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Abstract

Price prediction is one of the main challenge of quantitative finance. This paper presents a
Neural Network framework to provide a deep machine learning solution to the price prediction
problem. The framework is realized in three instants with a Multilayer Perceptron (MLP), a
simple Recurrent Neural Network (RNN) and a Long Short-Term Memory (LSTM), which can
learn long dependencies. We describe the theory of neural networks and deep learning in order
to be able to build a reproducible method for our applications on the cryptocurrency market.
Since price prediction is used in order to make financial decisions such as trade signals, we com-
pare different approaches of the prediction problem by exploring supervised learning methods
in classification tasks. We study these models to predict out-of-sample price directions of height
major cryptocurrencies with a rolling window regression method. For that goal, we build a
classification problem that predicts if the price of each cryptocurrency will increase or decrease
considerably, as a basis for three-months trading strategies. We build different trading strategies,
based on long or long/short positions build on our predictions and compare their performance
with a passive index investment on the cryptocurrency market that follows CRIX (Trimborn and
Härdle; 2016). Cryptocurrencies, Bitcoin being the most famous, are electronic money based
on Blockchain technology that can be used as a decentralized alternative to fiat currencies.
Thanks to their numerous applications, the cryptocurrency market has experienced an expo-
nential growth during 2017. We compare different weighted portfolios to test how an investor
can benefit from fundamental indicators such as market capitalization