. But every such pole corresponds precisely to a factorization channel.
Because the momenta are massless and the shift (2.35) preserves this property,
it follows that all possible propagators which contain either p̂i or p̂ j are linear
functions of α; if both momenta appear, the propagator is independent of α since
p̂i + p̂ j = pi + p j . If we denote a propagator depending on the shift by 1

P̂2
I
, where

I refers to the set of momenta, PI =
∑

i∈I pi , then one can furthermore easily see
that ResP̂2

I =0
1
P̂2

I
= 1

P2
I
. Therefore, we can write the amplitude as a sum over all

factorization channels which separate particles i and j:

An,k =
∑

factorization
channels

ÂL
1
P2

I

ÂR . (2.37)

In each term, α is fixed to the value which renders P̂2
I = 0. Of course for each

distribution of external momenta, this sum also includes a sum over intermediate
particle states. Furthermore we assume that the shifted amplitude has no pole
at α→∞. For N =4 SYM, this is the case for adjacent shifts j = i±1; for other
cases see for example Henn and Plefka (2014).21 21 Henn, Plefka, “Scattering Amplitudes

in Gauge Theories”, Lect. Notes Phys.
883 (2014) pp.1–195

Before we write down the super BCFW recursion relations in their explicit
form, we note that the shift (2.35) can be realized via the so-called BCFW bridge,
which is composed of the three-point amplitudes. Recalling that kinematically,
A3,2 enforces the collinearity of the λ̃ variables and A3,1 the collinearity of the λ’s,
we see that the bridge, shown in figure 2.2, precisely implements the shift (2.35).

1

3 2

λ̃1∝ λ̃2∝ λ̃3

1

3 2

λ1∝ λ2∝ λ3

=⇒

λ j λ̃ j λi λ̃i

λ j(λ̃ j +αλ̃i) (λi −αλ j)λ̃i

αλ j λ̃i

Figure 2.2: The BCFW bridge.
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This bridge is to be attached via super phase space integrations to the factorized
amplitude. It then provides the integration

∫

dα
α , remaining as a part of the phase

space integrations not fixed by kinematic constraints:

f

· · ·

=

∫

dα
α

f̂

· · ·

. (2.38)

In the recursion relation (2.37), this integral is fixed term by term via the on-shell
condition of the propagator on which the amplitude factorizes. We can thus write
the recursion relations for N =4 SYM in the form

An,k =

∑

n′,n′′,k′,k′′

n′+n′′=n+2
k′+k′′=k+1

· · ·
· · ·

An′,k′ An′′,k′′

i + 1 i

. (2.39)

One of the successes of the BCFW recursion relations was their solution in closed
form.22 This yielded compact expressions for all N = 4 SYM tree amplitudes22 Drummond, Henn, “All tree-level am-

plitudes in N = 4 SYM”, 0808.2475 which in particular include all gluon amplitudes as components.

All loop recursion

In the discussion above we have seen that tree-level amplitudes are determined
by their singularities, i.e. by their sets of possible factorizations. The BCFW bridge,
applied to the entire set of these singularities can be understood as a way of lift-
ing them, i.e. to produce a function with precisely these singularities, that is the
amplitude.

At least for planar N = 4 SYM, a similar statement can be made at loop
level. Of course, the full amplitude has a complicated analytic structure, but its
integrand, which can be uniquely defined for planar amplitudes using the dual
momenta as discussed in section 2.1, is a rational function determined by the
Feynman rules, just like tree-level amplitudes. Indeed, `-loop N = 4 SYM am-
plitude integrands are completely determined by so called forward limits, in ad-
dition to the possible factorization channels.23 These forward limits correspond

23 Caron-Huot, “Loops and trees”,
1007.3224

to a loop-momentum going on-shell, and thus to single cuts of amplitudes. On
these cuts, the amplitude is determined by the ` − 1 loop amplitude with two
more legs carrying opposite on-shell momenta ±pl with p2

l = 0.
Similar to the factorizations at tree-level, these singularities can be lifted by

the BCFW bridge. This leads to the all-loop recursion relations24

24 Arkani-Hamed, Bourjaily, Cachazo,
Caron-Huot, Trnka, “The All-Loop
Integrand For Scattering Amplitudes in
Planar N = 4 SYM”, 1008.2958; and
Arkani-Hamed, Bourjaily, Cachazo,
Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605

http://xxx.lanl.gov/abs/0808.2475
http://xxx.lanl.gov/abs/1007.3224
http://xxx.lanl.gov/abs/1008.2958
http://xxx.lanl.gov/abs/1212.5605
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A(`)n,k =

··
· ···

· · ·

A(`−1)
n+2,k+1

i + 1 i

+

∑

n′,n′′,k′,k′′,`′,`′′

n′+n′′=n+2
k′+k′′=k+1
`′+`′′=`−1

· · ·
· · ·

A(`
′)

n′,k′ A(`
′′)

n′′,k′′

i + 1 i

,

(2.40)

where the first term is the forward limit of the `−1 loop amplitude, and the other
terms are channels where the amplitude factorizes into products of lower loop
amplitudes, with loop numbers `′+`′′ = `. We see that this equation generalizes
the BCFW recursion (2.39), where the first terms is absent.25 25 We remark that the way the loop

integrations appear in this recursion
is subtle, see footnote 36 below;
therefore the recursion should rather
be thought of as a recursion of the
loop integrand.

Generalized Unitarity

Generalized unitarity26 is one of the most successful modern techniques for loop
26 Bern, Dixon, Dunbar, Kosower,
“One loop n point gauge theory
amplitudes, unitarity and collinear
limits”, hep-ph/9403226; Bern, Dixon,
Dunbar, Kosower, “Fusing gauge
theory tree amplitudes into loop
amplitudes”, hep-ph/9409265; and
Britto, Cachazo, Feng, “Generalized
unitarity and one-loop amplitudes
in N = 4 super-Yang-Mills”,
hep-th/0412103

calculations. It is based on a completely different idea compared to the classical
unitary method, but still employs cuts to reconstruct the full amplitude. These
cuts are taken by replacing propagators in the loop integrals by delta functions
which force the momentum flowing through the propagator to become on-shell,
with positive energy,27

27 Often the notation δ+(P2) =
δ(P2)θ (P0) is used for this com-
bination.

i
1
P2

−→ 2πδ(P2)θ (P0) . (2.41)

This can also be understood as considering the real and four-dimensional loop
integration as a contour integral in C4, and choosing a torus contour around the
pole of the propagator.

For theories in four dimensions, only four types of scalar integrals can appear
in Feynman diagram calculation at one loop: the box, the triangle, the bubble and
the tadpole. This is a consequence of the fact that all momenta in the propagators
can be expanded in terms of four linearly independent momentum vectors.28 All

28 In dimensional regularization, also
pentagon integrals contribute, see
Bern, Dixon, Kosower, “Dimensionally
regulated pentagon integrals”,
hep-ph/9306240.

of these integrals have been calculated in closed form.29 We can therefore write
29 ’t Hooft, Veltman, “Scalar One Loop

Integrals”, Nucl. Phys. B153 (1979)
365–401

any one-loop amplitude in this basis of master integrals It ,

A(1)n =
∑

t ∈ topologies
i ∈ assignments

of momenta

ct,i It,i + rational terms . (2.42)

The rational, i.e. branch-cut-free terms appear due to the need to regularize the
integrals, and are absent for supersymmetric theories. ForN =4 SYM amplitudes,
only box integrals contribute, and there are no rational terms. The idea is now
to fix the coefficients ct,i , which are rational functions of the external kinematics,
by applying cuts (2.41) to both sides of this equation.

· · ·
· · ·

· · · · · ·

Atree Atree

Atree Atree

Figure 2.3: The leading singularity of a
one-loop amplitude.

First consider the box integral. The four propagators have the loop momen-
tum shifted by cyclic sets of the external momenta. For each possible such set,
we can apply the four corresponding cuts (2.41), which localizes the integral

http://xxx.lanl.gov/abs/hep-ph/9403226
http://xxx.lanl.gov/abs/hep-ph/9409265
http://xxx.lanl.gov/abs/hep-th/0412103
http://xxx.lanl.gov/abs/hep-ph/9306240
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completely.30 The left hand side of (2.42) is then given by a product of tree am-30 One might have to sum over multiple
solutions to the equations imposed by
the cuts.

plitudes; schematically we can draw them as in figure 2.3. These cuts in which
all loop integrations are localized, are called leading singularities. On the right
hand side only one term contributes, given in terms of the cut of the master in-
tegral, and this fixes the corresponding coefficient. For N =4 SYM amplitudes,
fixing all box coefficients is sufficient. For other theories, or other quantities in
N = 4 SYM, one can continue to determine the coefficients of the triangle and
bubble integrals. Since the contributions from the integrals with more propaga-
tors, which can have the same triple or lower cuts, are already known, triple cuts
are sufficient for the triangle coefficients, and double cuts for the bubbles.

The method is extremely efficient, even beyond one-loop. A noteworthy ap-
plication is the program of checking the finiteness ofN =8 supergravity.31 For a31 Bern, Carrasco, Dixon, Johansson,

Roiban, “The Ultraviolet Behavior
of N=8 Supergravity at Four Loops”,
0905.2326

higher-loop application in N =4 SYM, see for example Bern et al. (2007).32 We

32 Bern, Carrasco, Johansson, Kosower,
“Maximally supersymmetric planar
Yang-Mills amplitudes at �ve loops”,
0705.1864

finally note that the method continues to be developed and improved, see e.g.
Bourjaily et al. (2017).33

33 Bourjaily, Herrmann, Trnka, “Prescrip-
tive Unitarity”, 1704.05460

2.4 On-shell diagrams

On-shell diagrams provide a graphical language for the quantities and techniques
discussed so far. They are graphs with two types of vertices, representing the
two three-point amplitudes, which are drawn as black and white vertices as in
equation (2.34). The internal edges34 represent on-shell phase space integrations34 These edges are undirected since

the N =4 on-shell multiplet is CPT
self-conjugate.

over intermediate states of the form (2.13),

∫

d2λ d2λ̃

Vol[GL(1)]
d4η̃ . (2.43)

Here the “Vol[GL(1)]” shorthand notation indicates that the integration is only
over spinor-helicity variables which are inequivalent under the little group scal-
ing (2.6).

Scattering amplitudes, as well as many related quantities, can be expressed
via these diagrams. Consider the BCFW recursion relations for tree amplitudes,
given in equation (2.39); by fully recursing this equation, we end up with a
sum of terms only involving three-point amplitudes, i.e. on-shell diagrams. The
simplest example is the four-point amplitude, which can be written as

(2.44)

Note that in the recursion relations, A3,1 cannot appear on the left side, and
A3,2 not on the right side of the factorization, since these terms would have con-
strained kinematics, see the discussion after equation (2.33). Therefore, the four-
point amplitude is given by a single diagram, sometimes called a “box”.

http://xxx.lanl.gov/abs/0905.2326
http://xxx.lanl.gov/abs/0705.1864
http://xxx.lanl.gov/abs/1704.05460
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An example where the recursion generates multiple terms is given by the
six-point NMHV amplitude,

(2.45)

The all-loop recursion (2.40) leads to on-shell diagrams representing loop
amplitudes. As an example we consider the four-point one-loop amplitude. Ac-
cording to the recursion, it is given by

(2.46)

Note that there are no factorization channels contributing in this case, since the
three-point amplitudes do no receive quantum corrections. Therefore the only
term comes from the forward limit. Of the three terms in (2.45) only one is non-
vanishing in this limit.35 The second equality follows from equivalence moves

35 Arkani-Hamed, Bourjaily, Cachazo,
Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605

which will be discussed below, and the resulting diagram makes it obvious that
the maximal cut is given by the box diagram (2.44), the four-point tree ampli-
tude. To this end, note that the “bubbles” correspond to loop integrations, as will
be explained shortly.36

36 We remark already here that the
precise way in which these bubbles
are related to the loop integrations
is very subtle. The bubbles de�ne
the integrand in terms of integration
variables which very di�erent from
the components of the loop momenta
and, to our knowledge, there is
no known way of determining the
contour of integration for them.

Finally, it is evident that any leading singularities appearing in the generalized
unitarity method can be expressed by on-shell diagrams; this follows from simply
representing the occurring tree amplitudes as on-shell diagrams. Due to the all-
loop recursion, even non-maximal cuts can be drawn as a diagram.

http://xxx.lanl.gov/abs/1212.5605
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Equivalence moves

The analytic functions encoded by on-shell diagrams are invariant under certain
diagrammatic equivalence moves, which are shown in figure 2.4.

Figure 2.4: Equivalence moves for
on-shell diagrams. = =

=

= =

The first two moves are called “merge-unmerge”; they are based on the ob-
servation that each black vertex, representing the three-point MHV amplitude
(2.34), enforces the collinearity of the anti-holomorphic spinors λ̃i of its exter-
nal legs (and similar for the η̃i), while any white vertex, i.e. any three-point
MHV amplitude forces the holomorphic spinors λi to be collinear. Thus, if two
(or more) vertices of the same color are directly connected, they can be merged
into a single vertex which represents the combined constraint that all four ex-
ternal legs obey the corresponding collinearity condition. Unmerging the vertex
into two three-valent vertices with a different assignment of external legs then
gives the first two moves presented in figure 2.4.

The third move (often called “box move”) is simply the diagrammatic state-
ment that the four-point amplitude is cyclicly invariant.

There is a further move, which does not strictly represent an equivalence. If
a “bubble” as shown in figure 2.5 is present, the full diagram encodes the same
expression as the diagram where the bubble is deleted, times a dlog integration
which factors out. Diagrams free of such bubbles (in any representation obtain-
able from the equivalence moves described above) are called reduced.

Figure 2.5: A bubble corresponds to an
integration which factors out of the
expression.

=

�∫

dα
α

�

×

Permutations

On-shell diagrams are in one-to-one correspondence with permutations

σ =







1 2 3 . . . n

↓ ↓ ↓ . . . ↓
σ(1) σ(2) σ(3) . . . σ(n)






≡
�

σ(1),σ(2),σ(3), . . . ,σ(n)
�

. (2.47)

The relation implies that for each diagram the associated permutation encodes
the same information as the diagram itself. The exact correspondence can be
obtained using so-called left-right paths: For every external particle, draw a path
entering the diagram at the leg corresponding to that particle and turning right
at every black vertex and left at every white vertex:37

37 Arkani-Hamed, Bourjaily, Cachazo,
Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605

http://xxx.lanl.gov/abs/1212.5605
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1

3 2

→ σ = (3, 1,2) ,

1

3 2

→ σ = (2,3, 1) . (2.48)

If the path ends on particle j, set σ(i) = j.The permutation associated to a given
on-shell diagram is invariant under the equivalence moves in figure 2.4 and there-
fore encodes the same information as the diagram.38 38 Although it does not play a key role

in the following, we remark here
that one should really associate a
so-called decorated permutation with
i ≤ σ(i) ≤ i + n to each diagram. The
additional information encoded by
the label i with σ(i) > n has some
impact on the decomposition into
BCFW bridges mentioned below.

In the reverse direction, a representative on-shell diagram can be constructed
from the permutation as follows. First, the permutation is decomposed into a
product of transpositions, where the multiplication corresponds to the right ac-
tion, i.e.

σ1 /σ2 =
�

σ2

�

σ1(1)
�

, . . . ,σ2

�

σ1(n)
�

�

. (2.49)

This sequence should be of minimal length, but is not unique, due to the equiv-
alence moves. It is possible to consider only adjacent transpositions.39 Second, 39 These statements follow from the

properties of the corresponding
permutation group; note in particular
that even decompositions into only
adjacent transpositions are not
unique.

each such transposition (i, j) is interpreted as a BCFW bridge,

j i
, (2.50)

connecting the legs i and j. One can then build up the diagram by stacking these
bridges on top of each other, and removing the legs at the top. This construc-
tion will be discussed in greater detail in chapter 7, where it will be related to
integrability.

2.5 The Graßmannian integral

We have seen that a remarkable range of quantities related to scattering ampli-
tudes can be represented as on-shell diagrams. A unifying description for the ana-
lytic expressions these diagrams encode can be given in terms of an integral over
an auxiliary Graßmannian G(k, n), the set of k-planes in n-dimensional space.

The geometry of momentum conservation and the
Graßmannian

The fundamental idea behind the Graßmannian integral representations of on-
shell diagrams is to understand momentum conservation in a geometric way.40 40 Arkani-Hamed, Cachazo, Cheung,

Kaplan, “A Duality For The S Matrix”,
0907.5418

The n massless momenta which define the external data of a scattering process
are represented by the spinors λαi and λ̃α̇i . Instead of viewing this data as a set
of n pairs of two-vectors, they can be thought of as two two-dimensional planes
in Cn: the first plane is spanned by the n-vectors λ1 = (λ1

1, · · · ,λ1
n) and λ2 =

(λ2
1, · · · ,λ2

n), and similar for the variables λ̃α̇i . From this point of view, momentum

http://xxx.lanl.gov/abs/0907.5418
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conservation is expressed as the orthogonality of these planes:

0=
n
∑

i=1

λiλ̃i = λ · λ̃ . (2.51)

This interpretation opens the possibility to linearize this constraint, i.e. to im-
pose separate constraints on the two types of spinors. To this end, one introduces
an auxiliary k-plane C . The space of such k-planes in Cn is the Graßmannian
G(k, n). Each point in this space can be represented by a k × n matrix C of full
rank; the rows of this matrix are n-vectors that span the plane. Of course this set
of vectors is not unique: left multiplication of C by any GL(k)matrix just rotates
the vectors into each other and rescales them, leaving the plane invariant. The
fact that the two-planes λ and λ̃ are orthogonal can then be phrased as the re-
quirement that λ̃ is orthogonal to the k-plane C , while λ is contained in it. The
latter requirement is equivalent to saying that λ is orthogonal to the orthogonal
complement of C , which can be represented by a (n− k)× n matrix C⊥ fulfilling
C(C⊥)T = 0.41 We can thus write momentum conservation as41 Of course the matrix C⊥ is not unique

given C ; this does not matter in the
following.

(C · λ̃)α̇I =
n
∑

i=1

CI iλ̃
α̇
i = 0 and (C⊥ ·λ)αJ =

n
∑

i=1

C⊥J iλ
α
i = 0 , (2.52)

where I = 1, . . . , k and J = 1, . . . , n−k. Note that these equations constrain both
the kinematics as well as the plane C . Although we focused on the momentum,
a similar argument can be made for the supermomentum; for it to be conserved,
we need to further impose C · η̃= 0.

The Graßmannian integral is based on the idea that scattering amplitudes
can be written in a way which uses these constraints. The k-plane C is only an
auxiliary object, and it turns out that one has to average over all possible planes
subject to the constraints. We can thus introduce the Graßmannian integral as
∫

dk×nC
Vol[GL(k)]

Ωn,k δ
2×k(C · λ̃)δ4×k(C · η̃)δ2×(n−k)(C⊥ ·λ) (2.53)

where we integrate over all matrices C which are not related by a GL(k) trans-
formation.42 The integrand Ωn,k indeed does only depend on the plane C and42 In practice this integration over

inequivalent matrices can be achieved
by “�xing the gauge”, i.e. by setting
k columns of C to orthogonal unit
k-vectors.

not on the kinematical data – in a sense, the integral therefore separates the
dynamics from the kinematics. Counting the powers of the Graßmann variables,
we see that the integral over G(k, n) will give the amplitude An,k, as discussed
below. The contour of integration is left unspecified in this equation.

We will discuss in a moment the form Ωn,k appearing in the integral (2.53).
Two simple examples are already given by the three-point amplitudes,

A3,2(1, 2,3) =

∫

d2×3C
Vol[GL(2)]

1
(12)(23)(31)

δ4(C · λ̃)δ8(C · η̃)δ2(C⊥ ·λ) , (2.54)

A3,1(1, 2,3) =

∫

d1×3C
Vol[GL(1)]

1
(1)(2)(3)

δ2(C · λ̃)δ4(C · η̃)δ4(C⊥ ·λ) . (2.55)

which can easily be seen to give the expressions in equation (2.33). Here and in
the following we denote the k × k minors of the matrix C by parentheses, with
labels indicating the columns, i.e. (i1, . . . , ik) = det(Ci1 , . . . , Cik).
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Graßmannian integral for general diagrams

For general on-shell diagrams, a Graßmannian integral formula as given in (2.53)
could be obtained by “gluing” the Graßmannian formulas (2.54) and (2.55) for
each three-point amplitude vertex, i.e. by performing the phase space integra-
tions (2.43) for all internal edges.43 Although these formulas simplify this task 43 Arkani-Hamed, Bourjaily, Cachazo,

Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605

by linearizing the constraints on the external kinematics, there are more direct
ways of constructing the Graßmannian integral.

The method we briefly describe makes use of edge variables αi to parametrize
the matrix C . As their name suggests, they are naturally associated to edges of
the on-shell diagram. In fact, they are the variables parametrizing the BCFW
shifts (2.35) induced by the bridges (see figure 2.2) into which the diagram
can be decomposed as outlined in section 2.4 and described in more detail in
section 7.5, where we discuss the relation of this construction to integrability. In
principle one can therefore obtain a Graßmannian integral representation from
such a decomposition.

A method which does not directly refer to a particular decomposition of the
diagram makes use of so-called boundary measurements. First give the on-shell
diagram a perfect orientation: assign an orientation to each edge such that each
white vertex is connected to one incoming and two outgoing edges and each
black vertex to two incoming and one outgoing edges. Then attach a variable αe

to each edge e. For every vertex, one of the variables of the connected edges can
be removed. Under the perfect orientation graph will have k “sources” and n− k
“sinks”, where n is the number of particles and k the MHV degree. The columns
of the C matrix corresponding to the k sinks are given by Cis = δis for each sink
s. The remaining entries are fixed as follows: for each source i and sink j set the
entry of the C matrix

Ci j = −
∑

paths Γ from i to j

∏

edges e ∈ Γ

αe , (2.56)

where any closed directed loops are summed as geometric series,
∑

loop

∏

e αe =
(1−

∏

e αe)−1. The Graßmannian integral (2.53) is then given by

∫ m
∏

i=1

dαi

αi
δ2×k(C(α) · λ̃)δ4×k(C(α) · η̃)δ2×(n−k)(C⊥(α) ·λ) , (2.57)

where m is the number of edge variables.

The top-form

The C matrices associated to on-shell diagrams constructed by this method, or
rather their equivalence classes, correspond to the cells of the positroid stratifi-
cation44 of the positive Graßmannian. This sub-manifold of the Graßmannian 44 Postnikov, “Total positivity, Grassman-

nians, and networks”, math/0609764;
and Knutson, Lam, Speyer, “Positroid
Varieties: Juggling and Geometry”,
1111.3660

G+(k, n) ⊂ G(k, n) is the restriction to the points for which all minors of the C
matrix of the form (i1 · · · ik) for i1 < · · · ik are positive. The residue of the integral
(2.57) at αe = 0 gives the integral representation of the diagram obtained from

http://xxx.lanl.gov/abs/1212.5605
http://xxx.lanl.gov/abs/math/0609764
http://xxx.lanl.gov/abs/1111.3660


34 | On-shell methods for scattering amplitudes

the original diagram by removing edge e. The corresponding C matrix describes
a co-dimension one boundary of the original cell in the Graßmannian.

There is a unique top-form, of dimension k × (n − k), corresponding to the
entire positive Graßmannian, of which the integrals of all other diagrams with
given k and n can be obtained by taking residues. Since it is top-dimensional,
it can directly be expressed in terms of the entries of the C matrix, without a
special parametrization. Due to the GL(k) invariance, it only involves the k × k
minors of this matrix, and is given by

Gn,k =

∫

dk×nC
Vol[GL(k)]

δ2×k(C · λ̃)δ4×k(C · η̃)δ2×(n−k)(C⊥ ·λ)
(1 · · · k)(2 · · · k+1) · · · (n−1 · · · k−2)(n · · · k−1)

. (2.58)

Without derivation, we also give the Graßmannian integral in the other vari-
ables introduced in section 2.1. Under the half-Fourier transformation (2.14) the
integral transforms into

GWn,k =

∫

dk×nC
Vol[GL(k)]

δ(4|4)×k(C · W )
(1 · · · k)(2 · · · k+1) · · · (n−1 · · · k−2)(n · · · k−1)

. (2.59)

Here superconformal symmetry is made manifest by the sl4|4 invariance of the
delta functions. The change of variables to momentum twistor variables allows
to factor the MHV amplitude (2.29) out of (2.58), such that one is left with an
integral of the same form as (2.59), but over the Graßmannian G(k− 2, n),4545 Arkani-Hamed, Cachazo, Cheung,

“The Grassmannian Origin Of Dual Su-
perconformal Invariance”, 0909.0483;
and Elvang, Huang, Keeler, Lam, Ol-
son, Roland, Speyer, “Grassmannians
for scattering amplitudes in 4d N = 4
SYM and 3d ABJM”, 1410.0621

Gn,k = An,2

∫

d(k−2)×nC
Vol[GL(k− 2)]

δ(4|4)×(k−2)(C · Z )
(1 · · · k−2)(2 · · · k−1) · · · (n−1 · · · k−4)(n · · · k−3)

.

(2.60)

In each case, the Graßmannian integral can be used to calculate the correspond-
ing scattering amplitude; however it needs to be supplemented by a contour
for the unfixed integration variables, which picks out a correct combination of
residues.

While the review in this chapter has focused entirely on scattering amplitudes
in N = 4 SYM, many of the tools presented here are more widely applicable.
The BCFW recursion relations were originally formulated for gluon-amplitudes
in pure Yang-Mills theories, but are available for many theories. General unitar-
ity can in principle be applied to any perturbative calculation in any quantum
field theory. On-shell diagrams and Graßmannian integrals were discussed for
theories with less supersymmetry in Benincasa and Gordo (2016); Benincasa
(2015),46 and for gravity in Heslop and Lipstein (2016); Herrmann and Trnka

46 Benincasa, Gordo, “On-shell diagrams
and the geometry of planar N < 4
SYM theories”, 1609.01923; and
Benincasa, “On-shell diagrammatics
and the perturbative structure of
planar gauge theories”, 1510.03642 (2016).47 There has also been some work on nonplanar on-shell diagrams, which

47 Heslop, Lipstein, “On-shell diagrams
for N = 8 supergravity ampli-
tudes”, 1604.03046; and Herrmann,
Trnka, “Gravity On-shell Diagrams”,
1604.03479

will be discussed from the viewpoint of their (Yangian) symmetries in chapter 9,
see the references there.

In the next chapters we will extend these developments to another class of
quantities in N =4 SYM, form factors of composite operators.

http://xxx.lanl.gov/abs/0909.0483
http://xxx.lanl.gov/abs/1410.0621
http://xxx.lanl.gov/abs/1609.01923
http://xxx.lanl.gov/abs/1510.03642
http://xxx.lanl.gov/abs/1604.03046
http://xxx.lanl.gov/abs/1604.03479
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for form factors

This chapter is based on
the author’s publication
Frassek, Meidinger, Nandan, Wilhelm,
“On-shell diagrams, Graßmannians
and integrability for form factors”,
1506.08192.

In the last chapter we saw that on-shell diagrams provide a compact and useful
representation for scattering amplitudes, and a graphical language for modern
methods to calculate them. Form factors describe the overlap of asymptotic on-
shell multi-particle states with states created by composite operators. They are
thus a class of quantities which interpolate amplitudes, which are purely on-shell
and can be understood as the form factor of the identity operator, and off-shell
objects involving multiple composite operators, in particular their correlation
functions.

In this chapter we show that form factors can – just as amplitudes – system-
atically be represented by on-shell diagrams. This will allow to derive a Graß-
mannian integral representation for them in the next chapter, showing that this
framework can be extended to other quantities. In later chapters these diagrams
will also be the our starting point for the development of integrability approaches
to form factors.

We first briefly discusses form factors in general (section 3.1), and those of
the chiral stress-tensor multiplet in particular (section 3.2). We will almost ex-
clusively focus on super form factors of this multiplet, which are the most widely
studied form factors in N = 4 SYM. In section 3.3 we will show how on-shell
diagram representations for form factors can be developed from the BCFW re-
cursion relations. After discussing inverse soft limits in section 3.4, which are a
feature these diagrams share with their amplitude counterparts, we will derive
a useful relation to amplitude diagrams in section 3.6. This relation allows to
find “top-cell” diagrams, which will be used to derive the Graßmannian integral.
In contrast to amplitudes, one has to consider many such diagrams, as will be
shown in section 3.7. Finally, we discuss several ways in which the relation be-
tween on-shell diagrams and (decorated) permutations can be extended to this
setting (section 3.8).

http://xxx.lanl.gov/abs/1506.08192
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3.1 Form factors

Form factors are a generalization of scattering amplitudes. They are defined as
the overlap of an n-particle asymptotic on-shell state with the state created by a
gauge invariant composite operator O at space-time point x out of the vacuum,

F̂O ,n(x) = out〈1, · · · , n|O (x)|0〉in . (3.1)

Intuitively, form factors can be interpreted as the amplitude of the decay of the
state created by the operator O into these n particles. This definition generalizes
scattering amplitudes, cf. (2.23), which are the form factors of the identity oper-
ator. Note that F̂O ,n(x) = exp(i

∑n
j=1 p j · x)F̂O ,n(0) due to translation invariance.

We will exclusively work with the Fourier transform

FO (q) =
∫

d4 x e−iqxF̂O (x) = (2π)4δ4

�

n
∑

i=1

pi − q

�

F̂O (0) , (3.2)

where the operators carries momentum q. Since the operator is a color singlet,
the color structure of tree-level form factors is given by the following expression

FO ,n = gn−L
∑

σ∈Sn/Zn

Tr(T aσ(1) · · · T aσ(n)) FO ,n(σ(1), · · · ,σ(n)) . (3.3)

where L is the length of the operator,1 g =
p
λ

4π , and FO ,n is called the color-1 In the following we will only consider
single-trace operators, and the length
L is simply the number of �elds in the
color trace.

ordered form factor, cf. equation (2.26) for the amplitude case. As for amplitudes,
at loop level also multi-trace terms contribute, but are 1/N suppressed.

From the perspective of Feynman diagrams, form factors are calculated simi-
larly to amplitudes, but include an additional multi-valent vertex stemming from
Wick contraction with the fields inside the operator. The presence of the opera-
tor induces UV divergences (which are absent for amplitudes in N = 4 SYM).
These are directly related to the renormalization of the operator, and thus to
the spectral problem and operator mixing. In fact, the calculation of anomalous
dimensions are usually performed by calculating the divergences of form fac-
tor integrals, which are simpler than two-point functions. For N =4 SYM, form
factors where first studied in van Neerven (1986).22 van Neerven, “Infrared Behavior of

On-shell Form-factors in a N = 4
Supersymmetric Yang-Mills Field
Theory”, Z. Phys. C30 (1986) 595

From the viewpoint of effective field theory, the vertex induced by the op-
erator models interactions arising from unobserved UV degrees of freedom. A
well-known example is the Higgs-to-gluon-gluon amplitude: Since the gluons
are massless, the dominant contribution to this process comes from a top quark
loop. At low energies, this amplitude is given by the form factor of the oper-
ator tr F2

SD, with FSD the self dual field strength.3 In fact, this form factor is a

3 Wilczek, “Decays of Heavy Vector
Mesons Into Higgs Particles”, Phys.
Rev. Lett. 39 (1977) 1304; and Shifman,
Vainshtein, Zakharov, “Remarks
on Higgs Boson Interactions with
Nucleons”, Phys. Lett. B78 (1978)
443–446

component of the N =4 SYM form factor which we will study in the following:
We will consider the chiral stress-tensor multiplet, which contains the on-shell
Lagrangian, including the standard Yang-Mills term.

Furthermore, form factors can appear via the OPE in processes which include
nonperturbative, confined states, as is the case in deep inelastic scattering,4 and

4 For an calculation in N = 4 SYM,
see Bianchi, Forini, Kotikov, “On DIS
Wilson coe�cients in N = 4 super
Yang-Mills theory”, 1304.7252. in the calculation of event shapes, for calculations inN =4 SYM see for example

http://xxx.lanl.gov/abs/1304.7252
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Belitsky et al. (2014); Engelund and Roiban (2013).5 Finally, form factors play 5 Belitsky, Hohenegger, Korchemsky,
Sokatchev, Zhiboedov, “From cor-
relation functions to event shapes”,
1309.0769; and Engelund, Roiban,
“Correlation functions of local com-
posite operators from generalized
unitarity”, 1209.0227

an important role in the description of the universal IR behavior of Yang-Mills
amplitudes. Reviews of this topic can be found in Gardi (2014).6

6 Gardi, “Infrared singularities in
multi-leg scattering amplitudes”,
1407.5164

InN =4 SYM, the study of form factors has largely focused on tree-level form
factors, but recently a lot of progress has been made at loop level, in particular
due to the use of the generalized unitarity method (see section 2.3).7 A particu-

7 Gehrmann, Henn, Huber, “The three-
loop form factor in N = 4 super Yang-
Mills”, 1112.4524; Nandan, Sieg,
Wilhelm, Yang, “Cutting through form
factors and cross sections of non-
protected operators in N = 4 SYM”,
1410.8485; Loebbert, Nandan, Sieg,
Wilhelm, Yang, “On-Shell Methods for
the Two-Loop Dilatation Operator and
Finite Remainders”, 1504.06323; and
Loebbert, Sieg, Wilhelm, Yang, “Two-
Loop SL(2) Form Factors and Maximal
Transcendentality”, 1610.06567

larly exciting development is the inclusion of composite operators and their form
factors in the framework of the twistor space action8 which was initiated in the

8 Adamo, “Twistor actions for gauge
theory and gravity”, PhD thesis, Cam-
bridge U., DAMTP, 2013, 1308.2820,

works Koster et al. (2016a,b, 2017).9 At strong coupling, form factors have been

9 Koster, Mitev, Staudacher, Wilhelm,
“Composite Operators in the Twistor
Formulation of N = 4 Supersymmet-
ric Yang-Mills Theory”, 1603.04471;
Koster, Mitev, Staudacher, Wilhelm,
“All tree-level MHV form factors
in N = 4 SYM from twistor space”,
1604.00012; and Koster, Mitev, Stau-
dacher, Wilhelm, “On Form Factors
and Correlation Functions in Twistor
Space”, 1611.08599

studied via the AdS/CFT correspondence.10

10 Alday, Maldacena, “Comments on
gluon scattering amplitudes via
AdS/CFT”, 0710.1060; Maldacena,
Zhiboedov, “Form factors at strong
coupling via a Y-system”, 1009.1139;
and Gao, Yang, “Y-system for form
factors at strong coupling in AdS5

and with multi-operator insertions in
AdS3”, 1303.2668

3.2 The chiral stress-tensor multiplet

In this chapter, as well as in chapters 4, 5, and partially in chapters 8 and 10, we
will consider only form factors of the chiral part of the stress-tensor supermulti-
plet, which are the ones most widely studied in the literature.

Describing this multiplet in a manifestly supersymmetric way will be a main
ingredient for our constructions. Using N = 4 harmonic superspace,11 this can

11 Hartwell, Howe, “(N, p, q) harmonic
superspace”, hep-th/9412147

be done while staying very close to the formulation of on-shell amplitudes in
terms of (super) spinor-helicity variables. In this formulation, the coordinate
space Graßmann variables θA

α , α = 1, 2, A = 1, . . . , 4, are projected to + and
− components by matrices u+a

A and u−a′
A with a, a′ = 1,2:

θ+a
α = θ

A
αu+a

A , θ−a′
α = θA

αu−a′
A , (3.4)

where the indices a, a′ and ± correspond to the subgroup SU(2)×SU(2)′×U(1)
of the R symmetry group SU(4). The multiplet can then be written as12

12 Our conventions follow the works
Eden, Heslop, Korchemsky, Sokatchev,
“The super-correlator/super-
amplitude duality: Part I”, 1103.3714;
Brandhuber, Gurdogan, Mooney,
Travaglini, Yang, “Harmony of Super
Form Factors”, 1107.5067; and Bork,
“On form factors in N = 4 SYM theory
and polytopes”, 1407.5568. We refer
the reader to these articles for details
and further references.

T (x ,θ+) = tr(φ++φ++) + · · ·+
1
3
(θ+)4L . (3.5)

This operator is chiral as it only depends on the θ+, and it contains the scalar BPS
operator tr(φ++φ++) with φ++ = 1

2εabu+a
A u+b

B φ
AB as the lowest and the on-shell

Lagrangian L as its highest component.
The super form factor of this supermultiplet is defined as

Fn,k(1, . . . , n; q,γ−) =

∫

d4 x d4θ+ e−iqx−iθ+a
α γ

−α
a out〈1, . . . , n|T (x ,θ+)|0〉in , (3.6)

where γ−αa denotes the supermomentum of the multiplet and k is the super MHV
degree, which ranges from k = 2 up to k = n. For the minimal MHV degree k = 2,
the form factor of T (x ,θ+) is given by a Parke-Taylor-type expression which is
almost identical to the corresponding formula for MHV amplitudes,

Fn,2(1, . . . , n; q,γ−) =
δ4(P)δ4(Q+)δ4(Q−)
〈12〉〈23〉 · · · 〈n−1 n〉〈n1〉

, (3.7)

where the conserved (super) momenta are defined by

P =
n
∑

i=1

λiλ̃i − q , Q+ =
n
∑

i=1

λiη̃
+
i , Q− =

n
∑

i=1

λiη̃
−
i − γ

− . (3.8)

http://xxx.lanl.gov/abs/1309.0769
http://xxx.lanl.gov/abs/1209.0227
http://xxx.lanl.gov/abs/1407.5164
http://xxx.lanl.gov/abs/1112.4524
http://xxx.lanl.gov/abs/1410.8485
http://xxx.lanl.gov/abs/1504.06323
http://xxx.lanl.gov/abs/1610.06567
http://xxx.lanl.gov/abs/1308.2820
http://xxx.lanl.gov/abs/1603.04471
http://xxx.lanl.gov/abs/1604.00012
http://xxx.lanl.gov/abs/1611.08599
http://xxx.lanl.gov/abs/0710.1060
http://xxx.lanl.gov/abs/1009.1139
http://xxx.lanl.gov/abs/1303.2668
http://xxx.lanl.gov/abs/hep-th/9412147
http://xxx.lanl.gov/abs/1103.3714
http://xxx.lanl.gov/abs/1107.5067
http://xxx.lanl.gov/abs/1407.5568
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Here the Graßmann degrees of freedom of the on-shell particles are again related
to the usual ones by a projection,

Q+aα = ū+a
A QAα η̃+a = ū+a

A η̃
A

Q−a′α = ū−a′
A QAα η̃−a′ = ū−a′

A η̃A ,
(3.9)

and the projectors ū are the conjugates of the u’s.
From (3.7) we see that for our purposes, using harmonic superspace simply

amounts to distinguishing between two types of components of Graßmann vari-
ables, and the sole difference will be that the operator T carries supermomentum
only in half of the directions, corresponding to the “minus” variables. Otherwise,
all the techniques and formulations that rely on spinor-helicity variables λ, λ̃
and η̃ can straightforwardly be adapted to the current setting.

Note that for brevity and unless otherwise stated, we will often use the term
“form factor” to denote a color-ordered tree-level form factor of the chiral part
of the stress-tensor multiplet, in what follows.

3.3 From BCFW to on-shell diagrams

Form factors of the chiral stress tensor multiplet obey BCFW recursion relations
that express them in terms of their factorization channels as1313 See Brandhuber, Spence, Travaglini,

Yang, “Form Factors in N = 4 Super
Yang-Mills and Periodic Wilson
Loops”, 1011.1899, and Brandhuber,
Gurdogan, Mooney, Travaglini, Yang,
“Harmony of Super Form Factors”,
1107.5067 for the supersymmetric
version we use.

Fn,k =
∑

n′,n′′,k′,k′′

n′+n′′=n+2
k′+k′′=k+1

· · ·
· · ·

Fn′ ,k′ An′′ ,k′′

i + 1 i

+

· · ·
· · ·

An′ ,k′ Fn′′ ,k′′

i + 1 i

. (3.10)

Here we already used a diagrammatic language as in section 2.3 implementing
the BCFW shift by a “bridge”. We indicate the off-shell kinematics of the operator
by a doubled line in these diagrams. The most noteworthy distinction to the
amplitude case is that we have to sum over contributions with the operator on
either side of the factorization.

For every form factor Fn,k we can use these relations recursively to get a repre-
sentation in terms of a sum of diagrams which only involve amplitudes and form
factors with the lowest number of on-shell legs. Apart from the three-point am-
plitudes A3,2 and A3,1 which are the only vertices for amplitude on-shell diagrams
(cf. section 2.4),

1

3 2
= A3,2 =

δ4(λ1λ̃1 +λ2λ̃2 +λ3λ̃3)δ8(λ1η̃1 +λ2η̃2 +λ3η̃3)
〈12〉〈23〉〈31〉

,

1

3 2
= A3,1 =

δ4(λ1λ̃1 +λ2λ̃2 +λ3λ̃3)δ4([12] η̃3 + [23] η̃1 + [31] η̃2)
[12] [23] [31]

.

(3.11)

http://xxx.lanl.gov/abs/1011.1899
http://xxx.lanl.gov/abs/1107.5067
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the minimal (two-point MHV) form factor appears as a third basic vertex:

2 1
= F2,2 =

δ4(λ1λ̃1 +λ2λ̃2 − q)δ4(λ1η̃
+
1 +λ2η̃

+
2 )δ

4(λ1η̃
−
1 +λ2η̃

−
2 − γ

−)

〈12〉〈21〉
.

(3.12)

In principle, these diagrams can directly be evaluated using the expressions
for the MHV subdiagrams and performing the phase-space integration. In chap-
ter 4, however, we will derive a Graßmannian integral representation which
greatly facilitates the calculation. Before we turn to these questions of how to
evaluate the diagrams, we will discuss some of their properties which manifest
themselves on a diagrammatic level. This will also serve to present a range of
example diagrams. We will start with the inverse-soft constructibility of certain
form factor diagrams.

3.4 Inverse soft limits

Figure 3.1: k-preserving inverse soft
factor.

Just like MHV amplitudes, MHV form factors can be constructed by attaching so
called k-preserving inverse soft factors, shown in figure 3.1, to the diagram with
one external leg less. This follows directly from the recursion relation (3.10).

The inverse soft factor guarantees the correct behavior when particle i be-
comes soft: for example, when acting on MHV form factors or amplitudes, the
inverse soft factor simply multiplies the original expression with a factor 〈i−1 i+
1〉/(〈i−1 i〉〈i i+1〉)while appropriately adjusting the (super) momentum conserv-
ing delta functions. Some MHV form factor diagrams exhibiting this structure are
shown in figure 3.2.

1

2

3

1

4

3
2

1

5

4

3
2

Figure 3.2: The on-shell diagrams for the
MHV form factors F3,2, F4,2 and F5,2

(top to bottom).

Note that in the recursion relations, on can choose different positions for the
BCFW bridges while recursing to lower and lower point amplitudes; diagrammat-
ically this translates into the statement that the position at which each inverse
soft factor is attached can be arbitrary. This can also be understood from the fact
that all form factors are cyclicly invariant, in particular the MHV-sub-diagrams
appearing in the diagrams of higher point form factors, cf. figure 3.2. Therefore
these sub-diagrams can be rotated, keeping the rest of the diagram fixed. This
leaves the form factor (3.7) unchanged.

The other extreme are so called NmaxMHV form factors, i.e. those with k = n.
In contrast to MHV amplitudes, these are not related to their MHV counterparts
by parity, since the operator itself would transform under such a conjugation.
Nevertheless, these form factors have the property that they can be represented
by single diagrams. According to the recursion relations (3.10), these are con-
structed by attaching k-increasing inverse soft factors, shown in figure 3.3, to
the minimal form factor. Again, the position at which they placed is arbitrary. As
an example, the on-shell diagram of the form factor F4,4 is shown in figure 3.4.

Figure 3.3: k-increasing inverse soft
factor.

1

4

3
2

Figure 3.4: The on-shell diagrams for the
NmaxMHV form factor F4,4.

We note that it has been shown in Nandan and Wen (2012)14 – without using
14 Nandan, Wen, “Generating All Tree
Amplitudes in N = 4 SYM by Inverse
Soft Limit”, 1204.4841

the language of on-shell diagrams, that all tree-level amplitudes and form factors
can recursively be constructed using only these two types of inverse soft factors.

http://xxx.lanl.gov/abs/1204.4841
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3.5 Cyclicity and equivalence moves

For pure on-shell diagrams, equivalence classes of diagrams are generated by the
set of moves presented in figure 2.4 on page 30. While it is clear that these moves
can also be applied to form factor on-shell diagrams, yielding diagrams with
same analytic expression, the question arises whether these moves are enough
to transform any such form factor diagram into any equivalent one.

While we leave the analytic evaluation of these diagrams in terms of Graß-
mannian integrals to the following chapter, we can use the fact that form factors
are cyclicly invariant (i.e. invariant under cyclic relabellings of the external on-
shell legs) in order to see that further moves are required. The simplest such
cases are the two three-point form factors; their cyclic invariance implies that

1

2

3
=

2

3

1
=

3

1

2
,

1

2

3
=

2

3

1
=

3

1

2
.

(3.13)

We can consider these identities whenever such three-point form factors appear
as subdiagrams of a larger diagram. The fact that the diagrams obtained by ro-
tating these subdiagrams are equivalent is not manifest a priori; we are there-
fore led to consider the identities (3.13) as new equivalence moves. Note that
they appear in a similar way as the box move for amplitudes, which likewise ex-
presses the fact that the “smallest” amplitude with a non-trivial on-shell diagram
is cyclicly invariant.

Although we do not have a general proof,15 we suspect that similar to the15 Proving this statement is complicated
by the fact that the correspondence
of diagrams to permutations breaks
down for form factors, see section 3.8
below.

case of the box move, the three-point moves (3.13), together with the known
ones for amplitude diagrams are complete, in the sense that they are enough to
generate all equivalence relations.16 In figure 3.5, we exemplify this for the case

16 In passing we note that the moves
(3.13) and the equivalence classes
they generate, such as cyclic rotations
of any MHV diagrams, can result in
diagrams which are nonplanar, in the
sense that the minimal form factor is
inserted inside the diagram. We will
come back to this observation when
we discuss the integrability properties
of form factors and nonplanar on-
shell diagrams in chapters 7, 9 and 10.

of the four-point MHV form factor, showing its cyclic invariance. We first use
the merge/unmerge and box moves, and in the last step rotate the three-point
form factor sub-diagram. The same argument applies recursively to all MHV and
NmaxMHV form factor diagrams, and shows that diagrams obtained by cyclic
relabeling are equivalent, on a diagrammatic level.

3.6 A relation to amplitude diagrams

The striking parallels between on-shell diagrams for amplitudes and for form
factors suggest to look for a mapping between the two which will allow to recycle
known results concerning the former into new results for the latter. Effectively,
we are looking for a mapping which replaces the minimal form factor by some
amplitude, or vice versa.
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Figure 3.5: Diagrammatic proof of
the cyclic invariance of the four-
point MHV form factor using the
equivalence moves of amplitude
on-shell diagrams and rotating the
three-point form factor sub-diagram.

In order to preserve the Graßmann degree, the corresponding amplitude
should be of MHV type; noting that in contrast to the two three-point ampli-
tudes, the minimal form factor can appear as a factor on both sides of the BCFW
factorization in (3.10), we see that the minimal choice is to relate it to the four-
point amplitude:

←→ . (3.14)

While (3.14) does not imply a general relation between full amplitudes and full
form factors, it will be extremely useful in what follows.

Indeed, recursing the relations (3.10) down to MHV amplitudes and form fac-
tors, i.e. to individual on-shell diagrams, we see that every diagram contributing
to the form factor Fn,k, can be turned into a BCFW term of the n+ 2 point am-
plitude An+2,k upon replacing the minimal form factor by a four-point amplitude.
This implies that all possible BCFW terms descend from top-cell diagrams, which
are related to the corresponding amplitude top-cell diagrams by (3.14):

n · · · 3 2 1

n+ 2n+ 1

TopCell(An,k)

−→

n · · · 3 2 1

TopCell(Fn,k)

, (3.15)

This relation will allow us to derive the Graßmannian integral representation for
form factors in the next chapter, making use of the corresponding representation
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for amplitudes. We will see that the relations (3.14) and (3.15) also preserve the
number of degrees of freedom in the Graßmannian, motivating the use of the
term “top-cell” for these diagrams.1717 We use the term “top-cell diagram” in

a slightly heuristic way. It solely refers
to the fact that the Graßmannian
form related to the diagram is top
dimensional, but does mean that
these forms necessarily have an
interpretation in terms of some
strati�cation. Due to the relation
(3.15), we nevertheless �nd this
nomenclature appropriate.

Besides making it possible to get the Graßmannian top-form via a shortcut,
the correspondence (3.14) will turn out to be a valuable tool also for the deter-
mination of the “contour” for form factors – the combination of (multivariable)
poles in the Graßmannian top-form that combine into the correct tree-level form
factor, which will be explored in chapter 5.

3.7 Multiple top-cell diagrams

A very important difference to amplitude on-shell diagrams is the fact that there
are multiple “top-cell” diagrams, i.e. diagrams that – as we will elaborate in
chapter 4 – correspond to top-dimensional integrals in the Graßmannian.

According to the relation (3.15), we can generate such diagrams, for each
number of external legs n and MHV degree k, by taking the amplitude top-cell
diagram with n+2 legs and the same MHV degree, and replacing a box diagram
at two arbitrary neighboring legs by the minimal form factor. The amplitude top-
cell diagram is not only unique for given n and k, it is also cyclicly invariant.
By replacing A4,2 → F2,2 at two particular, neighboring external legs, we break
this cyclicity. This means that there are precisely n top-cell diagrams. They are
related to each other by cyclic shifts of the labels of the external on-shell states.

While we leave the analytic evaluation of the diagrams for the next chapter,
where we will explicitly see that any single such diagram (except for the cases
k = 2 and k = n of course) is not cyclic in its on-shell legs, we state already here
that also from the current viewpoint, these diagrams are not related by the moves
in figure 2.4 and equation (3.13), and therefore the different top-cell diagrams
are really inequivalent.

Consider for example the case of the four-point NMHV form factor. Two of
its top-cell diagrams are given in figure 3.6 and the other two can be obtained
by cyclicly rotating the labels 1, 2, 3 and 4. From (3.10) we see that the actual
form factor consists of four terms under the BCFW decomposition:

F4,3 = Ai + Bi + Ci + Di . (3.16)

Here the terms correspond to the factorization channels

Ai : F2,2 × A4,2

Bi : A4,2 × F2,2

Ci : F3,3 × A3,1

Di : A3,2 × F3,2

(3.17)

with BCFW shifts at legs i and i + 1.
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Figure 3.6: Two top-cell diagrams for the
form factor F4,3. The deletable edges
are marked, and the BCFW terms that
can be obtained by removing them
are shown. The dashed boxes combine
terms that together form a BCFW
representation of the form factor.
There are two more top-cell diagram
which generate the same terms in
di�erent combinations.

Drawing the corresponding diagrams and using the equivalence moves given
in figure 2.4 and equation (3.13) one can see that the following relations be-
tween different terms hold:

Ai = D(i+2) mod 4 , Bi = C(i+2) mod 4 . (3.18)

Just as for the six-point NMHV amplitude from which the top-cell diagrams were
generated in figure 3.6 using the relation (3.15), the BCFW terms correspond to
co-dimension one residues of the top-dimensional Graßmannian integral (which
we will present in the next chapter) and can thus be obtained by deleting single
edges from the top-cell diagrams. As it turns out, one needs two top-cell diagrams
to obtain all four terms; these are shown in figure 3.6, where the deletable edges
are marked. Removing them, four possible BCFW terms can be obtained, two of
which have to be combined with two other ones from the top-cell diagram with
labels shifted by two.

In general, even more top-cell diagrams are needed, and the combinatorics
become more intricate; we will present a complete analysis for all NMHV form
factors in chapter 5.
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3.8 Permutations

Amplitude on-shell diagrams are associated to (decorated) permutations, as we
described in section 2.4. The permutation is equivalent to the diagram and en-
codes the same information. Moreover, it relates the diagram to the positroid
stratification and gives a direct link to the geometry of the Graßmannian. Can
something similar be said of form factor on-shell diagrams? A priori, one can
think of multiple ways of assigning permutations to these diagrams. We will de-
scribe them here, and they will all play a role in subsequent chapters.

If we want to read off a permutation from a form factor diagram using the
left-right paths of amplitude diagrams as in section 2.4, we need a prescription
for the paths running into the minimal form factor. A natural choice is to turn
back in this situation:

2 1
→ σ = (1, 2) . (3.19)

This rule allows to deduce a permutation for form factor top-cell diagrams. Ac-
cording to (3.15), they are obtained from the amplitude top-cell diagram with
two more legs and associated permutation

TopCell(An+2,k) : σ = (k+ 1, . . . , n, n+ 1, n+ 2,1, 2, . . . , k) . (3.20)

If we again focus on the case where the minimal form factor is inserted at position
n+ 1 and n+ 2 using (3.15), then (3.19) leads to the following permutation:

TopCell(Fn,k) : σ = (k+ 1, . . . , n, k− 1, k, 1, 2, . . . , k− 2) . (3.21)

This type of permutation (not only of top-cell diagrams) will be an important
ingredient for the integrability construction in chapter 8, and for the proof of
integrability related symmetries.

However, this type of permutation is not enough to specify the diagram. We
will describe the construction of diagrams by decomposing permutations into
transpositions which then give a sequence of BCFW bridges that result in the
diagram in chapter 8. Here we just note that for example, one of the top-cell dia-
grams of the four-point NMHV form factor shown in figure 3.6 has the permuta-
tion (4,2, 3,1). The decomposition which leads to the correct diagram is given by
(1, 2)/ (3,4)/ (2, 3)/ (1,2)/ (3,4), which is not minimal. A non-minimal decom-
position is needed to generate enough degrees of freedom in the Graßmannian.
In a way this is similar to the on-shell diagrams of amplitude loop integrands.

Another way of assigning a permutation to a given form factor diagram is to
remove the minimal form factor, and then to use the permutation of the resulting
on-shell diagram with n+2 legs. Together with the knowledge at which legs the
minimal form factor has to be glued in, this is sufficient to construct the diagram.
For the top-cell diagram with the minimal form factor at legs n+1 and n+2 the
corresponding permutation of the on-shell part of the diagram is given by

TopCell(Fn,k) without F2,2 : σ̃ = (k+1, . . . , n, n+2, n+1,1, 2, . . . , k, k−1) . (3.22)
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The permutation σ̃ is furthermore useful, in that it allows to generate a Graß-
mannian integral representation of this on-shell part, as discussed in section 4.2.
This will be very useful for the derivation of the Graßmannian integral for form
factors in section 4.3.

3.9 Leading singularities and on-shell functions

Although our focus is on on-shell diagrams for tree-level form factors, it is im-
portant to mention that of course, in more generality, on-shell diagrams which
include the minimal form factor also represent leading singularities of loop-level
form factors.

12

Figure 3.7: Triple cut of the minimal
one-loop form factor represented as
an on-shell diagram.

As an example, consider the diagram in figure 3.7. It is the coefficient of
the one-loop triangle integral, when calculating the minimal, i.e. two-point, one-
loop form factor. In fact, this integral is the only contribution to this form factor
since the stress-tensor is protected, and bubble integrals are UV divergent.18 By

18 Gehrmann, Henn, Huber, “The three-
loop form factor in N = 4 super
Yang-Mills”, 1112.4524

considering the number of delta functions in the constituent parts of this diagram,
and the number of phase space integrations, we see that this diagram has one
unfixed integration, as is appropriate for a triple cut of a one-loop integral.

Since we now know that all tree-level form factors can be represented via
on-shell diagrams, it follows that all leading singularities are given in terms of
diagrams which only involve three-point amplitudes and the minimal form factor.

We often will consider arbitrary on-shell diagrams built from the three-point
amplitudes (3.11) and the minimal form factor (3.12) without regarding their
potential interpretation as (BCFW terms of) tree-level form factors, leading sin-
gularities or other cuts of loop integrands, or any other physical quantity. In this
context we refer to the analytic expressions they represent as on-shell functions.

It is natural to also consider on-shell diagrams which contain the minimal
tree-level form factor of other operators, in particular component operators in-
stead of full multiplets. So far, no super BCFW recursion relations have been
published for such general operators, and it is very likely that such recursion
relations require supermultiplets. While this means that it is unclear whether
general tree-level form factors can be represented by on-shell diagrams, some
of these diagrams are leading singularities of the respective loop-level form fac-
tors, and thus of considerable interest. We will come back to this larger class of
on-shell diagrams when we study their relation to integrability in section 8.4.

http://xxx.lanl.gov/abs/1112.4524
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Amplitude on-shell diagrams are deeply connected to the Graßmannian integral
representation of scattering amplitudes, as briefly summarized in chapter 2. The
strikingly similar diagrammatic structure of form factors we just described raises
the question whether there is a corresponding analytic expression for them. The
aim of this chapter is to present such an integral formula.

We will first consider the kinematical question of how to accommodate the
off-shell momentum q of the operator in the way the Graßmannian integral lin-
earizes momentum conservation, cf. section 2.5. Parametrizing it in terms of two
on-shell momenta, we find that the integral will naturally be one over the Graß-
mannian G(k, n + 2), for MHV degree k and n external on-shell states. After
showing how to “glue” the minimal form factor of the chiral stress-tensor multi-
plet onto arbitrary on-shell diagrams in section 4.2, we will then use the relation
(3.15) to do this for the top-forms in section 4.3 obtaining the main result of this
chapter: a general expression for the form factor Graßmannian integral, given
in equation (4.25), which we furthermore express in twistor, and novel momen-
tum twistor variables. To check our result, and to show that it can indeed be used
for the efficient calculation of tree-level form factors, we calculate a variety of
examples in section 4.5 and compare them to results in the literature.

The results presented here mark a first step towards a Graßmannian, or geo-
metric, formulation for more general quantities, and in particular to those involv-
ing off-shell kinematics. There is some progress in this direction, see for example
the papers Bork and Onishchenko (2017a,b),1 which applied similar arguments

1 Bork, Onishchenko, “Wilson lines,
Grassmannians and gauge invariant
o�-shell amplitudes in N = 4 SYM”,
1607.02320; and Bork, Onishchenko,
“Grassmannian integral for general
gauge invariant o�-shell amplitudes
in N = 4 SYM”, 1610.09693

as those presented here to obtain a Graßmannian integral representation for am-
plitudes involving off-shell gluons.

http://xxx.lanl.gov/abs/1506.08192
http://xxx.lanl.gov/abs/1607.02320
http://xxx.lanl.gov/abs/1610.09693


48 | Form factors as Graßmannian integrals

4.1 Graßmannian geometry and the o�-shell
momentum

Before setting out to construct a Graßmannian integral for form factors, it is
useful to set up convenient conventions for the kinematics. The Graßmannian
integral nicely separates these kinematics, encoded in the delta functions, from
the “dynamical” content of the differential form on the Graßmannian. This will
allow us to focus on the latter when doing the actual calculations, leading to the
Graßmannian integral for form factors.

The Graßmannian integral linearizes momentum (and super momentum)
conservation by expressing – schematically – δ(P) = δ(λ ·λ̃) as δ(C ·λ̃)δ(C⊥ ·λ).
This means that momentum conservation, which can be regarded as the orthog-
onality of spinor-helicity variables λ and λ̃, seen as two-planes in Cn, is replaced
by the requirement that λ̃ is orthogonal to an auxiliary k-plane C , while λ is con-
tained in it, as described in more detail in section 2.5. Note that this geometric
picture is only viable for on-shell momenta, which factor into spinors. We there-
fore propose to parametrize the off-shell momentum in terms of two on-shell
momenta,22 Recall that we de�ne the momentum

of the operator to be “incoming”,
hence the minus sign. See section 3.2
and in particular equation (3.8).

−q = λn+1λ̃n+1 +λn+2λ̃n+2 . (4.1)

Of course, this parametrization is redundant; the off-shell momentum q has four
degrees of freedom, while the two on-shell momenta together have 8, 6 of which
are physical, and two corresponding to unfixed little group scaling. Instead of
fixing some degrees of freedom, we choose to put the redundancy entirely into
the holomorphic spinors λ by setting them to arbitrary non-collinear reference
spinors ξA and ξB. This determines the λ̃ in terms of these spinors and the actual
momentum q. The full kinematic setup for n on-shell particles and the operator
insertion is then given by the following set of variables, which we will distinguish
from the original variables by underlining them:

λi = λi , i = 1, . . . , n , λn+1 = ξA , λn+2 = ξB ,

λ̃i = λ̃i , i = 1, . . . , n , λ̃n+1 = −
〈ξB|q
〈ξBξA〉

, λ̃n+2 = −
〈ξA|q
〈ξAξB〉

.
(4.2)

Analogously, we can decompose the supermomentum as follows

η̃+i = η̃
+
i , i = 1, . . . , n , η̃+n+1 = 0 , η̃+n+2 = 0 ,

η̃−i = η̃
−
i , i = 1, . . . , n , η̃−n+1 = −

〈ξB|γ−

〈ξBξA〉
, η̃−n+2 = −

〈ξA|γ−

〈ξAξB〉
.

(4.3)

Note that in these expressions, we introduced the notation (〈ξ|q)α̇ = εβαξβqαα̇.
The preceding discussion suggests that the Graßmannian integral for form

factors with n external on-shell states should be one over the Graßmannian
G(k, n+ 2). This is in line with the observation (3.14) which relates the mini-
mal form factor to the four-point amplitude (with two more external legs), and
in particular with the possible MHV degrees of form factors: While the ampli-
tude An has components An,k with k = 2, . . . , n−2, the component with maximal



4.2 Gluing the operator into on-shell diagrams | 49

MHV degree is Fn,n for an n-point form factor. Integrals over G(k, n+2) are non-
singular precisely in this range. We use the underlined variables (4.2) and (4.3)
to unambiguously refer to the entire set of on-shell variables for n + 2 “parti-
cles”, and linearize the constraint imposed by (super) momentum conservation
by requiring C · λ̃= 0, C · η̃= 0 and C⊥ ·λ= 0 with C ∈ G(k, n+ 2).

4.2 Gluing the operator into on-shell diagrams

To calculate Graßmannian integral representations for form factor on-shell dia-
grams, we can use the fact that apart from a single insertion of the minimal form
factor, they are the same as amplitude on-shell diagrams. Instead of constructing
the Graßmannian representation “from scratch”, by gluing together all the Graß-
mannians corresponding to the three-point vertices and the minimal form factor,
we can therefore use the known representation of these parts and combine them.
Here, we will develop this procedure for general diagrams; the important case
of top-cell diagrams will then be discussed in section 4.3.

Considering some diagram, we start by decomposing it into the minimal form
factor F2,2 given in (3.12), and the rest of the diagram, which is purely on-shell
and has n+2 legs, see figure 4.1 For the purpose of the following calculations it
is convenient to write the minimal form factor (3.12) as

n+2n+1

n · · · 3 2 1

Ion-shell

Figure 4.1: Gluing the minimal form fac-
tor onto some on-shell diagram with
Graßmannian integral representation
Ion−shell.

F2,2(1,2) =δ2
�

λ̃1 −
〈2|q
〈21〉

�

δ2
�

η̃−1 −
〈2|γ−

〈21〉

�

δ2(η̃+1 )

δ2
�

λ̃2 −
〈1|q
〈12〉

�

δ2
�

η̃−2 −
〈1|γ−

〈12〉

�

δ2(η̃+2 )
(4.4)

which can easily be verified.3 3 This representation of the minimal
form factor will play another role in
the integrability-based construction in
chapter 8.

The on-shell part has the following integral representation:

Ion-shell =

∫

dα1

α1
· · ·

dαm

αm
δk×2(C ′ · λ̃)δk×4(C ′ · η̃)δ(n+2−k)×2(C ′⊥ ·λ) . (4.5)

Here we expressed the integral in terms of so-called edge variable αi which are
associated to the BCFW bridges the diagram is built of, see section 2.5. There
are m such variables and this is the dimension of the corresponding cell in the
Graßmannian G(k, n+ 2) with its representative matrix C ′ implicitly depending
on these variables C ′ = C ′(αi). Note that this integral depends on the n on-shell
momenta of the form factor, as well as two additional on-shell particles which do
not correspond to external kinematics; we therefore do not use the underlined
variables (4.2) and (4.3).

To obtain an expression for the entire form factor diagram, we now need to
glue these pieces, the on-shell part (4.5) and the minimal form factor (4.4), to-
gether by performing the phase space integrations. For concreteness we assume
that the legs which the minimal form factor attaches to are n+1 and n+2. Not-
ing that the two on-shell states of the minimal form factor have to be incoming,
which we implement by changing the sign of the corresponding λ’s, we can write
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the following expression for the complete diagram:

IF =

∫ n+2
∏

i=n+1

�

d2λi d2λ̃i

Vol[GL(1)]
d4η̃i

�

F2,2(n+ 1, n+ 2)
�

�

�

λ→−λ
Ion-shell(1, . . . , n+ 2) ,

(4.6)

In order to carry out the phase space integration, we first use the delta functions
of the minimal form factor (4.4) to integrate over the variables of type λ̃ and η̃
which sets

λ̃n+1→−
〈n+ 2|q
〈n+2 n+1〉

, η̃−n+1→−
〈n+ 2|γ−

〈n+2 n+1〉
, η̃+n+1→ 0 ,

λ̃n+2→−
〈n+ 1|q
〈n+1 n+2〉

, η̃−n+2→−
〈n+ 1|γ−

〈n+1 n+2〉
, η̃+n+2→ 0 .

(4.7)

We parametrize the remaining integrations, i.e.λn+1 andλn+2 modulo the GL(1)2

redundancy, using two variables β1, β2, via

λn+1 = ξA− β1ξB , λn+2 = ξB − β2ξA , (4.8)

It will turn out that the reference spinors ξA and ξB introduced here correspond
exactly to those used in (4.2). Since 〈n+1 n+2〉 = (β1β2 − 1)〈ξBξA〉 instead of
(4.7) we can write

λ̃n+1→
1

β1β2 − 1
〈ξB|q
〈ξBξA〉

+
β2

β1β2 − 1
〈ξA|q
〈ξAξB〉

,

η̃−n+1→
1

β1β2 − 1
〈ξB|γ−

〈ξBξA〉
+

β2

β1β2 − 1
〈ξA|γ−

〈ξAξB〉
,

λ̃n+2→
1

β1β2 − 1
〈ξA|q
〈ξAξB〉

+
β1

β1β2 − 1
〈ξB|q
〈ξBξA〉

,

η̃−n+2→
1

β1β2 − 1
〈ξA|γ−

〈ξAξB〉
+

β1

β1β2 − 1
〈ξB|γ−

〈ξBξA〉
.

(4.9)

We keep the β integrations as new “edge variables”, associated to the operator
part of the diagram:
∫

d2λn+1

Vol[GL(1)]
d2λn+2

Vol[GL(1)]
= 〈ξAξB〉〈ξBξA〉

∫

dβ1dβ2 . (4.10)

Combining this measure with (4.9) applied to (4.6), we find the following for-
mula for the form factor diagram:

IF = 〈ξAξB〉〈ξBξA〉
∫

dα1

α1
· · ·

dαm

αm

dβ1 dβ2

(1− β1β2)2

× δk×2
�

C(αi ,βi) · λ̃
�

δk×4
�

C(αi ,βi) · η̃
�

δ(n+2−k)×2
�

C⊥(αi ,βi) ·λ
�

, (4.11)

Because (4.9) is linear in the underlined variables defined in (4.2) and (4.3), we
have absorbed the gluing in a new matrix C in this expression, and recovered
the Graßmannian picture of the kinematics anticipated in section (4.1).

The explicit form of the matrix C depends on the diagram under consider-
ation, but we can specify how the gluing procedure mixes the entries of the
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original matrix C and introduces the dependence on the variables β1 and β2.
The columns of C(α,β) = (C1 · · ·Cn+2) are given in terms of those of C ′(α) =
(C ′1 · · ·C

′
n+2) by

Ci = C ′i for i = 1, . . . , n ,

Cn+1 =
1

1− β1β2
C ′n+1 +

β1

1− β1β2
C ′n+2 ,

Cn+2 =
1

1− β1β2
C ′n+2 +

β2

1− β1β2
C ′n+1 .

(4.12)

which fixes C⊥ to

C⊥i = C ′⊥i for i = 1, . . . , n ,

C⊥n+1 = C ′⊥n+1 − β2C ′⊥n+2 ,

C⊥n+2 = C ′⊥n+2 − β1C ′⊥n+1 .

(4.13)

Note that the factor of (1−β1β2)2 in (4.11) stems from rewriting the delta func-
tions involving C⊥, which generates a Jacobian. To see this, write the delta func-
tions in terms of the C ′ or C matrices as

δ(n+2−k)×2(C⊥ ·λ) =
k
∏

K=1

∫

d2ρK δ
(n+2)×2 (λi −ρLCLi) , (4.14)

with ραK , K = 1, . . . , k. Considering only the columns n+ 1 and n+ 2, the corre-
sponding delta functions need to be rewritten as

δ2(λn+1 −ρLC ′L n+1)δ
2(λn+2 −ρLC ′L n+2)

→ δ2(λn+1 −ρLCL n+1 − β1(λn+2 −ρLCL n+2))

δ2(λn+2 −ρLCL n+2 − β2(λn+1 −ρLCL n+1))

=
1

(1− β1β2)2
δ2(λn+1 −ρLCL n+1)δ

2(λn+2 −ρLCL n+2) .

(4.15)

A remarkable property of the procedure outlined above is the fact that it pre-
serves the degrees of freedom under the mapping between amplitude and form
factor diagrams (3.14). Removing a four-point amplitude reduces the number of
edge variables by two, which will then be reinstated in form of the variables β1

and β2. This gives further evidence for the usefulness of this mapping, and is the
starting point for the calculation of the Graßmannian top-form for form factors,
to which we turn now.

4.3 Gluing the top-form

Having established a general scheme for calculating Graßmannian integrals for
arbitrary on-shell diagrams (using edge variables), we can now turn to the ques-
tion of finding the top-forms, expressed in a GL(k)-invariant way using the mi-
nors of the C matrix.
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The general idea is as follows: Based on the conjectured relation between
form factor and amplitude top-cell diagrams given in equation (3.15), we first
find the form factor top-cell diagram for a given number of external legs n and
MHV degree k. We focus on the diagram where the minimal form factor sits
between legs n and 1, and deal with the cyclicly related diagrams later. Having
this diagram, we then in particular know the on-shell diagram with the minimal
form factor removed; as described in section 3.8, its associated permutation is
given by

σ̃ = (k+ 1, . . . , n, n+ 2, n+ 1, 1,2, . . . , k, k− 1) . (4.16)

Using this permutation, we can obtain an integral representation in terms of
edge variables: we first decompose the permutation into elementary transpo-
sitions corresponding to BCFW bridges; one can then use boundary measure-
ments4 to generate the C ′ matrix in terms of these variables. For practical pur-

4 See section 2.5 for details.

poses, these steps are conveniently automatized by the Mathematica package
positroid.m.5

5 Bourjaily, “Positroids, Plabic Graphs,
and Scattering Amplitudes in Mathe-
matica”, 1212.6974

We then glue the minimal form factor back onto the diagram, using the formu-
las derived in section 4.2. Finally, the resulting integral is expressed in a GL(k)
invariant way by changing variables to the entries Ci j of the matrix C and ex-
pressing the integrand in terms of its minors.

1

23

4

65

È

1

23

4
65

α2

α4

α1α6

α3α5

α7

È

1

23

4

Figure 4.2: Gluing one of the top-cell
diagrams for the form factor F4,3.
We start with the six-point NMHV
amplitude top-cell diagram, remove a
box, and glue the minimal form factor
into this position. We show the edges
carrying the edge variables used in the
main text.

We exemplify this approach using the four-point NMHV top-cell diagram. As
displayed in figure 4.2, we start from the top-cell diagram of the six-point NMHV
amplitude. Removing the box diagram at legs 5 and 6, we obtain the on-shell
part of the diagram for the four-point NMHV form factor top-cell. This on-shell
diagram is likewise shown in figure 4.2 with the edge variables αi that can be
obtained from decomposing the associated (decorated) permutation of the dia-
gram,

σ̃ = (4,6, 5,7, 9,8) . (4.17)

In terms of these variables, the representative matrix in the Graßmannian has
the form

C ′(α) =







1 α2 +α4 0 −α2α3 −α2α3α6 0

0 1 0 −α3 −α3α6 −α1

0 0 1 α5 +α7 α5α6 0






, (4.18)

which can be brought to into the standard gauge fixed form by a GL(3) rotation:6

6 This form of the matrix facilitates the
change of variables below.

C ′ ∼







1 0 0 α3α4 α3α4α6 α1(α2 +α4)
0 1 0 −α3 −α3α6 −α1

0 0 1 α5 +α7 α5α6 0






. (4.19)

We can now glue the minimal form factor into the diagram. According to (4.12),
this gives us a new matrix C which depends on the original edge variables and

http://xxx.lanl.gov/abs/1212.6974
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two new degrees of freedom β1 and β2:

C =







1 0 0 α3α4 −α3α4α6+α1(α2+α4)β1
−1+β1β2

−α1(α2+α4)+α3α4α6β2
−1+β1β2

0 1 0 −α3
α3α6+α1β1
−1+β1β2

α1+α3α6β2
−1+β1β2

0 0 1 α5 +α7
α5α6

1−β1β2

α5α6β2
1−β1β2






. (4.20)

The on-shell form associated with the diagram is then

1
α1α2α3α4α5α6α7(1− β1β2)2

. (4.21)

We now want to express this form in a GL(3) invariant way, in terms of the
minors of the matrix C . To this end, we note that the Jacobian from this change
of variables is

∂ (CI j)

∂ (αk,β1,β2)
=
α2

1α2α
2
3α5α6

(1− β1β2)5
. (4.22)

One can then check that (4.21) is equivalent to the form

Ω4,3 =
1

(123)(234)(345)(456)(561)(612)
(345)(612)

(346)(512)− (345)(612)
. (4.23)

Result for all n and k

Directly proving a general formula for the top-form analogous to (4.23) is diffi-
cult, since the Jacobian ∂ (CI j)/∂ (αk,β1,β2) can in general be very complicated.
Nevertheless, we have repeated the procedure outlined above for a very large
number of examples, and invariably found that the top-form with the minimal
form factor glued in at the positions n + 1 and n + 2 (with these kinematical
variables encoding the off-shell data as in (4.2)) in the amplitude diagram was
given by following expression, which we confidentally conjecture to be correct
for all n and k:

Ωn,k =
Y (1− Y )−1

(1 · · · k)(2 · · · k+1) · · · (n · · · k−3)(n+1 · · · k−2)(n+2 · · · k−1)
,

Y =
(n−k+2 · · ·n n+1)(n+2 1 · · · k−1)
(n−k+2 · · ·n n+2)(n+1 1 · · · k−1)

.

(4.24)

Thus the Graßmannian top-form is given by an amplitude-like form for G(k, n+2)
with a product of the consecutive minors, together with a “correction factor”
Y /(1− Y ), which involves the labels of the minimal form factor and their neigh-
bors, and accounts for the operator insertion.7 7 We note that after changing to the

edge variables {αi ,β1,β2} which
are used in the gluing procedure,
Y always equals β1β2. Thus the
factor Y (1− Y )−1 cancels a factor of
[β1β2(1− β1β2)]−1 which is present in
the consecutive minors, but not in the
gluing formula (4.11).

As already noted in section 3.7, there are n distinct top-dimensional on-shell
diagrams for any k and n, which differ by the position of the minimal form factor
and thus are related by a cyclic shift of the external on-shell legs. If we define
the shift s = 0, . . . , n − 1 such that s = 0 means that the minimal form factor
comes after leg n and before leg 1, and in general after leg s, we can write the
corresponding top-form by either shifting the labels of the kinematical variables
or equivalently, by relabeling the columns of the matrix C . We therefore define
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the Graßmannian integral for a general shift by

G Fn,k [s] = 〈ξAξB〉2
∫

dk×(n+2)C
Vol[GL(k)]

Ωn,k

�

�

σs
δ2×k(C ·λ̃)δ4×k(C ·η̃)δ2×(n+2−k)(C⊥·λ) ,

(4.25)

where the shift by s is given as

σs =







1 2 · · · n− 1 n n+ 1 n+ 2

↓ ↓ ↓ ↓ ↓ ↓
1+ s 2+ s s− 1 s n+ 1 n+ 2






with i + n' i (4.26)

and the form Ωn,k is defined in (4.24).

Special case: MHV

Just as MHV amplitudes, MHV form factors are rather special. In particular they
can be represented by a single on-shell diagram as discussed in section 3.4, and
their Graßmannian integral completely localizes on the delta functions. Here
we want to show that the MHV Graßmannian integral can be rewritten in a way
that makes the similarities to the amplitude Graßmannian integral manifest, and
which allows to directly see that all MHV form factors are given by the simple
Parke-Taylor-type formula (3.7).

We again focus on the case where the minimal form factor is attached to legs
n+1 and n+2, although in this case it does not matter, as MHV form factors are
represented by a single diagram and are cyclicly invariant (in the external on-
shell data). We first note that the unusual factor in the Graßmannian top-form
(4.24) can in this case be written as

Y
1− Y

�

�

�

�

k=2

=
(n n+1)(n+n+ 2 1)

(n n+2)(n+1 1)− (n n+1)(n+2 1)
=
(n n+1)(n+2 1)
(n 1)(n+1 n+2)

, (4.27)

where the last equality follows from a Plücker relation. The Graßmannian form
thus simplifies to88 We note that this form is identical

to the integrand of the connected
formula for form factors presented in
He, Liu, “A note on connected formula
for form factors”, 1608.04306
and Brandhuber, Hughes, Panerai,
Spence, Travaglini, “The connected
prescription for form factors in twistor
space”, 1608.03277. We will discuss
this representation in chapter 6, cf.
equation (6.1).

Ωn,2 =
1

(12)(23) · · · (n−1 n)(n1)
1

(n+1 n+2)2
. (4.28)

The Parke-Taylor-type expression for the form factor Fn,2 is the same as the
one for An,2, up to the additional (super) momentum in the delta functions. We
can realize this relation on the level of the Graßmannian integral, further sim-
plifying (4.28), and writing it in a way that completely resembles its amplitude
counterpart. We present the derivation using an explicit gauge; the final result
will be independent of this choice. Let us fix the C matrix to be of the form

C =

�

1 0 c′13 · · · c′1 n+2

0 1 c′23 · · · c′2 n+2

�

, (4.29)

using the GL(2) gauge freedom. We furthermore set the reference spinors that
parametrize the freedom in representing the off-shell momentum in terms of two

http://xxx.lanl.gov/abs/1608.04306
http://xxx.lanl.gov/abs/1608.03277
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on-shell momenta as in (4.2) to

ξA ≡ λn+1 = λ2 and ξB ≡ λn+2 = λ1 . (4.30)

The four delta functions among δ(C⊥ · λ) which involve the (n + 1)th and
(n+ 2)th rows of C then impose

−C1 n+1λ
α
1 − C2 n+1λ

α
2 +λ

α
2 = 0 , −C1 n+2λ

α
1 − C2 n+2λ

α
2 +λ

α
1 = 0 . (4.31)

Solving these constraints yields a Jacobian 〈12〉−2 which cancels the prefactor in
the general expression (4.11), and C is reduced to

C =

�

1 0 C13 · · · C1n 0 1

0 1 C23 · · · C2n 1 0

�

. (4.32)

In particular, note that now (n+1 n+2)2 = 1. This already means that the form
(4.28) becomes identical to the one for the amplitude An,2.

If we further define the matrix C∗ to be C without the last two columns,
we can combine coefficients in the delta functions and write the Graßmannian
integral as
∫

d2×nC∗

Vol[GL(2)]
δ4(C∗ · λ̃)δ8(C∗ · η̃)δ2n−4(C∗⊥ ·λ)

(12)(23) · · · (n−1 n)(n1)
. (4.33)

Here we defined the kinematical variables as follows:

λ̃r = λ̃r −
〈s|q
〈sr〉

, η̃−r = η̃
−
r −
〈s|γ−

〈sr〉
, η̃+r = η̃

+
r ,

λ̃s = λ̃s −
〈r|q
〈rs〉

, η̃−s = η̃
−
s −
〈r|γ−

〈rs〉
, η̃+s = η̃

+
s .

(4.34)

for some r and s and λ̃i = λ̃i , η̃i = η̃i for all other indices. Note that from
our derivation using the choice of gauge and reference spinors as in (4.29) and
(4.30), we would get r = 1 and s = 2, but it can easily be seen that in fact
these two indices can be arbitrary. They correspond to “twisted” kinematics, in
the sense that the momenta pr and ps together contain the off-shell momentum,
pr + ps = pr + ps − q, and similar for the super momentum.

Since this encoding is done using only the antiholomorphic variables λ̃ and η̃,
it is clear that (4.33) leads to the well-known formula formula for MHV form fac-
tors (3.7): the holomorphic Parke-Taylor prefactor is not changed by the “twisted”
kinematics (4.34), and their only effect is to put the kinematics of the operator,
q and γ− into the delta functions.

4.4 Twistor and momentum twistor space

As discussed in chapter 2, twistor and momentum twistor space have played an
important role in developing on-shell formulations for amplitudes. The Graß-
mannian integral and the geometric picture it draws of scattering processes can
best be understood in these settings.
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In this section we provide such twistor space formulations for form factor
Graßmannian integral (4.25) which we derived in spinor-helicity variables. While
the transition to twistor space is straightforward, there are new interesting fea-
tures when going to momentum twistor space. There is a natural ambiguity in
the definition of momentum twistors if an off-shell momentum participates in the
process; we will see that the Graßmannian integral favors a different convention
from the one used in other approaches.

To be definite, we will again only consider the case where the minimal form
factor is glued in between the particles n and 1. We therefore assume kinematics
as defined in (4.2) and (4.3), and note that all spinor brackets are defined with
respect to these variables.

Twistor space

The Graßmannian integral for form factors (4.25), written in terms of the spinor-
helicity variables (4.2) and (4.3) can easily be transformed to twistor space

Wi = (µ̃i , λ̃i , η̃i) , (4.35)

where we simply apply Witten’s half Fourier transformation9 to all the on-shell9 Witten, “Perturbative gauge theory
as a string theory in twistor space”,
hep-th/0312171

momenta, including those that parametrize the off-shell momentum:

f (λ, λ̃, η̃)→ f (µ̃, λ̃, η̃) =

∫

d2λ j exp(−iµ̃αj λ jα) f (λ, λ̃, η̃) . (4.36)

This is in complete analogy with the amplitude case,10 see also sections 2.1 and10 Arkani-Hamed, Cachazo, Cheung,
Kaplan, “A Duality For The S Matrix”,
0907.5418

2.5. Applying this transformation is straightforward; the prefactor in (4.25) be-
comes

〈ξAξB〉2 =
­

∂

∂ µ̃n+1

∂

∂ µ̃n+2

·2

, (4.37)

and the integral itself transforms as in the amplitude case. With the delta func-
tions δ2×(n+2−k)(C⊥ · λ) written as in (4.14), we apply the Fourier transform
(4.36) and localize the integrals over λi via these delta functions, and find

δ2×(n+2−k)(C⊥ ·λ)→
k
∏

K=1

∫

d2ρK exp
�

−i
n+2
∑

j=1

k
∑

L=1

ραL CL jµ̃α j

�

= δ2k(C ·µ̃) . (4.38)

Combining everything we can write (4.25) as

­

∂

∂ µ̃n+1

∂

∂ µ̃n+2

·2
∫

dk×(n+2)C
Vol[GL(k)]

Ωn,k δ
4k|4k(C · W ) , (4.39)

where Ωn,k is the same form as in spinor-helicity variables, and given in (4.24).
While the derivatives appearing in (4.39) may seem undesirable, this form of the
integral was the most compact expression we could find. It would be interesting
to see if this formula can be cast into a more explicit form.

http://xxx.lanl.gov/abs/hep-th/0312171
http://xxx.lanl.gov/abs/0907.5418
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Momentum twistor space

In order to transform the Graßmannian integral (4.25) to momentum twistor
space, we first have to define these variables – which are not unique due to the
presence of the off-shell momentum of the operator.

In the literature, the dual momenta yi are set up using only the on-shell
momenta of the outgoing particles.11 Since these do not add up to zero, but to 11 Brandhuber, Gurdogan, Mooney,

Travaglini, Yang, “Harmony of Super
Form Factors”, 1107.5067; and Bork,
“On form factors in N = 4 SYM theory
and polytopes”, 1407.5568

the off-shell momentum of the operator −q, the dual momenta do not form a
closed lightlike polygon; instead a periodic contour (with period q) has to be
considered. From these (in principle) infinite points in y space one then defines
momentum twistors as described in section 2.1. This construction is illustrated
in figure 4.3.

In the same figure, we also show the kinematic picture we use here. The Graß-
mannian integral forces us to take a different viewpoint: We close the polygon
in y space by the two on-shell momenta that parametrize q; this can be done
between any two consecutive momenta, corresponding to the different positions
at which the minimal form factor can be glued into the on-shell diagram, and
the cyclic shifts in the Graßmannian integral (4.25).

p1

p2 p3

p4

p5p6

y1

y2

y3

y4

y5

y6

Figure 4.3: The momenta and dual
momenta for a four-point form factor.
The black arrows correspond to the 4
on-shell momenta pi of the external
states; they are repeated according
to the cyclic ordering, to form the
periodic contour that is widely used in
the literature to de�ne dual momenta
and momentum twistors. In this
picture the o�-shell momentum is
implicitly de�ned as the period of the
contour. In contrast, the gray regions
indicate two of the closed contours
needed for the Graßmannian integral;
here the o�-shell momentum is
decomposed into two on-shell
momenta (dashed arrows), which
can be inserted between any two
consecutive on-shell momenta. The
corresponding closed polygons then
de�ne the dual momenta yi used
here.Concretely we define dual momenta y and dual supermomenta ϑ based on

the variables defined in (4.2) and (4.3), ordered such that the off-shell data is
given in terms of particles n+ 1 and n+ 2,

λiλ̃i = yi − yi+1 ,

λiη̃i = ϑi − ϑi+1 .
(4.40)

This corresponds to the first closed polygon in figure 4.3. Using these dual mo-
menta, we define momentum twistor variables

Zi = (λi ,µi ,ηi) , (4.41)

via the incidence relations

µi = λi yi = λi yi+1 , ηi = λiϑi = λiϑi+1 , (4.42)

http://xxx.lanl.gov/abs/1107.5067
http://xxx.lanl.gov/abs/1407.5568
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just as in section 2.1. These relations can be inverted, and give

λ̃i =
〈i+1 i〉µi−1 + 〈i i−1〉µi+1 + 〈i−1 i+1〉µi

〈i−1 i〉〈i i+1〉
,

η̃i =
〈i+1 i〉ηi−1 + 〈i i−1〉ηi+1 + 〈i−1 i+1〉ηi

〈i−1 i〉〈i i+1〉
.

(4.43)

Apart from these questions regarding kinematics, the transformation of the
integral (4.25) to momentum twistor space is non-trivial because the integrand
contains non-consecutive minors. Since this is a new feature, we will present the
derivation step-by-step, following the works Arkani-Hamed et al. (2010); Elvang
et al. (2014).1212 Arkani-Hamed, Cachazo, Cheung,

“The Grassmannian Origin Of Dual Su-
perconformal Invariance”, 0909.0483;
and Elvang, Huang, Keeler, Lam, Ol-
son, Roland, Speyer, “Grassmannians
for scattering amplitudes in 4d N = 4
SYM and 3d ABJM”, 1410.0621

We first represent the delta function δ2×(n+2−k)(C⊥ · λ) involving the matrix
C⊥ as in (4.14), using an integral over the auxiliary matrix ρ. A part of the GL(k)
redundancy can be used to fix this matrix to

ρ =

�

0 · · · 0 1 0

0 · · · 0 0 1

�

. (4.44)

With this choice, the delta functions in (4.14) can be used to fix the last two rows
of C to

Ck−1 i = λ
1
i , Ck i = λ

2
i . (4.45)

This in turn allows to extract the momentum and super momentum conserving
delta functions, such that the Graßmannian integral (4.25) becomes

〈ξAξB〉2δ4(λ · λ̃)δ8(λ · η̃)
∫

d(k−2)×(n+2)C
Vol[GL(k− 2)n Tk−2]

Ωn,k δ
2×(k−2)(C · λ̃)δ4×(k−2)(C · η̃) ,

(4.46)

where both the measure as well as the delta functions refer to the first k−2 rows
of C only, and Tk−2 is a residual shift symmetry acting on these rows,

CI i −→ CI i + r1Iλ
1
i + r2Iλ

2
i , I = 1, . . . , k− 2 , (4.47)

with r1I , r2I arbitrary.
Defining a new matrix D, which will be the representative for the Graßmann-

ian G(k− 2, n+ 2) in the momentum twistor Graßmannian integral, as

DI i =
〈i i+1〉CI i−1 + 〈i−1 i〉CI i+1 + 〈i+1 i−1〉CI i

〈i−1 i〉〈i i+1〉
, (4.48)

we can rewrite the delta functions using

n+2
∑

i=1

CI iλ̃i = −
n+2
∑

i=1

DI iµi ,
n+2
∑

i=1

CI iη̃i = −
n+2
∑

i=1

DI iηi , I = 1, . . . , k− 2 , (4.49)

which follow from (4.43).
We can furthermore relate the minors of the matrices C and D. In the deriva-

tion of the amplitude case it was shown that the consecutive minors of C can be
express in terms of those of D by

(1 · · · k)C = −〈12〉 · · · 〈k−1 k〉(2 · · · k−1)D (4.50)

http://xxx.lanl.gov/abs/0909.0483
http://xxx.lanl.gov/abs/1410.0621


4.4 Twistor and momentum twistor space | 59

The other consecutive minors follow from cyclic relabeling. Note that in this
section, we will indicate the matrix a minor refers to by a subscript.

It is a new feature of Graßmannian integral for form factors that the form
(4.24), also contain non-consecutive minors, for which we find

(1 . . . k−1k+1)C = −〈1 2〉 · · · 〈k−2 k−1〉〈k−1 k+1〉(2 . . . k−1)D
−〈12〉 · · · 〈k−2 k−1〉〈k k+1〉(2 . . . k−2k)D ,

(13 . . . k+1)C = −〈13〉〈34〉 · · · 〈k k+1〉(3 . . . k)D
−〈1 2〉〈3 4〉 · · · 〈k k+1〉(24 . . . k)D .

(4.51)

From (4.50) we see that the product of consecutive minors in (4.24) becomes

(1 · · · k)C · · · (n+2 · · · k−1)C
= (−1)n+2 (〈1 2〉 · · · 〈n+21〉)k−1 (1 · · · k)D · · · (n+2 · · · k−1)D .

(4.52)

while for the cross-ratio Y we find using (4.51)

Y =
(n−k+2 · · ·n n+1)C(n+2 1 · · · k−1)C
(n−k+2 · · ·n n+2)C(n+1 1 · · · k−1)C

=
〈n n+1〉(n−k+3 · · ·n)D

〈n n+2〉(n−k+3 · · ·n)D + 〈n+1 n+2〉(n−k+3 · · ·n−1 n+1)D
〈n+2 1〉(1 · · · k−2)D

〈n+11〉(1 · · · k−2)D + 〈n+1 n+2〉(n+2 2 · · · k−2)D
.

(4.53)

The transformation of the measure is the same as in Elvang et al. (2014).13 13 Elvang, Huang, Keeler, Lam, Olson,
Roland, Speyer, “Grassmannians for
scattering amplitudes in 4d N = 4
SYM and 3d ABJM”, 1410.0621

Using the shift symmetry Tk−2 to set CI1 = CI2 = 0 we get

d(k−2)×(n+2)C
Vol[GL(k− 2)n Tk−2]

= 〈12〉k−2 d(k−2)×(n)C
Vol[GL(k− 2)]

. (4.54)

The change of variables from C to D yields

d(k−2)×(n)C
Vol[GL(k− 2)]

=
�

〈12〉 · · · 〈n+2 1〉
〈12〉2

�k−2 d(k−2)×(n)D
Vol[GL(k− 2)]

. (4.55)

Finally, the gauge fixing of the first two columns of the C matrix can be undone,
which gives a further factor of
∏

I=1,··· ,k−2

〈12〉δ2(DI iλi) (4.56)

The final expression is then

G Fn,k [0] = Fn,2

∫

d(k−2)×(n+2)D
Vol[GL(k− 2)]

Ωn,k δ
4(k−2)|4(k−2)(D · Z ) , (4.57)

where the form Ωn,k is given by

Ωn,k =

〈n 1〉〈n+1 n+2〉
〈n n+1〉〈n+2 1〉

Y
1− Y

(1 · · · k−2)(2 · · · k−1) · · · (n+1 · · · k−4)(n+2 · · · k−3)
(4.58)

and Y is given in (4.53).

http://xxx.lanl.gov/abs/1410.0621
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Distinguished reference spinors

The Graßmannian integral in momentum twistor space as presented in (4.57)
and (4.53) unfortunately – and in contrast to its amplitude counterpart – still
depends explicitly on explicit spinor brackets involving the external kinematics.
In particular this introduces a nontrivial (but fictitious) dependence on the ref-
erence spinors ξA and ξB. It turns out that this is a consequence of the way
momentum twistor variables were introduced, based on dual momenta that as-
sume a (fictitious) cyclic ordering of the external momenta involving the off-shell
momentum q.

We can however write the Graßmannian integral in an equivalent much sim-
pler form, which more closely resembles the spinor-helicity version, by a judi-
cious choice of reference spinors. If we set them to

ξA ≡ λn+1 = λ1 , ξB ≡ λn+2 = λn , (4.59)

the Graßmannian integral (4.57) simply becomes

Fn,2

∫

d(k−2)×(n+2)D
Vol[GL(k− 2)]

−Ỹ (1− Ỹ )−1 δ4(k−2)|4(k−2)(D · Z )
(1 · · · k−2)(2 · · · k−1) · · · (n+1 · · · k−4)(n+2 · · · k−3)

.

(4.60)

Here Ỹ is again just a ratio of non-consecutive minors (although no cross-ratio)

Ỹ =
(n−k+3 · · ·n)(1 · · · k−2)

(n−k+3 · · ·n−1 n+1)(n+2 2 · · · k−2)
. (4.61)

4.5 More examples

In section 4.3 we already showed how the Graßmannian integral for form fac-
tors in spinor-helicity variables (4.25) reproduces the known MHV form factors.
In this section we calculate some further examples, also using the momentum
twistor space description derived in the previous section, to show that the Graß-
mannian indeed is able to reproduce highly non-trivial results for higher MHV
degree.

Three-point NMHV

3 1

4 5

2

È

1

2

3

Figure 4.4: The on-shell part of the form
factor F3,3, and the complete on-shell
diagram. The former is simply a
k-increasing inverse soft factor.

The simplest form factor with higher MHV degree is the three-point NMHV form
factor F3,3. Like all NmaxMHV form factors, it can be obtained from k-increasing
inverse soft limits of the minimal form factor, in this case a single one, see figure
4.4. The Graßmannian integral representation (4.25) for this form factor is

G F3,3[0] = 〈ξAξB〉2
∫

d3×5C ′

Vol[GL(3)]
Y

1− Y
δ6(C ′ · λ̃)δ12(C ′ · η̃)δ4(C ′⊥ ·λ)
(123)(234)(345)(451)(512)

, (4.62)

with

Y =
(234)(512)
(235)(412)

(4.63)



4.5 More examples | 61

and where the off-shell kinematics are encoded in the on-shell variables at posi-
tion 4 and 5 as in (4.2).

Since the form factor is of NmaxMHV type, the integral completely localizes
on the delta functions, once the momentum and super momentum conserving
delta functions have been pulled out of the integral. We first gauge fix the matrix
C by setting the first three columns to the identity matrix,

C =







1 0 0 C14 C15

0 1 0 C24 C25

0 0 1 C34 C35






, (4.64)

and then solve for the remaining entries by contracting the terms inside δ6(C ′ ·λ̃)
with λ̃4 and λ̃5. This fixes the entries to

Ci4 = −
[i5]
[45]

= −
〈ξA|q|i]

q2
, Ci5 = −

[i4]
[54]

= −
〈ξB|q|i]

q2
, (4.65)

where we have used the definition of the kinematics (4.2) in the second step.
Inserting the solution (4.65) into the delta functions δ4(C ′⊥·λ), we obtain the

momentum-conserving delta function contracted with λ̃4 and λ̃5. Rotating them
to the usual form gives a Jacobian of [45]2, which, together with the Jacobian
[45]−3 from the previous contraction with λ̃4 and λ̃5, gives [45]−1.

Plugging everything back into the Graßmannian integral (4.62) and applying
a Schouten identity, we find

F3,3 = G F3,3[0] =
(q2)2

[12] [23] [31]
δ12(C · η̃)δ4

�

3
∑

i=1

pi − q

�

, (4.66)

where we leave the entries (4.64) and (4.65) of the matrix C implicit. This for-
mula agrees with the result of Brandhuber et al. (2011).14 14 Brandhuber, Gurdogan, Mooney,

Travaglini, Yang, “Harmony of Super
Form Factors”, 1107.5067

Interestingly, the cyclic invariance of the form factor is not manifest in the
Graßmannian representation (4.62). The final expression (4.66) obtained from
it is nevertheless manifestly invariant under cyclic relabeling of the legs 1, 2 and
3, as can be seen from (4.65).

NmaxMHV at 3 and 4 points using momentum twistors

We now turn to the Graßmannian integral in momentum twistor variables, using
the convenient choice of reference spinors presented in (4.60). The results will
be written in terms of the SL(4)-invariant four-brackets

〈i j k l〉= det(Zi Z j ZkZl) = εABC DZA
i ZB

j ZC
k Z D

l (4.67)

using the bosonic components of the super momentum twistors, Zi = (λi ,µi), as
well as the five-brackets

[i j k l m] =
δ4(〈i j k l〉ηm + cyclic)

〈i j k l〉〈 j k l m〉〈k l m i〉〈l m i j〉〈m i j k〉
. (4.68)

Focusing first on the NmaxMHV form factors with k = n, the simplest case is
again the three-point form factor which we just computed in the spinor-helicity

http://xxx.lanl.gov/abs/1107.5067
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representation. For k = 3,

D =
�

d1 d2 · · · dn+2

�

. (4.69)

The consecutive minors of D are of course simply given by (i) = di . The “non-
consecutive minors” which also appear in the Graßmannian integral for form
factors are also given by a single di which can be inferred from (4.51). Hence,
the Graßmannian integral (4.60) becomes

Fn,2

∫

d1×(n+2)D
Vol[GL(1)]

1

1− dn+1dn+2
d1dn

1
d1 · · · dn

1
dn+1dn+2

δ4|4(D · Z ) . (4.70)

Specializing to n= 3 we can write the form factor F3,3 as

F3,3 = F3,2

∫

d1×5D
Vol[GL(1)]

δ4|4(d1Z1 + d2Z2 + d3Z3 + d4Z4 + d5Z5)
�

1− d4d5
d1d3

�

d1d2d3d4d5

. (4.71)

The GL(1) redundancy can be used to fix d5 = 〈1 234〉, and the other integration
variables are completely determined by the delta functions:

d1 = 〈2 34 5〉 , d2 = 〈3 45 1〉 , d3 = 〈4 51 2〉 , d4 = 〈5 12 3〉 . (4.72)

Thus,

F3,3 = F3,2
[12 34 5]

1− 〈51 23〉〈1 23 4〉
〈23 45〉〈4 51 2〉

, (4.73)

While we use a different definition of the momentum twistor variable compared
to Bork (2014),15 the result numerically agrees with the one from this paper.1615 Bork, “On form factors in N = 4 SYM

theory and polytopes”, 1407.5568

16 Recall that we use the “cyclic” contour
for the dual momenta instead of the
periodic one, see section 4.4 and in
particular �gure 4.3.

For the next case, the form factor F4,4, the Graßmannian matrix D can be
gauge-fixed to

D =

�

1 0 d13 d14 d15 d16

0 1 d23 d24 d25 d26

�

. (4.74)

Solving the constraints imposed by the delta functions we find for the remaining
entries

di3 = −
〈i 4 56〉
〈34 56〉

, di4 = +
〈i 3 56〉
〈34 56〉

, di5 = −
〈i 34 6〉
〈34 56〉

, di6 = +
〈i 34 5〉
〈3 45 6〉

,

(4.75)

where i = 1, 2. Plugging this into the integral (4.60) we find

F4,4 = F4,2
〈13 45〉〈13 46〉〈13 56〉〈2 346〉〈2 35 6〉〈2 45 6〉 [13 45 6] [23 45 6]
〈12 34〉〈12 36〉〈34 56〉2(〈1 246〉〈1 34 5〉+ 〈12 56〉〈34 56〉)

.

(4.76)

We have successfully compared components of this expression against the results
presented in Brandhuber et al. (2011).17

17 Brandhuber, Gurdogan, Mooney,
Travaglini, Yang, “Harmony of Super
Form Factors”, 1107.5067

http://xxx.lanl.gov/abs/1407.5568
http://xxx.lanl.gov/abs/1107.5067
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Four- and �ve-point NMHV using momentum twistors

Starting from the four-point NMHV form factor, the Graßmannian integral has
free integration variables, and we have to evaluate it by calculating suitable
residues. In particular, we have to consider multiple, cyclicly related top-forms as
discussed in section 4.3. We will come back to the question of how to determine
the set of residues which yield the tree-level form factor in chapter 5; here we
will pick the residues simply “by hand” and focus on their actual calculation.

For arbitrary n, the form in (4.70) has poles for

di = 0 , i = 2, . . . , n− 1, n+ 1, n+ 2 ,

d1 =
dn+1dn+2

dn
, dn =

dn+1dn+2

d1
, dn+1 =

d1dn

dn+2
, dn+2 =

d1dn

dn+1
.

(4.77)

Because of the additional factor in the form (4.70) compared to the amplitude
integral, we could already encounter more complicated and in particular com-
posite residues. We find, however, that the only residues needed to reconstruct
the tree-level form factors are those where a subset of the di ’s are zero, and these
can be thought of as sequentially taking residues in a single complex variable. As
for amplitudes,18 these poles can be specified by the five di ’s which remain non- 18 Elvang, Huang, Keeler, Lam, Olson,

Roland, Speyer, “Grassmannians for
scattering amplitudes in 4d N = 4
SYM and 3d ABJM”, 1410.0621

zero. In contrast to the amplitude case, these always have to include d1 and dn,
since otherwise the Ỹ /(1− Ỹ ) part in (4.70) blows up.

We can distinguish two types of residues, depending on whether they involve
the columns associated to the operator or not. In the first case, no residues are
taken with respect to dn+1 and dn+2. The corresponding residue then reads

Resi =
1

1− 〈n+2 1 n i〉〈1 n i n+1〉
〈n i n+1 n+2〉〈i n+1 n+21〉

[i n+1 n+2 1 n] , (4.78)

where i ∈ {2, . . . , n − 1}. In the second case, at least one residue is taken with
respect to either dn+1 or dn+2. The resulting expressions are

gResi, j,k = [i j k 1 n] , (4.79)

where i, j, k ∈ {2, . . . , n − 1, n + 1, n + 2}. Analogous expressions hold for the
shifted top-forms, with kinematics as in figure 4.3.

Numerically comparing with the results of Bork (2014),19 we find 19 Bork, “On form factors in N = 4 SYM
theory and polytopes”, 1407.5568

F4,3 = F4,2

�

Res3 +gRes2,3,5 +Ress=2
3 +gRes

s=2

2,3,5

�

,

F5,3 = F5,2

�

Res4 +gRes3,4,6 +gRes
s=3

2,3,6 +Ress=3
3 −gRes2,3,4

+gRes2,3,6 +gRes
s=3

3,4,7 −gRes
s=3

2,3,4 +Ress=1
5

�

,

(4.80)

where the superscript s specifies the shift.

The previous examples show that the Graßmannian integral formulation can be
used to compute form factors efficiently; we now turn to the question of deter-
mining the correct combination of residues systematically.

http://xxx.lanl.gov/abs/1410.0621
http://xxx.lanl.gov/abs/1407.5568




5
The BCFW contour

for NMHV

This chapter is based on
the author’s publication
Meidinger, Nandan, Penante, Wen, “A
note on NMHV form factors from the
Graßmannian and the twistor string”,
1707.00443.

As its amplitude counterpart, the Graßmannian integral for form factors (4.25)
has to be considered as a contour integral. After extracting the momentum and
super momentum conserving delta functions one can use the remaining delta
functions to eliminate some of the integrations over the entries of the represen-
tative matrix C parametrizing the Graßmannian G(k, n+2). The remaining inte-
grations can then be localized on the multi-variable poles of the integrand, and
each such pole gives rise to a different BCFW term or leading singularity; global
residue theorems1 generate non-trivial relations between these quantities. The 1 Gri�ths, Harris, “Principles of

algebraic geometry”, Wiley, New York,
NY, 1994

correct contour, i.e. the combination of residues which gives the BCFW decompo-
sition of the tree-level amplitude or form factor, is independent data that needs
to be specified. In section 4.5, we calculated some form factors by manually pick-
ing the correct combination of residues; in this chapter we want to show how to
systematically determine the contour for all NMHV form factors from recursion
relations and the geometries in the Graßmannian encoded by on-shell diagrams.

In order to construct this “contour”, which will be presented in equation
(5.21), we need to specify the location of all poles contributing to the BCFW
representation. This location is expressed as a set of minors of the Graßmannian
matrix C which vanish at that point. The corresponding configuration of points
can be expressed in different ways. We will see that there is a particularly conve-
nient choice, which allows to see the general structure.

A major new challenge compared to the amplitude Graßmannian is the fact
that we have to deal with multiple top-forms, i.e. top-dimensional forms on the
Graßmannian, each corresponding to a diagram related to the amplitude top-cell
diagram as discussed in section 3.7. Any form factor is given in terms of a sum
of residues of these top-forms. For each such contributing term, we therefore not
only have to specify the location of the pole, but also the top-form from which
the residue is taken. This poses some interesting questions: Are the residues at
a given point the same for all top-forms which contain such a pole? Can the
“contour” really be interpreted as a contour, by summing multiple top-forms into
a single integrand for which a single contour can be specified? Or can we merely
give a prescription for taking certain terms of the BCFW sum from particular

http://xxx.lanl.gov/abs/1707.00443
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top-forms individually? These questions render the form factor Graßmannian
integral more intricate compared to its amplitude counterpart. We think that
much can be learned from this preliminary study of the NMHV case which will
be of importance for higher MHV degrees, the investigation of which we leave
for future work.

5.1 The NMHV top-forms

Before deriving the contour, we introduce some useful notation, which also al-
lows to write the Graßmannian integral (4.25) for the NMHV in a compact way.
Since we will have to deal with multiple top-forms, we first want to make the
cyclic structure of external on-shell states (excluding the states representing the
operator) more explicit. To this end, we label the columns of the C matrix corre-
sponding to the operator (the two columns which get modified by gluing in the
minimal form factor, see section 4.2) with x and y . Likewise we will label the
two on-shell momenta that parametrize the off-shell momentum q in this way,
in particular we call the reference spinors simply λx and λy .

Extending a widely used notation,2 we denote consecutive minors by a single2 See for example Arkani-Hamed, Bour-
jaily, Cachazo, Trnka, “Uni�cation of
Residues and Grassmannian Dualities”,
0912.4912 and Bourjaily, Trnka,
Volovich, Wen, “The Grassmannian
and the Twistor String: Connecting All
Trees in N = 4 SYM”, 1006.1899.

label, and write minors which contain both columns x and x using the single
remaining label and underlining it,

(i) := (i i+1 i+2) ,

(i) := (i x y) .
(5.1)

This notation is useful in order to express the contour in a way which respects
the actual ordering of the external states, in which x and y do not participate.
Here and in the rest of this chapter, we therefore also cyclicly identify the labels
of the external on-shell states.

For NMHV, we can represent the Y /(1 − Y ) part of the Graßmannian form
(4.24) using intersections of lines in CP2. Interpreting the columns Ci of the
matrix C as homogeneous coordinates of points inCP2, we write the intersection
of lines (i j) and (kl) as

(i j)∩ (kl) := Ci( jkl)− C j(ikl) , (5.2)

and thus define the intersection “minor”

(rs(i j)∩ (kl)) = (rsi)( jkl)− (rs j)(ikl) . (5.3)

It is zero if the three lines (rs), (i j) and (kl) intersect, and only depends on the
orientation of these lines,

(rs(i j)∩ (kl)) = (kl(rs)∩ (i j)) = (i j(kl)∩ (rs))

= −(kl(i j)∩ (rs)) = −(i j(rs)∩ (kl)) = −(rs(kl)∩ (i j)) ,
(5.4)

which can be shown using Plücker relations.

http://xxx.lanl.gov/abs/0912.4912
http://xxx.lanl.gov/abs/1006.1899
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Using these notations, we can write the Graßmannian integral for NMHV
form factors, with arbitrary shifts s, i.e. insertion positions of the operators, as

G Fn,3 [s] = 〈x y〉2
∫

d3×(n+2)C
Vol[GL(k)]

δ2×3(C · λ̃)δ4×3(C · η̃)δ2×(n−1)(C⊥ ·λ)
�

(1) · · · (n− 2) (1)(n) (x y(n−1 n)∩ (12))
�

σs

(5.5)

where σs is a cyclic shift by s in the on-shell labels,

σs =







1 2 · · · n− 1 n x y

↓ ↓ ↓ ↓ ↓ ↓
1+ s 2+ s n− 1+ s n+ s x y






with i + n' i (5.6)

which is permutes these labels in the integrand of (5.5). Note that the only non-
consecutive minors in this expression (in the sense of the color ordering, see
(5.1)) stem from the “minor” of type (5.3) that contains the intersection of lines.

5.2 Extracting the geometry from diagrams

Given an (amplitude) on-shell diagram, with an associated decorated permuta-
tion σ(i) ≥ i, we can determine the corresponding constraints on the represen-
tative matrix C in the Graßmannian as follows:3 If we interpret the columns of 3 Arkani-Hamed, Bourjaily, Cachazo,

Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605

C as points in CPk−1, then the permutation σ(i) labels the first column (in cyclic
order) such that

Ci ∈ span {Ci+1, · · · , Cσ(i)} . (5.7)

For NMHV this means that

σ(i) = i + 2 =⇒ (i i+1 i+2) = 0 , (5.8)

and this is enough to specify a contour of integration in the Graßmannian as a
torus around a point where a set of minors vanishes.4 We will denote a residue 4 For higher k degree, it is necessary to

consider so-called composite residues,
for which minors factorize on the zero
locus of others.

at a pole where the minors (i1) up to (in−3) vanish by {(i1), · · · , (in−3)}. Any com-
bination of such residues simultaneously define a contour in the Graßmannian.

For form factor diagrams we adopt a strategy which makes use of the relation
with amplitude diagrams discussed in section 3.6 and the gluing procedure of
section 4.2: We will simply replace the minimal form factor in the diagram by
a box diagram, and then read off the permutation and the configuration in the
Graßmannian. This works, because any constraints which do not involve the two
columns corresponding to the operator insertion are also present in the purely
on-shell part of the form factor diagram, with the minimal form factor removed.
This smaller diagram however has more such constraints, since it corresponds to
a cell in the Graßmannian with two degrees of freedom less. Gluing in the box
precisely removes these spurious restrictions.

http://xxx.lanl.gov/abs/1212.5605
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The BCFW recursion relations (3.10) for NMHV take the following form:

Fn,3 =
n−2
∑

nl=2

· · ·
· · ·

Fnl ,2 Anr ,2

1 n

+
n
∑

nl=3

· · ·
· · ·

Anl ,2 Fnr ,2

1 n

+

· · ·
Fn−1,3

1 n

(5.9)

where nr = n−nl +2. Without loss of generality, and in order to make a compar-
ison with amplitudes easier, we choose to use the common BCFW shift at legs
n and 1. We will discuss these three types of terms separately, reading off the
configuration of points and thus obtaining the set of poles which have to be in-
cluded in the contour. Of course, the last term in (5.9) is recursive, and we will
give an explicit solution to this recursion afterwards.

MHV form factor × MHV amplitude

We first consider the diagrams in (5.9) which have an MHV form factor on the
left side of the factorization and an MHV amplitude on the right. If we replace the
minimal form factor by a four-point amplitude, we can read off the permutation
as shown in figure 5.1.

Figure 5.1: A type of on-shell diagram
contributing to the NMHV form factor
with n external legs. The form factor
factorizes into a lower point MHV
form factor and an MHV amplitude
with nr = n − nl + 2 external legs.
The minimal form factor has been
replaced by a box, with on-shell legs
x and y parametrizing the kinematics
of the operator. Left-right paths
indicating the associated permutation
are sketched in red. Only paths going
from i to i + 2 are shown.

Because the permutations associated to the two MHV subdiagrams are given by
σl/r(i) = i+2, each forces the Ci connected to its external states to lie on a line.
More concretely, we see from the left part of figure 5.1 that C1 up to Cnl−1 lie all
on the line (x y), which enforces the vanishing of the minors (1) to (nl − 1):

x y 1 · · · nl − 1 −→ (1), . . . , (nl − 1) = 0 (5.10)

From the right hand side of figure 5.1, we can read off the collinearity of Cnl
to
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Cn−1 which implies that the following minors vanish:

nl nl + 1 · · · n− 2 n− 1 −→ (nl), . . . , (n− 3) = 0 (5.11)

This gives n− 3 residues of the form

{(1), . . . , (nl − 1), (nl), . . . , (n− 3)} , for nl = 2, . . . , n− 2 . (5.12)

Since the MHV form factor is cyclicly invariant, for each term we can take the
residue from any top-form with a shift of

s = 0,1, . . . , nl − 1 . (5.13)

Strictly speaking, the cyclicity of the MHV form factor only implies possible shifts
from 1 to nl−1;5 we nevertheless have checked that a shift of zero also produces 5 A shift of 0 has the minimal form

factor between particle n and particle
1 which is – diagrammatically –
incompatible with our choice of BCFW
shift.

the correct result. This follows from the consistency of the set of all possible
BCFW shifts. Moreover, we note that the top-forms with these shifts are exactly
those which contain a pole of the given form.

MHV amplitude × MHV form factor

We can repeat this analysis for the diagrams where the MHV amplitude is on
the left and the MHV form factor on the right side of the factorization. These
diagrams and their left-right path structure are displayed in figure 5.2.

Figure 5.2: The on-shell-diagrams
of factorization channels of the
form factor Fn,3 with a lower point
MHV amplitude on the left and
an MHV form factor on the right,
with nr = n − nl + 2. The minimal
form factor has been replaced by
a box, with on-shell legs x and y
parametrizing the kinematics of the
operator. Left-right paths indicating
the associated permutation are
sketched in red. Only paths going
from i to i + 2 are shown.

Similar to the form factor × amplitude case, the subdiagrams force the points Ci

to lie on two lines, each corresponding to one of the subdiagrams:

1 2 · · · nl − 1 −→ (1), . . . , (nl − 3) = 0 (5.14)

for the amplitude and

x y nl · · · n− 1 −→ (nl), . . . , (n− 1) (5.15)
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for the form factor. This give n− 2 terms with poles

{(1), . . . , (nl − 3), (nl), . . . , (n− 1)} , for nl = 3, . . . , n , (5.16)

and possible shifts

s =

(

nl − 1, . . . , n− 1 for nl = 3, . . . , n− 1

0, n− 1 for nl = n
, (5.17)

which again follow from the cyclicity of the sub form factor. We also note that
the shift s = 0 does not follow from these diagrammatic considerations, but was
checked in a number of cases to also work. Furthermore these shifts give again
all top-forms which contain the respective pole.

Lower point NMHV form factor

The last term in (5.9) is the most interesting one, since it contains the lower point
form factor Fn−1,3, which itself will be given in terms of a sum of diagrams. Dia-
grammatically, it is just the inverse soft limit of the n−1 point NMHV form factor,
with the k-preserving inverse soft factor, introduced in section 3.4, attached. See
figure 5.3 for a sketch of the diagrams.

Figure 5.3: The recursive on-shell
diagram contributing to the form
factor Fn,3. The lower point NMHV
form factor Fn−1,3, which itself is
given in terms of multiple diagrams,
is extended by an inverse soft factor,
which contributes an additional
vanishing minor (n − 1) to the
con�guration of the subdiagrams.

For each term in the sub form factor Fn−1,3, this additional inverse soft factor
imposes (n−1) = 0, in addition to the vanishing minors of the lower point form
factor:
∑

subdiagrams

{poles of subdiagram} ∪ {(n− 1)} (5.18)

Note that the possible shifts are inherited from the subdiagram.
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5.3 The contour in closed form

Because of the recursive nature of the terms corresponding to a sub NMHV form
factor, we haven’t obtained a closed expression for the “contour” yet. We can
however solve this recursion, as we explain now, by enumerating all configura-
tions which contribute. For this, take the set of numbers 1, . . . , n− 1. These are
the labels that can appear either as (i) or (i), since (n) and (n) never appear.
Now sum over all possibilities to remove two consecutive labels; this splits the
set into two, {1, . . . , k} and {k + 3, . . . , n − 1}, and gives the residues shown in
figure 5.4 together with the corresponding configurations of points Ci .

{(1), (2), . . . , (n− 3)} {(1), (2), . . . , (n− 4), (n− 1)} . . . {(1), (4), (5), · · · , (n− 1)} {(3), (4), · · · , (n− 2), (n− 1)}

1 2 · · · n− 2 n− 1

n x
y

1 2 · · · n− 2

n

n− 1 x
y

1 2 3

n
...

4

x
y

1

n
...

4

3

2

x
y

Figure 5.4: All residues contributing
to Fn,3, with poles not involving
the columns x and y , and the
con�gurations they represent.

This gives all residues where the points Cx and Cy are in generic positions. Next,
for each of these terms, we add further residues, which all impose restrictions
on these two columns, by replacing poles (i) by (i).

We first sum over all sets of minors which have the first minors of the set
{1, . . . , k}, those below the gap of two missing labels, replaced by their under-
lined versions, as shown in figure 5.5:

{(1), (2), . . . , (k), (k+ 3), . . . , (n− 1)} {(1), (2), . . . , (k), (k+ 3), . . . , (n− 1)} . . . {(1), . . . , (k), (k+ 3), . . . , (n− 1)}

yx 1

n
...

k+ 3

2
...

k+ 2

yx 1 2

n
...

k+ 3

3
...

k+ 2

yx 1 2 · · · k

n
...

k+ 3

k+ 1
k+ 2

Figure 5.5: Set of residues and corre-
sponding con�guration where the
points Cx and Cy align with the points
with labels ≤ k.

Then we do the same for the second subset of labels, those above the gap, again
changing the (i) minors to (i) one at a time, see figure 5.6:

{(1), . . . , (k), (k+ 3), (k+ 4), . . . , (n− 1)} {(1), . . . , (k), (k+ 3), (k+ 4), . . . , (n− 1)} . . . {(1), . . . , (k), (k+ 3), (k+ 4), . . . , (n− 1)}

1 2 · · · k+ 2

n
...

k+ 4

x
y

k+ 3

1 2 · · · k+ 2

n
...

k+ 5

x
y

k+ 4
k+ 3

1 2 · · · k+ 2

x
y

n− 1

k+ 3
..
.

n

Figure 5.6: Set of residues and corre-
sponding con�guration where the
points Cx and Cy align with the points
with labels ≥ k+ 3.

In total, this gives all (n− 2)2 terms. Note that all configurations belong to the
inverse soft term in (5.9), unless no constraints are imposed on the point n.
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F4,3 {(1)} {(1)}
s = 0, 1 s = 0,3
F2,2 × A4,2 A4,2 × F2,2

{(3)} {(3)}
s = 1, 2 s = 2,3
F3,3 × A3,1 A3,2 × F3,2

F4,3 {(1), (2)} {(1), (2)} {(1), (2)}
s = 0,1, 2 s = 0,1 s = 0, 4
F3,2 × A4,2 F2,2 × A5,2 A5,2 × F2,2

{(1), (4)} {(1), (4)} {(1), (4)}
s = 0, 1 s = 0,3 s = 3, 4

A4,2 × F3,2

{(3), (4)} {(3), (4)} {(3), (4)}
s = 1, 2 s = 2,3 s = 2,3, 4

A3,2 × F4,2

F4,3 × A3,1

F6,3 {(1), (2), (3)} {(1), (2), (3)} {(1), (2), (3)} {(1), (2), (3)}
s = 0,1, 2,3 s = 0, 1,2 s = 0, 1 s = 0,5
F4,2 × A4,2 F3,2 × A5,2 F2,2 × A6,2 A6,2 × F2,2

{(1), (2), (5)} {(1), (2), (5)} {(1), (2), (5)} {(1), (2), (5)}
s = 0,1, 2 s = 0,1 s = 0, 4 s = 4,5

A5,2 × F3,2

{(1), (4), (5)} {(1), (4), (5)} {(1), (4), (5)} {(1), (4), (5)}
s = 0, 1 s = 0,3 s = 3, 4 s = 3, 4, 5

A4,2 × F4,2

{(3), (4), (5)} {(3), (4), (5)} {(3), (4), (5)} {(3), (4), (5)}
s = 1, 2 s = 2,3 s = 2,3, 4 s = 2, 3,4, 5

A3,2 × F5,2

F5,3 × A3,1

Figure 5.7:
Poles contributing to the four, �ve and six-point NMHV form factor. The corresponding factorization channels are indicated in blue,
and we list all possible values of the shift s, which labels the Graßmannian top-forms featuring the respective pole.
The blue boxes contain the poles from the inverse soft limit of the lower-point form factor, which share the vanishing minor (n− 1),
and otherwise are given by the contour of Fn−1,3.
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We can specify this set of residues, or “contour”, in a more compact way if
we define the individual residues as

Ri1 i2
k :=

�

(1), . . . , (i1)
︸ ︷︷ ︸

i1

, (i1 + 1), . . . , (k)

︸ ︷︷ ︸

k

,

(k+ 3), . . . , (k+ i2 + 2)
︸ ︷︷ ︸

i2

, (k+ i2 + 3), . . . , (n− 1)

︸ ︷︷ ︸

n−k−3

�

(5.19)

For each term, one can take the residue from any top-form (using any shift), as
long as this form has a pole at the desired configuration. To be explicit, we can
summarize these possible choices as follow:

Ri10
k : s = 0, 1, . . . , i1

R0i2
k : s = k+ 2, . . . , k+ 2+ i2

R00
0 : s = 1, 2

R00
n−3 : s = 0, n− 1

R00
k : s = k+ 2

(5.20)

We then find the following BCFW representation of NMHV form factors, which
simultaneously defines the contour in the Graßmannian:

Fn,3 =
n−3
∑

k=0



R00
k +

k
∑

i1=1

Ri10
k +

n−k−3
∑

i2=1

R0i2
k



 . (5.21)

The fact that this set of poles solves the recursive structure imposed by the
diagrams can best be understood by sorting the poles into an (n−2)×(n−2) grid
as exemplified in figure 5.7. In each row we collect the residues with the same
labels for the poles. These are sorted starting from the residue with all poles in
the first set 1, . . . , k of type ( · ) and ending with those where all poles in th second
set k + 3, . . . , n− 1 are of this type. The rows are sorted according to the labels
they do not contain, the first row omits the labels n− 2 and n− 1, the last row
comes without 1 and 2. In this way, one can identify all the MHV×MHV factor-
ization channels (the upper row and the right column of the grid), as well as the
recursive, inverse soft terms: residues coming from sub NMHV form factors form
a sub-grid in the lower left, with the poles from this subdiagram combined with
the new constraint (n−1) = 0. This sub-grid has the same structure and in turn
contains the MHV×MHV row and column, as well as a sub-grid corresponding
to Fn−2,3, and so on. We also note that this contour bears some similarity to the
“even-odd” contour for NMHV amplitudes.6 6 See Arkani-Hamed, Cachazo, Cheung,

Kaplan, “A Duality For The S Matrix”,
0907.5418; note that due to our
choice of BCFW bridge, the contour
is actually more akin to the (P)BCFW
“odd–even” contour.

We can also answer one of the questions posed at the beginning of this chap-
ter: Is the “contour” for the form factor Graßmannian integral really a contour,
i.e. can we combine multiple top-forms (4.24) under a single integral, and spec-
ify the contour as picking out certain poles? It turns out that this not possible.
Consider the examples shown in figure 5.7. Whatever sum of top-forms we use,

http://xxx.lanl.gov/abs/0907.5418
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we cannot make all poles appear the same number of times, starting from five
points. We are thus forced to conclude that in order to get tree-level form factors
from the Graßmannian integral, we have to manually pick different residue from
different, cyclicly related top-forms.

To summarize, we have shown that the contour for the form factor Graß-
mannian integral is much more involved compared to its amplitude counterpart.
Beyond NMHV, the strategy used here could be pursued, using the BCFW recur-
sion relations and reading off the configuration in the Graßmannian, but the
combinatorics will be more complicated, and as discussed above, one will have
to deal with composite residues. For amplitudes a different strategy was more
successful: the Graßmannian integral was related to the connected formula com-
ing from the twistor string formulation of particle scattering, which directly pro-
vides a description of the contour.7 Recently, a connected formula was proposed

7 Nandan, Volovich, Wen, “A Grass-
mannian Étude in NMHV Minors”,
0912.3705; Arkani-Hamed, Bour-
jaily, Cachazo, Trnka, “Uni�cation of
Residues and Grassmannian Dualities”,
0912.4912; and Bourjaily, Trnka,
Volovich, Wen, “The Grassmannian
and the Twistor String: Connecting All
Trees in N = 4 SYM”, 1006.1899

for form factors; in the next chapter we will investigate the connection to the
Graßmannian integral in detail.

http://xxx.lanl.gov/abs/0912.3705
http://xxx.lanl.gov/abs/0912.4912
http://xxx.lanl.gov/abs/1006.1899
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The Graßmannian and the
connected prescription

This chapter is based on
the author’s publication
Meidinger, Nandan, Penante, Wen, “A
note on NMHV form factors from the
Graßmannian and the twistor string”,
1707.00443.

In the last chapter, we determined the contour, i.e. the correct combination of
residues, which allows to calculate NMHV form factors from the Graßmannian
integral representation developed in chapter 4. It can in principle be obtained for
any form factor, employing the same strategy as for NMHV: drawing all on-shell
diagrams which are generated from the BCFW recursion relations, and subse-
quently finding the respective configuration in the Graßmannian. Starting from
N2MHV, this method however becomes very tedious. The number of terms in
the recursion rapidly grows, and the configurations become more involved, as
composite residues start to appear. From a formal perspective, it would further-
more be desirable to have a closed form of the contour, from which the BCFW
representation simply follows.

For scattering amplitudes, the contour for any tree-level amplitude was deter-
mined from representations of the amplitudes based on Witten’s twistor string.1

1 Witten, “Perturbative gauge theory
as a string theory in twistor space”,
hep-th/0312171

While Witten only considered MHV amplitudes in generality, the construction
was soon generalized to all NMHV amplitudes and beyond in Roiban et al. (2004);
Roiban and Volovich (2004); Roiban et al. (2004).2 These works in particular de-

2 Roiban, Spradlin, Volovich, “A Googly
amplitude from the B model in twistor
space”, hep-th/0402016; Roiban,
Volovich, “All conjugate-maximal-
helicity-violating amplitudes from
topological open string theory in
twistor space”, hep-th/0402121;
and Roiban, Spradlin, Volovich, “On
the tree level S matrix of Yang-Mills
theory”, hep-th/0403190

rived formulas which expressed the localization of amplitudes in twistor space
in terms of momentum space spinor-helicity variables. So-called link variables
then allowed to write these connected prescription formulas as integrals over
Graßmannians.3 Contrary to the Graßmannian integral, this representation came

3 Dolan, Goddard, “Gluon Tree Ampli-
tudes in Open Twistor String Theory”,
0909.0499; and Spradlin, Volovich,
“From Twistor String Theory To
Recursion Relations”, 0909.0229

with an explicit contour, enforced by delta functions, which left no free integra-
tion variables. On the other hand, the integrand of this formula was superficially
very different. The contour for the NMHV case was already known however. This
was used in Nandan et al. (2010)4 to relate the two formulations for this MHV

4 Nandan, Volovich, Wen, “A Grass-
mannian Étude in NMHV Minors”,
0912.3705

degree by a one-parameter deformation. Finally, generalizing this strategy then
allowed to write down the contour for all amplitudes.5

5 Arkani-Hamed, Bourjaily, Cachazo,
Trnka, “Uni�cation of Residues and
Grassmannian Dualities”, 0912.4912;
and Bourjaily, Trnka, Volovich, Wen,
“The Grassmannian and the Twistor
String: Connecting All Trees in N = 4
SYM”, 1006.1899

Very recently a connected formula for the form factors of the chiral stress-
tensor multiplet in N = 4 SYM has been conjectured in He and Liu (2016);
Brandhuber et al. (2016).6 An attempt in the latter work to relate this formula

6 He, Liu, “A note on connected formula
for form factors”, 1608.04306;
and Brandhuber, Hughes, Panerai,
Spence, Travaglini, “The connected
prescription for form factors in twistor
space”, 1608.03277

to the Graßmannian integral representation failed for all but the simplest cases,
despite the fact that both representations lead to the correct results.

http://xxx.lanl.gov/abs/1707.00443
http://xxx.lanl.gov/abs/hep-th/0312171
http://xxx.lanl.gov/abs/hep-th/0402016
http://xxx.lanl.gov/abs/hep-th/0402121
http://xxx.lanl.gov/abs/hep-th/0403190
http://xxx.lanl.gov/abs/0909.0499
http://xxx.lanl.gov/abs/0909.0229
http://xxx.lanl.gov/abs/0912.3705
http://xxx.lanl.gov/abs/0912.4912
http://xxx.lanl.gov/abs/1006.1899
http://xxx.lanl.gov/abs/1608.04306
http://xxx.lanl.gov/abs/1608.03277


76 | The Graßmannian and the connected prescription

In this chapter we investigate the relation between the two Graßmannian
formulations of form factors in more detail. The NMHV contour from the last
chapter provides important input data for this program, which aims both at a
better understanding of the various representations of form factors, as well as
making progress towards a general contour. After reviewing the connected pre-
scription for form factors in section 6.1, we consider the NMHV case and lift the
formula to a GL(3) invariant Graßmannian integral in section 6.2. Subsequently
we show that this integral can be rewritten in a way which closely mirrors the
integral for amplitudes, giving the formula a recursive structure which makes its
origin in terms of inverse soft factors manifest. Section 6.3 then investigates the
relation the between the two approaches, considering some low-point examples
in detail. Remarkably, these examples show that the methods which were used
for amplitudes do not allow to relate the integral for form factors. Since we can
pinpoint where problems arise, the results of this chapter provide a good start-
ing point to investigate the different representation in more detail; this should
enable a better understanding of both formulations, and for on-shell representa-
tions of partially off-shell quantities more generally.

6.1 Brief review of the connected prescription for
form factors

In analogy with the amplitude connected prescription, Brandhuber et al. (2016)77 Brandhuber, Hughes, Panerai, Spence,
Travaglini, “The connected prescrip-
tion for form factors in twistor space”,
1608.03277

and He and Liu (2016)8 obtained a similar formula for form factors of the chiral

8 He, Liu, “A note on connected formula
for form factors”, 1608.04306

part of the stress tensor multiplet. This representation was given an ambitwistor
string interpretation in Bork and Onishchenko (2017).9 Our notation here will

9 Bork, Onishchenko, “Four dimensional
ambitwistor strings and form factors
of local and Wilson line operators”,
1704.04758

follow chapter 5: we add to the set of n on-shell states two additional particles
labeled by x and y . Then, for a helicity sector with Graßmann degree 4k one
chooses k labels from the set {1, . . . , n} to form the set m, indexed by upper case
letters I = {i1, . . . , ik}. The remaining n+ 2− k labels (which always contain x
and y) form the set p, labeled by lower case letters i. The set p is the same as p
with x and y removed. Using this notation, the form factor connected formula
reads

Fn,k = 〈x y〉2
∫

1
Vol(GL(2))

d2σxd2σy

(x y)2

n
∏

a=1

d2σa

(a a+ 1)

×
∏

i∈p

δ2(λi −λ(σi))
∏

I∈m

δ2(λ̃I − λ̃(σI))δ
4(η̃I − η̃(σI)) , (6.1)

where (σ1
a,σ2

a) are homogeneous coordinates in CP1, (ab) = εαβσαaσ
β

b , and

λ(σI) =
∑

i∈p

1
(I i)

λi , λ̃(σi) = −
∑

I∈m

1
(I i)

λ̃I , η̃(σi) = −
∑

I∈m

1
(I i)

η̃I . (6.2)

As is the case with scattering amplitudes, one can go from the connected
prescription to the link representation by introducing link variables10 cI j , and

10 Arkani-Hamed, Cachazo, Cheung,
Kaplan, “The S-Matrix in Twistor
Space”, 0903.2110

imposing cI j =
1
(I j) as additional equations.11 The advantage of using these vari-

11 Spradlin, Volovich, “From Twistor
String Theory To Recursion Relations”,
0909.0229; and Dolan, Goddard,
“Gluon Tree Amplitudes in Open
Twistor String Theory”, 0909.0499

http://xxx.lanl.gov/abs/1608.03277
http://xxx.lanl.gov/abs/1608.04306
http://xxx.lanl.gov/abs/1704.04758
http://xxx.lanl.gov/abs/0903.2110
http://xxx.lanl.gov/abs/0909.0229
http://xxx.lanl.gov/abs/0909.0499
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ables is that the equations (6.2) become linear. For form factors this results in
the expression

Fn,k = 〈x y〉2
∫

∏

I∈m, j∈p

dcI jU(cI j)
∏

i∈p

δ2(λi − cI iλi)
∏

I∈m

δ2(λ̃I + cI iλ̃i)δ
4(η̃I + cI iη̃i),

(6.3)

with the integrand given by

U(cI i) =

∫

1
Vol(GL(2))

d2σxd2σy

(x y)2

n
∏

a=1

d2σa

(a a+ 1)

∏

I∈m,i∈p

δ

�

cI i −
1
(I i)

�

. (6.4)

Note that although (6.3) carries the degrees of freedom of a G(k, n + 2) Graß-
mannian formula, all integration variables are fixed by the delta functions. Sim-
ilarly to what was done for scattering amplitudes in, we will now lift this formu-
lation in the NMHV case to a fully GL(3) invariant Graßmannian formulation by
performing the σ integrations.

6.2 Graßmannian integrals from the connected
prescription

In the following we will focus on NMHV form factors with k = 3, and write (6.3)
with the integrand (6.4) in the form of a GL(3) invariant Graßmannian integral,
with no free integration variables. Indeed, while the explicit delta functions of
(6.3) can only fix 2n out of the 3(n − 1) integration variables cI i , the function
U(cI j) provides precisely the additional n−3 constrains required to solve for all
cI j . After solving 2n out of the 3n−3 constraints imposed by the delta functions
of (6.4), there are no integrations over the variables σa left. It is then straight-
forward to restore GL(3) invariance, simply by replacing the link variables in
the resulting integrand by corresponding 3×3 minors. A dependence on the mi-
nor involving the three gauge fixed columns cannot be restored in this way, but
it can be inferred by requiring the correct scaling of the formula under GL(3)
transformations.

The n − 3 remaining delta functions in U(cI j), evaluated on the support of
the delta functions involving the kinematics, generate constraints depending on
six points each. These equations, when written in terms of GL(3) minors, have
the general form δ(Si1 i2 i3 i4 i5 i6), where

Si1 i2 i3 i4 i5 i6 ≡ (i1i2i3)(i3i4i5)(i5i6i1)(i2i4i6)− (i2i3i4)(i4i5i6)(i6i1i2)(i3i5i1) . (6.5)

The equations S = 0 are the same that feature for scattering amplitudes, and are
in general polynomials of degree four in the link variables. Their geometric mean-
ing was discussed in Arkani-Hamed et al. (2011);12 the localization of NkMHV 12 Arkani-Hamed, Bourjaily, Cachazo,

Trnka, “Uni�cation of Residues and
Grassmannian Dualities”, 0912.4912

scattering amplitudes on degree (k − 1)-curves in twistor space, as in Witten’s
twistor string theory, has a counterpart as a localization in the Graßmannian.
Namely, by viewing each column in the matrix C ∈ G(k, n + 2) as a point in

http://xxx.lanl.gov/abs/0912.4912
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CPk−1, each column must be the image of a map CP1 7→ CPk−1, generally given
by the Veronese map

(σ1,σ2) 7→
�

(σ1)k−1, (σ1)k−2σ2, · · · , σ1(σ2)k−2, (σ2)k−1
�

. (6.6)

For k = 3 this corresponds to a map of degree two, and the constraints must
ensure that all n+ 2 points lie on the same curve. This is achieved by a combi-
nation of equations of the form (6.5), which impose that a sixth point lies on
the degree-two curve generated by the other five. For this reason, we refer to
these equations as conic constraints. It is straightforward to see that, if a matrix
C ∈ G(3, n + 2) has all columns as in (6.6), all equations (6.5) trivially vanish
since the 3×3 minors factorize in terms of 2×2 minors formed of the σ coordi-
nates as (abc) = (ab)(bc)(ca).

Performing an explicit lift of (6.3) from the link representation to an integral
over GL(3) for low values of n reveals a recursive structure in which the n-point
form factor is obtained from the (n− 1)-point one as follows:

Fn,3 = 〈x y〉2
∫

d3×(n+2)C
Vol(GL(3))

In,3 δ
2×3(C · λ̃)δ4×3(C · η̃)δ2×(n−1)(C⊥ ·λ) ,

I4,3 =
(13x)(13y)

(123)(134)(1x y)(3x y)
δ(S1234x y) ,

In,3 = In−1,3 ×
�

(−1)n−1 (12n− 1)(13n− 1)(1x y)(23x)(23y)
(1n− 1n)(23n− 1)

δ(S123nx y)
�

,

(6.7)

Note that the conic constraints imposed by the delta functions ensure the cyclic
invariance of these expressions.

There are several ways of representing the integrand of (6.7), all coinciding
on the support of the conic constraints. Likewise, the choice of equations ap-
pearing inside the delta functions is not unique as the geometric constraint that
the n+ 2 points lie on the same degree-two curve can be represented is various
distinct ways. For the particular representation in (6.7), we consider the conic de-
fined by the five points {1,2, 3, x , y} and each conic constraint imposes that one
of the other points {4, . . . , n} lie on the same curve, as can be seen from the addi-
tional constraints present in each recursive factor. The minors appearing in the
numerator of the recursive factor are responsible for annihilating spurious solu-
tions of the conic constraints. For instance, a configuration where four out of the
points in the set {1,2, 3, x , y} are collinear would set to zero all conic constraints,
but would not imply that all points lie on the same curve. The numerator factor
(13x)(13y)(23x)(23y)(1x y) precisely vanishes for every configuration of this
sort. A special case where the cancellation of spurious singularities does not hap-
pen is for n= 5, since the factor of (1x y) cancels between I4,3 and the recursive
factor in (6.7). In this case, one needs to ensure that only the physical solutions
of the conic constraints are taken into account. This situation is discussed in
further detail in section 6.3.
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Formulation with inverse soft interpretation

For scattering amplitudes, it is possible to interpret the recursive factors In/In−1

as the addition of a particle via an inverse soft factor.13 The same should be true 13 Arkani-Hamed, Bourjaily, Cachazo,
Trnka, “Uni�cation of Residues and
Grassmannian Dualities”, 0912.4912;
and Bourjaily, Trnka, Volovich, Wen,
“The Grassmannian and the Twistor
String: Connecting All Trees in N = 4
SYM”, 1006.1899

for form factors, as they are inverse soft constructible.14 In particular, we will

14 Nandan, Wen, “Generating All Tree
Amplitudes in N = 4 SYM by Inverse
Soft Limit”, 1204.4841

now show that for form factors with sufficiently many on-shell legs, namely six,
the effect of the operator may be omitted and it is possible to write the recursive
factor of (6.7) in the same way as for amplitudes. This is achieved by rewriting
(6.7) by means of the identity

δ(Si jkrst)δ(Si jkrsu) =
( jkt)(ir t)
( jks)(irs)

δ(Si jkrst)δ(Si jkr tu) . (6.8)

We start by considering the ratio I5,3/I4,3, and trade S123x y5 → S123x45 on the
support of S1234x y = 0 using (6.8). This results in

I5,3/I4,3 =
(124)(134)(23x)(1x4)

(145)
δ(S123x45) . (6.9)

This factor is already much more similar to the amplitude “soft factor”, but it
is clear that either x or y , representing the kinematics of the operator, has to
participate in each conic constraints. Next we consider I6,3/I5,3. We first trade y
in S123x y6 for 4 using S1234x y , then we can use S123x45 from the last step to trade
x → 5. Thus we get

I6,3/I5,3 =
(125)(135)(234)(145)

(156)
δ(S123456) , (6.10)

which is precisely the recursive factor which maps A5,3 to A6,3.
We can now proceed recursively, and find that also for higher point form

factors the recursive structure of the integrand can be written in exactly the
same way as for amplitudes,

In,3/In−1,3 =
(12n− 1)(13n− 1)(1n− 2n− 1)(23n− 2)

(1n− 1n)
δ(S123n−2n−1n) , n≥ 6 .

(6.11)

This form of the recursive factor is the same as the one used in Arkani-Hamed
et al. (2011),15 where it was shown that this factor ensures the correct soft limit 15 Arkani-Hamed, Bourjaily, Cachazo,

Trnka, “Uni�cation of Residues and
Grassmannian Dualities”, 0912.4912

for particle n. This representation was also important for matching the connected
formula with the Graßmannian integral via deformations of the constraints and
applications of the global residue theorem. In the next section we will investigate
this strategy for form factors.

6.3 Relating the formulations

At this point, we studied two different Graßmannian representations of form fac-
tors. One one hand, there is the integral derived from on-shell diagrams in chap-
ter 4. For NMHV form factors this integral is given explicitly in equation (5.5),

http://xxx.lanl.gov/abs/0912.4912
http://xxx.lanl.gov/abs/1006.1899
http://xxx.lanl.gov/abs/1204.4841
http://xxx.lanl.gov/abs/0912.4912
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and is equipped with the contour (5.21), derived from the BCFW recursion rela-
tions in the last chapter. On the other hand we have the formula that arises from
the connected prescription, given in (6.7) and (6.11). This integral features a
different integrand, and comes with a contour prescription involving the conic
constraints.

These formulations are the form factor analogues of corresponding expres-
sions for scattering amplitudes, whose NMHV Graßmannian formulas are related
as follows,

Figure 6.1: Relation between di�erent
Graßmannian formulations of
scattering amplitudes. Here L amp

G(2,n)
denotes the amplitude connected
formula, which can be understood
as an integral over the Graßmannian
G(2, n). The Veronese map leads
to a G(3, n) Graßmannian integral
with conic constraints L amp,conic

G(3,n) .
There are di�erent ways in which
the Graßmannian integral with BCFW
or (P)BCFW integration contour,
L amp

G(3,n),Γ , can be obtained from this
representation: either via the smooth
deformations of the conic constraints
L amp,conic

G(3,n) (t), or via applications of the
global residue theorem (GRT).

Here the Veronese map is given in (6.6) and the t-deformation amounts to intro-
ducing n−5 parameters t j into the conic constraints in a systematic way, namely

Si1 i2 i3 i4 i5 i6(t)≡ (i1i2i3)(i3i4i5)(i5i6i1)(i2i4i6)− t j (i2i3i4)(i4i5i6)(i6i1i2)(i3i5i1) .
(6.12)

Note in particular that the BCFW contour can be recovered both from taking
limits of the deformation parameters t j or through applications of the global
residue theorem starting from the formula with the conic constraints.

The aim of this section is to investigate whether similar relations exist for the
corresponding form-factor formulas. A preliminary attempt to use the Veronese
map to relate the Graßmannian integral based on on-shell diagrams directly to
the connected formula was made in Brandhuber et al. (2016),16 and found to16 Brandhuber, Hughes, Panerai, Spence,

Travaglini, “The connected prescrip-
tion for form factors in twistor space”,
1608.03277

be impossible. We can understand this now, based on the BCFW contour derived
in chapter 5: the contour contains poles from different top-forms in such a way
that no linear combination of top-forms gives the tree-level form factor with a
single contour of integration. Such a single integral however would be necessary
to directly apply the Veronese map.

In this section, we explore the possibility of relating the Graßmannian formu-
lations directly using the GRT, focusing on low-point examples. Specifically, al-
ready at four points we find that there is no naive analogue to the t-deformation
for the form-factor formulas. Moreover, we show that while for four and five
points successive applications of the GRT lead from the Graßmannian formula
with conic constraints to that with the BCFW contour, this is no longer the case

http://xxx.lanl.gov/abs/1608.03277
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starting at six points. We furthermore highlight subtleties involved in the com-
putation of the BCFW residues which do not appear for scattering amplitudes.

Four points

Consider the integral given in (6.7), which we repeat here for clarity:

I4,3 =
(13x)(13y)

(123)(134)(1x y)(3x y)
δ(S1234x y) .

The contour is defined by the equation S1234x y = 0. Applying the residue theorem
one obtains the new contour given by

{S1234x y} → −{(123)} − {(341)} − {(1x y)} − {(3x y)} . (6.13)

The location of these poles are the same as the four-point contour which can be
read off figure 5.7. For each of the factors on the right-hand-side of (6.13), the
left over S1234x y factorizes into a product of four minors. It is straightforward
to check that the value of each residue is the same as that of the Graßmannian
formula.

A major difference to scattering amplitudes can be observed already from this
simple case. Consider the analogous example of the six-point scattering ampli-
tude:

Iamp
6,3 =

(135)
(123)(345)(561)

δ(S123456) =
(246)

(234)(456)(612)
δ(S123456). (6.14)

In this situation S123456 always factorizes in the same way for all three poles
present in the amplitude integrand, both in the BCFW or (P)BCFW representa-
tions. This means that one can introduce a parameter t to the term that vanishes,
S123456(t) = t(123)(345)(561)(246)−(234)(456)(612)(351), and the amplitude
will be independent of the value of t.17 In particular, a one-parameter family of 17 Arkani-Hamed, Bourjaily, Cachazo,

Trnka, “Uni�cation of Residues and
Grassmannian Dualities”, 0912.4912;
and Nandan, Volovich, Wen, “A
Grassmannian Étude in NMHV
Minors”, 0912.3705

Graßmannian integrals is defined in this fashion, with the particular cases of the
twistor string formula for t = 1 and the BCFW and (P)BCFW cases for t = 0 or
t =∞, respectively.

For form factors this is not possible: in the four-point example we see that
S1234x y always factorizes, but differently on each pole:

S1234x y =























(341)(4x y)(23x)(12y) on {(123)}

(123)(2x y)(34x)(14y) on {(341)}

(234)(3x y)(12x)(41y) on {(1x y)}

(1x y)(412)(23x)(34y) on {(3x y)}

. (6.15)

This means that there is no deformation – or at least no naive one – of S1234x y

which could interpolate between the on-shell diagram Graßmannian integral and
the one based on the connected prescription.

http://xxx.lanl.gov/abs/0912.4912
http://xxx.lanl.gov/abs/0912.3705
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Five points

We now consider the five-point form factor, for which the integrand in the inverse
soft formulation (6.9) reads

I5,3 =
(13x)(13y)(23x)(124)(14x)
(123)(1x y)(3x y)(145)

δ(S1234x y)δ(S123x45) (6.16)

Note that, as mentioned in section 6.1, the integrand is finite for a spurious so-
lution of S1234x y = S123x45 = 0, namely that with particles 1, 2, 3 and 4 collinear,
as the ratio (124)

(123) does not vanish.
Consider first the fact, following from the GRT, that { f1, f2} = 0 with f1 ≡ S1

and f2 ≡ S2(123)(1x y)(3x y)(145). For simplicity, we denote S1 ≡ S1234x y and
S2 ≡ S123x45. The residue theorem then implies:

{S1, S2}= −{S1, (123)} − {S1, (1x y)} − {S1, (3x y)} − {S1, (145)}= 0 . (6.17)

Note further that for (123) = 0, S1 factorizes and thus

{S1, (123)}= {(234), (123)}+ {(4x y), (123)}+ {(y12), (123)}+ {(3x1), (123)}.
(6.18)

Plugging (6.18) back into (6.17), we get

{S1, S2}= −{(234), (123)} − {(4x y), (123)} − {(y12), (123)}

− {(3x1), (123)} − {S1, (1x y)} − {S1, (3x y)} − {S1, (145)}= 0
(6.19)

Note the subtlety here: the left hand side and the first term on the right hand side
appear not to be entirely distinct, since the configuration where (123) = (234) =
0 is also a (spurious) solution of S1 = S2 = 0. The fact that such a configuration
appears after the application of a GRT follows from the requirement that the
constraint S1 = S2 = 0 in (6.16) only includes non-spurious solutions, which for
five points is not enforced by the numerator.

Interestingly, this term also highlights another phenomenon which does not
occur for amplitudes. Indeed, for the term {(234), (123)} the integrand is

(13y)(23x)(124)(14x)
(1x y)(3x y)(145)(4x y)(y12) S2

δ
�

(234)
�

δ
�

(123)
�

, (6.20)

and both the minor (124) in the numerator as well as S2 in the denominator
approach zero linearly. If one parametrizes this limit, one finds that the direction
in which the limit is taken changes the result. To calculate the correct residue,
we have to take the limit in way which ensures that S1 is vanishing along the
limiting path. We do so by setting (123) = ε and (234) = (34x)(x y1)(24y)

(4x y)(y12)(3x1)ε, and
then letting ε→ 0. Note that this term arises from factorizing S1 in {S1, (123)};
the limit ensures that (123) = 0 is approached precisely from the surface S1 = 0.

The other residues coming from (6.19) can be calculated straightforwardly.
Note that S1 factorizes for the terms {S1, (1x y)} and {S1, (3x y)}; the resulting
terms, together with those not involving S1 in (6.19) are in one-to-one corre-
spondence with the MHV×MHV factorization poles of the BCFW contour (5.21).
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For the term {S1, (145)} one applies the GRT again, after which the calculation is
identical to the four-point case, and results in all inverse soft contributions to the
form factor. For all terms, (6.16) gives the same residues as the corresponding
poles of the Graßmannian integral.

Six points

For the six-point form factor, we find that it is impossible to reproduce all BCFW
poles from (6.11) by applying the GRT, despite the fact that this formula repro-
duces the form factor when evaluating the conic constraints, which we checked
numerically. We furthermore collected evidence that even by using the identity
(6.8), one cannot generate other representations which have all BCFW poles.

The integrand in the inverse-soft-like representation (6.11) is given for the
six-point form factor by

I6,3 =
(13x)(13y)(23x)(124)(14x)(125)(135)(234)

(123)(1x y)(3x y)(156)

× δ(S1234x y)δ(S12345x)δ(S123456) , (6.21)

and the poles contributing to the BCFW representation of the form factor can be
found in figure 5.7. Most of these poles can be recovered by successively applying
the GRT to (6.21), in particular all poles with (156) = 0, corresponding to the
inverse soft limit of F5,3.

It is however impossible to find the poles {(1), (2), (3)} and {(1), (2), (5)},
corresponding to the factorization channels A6,2×F2,2 and A5,2×F3,2. To see that
these poles can never appear it is sufficient to realize that, in the vicinity of these
configurations, the integrand (6.21) is not singular enough to produce a finite
residue. Regarding the delta functions δ(S) as 1

S (with an appropriate contour),
and letting each of the vanishing minors at those poles approach zero as ε ∼ 0,
we find that for the respective configurations the integrand behaves as

{(1), (2), (3)}:
(124)(125)(135)(234)
(123) S1234x yS12345xS123456

∼
1
ε2

,

{(1), (2), (5)}:
(124)(234)

(123) S1234x yS12345xS123456
∼

1
ε2

,
(6.22)

while in order for a residue to exist, the integrand would have to scale as ε−3.
Since the GRT does not change this power counting, potential poles at these
locations would be canceled by numerator factors. We furthermore note that the
minor (5x y) which vanishes for the second configuration does not even appear
in (6.21).

The identity (6.8) can change degree of divergence at configurations away
from the support of the conic constraints, i.e. at positions reached by the GRT.
To see if other representations of the integrand with the correct singularities at
the all BCFW poles exist, we generated around half a million different represen-
tations of the integrand with a computer program, using the identity (6.8) and
cyclic symmetry, and taking both (6.21) and (6.7) as starting points. We then
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checked that none of these representations has the correct degree of divergence
at all BCFW poles. This result is not conclusive, since we could only generate a
finite number of representations due to computational constraints. In principle,
the identity (6.8) can be applied over and over again. Nevertheless, our result is
a very strong indication that no G(3, 8) representation based on the connected
formula exists, which reproduces all BCFW terms.

A possibility which we cannot exclude is to apply a GRT to (6.21), and then
to apply different identities to each resulting terms, effectively combining differ-
ent representations. Of course there is a proliferation of such possibilities, and
several attempts did not lead to the correct residues. We note that in this case
there is also no clearly preferred choice with a physical motivation, and it would
be hard to apply such a strategy systematically to generalize beyond NMHV.

These examples show that the relation between the connected formula and the
Graßmannian integral is much more subtle for form factors than for amplitudes,
despite the fact that both formulations lead to correct expressions for tree-level
form factors. As already noted in Brandhuber et al. (2016),18 the Veronese map18 Brandhuber, Hughes, Panerai, Spence,

Travaglini, “The connected prescrip-
tion for form factors in twistor space”,
1608.03277

(6.6) is not enough to relate the formulations; we have seen that this is due to
the fact that different top-cells contribute a different number of residues to the
BCFW representation, and therefore a joint contour for a linear combination of
top-forms cannot work. Furthermore, the deformations of the conic constraints
Si1 i2 i3 i4 i5 i6 = 0 which allowed to introduce a parameter smoothly linking both
Graßmannian formulations cannot be introduced in the case of form factors,
since for different BCFW terms the Si1 i2 i3 i4 i5 i6 factor in different ways. Finally,
using the most basic way of relating the formulations by reproducing the BCFW
terms explicitly using global residue theorems, also seems to be problematic: be-
sides subtleties regarding spurious solutions of the geometric constraints coming
from the RSV equations and residues which depend on the path taken towards
the singular point, we also find mismatches. The inverse soft factor formulation
seems to be necessary to recover the recursive structure stemming from exactly
such inverse soft limits of lower point form factors. On the other hand this formu-
lation does not recover all factorization channels which contribute to the BCFW
form of the form factor. We conclude that that in addition to the GRT, further
identities such as (6.8) are required to map the formulations into each other.
This will likely make it difficult to use the contour data from the connected pre-
scription to obtain the BCFW contour for the Graßmannian integral in closed
form for higher MHV degree.

http://xxx.lanl.gov/abs/1608.03277
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7
Yangian invariants
and R-operators

On-shell diagrams for amplitudes are directly related to their symmetries, and
to the spin chain picture of N =4 SYM at weak coupling. Such integrable spin
chain models can be characterized as possessing an infinite-dimensional symme-
try algebra. For so-called rational models this algebra is the Yangian. While the
symmetry is usually reduced to ordinary sun|m invariance for the observables of
finite size systems, the corresponding Yangian Y (sun|m) still underlies the entire
integrable structure of the model and its solution via the Bethe Ansatz.

Scattering amplitudes in N =4 SYM are invariant under the action of the su-
perconformal algebra psu2,2|4 as a consequence of Ward identities which follow
from the invariance of the action. For tree-level amplitudes, it was first observed
in Drummond et al. (2010); Brandhuber et al. (2008)1 that, apart from being

1 Drummond, Henn, Korchemsky,
Sokatchev, “Dual superconformal
symmetry of scattering amplitudes
in N = 4 super-Yang-Mills theory”,
0807.1095; and Brandhuber, Heslop,
Travaglini, “A Note on dual supercon-
formal symmetry of the N = 4 super
Yang-Mills S-matrix”, 0807.4097

superconformally invariant in the original momentum space, they are also covari-
ant with respect to a superconformal algebra defined in the dual space described
in section 2.1. The closure of these two algebras then was shown to be the Yan-
gian of psu2,2|4.2

2 Drummond, Henn, Plefka, “Yangian
symmetry of scattering amplitudes
in N = 4 super Yang-Mills theory”,
0902.2987

The Graßmannian integral representation is intimately linked to this Yangian
invariance. While the Graßmannian integral in twistor variables (2.59) makes
superconformal symmetry manifest, the integral in the momentum twistor ver-
sion (2.60) does so for dual superconformal symmetry. Indeed it can directly be
shown that the integral and all its residues are Yangian invariants, and that the
top-form is uniquely determined by this symmetry.3

3 Drummond, Ferro, “Yangians, Grass-
mannians and T-duality”, 1001.3348;
and Drummond, Ferro, “The Yangian
origin of the Grassmannian integral”,
1002.4622

Apart from scattering amplitudes, Yangian symmetry plays an import role
for other aspects of N =4 SYM integrability. Noteworthy examples are smooth
Maldacena-Wilson loops,4 as well as recent attempts to understand these symme-

4 Müller, Münkler, Plefka, Pollok,
Zarembo, “Yangian Symmetry of
smooth Wilson Loops in N = 4 super
Yang-Mills Theory”, 1309.1676;
and Beisert, Müller, Plefka, Vergu,
“Integrability of smooth Wilson loops
in N = 4 superspace”, 1509.05403

tries field-theoretically on the level of the Lagrangian or action.5 For an overview

5 Beisert, Garus, Rosso, “Yangian
Symmetry and Integrability of Planar
N = 4 Supersymmetric Yang-Mills
Theory”, 1701.09162

of Yangian symmetry in the AdS5/CFT4 correspondence we refer the reader to
Beisert (2011)6 for the field theory side of the correspondence and to Dolan et al.

6 Beisert, “On Yangian Symmetry in
Planar N = 4 SYM”, 1004.5423

(2004)7 for a view on the algebra from a string perspective. 7 Dolan, Nappi, Witten, “Yangian
symmetry in D = 4 superconformal
Yang-Mills theory”, hep-th/0401243

This chapter serves to introduce many integrability related concepts used in
the following. We first review the RTT realization of the Yangian in section 7.1,
relate it to the transfer matrices used in the Quantum Inverse Scattering method

http://xxx.lanl.gov/abs/0807.1095
http://xxx.lanl.gov/abs/0807.4097
http://xxx.lanl.gov/abs/0902.2987
http://xxx.lanl.gov/abs/1001.3348
http://xxx.lanl.gov/abs/1002.4622
http://xxx.lanl.gov/abs/1309.1676
http://xxx.lanl.gov/abs/1509.05403
http://xxx.lanl.gov/abs/1701.09162
http://xxx.lanl.gov/abs/1004.5423
http://xxx.lanl.gov/abs/hep-th/0401243
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in section 7.2, and discuss the invariants of the Yangian in section 7.3. We then
turn to certain deformations recently introduced in the context of scattering am-
plitudes, which can naturally be accommodated in the RTT realization as dis-
cussed in section 7.4, and play a major role in the integrability construction of
Yangian invariants via so-called R-operators. We introduce this construction in
section 7.5, and show that it leads to Yangian invariants in section 7.6.

7.1 The RTT realization of the Yangian

The Yangian invariance of scattering amplitudes is often discussed using Drin-
feld’s first realization8, which extends the simple Lie superalgebra psu2,2|4, ex-8 Drinfeld, “Hopf algebras and the

quantum Yang-Baxter equation”, Sov.
Math. Dokl. 32 (1985) 254–258, [Dokl.
Akad. Nauk Ser. Fiz.283,1060(1985)];
and Drinfeld, “Quantum groups”, J. Sov.
Math. 41 (1988) 898–915

pressed in terms of generators and structure constants by further generators,
imposing additional commutation and Serre relations. Here however, we will be
working with the RTT realization of the Yangian,9 which is intimately related to

9 Molev, Nazarov, Olshansky, “Yan-
gians and classical Lie algebras”,
hep-th/9409025; Molev, “Yan-
gians and their applications”,
math/0211288; and Nazarov, “Quan-
tum Berezinian and the classical
Capelli identity”, Letters in Mathemati-
cal Physics 21 (1991), no. 2, 123–131

integrable spin chains and the Algebraic Bethe Ansatz.10

10 Faddeev, “Algebraic aspects of
Bethe Ansatz”, hep-th/9404013;
and Faddeev, “How algebraic Bethe
ansatz works for integrable model”,
hep-th/9605187

Strictly speaking, the RTT realization defines the Yangian of the algebra gln|m
while Drinfeld’s realizations give the Yangian of sln|m, which is a subalgebra.
Since we will be concerned only with algebraic aspects of N = 4 SYM at weak
coupling, this distinction will not play a role here, and we will work with the al-
gebra gl4|4 and its Yangian instead of the actual superconformal algebra psu2,2|4

and the corresponding Yangian algebra.11

11 We refer the reader to Marboe, Volin,
“The full spectrum of AdS5/CFT4
I: Representation theory and one-
loop Q-system”, 1701.03704 for a
nice introduction on the subtleties
concerning the symmetries of N =4
SYM at weak coupling.

We begin by defining the fundamental representation of gl4|4, generated by
the elementary (4|4)× (4|4) supermatrices eAB, with indices taking values A,B=
1, · · · , 8. These generators have matrix elements

(eAB)CD = δ
A
Cδ
B
D , (7.1)

and satisfy the gl4|4 commutation relations

[eAB, eCD] = δBCeAD − (−1)(|A|+|B|)(|C|+|D|)δADeCB ; (7.2)

here and in what follows, all commutators are graded,

[A, B] := AB − (−1)|A||B|BA (7.3)

where | · | denotes the degree of an index, state or operator, and is | · | = 0 for
bosons and | · | = 1 for fermions. We will generally use a grading where |1| =
· · ·= |4|= 0 and |5|= · · ·= |8|= 1.

The most basic quantity for integrability and the Yangian is the fundamental
R-matrix

Ri j(u) =

j

i = u+ (−1)|B|eABi eBAj = u+ Pi j , (7.4)

acting on the i’th and j’th factor in the tensor product · · ·⊗(V�)i⊗· · ·⊗(V�) j⊗· · · ,
of n (4|4)-dimensional representation spaces V� corresponding to the fundamen-
tal representation. The complex variable u is called the spectral parameter, and is

http://xxx.lanl.gov/abs/hep-th/9409025
http://xxx.lanl.gov/abs/math/0211288
http://xxx.lanl.gov/abs/hep-th/9404013
http://xxx.lanl.gov/abs/hep-th/9605187
http://xxx.lanl.gov/abs/1701.03704
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of fundamental importance both to the various Bethe Ansätze, as well as the defi-
nition of the Yangian algebra, which we will discuss shortly. In equation (7.4), we
already presented a widely used graphical notation for the quantities appearing
in the integrability description.12 in particular, we draw (“inputs” or “outputs” of) 12 This graphical notation is also high-

lights the one-to-one relation
between integrable quantum mechan-
ical spin chains and integrable lattice
models in statistical physics, see e.g.
Baxter, “Exactly solved models in
statistical mechanics”, 1982,. Via the
perimeter Bethe Ansatz developed
in Baxter, “Perimeter Bethe ansatz”,
Journal of Physics A: Mathematical
and General 20 (1987), no. 9, 2557,
these statistical models are closely
related to Yangian invariance, see
Frassek, Kanning, Ko, Staudacher,
“Bethe Ansatz for Yangian Invariants:
Towards Super Yang-Mills Scattering
Amplitudes”, 1312.1693.

maps acting on the fundamental representation space V� as a dashed line, .
As indicated in (7.4), the R-matrix can be written in terms of the graded permu-
tation operator Pi j = (−1)|B|eABi eBAj , which swaps vectors in the tensor product,
Pv1 ⊗ v2 = (−1)|v1||v2|v2 ⊗ v1. Its defining property is the Yang-Baxter equation it
satisfies,

R12(u1−u2)R13(u1−u3)R23(u2−u3) =R23(u2−u3)R13(u1−u3)R12(u1−u2) .

(7.5)

This is an equation in the triple tensor product V� ⊗ V� ⊗ V�, and the tensor
factors on which the individual R-matrices act are indicated by subscripts. The
Yang-Baxter equation can be represented graphically,

2 3
1

=

2 3

1

, (7.6)

and this way of representing it allows to think of it in terms of scattering particles.
The Yang-Baxter equation then is the consistency condition for the factorization
of the scattering of three particles into consecutive two-particle scattering events,
the order of which is unimportant. This is the basis of integrable two-dimensional
field theories13, and the appearance of the Yangian in such theories.14 13 Dorey, “Exact S matrices”,

hep-th/9810026

14 MacKay, “Introduction to Yangian
symmetry in integrable �eld theory”,
hep-th/0409183

To describe amplitudes and form factors, and the Yangian relevant to them,
we need a second representation, which expresses the superconformal algebra in
terms of the spinor-helicity variables introduced in section 2.1 and used through-
out the last chapters.15 We will denote maps acting on the corresponding rep-

15 In section 8.4 we will see that this
representation is actually the same as
the one used to describe composite
operators in terms of oscillators.

resentation space by . This “physical” representation is of factorized, or
Jordan-Schwinger16 form. We define it in terms of 8 creation operators xA and

16 Jordan, “Der Zusammenhang der
symmetrischen und linearen Gruppen
und das Mehrkörperproblem”,
Zeitschrift für Physik 94 (1935), no. 7,
531–535

8 annihilators pA, which can be decomposed into the different spinor-helicity
variables and their derivatives as

xA =
�

λα, −
∂

∂ λ̃α̇
,
∂

∂ η̃A

�

, pA =
�

∂

∂ λα
, λ̃α̇, η̃A

�

. (7.7)

Note that we now regard the gl4|4 indices as multi-indices A = (α, α̇, A), where
the usual spinor-helicity indices range over α = 1, 2, α̇ = 1, 2 and A = 1, · · · , 4.
The non-compactness of the superconformal group is already visible here, by
the fact that the variables λ̃ appear in a particle-hole transformed manner, with
variables and derivatives exchanged.17 17 The variables η̃ are similarly particle-

hole transformed; since they are
fermionic, this however does not
a�ect the compactness or non-
compactness.

The operators x and p satisfy the commutation relations of independent
graded harmonic oscillators

[xA, pB] = (−1)|A|δAB (7.8)

http://xxx.lanl.gov/abs/1312.1693
http://xxx.lanl.gov/abs/hep-th/9810026
http://xxx.lanl.gov/abs/hep-th/0409183
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which implies that the generators defined by

J AB = xA pB (7.9)

form a representation of gl4|4:

[J AB,J CD] = δBCJ AD − (−1)(|A|+|B|)(|C|+|D|)δADJ CB (7.10)

The algebra contains the central charge c and the hypercharge B defined by1818 Here and in what follows we always
sum over repeated indices.

c= J AA, B= (−1)|A|J AA . (7.11)

To get the algebra sl4|4, we would remove the supertrace, defined by

str U = (−1)|A|UAA, (7.12)

for an arbitrary supermatrix U , to obtain generators JAB −
(−1)|A|

8 BδAB, and by
requiring c∼ 0 we obtain psl4|4.

We can now define the Lax operator, which will be the central object in the
definition of the Yangian. It acts on the tensor product V� ⊗Vsh and is given by

Li(u) =

i

= u+ (−1)|B|eAB J BA
i . (7.13)

It satisfies an equation similar to the Yang-Baxter equation (7.5), but in the tensor
product V� ⊗V� ⊗Vsh of one particles in the spinor-helicity representation and
two “auxiliary particles” in the fundamental,

R(u− v)
�

Li(u)⊗ 1
��

1⊗Li(v)
�

=
�

1⊗Li(v)
��

Li(u)⊗ 1
�

R(u− v) . (7.14)

If we consider the Lax operator as a matrix in the fundamental space with op-
erator valued entries acting on the “physical space”, we can define its matrix
elements by

Li(u) = eABL AB
i (u) = eAB

�

uδAB + (−1)BJ BA
i

�

. (7.15)

As we will shortly see, the Lax operator (7.13) generates the Yangian for one-
particle states; for multi-particle states we take a product of these Lax operators,
which defines the so called monodromy matrix1919 This just means that the coproduct in

this realization of the Yangian is given
by the tensor product in the physical,
and the matrix product in the auxiliary
space.

Mn(u) =
· · ·
· · ·

n 2 1

=Ln(u) · · ·L2(u)L1(u) ,
. (7.16)

This matrix combines all the generators of the Yangian into a single object. To
get the individual generators, we have to expand the monodromy matrix in the
spectral parameter

Mn(u) =
n
∑

k=0

un−kMn[k] , (7.17)
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and look at individual matrix elements again defined by

Mn(u) = eABM AB
n (u) = eAB

n
∑

k=0

un−kM AB
n[k] . (7.18)

The operatorsM AB
n[k] are the generators of the Yangian; A and B are just ordinary

gl4|4 indices while the subscript [k] refers to the so-called level.20 Indeed, the 20 Note that in the literature on Drin-
feld’s �rst realization, the ordinary
algebra generators are usually referred
to as the zeroth level, the bilocal
generators as the �rst etc. Despite not
commonly used in the RTT literature,
we employ this terminology here, but
for convenience shift the counting of
levels by one.

first few of these levels in the expansion in the spectral parameter are given by

M AB
n[0] = δ

AB ,

M AB
n[1] = (−1)B

n
∑

i=1

J BA
i ,

M AB
n[2] = (−1)B

∑

i< j

(−1)CJ BC
i J

CA
j .

(7.19)

The fact that the lowest levelM AB
n[0] = δ

AB is just the identity is actually important
for the commutation relations of the Yangian which will be derived shortly.21 We 21 Representations of the Yangian where

this condition is violated form the
basis for the oscillator construction
of Q-operators as we will see in
chapter 12.

see furthermore that the first level generators are simply the gl4|4 generators de-
fined in (7.9), and acting on the tensor product in the usual way. The higher levels
consist of non-local combinations of these generators, i.e. appropriate sums over
products of J ’s acting on different particles at the same time.

The commutation relations of the Yangian algebra follow from the so-called
RTT22 or fundamental commutation relation 22 In many works the monodromy matrix

M is denoted by T , hence the name.

R(u− v)
�

Mn(u)⊗1
��

1⊗Mn(v)
�

=
�

1⊗Mn(v)
��

Mn(u)⊗1
�

R(u− v) , (7.20)

which can be derived by repeatedly applying (7.14) to the left hand side. In
components this equation reads

(u− v)
�

M AB
n (u),M

CD
n (v)

�

= (−1)|A||C|+|A||D|+|C||D|
�

M CB
n (v)M

AD
n (u)−M

CB
n (u)M

AD
n (v)

�

,
(7.21)

and if we expand in the spectral parameter we get
�

M AB
n[k+1],M

CD
n[`]

�

−
�

M AB
n[k],M

CD
n[`+1]

�

= (−1)|A||C|+|A||D|+|C||D|
�

M CB
n[`]M

AD
n[k] −M

CB
n[k]M

AD
n[`]

�

.
(7.22)

While this equation can be taken as the defining relations of the Yangian of gl4|4,
one can obtain a more enlightening representation if we bring the factor of (u−v)
in (7.21) to the right hand side and expand afterwards. This yields the commu-
tation relations for the Yangian generators23 23 While we derived these relations from

the explicit form of the monodromy
matrix (7.16), they can of course be
taken as a de�nition of the algebra,
with abstract generators and an
in�nite number of levels.

�

M AB
n[k],M

CD
n[`]

�

= (−1)|A||C|+|A||D|+|C||D|
min(k,`)−1
∑

q=0

�

M CB
n[k+`−q−1]M

AD
n[q] −M

CB
n[q]M

AD
n[k+`−q−1]

�

.
(7.23)

These relations contain the gl4|4 commutation relations (7.10). To see this set
k = `= 1 in (7.23), which fixes q = 0, and plug in the explicit form of the zeroth
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and first level given in (7.19); this yields

�

J BA
n , J DC

n

�

= (−1)|B|+|D|(−1)|A||C|+|A||D|+|C||D|
�

(−1)|B|δADJ BC
n − (−1)|D|δCBJ DA

n

�

,

(7.24)

and noting that the signs of the terms are given by

(−1)|D|+|A||C|+|A||D|+|C||D|δAD = δAD ,

− (−1)|B|+|A||C|+|A||D|+|C||D|δBC = −(−1)(|A|+|B|)(|C|+|D|)δBC ,
(7.25)

we recover (7.10). The Yangian extends these relations to the whole tower of
levels defined above.

7.2 Transfer matrices and Hamiltonians

Before we turn to the question of understanding the invariants of the Yangian, let
us discuss another important operator, which will allow us to make more direct
contact with integrable spin chains, and which will play an important role in the
following chapters. Given a monodromy matrix (7.16), we can define a so-called
transfer matrix T by taking the supertrace over the fundamental space

Tn(u) =
· · ·
· · ·

n 2 1

= strMn(u) . (7.26)

Since the fundamental space is traced out, it is called auxiliary; the other spaces,
on which the transfer matrix acts, are called physical, and constitute the Hilbert
space of the spin chain model. An important property of the transfer matrix is its
gl4|4 invariance,

[T (u),
n
∑

i=1

J AB
i ] = 0 . (7.27)

Taking the supertrace on both sides of the RTT relation (7.20) and using the
expression for the R-matrix (7.4), one can furthermore derive the most important
property of the transfer matrix: it commutes with itself at different values of the
spectral parameter,

[Tn(u),Tn(v)] = 0 (7.28)

Therefore an expansion of the transfer matrix in the spectral parameter,

Tn(u) =
n
∑

k=0

un−kTn[k] , (7.29)

generates a set of mutually commutating charges. These charges can be regarded
as special linear combinations of the Yangian generators (7.18). On the other
hand, in the context of spin chain models, they really can be considered as higher
conserved charges of the corresponding model, which exist due to integrability.
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We note in passing that in our case, the level Tn[0] = 0 because the supertrace
str1 = 0, and likewise Tn[1] = 0 due to the vanishing of the central charge of
physical states.

The spin chain Hamiltonian itself is not among the operators generated by the
transfer matrix T (u), with the fundamental representation in the auxiliary space.
Rather, it can be obtained from a transfer matrix which is constructed with the
same representation in the auxiliary and the tensor factors of the physical space.
The corresponding R-matrix, which we denote by R, from which this transfer
matrix can be constructed was found in Kulish et al. (1981)24 and contains the 24 Kulish, Reshetikhin, Sklyanin, “Yang-

Baxter Equation and Representation
Theory. 1.”, Lett. Math. Phys. 5 (1981)
393–403

Hamiltonian densityHi,i+1 when expanded in the spectral parameter

Ri,i+1(u) = Pi,i+1(I+ uHi,i+1 + . . .) , (7.30)

see e.g. Sklyanin (1991).25 This so-called harmonic action Hamiltonian was first 25 Sklyanin, “Quantum inverse scat-
tering method. Selected topics”,
hep-th/9211111

studied, in the context of N =4 SYM in Beisert (2004).26 The full Hamiltonian

26 Beisert, “The complete one loop
dilatation operator of N = 4 Super
Yang-Mills theory”, hep-th/0307015

is then defined as

H=
n
∑

i=1

Hi,i+1 (7.31)

with periodic boundary conditions.
The R matrix satisfies the following Yang-Baxter equation

Ri,i+1(u)Li(u+ u′)Li+1(u
′) =Li+1(u

′)Li(u+ u′)Ri,i+1(u) (7.32)

which for the representations at hand was investigated in Ferro et al. (2014).27 27 Ferro, Łukowski, Meneghelli, Plefka,
Staudacher, “Spectral Parameters for
Scattering Amplitudes in N = 4 Super
Yang-Mills Theory”, 1308.3494

If we take the derivative with respect to u of this equation and multiply by the
permutation operator, we arrive at the Sutherland criterion28

28 Sutherland, “Exact Solution of a Two-
Dimensional Model for Hydrogen-
Bonded Crystals”, Phys. Rev. Lett. 19 Jul
(1967) 103–104

[Hi,i+1,Li(u
′)Li+1(u

′)] =Li(u
′)−Li+1(u

′) . (7.33)

It is easy to see that this implies, by telescopic cancelation, that the charges
generated by the transfer matrix T commute with the Hamiltonian, and are
thus conserved.

Although we will not go into any detail concerning this technique, we want to
point out that the (nested) Algebraic Bethe Ansatz, or Quantum Inverse Scatter-
ing method, is based entirely on this observation. It diagonalizes the Hamiltonian
H by finding the eigenstates of the transfer matrix T (u), using matrix elements of
the monodromy matrix (7.16) as lowering operators acting on a highest-weight
state that serves as a vacuum. The RTT relations (7.20) can then be used to find
consistency relations for the Ansatz, the Bethe equations.29 29 For an introduction see Faddeev, “How

algebraic Bethe ansatz works for
integrable model”, hep-th/9605187;
a complete and systematic treatment
can be found in the paper Belliard,
Ragoucy, “Nested Bethe ansatz for ‘all’
closed spin chains”, 0804.2822.

7.3 Yangian invariance

We can now define precisely what we mean by Yangian invariance in the RTT
formulation of the Yangian. Naively, an invariant should be annihilated by all
generators (7.18) of the Yangian. This would indeed be the case in Drinfeld’s
first realization of the Yangian. Here however we see that this cannot be true.

http://xxx.lanl.gov/abs/hep-th/9211111
http://xxx.lanl.gov/abs/hep-th/0307015
http://xxx.lanl.gov/abs/1308.3494
http://xxx.lanl.gov/abs/hep-th/9605187
http://xxx.lanl.gov/abs/0804.2822
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First of all, the lowest level of the Yangian is the identity and cannot annihilate
any state; furthermore we cannot require that the diagonal generators M AA

n[`]
annihilate the invariant, since we work with gl4|4 generators and don’t impose
a vanishing supertrace. We have however to require that these generators act
diagonally.

We thus arrive at the following definition of Yangian invariants

M AB
n[`] |Ω〉= fn,`δ

AB |Ω〉 , (7.34)

where the coefficients fn,` may depend on the state. A powerful feature of the RTT
realization is that these conditions can be combined into an elegant eigenvalue
equation3030 Chicherin, Kirschner, “Yangian

symmetric correlators”, 1306.0711;
and Chicherin, Derkachov, Kirschner,
“Yang-Baxter operators and scattering
amplitudes in N = 4 super-Yang-
Mills theory”, 1309.5748

Mn(u) |Ω〉= f (u) |Ω〉 . (7.35)

This simply states that Yangian invariants are the eigenstates of the monodromy
matrix. In particular this implies that they are special eigenstate of the transfer
matrix

Tn(u) |Ω〉= f (u)(−1)|A|δAA |Ω〉= 0 . (7.36)

Here the last equality is a consequence of the fact that there are as many fer-
mionic as bosonic indices for gl4|4. Being eigenstates of the transfer matrix, the
invariants can in principle be constructed using Bethe Ansatz methods, as sug-
gested in Frassek et al. (2014).31 We will however shortly see that there is more31 Frassek, Kanning, Ko, Staudacher,

“Bethe Ansatz for Yangian Invariants:
Towards Super Yang-Mills Scattering
Amplitudes”, 1312.1693

direct way of writing them down.
The graphical notation outlined above will play an important role in this

development, and we note that in this language, the Yangian invariance condi-
tion (7.35) can be represented as the possibility to “pull” the monodromy matrix
“through” the invariant state, as shown in figure 7.1.

Figure 7.1: Yangian invariance, depicted
graphically as pulling the line corre-
sponding to the auxiliary space of the
monodromy matrix through the state.

n · · · 3 2 1

|Ω〉 = f (u)

n · · · 3 2 1

|Ω〉 ,

Here the state is represented by a “blob” with n outgoing lines in the spinor-
helicity representation; the monodromy matrix is drawn as in in equation (7.16),
with the dashed line representing the space in the fundamental representation
crossing the physical space. If the state is invariant, the fundamental line can be
pulled through the blob, and becomes the identity matrix (since no crossings re-
main). The subsequent sections will show that these invariant blobs are precisely
given by on-shell diagrams.

http://xxx.lanl.gov/abs/1306.0711
http://xxx.lanl.gov/abs/1309.5748
http://xxx.lanl.gov/abs/1312.1693
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7.4 Deformations

While Yangian invariance as described above is the actual invariance of physical
on-shell functions, the integrability-based formulation of the problem allows for
certain deformations of these states, which preserve Yangian invariance with
adjustments to the representation of the Yangian. These deformations are not
only interesting in themselves, but also serve to motivate a purely integrability-
based construction of invariants. We will first describe these deformations, then
discuss their interpretation, and finally provide an overview of the development
of this subject.

The main idea is to allow for different spectral parameters of the Lax opera-
tors which build up the monodromy matrix; as is customary, we separate these
parameters into a shared value, the spectral parameter u, and local shifts, the
inhomogeneities vi ,

Mn(u, {vi}) =Ln(u− vn) · · ·L2(u− v2)L1(u− v1) . (7.37)

From this monodromy matrix we can construct a transfer matrix depending on
both the spectral parameter as well as the inhomogeneities by taking the super-
trace

Tn(u, {vi}) = strMn(u, {vi}) . (7.38)

We note that this transfer matrix is still gl4|4 invariant,

[T (u, {vi}),
n
∑

i=1

J AB
i ] = 0 . (7.39)

The Yangian invariance condition takes the same form as before, but the eigen-
value can now depend on the inhomogeneities:

Mn(u, {vi}) |Ω〉= f (u, {vi}) |Ω〉 (7.40)

We will also use the same graphical language for the deformed as for the unde-
formed case.

There are different perspectives on these deformations: From a spin chain
point of view, they correspond to inhomogeneities, local shifts of the spectral pa-
rameter, which can be interpreted as local defects. Regarding the Yangian, this
corresponds to using different representations at each site: a single Lax opera-
tor itself constitutes a representation of the Yangian in RTT language (it satisfies
the RTT relation (7.20) which in this case is nothing else than the Yang-Baxter
equation (7.14)); it is constructed from a representation of gl4|4 by adding the
spectral parameter dependent term – this is called the evaluation map; having
different spectral parameters at each site thus amounts to using different repre-
sentations of the Yangian (based on the same representations of gl4|4 though) in
the tensor product representation. Finally, the invariants of this representation
of the Yangian will have non-zero central charges at each site. These are deter-
mined by the inhomogeneities, as we will see shortly. The total central charge is
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still imposed to be zero, but we can regard the individual central charges as new
physical properties of the particles participating in the scattering process.

While inhomogeneous spin chains have been considered for a long time in
the literature,32 and in the context ofN =4 SYM have been used as approximate

32 Faddeev, “How algebraic Bethe
ansatz works for integrable model”,
hep-th/9605187

models for the spectrum,33 their application to scattering amplitudes is a very

33 Beisert, Dippel, Staudacher, “A
Novel long range spin chain and
planar N = 4 super Yang-Mills”,
hep-th/0405001

recent development. It was first found that certain inhomogeneities result in Yan-
gian invariants which can be given an integrability interpretation. In particular,
the deformation of the four-point amplitude can be regarded as an R-matrix, and
other on-shell diagrams as generalizations thereof,34 with the inhomogeneities

34 Ferro, Łukowski, Meneghelli, Plefka,
Staudacher, “Harmonic R-matrices for
Scattering Amplitudes and Spectral
Regularization”, 1212.0850; and
Ferro, Łukowski, Meneghelli, Plefka,
Staudacher, “Spectral Parameters for
Scattering Amplitudes in N = 4 Super
Yang-Mills Theory”, 1308.3494

playing the role of a spectral parameter. This idea was then related to integrable
vertex models and usual Bethe Ansatz techniques.35 Another development which

35 Frassek, Kanning, Ko, Staudacher,
“Bethe Ansatz for Yangian Invariants:
Towards Super Yang-Mills Scattering
Amplitudes”, 1312.1693

makes use of these deformations is the R-operator formalism. It will be the fo-
cus of the next sections, and can be adapted to the case of form factors, as we
will show in chapter 8. We note that the deformations usually prevent the con-
sistent addition of different diagrams, both for tree-level amplitudes36 as well as

36 Beisert, Broedel, Rosso, “On Yangian-
invariant regularization of deformed
on-shell diagrams in N = 4 super-
Yang-Mills theory”, 1401.7274

for loop level integrands37. This makes it difficult to give a “physical” interpreta-

37 Broedel, de Leeuw, Rosso, “Deformed
one-loop amplitudes in N = 4
super-Yang-Mills theory”, 1406.4024

tion to the deformations, despite the fact that they can be considered as complex
superhelicities of the participating particles. Finally, the deformation where di-
rectly lifted to the Graßmannian top-form,38 which interestingly relates these

38 Bargheer, Huang, Loebbert, Yamazaki,
“Integrable Amplitude Deformations
for N = 4 Super Yang-Mills and
ABJM Theory”, 1407.4449; and
Ferro, Łukowski, Staudacher, “N = 4
scattering amplitudes and the
deformed Graßmannian”, 1407.6736

developments to matrix models.39

39 Kanning, Ko, Staudacher, “Graßmann-
ian integrals as matrix models for
non-compact Yangian invariants”,
1412.8476

7.5 Construction of on-shell functions via R-
operators

The papers Chicherin and Kirschner (2013); Chicherin et al. (2014)40 introduced

40 Chicherin, Kirschner, “Yangian
symmetric correlators”, 1306.0711;
and Chicherin, Derkachov, Kirschner,
“Yang-Baxter operators and scattering
amplitudes in N = 4 super-Yang-
Mills theory”, 1309.5748

a purely integrability-based method of constructing Yangian invariants using so-
called Yang-Baxter operators, or R-operators. This approach was further devel-
oped and related to on-shell diagrams in Broedel et al. (2014),41 and to the Bethe

41 Broedel, de Leeuw, Rosso, “A dictio-
nary between R-operators, on-shell
graphs and Yangian algebras”,
1403.3670

Ansatz construction in Kanning et al. (2014).42 The construction naturally leads

42 Kanning, Łukowski, Staudacher,
“A shortcut to general tree-level
scattering amplitudes in N = 4 SYM
via integrability”, 1403.3382

to the deformations of scattering amplitudes we just discussed.
The basic object in this approach is the R-operator which we define as43

43 Formally, the operator can also be
written as Γ (−z)(x j · pi)z , which
simpli�es some calculations; the
complex power of operators should be
interpreted in terms of fractional de-
rivatives, see Lovoie, Osler, Tremblay,
“Fractional derivatives and special
functions”, SIAM review 18 (1976),
no. 2, 240–268.

Ri j(z) =

j i

=

∫

dα
α1+z

e−α(x j ·pi) . (7.41)

Here the operators xAi and pAi are the Jordan-Schwinger oscillators defined in
(7.7). The exponential in this definition of the R-operator acts as a shift operator
on the spinor-helicity variables, with an action given by

Ri j(z) f (λi , λ̃i , η̃i ,λ j , λ̃ j , η̃ j) =

∫

dα
α1+z

f (λi−αλ j , λ̃i , η̃i ,λ j , λ̃ j+αλ̃i , η̃ j+αη̃ j) .

(7.42)

This is just the familiar BCFW shift (2.35), and explains the graphical notation:
the R-operator is simply a BCFW bridge, with the noteworthy distinction that it

http://xxx.lanl.gov/abs/hep-th/9605187
http://xxx.lanl.gov/abs/hep-th/0405001
http://xxx.lanl.gov/abs/1212.0850
http://xxx.lanl.gov/abs/1308.3494
http://xxx.lanl.gov/abs/1312.1693
http://xxx.lanl.gov/abs/1401.7274
http://xxx.lanl.gov/abs/1406.4024
http://xxx.lanl.gov/abs/1407.4449
http://xxx.lanl.gov/abs/1407.6736
http://xxx.lanl.gov/abs/1412.8476
http://xxx.lanl.gov/abs/1306.0711
http://xxx.lanl.gov/abs/1309.5748
http://xxx.lanl.gov/abs/1403.3670
http://xxx.lanl.gov/abs/1403.3382
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does not simply add a dlog integration over the shift, corresponding to an edge
variable, but instead comes with a scaling factor z, the spectral parameter. We
have left the integration contour in (7.41) unspecified. Indeed, all manipulations
we will perform with these operators are purely algebraic and do not depend
on the contour. It suffices to say that in the context of amplitudes, where the
parameters z are taken to zero the contour is always closed, either localizing a
holomorphic delta function or setting the edge variable α to zero.

The R-operator is gl4|4 invariant

[Ri j(z),J AB
i ] = −xAj pBi Ri j(z − 1)

[Ri j(z),J AB
j ] = +xAj pBi Ri j(z − 1)

=⇒ [Ri j(z),J AB
i +J AB

j ] = 0

(7.43)

and has the following commutators with the central charge (7.11)

[Ri j(z),ci] = zRi j(z)

[Ri j(z),c j] = −zRi j(z)
(7.44)

These equations imply that the R-operator changes the local central charges∝ z,
while keeping the total central charge constant, [Ri j(z),ci + c j] = 0.

The “deformation” z introduced by (7.41) plays an important role in the in-
tegrability perspective on the construction of Yangian invariants. Indeed the R-
operators satisfy the following Yang-Baxter equation

R12(z12)R23(z13)R12(z23) = R23(z23)R12(z13)R23(z12) (7.45)

This is the same as the Yang-Baxter equation (7.5), if a permutation operator is
factored out of the R-matrix.44 44 In the literature, such reduced

R-matrices are usually called Ř.If we take one space in the fundamental representation, and two in the spinor-
helicity representation, we get a different Yang-Baxter equation involving both
the R-operators (7.41) as well as the Lax operators (7.13).

Ri j(u j − ui)L j(u j)Li(ui) =L j(ui)Li(u j)Ri j(u j − ui) , (7.46)

which can be depicted as

ij

=

ij

. (7.47)

This equation will eventually guarantee the Yangian invariance of states con-
structed from R-operators: Given appropriate values for the spectral parameters
z, it shows that the monodromy matrix commutes with chains of R-operators.
Therefore they can be used to create new invariants starting from other ones,
simply by acting on them. We now turn to the details of this construction.

The simplest invariants are the so-called vacua, which are states on a single
site of the spin chain, i.e. they depend on only one set of spinor-helicity vari-
ables:45

45 In the diagrammatic language of
on-shell diagrams, they correspond to
white and black “lollipop” diagrams,
see e.g. Arkani-Hamed, Bourjaily,
Cachazo, Goncharov, Postnikov,
Trnka, “Scattering Amplitudes and the
Positive Grassmannian”, Cambridge
University Press, 2016, 1212.5605.

http://xxx.lanl.gov/abs/1212.5605
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+

i
= δ+i = δ

2(λi) ,
−

i
= δ−i = δ

2(λ̃i)δ
4(η̃i) . (7.48)

To construct an invariant for n particles and MHV degree k, one takes a product
of n such vacua, one for each particle, k of which have to be of type δ−.

Any such state is Yangian invariant as defined in (7.40), since the Lax opera-
tors act diagonally on the vacua

Li(u)δ
+
i = (u− 1) I δ+i , Li(u)δ

−
i = u I δ−i , (7.49)

which can be depicted as

+

i
= (u− 1)

+

i
,

−

i
= u

−

i
. (7.50)

To obtain further invariants, we can act with sequences of R-operators on
these products of vacuum states. An ansatz for a general invariant is then given
by

|A 〉= Ri1 j1(z1) · · ·Rim jm(zm)
∏

j∈I +
δ+j

∏

j∈I −
δ−j , (7.51)

where I + is the set of positions of “+” vacua and I − those of the “−” vacua;
m is simply the number of BCFW bridges of the diagram, which can be arbitrary.

Since the R-operators are essentially (deformed) BCFW bridges, we can as-
sociate a permutation to this state, in accordance with the left-right paths of
on-shell diagrams:

σ = (i1, j1) / · · · / (im, jm) , (7.52)

where the product / is the composition defined in (2.49) As noted above, the
number of plus and minus vacua fixes the MHV degree of the state

|I +|= n− k , |I −|= k . (7.53)

Furthermore, a given chain of R-operators fixes the positions of the “+” and
“−” vacua. For each site, consider the first R-operator which acts on this site;
if the site appears as the first index of the operator, it is of type δ+, and if it
corresponds to the second index, of type δ−. According to (7.42), this ensures
that all R-operators act non-trivially.4646 In principle one can of course use a

di�erent distribution of the vacua, but
this would generate integrations over
variables which do not appear in any
delta functions, i.e. “bubbles” in the
sense of �gure 2.5.

As an example, we consider the deformed three-point MHV amplitude. The
associated permutation can decomposed into adjacent transpositions as

(3, 1, 2) = (2,3) / (1, 2) . (7.54)

This translates into the following expression in terms of R-operators and vacua

Adeformed
3,2 = R23(v32)R12(v31)δ

+
1 δ
−
2 δ
−
3 , (7.55)
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where we already set the deformations to the values imposed by Yangian invari-
ance, to be discussed shortly, and use the abbreviation vi j = vi − v j .

− − +

3 2 1

È

1

3 2

Figure 7.2: Integrability construction
for the deformed three-point MHV
amplitude.

We can draw the state using the diagrammatic language outlined above; this
is shown in figure 7.2. Note that graphically, one obtains the standard on-shell
diagram by removing the vacua, and subsequently deleting all two-valent ver-
tices. It is easy to evaluate the action of the R-operators on the vacua, such that
one finds

Adeformed
3,2 =

δ4(
∑3

i=1λiλ̃i)δ4(
∑3

i=1λiη̃
+
i )δ

4(
∑3

i=1λiη̃
−
i )

〈12〉1−v23〈23〉1−v31〈31〉1−v12
. (7.56)

It is evident that the undeformed amplitude A3,2 will be recovered setting vi → 0.

7.6 Yangian invariance of R-operator states

The construction based on R-operators allows to immediately deduce the Yangian
invariance of the states, making use of the Yang-Baxter equation (7.46).

We first consider the undeformed case, where the spectral parameters of the
R-operators are set to zero, i.e. states of the form

|A 〉= Ri1 j1(0) · · ·Rim jm(0)
∏

j∈I +
δ+j

∏

j∈I −
δ−j . (7.57)

These states correspond to normal on-shell diagrams, representing (BCFW terms
of) scattering amplitudes, leading singularities and so forth. Specializing equa-
tion (7.46) to this case, we see that the monodromy matrix defined in (7.16)
commutes with the sequence of R-operators; then it acts diagonally on the vacua
according to (7.49):

Mn(u) |A 〉=Mn(u)Ri1 j1(0) · · ·Rim jm(0)
∏

j∈I +
δ+j

∏

j∈I −
δ−j

= Ri1 j1(0) · · ·Rim jm(0)Mn(u)
∏

j∈I +
δ+j

∏

j∈I −
δ−j

= (u− 1)|I
+|(u)|I

−| 1 |A 〉 .

(7.58)

This shows that the states are Yangian invariants as defined in (7.35), and the
eigenvalues are simply the products of those of the vacua δ±i , the numbers of
which are given in (7.53). Graphically, this argument can be represented as in
figure 7.3; the monodromy can successively be pulled through all BCFW bridges,
as well as through the vacua, given that they are eigenstates.

The deformed case is more subtle. The states defined in (7.51) have to be
considered only as an ansatz for Yangian invariants, with the parameters zi to
be determined in a suitable way. To fix them, we determine under which cir-
cumstances the inhomogeneous monodromy matrix (7.37) commutes with the
sequence of R-operators in (7.51). Using (7.46), one finds that

M (u, {vi})Ri1 j1(z1) · · ·Rim jm(zm) = Ri1 j1(z1) · · ·Rim jm(zm)M (u, {vσ(i)}) , (7.59)
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a b

− − +

3 2 1

= a b

− − +

3 2 1

=

a b
− − +

3 2 1

= f (u, {vi})

a b

− − +

3 2 1

Figure 7.3: Steps to show the Yangian
invariance of the three-point MHV
amplitude using R-operators. provided that the parameters z` satisfy

z` = vτ`(i`) − vτ`( j`) with τ` = (i1, j1) / · · · / (i`, j`) , `= 1, . . . , m ,

(7.60)

We see that the monodromy matrix does not really commute with the sequence
of R-operators, but given these constraints, it commutes up to a reshuffling of the
inhomogeneities: vi is replaced by vσ(i), where σ is the permutation associated
to the state as in (7.52), which is the same as the one which can be read off from
the on-shell diagram using left-right paths as discussed in section 2.4.

Using the commutators (7.44), and the fact that the vacua δ± carry no central
charge, one finds that the state (7.51), upon fixing the parameters zi as in (7.60)
carries the following local central charges

ci = vi − vσ(i) . (7.61)

Due to this difference property the total central charge c= c1+ · · ·+cn vanishes.
Finally, since each Lax operator in the monodromy matrix acts diagonally on

the corresponding site, we find that the Yangian invariance condition is satisfied
in the following form

Mn(u, {vi}) |A 〉

=Mn(u, {vi})Ri1 j1(vτ1(i1) − vτ1( j1)) · · ·Rim jm(vτm(im) − vτm( jm))
∏

j∈I +
δ+j

∏

j∈I −
δ−j

= Ri1 j1(vτ1(i1) − vτ1( j1)) · · ·Rim jm(vτm(im) − vτm( jm))Mn(u, {vi})
∏

j∈I +
δ+j

∏

j∈I −
δ−j

=
∏

j∈I +
(u− v j − 1)

∏

j∈I −
(u− v j)1 |A 〉 .

(7.62)

We see that the proof of the Yangian invariance of on-shell diagrams is purely
algebraic, if the corresponding on-shell functions are expressed in terms of R-
operators. In the next chapter will we use these operators to derive similar state-
ments in the case of form factors.



8
Integrability construction

for form factors

This chapter is based on
the author’s publication
Frassek, Meidinger, Nandan, Wilhelm,
“On-shell diagrams, Graßmannians
and integrability for form factors”,
1506.08192.

The integrability-based construction of amplitudes and on-shell functions ex-
plored in the last chapter did not only provide a convenient and algebraic way
of writing these quantities, it also allowed to interpret them as spin chain states,
introduced deformations, and made their integrability properties – namely their
Yangian invariance – manifest.

On-shell diagrams for form factors, as explored in chapter 3, mark a starting
point for an adaptation of this approach to form factors, and their related on-
shell functions. This is the aim of this chapter. We will see that the minimal form
factor can be interpreted as a new kind of entangled vacuum state. We can then
build up more complex diagrams using the R-operator construction, leading to
deformed form factor on-shell functions.

Far from being a purely formal exercise, the integrability-based construction
enables the derivation of novel properties of these on-shell functions: we will
show that they are eigenstates of the integrable transfer matrix defined in equa-
tion (7.26). We furthermore show that this is not only the case for on-shell di-
agrams involving the chiral stress energy tensor, but that similar identities hold
for all on-shell functions with arbitrary operator insertions. These identities can
be regarded as symmetries constraining the on-shell functions, but also properly
account for them as states in the integrable model behind N = 4 SYM, maybe
opening up further possibilities to calculate them purely based on integrability.
Furthermore, while integrability can be used to calculate amplitudes, the state
of the art for the spectral problem is considerably more advanced; we hope that
form factors may provide a link in this context.

8.1 The minimal form factor as a vacuum state

In chapter 3, we saw that the minimal, i.e. the two-point form factor (3.12) was
the essential new building block for form factor on-shell diagrams. Here we want
to leverage this fact to describe an integrability-based construction in terms of R-
operators. For this construction we adapt the formalism described in section 7.5

http://xxx.lanl.gov/abs/1506.08192
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to harmonic superspace; this merely amounts to replacing the four Graßmann
variables η̃A, A = 1,2, 3,4 by η̃+a and η̃−a′ , which have two components each.
This applies to the entire Schwinger representation defined in (7.7), and both to
the R-operators (7.41) as well as the vacua (7.48).

The starting point of our construction is the observation that the minimal
form factor can be written purely in terms of delta functions,

F2,2(1,2) = δ2(λ̃1)δ
4(η̃1)δ

2(λ̃2)δ
4(η̃2)≡ δF12 , (8.1)

if we define kinematic variables as

λ̃1 = λ̃1 −
〈2|q
〈21〉

, η̃−1 = η̃
−
1 −
〈2|γ−

〈21〉
, η̃+1 = η̃

+
1 ,

λ̃2 = λ̃2 −
〈1|q
〈12〉

, η̃−2 = η̃
−
2 −
〈1|γ−

〈12〉
, η̃+2 = η̃

+
2 .

(8.2)

These variables are “twisted” in such a way that they not only encode the origi-
nal on-shell kinematics, but also the off-shell momentum and supermomentum
of the operator; we encountered them already when we discussed the MHV Graß-
mannian integral, see equation (4.34).

We use the notation δFi i+1 to stress the remarkable fact that the minimal form
factor (8.1), expressed in these variables, looks precisely like the product of two
R-operator vacua defined in (7.48):

δF12 = δ
−
1 δ
−
2 |λ→λ, λ̃→λ̃, η̃→η̃ . (8.3)

This strongly suggests that in order to construct form factor on-shell functions
using the integrability approach presented in section 7.5, we have to use the
minimal form factor as an additional vacuum state. While the two sites with this
“vacuum” are clearly entangled, the factorized form (8.1) implies that the action
of the R-operators is very similar to the amplitude case.

8.2 Permutations, bridges and R-operators

Using the minimal form factor as given in (8.1) as a vacuum state, together
with the amplitude vacua δ+i δ

−
i defined in (7.48), we can construct general

form factor on-shell functions for any planar on-shell diagram containing the
minimal form factor, including top-cell diagrams, individual BCFW terms, fac-
torization channels etc. using R-operators as in section 7.5. Note that both the
R-operators as well as the vacua have been adapted to harmonic superspace
by replacing occurrences of the Graßmann variables η̃ by η̃+ and η̃−. For ex-
ample, in the definition of the vacuum state δ−i = δ

2(λ̃i)δ4(η̃i) we interpret
δ4(η̃i) = η̃+1

i η̃
+2
i η̃

−1
i η̃

−2
i .

A general form factor on-shell function |F〉 of the chiral stress-tensor multi-
plet with n particles and MHV degree k can then be written as

|F〉= Ri1 j1(z1) · · ·Rim jm(zm) |ΩF 〉 , (8.4)
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where we separated the vacuum states by defining

|ΩF 〉= δFl l+1

∏

j∈I +
δ+j

∏

j∈I −
δ−j . (8.5)

The set I + contains the position of the n − k δ+ vacua, and I − those of the
δ− ones, the number of which is k − 2. The minimal form factor serves as the
vacuum at sites l and l + 1.

The number m of R-operators is determined by the diagram under consider-
ation. The precise sequence can be obtained from the permutation that can be
read off the diagram as described in section 3.8, by decomposing it into transposi-
tions. However, as already noted there, this decomposition has to be non-minimal
in most cases. In the following we will consider only sequences of R-operators
that correspond to planar diagrams. Some examples of this construction are pre-
sented in figure 8.1, which also serves to illustrate the graphical notation of sec-
tion 7.5, adapted to form factor on-shell functions.

If we keep the parameters zi of the R-operators non-zero, the resulting on-
shell functions will be central-charge-deformed, similar to the amplitude case
considered in the previous chapter. We will now calculate these deformations in
the case of MHV form factors.

8.3 Deformed MHV form factors

The states constructed in the last section can be evaluated explicitly using the
action of the R-operators (7.42) on the vacuum states, including the minimal
form factor in the factorized representation (8.1). In this way, we can find de-
formations of form factor on-shell functions. Here we provide the derivation of
these deformations for all MHV form factors both as deformed versions of the
Parke-Taylor-type formula (3.7), as well as deformed Graßmannian integrals.1 1 Bargheer, Huang, Loebbert, Yamazaki,

“Integrable Amplitude Deformations
for N = 4 Super Yang-Mills and
ABJM Theory”, 1407.4449; and
Ferro, Łukowski, Staudacher, “N = 4
scattering amplitudes and the
deformed Graßmannian”, 1407.6736

For these MHV form factors, we take the minimal form factor to be the vac-
uum for sites n− 1 and n. All other vacua are of type δ+:

Vacuum(Fn,2) = δ
−
1 · · ·δ

−
n−2δ

F
n−1 n . (8.6)

The chain of R-operators is the same as for the MHV amplitudes with the same
number of particles, and given by2 2 This is of course just one possible

choice, cf. �gure 8.1. Many more
decompositions are possible, corre-
sponding to di�erent positions of the
inverse soft factors, see section 3.4.

(R23R12) · · · (Rn−1 nRn−2 n−1) . (8.7)

We start by considering the three-point case; acting with the appropriate se-
quence of R-operators as in (7.42) by shifting the arguments of the delta function
in the vacuum states, we get

Fdef.
3,2 (1,2, 3)

= R23(v32)R12(v31)δ
+
1 δ

F
23

=

∫

dα2

α
1+v32
2

∫

dα1

α
1+v31
1

δ4
�

C(α1,α2) · λ̃
�

δ8
�

C(α1,α2) · η̃
�

δ2
�

C⊥(α1,α2) ·λ
�

.

(8.8)

http://xxx.lanl.gov/abs/1407.4449
http://xxx.lanl.gov/abs/1407.6736
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F3,2 σ = (3, 1,2) = (2,3) / (1, 2)

+

3 2 1

−→ 1

2

3

F4,2 σ = (3, 4,1,2) = (2,3) / (3,4) / (1, 2) / (2, 3)

+ +

4 3 2 1

−→
1

4

3 2

F5,2 σ = (3, 4,5,1, 2) = (2, 3) / (3, 4) / (4,5) / (1, 2) / (2, 3) / (3,4)

+ + +

5 4 3 2 1

−→

1

5

4
3 2

F3,3 σ = (2, 3,1) = (1,2) / (2,3)

−

3 2 1

−→ 1

2

3

TopCell(F4,3) σ = (4,2, 3,1) = (1,2) / (3,4) / (2, 3) / (1,2) / (3,4)

+ −

4 3 2 1

−→

1

23

4

Figure 8.1:
Integrability construction for several form factor on-shell diagrams.
The permutation is determined from the diagram, and decomposed into adjacent transpositions.
This decomposition corresponds to the sequence of R-operators acting on the vacuum states.
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Here the kinematic variables for particles 2 and 3 are “twisted” as in (8.1) while
those for particle 1 remain unchanged. We also set the parameters of the R-
operators to specific values, with vi j = vi − v j , for reasons that will be explained
later. The matrices C and C⊥ contain the information of the BCFW shifts

C(α1,α2) =

�

α1 1 0

0 α2 1

�

, C⊥(α1,α2) =
�

1 −α1 α1α2

�

. (8.9)

and parametrize the Graßmannian G(2,3).
We can transform this Graßmannian integral in edge variables to the usual

form by a change of variables to the entries of the C matrix, in order to make
the GL(2) invariance manifest:

Fdef.
3,2 (1, 2,3) =

∫

d2×3C
(12)1−v23(23)1−v31(31)1−v12

δ4(C ·λ̃)δ8(C ·η̃)δ2(C⊥ ·λ) , (8.10)

Without going through the details of the derivation, we can immediately gen-
eralize this formula to any number of particles:

Fdef.
n,2 (1, . . . , n) =

∫

d2×nC
∏n

i=1(i i+1)1−vi+1 i+2
δ4(C · λ̃)δ8(C · η̃)δ2n−4(C⊥ ·λ) . (8.11)

The twisted kinematic variables (8.2) can be placed at any two sites in this for-
mula. In order to prove this equation, one merely has to note that the sequence
of R-operators (8.7) is the same as for amplitudes, and that it acts in such a way
on the vacua that the final dependence on the kinematic variables λ̃, η̃ is not
spoiled.3 We note the resulting deformed Graßmannian integral (8.11) is the 3 In principle, the BCFW shifts could

a�ect the denominators in (8.2). This
does not happen.

same as its amplitude counterpart derived in the papers Bargheer et al. (2015);
Ferro et al. (2014).4 All information on the operator insertion is contained in the

4 Bargheer, Huang, Loebbert, Yamazaki,
“Integrable Amplitude Deformations
for N = 4 Super Yang-Mills and
ABJM Theory”, 1407.4449; and
Ferro, Łukowski, Staudacher, “N = 4
scattering amplitudes and the
deformed Graßmannian”, 1407.6736

twisted kinematics (8.2).
It is easy to evaluate the integral. The twisted kinematics only changes the

variables λ̃ and η̃ and therefore doe not affect the Parke-Taylor prefactor, while
adjusting the momentum and supermomentum conserving delta functions in the
correct way, by shifting P → P − q and Q− → Q− − γ−. This is a consequence of
the identity

λαi

�

λ̃α̇i −
〈 j|qα̇

〈 ji〉

�

+λαj

�

λ̃α̇j −
〈i|qα̇

〈i j〉

�

= λαi λ̃
α̇
i +λ

α
j λ̃
α̇
j −
εγβ(λαi λ

γ
j −λ

α
j λ
γ
i )

〈 ji〉
︸ ︷︷ ︸

=δα
β

qβα̇ ,

(8.12)

and a similar identity for the supermomentum, obtained by replacing q with γ
inf the (8.12). Thus we see that (8.11) gives a deformed version of the Parke-
Taylor-type expression (3.7),

Fdef.
n,2 (1, . . . , n) =

δ4(
∑n

i=1λiλ̃i − q)δ4(
∑n

i=1λiη̃
+
i )δ

4(
∑n

i=1λiη̃
−
i − γ

−)
∏n

i=1〈i i+1〉1−vi+1 i+2
. (8.13)

Note that in the preceding derivations, we have chosen the parameters z
in a specific way in terms of variables vi; this was to ensure that the resulting
deformed form factors are eigenstates of the integrable transfer matrix (7.38),
as we will now show.

http://xxx.lanl.gov/abs/1407.4449
http://xxx.lanl.gov/abs/1407.6736
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8.4 Form factor on-shell functions as spin chain
eigenstates

One of the properties of the R-operator formalism is that it reduces the proof
of Yangian invariance of amplitude on-shell functions to some simple algebraic
computations. While the Yangian invariance of amplitudes was known prior to
the development of this construction, it can be used to derive novel integrabil-
ity properties, or symmetries, in the context of form factor on-shell functions.
In this section we will show that these functions are eigenstates of integrable
transfer matrices. The corresponding eigenvalue equations can be regarded as
symmetries, in the same sense as Yangian invariance, since the expansion of the
transfer matrix contains linear combinations of the Yangian generators.

We will first consider on-shell functions of the chiral stress tensor multiplet,
which we discussed exclusively so far. Finally, we will also consider on-shell func-
tions of generic component operators, and show that they have similar integra-
bility properties.

On-shell functions of the chiral stress tensor multiplet

Consider the general on-shell function defined in (8.4) in terms of vacua and R-
operators. We want to investigate the action of the inhomogeneous monodromy
matrix (7.37) on this state, to test whether it is Yangian invariant.

Since – compared to the amplitude states (7.51) – only the vacuum part is
different, while the sequence of R-operators is of the same form, we can still use
the commutation relations (7.59) between the monodromy matrix and a chain
of R-operators as in (8.4), which we repeat here for the reader’s convenience,

M (u, {vi})Ri1 j1(z1) · · ·Rim jm(zm) = Ri1 j1(z1) · · ·Rim jm(zm)M (u, {vσ(i)}) , (8.14)

under the condition that

z` = vτ`(i`) − vτ`( j`) with τ` = (i1, j1) / · · · / (i`, j`) , `= 1, . . . , m .

(8.15)

The central charges induced by the inhomogeneities, under these constraints, are
the same as for amplitudes and given by ci = vi − vσ(i).

A first noteworthy observation is that the permutation σ that shuffles the in-
homogeneities in the relation (8.14), thereby determining the parameters of the
R-operators in terms of them, is the one obtained from the on-shell diagram using
the rule (3.19) to turn back at the minimal form factor. This can be understood
as follows: One can use left-right paths as discussed in section 3.8 to determine
permutations from the type of diagrams we use in the integrability construction,
consisting of BCFW bridges and vacua. Even for amplitude diagrams, one then
has to use the further rule to turn back when the path arrives at a δ± vacuum.
One can easily convince oneself of this fact, if one compares both types of dia-
grams as for example shown in figure 7.2. This justifies our rule (3.19) to turn
back if a path hits the minimal form factor: this simply mirrors the behavior of the
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amplitude vacua, and ensures that we get the correct permutation required for
the commutation relation between the monodromy matrix and the R-operators
(8.14). For completeness, we summarize the rules to determine the permutation
σ using left-right paths in the integrability diagrams in figure 8.2.

+ −

Figure 8.2: Rules to determine the
permutation from the R-operator
diagrams.

We can now use (8.14) to commute the monodromy matrix through the se-
quence of R-operators in the state (8.4) under the conditions (8.15):

Mn(u, {vi}) |F〉= Ri1 j1(z1) · · ·Rim jm(zm)Mn(u, {vσ(i)}) |ΩF 〉 . (8.16)

Now most of the Lax operators in the monodromy act on the δ± vacua, and we
can use the equations (7.49) to replace them by the corresponding eigenvalues.
What remains is a small monodromy matrix of length two,

M2(u, {vσ(i)}) =Ll(u− vσ(l))Ll−1(u− vσ(l−1)) , (8.17)

acting on the minimal form factor δFl−1 l at sites l − 1 and l. We thus have

Mn(u, {vσ(i)}) |F〉 = f(u, {vσ(i)})
∏

j∈I +
δ+j

∏

j∈I −
δ−j

�

M2(u, {vσ(i)})δFl−1 l

�

,

(8.18)

where

f(u, {vσ(i)}) =
∏

i∈I +
(u− vσ(i) − 1)

∏

i∈I −
(u− vσ(i)) . (8.19)

The calculation so far can be depicted as in figure 8.3: the monodromy acts on
the state, but we can pull it through the R-operators / BCFW bridges; then most
of the Lax operators act on the amplitude vacua and the remaining two Lax
operators form a smaller monodromy matrix.

± ±

n j j−1 1

· · · · · ·

· · · · · ·

BCFW bridges
=

± ±

n j j−1 1

· · · · · ·

· · · · · ·

BCFW bridges
= f(u)

± ±

n j j−1 1

· · · · · ·

· · · · · ·

BCFW bridges

Figure 8.3: Action of the monodromy on
a form factor on-shell function.After the steps taken so far, we have to consider the action of the length two

monodromy matrix (8.17) on the minimal form factor. If it was an eigenstate,
the entire on-shell function would be Yangian invariant, as defined in (7.40).
It is easy to see that this is not the case. We can ignore the deformations for
a moment, since they do not change the argument. Consider the momentum
generators

∑

i λ
α
i λ̃
α̇
i , which constitute some of the off-diagonal generators of the
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first level of the Yangian, cf. (7.18). The action of these generators on the minimal
form factor is proportional to

(λk−1λ̃k−1 +λkλ̃k) δ
4(λk−1λ̃k−1 +λkλ̃k − q) , (8.20)

which clearly is non-zero, since the on-shell monodromy does not have any infor-
mation on the off-shell momentum q (for q = 0, the expression would be of the
form xδ(x) = 0). Invariance under these lowest level generators would be a pre-
requisite for general Yangian invariance.5 This implies that form factor on-shell5 It would be an interesting avenue for

future research to consider the o�-
shell data as another site of the spin
chain, in a di�erent representation.

functions are not Yangian invariant.6

6 It turns out, however, that a part of
the Yangian invariance persists, as we
will show in chapter 10.

However, it turns out that we can prove an interesting statement about the
integrability properties of form factor on-shell functions by taking the supertrace
on both sides of equation (8.18). The supertrace replaces the monodromy matri-
ces by the respective transfer matrices (7.38), and we get

Tn(u, {vσ(i)}) |F〉 = f(u, {vσ(i)})
∏

j∈I +
δ+j

∏

j∈I −
δ−j

�

T2(u, {vσ(i)})δFl−1 l

�

,

(8.21)

with the length two transfer matrix defined by

T2(u, {vσ(i)}) = strLl(u− vσ(l))Ll−1(u− vσ(l−1)) . (8.22)

Remarkably, this transfer matrix annihilates the minimal form factor! We
show this considering the tr(φ++φ++) component

η̃+1
l−1η̃

+2
l−1η̃

+1
l η̃

+2
l (γ

−)4δ4(λl−1λ̃l−1 +λl λ̃l − q) . (8.23)

The gl(4|4) invariance of the transfer matrix (7.39) then extends the result to
the full form factor. First note that the transfer matrix is independent of γ−, and
that it annihilates the momentum conserving delta function:

T2(u, {vσ(i)})δ4(λ1λ̃1 +λ2λ̃2 − q) = 0 . (8.24)

Therefore, it only acts on the product of η̃’s, and an explicit computation shows
that

T2(u, {vσ(i)})η̃+1
l−1η̃

+2
l−1η̃

+1
l η̃

+2
l = 0 . (8.25)

This can also be understood from the map between spinor-helicity variables and
the oscillator representation of operators, to be discussed shortly: It is the state-
ment that tr(φ++φ++) is a vacuum Bethe state of the spin chain, both in the
homogeneous as well as the inhomogeneous case.

We thus found that the minimal form factor is an eigenstate of the integrable
transfer matrix (8.22), with eigenvalue zero,

T2(u, {vσ(i)})δFl−1 l = 0 . (8.26)

Plugging this into (8.21), we see that the same is true for the entire on-shell
function:

Tn(u, {vi}) |F〉= 0 , (8.27)
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under the constraints on the inhomogeneities (8.15). In particular the statement
is true for vanishing inhomogeneities, i.e. undeformed form factor on-shell func-
tions such as tree-level form factors:

TnFn,k = 0 . (8.28)

This identity is very similar to the Yangian invariance condition (7.35). In-
deed, taking the supertrace of (7.35), we see that a consequence of Yangian
invariance is that the corresponding states are also eigenstates of the transfer
matrix with eigenvalue zero. Form factors, and their on-shell functions are not
Yangian invariant but satisfy the latter condition. We can also regard the identi-
ties (8.27) or (8.28) as symmetries, with the states annihilated by certain linear
combinations of Yangian generators.

Generic operators

We just showed that on-shell functions of the chiral part of the stress tensor
multiplet are eigenstates of integrable transfer matrices (7.38), and that their
eigenvalue turns out to be zero. Since most of the derivation did not depend
on the specific operator under consideration, one may suspect that this may be a
general phenomenon. We will now indeed extend the result to on-shell functions
with an insertion of an arbitrary operator.

The discussion will focus on the undeformed case. We will construct pla-
nar on-shell functions by attaching BCFW bridges or R-operators to states con-
structed out of amplitude vacua and the minimal form factors of arbitrary oper-
ators. The operators will be defined in terms of component fields, without intro-
ducing supermultiplets. Provided that the operator under consideration is itself
an eigenstate of a transfer matrix, i.e. a solution to the 1-loop spectral problem,
the on-shell function will also be an eigenstate.

As is well known, the single trace operators of N = 4 SYM theory can be
be described in terms of oscillators.7 Conventionally, the bosonic oscillators are 7 Günaydin, Minic, Zagermann, “4D

doubleton conformal theories,
CPT and IIB string on AdS5× S5”,
hep-th/9806042, [Erratum: Nucl.
Phys.B538,531(1999)]; and Beisert,
“The complete one loop dilatation
operator of N = 4 Super Yang-Mills
theory”, hep-th/0307015

called āαi and b̄α̇i and the fermionic ones dA
i . States are constructed by acting

with these oscillators on a Fock vacuum. The oscillators transform under the
superconformal algebra psu(2,2|4) in the same way as the super spinor-helicity
variables λαi , λ̃α̇i and η̃A

i . We can therefore identify the representations via

āαi ↔ λαi , b̄α̇i ↔ λ̃α̇i , d̄A
i ↔ η̃A

i ,

ai,α↔ ∂i,α =
∂

∂ λαi
, bi,α̇↔ ∂i,α̇ =

∂

∂ λ̃α̇i
, di,A↔ ∂i,A =

∂

∂ η̃A
i

.
(8.29)

This identification, following from the fact that both realizations describe the
free on-shell fields of N = 4 SYM, is described in detail in Beisert (2011);8 it

8 Beisert, “On Yangian Symmetry in
Planar N = 4 SYM”, 1004.5423

was used to connect the one-loop dilatation operator to the tree-level four-point
scattering amplitude based on symmetry considerations.9

9 Zwiebel, “From Scattering Amplitudes
to the Dilatation Generator in N = 4
SYM”, 1111.0083

The relation between oscillators and spinor-helicity variables becomes most
evident when considering minimal tree-level form factors of arbitrary operators.
In Wilhelm (2015)10 it was shown via an explicit Feynman diagram calculation

10 Wilhelm, “Amplitudes, Form Factors
and the Dilatation Operator in N = 4
SYM Theory”, 1410.6309

http://xxx.lanl.gov/abs/hep-th/9806042
http://xxx.lanl.gov/abs/hep-th/0307015
http://xxx.lanl.gov/abs/1004.5423
http://xxx.lanl.gov/abs/1111.0083
http://xxx.lanl.gov/abs/1410.6309
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that the color-ordered minimal tree-level super form factors of generic single-
trace operators O can be obtained from their representation in the oscillator
picture as1111 Note that we do not restrict the

operator O in any way; it may be a
monomial or a sum of terms, and
does not need to have a well-de�ned
anomalous dimension.

FO ,L(1, . . . , L; q) = Lδ4

�

L
∑

i=1

λiλ̃i − q

�

�

O

�

�

�

�

�

āαi → λαi
b̄α̇i → λ̃α̇i
d̄A

i → η̃A
i

�

, (8.30)

where L is the number of fields in the single-trace operator which has been trans-
lated according to (8.29).

Let us first show that this structure of the minimal form factors imply that
they are eigenstates of the homogeneous transfer matrix of length n = L, if
the operator is a solution of the 1-loop spectral problem, i.e. it renormalizes
multiplicatively.

Since the transfer matrix (7.26) is gl4|4 invariant, see (7.39), it commutes
with any function f (

∑L
i=1J

AB
i ). In particular this is the case for the momentum-

conserving delta function in (8.30), which is easy to see by writing the delta
functions as Fourier integrals,

δ4

�

L
∑

i=1

λiλ̃i − q

�

=

∫

d4 x e2πi(
∑L

i=1 λi λ̃i−q)·x , (8.31)

and noting that the sum of the momenta correspond to the momentum genera-
tors J αα̇, while for that matter q can be regarded as a constant. Therefore, the
transfer matrix only acts on the polynomial in spinor-helicity variables, which
represents the operator:

TL(u)FO ,L = Lδ4

�

L
∑

i=1

λiλ̃i − q

�

TL(u)

�

O

�

�

�

�

�

āαi → λαi
b̄α̇i → λ̃α̇i
d̄A

i → η̃A
i

�

(8.32)

Now note that using the relations (8.29), the transfer matrix can be translated
into the fundamental oscillator transfer matrix which we call T:

T(u) = strLL(u) · · ·L1(u) with Li(u) =Li(u)

�

�

�

�

�

∂i,α, λαi → ai,α, āαi
∂i,α̇, λ̃α̇i → bi,α̇, b̄α̇i
∂i,A, η̃A

i → di,A, d̄A
i

. (8.33)

We can therefore write

TL(u)FO ,L = FTL(u)O ,L , (8.34)

where

FTL(u)O ,L = Lδ4

�

L
∑

i=1

λiλ̃i − q

�

�

(TL(u)O )

�

�

�

�

�

āαi → λαi
b̄α̇i → λ̃α̇i
d̄A

i → η̃A
i

�

. (8.35)

This can be interpreted as the minimal form factor of the operator which results
from the action of the transfer matrix T(u) on the operator O .

If the operator O renormalizes multiplicatively, i.e. is a solution of the one-
loop spectral problem with a well-defined anomalous dimension, it is an eigen-
state of T(u).12 Let its eigenvalue be t(u): we then find that the minimal form

12 This follows from the discussion in
section 7.2, which shows that the
Hamiltonian (in our case the one-loop
dilatation operator) commutes with
the fundamental transfer matrix.
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factor is likewise an eigenstate, of the transfer matrix T (u), with the same eigen-
value:

TL(u)FO ,L = FTL(u)O ,L = Ft(u)O ,L = t(u)FO ,L . (8.36)

We can now define a general form factor on-shell function of the operator,
with n external on-shell fields. Diagrammatically, they are on-shell diagrams with
the minimal form factors FO ,L glued in by on-shell phase space integrations, sim-
ilar to form factors of the chiral stress tensor multiplet. This can be achieved by
constructing a vacuum state using the amplitude vacua δ± and the minimal form
factor, and then acting with a sequence of R-operators (7.41) on this state. The
only restriction we make is that the resulting diagram has to be planar. We thus
define the state

|FO ,n〉= Ri1 j1(0) · · ·Rim jm(0)FO ,L(l, · · · , l + L − 1)
∏

j∈I +
δ+j

∏

j∈I −
δ−j , (8.37)

where there are |I +| = n− k vacua of type δ+ and |I −| = k − L vacua of type
δ−, and we define the “MHV” degree k such that the minimal form factor has
k = L.

This state is a transfer matrix eigenstate as well. Acting with the transfer
matrix Tn of length n on the state, we can first use (8.14) to commute it through
the R-operators. Then the Lax operators acting on the amplitude vacua can be
replaced by their eigenvalues, which combine into the factor f(u) as defined in
(8.19), and we are left with the transfer matrix of length L acting on the minimal
form factor as in (8.36); we assume the operator to renormalize multiplicatively,
and therefore find

Tn(u) |FO ,n〉= f(u) |FTL(u)O ,n〉= f(u)t(u) |FO ,n〉 (8.38)

This calculation is represented in figure 8.4.

on-shell part = f(u) on-shell part = f(u)t(u) on-shell part

Figure 8.4: Action of the transfer matrix
on an on-shell diagram with an
insertion of the minimal form factor
of the operator O .

We would like to point out that we only considered undeformed on-shell func-
tions here, since using an inhomogeneous transfer matrix (7.38) would require
that the operators have to be eigenstates of the inhomogeneous spin chain as
well; while this would be interesting to consider, the physical interpretation of
such states would be unclear.
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The preceding discussion casts a new light on the role of R-operators. They are
more than a means to construct Yangian invariants – one should rather consider
them as operators which allow to obtain further eigenstates from any eigenstate
of the integrable model.

Given that the R-operators can be defined for any rational spin chain with
a representation that allows a Jordan-Schwinger form13, it seems plausible that

13 Kanning, Łukowski, Staudacher,
“A shortcut to general tree-level
scattering amplitudes in N = 4 SYM
via integrability”, 1403.3382

for each such spin chain they allow to map transfer matrix eigenstates to other
ones, possible at a different length. To our knowledge, this potentially interesting
structure has never been investigated in other contexts.14

14 We strongly suspect that for compact
spin chains one has to consider the
inhomogeneous case.

http://xxx.lanl.gov/abs/1403.3382
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Yangian symmetries

of nonplanar
on-shell diagrams

This chapter is based on
the author’s publication
Frassek, Meidinger, “Yangian-type
symmetries of non-planar leading
singularities”, 1603.00088.

Nonplanar on-shell diagrams, i.e. diagram constructed from three-point ampli-
tudes by fusing them via on-shell phase space integrations, in such way that they
cannot be embedded on a disk, have recently gained a lot of attention. They are
interesting for a variety of reasons: firstly, it is natural to wonder whether they
share the rich mathematical structure and the simplicity of their planar counter-
parts; furthermore, they appear as leading singularities when calculating general
higher-loop amplitudes and are thus of practical interest.

Here we want to investigate these quantities from an integrability perspective.
It is fair to say that Yangian invariance can be considered the defining property
of planar on-shell diagrams and the on-shell functions they represent. Yangian
symmetry is a hallmark feature of integrability; while N = 4 SYM is generally
thought to be integrable only in the planar limit, we want to answer the follow-
ing question: can Yangian, or Yangian-like, symmetries persist in the nonplanar
regime, at least systematically in the 1/N expansion?

This chapter is structured as follows: We begin by summarizing the recent
work on nonplanar on-shell diagrams, mainly pointing to the relevant literature
in section 9.1, and describe the reasons to suspect that these diagrams – de-
spite being nonplanar – still enjoy symmetries based on integrability, and how
these could be useful, in section 9.2. Then we turn to the actual derivations of
our results. After setting up some notation and basic definitions in section 9.3,
we show that higher-level Yangian generators which act independently on the
boundaries of nonplanar on-shell diagrams still annihilate them, and are thus
unbroken symmetries. The first levels are broken depending on the degree of
nonplanarity, which is parametrized by the number of internal edges which need
to be “cut open” in order to make the diagram planar. This is the main result
of section 9.4, and given in equation (9.16). In section 9.5, we turn to similar
identities involving transfer matrices. We first derive an identity for diagrams on
cylinders, given in (9.21), which can be interpreted as a conservation law or an
intertwining relation. Based on this identity, we can derive further symmetries

http://xxx.lanl.gov/abs/1603.00088
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for general diagrams, which are given in equation (9.24). Finally, we will apply
our results to a simple nonplanar example diagram in section 9.6, in order to
make the symmetries more explicit.

9.1 Nonplanar on-shell diagrams

Nonplanar on-shell diagrams were first considered, for the special case of the
annulus or cylinder, by Gekhtman et al. (2012),1 following the work Postnikov1 Gekhtman, Shapiro, Vainshtein,

“Poisson Geometry of Directed
Networks in an Annulus”, 0901.0020 (2006),2 even before such diagrams were related to scattering processes. In the

2 Postnikov, “Total positivity, Grassman-
nians, and networks”, math/0609764

context of N = 4 SYM, their study was initiated by a complete description of
general MHV on-shell functions in Arkani-Hamed et al. (2015).3 The general case

3 Arkani-Hamed, Bourjaily, Cachazo,
Postnikov, Trnka, “On-Shell Struc-
tures of MHV Amplitudes Beyond the
Planar Limit”, 1412.8475

however is much more intricate; in Franco et al. (2015),4 among other results,

4 Franco, Galloni, Penante, Wen,
“Non-Planar On-Shell Diagrams”,
1502.02034

a generalization of the boundary measurement procedure was developed which
applies to any on-shell diagram. A first step towards a classification of general
on-shell diagrams was taken in Bourjaily et al. (2016).5 For the Graßmannian

5 Bourjaily, Franco, Galloni, Wen,
“Stratifying On-Shell Cluster Varieties:
the Geometry of Non-Planar On-Shell
Diagrams”, 1607.01781

G(3, 6), this work enumerates all top-cell diagrams together with their forms on
the Graßmannian, and discusses their lower dimensional residues.

A further domain where nonplanar on-shell diagrams are naturally encoun-
tered is scattering in theories of gravity.6

6 Heslop, Lipstein, “On-shell diagrams
for N = 8 supergravity ampli-
tudes”, 1604.03046; and Herrmann,
Trnka, “Gravity On-shell Diagrams”,
1604.03479

9.2 Motivation

There are three major reasons which motivate us to study the integrability re-
lated symmetries of nonplanar on-shell diagrams. First, nonplanar contributions
to loop integrands of scattering amplitudes were recently studied and compared
to the rich structure present in the planar case in Bern et al. (2015); Arkani-
Hamed et al. (2014); Bern et al. (2016).7 For the examples that were studied, it

7 Bern, Herrmann, Litsey, Stankowicz,
Trnka, “Logarithmic Singularities
and Maximally Supersymmetric
Amplitudes”, 1412.8584; Arkani-
Hamed, Bourjaily, Cachazo, Trnka,
“Singularity Structure of Maximally Su-
persymmetric Scattering Amplitudes”,
1410.0354; and Bern, Herrmann,
Litsey, Stankowicz, Trnka, “Evidence
for a Nonplanar Amplituhedron”,
1512.08591

was observed that the integrands have several properties which have been shown
to be consequences of dual conformal symmetry – and thereby of the Yangian
and integrability – in the case of planar integrands. While dual superconformal
symmetry surely is not present for nonplanar integrands, as the dual momenta
yi cannot even be defined, it is a pressing question whether some form of inte-
grability is behind the observations. In this chapter, we look for such symmetries
in the case of nonplanar on-shell functions; since these appear as leading singu-
larities of the full integrand, novel symmetries of the former are at least plausible
candidate symmetries of the latter, and it might be possible to show that they are
responsible for the special structure of general integrands in N =4 SYM.

Furthermore, on-shell diagrams are extremely simple quantities, compared
to other data of N = 4 SYM. Thus we may hope to get some general insights
into integrability beyond the planar limit. Indeed, previous investigations into
this issue focused on the spectral problem,8 see Kristjansen (2012)9 for a review.

8 Beisert, Kristjansen, Staudacher, “The
Dilatation operator of conformal
N = 4 Super Yang-Mills theory”,
hep-th/0303060; Beisert, “The
complete one loop dilatation operator
of N = 4 Super Yang-Mills theory”,
hep-th/0307015; Peeters, Plefka,
Zamaklar, “Splitting spinning strings
in AdS/CFT”, hep-th/0410275; and
Bellucci, Casteill, Morales, Sochichiu,
“Spin bit models from nonplanar N = 4
SYM”, hep-th/0404066

9 Kristjansen, “Review of AdS/CFT
Integrability, Chapter IV.1: Aspects of
Non-Planarity”, 1012.3997

It was found that the dilatation operator, once subleading contribution in the
1/N expansion are taken into account, cannot be interpreted as an integrable

http://xxx.lanl.gov/abs/0901.0020
http://xxx.lanl.gov/abs/math/0609764
http://xxx.lanl.gov/abs/1412.8475
http://xxx.lanl.gov/abs/1502.02034
http://xxx.lanl.gov/abs/1607.01781
http://xxx.lanl.gov/abs/1604.03046
http://xxx.lanl.gov/abs/1604.03479
http://xxx.lanl.gov/abs/1412.8584
http://xxx.lanl.gov/abs/1410.0354
http://xxx.lanl.gov/abs/1512.08591
http://xxx.lanl.gov/abs/hep-th/0303060
http://xxx.lanl.gov/abs/hep-th/0307015
http://xxx.lanl.gov/abs/hep-th/0410275
http://xxx.lanl.gov/abs/hep-th/0404066
http://xxx.lanl.gov/abs/1012.3997
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spin chain Hamiltonian. Work on three-point functions10 however suggests that 10 Vieira, Wang, “Tailoring Non-Compact
Spin Chains”, 1311.6404; and
Escobedo, Gromov, Sever, Vieira,
“Tailoring Three-Point Functions and
Integrability”, 1012.2475

quantities with nonplanar topologies can indeed be calculated using integrability,
if the topology is properly taken into account. In particular it turned out that a
successful strategy is to cut nonplanar objects into planar parts, to use planar
integrability, and then to glue the pieces back together. In this chapter we pursue
such a strategy in order to proof that at least a part of the Yangian symmetry is
present in nonplanar on-shell diagrams.

Finally, after having discussed on-shell diagrams for form factors in the previ-
ous chapters, we note that these diagrams are inherently nonplanar in the sense
that the color structure implies an ordering of the external on-shell states, in
which the operator does not participate. Hence, if one removes the minimal form
factor from the diagram, the two legs at which it is glued in can be considered
as a second boundary. We will discuss this in more detail in the next chapter,but
already here it allows us to understand the integrability properties of form fac-
tor on-shell function investigated in chapter 8 as special cases of a more general
phenomenon.

9.3 Setup & notation

In this chapter we will work exclusively using the super twistor variables W a
i

which are obtained from the spinor-helicity variables by Fourier transforming
the λ variables, see chapter 2.1 for details. The derivatives with respect to these
variables will be denoted by ∂ a

i = ∂ /∂W
a
i .

Our proofs of Yangian symmetries rely heavily on “cutting” and “gluing” the
on-shell diagrams. By gluing we simply refer to identifying external state of a
diagram using a projective delta function

∆i j =

∫

dα
α
δ4|4(Wi +αW j) , (9.1)

and then to perform the on-shell phase space integration over the newly created
internal state,
∫

d3|4W =
∫

d4|4W
Vol[GL(1)]

. (9.2)

We call the reverse operation cutting, since it opens up an internal edge of the
diagram into two external particle states.

It is known that not only any planar, but also any nonplanar on-shell diagram
A has an analytic expression in terms of a Graßmannian integral

A =
∫

dk×nC
Vol[GL(k)]

Ω δ4k|4k(C · W ) . (9.3)

The form Ω can be written as function of the k × k minors of the matrix C . For
planar diagrams this was discussed in section 2.5, and the form is presented in
equation (2.59) and is given by the inverse of the product of all consecutive
minors.

http://xxx.lanl.gov/abs/1311.6404
http://xxx.lanl.gov/abs/1012.2475
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For nonplanar diagrams, one can obtain the form – for example – using a gener-
alization of boundary measurements.11 The form has to be calculated anew for11 Franco, Galloni, Penante, Wen,

“Non-Planar On-Shell Diagrams”,
1502.02034; and Penante, “On-shell
methods for o�-shell quantities
in N = 4 Super Yang-Mills: from
scattering amplitudes to form factors
and the dilatation operator”, PhD
thesis, Queen Mary, U. of London,
2016, 1608.01634,

any diagram, as no general formula is known at the moment. In particular, there
are multiple such top dimensional forms for given k and n, which have only been
classified for the case k = 3 and n= 6 so far.12

12 Bourjaily, Franco, Galloni, Wen,
“Stratifying On-Shell Cluster Varieties:
the Geometry of Non-Planar On-Shell
Diagrams”, 1607.01781

In the following, we want to show that these integrals – while generally
not Yangian invariant in the strict sense presented in section 7.3 – still exhibit
a wealth of Yangian-like symmetries. These symmetries severely constrain the
forms Ω and can hopefully be used to classify or construct them.

As throughout this thesis, we will work with the RTT realization of the Yan-
gian of gl4|4 as described in section 7.1. The basic building block will thus be the
Lax operator

Li(u) = u+ (−1)beabW b
i ∂

a
i (9.4)

where the generators J ab
i = W a

i ∂
b

i of gl4|4 acting on the particles are given in
terms of the Jordan-Schwinger realization.13 The elementary matrices eab again13 In the notation of section 7.1, we have

xa
i =W

a
i and pa

i = ∂
b

i . form the fundamental representation of gl4|4 and u is the spectral parameter.
Using these Lax operators, we can define monodromy and transfer matrices as
discussed above in the spinor-helicity representation, see equations (7.16) and
(7.26). The nonplanar setting however requires that we explicitly specify the
particles on which the Lax operators in these monodromy and transfer matrices
act, and we will often need to relate different such objects. We therefore intro-
duce the notation for these quantities when they are needed in the following
arguments.

Finally, let us note that once general nonplanar diagrams are considered, the
embedding of a given diagram, i.e. its embedding on a two-dimensional surface
of some topology, is not unique. This is already the case for planar diagrams,
which allow (trivial) nonplanar embeddings. An example of this is shown in fig-
ure 9.1. Our discussions will always consider a digram in a given embedding,
which makes some symmetries manifest. The set of all embeddings then deter-
mines the full set of symmetries of the on-shell function.

Figure 9.1: The on-shell diagram for the
four-point amplitude, and one of its
nonplanar embeddings.

9.4 Monodromy matrix identities

We consider an arbitrary nonplanar on-shell diagram Anp, with nnp external states
and MHV degree knp. Diagrammatically, we can “cut” internal edges of the dia-
gram open, until the resulting diagram is planar, see figure 9.2. Which edges have
to be cut depends on the diagram and the topology of the embedding, likewise
the total number of cut edges that is necessary to obtain a planar diagram. Fur-
thermore, the set of cut edges is generally not unique and neither is the planar
diagram. We focus on one particular way of performing this cutting procedure,
and call the number of cut lines ncut. This will give us a planar diagram Ap with
more external states and higher MHV degree,

np = nnp + 2ncut , kp = knp + ncut . (9.5)

http://xxx.lanl.gov/abs/1502.02034
http://xxx.lanl.gov/abs/1608.01634
http://xxx.lanl.gov/abs/1607.01781
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Figure 9.2: Cutting a nonplanar into
a planar on-shell diagram. We only
show the surface on which the
diagram is embedded, indicating
possible cuts. For the planar diagram
we combine the states on boundaries
B′ and B′′ together with the cut lines
C and C ′ into the ordered set R. The
arrows indicate the ordering of these
labels.

The cutting procedure gives us a particular way of writing the on-shell func-
tion of the nonplanar diagram, by gluing together the cut edges via on-shell
phase space integrations (9.1) and (9.2),

Anp =

∫

C ,C ′
∆CC ′ Ap . (9.6)

Here and in the following, we label ordered subsets of the external on-shell states
using capital letters, such that

∫

C ,C ′ in this equation is a shorthand notation for
the projective integrations (9.2) over all the states Ci , C ′i with i = 1, · · · , ncut of Ap

which are internal to Anp. Likewise, we abbreviate the projective delta functions
(9.1) which identify the states

∆CC ′ =∆C1C ′1
· · ·∆Cncut C ′ncut

. (9.7)

Since the Yangian acts nonlocally, it requires the states on which they act
to be ordered. For nonplanar diagrams this is the case for particles on a single
boundary. Therefore we distinguish among the particles on one of the boundaries
of Anp which we call B, and the remaining external particles of Ap which we label
by R. They include the particles on other boundaries of Anp as well as the 2ncut

particles that become external when cutting the diagram open, see figure 9.2.
As described in section 7.3, see in particular equation (7.35), the Yangian

invariance of the planar on-shell diagram Ap can be compactly expressed as a set
of 8× 8 eigenvalue equations14 involving a monodromy matrix: 14 The eigenvalues of planar diagrams

can be obtained by adapting the
R-operator formalism described
in section 7.5 to twistor space by
using the de�nition of the Schwinger
oscillators xa

i and pa
i given above.

The eigenvalues can then simply
be obtained by acting with the
Lax operators (9.4) on the vacua
δ−i = δ

4|4(Wi) and δ+i = 1.

M ab
RB (u)Ap = (u− 1)kpunp−kp δab Ap , (9.8)

Here the subscript on the monodromy matrix labels the ordered set of states it
acts on, here on the set R ∪ B in that order. Therefore the monodromy matrix
MRB can be written as the product of two monodromy matrices acting on B and
R respectively,

MRB(u) =MR(u)MB(u) . (9.9)

Each of the monodromies yields a realization of the Yangian separately. They are
defined in terms of the Lax operators as

MB(u) =LB1
(u) · · ·LBnB

(u) , (9.10)

withMR(u) correspondingly.
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We now show that identities similar to the Yangian invariance of the planar
on-shell diagram Ap in (9.8) also hold for the nonplanar diagram Anp. In order
to derive those identities we note that the product of two Lax operators Li for a
certain choice of the spectral parameters is proportional to the identity

Li(u)Li(1− u− ci) = u(1− u− ci) . (9.11)

In the context of integrable models this property is also known as unitarity.1515 This nomenclature stems from
integrable �eld theories, see for
example Dorey, “Exact S matrices”,
hep-th/9810026.

Note that (9.11) is an operator statement, and in practice we can set the central
charges ci = W a

i ∂
a

i to zero when acting on an on-shell diagram. Using the in-
version relation in (9.11), the planar Yangian invariance condition (9.8) can be
rewritten as

MB(u)Ap =
(−1)kpunB−kp

(1− u)nR−kp
MR̄(1− u)Ap . (9.12)

Here the Lax operators inMR̄(u) = LRnR
(u) · · ·LR1

(u) are multiplied in the op-
posite order compared to (9.10), which we indicate by the bar in the label. The
monodromy matrix on the left-hand side of this equation does not depend on
the cut lines, and only acts on the boundary for which we want to find Yangian
symmetries. Thus we can glue the diagram back together using (9.6), and can
pull the monodromy matrix out of the integral to obtain an equation for the
nonplanar on-shell function Anp,

MB(u)Anp =
(−1)kpunB−kp

(1− u)nR−kp

∫

C ,C ′
∆CC ′MR̄(1− u)Ap . (9.13)

As described in section 7.1, we have to expand the monodromy matrix in the
spectral parameter u to obtain the Yangian generators, see equation (7.18). For
the action of the Yangian on the boundary B, this yields the generators

M ab
B (u) = unBδab + unB−1M ab

B [1] + · · ·+M
ab
B [nB]

, (9.14)

where the number in the brackets indicates the level of the generators and nB is
the number of particles on boundary B. The analogous expansion holds for the
monodromyMR̄(u). Thus we can expand both sides of (9.13) around u = 0 to
obtain the action of the Yangian generators M ab

B [i] on the boundary B. We find
that the action of the first kp levels is rather complicated

M ab
B [i]Anp =

nR
∑

j=0

( j − kp)kp−i

(kp − i)!

∫

C ,C ′
∆CC ′M ab

R̄ [ j]Ap , i = 0, . . . , kp . (9.15)

HereM ab
R̄ [ j]

denote the Yangian generators of the monodromyMR̄(u) involving
superconformal generators acting on internal particles of the diagram and (a)n =
Γ (a+ n)/Γ (a) is the Pochhammer symbol.

However, we find that the remaining higher levels of Yangian generators that
act on the boundary B annihilate the nonplanar on-shell diagram Anp, and gen-
erate unbroken symmetries,

M ab
B [i] Anp = 0 , i = kp + 1, . . . , nB . (9.16)

http://xxx.lanl.gov/abs/hep-th/9810026
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This is the main result of this section, and shows that nonplanar on-shell func-
tions still exhibit partial Yangian symmetries.

Note that the number of unbroken symmetries in (9.16) depends in an inter-
esting way on the degree of nonplanarity and is given by nB − kp. The number
of external states nB fixes the number of levels of the Yangian generators in the
expansion (9.14), and kp = knp + ncut can be regarded as a measure of nonpla-
narity, as each additional boundary or handle requires further internal lines to
be cut. If kp ≤ nB, no unbroken symmetries remain.

Here we did not specify any particular embedding of the diagram, nor any
specific way of cutting it into a planar one. The preceding discussion shows that
the actual symmetries are determined by the minimal way to cut the diagram,
and that one should consider all possible embeddings of the diagram to identify
as many symmetries as possible. We will discuss an example in section 9.6 which
clarifies this point.

9.5 Transfer matrix identities

The supertrace of monodromy matrices defines transfer matrices as discussed in
section 7.2. For a boundary B this matrix is defined by

TB(u) = strMB(u) . (9.17)

It generates a set of mutually commuting operators TB [i] = strMB [i] with i =
1, . . . , nB, cf. (9.14). We already encountered symmetries of on-shell functions
involving transfer matrices in chapter 8. Now we show that such symmetries
also exist for nonplanar on-shell diagrams.

We will first focus on diagrams that are embedded on a cylinder. For this spe-
cial case we derive exact conservation laws, which can also be interpreted as
intertwining relations. These can subsequently be used to derive symmetries in-
volving the operators TB [i] for general nonplanar on-shell function which extend
the results in (9.16).

Intertwining relation for diagrams on cylinders

First, we specialize (9.13) to the case of a diagram with two boundaries. Then
the supertrace yields

TB(u)Acyl =
(−1)kpunB−kp

(1− u)nB′+2ncut−kp

∫

C ,C ′
∆CC ′TC̄B′C ′(1− u)Ap , (9.18)

where Acyl denotes an on-shell diagram on a cylinder, cf. figure 9.3.
At first sight we have not gained anything in comparison to (9.13). However,

when acting with the transfer matrix on Acyl we can evaluate the integral over
the internal lines on the right-hand side. We first integrate by parts using

∫

d3|4W g(W )L (u) f (W ) = −
∫

d3|4W [L (1− u)g(W )] f (W ) , (9.19)
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Figure 9.3: Cutting an on-shell diagram
on a cylinder into a planar on-shell
diagram. We only show the surface on
which the diagram is embedded. The
gray line indicates a possible cut. The
external states C and C ′ arise from
cutting internal lines of Acyl. Arrows
indicate the ordering of labels.

which holds for arbitrary functions f and g. Now the Lax operatorsLCi
andLC ′i

act on the ∆’s instead of Ap. The special feature of diagrams on cylinders is that
here, the cyclicity of the supertrace allows to bring the Lax operators LCi

and
LC ′i

into a consecutive order, TC̄B′C ′ = TC ′ C̄B′ . We can now use the identity

LC ′i
(u)LCi

(u)∆Ci C
′
i
= u(u− 1)∆Ci C

′
i
, (9.20)

which is equivalent to the inversion relation in (9.11). This removes these Lax
operators entirely from the right-hand side, and the transfer matrix becomes
simply TB′(1− u) and can be pulled out of the integral. The integral is then the
original diagram on the cylinder, Acyl =

∫

CC ′∆CC ′Ap, and we finally find

ukcyl
TB(u)

unB
Acyl = (u− 1)kcyl

TB′(1− u)
(1− u)nB′

Acyl , (9.21)

The steps of the proof of equation (9.21) can be understood graphically and are
shown in figure 9.4.

The result (9.21) can be understood as a conservation law of charges that flow
between the two boundaries of the cylinder. Equivalently, one could consider to
use the on-shell function of a given cylinder diagram as the kernel of an integral
operator mapping from states on B to states on B′ or vice versa.16 Equation (9.21)16 This use of on-shell diagrams would

be in the same spirit as the R-matrix
construction in Ferro, Łukowski,
Meneghelli, Plefka, Staudacher, “Har-
monic R-matrices for Scattering
Amplitudes and Spectral Regulariza-
tion”, 1212.0850.

would then turn into an intertwining relation, stating that this operator would
“commute” with the transfer matrix, in the sense that it turns the transfer matrix
TB into the transfer matrix TB′ .

Comparing with (9.12), we see that equation (9.21) plays a similar role as an
exact identity for the cylinder as the Yangian invariance does for planar diagrams.
Note in particular that there is no dependence on the number of cut lines.

General transfer matrix symmetries

Similar to the case of the monodromy in Section 9.4, we use (9.21) to obtain
further identities for general nonplanar on-shell diagrams. Again we consider an
arbitrary on-shell diagram Anp. This time we cut internal lines until the diagram
can be embedded on a cylinder, such that

Anp =

∫

C ,C ′
∆CC ′ Acyl . (9.22)

http://xxx.lanl.gov/abs/1212.0850
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Figure 9.4: Graphical representation of
the proof of the identity (9.21). We
�rst act with the monodromy matrix
on the lower boundary of the cylinder
and use (9.13). After integrating by
parts as in (9.19) the Lax operators
act on the cut lines. After taking the
trace we can successively apply the
identity (9.20).

The on-shell diagram on the cylinder Acyl satisfies (9.21). Here we take B to
be an actual boundary of Anp. The other boundary B′ of Acyl contains the other
boundaries of the initial diagram as well as the cut lines Ci , C ′i . Integrating this
identity over the cut lines as in (9.22) we get

TB(u)Anp =
(−1)kcylunB−kcyl

(1− u)nB′−kcyl

∫

C ,C ′
∆CC ′TB̄′(1− u)Acyl . (9.23)

By arguments identical to those used in Section 9.4, we can expand in the spec-
tral parameter and identify powers where the right-hand side of (9.23) vanishes:

TB [i] Anp = 0 , i = kcyl + 1, . . . , nB . (9.24)

Note that although (9.24) looks like the supertrace of (9.16), the crucial differ-
ence lies in the number of broken levels: Here kcyl refers to the MHV degree after
cutting to a cylinder, which is smaller than kp, the MHV degree after continuing
to cut the diagram to a planar one. Thus (9.24) provides additional identities
not obtained from the supertrace of (9.16).

9.6 Example: Five-point MHV on a cylinder

In this section we exemplify and validate the symmetries derived in Section 9.4
and 9.5 for a five-point MHV diagram with knp = 2 on a cylinder as depicted in
figure 9.5.

In the embedding of the nonplanar diagram Acyl shown in this figure, particle
“5” belongs to one boundary B′ = (5), while the remaining particles are placed
on the other boundary B = (1,2, 3,4). The form for the Graßmannian integral
(9.3) was given in Franco et al. (2015),17 and can be written as

17 Franco, Galloni, Penante, Wen,
“Non-Planar On-Shell Diagrams”,
1502.02034

http://xxx.lanl.gov/abs/1502.02034
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Figure 9.5: A �ve-point MHV diagram
on a cylinder, and the planar diagram
obtained after cutting along the
indicated line.

Ωcyl =
1

(12)(23)(34)(41)
(13)
(35)(51)

. (9.25)

Here (i j) denotes the 2× 2 minor with respect to the ith and jth column of the
k × n matrix C , cf. (9.3), and the form is written in a way that makes manifest
that particle 5 is added to the four-point amplitude via a nonplanar inverse soft
factor between particles 1 and 3, cf. the discussion in section 3.4.

First we note that there are no Yangian-like symmetries as in (9.16) associated
to boundary B′, since these are never present for less than two particles on the
boundary. For boundary B however, we can consider the action of the Yangian
generatorsM ab

B [i], generated by the monodromy

MB(u) =L1(u)L2(u)L3(u)L4(u) . (9.26)

As discussed in Section 9.4, we can decompose the nonplanar diagram Acyl using
the cutting procedure (9.6). When minimally cut, the planar diagram Ap has
np = 7 external particles and MHV degree kp = 3, as a single line has to be cut,
i.e. ncut = 1. This is shown on the right-hand side of figure 9.5. Note that other
possibilities to cut the diagram via a single edge are equivalent due to cyclic
symmetry on the boundary, while cutting two edges does not yield any identity.
As we have nB = 4 and kp = 3, we find from (9.16) that the fourth level of
Yangian generators has to annihilate the nonplanar on-shell function Acyl. These
generators of this level read

M ab
B [4]= (−1)ab+c+d+e(W a

4 ∂
c

4 )(W
c
3 ∂

d
3 )(W

d
2 ∂

e
2 )(W

e
1 ∂

b
1 ) . (9.27)

In order to show that Acyl is annihilated by the operator above we proceed in anal-
ogy to Drummond and Ferro (2010a)18 noting that a general method to evaluate18 Drummond, Ferro, “Yangians, Grass-

mannians and T-duality”, 1001.3348 such symmetries of Graßmannian integrals will be presented in chapter 11. Af-
ter commuting the variables and derivatives in (9.27) and acting on the delta
function we obtain

M ab
B [4]Acyl = (−1)ab

4
∑

i=1

∫

d2×5C
Vol[GL(2)]

Ω g(i)W b
4 ∂

a
i δ

8|8(C · W ), (9.28)

with g(1) = O12O23O34, g(2) = −O23O34, g(3) = O34, g(4) = −1 and Oi j =
CI i

∂
∂ CI j

, where we sum over the index I = 1,2. Integrating by parts such that the

http://xxx.lanl.gov/abs/1001.3348
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operators g(i) act only on Ω, we find

M ab
B [4]Acyl = 0 , (9.29)

which agrees with (9.16).
We will now discuss the symmetries as derived in Section 9.5. Since the di-

agram Anp is embedded on a cylinder, the exact transfer matrix identity (9.21)
holds. In order to check this identity, we note that in our particular case there is
only one particle on the boundary B′. Thus, due to the vanishing central charge
constraint we trivially find

TB′(u)Acyl = strL5(u)Acyl = 0 . (9.30)

The evaluation of the action of the transfer matrix on the particles at the bound-
ary B is more involved, but can be done straightforwardly using a similar method
as in (9.28), and shows that

TB(u)Acyl =
4
∑

i=0

u4−i
∑

j1>...> ji

(W a1
j1
∂

a2
j1
) · · · (W ai

ji
∂

a1
ji
)

︸ ︷︷ ︸

TB [i]

Acyl = 0 . (9.31)

Note that (9.31) yields three independent identities when expanded in the spec-
tral parameter u for the action of TB [i] with i = 2,3, 4, cf. (9.24). Here we did not
include the case i = 0 which identically vanishes as well as i = 1 which trivially
holds when acting on a function with vanishing central charge. The only identity
that can be obtained from (9.27) by taking the supertrace is the case i = 4.

Note that in the diagram of Acyl in figure 9.5, another embedding on the
cylinder is obtained by simply exchanging particles “2” and “5”. The integrand
(9.25) is invariant under this replacement. Therefore the invariance relations
(9.27) and (9.31) also hold with the labels “2” and “5” interchanged. This shows
that even for this simple example one has to consider all possible embeddings in
order to find all symmetries, as briefly discussed at the end of Section 9.4.

Having established that nonplanar on-shell diagrams possess symmetries that
they inherit from the Yangian invariance of planar diagrams will now allow us
to take a fresh look at the symmetries of form factor on-shell functions.





10
Partial Yangian invariance

of form factors

This chapter presents
unpublished results.

In the last chapters, we have derived a variety of results related to the integra-
bility properties of on-shell diagrams. First we found in chapter 8, using the
language of R-operators, that form factors of the chiral stress tensor multiplet,
as well as planar on-shell functions of arbitrary single trace operators, are eigen-
states of integrable transfer matrices. Then we saw in chapter 9, that nonplanar
on-shell diagrams (without operator insertions) enjoy both a partial Yangian in-
variance, as well as certain symmetries related to transfer matrices.

In this chapter we return to form factor on-shell functions and show that
apart from being transfer matrix eigenstates, they also exhibit a “partial Yangian
invariance”: they are annihilated by the higher levels of Yangian generators, in
complete analogy to nonplanar on-shell diagrams.

Heuristically, this can be understood from the fact that the equivalence moves
(3.13) which cyclicly rotate sub form factors in these diagrams can be used to
move the minimal form factor into the interior of the diagram, such that the pure
on-shell part is embedded on a cylinder or annulus. This is shown in figure 10.1.

Figure 10.1: Form factor on-shell
diagrams give rise to nonplanar
on-shell diagrams. Here we show
the 4 point MHV form factor. Using
the move (3.13) to rotate the F3,2

subdiagram, it can be converted into
an equivalent diagram, where the
on-shell part is nonplanar. Note that
in this example, the on-shell part can
of course be embedded in a planar
way. For larger diagrams this is not
the case.

In order to prove these symmetries, we will adapt the ideas developed in chap-
ter 9 using twistor variables to the spinor-helicity variables in which form factor
on-shell functions can best be described, and combine them with the R-operator
construction developed in chapter 8. Since the arguments are identical, we will
not consider on-shell functions of the chiral stress tensor multiplet separately,
and instead consider on-shell functions with arbitrary operator insertion.
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10.1 Dual Jordan-Schwinger realization

To make this idea more precise, we have to change conventions slightly, in order
to adapt the arguments and results that we derived in chapter 9 using twistor
variables to the spinor-helicity setup we used for the integrability description of
form factor on-shell functions in chapter 8.

As it turns out, to directly apply the ideas of chapter 9 we will need to use the
dual of the gl4|4 representation given in (7.7) and (7.9), which can be generated
by a particle-hole transformation. This allows to make the spinor-helicity lan-
guage more similar to the twistor representation. To see this, recall that in both
cases, we used a Jordan-Schwinger realization J AB = xApB with [pA, xB] = δAB.
The components of the operators xA and pA were respectively given by

xAtw = ( µ̃α̇ , λ̃α̇ , η̃A ) pAtw =
�

∂

∂ µ̃α̇
,
∂

∂ λ̃α̇
,
∂

∂ η̃A

�

(10.1)

xAsh =
�

λα , −
∂

∂ λ̃α̇
,
∂

∂ η̃A

�

pAsh =
�

∂

∂ λα
, λ̃α̇ , η̃A

�

(10.2)

where for clarity, xAtw = W
A and pAtw =

∂
∂W A are expressed in terms of their con-

stituent spinors. As can be seen from equation (10.1), to relate the generators in
this form, we need to apply the half Fourier transform1 which relates λ and µ̃,1 Note that the half-Fourier transform

can itself be interpreted as a particle-
hole transformation.

but also a particle-hole transformation on all variables which exchanges raising
and lowering operators (variables and their derivative):

xA → −(−1)|A|pA , pA → xA . (10.3)

We therefore want to work – in this chapter – with generators that differ from
the ones in (10.1) by this particle-hole transformation:

xA
sh
=
�

−
∂

∂ λα
, −λ̃α̇ , η̃A

�

pA
sh
=
�

λα , −
∂

∂ λ̃α̇
,
∂

∂ η̃A

�

(10.4)

These Jordan-Schwinger oscillators generate the dual representation

J̄ AB := xA
sh

pB
sh
= −(−1)|A|+|A||B|xBshpAsh − (−1)|A|δAB (10.5)

which is the supertranspose of the original representation, up to a diagonal term.
For the algebraic purposes that we pursue here, this can be considered as just a
different repackaging of the symmetry generators.

10.2 Construction with R-operators

We now move on to define all the objects that are necessary for the integrability
construction using the dual representation. The Lax operators are given by

L̄i(u) = u+ (−1)BeABJ̄ BA
i (10.6)

and can be used to build up a monodromy matrix

M̄n(u) = L̄n(u) · · · L̄1(u) . (10.7)
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We do not consider inhomogeneities, or deformations in this chapter, so the Lax
operators carry the same spectral parameter at each sites.

For the R-operator construction we use the same vacua as before,

δ+i = δ
2(λi) ,

δ−i = δ
2(λ̃i)δ

4(η̃i) .
(10.8)

Due to the use of the dual representation the two types of vacua exchange their
eigenvalues under the action of the Lax operators:

L̄i(u)δ
+
i = uδ+i ,

L̄i(u)δ
−
i = (u− 1)δ−i .

(10.9)

We define new R-operators, which are related to those previously defined in
(7.41) by the particle-hole transformation (10.3),

R̄i j(z) =

∫

dα
α1+z

e−α(xsh, j ·psh,i) =

∫

dα
α1+z

e+α(xsh,i ·psh, j) = (−1)−zR ji(z) =

j i

.

(10.10)

It is evident that these R-operators simply correspond to parity conjugated BCFW
bridges (in the limit z → 0). We use these R-operators rather than the ones
defined in (7.41), since the particle hole transformation (10.3) preserves the
commutation relations between x and p. Therefore the Lax and R-operators in
the dual representation obey the Yang-Baxter equation

R̄i j(u j − ui)L̄ j(u j)L̄i(ui) = L̄ j(ui)L̄i(u j)R̄i j(u j − ui) . (10.11)

Finally we can define the same general (undeformed) form factor on-shell
functions as in chapter 8, corresponding to on-shell diagrams where the color-
ordered minimal form factor of some length L single trace operator O is glued
in planarly,

|FO ,n〉= R̄i1 j1(0) · · · R̄im jm(0)FO ,L(l, · · · , l + L − 1)
∏

j∈I +
δ+j

∏

j∈I −
δ−j , (10.12)

The minimal form factor FO ,L can be obtained from the oscillator content of the
operator using (8.30). The state (10.12) can be compared to (8.37). Again there
are |I +| = n− k vacua of type δ+ and |I −| = k − L vacua of type δ−, for a k
such that the minimal form factor defines the minimal MHV degree k = L.

10.3 Yangian symmetries

We now proceed to the derivation of Yangian symmetries for form factor on-shell
functions of arbitrary operators. The argument closely mirrors the corresponding
calculation of transfer matrix identities for these quantities in section 8.4, but is
heavily informed on the results for nonplanar diagrams in section 9.4.
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We start by taking the general on-shell function (10.12), and act with the
monodromy matrix (10.7) on it. Using the Yang-Baxter equation (10.11), we
can commute the monodromy through the sequence of R-operators to obtain

M̄n(u) |FO ,n〉=

R̄i1 j1(0) · · · R̄im jm(0)M̄n(u)FO ,L(l, · · · , l + L − 1)
∏

j∈I +
δ+j

∏

j∈I −
δ−j =

u|I
+|(u− 1)|I

−|R̄i1 j1(0) · · · R̄im jm(0)
∏

j∈I +
δ+j

∏

j∈I −
δ−j

�

M̄L(u)FO ,L(l, · · · , l + L − 1)
�

.

(10.13)

In the third line, we used the eigenvalue equations the Lax operators and the
vacua given in (10.9), such that the only Lax operators left are those acting
on the minimal form factor of the operator O , forming a smaller monodromy
M̄L(u) = L̄l+L−1(u) · · · L̄l(u). Note that in contrast to the transfer matrix consid-
ered in equation (8.34), we cannot “translate” this monodromy via (8.29) into
the corresponding oscillator monodromy to act directly on the operator in its os-
cillator representation. The reason for this is that the monodromy matrix is not
gl4|4 invariant, and therefore does not commute with the momentum conserving
delta function in the minimal form factor (8.30).

Instead we note that similar to equation (9.13) which served as a starting
point to derive the Yangian symmetries of nonplanar on-shell diagrams, the last
line in (10.13) has an expansion in the spectral parameter u which start at least
from u|I

+|, the number of δ+ vacua. The monodromy acting on the minimal
form factor could raise this power by at most L, but we make no assumptions
regarding the state.

If we expand both sides in u, the left hand sides gives the Yangian generators

M̄ AB
n (u) =

n
∑

`=0

un−`M̄ AB
n[`] , (10.14)

analogous to (7.18). By comparing powers of u, we see that for low enough
powers the right hand side vanishes as just discussed, and we get the following
invariance statements:

M̄ AB
n[`] |FO ,n〉= 0 , `= n− |I +|+ 1, . . . , n . (10.15)

This is a partial Yangian invariance similar to the results for nonplanar on-shell
diagrams in section 9.4. We note that (10.15) is in complete agreement with
the corresponding result for a nonplanar on-shell diagram with a boundary of
length n. For example, form factor on-shell functions of the chiral stress tensor
multiplet have |I +| = n − k, which implies that the levels k + 1 up to n are
unbroken symmetries. Regardless of the type of the operator insertion, one level
of Yangian symmetries is gained for each on-shell particle that is added to the
diagram without increasing the MHV degree, starting from the minimal form
factor.
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10.4 Symmetries from the original representation

We can now see why we needed to use the dual representation (10.4): compar-
ing the action of the Lax operators in the original and in the dual representa-
tion (given respectively in equations (7.49) and (10.9)) it is evident that using
the original representation (7.7), the right hand side in (10.13) would be pro-
portional to u|I

−| instead of u|I
+|. This would imply that we would find more

symmetries for on-shell functions with a higher MHV degree, in contrast to the
results of chapter 9, where there were more unbroken symmetries the closer the
on-shell function was to being MHV. Concretely we would have

M AB
n[`] |FO ,n〉= 0 , `= n− |I −|+ 1, . . . , n . (10.16)

with the monodromy matrix defined in equation (7.16).
This shows that one should really consider both representations; depending

on the MHV degree, we can recover more symmetries using the appropriate one
of them. This restores the approximate parity symmetry: only the operator inser-
tion prevents the form factor on-shell function to transform simply under parity,
while the on-shell part does so under an exchange of black and white vertices.
We see this comparing (10.15) and (9.15): since the minimal form factor effec-
tively replaces L δ− vacua, these relations are not symmetric under exchanging
k↔ n− k.

It would be very interesting to see if a similar argument applies to the nonplanar
on-shell functions discussed in the last chapter; if both the on-shell functions as
well as the Yangian generators are expressed in terms of spinor-helicity variables,
we suspect that the number of unbroken Yangian levels is the same for a given
diagram and the diagram obtained by exchanging black and white vertices, if
one simultaneously particle-hole transforms the symmetry generators.





11
The Graßmannian
integral as a map

between spin chains

The previously unpublished results
presented in this chapter were obtained
in joint work with Rouven Frassek.

In this short chapter we present an observation that allows to interpret the in-
tegrands of general Graßmannian integrals, such as those appearing for ampli-
tudes, nonplanar on-shell functions or for form factors, as spin chain states. The
corresponding models are non-compact glk spin chains – where k refers to the
MHV degree – which are a priori unrelated to the N =4 SYM spin chain.

The fact that other integrable spin chains describe the Graßmannian inte-
grands is based on a relation which shows that the Graßmannian integral maps
the gl4|4 transfer matrix of N = 4 SYM into the corresponding glk transfer ma-
trix and vice versa. While we currently do not understand whether this mapping
indicates any deeper relation between the models, either from the viewpoint of
N =4 SYM or from a general integrable models perspective, it is a useful tool to
investigate and check the symmetries discussed in the previous chapters, directly
on the level of the form on the Graßmannian.

11.1 A formula for transfer matrices in terms of
rotations in the space of particles

As in chapter 7, we represent the gl4|4 generators J AB
i = xAi pBi , which satisfy the

commutation relations (7.10), via Schwinger oscillators with [pAi , xBj ] = δi jδ
AB.

To make some calculations easier, we use twistor variables

xAi =W
A
i , pAi =

∂

∂W A
i

= ∂ Ai , (11.1)

but all conclusions in this chapter also hold for spinor-helicity variables. From
these generators, one can construct Lax operators (7.13) as well as monodromy
(7.16) and transfer matrices (7.26) as described in detail in chapter 7. Our aim
now is to derive representations for the monodromy and transfer matrices using
operators which act on the indices labeling the particle instead of the gl4|4 indices.
This will then be the basis for proving the mapping between transfer matrices.
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We first consider the matrix elements appearing in the expansion of the mon-
odromy matrix in the spectral parameter (7.18). A general level is given in terms
of the generators J AB by

M BA
n [`] = (−1)|A|

∑

i1<···<i`

(−1)
∑`−1

j=1 |C j |J
ACi1

i1
J
Ci1
Ci2

i2
· · ·J

Ci`−2
Ci`−1

i`−1
J
Ci`−1

B
i`

, (11.2)

which follows from the definition of the Lax operators. Using the fact that the
generators of gl4|4 have Jordan-Schwinger form, we can transform this into

M BA
n [`] = (−1)|A|

∑

i1<···<i`

xAi1Oi2 i1Oi3 i2 · · · Oi` i`−1
pBi` (11.3)

where we defined the gln generators (acting in “particle space”)

Oi j = x i · p j = xAi pAj . (11.4)

They obey the commutation relations of gln,

[Oi j ,Okl] = δ jkOil −δilOk j . (11.5)

Note that these operators also appear in the R-operators (7.41).1 The operators1 See also footnote 43 on page 96;
essentially the R-operators are powers
of the operators Oi j .

xA and pA transform as follows under the action of the gln generators:

[Oi j , xAi ] = 0 , [Oi j , xAj ] = +xAi ,

[Oi j , pAi ] = −pAj , [Oi j , pAj ] = 0 .
(11.6)

By taking the supertrace of (11.3) and using these commutators to bring the
remaining x and p operators next to each other, we can write the operators in
the expansion (7.29) of the transfer matrix entirely in terms of these gln rotations:

Tn[`] =
∑

i1<···<i`

§

+Oi1 i`Oi2 i1 · · · Oi`−1 i`−2
Oi` i`−1

−Oi1 i`−1
Oi2 i1 · · · Oi`−2 i`−3

Oi`−1 i`−2

· · ·+ (−1)`Oi1 i2Oi2 i1 + (−1)`+1Oi1 i1

ª

.

(11.7)

Note that this form of the transfer matrix is not special for gl4|4, but is valid for
any rational gln|m spin chain with a representation of Jordan-Schwinger form.

11.2 Action on Graßmannian integrals

The representation of the transfer matrix given in equation (11.7) allows to de-
rive its action on Graßmannian integrals. We write a general such integral – with
arbitrary integrand – as
∫

[dC] Ω∆ with [dC] =
dC k×n

Vol[GL(k)]
and ∆= δ4k|4k(CW ) . (11.8)

We first consider the action of the Oi j operators on the delta functions, which
are the only factors in the integral involving the external kinematics. One finds
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that this action can be expressed in terms of operators acting on the entries of
the matrix C as follows:

Oi j ∆= ca
j ∂

a
i ∆ . (11.9)

Here ca
j is the matrix element in the a’th row and j’th column of the matrix C and

∂ a
i =

∂
∂ ca

i
. This equation implies that the operator Oi j has the following action on

the full Graßmannian integral:

Oi j

∫

[dC] Ω∆ =

∫

[dC] Ω Oi j∆=

∫

[dC] Ω ca
j ∂

a
i ∆=

∫

[dC]
�

Oi jΩ
	

∆ ,

(11.10)

where the last equality follow from partial integration, assuming a closed contour.
The operatorsOi j are another set of gln generators, expressed in terms of Jordan-
Schwinger operators acting on the Graßmannian integrand,

Oi j = −∂ a
i ca

j . (11.11)

As the operators Oi j , they also satisfy the commutation relations given (11.5).2 2 Note that equation (11.10) was used
in Drummond, Ferro, “Yangians,
Grassmannians and T-duality”,
1001.3348, to show the invariance of
the Graßmannian integral (with the
standard amplitude top-form) under
the �rst level of the Yangian.

Now we can consider the individual terms in the expansion of the transfer matrix
as written in (11.7). From (11.10) it follows that

Oi1 ir
Oi2 i1 · · · Oir−1 ir−2

Oir ir−1

∫

[dC] Ω∆ =

∫

[dC]
�

Oi1 ir
Oi2 i1 · · ·Oir−1 ir−2

Oir ir−1
Ω
	

∆ .

(11.12)

Note that the order of the operators is preserved because it reverses twice: when
acting on the delta functions and when performing the partial integration.

Equation (11.12) can be applied to any term in (11.7) and to any level of the
expansion of the transfer matrix. Since the structure of the resulting operators
remains identical, we can act with the full transfer matrix on the Graßmannian
integral, and – remarkably – reassemble a transfer matrix acting on the integrand
of the Graßmannian integral. We therefore find that

Tn(u)

∫

[dC] Ω∆ =

∫

[dC]
�

(Tn(u)− kun)Ω
	

∆ , (11.13)

which is the main result of this chapter. In this equation we defined the funda-
mental glk transfer matrix, with k the MHV degree, in terms of Lax operators as

Tn(u) = trLn(u) · · ·L2(u)L1(u) , Li(u) = u+ eab Jbc
i . (11.14)

The matrices eab are the fundamental generators of glk, and

Jab
i = −∂

a
i cb

i (11.15)

the glk generators in Jordan-Schwinger form acting on the sites of the “Graß-
mannian spin chain”. Note that the term −kun in (11.13) arises because the

http://xxx.lanl.gov/abs/1001.3348
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lowest level of the gl4|4 transfer matrix is un str1 = 0, while for the glk transfer
matrix it is un tr1= kun.

The action of the Yangian generators can be derived by a similar argument
and is given by

M BA
n [`]

∫

[dC] Ω∆ =

∫

[dC]
§

(−1)|A|
∑

i1<···<i`

xAi1Oi2 i1Oi3 i2 · · ·Oi` i`−1
cb

i`
Ω∆,b,B

ª

(11.16)

Here the notation ∆,b,B indicates which of the k× (4|4) of the delta functions is
to be replaced by the derivative δ′. We see that in contrast to the transfer matrix,
the Yangian generatorsM BA

n [`] are not mapped into the Yangian generators of the
glk spin chain.

Equation (11.13) shows that the Graßmannian integral can be viewed as a map
between the gl4|4 and a glk spin chain, in particular transforming eigenstates into
eigenstates. The Yangian generators do not transform into the glk Yangian gen-
erators under this map, but one can still calculate their action, given in (11.16),
purely on the level of the Graßmannian form. The relations derived here are still
valid when the monodromy and transfer matrices do not involve all particles, as
was the case for the symmetries derived in the previous chapters for form fac-
tor on-shell functions (where two additional sites carry the information of the
operator insertion) and for nonplanar on-shell diagrams. Therefore the relations
(11.13) and (11.16) provide a very efficient way to check and investigate these
symmetries, which in the glk picture are realized by differential operators acting
on the Graßmannian form Ω.

11.3 The glk spin chain

Since we consider the map between spin chains as an interesting fact in itself,
we investigate the glk spin chain in more detail now.

The MHV Graßmannian and the Faddeev-Korchemsky model

We first show that the gl2 spin chain for the MHV Graßmannian integral is iden-
tical to a model which appeared in the context of high energy scattering in QCD.
Lipatov proposed that in the leading log approximation and at large N , the par-
tial waves for hadron scattering can be described by an integrable noncompact
spin 0 Heisenberg model.3 The transverse coordinates (x j , y j) of the reggeized3 Lipatov, “Asymptotic behavior of

multicolor QCD at high energies in
connection with exactly solvable spin
models”, hep-th/9311037, [Pisma Zh.
Eksp. Teor. Fiz.59,571(1994)]

gluons can be combined into the light-cone variables z j = x j + i y j , z̄ j = x j − i y j

which are used to describe the n-gluon states. These wavefunctions are eigen-
states of a Hamiltonian, which at large N decouples into a holomorphic and an
antiholomorphic component, and their energies are related to the angular mo-
mentum of the states.

Subsequently, Faddeev and Korchemsky showed that the spin chain model

http://xxx.lanl.gov/abs/hep-th/9311037
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is equivalent to a spin −1 model, for which the algebraic Bethe Ansatz can be
applied.4 Further work, investigating the model using Q-operators and the sep- 4 Faddeev, Korchemsky, “High-energy

QCD as a completely integrable
model”, hep-th/9404173

aration of variables approach can be found in the papers Korchemsky (1995);
Derkachov et al. (2001, 2002, 2003); Maassarani and Wallon (1995).5 For a

5 Korchemsky, “Bethe ansatz for
QCD pomeron”, hep-ph/9501232;
Derkachov, Korchemsky, Manashov,
“Noncompact Heisenberg spin mag-
nets from high-energy QCD: 1.
Baxter Q operator and separation
of variables”, hep-th/0107193;
Derkachov, Korchemsky, Kotanski,
Manashov, “Noncompact Heisenberg
spin magnets from high-energy
QCD. 2. Quantization conditions and
energy spectrum”, hep-th/0204124;
Derkachov, Korchemsky, Man-
ashov, “Noncompact Heisenberg
spin magnets from high-energy
QCD. 3. Quasiclassical approach”,
hep-th/0212169; and Maassarani,
Wallon, “Baxter equation for the QCD
odderon”, hep-th/9507056

review see also Korchemsky (2012).6

6 Korchemsky, “Review of AdS/CFT Inte-
grability, Chapter IV.4: Integrability in
QCD and N<4 SYM”, 1012.4000

Returning the Graßmannian integral, we now consider the MHV case with
k = 2. The symmetry generators (11.15) acting on the Graßmannian integrand
define the following sl2 generators,

S+ = J12 = −∂ 1c2 , S− = J21 = −∂ 2c1 , S3 =
1
2
(J11−J22) = c2∂ 2−c1∂ 1 ,

(11.17)

with [S+, S−] = 2S3. The Graßmannian integral requires that the form Ω is of
homogeneous degree −k in the elements of the matrix C . This fixes the highest-
weight state to be

|hws〉=
1
(c2)2

=⇒ S+ |hws〉= 0 and S3 |hws〉= −|hws〉 , (11.18)

and shows that the spin chain carries the same spin −1 representation as the
model for high energy QCD. To make the relation more concrete, we can write
the generators in Holstein-Primakoff form, by restricting the Fock space to the
spin −1 representation. If we consider the columns of the matrix C as homoge-
neous coordinates on CP1, this can be understood as choosing a chart, see for
example Fuksa and Kirschner (2017),7 and can be realized by parametrizing the 7 Fuksa, Kirschner, “Correlators with s`2

Yangian symmetry”, 1608.04912variables c as

c2→ z , c1→ 1 , (11.19)

which implies for the derivatives

∂ 1 =
∂

∂ z
= ∂ , ∂ 2 = −z∂ − 2 , (11.20)

where ∂ = ∂
∂ z . To arrive at these expressions one uses the central charge con-

straint for the representation, c1∂ 1+c2∂ 2 = −2, and solves for ∂ 2. The symmetry
generators are then given by8 8 Note that when performing this

change of variables on the generators,
one �rst has to commute all derivative
∂ a to the right.

S+ = z2∂ + 2z , S− = −∂ , S3 = z∂ + 1 , (11.21)

which coincide with the ones used in Faddeev and Korchemsky (1995) for the
spin −1 model. The highest-weight state for a chain of length n is then given by

1
z2

1 z2
2 · · · z2

n−1 z2
n

, (11.22)

and the Graßmannian top-form for scattering amplitudes is the entangled state

(−1)n

(z1 − z2)(z2 − z3) · · · (zn−1 − zn)(zn − z1)
. (11.23)

Note that this state corresponds to the trivial constant state in the spin 0 model.

http://xxx.lanl.gov/abs/hep-th/9404173
http://xxx.lanl.gov/abs/hep-ph/9501232
http://xxx.lanl.gov/abs/hep-th/0107193
http://xxx.lanl.gov/abs/hep-th/0204124
http://xxx.lanl.gov/abs/hep-th/0212169
http://xxx.lanl.gov/abs/hep-th/9507056
http://xxx.lanl.gov/abs/1012.4000
http://xxx.lanl.gov/abs/1608.04912
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Representation for other k

For the general glk case, we can find the representation at the spin chain sites by
noting that the Graßmannian integral fixes the integrandΩ to be a homogeneous
function of degree −k in the entries of the C matrix. Consider the generators
defined in (11.15). The highest-weight state is annihilated by the generators Jab

with b > a. It is easy to see that it is given by

|hws〉=
1
(ck)k

. (11.24)

We can read off the representation labels by acting with the diagonal generators
on the highest-weight state,

J11 |hws〉= · · ·= Jk−1 k−1 |hws〉= −|hws〉 Jkk |hws〉= (k− 1) |hws〉 (11.25)

Therefore the glk weights are (−1, · · · ,−1, k−1) and the Dynkin labels are there-
fore given by (0, · · · , 0,−k).

Importantly, not all states on the glk spin chain can be mapped via the Graß-
mannian integral to gl4|4 states; for it to be a well-defined integral, the form Ω
needs to be glk invariant. Therefore the mapping only works for singlets, such as
the amplitude top-form [(1 · · · k) · · · (n · · · k−1)]−1. It remains an open question
how to find the other invariant eigenstates, and to see what they correspond to in
N =4 SYM. The form factor Graßmannian integral given in equations (4.24) and
(4.25) provides examples of states which are entangles via additional sites n+1
and n+ 2 on which the transfer matrix does not act. We leave the investigation
of these questions for future work.

Nevertheless, we have used the results presented here for practical checks
of the results of the last chapters, especially using (11.16) and (11.13). The
fact that these equations allow to calculate the action of transfer matrices and
Yangian generators on the level of the Graßmannian integrand means that no
integrals or distributions are involved, such that all calculations can easily be
automatized in Mathematica. We hope that they can thus be used as a powerful
tool, in particular for the classification of nonplanar on-shell functions.9

9 Bourjaily, Franco, Galloni, Wen,
“Stratifying On-Shell Cluster Varieties:
the Geometry of Non-Planar On-Shell
Diagrams”, 1607.01781

http://xxx.lanl.gov/abs/1607.01781


III

TOWARD S S T A T E S
A T H I GH ER LOOP S





12
The Quantum Spectral

Curve & Baxter Q-operators

After having discussed form factors and other on-shell functions as states of the
N =4 SYM spin chain, we will now consider states which are more widely stud-
ied from the spin chain perspective, namely gauge invariant composite operators.
These can be described at the level of their eigenvalues (their energy and higher
conserved charges), by the Quantum Spectral Curve, a concise set of equations
governing this spectral problem. This formulation however carries no informa-
tion on the structure of the state vectors, i.e. the perturbative expansion of the
eigenstates in terms of trace operators. While these vectors carry some amount
of renormalization scheme dependence, a better understanding of them, or even
a way of determining them from integrability, is clearly desirable. Having a solid
picture of these states, and the operatorial form of the commuting transfer ma-
trices and conserved charges at higher loop order could be a stepping stone for
a better understanding of how integrability emerges from the field theory.

The aim of this and the next chapters is to provide a definition, and tools
for the explicit calculation, of the perturbative, operatorial Q-system of N = 4
SYM. We consider the Q-operators at the one-loop level and show how to calcu-
late explicit representations as finite matrices in each magnon sector. The reason
for considering these explicit matrices is that they can be used as input data for
perturbative calculations based on the Quantum Spectral Curve, lifting it to the
operatorial level. While nonperturbative Q-operators for N = 4 SYM certainly
exist, this strategy circumvents the problems of formulating N = 4 SYM as a
spin chain at higher loops, where the length of states ceases to be a good quan-
tum number and the QISM constructions are no longer available. The following
chapters describe the first steps of this program.

This chapter serves as an introduction to both the Quantum Spectral Curve
as well as the Q-operators of integrable spin chain models. In section 12.1 we
review the oscillator representation of fields and composite operators in N =4
SYM, which is essential to the spin chain description. We then give a brief sum-
mary of the QSC as a system of Q-functions, including some notes on its weak
coupling expansion in section 12.2. Finally we introduce the oscillator construc-
tion of Q-operators, which builds them as traces over monodromy matrices, sim-
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ilar to the other commuting transfer matrices of the integrable model, which we
already encountered in chapter 7. This construction will play a key role in the
next chapter, where we apply it to the cases relevant to N =4 SYM.

12.1 Composite operators in N =4 SYM

The fundamental fields in N = 4 SYM can conveniently be described in terms
of an oscillator representation, first introduced in Bars and Günaydin (1983);
Günaydin and Marcus (1985).1 This representation uses four bosonic and four1 Bars, Günaydin, “Unitary Representa-

tions of Noncompact Supergroups”,
Commun. Math. Phys. 91 (1983) 31; and
Günaydin, Marcus, “The Spectrum
of the S5 Compacti�cation of the
Chiral N=2, D=10 Supergravity and the
Unitary Supermultiplets of U(2,2/4)”,
Class. Quant. Grav. 2 (1985) L11

fermionic pairs of creation and annihilation operators, with commutation rela-
tions

[aα, āβ] = δαβ , α, β = 1, 2 ,

[bα̇, b̄β̇] = δα̇β̇ , α̇, β̇ = 1,2 ,

{da, d̄b}= δab , a, b = 1, 2,3, 4 .

(12.1)

These operators act on a Fock vacuum |0〉 with aα |0〉 = bα̇ |0〉 = da |0〉 = 0. We
also define the number operators Naα = āαaα and similarly for the other oscil-
lators. The symmetry generators will likewise be given in terms of bilinears of
the raising and lowering operators; we will discuss them in more detail in sec-
tion 13.3. The singleton representation under which the fields of N = 4 SYM
transform is obtained by restricting the Fock space to states with vanishing cen-
tral charge,

c=
2
∑

α=1

Naα −
2
∑

α̇=1

Nbα̇ −
4
∑

a=1

Nda
+ 2= 0 . (12.2)

Note that this description of fields is the same we already introduced when form
factor on-shell functions of general operators were discussed in section 8.4.

The correspondence with the fields of N =4 SYM is then as follows:

φab ψaα ψaα̇ Fαβ F α̇β̇ Dαα̇

d̄ad̄b |0〉 εabcd d̄bd̄cd̄d āα |0〉 d̄ab̄α̇ |0〉 d̄1d̄2d̄3d̄4āαāβ |0〉 b̄α̇b̄β̇ |0〉 āαb̄α̇

(12.3)

Here we denote the six scalars by φab = −φba, the eight fermions are ψaα and
their conjugates, and the self-dual and anti-self-dual field strengths are written
as Fαβ and F̄α̇β̇ . Finally, D denotes a covariant derivative. The lowest-weight
state of the representation is the scalar |Z 〉= d̄1d̄2 |0〉. Note that the state space
is infinite-dimensional since an arbitrary number of covariant derivatives can act
on the fields. This is a general property of unitary representations of non-compact
groups. Using oscillators to represent the fields has the advantage that due to the
automatic (anti-)symmetrization, the equations of motions are already factored
out.

The states of planar, weakly coupled N = 4 SYM are gauge-invariant com-
posite operators, which are color traces of products of the fundamental fields,
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evaluated at the same point in space-time, which we can take to be the origin:

O = tr
�

Φ1(0) · · ·ΦL(0)
�

. (12.4)

Here each Φi can be any of the fields given in (12.3) with an arbitrary number
of derivatives. In terms of the oscillators, these single trace operators are given
in terms of graded-cyclic tensor products of the field representations.

These operators are subject to renormalization, and operators with the same
classical charges can mix in this process, such that the Z-factors have a matrix
structure, Oi,ren = Z j

i O j,bare. The dilatation operator measures the dependence
of the renormalized operators on the renormalization scale µ, D = µ d

dµ Z . Since
N = 4 SYM is conformal, its eigenvalues, i.e. the scaling dimensions of oper-
ators which renormalize multiplicatively, are observables. In the following, we
decompose the scaling dimension into the classical dimension∆0, and the anom-
alous dimension γ(g) which depends on the coupling g =

p
λ

4π , with the ’t Hooft
coupling λ

D |O 〉=∆(g) |O 〉 , ∆(g) =∆0 + γ(g) . (12.5)

The classical dimension of the operator is just the sum of the dimensions of the
constituent fields, which is given in terms of the oscillators by

∆0 =
1
2

4
∑

a=1

Nda
+

2
∑

α=1

Naα , (12.6)

where we used the central charge constraint, which likewise determines the
length L of the operator, i.e. the number of factors in the tensor product, via
the oscillator numbers,

L =
1
2

�

2
∑

α̇=1

Nbα̇ +
4
∑

a=1

Nda
−

2
∑

α=1

Naα

�

. (12.7)

Due to length-changing effects at higher loop order, L is only a good quantum
number at tree-level and one-loop.

A state at weak coupling is determined by these eight oscillator numbers (up
to degeneracies), or equivalently by the gl4|4 weights

λa = L −Nda
, νi = (Na1

,Na2
,−L −Nb1

,−L −Nb2
) , (12.8)

Then the six numbers ra = λa−λa+1 and qi = νi−νi+1 define the representation
of psu2,2|4 the state transforms in.

While the eigenstates of the dilatation operators carry some scheme depen-
dence, the conformal dimensions are well-defined properties of the theory, and
via the state-operator map can be regarded as the energies of the states of the
theory. Determining these quantities constitutes the spectral problem. Note that
the scaling dimensions completely determine the two-point correlation functions
of composite operators; together with the structure constants of the OPE, they
in principle determine all correlators of the theory.



142 | The Quantum Spectral Curve & Baxter Q-operators

12.2 The Quantum Spectral Curve

The Quantum Spectral Curve (often abbreviated as QSC in the following), a re-
markably concise formulation of the spectral problem in N = 4 SYM at finite
coupling, was announced in Gromov et al. (2014)2 and derived3 from the Ther-2 Gromov, Kazakov, Leurent, Volin,

“Quantum Spectral Curve for Planar
N = Super-Yang-Mills Theory”,
1305.1939

3 We remark that this derivation
ultimately rest on the Asymptotic
Bethe Ansatz and hence on the
assumption of integrability. Despite a
wealth of evidence – a proof that the
integrable model discussed here really
describes N =4 SYM and/or the type
IIb superstring on AdS5 × S5 remains
an outstanding research problem.

modynamic Bethe Ansatz equations in Gromov et al. (2015).4 It allows to find

4 Gromov, Kazakov, Leurent, Volin,
“Quantum spectral curve for arbi-
trary state/operator in AdS5/CFT4”,
1405.4857

the scaling dimension of any state, taking its integer charges as an input, and
then bootstrapping a system of Q-functions from known analytic properties. The
QSC is generally considered the “final” formulation of the spectral problem, in
the sense that no simpler formulation appears to be possible. During the last
years, it allowed to derive a wealth of novel results, see for example Alfimov
et al. (2015); Gromov and Levkovich-Maslyuk (2016a,b).5 Here we give a brief

5 Al�mov, Gromov, Kazakov, “QCD
Pomeron from AdS/CFT Quantum
Spectral Curve”, 1408.2530; Gromov,
Levkovich-Maslyuk, “Quark-anti-
quark potential in N = 4 SYM”,
1601.05679; and Gromov, Levkovich-
Maslyuk, “Quantum Spectral Curve for
a cusped Wilson line in N = 4 SYM”,
1510.02098

overview of the QSC, with an emphasis on its weak coupling limit and its in-
terpretation as a Q-system in order to motivate the developments of the next
chapters.

Q-system

The basis of the Quantum Spectral Curve is an algebraic Q-system. We will dis-
cuss the Q-system for general integrable models with glN |M invariance; the case
relevant toN =4 SYM is recovered by specializing to gl4|4. Note that all algebraic
properties of this system depend only on the symmetry algebra, but not on the
representation.

For each state of the model, i.e. for each eigenstate of the family of commuting
operators,6 there exist 2N+M so called Q-functions, which are indexed by ordered6 The transfer matrices discussed in

section 7.2 are prominent examples of
such operators.

subsets of the N +M glN |M indices, and depend on the spectral parameter u. In
accordance with the Quantum spectral curve literature, we separate the bosonic
indices and the fermionic indices and write the Q-functions as QA|I , where capital
letters are used to denote ordered sets of indices, and the A are bosonic, while the
I are fermionic.7 We denote the empty set by ∅ and the full set by ∅= 123 · · ·N7 Given this notation, we will use indices

A3 a = 1, . . . , N and I 3 i = 1, . . . , M . or ∅ = 123 · · ·M . The notation A means the complement of A. The Q-functions
are anti-symmetric in their indices.

While the total number of Q-functions is very large, there are only N+M+1 in-
dependent ones, since the Q-functions satisfy the following functional relations,
often called QQ-relations:

QA|IQAab|I = Q+Aa|IQ
−
Ab|I − Q−Aa|IQ

+
Ab|I ,

QA|IQA|I i j = Q+A|I iQ
−
A|I j − Q−A|I iQ

+
A|I j ,

QAa|IQA|I i = Q+Aa|I iQ
−
A|I − Q−Aa|I iQ

+
A|I .

(12.9)

Together with the requirement that Q∅|∅ = 1, these relations allow to determine
all functions from e.g. those with a single index. The set of all Q-functions can be
visualized on hypercubic Hasse diagrams, representing the partial order induced
by the inclusion of indices.8 An example diagram for gl2|1 is given in figure 12.1.9

8 Tsuboi, “Solutions of the T-system
and Baxter equations for supersym-
metric spin chains”, 0906.2039

9 The Hasse diagram for N = 4 SYM
can be found on the title page of this
work.

The three types of functional relations in (12.9) correspond to the three different
types of quadrilaterals occurring in the Hasse diagrams, as shown in figure 12.2.

http://xxx.lanl.gov/abs/1305.1939
http://xxx.lanl.gov/abs/1405.4857
http://xxx.lanl.gov/abs/1408.2530
http://xxx.lanl.gov/abs/1601.05679
http://xxx.lanl.gov/abs/1510.02098
http://xxx.lanl.gov/abs/0906.2039
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Q∅|∅

Q1|∅ Q2|∅ Q∅|1

Q12|∅ Q1|1 Q2|1

Q12|1

Figure 12.1: Example Hasse diagram for
gl2|1. The inclusion of the fermionic
index is represented by a dashed line.

QA|I

QAa|I QAb|I

QAab|I

QA|I

QA|I i QA|I j

QA|I i j

QA|I

QAa|I QA|I i

QAa|I i

Figure 12.2: The three types of quadri-
laterals which can appear in the Hasse
diagrams for glN |M , correspond-
ing to the QQ-relations given in
equation (12.9).

The Q-system can be used to solve the integrable model, provided that fur-
ther data on the analytic structure of the Q-functions is known. This data is
determined by the representation of the real form up,q|r+s under which the states
transform. For ordinary spin chain models, the Q-functions are either polynomi-
als for compact representations, or rational functions and functions with ladders
of poles in the non-compact case. The value of Q∅|∅ is independent of the state
and only determined by the representation at each site of the spin chain. Each
state has a characteristic asymptotic behavior, determined by its charges. Boot-
strapping the Q-system from this data, one can use readily available formulas to
determine the energy and the higher conserved charges of the state. 10

10 We note that the investigation of
Q-systems has recently also led to
some new ideas for solving the Bethe
equations of the model, see Marboe,
Volin, “Fast analytic solver of rational
Bethe equations”, 1608.06504 and
Marboe, Volin, “The full spectrum
of AdS5/CFT4 I: Representation
theory and one-loop Q-system”,
1701.03704.

For N =4 SYM at finite coupling, the Q-functions with empty and full index
sets are fixed to be (up to normalization),

Q∅|∅ =Q∅|∅ = 1 , (12.10)

but the analytic structure of the remaining Q-functions is more involved com-
pared to simple spin chains. In particular, the functions are multi-valued and
depend on the coupling constant g. Their precise structure is determined by the
Pµ and Qω systems, which we describe next.

Pµ and Qω systems

The Quantum Spectral Curve is formulated in terms of 4 + 4 functions Pa and
Qi and their counterparts with upper indices, which correspond to some of the
functions of the Q-system:

Pa =Qa|∅ , Qi =Q∅|i , Pa = (−1)aQa|∅ , Qi = (−1)iQ∅|i . (12.11)

Furthermore there are six functions µab = −µba and six functions ωi j = −ω ji ,
which are related to the central Q-functions Qab|i j , satisfying

µab =
1
2

Q−ab|i jω
i j . (12.12)

All of these functions are multi-valued, having branch points of square-root type,
but no other singularities. The branch points occur only at the positions ±2g± ni

2

for integer n. For the branch cuts connecting these points there are two conve-
nient choices: the cuts can be “short”, in which case they are placed on the in-
terval [−2d ± in

2 ,+2g in
2 ], or they can be “long”, connecting the branch points to

infinity, [−∞,−2g ± ni
2 ]∪ [2g ± ni

2 ].
The structure of cuts of the functions used to define the QSC are shown in

figure 12.3. The functions Pa have a single short cut on the real axis of their first
Riemann sheet, and their analytic continuation to the second sheet which are
denoted by P̃a have an infinite ladder of short cuts, as do the functions µab. The
cut structure of Qi , Q̃i andωi j is identical, except that all cuts are long. Also note
that the functions with upper indices have the same cut structure as those with
lower indices. The functions µab and ωi j furthermore satisfy the following

http://xxx.lanl.gov/abs/1608.06504
http://xxx.lanl.gov/abs/1701.03704
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Figure 12.3: The analytic structure of the
Pµ and Qω systems. The red arrows
indicate possible paths for the analytic
continuation to the second Riemann
sheets.

−2g +2g

Pa

P̃a

−2g +2g

Qa

Q̃a

−2g +2g

µa

−2g +2g

ωa

pseudo-periodicity conditions,

µ̃ab(u) = µab(u+ i) , ω̃i j =ωi j(u+ i) , (12.13)

which means that the functions are periodic for the opposite choice of long and
short cuts.

The Quantum Spectral Curve can be formulated either in terms of Pa and
µab or in terms of Qi and ωi j . These Pµ and Qω systems are coupled systems of
equations which relate the analytic continuations of the functions on the second
Riemann sheet to their values on the defining sheet,

P̃a = µabPb , µ̃ab −µab = PaP̃b − PbP̃a ,

Q̃i =ωi jQ j , ω̃i j −ωi j = QiQ̃ j −Q jQ̃i .
(12.14)

The functions are further constrained by algebraic relations which follow from
the Q-system:

PaPa = 0 , Pf(µ) = 1 ,

QiQi = 0 , Pf(ω) = 1 .
(12.15)

Here, Pf denotes the Pfaffian.
Finally, to fully specify the system of equations for a particular state, the as-

ymptotic behavior of the P and Q functions has to be imposed,

Pa ' Aau−λa−na , Pa ' Aauλa−ña ,

Qi ' Biu
−νi−ñi , Qi ' Biuνi−ni .

(12.16)

Here, the coefficients A and B can be determined from the Q-system, and the
power-like asymptotics are determined by the charges λa and νi of the state,
which are defined in (12.8) for the weakly coupled theory.11 We furthermore

11 Note that compared to the oscillator
construction, where indices a are
fermionic and indices i = α, α̇ are
bosonic as in equation (12.8), the
QSC literature conventionally uses the
opposite grading, which is equivalent. defined the integer shifts (na) = (ni) = (1,0, 1,0) and (ña) = (ñi) = (0,1, 0,1).
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For finite coupling, the charges νi receive quantum corrections proportional to
the anomalous dimension,

νi = νi(g = 0) +
γ(g)

2
(1,1,−1,−1) ; (12.17)

this allows to extract the dimension from solutions of the QSC.
The asymptotic structure shows that the Pµ system is related to the S5 or R

part of the symmetry, while the Qω system reflects the isometries of AdS5, or the
conformal symmetry. It also explains why the Pa have short and the Qi long cuts:
the R symmetry charges λa are integers protected from quantum corrections, and
therefore the functions Pa have trivial monodromy around infinity, according
to equation (12.16); the charges νi however correspond to the non-compact
part of the symmetry algebra and – being real numbers – induce a non-trivial
monodromy around infinity.

The Quantum Spectral Curve equations may very likely be the simplest formu-
lation of the spectral problem, but nevertheless they are far from being trivially
solvable. While it is possible to obtain solutions for finite coupling in numerical
form,12 analytic results can be derived by perturbative methods. 12 Gromov, Levkovich-Maslyuk, Sizov,

“Quantum Spectral Curve and the
Numerical Solution of the Spectral
Problem in AdS5/CFT4”, 1504.06640The QSC at weak coupling

We conclude this section with some notes on the weak coupling expansion of the
Quantum Spectral Curve, in order to make contact with the operatorial descrip-
tion of the Q-system developed in the next chapters. Such perturbative methods
were first explored in Marboe and Volin (2015)13 and subsequently used to ob- 13 Marboe, Volin, “Quantum spectral

curve as a tool for a perturbative
quantum �eld theory”, 1411.4758

tain many results at high loop order.14

14 Marboe, Velizhanin, Volin, “Six-loop
anomalous dimension of twist-two
operators in planar N = 4 SYM
theory”, 1412.4762; and Marboe,
Velizhanin, “Twist-2 at seven loops in
planar N = 4 SYM theory: full result
and analytic properties”, 1607.06047

To apply an perturbative expansion in the coupling g, the analytic structure
at g = 0 of all functions has to be known. For Pa, Pa and µab, as well as their
analytic continuations, the short cuts will collapse into poles at weak coupling.
The functions with long cuts however do not behave properly in this limit, so
their sheets have to be glued together differently first, in such a way that all
cuts are short. This can be done by combining the upper half plane of Qi with
the lower half plane of Q̃i into a new function Qi , and vice versa for Q̃i . The
functions with upper indices can be treated similarly. For vanishing coupling, all
these functions then have poles at +iN or −iN. On a sheet with short cuts, the
functions ωi j become i-periodic, and have poles at ±iN. The analytic structure
of all these functions is shown in figure 12.4.

Although the analytic continuation of the functions cannot be accessed at
weak coupling, the Pµ system still provides “gluing conditions” that relate these
functions. These conditions can be derived by resolving the branch cuts using
the Zhukovsky variable x = x(u) defined by

u
g
= x +

1
x

, (12.18)

which obeys x̃ = 1
x . The equations (12.14) then turn into constraints on the

coefficients of the Laurent expansions of the respective functions in x at weak

http://xxx.lanl.gov/abs/1504.06640
http://xxx.lanl.gov/abs/1411.4758
http://xxx.lanl.gov/abs/1412.4762
http://xxx.lanl.gov/abs/1607.06047
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Pa

P̃a

µab

−−−−−−→
g → 0

−−−−−−→
g → 0

−−−−−−→
g → 0

Qi

Q̃i

ωi j

−−−−−−→
g → 0

−−−−−−→
g → 0

−−−−−−→
g → 0

−−−−−→

ωi j(u+ i) = ω̃i j(u+ i) ωi j(u+ i) =ωi j(u+ i)

Figure 12.4: The analytic structure of
the Quantum Spectral Curve at weak
coupling. coupling. Using further constraints from the other properties of the Quantum

Spectral Curve, this allows to completely fix Ansätze for the functions Pa and
for P̃a in a small neighborhood around the origin. Importantly, the one-loop Q-
functions provide the input data for this iterative procedure.

12.3 Q-operators

The Q-functions discussed above are known to be the eigenvalues of Q-operators.
These operators belong to the commuting family of transfer matrices of the in-
tegrable model, and satisfy the same functional relations as their eigenvalues.
They were introduced in Baxter’s seminal work on the eight vertex model15 and15 Baxter, “Partition function of the

eight vertex lattice model”, Annals
Phys. 70 (1972) 193–228, [Annals
Phys.281,187(2000)]

applied to two-dimensional field theories with quantum group symmetry.16

16 Bazhanov, Lukyanov, Zamolodchikov,
“Integrable structure of conformal
�eld theory. 2. Q operator and
DDV equation”, hep-th/9604044;
Bazhanov, Lukyanov, Zamolodchikov,
“Integrable structure of conformal
�eld theory. 3. The Yang-Baxter
relation”, hep-th/9805008; Bazhanov,
Hibberd, Khoroshkin, “Integrable
structure of W(3) conformal �eld
theory, quantum Boussinesq theory
and boundary a�ne Toda theory”,
hep-th/0105177; Bazhanov, Tsuboi,
“Baxter’s Q-operators for supersym-
metric spin chains”, 0805.4274; and
Kojima, “Baxter’s Q-operator for the
W-algebra WN”, 0803.3505

Surprisingly, for the simplest integrable model, the spin 1
2 Heisenberg magnet

solved by Hans Bethe in 1931,17 Q-operators were constructed only recently.18

17 Bethe, “Zur Theorie der Metalle”,
Zeitschrift für Physik 71 (1931), no. 3,
205–226

18 Bazhanov, Łukowski, Meneghelli,
Staudacher, “A Shortcut to the
Q-Operator”, 1005.3261

We give a very brief overview of the Q-operators of this model, to motivate the
oscillator construction for more general cases in the following. The Heisenberg
model has ` spin 1

2 particles at the sites of a periodic chain, which couple only
via nearest-neighbor exchange interactions. The Hamiltonian of this model is
therefore given by

H = −2
∑̀

i=1

�

Si · Si+1 −
1
4

�

=
∑̀

i=1

(1−Pi i+1) , `+ 1∼ 1 . (12.19)

Here the spin operators can be expressed using the Pauli matrices, Sa = σa

2 , and
Pi j is the operator which permutes the spins at site i and site j.

The oscillator construction for the Q-operators of this model is based on the
following Lax matrices, indexed by subsets I ⊂ {1, 2}:19

19 This indexing by subsets is commonly
used in the Q-operator literature,
and is equivalent to using the multi-
indices as used in section 12.2 above,
see also section 13.2 below.

L∅(z) =

�

1 0

0 1

�

, L{1}(z) =

�

z − ξ̄ξ− 1
2 ξ̄

−ξ 1

�

,

L∅(z) =

�

z 0

0 z

�

, L{2}(z) =

�

1 ξ̄

ξ z + ξ̄ξ+ 1
2

�

.

(12.20)

The Lax-matrices are degenerate solutions of the Yang-Baxter equation, and form
representations of the Yangian where the lowest level is not proportional to the

http://xxx.lanl.gov/abs/hep-th/9604044
http://xxx.lanl.gov/abs/hep-th/9805008
http://xxx.lanl.gov/abs/hep-th/0105177
http://xxx.lanl.gov/abs/0805.4274
http://xxx.lanl.gov/abs/0803.3505
http://xxx.lanl.gov/abs/1005.3261
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identity, cf. equation (7.19). The operators ξ and ξ̄ obey the standard oscillator
algebra [ξ, ξ̄] = 1, and the corresponding Fock space constitutes the auxiliary
space of the LI .

20 The Q-operators of the model can be defined as normalized
20 Note that in contrast to what is

usually done for the standard Lax
operator, (12.20) shows the matrix
structure of the Lax operators in the
physical space; it is in this sense, with
the physical and auxiliary spaces
swapped, that these Lax operators
form a representation of the Yangian.

and twisted traces over this space of monodromies built from products of ` Lax-
matrices,

QI(z) = ei
∑

a∈I φaz
btr
�

LI(z)
[1] ⊗ · · · ⊗ L[`]I (z)

�

, (12.21)

for I = ∅, {1}, {2}, {1,2}. We defer a discussion of the subtleties involved when
taking these traces to section 13.2, where a more general case will be explained.
Both the trace as well as the normalization factor involve the twist angles φ1 =
−φ2, which can be understood as a magnetic flux. This flux breaks the su2 in-
variance of the model without spoiling integrability. This is necessary for the
convergence of the trace, but also prevents diverging Q-functions for descen-
dant states.21 The four Q-operators satisfy a relation, which can easily be seen

21 In the context of the QSC, twists
have been described in some detail in
Kazakov, Leurent, Volin, “T-system
on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100.

to be a special case of (12.9),

2i sin
�

φ1 −φ2

2

�

Q∅(z)Q∅(z) = Q{1}(z+
1
2)Q{2}(z−

1
2)−Q{1}(z−

1
2 )Q{2}(z+

1
2) .

(12.22)

The prefactor arises from the specific normalization used in (12.21) and will be
discussed in more generality in section 13.2.

The oscillator construction for Q-operators has been generalized subsequently
to many other models, which are invariant under higher rank or super algebras,
and transform in other representations, or have open boundary conditions.22 It

22 Bazhanov, Frassek, Łukowski,
Meneghelli, Staudacher, “Baxter
Q-Operators and Representations
of Yangians”, 1010.3699; Frassek,
Łukowski, Meneghelli, Staudacher,
“Oscillator Construction of su(n|m)
Q-Operators”, 1012.6021; Frassek,
Łukowski, Meneghelli, Staudacher,
“Baxter Operators and Hamiltonians
for ‘nearly all’ Integrable Closed gl(n)
Spin Chains”, 1112.3600; and Frassek,
Szecsenyi, “Q-operators for the open
Heisenberg spin chain”, 1509.04867

was furthermore shown, at least for the Heisenberg spin chain, that the eigen-
functions of the Q-operators indeed give the polynomials appearing in the Bethe
Ansatz.23 For all these models, the Q-operators are in a sense the most funda-

23 Frassek, “Algebraic Bethe ansatz for
Q-operators: The Heisenberg spin
chain”, 1504.04501

mental operators among the family of commuting transfer matrices, and they
allow to calculate both the Hamiltonian as well as the higher conserved charges
in operatorial form without referring to any other transfer matrices.24

24 Frassek, Meneghelli, “From Baxter
Q-Operators to Local Charges”,
1207.4513

We note that there are other approaches for the construction of Q-operators,
see for example Belitsky et al. (2007); Derkachov and Manashov (2006, 2011,
2009); Kazakov et al. (2012).25

25 Belitsky, Derkachov, Korchemsky,
Manashov, “Baxter Q-operator
for graded SL(2|1) spin chain”,
hep-th/0610332; Derkachov,
Manashov, “R-matrix and baxter Q-
operators for the noncompact SL(N,C)
invariant spin chain”, nlin/0612003;
Derkachov, Manashov, “Noncompact
sl(N) spin chains: BGG-resolution,
Q-operators and alternating sum
representation for �nite dimensional
transfer matrices”, 1008.4734;
Derkachov, Manashov, “Factor-
ization of R-matrix and Baxter
Q-operators for generic sl(N) spin
chains”, 0809.2050; and Kazakov,
Leurent, Tsuboi, “Baxter’s Q-operators
and operatorial Backlund �ow for
quantum (super)-spin chains”,
1010.4022

The discussion here is only meant as a brief introduction; we will revisit most
of the ideas discussed here in the next chapters, where we investigate the Q-
operators for supersymmetric non-compact spin chains, in particular those of
N =4 SYM.

http://xxx.lanl.gov/abs/1510.02100
http://xxx.lanl.gov/abs/1010.3699
http://xxx.lanl.gov/abs/1012.6021
http://xxx.lanl.gov/abs/1112.3600
http://xxx.lanl.gov/abs/1509.04867
http://xxx.lanl.gov/abs/1504.04501
http://xxx.lanl.gov/abs/1207.4513
http://xxx.lanl.gov/abs/hep-th/0610332
http://xxx.lanl.gov/abs/nlin/0612003
http://xxx.lanl.gov/abs/1008.4734
http://xxx.lanl.gov/abs/0809.2050
http://xxx.lanl.gov/abs/1010.4022
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Q-operators for non-

compact super spin chains

This chapter is based on
the author’s publication
Frassek, Marboe, Meidinger, “Eval-
uation of the operatorial Q-system
for non-compact super spin chains”,
1706.02320.

We have seen that the integrable model behind N = 4 SYM can be described
by a Q-system at finite coupling, and that at least for spin chain models, such
Q-systems exist in operatorial form. Although there are many works on a vari-
ety of cases, the Q-operators of non-compact supersymmetric spin chains have
not been investigated in detail. In this chapter we describe these operators for
non-compact representations of Jordan-Schwinger type, the prime example of
which is N =4 SYM at weak coupling, as discussed in section 12.1. We first give
a derivation of the relevant Lax operators in section 13.1, starting from a Yang-
Baxter equation they solve.1 These Lax operators allow to define Q-operators 1 A more general case of these Lax

operators can be found in Frassek,
“Q-operators, Yangian invariance
and the quantum inverse scattering
method”, PhD thesis, Humboldt
University Berlin, 2014, 1412.3339,
which follows from an unpublished
derivation by R. Frassek, T. Łukowski,
C. Meneghelli and M. Staudacher.

satisfying the functional relations of the Q-system, which we describe in sec-
tion 13.2. All these constructions only depend on the symmetry algebra of the
model, and make no reference to the representation in the quantum space. In
section 13.3 we show how to specialize to the infinite-dimensional unitary rep-
resentations of the non-compact algebras up,q|r+s of oscillator type. Concretely
evaluating the Q-operators for these representations is difficult, since the matrix
elements involve many infinite sums over the state spaces of the representation.
To showcase these difficulties and to motivate the methods we will develop in
the next chapter, we consider spin −s Heisenberg spin chains in section 13.4. Fi-
nally, many of the properties of such non-compact Q-systems, such as the analytic
structure of the operators in terms of the spectral parameter, can be understood
on general grounds; we provide an overview in section 13.5.

http://xxx.lanl.gov/abs/1706.02320
http://xxx.lanl.gov/abs/1412.3339
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13.1 Lax operators for the Q-system from
Yang-Baxter equations

In this section we derive the Lax operators which allow to construct the Q-
operators of glN |M spin chains with representations realized via Schwinger os-
cillators as traces of monodromy matrices, similar to the example considered
in section 12.3. The derivation closely follows the bosonic case in Frassek et al.
(2013)2 but incorporates the supersymmetric Lax matrices derived in Frassek2 Frassek, Łukowski, Meneghelli,

Staudacher, “Baxter Operators and
Hamiltonians for ‘nearly all’ Integrable
Closed gl(n) Spin Chains”, 1112.3600

et al. (2011).3 The more general derivation of the Lax operators for generalized

3 Frassek, Łukowski, Meneghelli,
Staudacher, “Oscillator Construction
of su(n|m) Q-Operators”, 1012.6021

rectangular representations is unpublished,4 but expressions for the resulting

4 Frassek, Łukowski, Meneghelli,
Staudacher, “unpublished”

operators can be found in Frassek (2014).5 We will see however that the Lax

5 Frassek, “Q-operators, Yangian
invariance and the quantum inverse
scattering method”, PhD thesis,
Humboldt University Berlin, 2014,
1412.3339

operators take a particularly simple form for the type of representations we con-
sider.

The basis of the derivation is a Yang-Baxter equation involving three repre-
sentations: the oscillator representation that will constitute the physical space of
the spin chain model Vphys, the fundamental representation V�, and a Fock space
of auxiliary oscillators Vosc, similar to the example of the Heisenberg spin chain
discussed in section 12.3. The operators we want to define intertwine Vphys and
Vosc, and we therefore need the Lax operators which intertwine the other pairs
of representations, in order to solve the Yang-Baxter equation for the operators
of interest.

The Lax operators intertwining arbitrary representations of glN |M with V�,
which already played a key role in Part II of this thesis, see (7.13), were intro-
duced by Kulish (1986)6 and are given by6 Kulish, “Integrable graded magnets”,

J. Sov. Math. 35 (1986) 2648–2662,
[Zap. Nauchn. Semin.145,140(1985)]

L (z) = z +
N+M
∑

a,b=1

(−1)|b|eabEba . (13.1)

Here the indices take the values a, b = 1, . . . , N+M while |a| denotes the grading
|fermion|= 1 and |boson|= 0. The glN |M generators Eab satisfy the commutation
relations

[Eab, Ecd] = δbc Ead − (−1)(|a|+|b|)(|c|+|d|)δdaEcb , (13.2)

where we defined the graded commutator as [X , Y ] = X Y − (−1)|X ||Y |Y X . The
generators eab in (13.1) denote the defining fundamental generators of glN |M
satisfying eabecd = δbcead . In the following we restrict to realizations in terms of
Schwinger oscillators, acting on Vphys

Eab = χ̄ aχ b , (13.3)

where [χ a, χ̄ b] = δab. Note that these Lax operators are the same as those con-
sidered in chapter 7, defining the Yangian of glN |M .

Q-operators with the defining representation of glN |M at each site (the so-
called quantum space) are based on another set of Lax operators intertwining
Vosc and V�, which were derived in Frassek et al. (2011), and are given by

LI(z) =

�

(z − sI)δab − (−1)|b|ξ̄aāξāb ξ̄ab̄

−(−1)|b|ξāb δā b̄

�

. (13.4)

http://xxx.lanl.gov/abs/1112.3600
http://xxx.lanl.gov/abs/1012.6021
http://xxx.lanl.gov/abs/1412.3339
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Here we sum over repeated indices. There are 2N+M such Lax operators labeled
by the subset I ⊆ {1, . . . , N +M}. The indices without a bar take values a, b ∈ I
while the barred ones take values in its complement, ā, b̄ ∈ Ī . The (N |M)×(N |M)
matrix in (13.4) is written in terms of the sub-blocks under this decomposition.7 7 We remark that quantities labeled

by the set I depend on the partition
I ∪ Ī = {1, · · · , N + M}. We leave the
dependence on this “full set” implicit.

The shift sI in the spectral parameter z is introduced for convenience and reads

sI =

∑

ā∈ Ī(−1)|ā|

2
. (13.5)

The oscillators (ξāa, ξ̄aā) satisfy the graded Heisenberg algebra

[ξāa, ξ̄bb̄] = ξāaξ̄bb̄ − (−1)(|a|+|ā|)(|b|+|b̄|)ξ̄bb̄ξāa = δabδā b̄ . (13.6)

We can now write down the defining Yang-Baxter equation for the Lax op-
erators RI which are the building blocks for Q-operators when the sites of the
quantum space are in the representation space Vsh. As in the bosonic case8 this 8 Frassek, Łukowski, Meneghelli,

Staudacher, “Baxter Operators and
Hamiltonians for ‘nearly all’ Integrable
Closed gl(n) Spin Chains”, 1112.3600

relation is given by

L (x − y) LI(x)RI(y) =RI(y) LI(x)L (x − y) . (13.7)

The R-operators were obtained by R. Frassek, T. Łukowski, C. Meneghelli and
M. Staudacher, and can be found in Frassek (2014).9 The derivation follows 9 Frassek, “Q-operators, Yangian

invariance and the quantum inverse
scattering method”, PhD thesis,
Humboldt University Berlin, 2014,
1412.3339

Meneghelli (2011); Frassek et al. (2013)10 and, as we will discuss in the follow-

10 Meneghelli, “Superconformal Gauge
Theory, Yangian Symmetry and
Baxter’s Q-Operator”, PhD thesis,
Humboldt University Berlin, 2011;
and Frassek, Łukowski, Meneghelli,
Staudacher, “Baxter Operators and
Hamiltonians for ‘nearly all’ Integrable
Closed gl(n) Spin Chains”, 1112.3600

ing, simplifies significantly in the case which we are interested in. As for glN one
takes a factorized Ansatz,

RI(z) = e(−1)|c|+|c||c̄|ξ̄cc̄ Ecc̄ R I
0(z) e−(−1)|d||d̄|+|d|+|d̄|ξd̄d Ed̄d . (13.8)

This turns the Yang-Baxter equation (13.7) into a difference equation for the mid-
dle partR I

0(z). The solution to the difference equation simplifies significantly for
the choice of generators (13.3). Specifically, one finds thatR I

0(z) can be written
in terms of a single Gamma function which only depends on a subset of the
quantum space oscillators

R I
0(z) = ρI(z) Γ (z + 1− sI − χ̄ āχ ā) . (13.9)

Here ρI denotes a normalization not fixed by the Yang-Baxter equation (13.7).
As we will see a good choice for it is given by

ρI(z) =
1

Γ (z + 1− sI − c)
, (13.10)

which depends on the central charge c that can be expressed in terms of the
number operators Na = χ̄ aχ a as

c=
N+M
∑

a=1

Na . (13.11)

We conclude that

RI(z) = e(−1)|c|+|c||c̄|ξ̄cc̄ χ̄ cχ c̄
Γ (z + 1− sI − χ̄ āχ ā)
Γ (z + 1− sI − c)

e−(−1)|d||d̄|+|d|+|d̄|ξd̄d χ̄ d̄χd (13.12)

solves the Yang-Baxter equation in (13.7). The normalization (13.10) ensures
that for the empty set R∅(z) = 1, and renders RI(z) a polynomial in z for com-
pact representations. As we will see now, these properties are inherited by the
Q-operators.

http://xxx.lanl.gov/abs/1112.3600
http://xxx.lanl.gov/abs/1412.3339
http://xxx.lanl.gov/abs/1112.3600
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13.2 Monodromy construction of Q-operators

We can now construct Q-operators as traces over monodromy matrices which are
products of the R-operators. For glN |M invariant spin chains in the fundamental
representation, these Q-operators were introduced in Frassek et al. (2011),1111 Frassek, Łukowski, Meneghelli,

Staudacher, “Oscillator Construction
of su(n|m) Q-Operators”, 1012.6021

using the Lax operators LI(z) defined in (13.4). We are interested in more general
representations of oscillators type, cf. (13.3). However, the construction of the
Q-operators and the functional relations among them are independent of the
representation in the quantum space.12 We therefore define the operators as12 Frassek, Łukowski, Meneghelli,

Staudacher, “Baxter Operators and
Hamiltonians for ‘nearly all’ Integrable
Closed gl(n) Spin Chains”, 1112.3600 QI(z) = eiz

∑

a∈I (−1)|a|φa
cstrMI(z) . (13.13)

Here the monodromyMI is built from the tensor product of the R-operators in
(13.12) in the space of oscillators (χ , χ̄) and multiplication in the auxiliary space
of oscillators (ξ, ξ̄) as

MI(z) =R
[1]
I (z)⊗R

[2]
I (z)⊗ . . .⊗R [L]I (z) . (13.14)

The normalized supertrace cstr is defined by

cstr X =
str e−i

∑

a,b(φa−φb)Nab X

str e−i
∑

a,b(φa−φb)Nab
, (13.15)

where str denote the ordinary supertrace over the auxiliary Fock space spanned
by the states generated by the operators ξ̄aā acting on the Fock vacuum which
satisfies ξāa |0〉= 0. These states are labeled by the values of the number opera-
tors

Nab = ξ̄abξba , (13.16)

where no summation over the indices a and b is implied. The twist parameters
φa can be interpreted as Aharonov-Bohm phases and break the glN |M invariance
down to its diagonal subalgebra. They are required for the convergence of the
supertraces, and by breaking the symmetry, they prevent diverging Q-functions
for descendant states. Note that a regularization procedure is needed to make
some of the traces converge, even in the presence of twists; one can use an iε
prescription for the twist phases, such that Re

�

exp(−i
∑

a,b(φa −φb))
�

< 1, see
Bazhanov et al. (2011).1313 Bazhanov, Frassek, Łukowski,

Meneghelli, Staudacher, “Baxter
Q-Operators and Representations of
Yangians”, 1010.3699

As a consequence of the Yang-Baxter equation (13.7), the Q-operators defined
in (13.13) commute with the transfer matrix built from the Lax operators L
realized via (13.3), and with each other, [QI(z),QI ′(z′)] = 0. Depending on the
grading the Q-operators satisfy either the bosonic QQ-relations

∆abQI∪{a,b}QI = Q+I∪{a}Q
−
I∪{b} −Q−I∪{a}Q

+
I∪{b} , (13.17)

if |a|= |b|= 0 or |a|= |b|= 1 or the fermionic QQ-relations

∆abQI∪{a}QI∪{b} = Q+I∪{a,b}Q
−
I −Q−I∪{a,b}Q

+
I , (13.18)

http://xxx.lanl.gov/abs/1012.6021
http://xxx.lanl.gov/abs/1112.3600
http://xxx.lanl.gov/abs/1010.3699
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whenever |a| 6= |b|. Here we used the notation Q± = Q(z ± 1
2 ) and defined the

trigonometric prefactor

∆ab = (−1)|a|2i sin
�

φa −φb

2

�

. (13.19)

The set of all Q-operators can be visualized on a hypercubic Hasse diagram, as
discussed in section 12.2. The relations (13.17) and (13.18) then constrain the
operators on each quadrilateral of this diagram.

It is straightforward to compute the Q-operators for the empty set I =∅ and
the full set I = {1, . . . , N+M}=∅. Explicitly, using the normalization in (13.10),
one finds

Q∅(z) = 1 , Q∅(z) =
�

Γ (z + 1)
Γ (z + 1− c)

�L

, (13.20)

where we imposed the constraint

N+M
∑

a=1

(−1)|a|φa = 0 . (13.21)

This relation is needed for Q∅ to be a rational function of the spectral parameter.
Note that in the case of glN |N , one has the additional constraint

∑2N
a=1φa = 0.

Aside: di�erent normalizations

Before we continue our investigation of operatorial Q-systems, we briefly want
to discuss different conventions for the functional relations of Q-operators and
twisted Q-functions which have been used in the literature, with the aim of facil-
itating comparisons between the oscillator construction of Q-operators and the
literature on the Quantum Spectral Curve. These forms of the functional rela-
tions follow from different choices for the normalization of the Q-operators. To
make the notation more compact, the twists will be parametrized by τa = e−iφa .

In this work, we use the normalization that is typically employed in the lit-
erature on the oscillator construction of Q-operators. The operators are defined
as in (13.13), and the normalization can be written as

∏

a∈I τ
−(−1)|a|z
a . The func-

tional equations were just given in (13.17) and (13.18), with∆ab = (−1)|a| τb−τap
τaτb

in terms of the variables τa. Note that this normalization is compatible with in-
dexing the operators by sets (which is natural for the oscillator construction),
since it does not impose an ordering of the glN |M indices. Other possible choices
induce such an ordering. This can be reflected by indexing the Q-operators with
antisymmetric multi-indices, as we did in section 12.2; here we will instead la-
bel the Q-operators with sets, and keep track of the ordering in the functional
relations.

One possibility, described for example in Kazakov et al. (2016)14 on the eigen- 14 Kazakov, Leurent, Volin, “T-system
on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100

value level, uses Q-operators without exponential scaling factors:

QI(z) =
∏

a,b∈I
a<b

(τa −τb)
(−1)|a|+|b|

cstrMI(z) , (13.22)

http://xxx.lanl.gov/abs/1510.02100
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which gives functional relations

QI∪{a,b}QI = τQ+I∪{a}Q
−
I∪{b} − τ̃Q−I∪{a}Q

+
I∪{b} |a|= |b|

QI∪{a}QI∪{b} = τQ+I∪{a,b}Q
−
I − τ̃Q−I∪{a,b}Q

−
I |a| 6= |b|

(13.23)

where τ= τa and τ̃= τb if a < b or τ= τb and τ̃= τa if b < a.
Another relevant normalization is given by

QI(z) =
∏

a∈I

τ(−1)|a|(z+sI )
a

∏

a,b∈I
a<b

(τa −τb)
(−1)|a|+|b|

cstrMI(z) . (13.24)

Here the shift sI is defined in (13.5). The functional relations for these operators
are identical to those of untwisted Q-functions:

QI∪{a,b}QI = Q+I∪{a}Q
−
I∪{b} −Q−I∪{a}Q

+
I∪{b} |a|= |b|

QI∪{a}QI∪{b} = Q+I∪{a,b}Q
−
I −Q−I∪{a,b}Q

−
I |a| 6= |b|

(13.25)

In the first equation, we have to assume that a < b if |a| = |b| = 0, or b < a if
|a|= |b|= 1; otherwise, the left hand side changes its sign.

13.3 Non-compact representations

So far we did not specify a representation in the quantum space. Most of our
derivations will be independent of the concrete representation, but calculations
of explicit matrix elements of course require a concrete knowledge of the repre-
sentation space. Here we show how to apply our construction to unitary repre-
sentations of up,q|r+s of oscillator type which were first investigated in Bars and
Günaydin (1983).15 To specialize to a real form of the algebra, we have to indi-15 Bars, Günaydin, “Unitary Representa-

tions of Noncompact Supergroups”,
Commun. Math. Phys. 91 (1983) 31

cate, in addition to the grading |a| = 0,1, which directions have opposite sign
under conjugation. This can be realized via a particle-hole transformation. We
indicate these using the variables

ωa =

(

+1 if oscillator a is not transformed

−1 if oscillator a is transformed
. (13.26)

Then the generators Eab = χ̄ aχ b can be realized by the oscillators

(χ a, χ̄ a) =























(aa, āa) for |a|= 0 and ωa = +1

(b̄a,−ba) for |a|= 0 and ωa = −1

(ca, c̄a) for |a|= 1 and ωa = +1

(d̄a,da) for |a|= 1 and ωa = −1

. (13.27)

These oscillators act on a Fock space with a vacuum state satisfying aa |0〉 =
ba |0〉= ca |0〉= da |0〉= 0, such that an orthonormal basis is given by

|m〉= |m1, . . . , mK〉=

( ā1

b̄1
c̄1

d̄1

)m1

p

m1!
· · ·

( āK

b̄K
c̄K

d̄K

)mK

p

mK !
|0, . . . , 0〉 , (13.28)
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with K = N+M = p+q+r+s. Since the oscillators obey the standard conjugation
a† = ā, b† = b̄, c† = c̄ and d† = d̄, the generators are those of up,q|r+s, satisfying

E†
ab =ω

1+|a|
a ω

1+|b|
b Eba . (13.29)

Finally, the Fock space contains a series of representations labeled by the
central charge c =

∑

a Na where the number operators have to be expressed in
terms of oscillators a, b, c and d via (13.27). These representations are of highest-
or lowest-weight type depending on the order of the different types of oscillators.
The representation introduced in section 12.1 for the composite operators of
N = 4 SYM is precisely of this type, and we will specialize our construction in
chapter 15.

13.4 Case study: spin −s Heisenberg models

In the next chapter, we will show how the Q-operators we just defined can be
evaluated, i.e. how their matrix elements can be calculated. For compact repre-
sentations this is in principle straightforward, but quickly becomes complicated
due to a combinatorial explosion of the number of terms in theR-operators’s ma-
trix elements. For non-compact representations it is not at all obvious how to do
this, since the matrix elements in general involve many infinite sums. To give the
reader a preliminary idea of how such calculations can be done, we discuss the
spin −s Heisenberg models, include for example the spin −1 model appearing in
QCD in the Regge limit.16 These models constitute the simplest non-trivial case 16 References regarding this model can

be found in section 11.3, where it
appeared in relation to Graßmannian
integrals.

which can be treated by the more general method presented in the next chapter.
While the formula for the Lax operators (13.12) is extremely compact, it is

rather inconvenient for practical purposes where the matrix elements of the Lax
operators and Q-operators are of interest. In particular, for non-compact repre-
sentations we encounter infinite sums. To understand this problem we consider
the R-operators (13.12) which for the case of gl2 are given by

R{a}(z) = eξ̄aā Eaā
Γ (z + 1

2 − Eāā)

Γ (z + 1
2 − c)

e−ξāa Eāa , (13.30)

where I ⊆ {1,2}. For infinite-dimensional representations the Lax operator con-
tains two infinite sums emerging from the exponential functions. Using the al-
gebraic relations in (13.2) we note that the Lax operators can be rewritten as

R{a}(z) =
+∞
∑

n=−∞
(ξ̄aāEaā)

Θ(+n)|n|M{a}(z)(−ξāaEāa)
Θ(−n)|n| , (13.31)

with Θ(−m) = Θ(0) = 0 and Θ(m) = 1 for m ∈ N+. The middle part is given by
an infinite sum and only depends on the Cartan elements

M{a}(z) =
1
|n|!
Γ (z + 1

2 − Eāā)

Γ (z + 1
2 − c)

3F2(Eāā−λ1, Eāā−λ2+1,−Naā; 1+|n|, Eāā+
1
2
−z; 1) ,

(13.32)
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with the gl2 weights λ1 and λ2.1717 Note that in the rank 1 case the
reformulation (13.31) with (13.32) is
also valid for representations that are
not of Jordan-Schwinger type.

We are interested in highest-weight representations of the type discussed in
section 13.3. To describe non-compact spin chains with spin −s, where s is a pos-
itive half integer, we take the Jordan-Schwinger realization (13.3) and perform
a particle-hole transformation on the oscillators of type 1:

(χ̄1,χ1)→ (−b, b̄) , (χ̄2,χ2)→ (ā,a) . (13.33)

For convenience we use a notation different from the rest of this and the next
chapters and label the states in the spin −s representation as

|m〉s = |2s− 1+m, m〉 , (13.34)

cf. (13.28). The highest-weight state |0〉s then satisfies

E12|0〉s = 0 , E11|0〉s = −2s|0〉s , E22|0〉s = 0 , (13.35)

and the other states of the representation can be generated from this state by
acting with the operator E21. The representation has the gl2 weights λ1 = −2s
and λ2 = 0, and the central charge takes the value c|m〉s = −2s|m〉s.

Our goal is to obtain the matrix elements of theR-operators in (13.30). From
(13.20) we find that R∅(z) = 1 and R∅(z) =

1
(z+1)2s

, where the Pochhammer
symbol is defined by (a)n := Γ (a+ n)/Γ (a) in terms of Gamma functions.18 It is18 In the following we will sometimes

consider Pochhammer symbols where
a can be a negative integer. In this
case we de�ne the symbol using the
identity Γ (a+n)

Γ (a) = (−1)n Γ (1−a)
Γ (1−a−n) ,

which follows from Euler’s re�ection
formula.

rather straightforward to obtain the matrix elements of R{2}. They are polyno-
mials in the spectral parameter z and can be obtained noting that the series rep-
resentation of the hypergeometric function in (13.32) truncates, due to Gamma
functions in the denominator with negative integer arguments. One finds

s〈m̃|R{2}(z)|m〉s =

√

√max(m, m̃)!
min(m, m̃)!

max(2s− 1+m, 2s− 1+ m̃)!
min(2s− 1+m, 2s− 1+ m̃)!

× ξ̄Θ(m̃−m)|m̃−m|
21 M{2}(z,N21, |m− m̃|,min(m, m̃)) ξΘ(m−m̃)|m−m̃|

12 ,

(13.36)

with the middle part which is diagonal in the auxiliary space

M{2}(z,N21, k, l) = (2s− 1+ l)!
l
∑

p=0

�

l
p

� (N21 + 1+ p− l)l−p(z +
1
2 + 2s)p

(2s− 1+ p)!(k+ l − p)!
.

(13.37)

Here Θ(−m) = Θ(0) = 0 and Θ(m) = 1 for m ∈ N+.
However, as already noted in Frassek et al. (2013)19 the operatorR{1} yields19 Frassek, Łukowski, Meneghelli,

Staudacher, “Baxter Operators and
Hamiltonians for ‘nearly all’ Integrable
Closed gl(n) Spin Chains”, 1112.3600

infinite sums when evaluated naively, since there are only raising operators act-
ing on the states, cf. (13.30). This makes it difficult to evaluate its matrix ele-
ments concretely in terms of rational functions. Nevertheless, as we will show
in section 14.2, using the integral representation of the hypergeometric function
and the Euler transformation the matrix elements can be obtained from (13.31)

http://xxx.lanl.gov/abs/1112.3600
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and written as

s〈m̃|R{1}(z)|m〉s =

√

√max(m, m̃)!
min(m, m̃)!

max(2s− 1+m, 2s− 1+ m̃)!
min(2s− 1+m, 2s− 1+ m̃)!

× (−ξ̄12)
Θ(m−m̃)|m−m̃|M{1}(z,N12, |m− m̃|,max(m, m̃))(−ξ21)

Θ(m̃−m)|m̃−m| ,

(13.38)

with the middle part taking the simple form

M{1}(z,N12, k, l) =
M{2}(z,N12, k, l − k)

(z −N12 − l + 1
2 )2l−k+2s

. (13.39)

We see that also this non-polynomial R-operator can be written in a very com-
pact form and observe that the resulting expression is very similar to the polyno-
mial R-operator. In particular, both are simple rational functions of the spectral
parameter and the auxiliary oscillators. The only difference is the dependence
on the auxiliary space number operators in the denominator. This has important
consequences for the analytic structure of the resulting Q-operators.

The matrix elements of the corresponding Q-operators (13.13) can now be
derived as

s〈m̃|Q{a}(z)|m〉s = eizφa
btr s〈m̃1|R{a}(z)|m1〉s · · · s〈m̃L|R{a}(z)|mL〉s . (13.40)

The advantage of first evaluating the R-operators in the quantum space and
subsequently taking the trace in the auxiliary space is that we can restrict to
individual magnon sectors with M =

∑L
i=1 mi =

∑L
i=1 m̃i . For each such sector,

the Q-operators can then be realized as matrices of finite size. As we will show
in Section 14.3, the matrix elements of the Q-operators corresponding to the
R-operators with non-truncating sums are non-rational functions and can be
written in terms of the Lerch transcendent (Lerch zeta-function) defined as

Φτ` (z) =
∞
∑

k=0

τk

(k+ z)`
. (13.41)

To give the reader an impression of the resulting Q-functions we consider
the concrete case of a spin chain with spin − 1

2 . For small length L and magnon
number M we can diagonalize the Q-operators resulting from the monodromy
construction directly. For the case L = 2 and M = 0,1, 2 one easily obtains ex-
plicit though rather lengthy expressions for the eigenvalues and eigenvectors.
Due to the constraint (13.21), there is only one independent twist parameter
with φ1 = −φ2. For small values of φ1 the eigenvalues corresponding to the
highest-weight states of the untwisted spin chain are given by:

M Q{1}(z) Q{2}(z)

0 2iφ1

�

ψ′(−z − 1
2 )
�

+O (φ2
1) 1

1 2iφ1 × (−4)×
�

1+ (z + 1)ψ′(−z − 1
2)
�

+O (φ2
1) (z + 1) + O (φ1)

2 2iφ1 × 9×
�

(z + 1) + (z2 + 2z + 13
12 )ψ

′(−z − 1
2)
�

+O (φ2
1) (z2 + 2z + 13

12 ) + O (φ1)
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Here the non-polynomial Q-functions are expressed in terms of the Polygamma
function ψ′(z) = Φ1

2(z). We observe that for fixed M , the prefactors of these
functions in Q{1} are given by the functions Q{2}, which are known in closed form
and given by Hahn polynomials.20 Expanding the factor ∆12 = 2iφ1 +O (φ3

1) in20 Korchemsky, “Quasiclassical QCD
pomeron”, hep-th/9508025; and
Eden, Staudacher, “Integrability and
transcendentality”, hep-th/0603157

the functional relation (13.17), we see that the functions 1
2iφ1

Q{1}(z) and Q{2}(z)
satisfy the functional relations of the untwisted spin chain, where the factor ∆12

is not present.

13.5 Overview of non-compact Q-systems

Just as for the spin −s models with u1,1 symmetry we have just discussed, the
Q-operators of spin chains with non-compact representations come in two types:
they are either rational functions of the spectral parameter, or can be written in
terms of functions with infinite ladders of poles, such as the Lerch transcendent
(13.41), or generalizations of this function.

This analytic structure directly follows from the Lax operators given in (13.12).
These operators naturally decompose into three factors, with exponentials acting
on the left and on the right, and a diagonal part in terms of Gamma functions. As
discussed for the spin−s models, this elegant expression behaves very differently
for R-operators corresponding to the non-rational Q-operators of non-compact
models. In this case, some of the oscillators are particle-hole transformed as in
equation (13.27), and some of the exponentials appearing on the right (left)
in the R-operators (13.12) have only creation (annihilation) operators in the
quantum space. Therefore the exponentials do not truncate to finite sums, and
one has to sum over an infinite tower of states.21 These infinite sums result in21 Note that at this stage we do not

consider the auxiliary space. Later
on when evaluating Q-operators we
will take the trace over the in�nite-
dimensional Fock space, see (13.13),
but these in�nite sums are actually
relatively easy to compute.

rational expression for the matrix elements of the respectiveR-operators, which
contain both the spectral parameter as well as auxiliary space operators in the
denominator, and lead to the special functions discussed above after taking the
supertrace over the auxiliary space.

Before discussing how to perform such computations, we can use the struc-
ture of the Lax operators (13.12) for the non-compact oscillator representations
(13.27), to give a survey of the Q-system of non-compact up,q|r+s models. These
Q-systems contain a total number of 2p+q+r+s Q-operators built from the oper-
ators RI with I ⊆ {1, . . . , p + q + r + s}. Each level labeled by k = |I | contains
�p+q+r+s

k

�

Q-operators. Interestingly, for only 2r+s(2p + 2q) of all Q-operators all
exponentials in the R-operators as given in (13.12) truncate. This can be seen
from the action of the exponentials on the states defined in (13.28).

http://xxx.lanl.gov/abs/hep-th/9508025
http://xxx.lanl.gov/abs/hep-th/0603157
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(0,0, 0) (0, q, 0)

(p, 0, 0)

(p, q, r + s)

a

b

c,
d

Figure 13.1: Distribution of rational
and non-rational Q-operators for
up,q|r+s . We show a projection of the
Hasse diagram with Q-operators on
the lattice point (i, j, k). Rational
Q-operators are marked with circle
and non-rational ones with a cross.

This structure is visualized on a projection of the Hasse diagram in figure 13.1.
In this diagram, each lattice point (i, j, k) represents the

�p
i

��q
j

��r+s
k

�

Q-operators
with an index set including i bosonic indices which are not particle-holed trans-
formed according to (13.27), j bosonic indices which are transformed, and k fer-
mionic indices. Because of the nilpotency of the corresponding generators, the
fermionic degrees of freedom do not change the truncating or non-truncating na-
ture of the R-operators. Therefore one finds that an R-operator RI has matrix
elements with truncating sums if:

• I does not contain any indices corresponding to bosonic oscillators that are
particle-hole transformed.

• I contains all indices corresponding to bosonic oscillators that are not particle-
hole transformed.

Consequently, the rational Q-operators are those on the lattice sites (i, 0, k) and
(p, j, k). TheR-operators for the remaining non-rational Q-operators as given in
equation (13.12) have j(p− i) pairs of exponentials which do not truncate.

For the lowest level, theseR-operators have only p pairs of infinite sums, and
in the next chapter we will derive different representations of these operators,
that are simpler to evaluate, without calculating infinite sums. These operators
are then sufficient to determine the whole Q-system.





14
Evaluating Q-operators

This chapter is based on
the author’s publication
Frassek, Marboe, Meidinger, “Eval-
uation of the operatorial Q-system
for non-compact super spin chains”,
1706.02320.

In section 13.5 we have seen that the majority of Q-operators for non-compact
spin chains with up,r|r+s symmetry are non-rational, and given in terms of func-
tions with infinite ladders of poles. On the level of their constituent Lax operators,
this analytic structure manifests itself in the appearance of infinite sums over in-
termediate states. These sums make it difficult to evaluate the Q-operators, i.e.
to calculate explicit matrix elements, or even to see the analytic structure from
first principles. For higher rank algebras, such as u2,2|4 in the case of the N =4
SYM spin chain at one-loop, even the rational Q-operators result in rather com-
plicated expression for the matrix elements, and the evaluation of their Lax op-
erators poses combinatorial difficulties, due to the large number of terms, most
of which do not contribute to a given matrix element.

In this chapter, we want to show how to concretely evaluate such operatorial
Q-systems for non-compact super spin chains, in terms of finite matrices for each
magnon sector. This strategy exploits the block diagonal form of the Q-operators,
and circumvents the problems posed by the infinite dimensional state space of
these spin chains, based on the derivation of novel representations for the R-
operators which are easier to evaluate, and on the functional relations of the
Q-system, that allow to focus on a subset of Q-operators.

We first describe a representation of the R-operators which does not feature
exponential functions of raising and lowering operators in section 14.1. This
representation already solves much of the combinatorial difficulties, and allows
to deduce the matrix elements for the polynomial cases. For the other opera-
tors, there are still infinite sums. In section 14.2 we derive a compact integral
representation for the R-operators of the lowest level involving hypergeomet-
ric functions, which facilitates practical calculations, and directly allows to write
down formulas involving only finite sums. Using these results to efficiently cal-
culate matrix elements of the lowest level R-operators, we then show how to
determine the entire operatorial Q-system in section 14.3. We first determine
the matrix elements of the lowest level Q-operators in each magnon block, i.e.
for each set of states with the same number of oscillator excitations, by calculat-
ing the necessary supertraces. Since these matrices are of finite size, we can use
the functional relations to determine the other Q-operators in a computationally
efficient way. Finally, section 14.4 collects some results on finite sum representa-

http://xxx.lanl.gov/abs/1706.02320
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tions for the R-operators of higher levels. While we found that calculating the
lowest level and then bootstrapping the Q-system is very efficient for practical
calculations, the Lax operators for higher levels are still of theoretical interest. In
particular we show that the problem quickly becomes very difficult, since opera-
tors involving more infinite sums require rather obscure identities to be written
as finite sums.

Throughout this chapter, we aim to be explicit as possible, and provide all
formulas necessary to calculate all Q-operators for up,q|r+s invariant spin chains
in arbitrary representations of Jordan-Schwinger form, in particular for N = 4
SYM at one loop. This allows to fully automatize these calculations in computer
algebra systems.11 We implemented our method in

a Mathematica program which is
available on request.

14.1 Ladder decomposition of R-operators

As a first step towards a representation of theR-operators which allows to under-
stand the structure of their matrix elements, we can write R-operators (13.12)
without exponentials. Since the factors in these exponentials appear often in the
following derivations, we define abbreviations for them:

Yaā = (−1)|a|+|ā||a|ξ̄aāχ̄ aχ ā , Xaā = (−1)|ā|+|a|+|ā||a|ξāaχ̄ āχ a . (14.1)

The main idea is to expand the exponentials and to combine terms with the same
difference in the powers of the matching factors Xaā and Yaā in the exponents. This
can be done using the formula

eYaā f (Na,Nā)e
−Xaā =

+∞
∑

n=−∞
(Yaā)

Θ(n)|n|
∞
∑

k=0

(−1)kY k
aāX k

aā

k!(|n|+ k)!
f (Na − k,Nā + k)(−Xaā)

Θ(−n)|n| (14.2)

where Θ(−m) = Θ(0) = 0 and Θ(m) = 1 for m ∈ N+. Using the identities

χ̄ k
aχ

k
a =

Γ (1+Na)
Γ (1+Na − k)

, χ k
aχ̄

k
a = (−1)k|a|

Γ (Na + k+ (−1)|a|)
Γ (Na + (−1)|a|)

, (14.3)

we can express the factor Y k
aāX k

aā as

Y k
aāX k

aā = (−1)|a|+|ā|
Γ (1+Naā)
Γ (1+Naā − k)

Γ (1+Na)
Γ (1+Na − k)

Γ (Nā + k+ (−1)|ā|)
Γ (Nā + (−1)|ā|)

. (14.4)

Applying equation (14.2) together with (14.4) to the R-operator defined in
(13.12), we find

RI(z) =
∞
∑

{naā}=−∞

�

∏

a, ā

(Yaā)
Θ(naā)|naā |

�

MI(z)

�

∏

a, ā

(−Xaā)
Θ(−naā)|naā |

�

, (14.5)
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where the diagonal part is given by

MI(z) =
∞
∑

{kaā}=0

�

∏

a,ā

(−1)(|a|+|ā|+1)kaā

Γ (kaā + 1)Γ (|naā|+ kaā + 1)
Γ (1+Naā)

Γ (1+Naā − kaā)

�

�

∏

a

Γ (1+Na)
Γ (1+Na −

∑

ā kaā)

�

�

∏

ā

Γ (Nā + (−1)|ā| +
∑

a kaā)
Γ (Nā + (−1)|ā|)

�

Γ (z + 1− sI −
∑

ā Nā −
∑

a,ā kaā)

Γ (z + 1− sI − c)
.

(14.6)

The advantage of this representation is the fact that only a minimal number of
raising and lowering operators remains. Note that for any matrix element of
(14.2), only finitely many terms of the outer sums over the variables naā con-
tribute, since the difference in occupation numbers between the bra and the ket
state determine the possible powers of the Xaā and Yaā. In this sense, we call
(14.5) a ladder decomposition, with (14.6) giving the diagonal contribution to
the R-operator. Note that this representation – compared to naively expressing
the exponentials by their power series – already removes half of the sums. In par-
ticular, it removes a lot of combinatorial complexity, as there are no cross terms
which vanish for a given matrix element.

So far we have not discussed the spectrum of the number operators. We im-
plicitly assume that these operators act on a Hilbert space as given in (13.28).
The spectrum of the Na then depends on whether the corresponding oscillator is
particle-hole transformed, cf. (13.27). Depending on this spectrum, the remain-
ing inner sums over the variables kaā are infinite or not. Comparing with the clas-
sification of Q-operators as rational or non-rational as discussed in section 13.5,
we see that the Gamma functions in the denominator of (14.6) effectively trun-
cate all sums for the Lax operators of rational Q-operators. For the other Lax
operators, a sufficient number of operators Na have a negative spectrum, such
that at least some sums remain infinite. In the following, we will transform (14.6)
into a representation where the infinite sums are evaluated.

14.2 Lowest level R-operators for oscillator
representations of up,q |r+s

For the R-operators corresponding to non-rational Q-operators, some of the
sums in equation (14.6) are still infinite. The operators of the lowest level, with
an index set I = {a} containing just a single element, in general have the small-
est number of such sums, and the outer sums over the variables naā in (14.5)
are completely fixed by the occupation numbers such that only a single term
contributes to each matrix element. This means that the diagonal part M{a} di-
rectly gives this matrix element, up to combinatorial factors from oscillator al-
gebra. Moreover these operators are sufficient to generate the entire Q-system,
due to the functional relations (13.17) and (13.18), and the fact that Q∅(z) = 1.



164 | Evaluating Q-operators

Therefore we focus on these operators, and will now derive a different formula
for them, which allows to calculate matrix elements without performing infinite
sums.

We first specialize the expression given in (14.5) and (14.6) to these R-
operators which we can write as

R{a}(z) =
∞
∑

{nā}=−∞

�

∏

ā

(Yaā)
Θ(nā)|nā |

�

M{a}(z, {N}, {n})

�

∏

ā

(−Xaā)
Θ(−nā)|nā |

�

,

(14.7)

with X and Y given in (14.1), and where the diagonal part is

M{a}(z, {N}, {n}) =
∞
∑

{kā}=0

∏

ā

�

(−1)(|a|+|ā|+1)kāΓ (1+Naā)
kā! (|nā|+ kā)! Γ (1+Naā − kā)

Γ (Nā + (−1)|ā| + kā)
Γ (Nā + (−1)|ā|)

�

Γ (Na + 1)
Γ (Na + 1−

∑

ā kā)

Γ (z + 1−
∑

ā(Nā + kā −
1
2(−1)|ā|))

Γ (z + 1− c− 1
2

∑

ā(−1)|ā|)
.

(14.8)

Our aim is to transform this expression for the diagonal part into a form which
can directly be evaluated, even for non-compact spin chains. To achieve this, we
have to remove the infinite sums. As it turns out, the most compact expression
we can obtain is an integral formula, from which expressions in terms of finite
sums can also be generated. Since the intermediate formulas are quite lengthy,
we only sketch the derivation of this representation.

We want to perform all sums over the kā in (14.8). Consider the first sum,
which we take to be over some index b̄. This sum can be written as an expression
involving Gamma functions and the following hypergeometric function:

3F2

� ∑

ā 6=b̄ kā −Na −Nab̄ Nb̄ + (−1)|b̄|

−z + 1
2

∑

ā(−1)|ā| +
∑

ā 6= b̄(Nā + kā) +Nb̄ 1+
�

�nb̄

�

�

; (−1)|a|+|b̄|
�

. (14.9)

Since the other summation variables appear in the arguments of this function, the
other sums cannot be taken easily. To remedy this, and to disentangle the sums,
one can use integral representations of the hypergeometric function. The type
of integral however depends on the spectrum of the operator Na, which in turn
depends on the choice of real form up,q|r+s, see section 13.3. If the oscillator with
index a is bosonic and particle-hole transformed, ωa = −1, the first argument
(
∑

ā 6=b̄ kā−Na) of the hypergeometric function takes positive integer values, and
we can use the standard Euler type integral, expressing the function 3F2 as an
integral involving the function 2F1, integrating over the interval (0,1) on the real
line:

q+1Fq

�

a0 a1 · · · aq

b0 b1 · · · bq−1
; z

�

=
Γ (b0)

Γ (a0)Γ (b0 − a0)

∫ 1

0

dt ta0−1(1− t)b0−a0−1
qFq−1

�

a1 · · · aq

b1 · · · bq−1
; tz

�

.

(14.10)

It converges for Re(b0)> Re(a0)> 0 and |z| ≤ 1.
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For all other cases, the Gamma function Γ (Na+1−
∑

ā kā) in the denominator
of (14.8) truncates the range of the summation variables such that the argument
(
∑

ā 6=b̄ kā−Na) of the hypergeometric function takes non-positive integer values.
For such arguments, one can use an analytic continuation of the Euler integral
employing the Pochhammer contour P , shown in figure 14.1,

Figure 14.1: The Pochhammer contour.

q+1Fq

�

a0 a1 · · · aq

b0 b1 · · · bq−1
; z

�

=
Γ (b0)

Γ (a0)Γ (b0 − a0)
1

(1− e2πia0)(1− e2πi(b0−a0))
∫

P
dt ta0−1(1− t)b0−a0−1

qFq−1

�

a1 · · · aq

b1 · · · bq−1
; tz

�

.

(14.11)

This can be understood as follows: the arcs around 0 and 1 do not contribute, and
thus the integral contour consists of four times the path from 0 to 1, each time
with a different phase from crossing the branch cuts; these phases are canceled by
the prefactor. The integral converges if a0 and (b0−a0) are not positive integers.
For negative integers however, the integral dramatically simplifies. Assume a0 is
a negative integer or zero. Then the integrand has a pole at zero instead of a
branch point. Therefore, the contribution of the parts of the integration contour
that go from 0 to 1 or from 1 to 0 cancel pairwise, since no phase is picked up
going around the origin. Nevertheless the integral is non-zero, since now the
arcs around zero contribute; on each of two sheets they give the residue at the
origin, with a relative phase. The prefactor in (14.11) is regular at these points
in parameter space, since

lim
a0→−n

(Γ (a0)(1− e2πia0))−1 = −
(−1)nΓ (n+ 1)

2πi
. (14.12)

Also, the remaining factor of (1 − e2πi b0) in (14.11) cancels against the phases
from the two sheets. We therefore have the contour integral representation

q+1Fq

�

a0 a1 · · · aq

b0 b1 · · · bq−1
; z

�

= (−1)a0
Γ (b0)Γ (1− a0)
Γ (b0 − a0) 2πi

∮

t=0

dt ta0−1(1− t)b0−a0−1
qFq−1

�

a1 · · · aq

b1 · · · bq−1
; tz

�

(14.13)

which is valid for a0 ∈ −N, including a0 = 0.
Using the appropriate integral formulas to rewrite the hypergeometric func-

tion (14.9), one finds that all subsequent summations decouple, and can be per-
formed easily using the series representation of the hypergeometric function 2F1.
We then arrive at the result

M{a}(z, {N}, {n})

=

∫

dt
t−Na−1

(1− t)z+1−c− 1
2

∑

ā(−1)|ā|

∏

ā

1
|nā|!

2F1

�

Nā + (−1)|ā| −Naā

1+ |nā|
; (−1)|ā|+|a| t

�

,

(14.14)
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where c is the central charge defined in (13.11) and the integration is

∫

dt =























(−1)Na

Γ (−Na)

∫ 1

0

dt if |a|= 0 and ωa = −1

Γ (1+Na)
2πi

∮

t=0

dt ωa = 1 or |a|= 1

. (14.15)

This means that for truncatingR-operators, the integral just computes a residue,
while for the non-truncating ones, it is an integral over the interval (0, 1). Note
that strictly speaking, the integral is only convergent for appropriately chosen
values of the spectral parameter z; this however poses no problem, since the
result for any matrix element is a rational function which can be analytically
continued to any value of the spectral parameter.

While it might seem that we did not gain much by writing the potentially infi-
nite sums of the R-operator in terms of an integral, this integral is in fact trivial
to evaluate, by expanding the integrand and either taking a simple residue, or
evaluating the line integral in terms of a Beta function. We will present some
examples for these calculations in the following: momentarily, we give deriva-
tions of the formulas for the spin −s models discussed in section 13.4, and then
provide a finite sum formula for the general case. In section 15.2 we calculate
the Q-functions of the BMN vacuum in twisted N = 4 SYM. These calculation
involve concrete matrix elements of the operators, which we now obtain from
the formulas given above.

Matrix elements

Given the R-operators of the lowest level (14.7) with the integral representa-
tion of the diagonal part (14.14), explicit matrix elements 〈m̃|R{a}(z) |m〉 with
the states defined in (13.28) can be obtained using oscillator algebra. First note
that the values of the summation variables nā, ā ∈ Ī in (14.7) are fixed by the
difference in occupation numbers as

nā = −ωā(m̃ā −mā) , (14.16)

because each of the corresponding oscillators only appears in a single factor Xaā

and a single factor Yaā in (14.7). The powers of the oscillators with index a in
the left and right factors are

N` =
∑

ā

Θ(nā) |nā| and Nr =
∑

ā

Θ(−nā) |nā| . (14.17)

After acting with these operators, the occupation numbers of the state on which
the diagonal partM{a} acts are given by

m̂a = m̃a−ωaN` = ma−ωaNr , m̂ā =

(

max(mā, m̃ā) if ωā = 1

min(mā, m̃ā) if ωā = −1
. (14.18)
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For the different types of oscillators, given in (13.27), this sets the number oper-
ators in (14.14) to

Nc =



















ācac → m̂c |c|= 0 and ωc = +1

−1− b̄cbc → −1− m̂c |c|= 0 and ωc = −1

c̄ccc → m̂c |c|= 1 and ωc = +1

1− d̄cdc → 1− m̂c |c|= 1 and ωc = −1

. (14.19)

Finally, collecting all combinatorial factors arising from the oscillator algebra, we
can write the matrix elements as

〈m̃|R{a}(z) |m〉=

ξ̄
Θ(ω1(m1−m̃1))|ω1(m1−m̃1)|
a1 · · · ξ̄Θ(ωK (mK−m̃K ))|ωK (mK−m̃K )|

aK

(−1)
∑

ā |nā |caā

�p

m̃a!ma!

m̂a!

�ωa
∏

ā

√

√

√max(mā, m̃ā)!
min(mā, m̃ā)!

M{a}(z, {m̂i}, {ωā(mā − m̃ā)})

ξ
Θ(−ωK (mK−m̃K ))|ωK (mK−m̃K )|
Ka · · ·ξΘ(−ω1(m̃1−m1))|ω1(m1−m̃1)|

1a ,

(14.20)

where K = p + q + r + s for the algebra up,q|r+s, M is given in (14.14), and the
sign is determined by

caā =
�

(|a|+ |a||ā|)Θ(nā) + (1+ |a||ā|)Θ(−nā)
�

+ 1
2

�

(|a|+ 1)(1−ωa)Θ(nā) + (|ā|+ 1)(1−ωā)Θ(−nā)
�

+
�

(|a|+ |ā|)
∑

c
|c|
�

m̃cΘ(nā) +mcΘ(−nā)
�

�

+
�∑

c<a
|a||c|

�

m̃cΘ(nā) +mcΘ(−nā) +δcā
�

�

+
�∑

c<ā

|ā||c|
�

(Θ(nc) + m̃c)Θ(nā) + (Θ(−nc) +mc)Θ(−nā)
�

�

.

(14.21)

Here we define na = 0.

Derivation of the R-operators for the spin −s models

The integral representation for R-operators of the lowest level, given in (14.7)
together with (14.14), can easily be evaluated in practise. To show that it also
serves as a good starting point to obtain representations in terms of finite sums,
we now derive the formulas (13.36), (13.37), (13.38) and (13.39) for the R-
operators of the spin −s spin chains considered in section 13.4. For these models,
both oscillators are bosonic, |·| = (0,0), and the first oscillator is particle-hole
transformed, ω = (−1,+1). The central charge is constrained to c = −2s, such
that the states are given by |m〉s = |2s− 1+m, m〉, cf. (13.34).

We begin with the operator R{2}, which involves only truncating sums. The
matrix elements s 〈m̃|R{2}(z) |m〉s can be determined from (14.7) by noting that
the summation variable n1 is fixed to be n1 = m̃ − m, and that the diagonal
part then acts on a state |m̂〉s with m̂ = min(m, m̃), cf. (14.16) and (14.18).
Using this it is straightforward to show that the general structure of the Lax
operator exactly matches (13.36). The diagonal part M{2} could in principle be
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derived directly from expression (14.8); we nevertheless start from the generally
applicable formula (14.14) expressing it as a contour integral. This integral can
be evaluated by plugging in the series representations of the hypergeometric
function and of the power of (1− t),

s 〈m̂|M{2}(z) |m̂〉s

=
m̂!

|m− m̃|!
1

2πi

∮

t=0

dt t−m̂−1(1− t)−z− 1
2−2s

2F1

�

1− 2s− m̂ −N21

1+ |m̃−m|
; t
�

=
m̂!
2πi

∮

t=0

dt
t m̂+1

�∞
∑

`=0

(z + 1
2 + 2s)`
`!

t`
��

m̂+2s−1
∑

k=0

(2s+ m̂− k)k(1+N21 − k)k
(|m̃−m|+ k)!k!

tk

�

=
m̂
∑

k=0

�

m̂
k

� (z + 1
2 + 2s)m̂−k(1+N21 − k)k(2s+ m̂− k)k

(|m̃−m|+ k)!
, (14.22)

which is the same as (13.37).
Next we turn to the non-truncatingR-operatorR{1}. For each matrix element,

the summation variable is fixed to n2 = m − m̃, and the diagonal part acts on
|m̂〉s, where now m̂=max(m, m̃). One finds that the form of the matrix elements
in (13.38) is reproduced by (14.7). The diagonal part (14.14) is then given by

s 〈m̂|M{1}(z) |m̂〉s =
(−1)2s+m̂

(2s− 1+ m̂)! |m̃−m|!

×
∫ 1

0

dt t2s−1+m̂(1− t)−z− 1
2−2s

2F1

�

m̂+ 1 −N12

1+ |m̃−m|
; t
�

.

(14.23)

To write the matrix elements as finite sums, we have to apply the Euler transfor-
mation 2F1(n, b; m; z) = (1−z)m−n−b

2F1(m−n, m−b; m; z) to the hypergeometric
function. Then this function can be written as a finite sum and the integral can
be evaluated using the integral representation of the Beta function:

s 〈m̂|M{1}(z) |m̂〉s (14.24)

=
(−1)2s+m̂

(2s− 1+ m̂)! |m̃−m|!

∫ 1

0

dt t2s−1+m̂(1− t)−z− 1
2−2s−min(m,m̃)+N12

× 2F1

�

−min(m, m̃) 1+ |m̃−m|+N12

1+ |m̃−m|
; t
�

=
min(m,m̃)
∑

k=0

(−1)2s+m̂

(2s− 1+ m̂)!
(1+min(m, m̃)− k)k(1+ |m̃−m|+N12)k

k!(|m̃−m|+ k)!

×
∫ 1

0

dt t2s−1+m̂+k(1− t)−z− 1
2−2s−min(m,m̃)+N12

=
min(m,m̃)
∑

k=0

(−1)2s+m̂

(2s− 1+ m̂)!
(1+min(m, m̃)− k)k(1+ |m̃−m|+N12)k

k!(|m̃−m|+ k)!

× B(2s+ m̂+ k,−z + 1
2 − 2s−min(m, m̃) +N12) . (14.25)

This expression is identical to (13.39), upon using B(x , y) = Γ (x)Γ (y)
Γ (x+y) .
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These calculations can be generalized to other algebras and representations,
and thus all matrix elements are rational functions and can be written as finite
sums, using nothing more than the Euler transformations on all hypergeometric
functions with non-truncating series representations and then performing the
resulting Beta integral. We will now derive these formulas for the general case.

Finite sum representation for lowest level R-operators

Evaluating the integral formula in (14.14) is a very efficient way to determine
matrix elements of both polynomial as well as non-polynomialR-operators. It is
however also possible to directly derive finite sum expressions from the integral
representation using the same ideas as in the previous section.

Here one has to treat the truncating and the non-truncating case, correspond-
ing to the two integration contours in (14.15), separately. In the truncating case,
evaluating the residue returns the expression given in (14.8), which can be ex-
pressed in terms of number operators for the particle-hole transformed oscilla-
tors (13.27); then all sums are manifestly finite.

For the non-truncating operators R{a} with |a| = 0 and ωa = −1, one can
evaluate the integral as follows: For notational convenience, we first decompose
the set Ī = Īa∪ Īb∪ Īc∪ Īd into indices corresponding to the different types of os-
cillators in (13.27). Note that the integral (14.14) contains one hypergeometric
function for each index ā ∈ Ī . Applying the Euler transformation to the hyperge-
ometric functions corresponding to the subset Īa, using the series expansion of
all such functions and subsequently performing the Beta integral, we find

M{a} =
∞
∑

{kā}=0

(−1)1+Nba

Nba
!

1
∏

ā∈ Ī kā!(|nā|+ kā)!
∏

ā∈ Īa

(|nā| −Naā
)kā
(|nā|+Naā + 1)kā

∏

ā∈ Īb

(−Nbā
)kā
(−Naā)kā

∏

ā∈ Īc

(−1)kā(Ncā
− 1)kā

(−Naā)kā

∏

ā∈ Īd

(−1)kā(−Ndā
)kā
(−Naā)kā

B
�

− z + c+ 1
2

∑

ā∈ Ī

(−1)|ā| +
∑

ā∈ Īa

(Naā + |nā| −Naā
),Nba

+ 1+
∑

ā∈ Ī

kā

�

,

(14.26)

where we used the number operators of the oscillator representation of up,q|r+s,
Naa
= āaaa etc. All the Pochhammer symbols involving these operators are of the

form (−m)k with m ≥ 0 which gives (−m)k = (−1)k Γ (m+1)
Γ (m+1−k) , such that all sums

truncate. Note that the fact that
�

�nā −Naā

�

� ≤ 0 can be seen from the structure
of the outer sums in (14.7), see also the discussion of explicit matrix elements,
especially equation (14.18).

Despite being explicit, the finite sum expression (14.26) is rather lengthy.
For concrete calculations it is therefore often more convenient to work with the
integral formula, which in particular treats all R-operators on nearly the same
footing, the only difference being the contour of integration.
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14.3 Generating the operatorial Q-system

The matrix elements for R-operators of the lowest level which we calculated
above are sufficient to generate the entire operatorial Q-system. Our strategy
is to first combine these matrix elements into matrix elements of the respective
Q-operators by taking products and tracing out the auxiliary Fock spaces. For
each magnon block, these operators can be represented as explicit matrices of
finite size. Systematically solving the functional relations, we determine all other
Q-operators in a given magnon block.

Evaluating the supertrace for the lowest level

Using the matrix elements of theR-operators of the lowest level given in (14.20),
one can construct matrix elements of the full Q-operators. For states of length L
these matrix elements are given by

�

〈m̃(L)| · · · 〈m̃(1)|
�

Q{a}(z)
�

|m(1)〉 · · · |m(L)〉
�

= (−1)
∑

i< j |m̃
( j)|(|m(i)|+|m̃(i)|) eizφa

cstr 〈m̃(1)|R{a}(z) |m(1)〉 · · · 〈m̃(L)|R{a}(z) |m(L)〉 .
(14.27)

Here we denote the Graßmann degree of the state |m(i)〉 by |m(i)|. The matrix
elements of the R-operators are given in formula (14.20), together with the
integral representation (14.14), and can easily be evaluated by hand, or using a
computer algebra system such as Mathematica.

Of course these matrix elements still depend on the auxiliary space operators
ξ̄aā and ξāa. To evaluate (14.27), one first commutes all the auxiliary space oper-
ators either to the left or to the right, and combines them into number operators
Naā as far as possible. All terms with any remaining raising or lowering operators
can then be dropped since they are non-diagonal. Note that the normalized su-
pertrace defined in (13.15) factors into traces over the individual Fock spaces of
the different auxiliary space oscillators, cstr =

∏

a,b cstrab, where cstrab traces out
the oscillator (ξ̄ab,ξba). Each of these traces is then given in terms of ordinary
sums over the diagonal terms. As discussed in section 13.2, some of the bosonic
traces however need to be regularized, by giving the twist angles small imaginary
parts.

Only a closed set of few different types of sums can occur when calculating
the traces cstrab, including sums over rational functions and the Lerch transcen-
dent (13.41). For the Q-operators of the lowest level, the following formulas are
therefore sufficient to perform the occurring sums. First, for polynomials in the
number operators, we can use

cstrab Nk
ab =



















∑k
n=0 〈kn〉

�

τa
τb

�n+1−δk,0

�

1− τa
τb

�k bosonic

�

τa
τa−τb

�1−δk,0
fermionic

, (14.28)
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where

k

n

�

are the Eulerian numbers defined by

­

k
n

·

=
n+1
∑

j=0

(−1) j
�

k+ 1
j

�

(n− j + 1)k . (14.29)

Here and in the following we abbreviate the twist angles via τa = exp(−iφa).
For the non-rational Q-operators, we also need the Lerch transcendent Φ de-

fined in (13.41), since the matrix elements of the R-operators are rational func-
tions of the number operators. Concretely one encounters traces of the form

cstrab

Nk
ab

(Nab + r)`
=







τb−τa
τb

∑k
m=0

� k
m

�

(−r)k−mΦ
τa/τb

`−m (r) bosonic

1
τb−τa

�

δk,0τb
1
r` −τa

1
(r+1)`

�

fermionic
. (14.30)

If further traces have to be evaluated, summation formulas for the Lerch tran-
scendent can be used

cstrab Φ
τ
` (Nab + r) =







τb−τa
ττb−τa

�

τΦτ
`
(r)− τa

τb
Φ
τa/τb

`
(r)
�

bosonic

τb
τb−τa

�

τbΦ
τ
`
(r)−τaΦ

τ
`
(r + 1)

�

fermionic
, (14.31)

and the general case

cstrab Nk
abΦ

τ
` (Nab + r) (14.32)

=



































τb−τa
τb

�

δk,0+
∑k

t=1 〈 k
t−1〉
�

τa/τb
τ

�t

�

1− τa/τb
τ

�k+1 Φτ
`
(r)− 1

τ

∑k
s=0

�k
s

�δs,k+
∑k−s

t=1 〈k−s
t−1〉
�

τa/τb
τ

�t

�

1− τa/τb
τ

�k−s+1

×
��

∑s
j=0

�s
j

�

(1− r)s− jΦ
τa/τb

`− j (r − 1)
�

−δs,0
1

(r−1)`

�

�

bosonic

1
τb−τa

�

τbδk,0Φ
τ
`
(r)−τaΦ

τ
`
(r + 1)

�

fermionic

.

Given that the matrix elements of the R-operators are rational functions of
the auxiliary space number operators, and that one can use partial fraction de-
compositions to expand terms with complicated denominators, it is evident that
these types of supertraces are the only ones which can appear. This implies that
all matrix elements of the lowest level Q-operators are either rational functions
or – for non-compact Q-operators – can be written in terms of the Lerch tran-
scendent. We note that one can usually reduce the number of terms containing
this function using the identity

Φτk(z + 1) =
1
τ

�

Φτk(z)−
1
zk

�

. (14.33)

Due to the remaining uN+M
1 invariance which persists in the presence of twists,

the Q-operators are block diagonal. These blocks correspond to sectors with
a fixed number of magnons; they are labeled by the total excitation numbers
∑L

i=1 m(i)a of the oscillators of the representation of up,q|r+s, see (13.28). By con-
struction, one also needs to specify the number of sites L. For each such magnon
block, the matrix elements can therefore be combined into a matrix of finite
size. This gives the operatorial form of Q-operators in a subspace of the infinite-
dimensional Hilbert space of non-compact models.
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Constructing the Q-system from functional relations

Knowing Q-operators with a single index as explicit matrices for a given magnon
block, one can produce all operators with multiple indices by solving the QQ-
relations (13.17) and (13.18).2 A naive way of solving the bosonic relation (13.17)2 We assume that these functional

relations hold. Using the approach we
present here, recovering the known
expression for Q∅ given in (13.20)
constitutes a non-trivial check.

however involves a matrix inversion, which is problematic given that the Q-
operators are expressed in terms of special functions.

A more efficient strategy is to first calculate the Q-operators with one bosonic
and one fermionic index Q{a,b} with |a| 6= |b|. To obtain these, we need to solve
the first order difference equation given by (13.18):

Q{a,b}(z)−Q{a,b}(z + 1) = −∆abQ{a}(z +
1
2)Q{b}(z +

1
2) , |a| 6= |b| . (14.34)

The formal solution to this equation can be written in terms of the discrete ana-
logue of integration, which we denote by Σ and which is defined by

Σ [ f (z)− f (z + 1)] = f (z) +P , (14.35)

where P is periodic, P (z) =P (z+1). The discrete integral can be written as a
sum,Σ[ f (z)] =

∑∞
n=0 f (z+n), whenever this sum converges. For the Q-operators

with one bosonic and on fermionic index we can thus write

Q{a,b}(z) = −∆ab Σ
�

Q{a}(z +
1
2)Q{b}(z +

1
2 )
�

|a| 6= |b| . (14.36)

It is important to note that in contrast to the untwisted case, the arbitrary periodic
functionP is fixed to be zero if we require the Q-operators obtained from (14.36)
to be identical to the monodromy construction, sinceP is incompatible with the
exponential scaling in terms of the twist phases.

When solving the difference equation (14.36) for non-compact Q-operators,
the sums lead to generalizations of the Lerch transcendent (13.41), which we
define by33 The treatment here is equivalent

to that of η-functions given in
Marboe, Volin, “Quantum spectral
curve as a tool for a perturbative
quantum �eld theory”, 1411.4758
and Gromov, Levkovich-Maslyuk,
“Quantum Spectral Curve for a
cusped Wilson line in N = 4 SYM”,
1510.02098. The Lerch transcendents
are related to η-functions used in the
Quantum Spectral Curve literature by
Φ
τ1,τ2,...,τn
a1,a2,...,an (z) = inη

τ1,τ2,...,τn
a1,a2,...,an (iz).

To our knowledge, this class of
functions has not been studied in the
mathematics literature.

Φτ1,τ2,...,τn
a1,a2,...,an

(z) =
∞
∑

0≤k1<k2<...<kn

τ
k1
1 τ

k2
1 · · ·τ

kn
n

(z + k1)a1(z + k2)a2 · · · (z + kn)an
. (14.37)

Here the number of parameters n is arbitrary. Note that the variables τi will be
given in terms of the twist variables, but here the indices are not those of the
oscillators, but just label the arguments. It is clear from the definition that the
generalized Lerch transcendent satisfies the following shift identity, generalizing
equation (14.33):

Φτ,τ1,...,τn
a,a1,...,an

(z) =
τ1 · · ·τn

za
Φτ1,...,τn

a1,...,an
(z + 1) +ττ1 · · ·τnΦ

τ,τ1,...,τn
a,a1,...,an

(z + 1) . (14.38)

Importantly, Φ-functions satisfy so called stuffle-relations, e.g.

Φτ1
a1
Φτ2

a2
= Φτ1,τ2

a1,2
+Φτ1τ2

a1+a2
+Φτ2,τ1

a2,a1
. (14.39)

These can be used to linearize all products of these functions.
In the generation of the full Q-system, we need to apply the discrete integra-

tion Σ to the following four classes of functions, which form a closed set.

http://xxx.lanl.gov/abs/1411.4758
http://xxx.lanl.gov/abs/1510.02098
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Polynomials The discrete integral of monomial, Σ(τzza) is another polyno-
mial with an overall exponential factor of the form p(z) = τz(caza + ... + c0)
satisfying the constraint p(z)− p(z + 1) = τzza. This constraint fixes p(z) com-
pletely.4 4 Note that in the untwisted case where

τ = 1, the polynomial is of degree
a+ 1 instead.

Shifted inverse powers From the definition of the generalized Lerch tran-
scendent one finds

Σ

�

τz

(z +m)a

�

= τzΦτa(z +m) . (14.40)

Terms of the form τzΦ

(z+m)a Note that

Σ

�

τzΦτ1,τ2,...,τn
a1,a2,...,an

(z + 1)

za

�

= τzΦτ,τ1,τ2,...,τn
a,a1,a2,...,an

(z) . (14.41)

To evaluate Σ
h

τzΦ
τ1,τ2,...,τn
a1,a2,...,an
(z+m)a

i

, use (14.38) to align the shifts of the spectral parame-
ter in the denominator and the numerator, and then use (14.41).

Terms of the form τz zaΦ To evaluate products of monomials and general-
ized Lerch transcendents, one can use the finite difference analogue of partial
integration,

Σ
�

f
�

g − g[2]
��

= f g −Σ
�

g[2]
�

f − f [2]
��

. (14.42)

For Σ[τzzaΦτ1,τ2,...,τn
a1,a2,...,an

], set f = (τ1 · · ·τn)zΦτ1,τ2,...,τn
a1,a2,...,an

and g − g[2] =
�

τ
τ1···τn

�z
za.

This can be used recursively until no terms of this type are present.

number of bosonic
indices in set I (ā, b̄)

number of fermionic
indices in set I (c̄, d̄)

-

6

t t
t

td td
ttd td td

td td td td
td td td td

↗

Figure 14.2: Generation of the full
Q-system from the set of Q{a}. The
black arrow signals the need to solve
a di�erence equation. All Q-operators
on the white vertices can then be
obtained from the determinant
formulas.

Due to the property Q∅ = 1, it is possible to write all other Q-operators as
determinants of Q{a} and Q{a,b} with |a| 6= |b| without any inversions, see e.g.
Tsuboi (2010, 2013); Gromov et al. (2015):5

5 Tsuboi, “Solutions of the T-system
and Baxter equations for supersym-
metric spin chains”, 0906.2039;
Tsuboi, “Wronskian solutions of the T,
Q and Y-systems related to in�nite di-
mensional unitarizable modules of the
general linear superalgebra gl(M|N)”,
1109.5524; and Gromov, Kazakov,
Leurent, Volin, “Quantum spectral
curve for arbitrary state/operator in
AdS5/CFT4”, 1405.4857

Q{a1,...,am,b1,...,bn} =

∏m
i=1

∏n
j=1∆ai b j

∏

1≤i< j≤m∆ai a j

∏

1≤i< j≤n∆bi b j

(14.43)

×























(−1)(n−m)mεk1,...,kn
∏m

r=1
1

∆ar bkr

Q[?]{ar ,bkr }

∏n−m
s=1 Q[n−m+1−2s]

{bkm+s }
m< n

εk1,...,km
∏m

r=1 Q{akr ,br} m= n

(−1)(n−m)nεk1,...,km
∏n

r=1
1

∆akr br
Q[?]{akr ,br}

∏m−n
s=1 Q[m−n+1−2s]

{akn+s }
m> n

,

where |a j|= 0 and |b j|= 1, ? can take any value in −|m−n|,−|m−n|+2, ..., |m−
n| − 2, |m− n|, and Q[n] = Q(z + n

2 ). The prefactor is a consequence of the nor-
malization we use for the Q-operators (13.13), and follows from the more well
known determinant formulas if one compares the different normalizations dis-
cussed at the end of section 13.2. The procedure to construct all Q-operators in
this way is shown in Figure 14.2. As a consequence of this construction, one finds
that the Q-operators only develop poles at z ∈ N or z ∈ N+ 1

2 , depending on the
number of indices.6

6 We would like to thank Dmytro Volin
for pointing out that in general there
are (equivalent) conjugated solutions
of the Q-system, which in our con-
ventions have poles on the negative
real half-axis. For a discussion see
e.g. section 4 of Gromov, Kazakov,
Leurent, Volin, “Quantum spectral
curve for arbitrary state/operator in
AdS5/CFT4”, 1405.4857. We suspect
that these solutions can be found
by particle-hole transforming the
oscillators in the auxiliary space.

http://xxx.lanl.gov/abs/0906.2039
http://xxx.lanl.gov/abs/1109.5524
http://xxx.lanl.gov/abs/1405.4857
http://xxx.lanl.gov/abs/1405.4857
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14.4 Expressions for higher-level Lax operators

We have seen that the Q-operators of the lowest level are enough data to gener-
ate the whole Q-system, and therefore the integral representation given in (14.7)
and (14.14), or equivalently the finite sum representation (14.26) are in a sense
sufficient. Still it would be desirable from a theoretical perspective to have sim-
ilar formulas for all R-operators. The R-operators are almost symmetric under
exchanging the index set I ↔ Ī with its complement, as can be seen already
from the formula (13.12); this allows to derive a similar integral representation
for the operators of the highest level. We then discuss the remaining levels: while
many operators can immediately be written as finite sums, using the same strat-
egy as for the lowest level, more complicated cases quickly appear, which we
discuss using a u2,2 example.

Highest level R-operators and their matrix elements

In section 14.2 we derived a representation of R-operators for the lowest level
of the Q-system which allows to evaluate their matrix elements. Here we summa-
rize similar results for the R-operators of the highest non-trivial level, i.e. those
where the index set I contains all but a single index which we denote by ā.

According to equation (14.5) we can write these R-operators as

R{ā}(z) =
∞
∑

{na}=−∞

�

∏

a

(Yaā)
Θ(na)|na |

�

M{ā}(z, {N}, {n})
�

∏

a

(−Xaā)
Θ(−na)|na |

�

,

(14.44)

where X and Y are given in (14.1). After performing an almost identical calcu-
lation as for theR-operators with a single index, we can write the diagonal part
as follows:

M{ā}(z, {N}, {n}) = −
Γ (z + 1+ 1

2(−1)|ā|)

Γ (z + 1− c − 1
2(−1)|ā|)

×
∫

dt
(−t)Nā+(−1)|ā|−1

(1− t)z+1+ 1
2 (−1)|ā|

∏

a

1
|na|!

2F1

�

−Na −Naā

1+ |na|
; (−1)|ā|+|a| t

�

.

(14.45)

Here the integration again depends on whether the oscillator with index ā is
particle-hole transformed or not,

∫

dt =























1
Γ (Nā + (−1)|ā|)

∫ 1

0

dt if |a|= 0 and ωa = +1

(−1)Nā+1 Γ (1−Nā − (−1)|ā|)
2πi

∮

t=0

dt else

.

(14.46)

We can easily obtain matrix elements 〈m̃|R{ā}(z) |m〉 from this representa-
tion. First we note that occupation numbers m̃ and m fix the values of the
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summation variables na, a ∈ I in (14.44) to na = ωa(m̃a − ma). The powers
of the ā oscillators in the left and right factors are N` =

∑

aΘ(na) |na| and
Nr =

∑

aΘ(−na) |na|, such that the occupation numbers of the states on which
the diagonal part acts are

m̂ā = m̃ā +ωāN` = mā +ωāNr m̂a =

(

min(ma, m̃a) if ωa = 1

max(ma, m̃a) if ωa = −1
. (14.47)

We can thus write the matrix elements as

〈m̃|R{ā}(z) |m〉=

ξ̄
Θ(ω1(m̃1−m1))|ω1(m̃1−m1)|
1ā · · · ξ̄Θ(ωK (m̃K−mK ))|ωK (m̃K−mK )|

Kā

(−1)
∑

a |na |c′aā

�

m̂ā!
p

m̃ā!mā!

�ωā
∏

a

√

√

√max(ma, m̃a)!
min(ma, m̃a)!

M(z, {m̂b}, {ωa(m̃a −ma)})

ξ
Θ(−ωK (m̃K−mK ))|ωK (m̃K−mK )|
āK · · ·ξΘ(−ω1(m̃1−m1)|ω1(m̃1−m1)|

ā1 ,

(14.48)

where the sign follows from

c′aā =
�

(|a|+ |a||ā|)Θ(na) + (1+ |a||ā|)Θ(−na)
�

+ 1
2

�

(|a|+ 1)(1−ωa)Θ(na) + (|ā|+ 1)(1−ωā)Θ(−na)
�

+
�

(|a|+ |ā|)
∑

c
|c|
�

m̃cΘ(na) +mcΘ(−na)
�

�

+
�∑

c<ā

|ā||c|
�

m̃cΘ(na) +mcΘ(−na) +δca
�

�

+
�∑

c<a
|a||c|

�

(Θ(nc) + m̃c)Θ(na) + (Θ(−nc) +mc)Θ(−na)
�

�

,

(14.49)

cf. equations (14.20) and (14.21).

Intermediate levels

We have seen that theR-operators of the lowest level can conveniently be written
either using the integral representation (14.14) or as finite sums as in (14.8) for
the truncating operators or (14.26) for the non-truncating ones. Here we want
to discuss the generalization of such representations to the remaining levels of
the Q-system. For the intermediate levels, note that the difficulty of deriving rep-
resentations without infinite sums does not increase according to the level |I | of
the operators RI , but rather by the number of infinite sums, or more precisely
by the number of indices a ∈ I which correspond to bosonic and particle-hole
transformed oscillators, |a| = 0 and ωa = −1. If no such indices appear in the
index set of RI , the formula (14.6) contains no infinite sum to begin with. Fur-
thermore, for the case that there is exactly one such index, one can apply the
same strategy as was used for the lowest level. Let this index be b; then one can
perform all sums over the variables kbā in (14.6), and obtain a formula with an
integral as in section 14.2, as well as the remaining finite sums. This expression
can then be written in terms of only finite sums, using the Euler transformation
and performing a Beta integral, as for the lowest level.
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The first case where much more severe difficulties arise can best be discussed
using a concrete example. Consider a u2,2 invariant model, with oscillators a1,
a2, b3 and b4. Then the operator R{3,4} contains two particle-hole transformed
indices. After performing similar calculations as for the lowest level, one finds
the following representation in terms of finite sums and an integral:

R{3,4}(z) = e−
∑

a,ā ξ̄aāaabāΓ (z −Na1
−Na2

)e−
∑

a,ā ξāa āa b̄ā

=
+∞
∑

{naā}=−∞

�

∏

a,ā

�

−ξ̄aāaabā

�Θ(+naā)|naā |
�

M{3,4}(z)

�

∏

a,ā

�

−ξāaāab̄ā

�Θ(−naā)|naā |
�

,

(14.50)

where the indices run over a ∈ I = {1, 2} and ā ∈ Ī = {3,4}. Here the diagonal
partM{3,4}(z) can be written as

M{3,4}(z) =

(−1)Nb3
+Nb4

n14!n24!Nb3
!Nb4

!

∞
∑

k13,k23=0

(k13 + k23 +Nb3
)!

k13!k23!(k13 + n13)!(k23 + n23)!

×
(n13 −Na1

)k13
(n23 −Na2

)k23
(1+ n13 +N13)k13

(1+ n23 +N23)k23

(n13 + n23 +N13 +N23 −Nb3
+ 1− z)k13+k23+Nb3

×
∫ 1

0

tNb4 (1− t)c−z
3F2(Na1

+ 1, 1− n13 +Na1
,−N14; 1− k13 − n13 +Na1

, 1+ n14; t)

× 3F2(Na2
+ 1,1− n23 +Na2

,−N24; 1− k23 − n23 +Na2
, 1+ n24; t) ,

(14.51)

where the central charge is c = Na1
+Na2

−Nb3
−Nb4

− 2. The formula is remi-
niscent of the integral formula (14.14), but involves generalized hypergeometric
functions. Indeed it is even possible to write the integral in terms of finite sums,
using an analogue of the Euler transformation which can be found in Miller and
Paris (2013).7 This identity is however rather involved and not very explicit, and7 Miller, Paris, “Transformation formu-

las for the generalized hypergeometric
function with integral parameter
di�erences”, Rocky Mountain J. Math. 43
02 (2013) 291–327

requires finding the zeros of an auxiliary polynomial. This renders it difficult to
treat more difficult cases with more infinite sums recursively. While we found
that for practical calculations the lowest level operators and the functional rela-
tion are very efficient, it would certainly be desirable to further investigate useful
representations of the higher levels. We leave this for future work.
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Q-operators for N = 4 SYM

Some of the results presented in
this chapter have appeared in the
author’s publication
Frassek, Marboe, Meidinger, “Eval-
uation of the operatorial Q-system
for non-compact super spin chains”,
1706.02320.

The reason for developing the technology necessary to evaluate the Q-operators
of non-compact integrable super spin chains, which we presented in the last
chapter, is of course to apply them to the spin chain describing N = 4 SYM at
one loop, and beyond.

In this chapter, we first show in section 15.1 how to specialize the construc-
tion of Q-operators presented in the last chapters to the representation relevant
for the description of single trace operators in N = 4 SYM, discussed in sec-
tion 12.1. Furthermore, we provide a dictionary between the notation and con-
ventions used in the literature on Q-operators and in the previous chapters, and
those commonly used to describe the Quantum Spectral Curve, see section 12.2.
In principle, the Q-operators for arbitrary magnon blocks can then be computed
using the methods and formulas from the last chapter. Here we focus on some
example calculations, which allow to highlight a number of observations. In par-
ticular, we will see the impact of the twists, which are a necessary ingredient of
the monodromy construction of Q-operators, but result in a spin chain describing
a non-commutative version of N =4 SYM.

In section 15.2, we show that the formulas for the matrix elements of Q-
operators derived in section 14.2 also allow straightforward calculations for en-
tire classes of states. We exemplify this by calculating the remarkably non-trivial
one-index Q-functions of the BMN vacuum in fully twisted N =4 SYM, for arbi-
trary length.

Finally, we discuss an example magnon block from a rank one subsector of
the theory in section 15.3, focusing on the local conserved charges, the mixing
of states, and on the untwisted limit of the model. This discussion allows to draw
first conclusions on the interpretation of states as single trace operators in the
non-commutative field theory, and subtleties regarding the use of the Quantum
Spectral Curve to compute higher-loop corrections to the operatorial Q-system.

15.1 Representation and conventions

In this section we want to show how the Q-operator construction and the meth-
ods for their evaluation can be applied to the N =4 SYM spin chain at the one-

http://xxx.lanl.gov/abs/1706.02320
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loop level. To make comparisons to other approaches easier, we also show how
to convert our expressions to the conventions commonly used in the literature
on the Quantum Spectral Curve.

From our construction we obtain the Q-operators for the theory with a full
diagonal twist. This generalizes the well-know γi and β deformations1 and in-1 Leigh, Strassler, “Exactly marginal

operators and duality in four-
dimensional N=1 supersymmetric
gauge theory”, hep-th/9503121;
Lunin, Maldacena, “Deforming �eld
theories with U(1) x U(1) global
symmetry and their gravity duals”,
hep-th/0502086; and Frolov, “Lax
pair for strings in Lunin-Maldacena
background”, hep-th/0503201

cludes twists of the space-time part of the symmetries, such that the field theory
is not only non-conformal, but even non-commutative.2 The results can be spe-

2 See Beisert, Roiban, “Beauty and the
twist: The Bethe ansatz for twisted
N = 4 SYM”, hep-th/0505187
for a discussion of the subtleties
which arise when trying to deduce
the precise non-commutative �eld
theory from the integrable spin chain
description.

cialized to the γi and β deformed cases, or to the untwisted theory by choosing
the twist angles appropriately. While this leads to divergent matrix elements in
the Q-operators, their eigenstates and higher charges remain finite.

To specialize our construction to N =4 SYM at one-loop, we first restrict to
the singleton representation of u2,2|4 by choosing a grading and applying particle-
hole transformations as

(|a|)8a=1 = (0,0, 1,1, 1,1, 0,0) ,

(ωa)
8
a=1 = (+1,+1,−1,−1,−1,−1,−1,−1) ,

(15.1)

and requiring the vanishing of the central charge c= 0. Comparing with (13.27),
this given the representation of the fields of N =4 SYM in terms of the oscilla-
tors (ā1, ā2, d̄1, d̄2, d̄3, d̄4, b̄1, b̄2) introduced in section 12.1. With this choices, the
representation has the scalar field Z as the lowest-weight state:

|Z 〉= d̄1d̄2 |0〉= |0, 0,1, 1,0,0, 0,0〉 . (15.2)

Comparing the conventions we used so far to describe Q-operators with the
notation used in the Quantum Spectral Curve literature, cf. section 12.2, we see
that they are related as follows. First, bosonic and fermionic indices are treated
separately in QSC notation. To obtain Q-functions with the expected asymptotics,
we call the Q-operators of the lowest level

(Qa)
8
a=1 = (Q∅|1,Q∅|2,Q1|∅,Q2|∅,Q3|∅,Q4|∅,Q∅|3,Q∅|4)

= (Q1,Q2,P1,P2,P3,P4,Q3,Q4) ,
(15.3)

where the second equality defines the operators which appear in the Pµ and Qω
systems of the Quantum Spectral Curve, cf. equation (12.11). To furthermore
obtain the twist variables which were used in the discussion of the fully twisted
QSC in Kazakov et al. (2016)3, we set3 Kazakov, Leurent, Volin, “T-system

on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100

(e−iφa)8a=1 = (τa)
8
i=a = (y1, y2, x1, x2, x3, x4, y3, y4) . (15.4)

Finally, the spectral parameter used in the QSC is related to ours by z + 1
2 = iu,

and instead of the Lerch transcendents, the non-rational Q-operators are written
in terms of so-called η-functions, which absorb factors of i in their definition and
in the twisted case are given by

ηx
a(u) :=

∞
∑

k=0

x k

(u+ ik)a
, (15.5)

see for example appendix F of Gromov and Levkovich-Maslyuk (2016b),4 and

4 Gromov, Levkovich-Maslyuk, “Quan-
tum Spectral Curve for a cusped Wil-
son line in N = 4 SYM”, 1510.02098

http://xxx.lanl.gov/abs/hep-th/9503121
http://xxx.lanl.gov/abs/hep-th/0502086
http://xxx.lanl.gov/abs/hep-th/0503201
http://xxx.lanl.gov/abs/hep-th/0505187
http://xxx.lanl.gov/abs/1510.02100
http://xxx.lanl.gov/abs/1510.02098
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footnote 3 on page 172 for the relation between generalized eta functions and
Lerch transcendents. These conventions ensure that the poles of non-polynomial
Q-operators are located at the points required by the Quantum Spectral Curve.

15.2 Q-functions for the BMN vacuum in fully
twisted N =4 SYM

As a first application of the formulas derived for the matrix elements of the low-
est level Q-operators in the last chapter toN =4 SYM, and in order to give some
further examples how they can be used in practice, we calculate the matrix ele-
ments of the single-index Q-operators with the BMN vacuum trZ L of arbitrary
length L in fully twisted N = 4 SYM. Since these states constitute their own
“magnon blocks”, we directly obtain the corresponding Q-functions in this case.
Despite the fact that the BMN vacua are the most trivial states of the theory, we
will see that in the presence of twists, their Q-functions are rather complicated.

R-operators

We consider the matrix element of the single indexR-operators given in (14.14)
with (14.20) between two scalars of type Z , given in terms of occupation num-
bers in (15.2). For these matrix elements, there are no combinatorial factors and
no signs. Since we look at matrix elements on the diagonal, all outer summation
variables nā in (14.7) are zero, and therefore there are no auxiliary space oper-
ators. This means that the values of the number operators in the diagonal part
are fixed by mA = m̃A = m̂A = (0,0, 1,1, 0,0, 0,0), cf. (14.18). Thus we only have
to evaluate this diagonal part, given in (14.14).

If we denote the hypergeometric functions appearing in this equation as Faā,
with indices matching those of the auxiliary space number operator that appears
as a parameter, we can plug in the occupation numbers to obtain

Faā =















(1− t)Naā |a|= 0 , ā = 1,2, 3,4

1+ tNaā |a|= 1 , ā = 1,2, 3,4

1 ā = 5, 6,7, 8

. (15.6)

These functions determine the integrals appearing in the diagonal part (14.14).
We start with evaluating the integral for R1 and find

〈Z |R1 |Z 〉=
1

2πi

∮

t=0

dt t−1(1− t)−z− 3
2+N12+N13+N14 = 1 . (15.7)

The calculation is identical for R2 such that

〈Z |R2 |Z 〉= 1 . (15.8)
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The next two types of matrix elements are likewise trivial, for R3 one finds

〈Z |R3 |Z 〉=
1

2πi

∮

t=0

dt t−1(1− t)−z− 1
2 (1+ tN31)(1+ tN32)(1+ tN34) = 1 ,

(15.9)

and similarly for R4

〈Z |R4 |Z 〉= 1 . (15.10)

The other R-operators have non-trivial matrix elements; for the polynomial op-
erator R5 we have to evaluate a residue,

〈Z |R5 |Z 〉=
1

2πi

∮

t=0

dt t−2(1− t)−z− 1
2 (1+ tN5,1)(1+ tN5,2)(1+ tN5,3)(1+ tN5,4)

= z +
1
2
+N51 +N52 +N53 +N54 , (15.11)

and a similar calculation gives for R6

〈Z |R6 |Z 〉= z +
1
2
+N61 +N62 +N63 +N64 . (15.12)

The remaining operators are non-truncating, and the integrals are of Euler type,
yielding a Beta function. For R7,

〈Z |R7 |Z 〉= −
∫ 1

0

dt (1− t)−z− 3
2+N71+N72+N73+N74

=
1

z + 1
2 −N71 −N72 −N73 −N74

. (15.13)

Note that here we assume that the spectral parameter takes values such that the
integral converges. Since the matrix elements of the Lax operators are rational
functions, we can always perform this analytic continuation. R8 works in the
same way,

〈Z |R8 |Z 〉=
1

z + 1
2 −N81 −N82 −N83 −N84

. (15.14)

Q-functions

We now calculate the actual Q-functions as

〈Z L|Qa(z) |Z L〉=cstr
�

〈Z |Ra(z) |Z 〉
�L

, (15.15)

where the BMN vacuum of length L is |Z L〉 = |Z 〉⊗L with |Z 〉 given in (15.2).
Note that we ignore the exponential prefactor in the definition of the Q-operators,
since it carries no information from the monodromy construction and depends
on the conventions used for the Q-system, cf. section 13.2. From the expression
for the matrix elements of the correspondingR-operators given in (15.7), (15.8),
(15.9) and (15.10) we see that

〈Z L|Qa(z) |Z L〉= 1 , a = 1, 2,3,4 . (15.16)
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For the other Q-functions, the traces lead to non-trivial expression. Using the
multinomial theorem and the formula for the supertrace of polynomials in the
number operators given in (14.28) we find for Q{5},

〈Z L|Q5(z) |Z L〉=cstr
�

z +
1
2
+N51 +N52 +N53 +N54

�L

=cstr
∑

k+k0+k1+k2+k3+k4=L

�

L
k k0 k1 k2 k3 k4

�

zk

2k0
Nk1

51Nk2
52Nk3

53Nk4
54

=
L
∑

k=0

zk

�

∑

k0+k1+k2+k3+k4=L−k

�

L
k k0 k1 k2 k3 k4

�

∑k3

`3=0


k3
`3

��τ5
τ3

�`3+1−δk3,0
∑k4

`4=0


k4
`4

��τ5
τ4

�`4+1−δk4,0

2k0

� τ5
τ5−τ1

�δk1,0−1� τ2
τ5−τ2

�δk2,0−1�
1− τ5

τ3

�k3
�

1− τ5
τ4

�k4

�

.

(15.17)

The Q-function 〈Z L|Q{6}(z) |Z L〉= 〈Z L|Q{5}(z) |Z L〉 |τ5→τ6
is obtained by a sim-

ple relabeling of the result for Q{5}, as was the case for the corresponding R-
operators.

We discuss the non-rational Q-functions in more detail, to showcase how the
Lerch transcendents emerge from the supertraces. Considering Q{7},

〈Z L|Q7(z) |Z L〉=cstr(−1)L
1

(−z − 1
2 +N71 +N72 +N73 +N74)L

, (15.18)

we can use (14.30) to first evaluate the fermionic traces, which still yield a ratio-
nal expression,

〈Z L|Q7(z) |Z L〉=cstr71cstr72
(−1)L

(τ4 −τ7)(τ3 −τ7)

�

τ4τ3

(−z − 1
2 +N71 +N72)L

−
(τ3 +τ4)τ7

(−z + 1
2 +N71 +N72)L

+
τ2

7

(−z + 3
2 +N71 +N72)L

�

.

(15.19)

Now we take the first bosonic trace which according to (14.30) generates Lerch
transcendents, summing up the poles in number operators,

〈Z L|Q7(z) |Z L〉=cstr71
(−1)L(τ2 −τ7)

τ2(τ4 −τ7)(τ3 −τ7)

�

τ4τ3Φ(
τ7
τ2

, L,−z − 1
2 +N71)

− (τ3 +τ4)τ7Φ(
τ7
τ2

, L,−z + 1
2 +N71) +τ

2
7Φ(

τ7
τ2

, L,−z + 3
2 +N71)

�

.

(15.20)

Since the remaining auxiliary space number operator appears in the argument
of the Lerch transcendents, we have to evaluate the last trace using (14.31):

〈Z L|Q7(z) |Z L〉=
(−1)L(τ2 −τ7)(τ1 −τ7)
(τ4 −τ7)(τ3 −τ7)(τ1 −τ2)

∑

i=1,2

(−1)i

τi

�

τ4τ3Φ(
τ7
τi

, L,−z − 1
2)

− (τ3 +τ4)τ7Φ(
τ7
τi

, L,−z + 1
2) +τ

2
7Φ(

τ7
τi

, L,−z + 3
2)

�

.

(15.21)
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Finally the identity (14.33) allows to simplify this expression to

〈Z L|Q7(z) |Z L〉=
(τ2 −τ7)
(τ4 −τ7)

(τ1 −τ7)
(τ3 −τ7)

�

1

(z + 1
2 )L
+(−1)L

(τ2 −τ3)(τ2 −τ4)
(τ1 −τ2)τ2

Φ(τ7
τ2

, L,−z − 1
2)

+(−1)L
(τ1 −τ3)(τ1 −τ4)
(τ2 −τ1)τ1

Φ(τ7
τ1

, L,−z − 1
2)

�

.

(15.22)

The calculation proceeds similarly for Q{8}, and gives

〈Z L|Q{8}(z) |Z L〉= 〈Z L|Q{7}(z) |Z L〉 |τ7→τ8
. (15.23)

Note that these results can easily be converted into the conventions used for the
(twisted) Quantum Spectral Curve, as outlined in section 15.1 above.

The calculations we presented here do not only provide a good example of
the efficiency of the method developed in the last chapter, allowing the calcula-
tion of an entire class of Q-functions from first principles. They also showcase
the fact that these functions tend to become extremely involved, already for com-
paratively simple states, due to the presence of twists.

15.3 A matrix example: local charges, untwisting,
and single trace operators

The BMN vacuum is of course rather special, since it is an eigenstate of the model
and – in a Bethe Ansatz language – features no excitations, or magnons. To give
the reader an impression of the Q-operators in non-trivial magnon blocks, we
now discuss an example from a rank one subsector, and present explicit matri-
ces. We calculated these representations of the Q-operators using a Mathematica
implementation of the method developed in chapter 14.

We consider a magnon block in one of the closed subsectors of the theory
which enjoys su1,1 invariance in the untwisted case. States in this sector are ten-
sor products of the states

Dk
21Z = |0, k, 1, 1, 0, 0, k, 0〉 , (15.24)

and its magnon blocks have total occupation numbers (0, S, L, L, 0, 0, S, 0), where
L is the length and the spin S counts the number of excitations. The block with
L = S = 2 is three-dimensional, and the Q-operators can be written as 3 × 3
matrices in the number basis

(1, 0,0)∼Z ⊗ (D2
21Z ) ,

(0, 1,0)∼ (D21Z )⊗ (D21Z ) ,

(0, 0,1)∼ (D2
21Z )⊗Z .

(15.25)
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It is well-known that the local conserved charges of the model can be ex-
tracted from the Q-operators which correspond to the momentum-carrying lev-
els of the Bethe Ansatz, see for example Frassek and Meneghelli (2013)5 for an 5 Frassek, Meneghelli, “From Baxter

Q-Operators to Local Charges”,
1207.4513

in-depth discussion of the bosonic case. ForN =4 SYM, this means that we have
to consider the central Q-operators, with two bosonic and two fermionic indices.

In the following, we pick the operator Q12|12(u) as an example, using the
QSC-like conventions from section 15.1, and the normalization with standard
QQ-relations given in (13.24) and described in more detail there. In the basis
(15.25), this operator takes the form

Q12|12(u) =
�

x1 x2

y1 y2

�iu− 1
2 (x1 − x2)(y1 − y2)
(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

×











−u2 − 2iu y2+y3
y2−y3

+ 3y2
2+2y2 y3+3y2

3
4(y2−y3)2

−2iu y3
y2−y3

+ y3(y2+y3)
(y2−y3)2

2y2
3

(y2−y3)2

−2iu y2
y2−y3

+ y2(y2+y3)
(y2−y3)2

−u2 − iu y2+y3
y2−y3

+ y2
2+6y2 y3+y2

3
4(y2−y3)2

−2iu y3
y2−y3

+ y3(y2+y3)
(y2−y3)2

2y2
2

(y2−y3)2
−2iu y2

y2−y3
+ y2(y2+y3)
(y2−y3)2

−u2 − 2iu y2+y3
y2−y3

+ 3y2
2+2y2 y3+3y2

3
4(y2−y3)2











. (15.26)

As already observed in the case of the BMN vacuum, the twists lead to rather
involved expressions for the matrix elements.

The most important conserved charges are the momentum p of the states,
which we can extract in the form of the shift operator S = eip,

S =
Q12|12(+

i
2 )

Q12|12(−
i
2 )
=

y1 y2

x1 x2







0 0 1

0 y2
y3

0
y2

2

y2
3

0 0






, (15.27)

and the Hamiltonian

H =
d
du

log
Q12|12(u+

i
2 )

Q12|12(u−
i
2 )

�

�

�

�

u=0

= i









−3 y2+y3
y2

y2
2+y2

3

2y2
2

y2+y3
y3

−4 y2+y3
y2

y2
2+y2

3

2y2
3

y2+y3
y3

−3









. (15.28)

These matrices are diagonalized by the following states,

X =
�

−
y3

y2
, 0, 1

�

untwist
−−−−−→ (−1,0, 1) ,

K =

 

y3

y2
,−

y2 + y3 +
q

y2
2 + 34y2 y3 + y2

3

4y2
, 1

!

untwist
−−−−−→ (1, 2,1) ,

D =

 

y3

y2
,−

y2 + y3 −
q

y2
2 + 34y2 y3 + y2

3

4y2
, 1

!

untwist
−−−−−→ (1, 1,1) ,

(15.29)

where we also indicate the states to which they flow when taking the untwisting

http://xxx.lanl.gov/abs/1207.4513
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limit xa = yi = 1. The shift eigenvalues of the states are given by

S X = −
y1 y2

2

x1 x2 y3
X

untwist
−−−−−→ −X ,

S K =
y1 y2

2

x1 x2 y3
K

untwist
−−−−−→ K ,

S D =
y1 y2

2

x1 x2 y3
D

untwist
−−−−−→ D .

(15.30)

We see that the state X is (twisted) antisymmetric and has momentum π in the
untwisted model. It therefore does not belong to the spectrum ofN =4 SYM. The
primary K and D, the descendant of the length two BMN vacuum however obey
the zero-momentum condition after removing the twists. To interpret them as
single trace operators defined using the ordinary product6 in the twisted theory,6 I.e. not using the non-commutative

star product, see Beisert, Roiban,
“Beauty and the twist: The Bethe
ansatz for twisted N = 4 SYM”,
hep-th/0505187 for a discussion of
this point.

one has to parametrize the twist such that
y1 y2

2
x1 x2 y3

= 1. While the shift operator
S is still twisted under this constraint, all states have the same momentum as
in the untwisted case. We will discuss this in more generality below.

Finally, the energies of the states are

H X = −i
y2

2 + 6y2 y3 + y2
3

2y2 y3
X

untwist
−−−−−→ −4i X ,

H K = i
y2

2 − 14y2 y3 + y2
3 − (y2 + y3)

q

y2
2 + 34y2 y3 + y2

3

4y2 y3
K

untwist
−−−−−→ −6i K ,

H D = i
y2

2 − 14y2 y3 + y2
3 + (y2 + y3)

q

y2
2 + 34y2 y3 + y2

3

4y2 y3
D

untwist
−−−−−→ 0 ,

(15.31)

and the corresponding anomalous dimensions are given by γ = 2i g2H , where
the coupling is defined by g =

p
λ

4π .
It is also possible to directly get the untwisted charges in operator form. The

procedure was used in Bazhanov et al. (2010)7 for the Heisenberg spin chain,7 Bazhanov, Łukowski, Meneghelli,
Staudacher, “A Shortcut to the
Q-Operator”, 1005.3261

and is discussed for supersymmetric models on the eigenvalue level in Kazakov
et al. (2016).8 For each level of the Q-system, one so-called distinguished Q-

8 Kazakov, Leurent, Volin, “T-system
on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100

operator can be recovered by multiplying any of the operators of this level by its
inverse, evaluated at some arbitrary value of the spectral parameter, and then
removing the twists. For our example, this yields

Quntwist
12|12 (u; u0) = lim

xa ,yi→1

Q12|12(u)

Q12|12(u0)
=

1
24u3

0 − 2u0

×





(u+ u0)(4u0u+ 8u2
0 − 1) −8u0(u− u0)(u+ u0) (u− u0)(4u0u− 8u2

0 + 1)
−8u0(u− u0)(u+ u0) 2u0(8u2 + 4u2

0 − 1) −8u0(u− u0)(u+ u0)
(u− u0)(4u0u− 8u2

0 + 1) −8u0(u− u0)(u+ u0) (u+ u0)(4u0u+ 8u2
0 − 1)



 ,

(15.32)

and the untwisted shift operator and Hamiltonian follow from the same formulas
(15.27) and (15.28) as in the twisted case, simply substituting the untwisted Q-
operator Quntwist

12|12 for the twisted one. These operators are independent of the

http://xxx.lanl.gov/abs/hep-th/0505187
http://xxx.lanl.gov/abs/1005.3261
http://xxx.lanl.gov/abs/1510.02100
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normalization point u0. Note that only one untwisted Q-operator per level can
be generated as in (15.32). While a general recipe for untwisting the other Q-
functions by rotating the Q-functions appropriately can be found in Kazakov
et al. (2016),9 a systematic approach to the untwisting of operatorial Q-systems 9 Kazakov, Leurent, Volin, “T-system

on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100

remains an important open problem.

To conclude this chapter, we briefly give an overview of general states. While
we picked a particular example for the preceding discussion, essentially any Q-
operator for any magnon block can be calculated using the method developed
in chapter 14, which can quite easily be implemented using a computer alge-
bra system. The twisted shift operator, defined in equation (15.27), has a rather
simple structure, since its eigenvalues follow from the number of excitations, as
each magnon picks up a characteristic twist when the state is rotated. This al-
lows to discuss the interpretation of the spin chain states in some generality. The
eigenvalues of the shift operator for a state are given in terms of its oscillator
excitations by

Q12|12(+
i
2 )

Q12|12(−
i
2 )
= e2πi k

L

 

y
na1
1 y

na2
2

x
nd1
1 x

nd2
2 x

nd3
3 x

nd4
4 y

L+nb1
3 y

L+nb2
4

!
1
L

. (15.33)

Here, the first factor with k ∈ N is a root of unity and corresponds to the eigen-
value of the state for vanishing twists. For twisted N = 4 SYM, one first has to
restrict the Hilbert space to the twisted cyclic states, where the first factor is 1,
i.e. k = 0. In order to have a correspondence with single trace operators, i.e. or-
dinary products of fields with a cyclic trace over the color structure, it is however
necessary to ensure that also the second factor is 1. Then, despite the fact that
both the states as well as the shift operator depend on the twists, its eigenvalues
are the same as for the untwisted spin chain.

We can see how this works in the case of the γi-deformed theory. Here, in
addition to the general constraint x1 x2 x3 x4 = y1 y2 y3 y4 = 1, the twists of the
AdS/conformal part of the symmetry vanish, y1 = y2 = y3 = y4 = 1. In addi-
tion, the remaining twists are parametrized by the three parameters γi , with a
dependence on the excitation numbers:

x1 = e
i
2γ1(nd4

−nd3
)e

i
2γ2(nd2

−nd4
)e

i
2γ3(nd2

−nd3
) ,

x2 = e
i
2γ1(nd3

−nd4
)e

i
2γ2(nd3

−nd1
)e

i
2γ3(nd4

−nd1
) ,

x3 = e
i
2γ1(nd1

−nd2
)e

i
2γ2(nd4

−nd2
)e

i
2γ3(nd1

−nd4
) ,

x4 = e
i
2γ1(nd2

−nd1
)e

i
2γ2(nd1

−nd3
)e

i
2γ3(nd3

−nd2
) .

(15.34)

This parametrization removes the redundancy in the twists by ensuring that the
constraint x1 x2 x3 x4 = 1 is satisfied; moreover, it renders x

nd1
1 x

nd2
2 x

nd3
3 x

nd4
4 = 1.

Therefore the shift eigenvalues (15.33) are indeed given by roots of unity.
For the fully twisted theory, a similar parametrization is likely required, using

six independent parameters, and a relation involving the six psu2,2|4 charges of
the states, generalizing (15.34).

http://xxx.lanl.gov/abs/1510.02100
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In principle, the matrix representatives of the Q-operators in each magnon block
can be used as input data for perturbative calculations using the Quantum Spec-
tral Curve, along the lines of Marboe and Volin (2015).10 Indeed, this is the10 Marboe, Volin, “Quantum spectral

curve as a tool for a perturbative
quantum �eld theory”, 1411.4758

main motivation for the work presented in this and the last chapters. Some sub-
tle issues have however to be overcome: the reparametrization of the twists just
discussed introduces a novel source of dependence on the anomalous dimension
into higher-loop calculations, which will be interesting to investigate;11 while11 In preliminary experiments with

the Quantum Spectral Curve, we
indeed found that such a constraint is
necessary for the consistency of the
calculations.

the QSC is believed to have the same structure for the fully twisted theory, its
perturbative behavior remains to be investigated. More importantly, the opera-
torial form of the QSC might pose further challenges. For example, we expect
that the consistency of these calculation will require some magnon blocks to be
fused into larger matrices, capturing the length-changing effects at higher loop
order, which prevents a QISM construction of the Q-operators in the first place.
It will be exciting to see this effect emerging from the viewpoint of the QSC. In
general, being able to obtain eigenstates at high loop order promises to deepen
our understanding of the AdS5/CFT4 system as an integrable model. In partic-
ular it might shed new light on the question of how integrability emerges from
the field theory.

http://xxx.lanl.gov/abs/1411.4758
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Conclusion

In this thesis we investigated the interpretation of form factors as states of the
integrable spin chain model underlying N = 4 SYM at weak coupling. To this
end, we developed on-shell methods for this class of quantities. We also showed
that nonplanar on-shell functions, which are related to those of form factors,
exhibit partial Yangian invariance beyond the planar limit; some of them even
play a role as intertwiners on the spin chain. To make progress towards a way of
calculating the states of the integrable model at higher loop order, we developed
efficient methods to calculate Baxter Q-operators for non-compact super spin
chains, which can be used as input data for the yet to be investigated operatorial
form of the Quantum Spectral Curve. Here we summarize our main results.

In the first of the three parts of this thesis we developed and investigated some
on-shell methods for form factors. In particular this shows that the corresponding
formulations and techniques are applicable to partially off-shell quantities.

We first showed in chapter 3 how BCFW recursion relations lead to diagram-
matic representations of tree-level form factors of the chiral stress-tensor multi-
plet which are almost identical to amplitude on-shell diagrams, but contain the
minimal form factor as an additional vertex. These diagrams inherit many of the
properties of their amplitude counterparts; in particular we described how many
of them can be understood by inverse soft factors, and how permutations can be
associated to them.

Building on the observation that form factor “top-cell” diagrams (correspond-
ing to top dimensional forms on the Graßmannian) are related to the amplitude
top-cell diagrams by the simple mapping, shown graphically in (3.15), replacing
a box diagram by the minimal form factor, we developed a Graßmannian picture
for the off-shell kinematics of the form factor, and a method to glue the mini-
mal form factor into arbitrary on-shell diagrams in chapter 4. These tools then
allowed to obtain a Graßmannian integral representation for form factors, given
in equations (4.24) and (4.25). This is the main result of the first part of this
work, and a first indication that Graßmannian, or generally geometric formula-
tions exist for objects which are more general than scattering amplitudes, in par-
ticular for quantities involving off-shell kinematics. We furthermore translated
the Graßmannian integral to twistor (equation (4.39)) and momentum twistor
space (equation (4.60)), and calculated a variety of example form factors from
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this representation. In chapter 5, we derived the BCFW contour prescription for
the NMHV integral, given in equation (5.21), which allows to calculate all form
factors with this MHV degree. To make progress towards an understanding of the
contour for all form factors, we investigated the Graßmannian representation of
the connected prescription for form factors in chapter 6. Remarkably we found
that in contrast to the amplitude case, this formulation cannot easily be mapped
to the Graßmannian integral derived from on-shell diagrams, and thus seem to
provide a rather different representations of the same quantity.

In the second part of this thesis, building on the on-shell diagrams we de-
veloped for form factor, we investigated the integrability properties of on-shell
functions with arbitrary operator insertions, as well as nonplanar amplitude on-
shell functions. We proved hidden symmetries of these quantities and discussed
their interpretation as spin chain states.

In chapter 8, we turned the on-shell diagram construction for form factors of
the chiral stress-tensor multiplet into an integrability-based R-operator formal-
ism, which generalized the amplitude version by considering the minimal form
factor as an additional vacuum state. This leads to deformations of the form
factors, and allows to easily investigate the integrability-related symmetries of
the functions. We explicitly showed that, while not Yangian invariant, form fac-
tor on-shell functions are annihilated by integrable transfer matrices, see equa-
tion (8.27). They can thus be considered as eigenstates of the spin chain model.
The construction also allowed us to consider on-shell functions with an inser-
tion of an arbitrary operator, which likewise are eigenstates of the transfer ma-
trix, with eigenvalues related to those of the single trace operator in the spectral
problem (equation (8.38)). We furthermore showed in chapter 10 that in addi-
tion to the symmetries generated by the transfer matrix, a part of the Yangian
invariance of “pure” on-shell functions persists in the presence of the operator
insertion; these symmetries are given in equation (10.15).

As a further generalization, we considered nonplanar on-shell diagrams and
the corresponding on-shell functions, which play a role as leading singularities
in nonplanar loop calculations, and bear some resemblance with form factor on-
shell functions. In chapter 9, we defined an action of Yangian generators on these
diagrams, using the RTT formalism and restricting to individual boundaries of
the diagrams, on which a well-defined ordering of states is possible. We found
that in this sense, nonplanar on-shell functions are, remarkably, still partially
Yangian invariant; the higher levels of the Yangian still annihilate them, as pre-
sented in equation (9.16). The first few levels of symmetries are broken, with the
number of broken symmetries governed by the amount of nonplanarity in a pre-
cise way. We derived additional symmetries which are given in equation (9.24),
and are written in terms of the transfer matrix. A main result of this chapter is
the identity (9.21) for diagrams on cylinders. It is essentially a conservation law
of higher charges and can be interpreted as an intertwining relation, and allows
to think of these diagrams as members of the commuting family of operators of
the integrable model.

All the quantities we discussed have representations in terms of Graßmann-
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ian integrals. In chapter 11 we proved a curious relation (equation (11.13)) that
maps the gl4|4 transfer matrix, acting on such an integral, to a glk transfer ma-
trix acting on the integrand. This relation, as well as a related formula for the
generators of the Yangian, can conveniently be used to check and investigate the
symmetries we derived for Graßmannian integrals corresponding to different
types of on-shell diagrams. The map between spin chains is also quite interest-
ing in its own right, and we started a preliminary study of the spin chains that
have the Graßmannian integrands as eigenstates. In particular we showed that
the MHV case corresponds to an integrable model which previously appeared in
the context of high energy scattering in QCD.

In the final, third part of this thesis, we turned to the states of the integrable
model behind planar N =4 SYM describing single trace operators, and investi-
gated Baxter Q-operators for the spin chain at the one-loop level. Given the re-
cent successes of the Quantum Spectral Curve, which describes the eigenvalues
of these operators at finite coupling in a beautiful and concise way, the develop-
ment of methods to calculate the Q-operators at one loop is an important step
to lift the QSC to the full operatorial form of the Q-system, and thus to calculate
the states of the model at higher loop order.

After reviewing single trace operators, the QSC, and Q-operators in chap-
ter 12, we gave a derivation of the Lax operators necessary for the monodromy
construction of Q-operators of rational super spin chains with Jordan-Schwinger
type representations, in chapter 13. We defined these Q-operators and their func-
tional relations, and discussed the relevant representations of the non-compact
algebras up,q|r+s. For these representations, the Lax and consequently also the Q-
operators are given in terms of infinite sums over intermediate states, rendering
concrete calculations extremely difficult. We exemplified this problem, as well
as our solution for spin −s Heisenberg models. Based on the form of the Lax
operators, we then discussed the structure of the Q-system for the general case,
where the knowledge about the infinite sums allows to separate the Q-operators
into two classes, with distinct analytic structures.

In chapter 14, we then developed a general method to explicitly evaluate
such non-compact Q-systems, providing all necessary formulas for practical cal-
culations. We first derived an integral representation of the Lax operators of the
lowest level which does not feature infinite sums. This allows to calculate the
matrix elements of the operators between states in the physical space. We pro-
vided formulas to evaluate the supertraces giving the matrix elements of the cor-
responding Q-operators in terms of a restricted class of special functions. Since
the Q-operators are block diagonal, these matrix elements can be assembled into
finite representative matrices for each magnon sector, and all other Q-operators
can be then recovered by solving the functional QQ-relations.

Finally, we applied this much more general technology to N =4 SYM at one
loop in chapter 15. We showed how it can be used to calculate the Q-functions
of the BMN vacuum state in fully twisted N =4 SYM for arbitrary length. Using
a magnon block from a rank one sector of theory as an example, we discussed
further important aspects, such as the calculation of the local charges, and the
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untwisting of the model. Since the presence of twists for the space-time part of
the symmetry algebra renders the field theory described by this spin chain non-
commutative, we furthermore discussed parametrizations of the twists which are
necessary to interpret the cyclic states as single trace operators. This aspect is all
the more important for using the Q-operators we calculated as input data for
perturbative calculations using the Quantum Spectral Curve, as we are doing in
ongoing work. Via this approach, the methods we developed here are a crucial
first step for obtaining the eigenstates of the model – twisted and untwisted
– at higher loop order. We hope that this information will shed new light on
the mysterious way in which integrability emerges from a four-dimensional field
theory.

Open problems & directions for future research

One of the features which sets on-shell diagrams and the associated Graßmann-
ian integrals for form factors apart from their amplitude counterparts is the ne-
cessity of multiple top-cell diagrams. The fact that these diagrams are related
by cyclic relabellings is clearly an indication that the formalism does not take
the color structure of form factors, with the operators a color singlet, properly
into account. Is it possible to have a single top-cell diagram for form factors? We
expect that if this is the case, one will likely have to consider nonplanar diagrams.

To make the Graßmannian integral a useful tool for the calculation of any
form factor, a general expression for the contour is needed, extending our result
for NMHV form factors presented in chapter 5. While it is possible to attack
this problem via the BCFW recursion relations, an approach using the connected
prescription would likely be more fruitful, as it was for amplitudes. However, as
chapter 6 showed, the relation of this formulation to the Graßmannian integral
seems to be rather subtle for form factors. We hope that further investigations
of this issue will provide a better understanding of both representations of form
factors. It might also be interesting to consider the idea that reality conditions
on the kinematics uniquely determine the contour in this context.1

1 Kanning, Ko, Staudacher, “Graßmann-
ian integrals as matrix models for
non-compact Yangian invariants”,
1412.8476

The program of investigating on-shell diagrams and related ideas for form
factors closely mirrors previous developments for amplitudes, but currently, re-
sults at loop level are completely missing. In particular it remains to be shown
whether all loop recursion relations similar to those in equation (2.40) exist. One
could also ask if some “formfactorhedron” space exists, which describes form fac-
tors in a purely geometric way, generalizing the amplituhedron.2 Hints for such a

2 Arkani-Hamed, Trnka, “The Am-
plituhedron”, 1312.2007; and
Arkani-Hamed, Trnka, “Into the
Amplituhedron”, 1312.7878

generalization might come from the on-shell diagram representation of the am-
plituhedron,3 and its relation to the Yangian,4 as well as similar constructions

3 Bai, He, “The Amplituhedron from
Momentum Twistor Diagrams”,
1408.2459

4 Ferro, Łukowski, Orta, Parisi, “Yangian
Symmetry for the Tree Amplituhe-
dron”, 1612.04378

for correlation functions.5
5 Chicherin, Doobary, Eden, Heslop,
Korchemsky, Mason, Sokatchev,
“Correlation functions of the chiral
stress-tensor multiplet in N =
4 SYM”, 1412.8718; and Eden,
Heslop, Mason, “The Correlahedron”,
1701.00453

Finally, it is natural to wonder whether on-shell diagrams and Graßmannian
integrals can be adopted to a wider range of quantities, such as generalized form
factors with multiple operator insertion, or even correlation functions without

http://xxx.lanl.gov/abs/1412.8476
http://xxx.lanl.gov/abs/1312.2007
http://xxx.lanl.gov/abs/1312.7878
http://xxx.lanl.gov/abs/1408.2459
http://xxx.lanl.gov/abs/1612.04378
http://xxx.lanl.gov/abs/1412.8718
http://xxx.lanl.gov/abs/1701.00453
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any external on-shell states. It would also be desirable to investigate insertions
of arbitrary single trace operators (in particular from an integrability viewpoint,
see chapter 8). The fact that ideas presented in this work have already been
successfully used for off-shell gluons parametrized via Wilson lines in Bork and
Onishchenko (2017a)6 raises hope that they are indeed more widely applicable. 6 Bork, Onishchenko, “Wilson lines,

Grassmannians and gauge invariant
o�-shell amplitudes in N = 4 SYM”,
1607.02320The most pressing question concerning the symmetries derived in Part II of this

work, for form factor and nonplanar on-shell functions, is how constraining they
ultimately turn out to be.

For nonplanar on-shell diagrams, a starting point for such an investigation
could be the recent work Bourjaily et al. (2016),7 which presented a classifica- 7 Bourjaily, Franco, Galloni, Wen,

“Stratifying On-Shell Cluster Varieties:
the Geometry of Non-Planar On-Shell
Diagrams”, 1607.01781

tion of on-shell forms on the Graßmannian G(3,6). It would be very interesting
to see whether the top-forms given there are completely determined from the
symmetries derived in chapter 9; for this task, applying the symmetry genera-
tors directly on the level of the form using the mapping discussed in chapter 11
could prove very useful.

Nonplanar on-shell diagrams do not represent full contributions to the ampli-
tude or its integrand. Given the remarkable properties amplitudes inN =4 SYM
seem to enjoy even in subleading contributions of the 1

N expansion,8 we think 8 Bern, Herrmann, Litsey, Stankowicz,
Trnka, “Logarithmic Singularities
and Maximally Supersymmetric
Amplitudes”, 1412.8584; Arkani-
Hamed, Bourjaily, Cachazo, Trnka,
“Singularity Structure of Maximally Su-
persymmetric Scattering Amplitudes”,
1410.0354; and Bern, Herrmann,
Litsey, Stankowicz, Trnka, “Evidence
for a Nonplanar Amplituhedron”,
1512.08591

that the hidden symmetries of the nonplanar leading singularities might serve
as well-motivated candidate symmetries which might be lifted to (parts of) the
amplitude integrand. In particular we would like to stress that the RTT formu-
lation circumvents the necessity to use dual momenta which are unavailable in
the nonplanar case.

In a broader context we hope that having discovered at least traces of inte-
grability for quantities appearing in nonplanar N = 4 SYM is a motivation to
reconsider the problem of integrability beyond the planar limit in more general-
ity, in particular in the light of recent advances for correlation functions.9 9 Basso, Komatsu, Vieira, “Structure

Constants and Integrable Bootstrap
in Planar N = 4 SYM Theory”,
1505.06745; Fleury, Komatsu,
“Hexagonalization of Correlation
Functions”, 1611.05577; Basso,
Coronado, Komatsu, Lam, Vieira,
Zhong, “Asymptotic Four Point
Functions”, 1701.04462; and Eden,
Sfondrini, “Tessellating cushions:
four-point functions in N = 4 SYM”,
1611.05436

From a spin chain perspective, it would furthermore be interesting to see if
some kind of Bethe Ansatz allows to determine nonplanar and form factor on-
shell functions. For Yangian invariants, such an Ansatz was developed in Frassek
et al. (2014),10 but not fully worked out for the case of the N = 4 SYM spin

10 Frassek, Kanning, Ko, Staudacher,
“Bethe Ansatz for Yangian Invariants:
Towards Super Yang-Mills Scattering
Amplitudes”, 1312.1693

chain. In both cases such a generalization of the Bethe Ansatz would be rather
novel, as the monodromy and transfer matrices act only on a subset of the spin
chain sites; again there might be interesting intersections with the work on cor-
relation functions, in particular the lowest order “tailoring” picture. Of course,
the question of how to incorporate general operators poses itself also here.

Concerning the interpretation of the Graßmannian integral as a map between
two different spin chains which we presented in chapter 11, many questions
remain open. We clearly lack an understanding of why it works, and how it can
be used. It would be desirable to find further glk invariant states on the spin
chain describing the form on the Graßmannian, and to see what they correspond
to in N =4 SYM. Since the Yangian generates positive diffeomorphisms on the
Graßmannian,11 it would also be interesting to give a geometric interpretation

11 Arkani-Hamed, Bourjaily, Cachazo,
Goncharov, Postnikov, Trnka, “Scat-
tering Amplitudes and the Positive
Grassmannian”, Cambridge University
Press, 2016, 1212.5605to the higher charges of the integrable model, generated by transfer matrices.

http://xxx.lanl.gov/abs/1607.02320
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The derivations we gave for the mapping between transfer matrices in equa-
tion (11.13) did not exploit any special properties of the N =4 SYM spin chain.
Given that formulas resembling the Graßmannian integral appear to be generi-
cally good representations of Yangian invariants for gln and gln|m, the mapping
could possibly be generalized to any pair of algebras, also for spin chains with
compact representations. We suspect that this could be used to find novel rela-
tions between integrable models.

The method we presented in section 14.3 generates the higher levels of the Q-
operator system by solving the functional relations with the lowest level as input
data. While this is an efficient approach for practical calculations, it would be
satisfying from a theoretical perspective to derive formulas representing general
R-operators in a more explicit way. In particular, it is likely that some form of
integral formula would be useful to factor the contributions of different sums.
The preliminary results presented in section 14.4 suggest that for non-compact
Q-operators, identities of more complicated hypergeometric functions will be
needed to exploit the recursive structure.

The oscillator construction of Q-operators used here is not the only approach
investigated in the literature, there are other methods based on integral kernels1212 Belitsky, Derkachov, Korchemsky,

Manashov, “Baxter Q-operator
for graded SL(2|1) spin chain”,
hep-th/0610332; Derkachov,
Manashov, “R-matrix and baxter Q-
operators for the noncompact SL(N,C)
invariant spin chain”, nlin/0612003;
Derkachov, Manashov, “Noncompact
sl(N) spin chains: BGG-resolution,
Q-operators and alternating sum
representation for �nite dimensional
transfer matrices”, 1008.4734;
and Derkachov, Manashov, “Fac-
torization of R-matrix and Baxter
Q-operators for generic sl(N) spin
chains”, 0809.2050

or group characters.13 To our knowledge, these different formulations have never

13 Kazakov, Leurent, Tsuboi, “Baxter’s
Q-operators and operatorial Backlund
�ow for quantum (super)-spin
chains”, 1010.4022

been directly compared or brought into a unified language, but we strongly sus-
pect that this will lead to valuable insights.

Conceptually, it is very unsatisfying to work with the fully twisted spin chain;
the model is not the “physical” model we are actually interested in, and the sym-
metry is massively broken. On a technical level, this leads to horrendous expres-
sions, cf. the examples presented in chapter 15, which are amongst the simplest
ones in the theory. There exists a method developed by Pronko and Stroganov14

14 Pronko, Stroganov, “Bethe equations
‘on the wrong side of equator’”,
hep-th/9808153

and brought into operatorial form in Bazhanov et al. (2010),15 which leads to un-

15 Bazhanov, Łukowski, Meneghelli,
Staudacher, “A Shortcut to the
Q-Operator”, 1005.3261

twisted Q-operators for the Heisenberg spin chain. However, no generalization
to higher rank is known, and the definitions involve matrix inversion and do not
follow the standard monodromy construction. It is an important open question
to develop some formalism for untwisted Q-operators, for N =4 SYM and more
general spin chains; a good starting point for such an investigation is untwisting
procedure developed in Kazakov et al. (2016)16 for the individual Q-functions

16 Kazakov, Leurent, Volin, “T-system
on T-hook: Grassmannian Solution
and Twisted Quantum Spectral Curve”,
1510.02100

of general rational spin chains.
Our main motivation for developing methods for the efficient calculation of

Q-operators for non-compact spin chains was of course their application toN =4
SYM and the Quantum Spectral Curve. Since the QSC is an algebraic Q-system,
we strongly suspect that non-perturbative Q-operators exist for the integrable
model behind N = 4 SYM. Since the spin chain picture – or at least the QISM
construction – breaks down at higher loop order, because of length-changing
effects, a construction of these Q-operators from first principles remains out of
reach. Our idea, which we plan to spell out in future work, is to use the informa-
tion available as of now, namely the one-loop Q-operators in their explicit matrix
form developed here, and methods to solve the QSC perturbatively. Combining
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these methods, it should be possible to calculate the matrix elements of the Q-
operators in a perturbative expansion to high loop order. Apart from providing
hints towards a non-perturbative construction, these matrices would allow more
direct comparisons with field theoretic calculations. Moreover, they would con-
tain information on the eigenstates of the integrable model beyond one-loop,
and even at wrapping order. From a field theory perspective these states are
renormalization scheme dependent; it would be interesting to see which scheme
is chosen by the integrable model. There are numerous, mostly technical, chal-
lenges towards this goal: One needs a procedure for untwisting the Q-operators,
or a detailed understanding of the perturbative behavior of the twisted QSC; a
better understanding of the potential subtleties of reading the QSC equations as
operator statements; and finally, an efficient computer implementation to make
these calculations feasible. We hope to address these challenges soon.

As of now, Q-operators paired with the Quantum Spectral Curve appear to
be the only available source for data on the finite size states at higher loop order.
Apart from other complications, the Q-operators provide a method of represent-
ing the higher-loop integrable model, but are explicitly not a way of diagonaliz-
ing it. Sklyanin’s quantum Separation of Variables approach17 has been regarded

17 Sklyanin, “Quantum inverse scat-
tering method. Selected topics”,
hep-th/9211111; and Sklyanin,
“Separation of Variables. New Trends.”,
solv-int/9504001

as a promising avenue for a while and has recently been developed further for
higher rank algebras.18 It will be interesting to see how these methods converge

18 Gromov, Levkovich-Maslyuk, Sizov,
“New Construction of Eigenstates
and Separation of Variables for SU(N)
Quantum Spin Chains”, 1610.08032

in the context of the Quantum Spectral Curve.
Another possible testing ground for the investigation of higher-loop states

and Q-operators is the chiral field theory recently constructed as a strongly twisted
limit of γi-deformed super Yang-Mills.19 Compared to full N =4 SYM, the inte-

19 Gürdoğan, Kazakov, “New Integrable
4D Quantum Field Theories from
Strongly Deformed Planar N = 4
Supersymmetric Yang-Mills Theory”,
1512.06704, [Addendum: Phys.
Rev. Lett.117,no.25,259903(2016)];
and Caetano, Gurdogan, Kazakov,
“Chiral limit of N = 4 SYM and ABJM
and integrable Feynman graphs”,
1612.05895

grable model behind this theory is closer to an ordinary non-compact spin chain
and may thus provide a fruitful setting for applying and extending the Q-operator
techniques developed here.
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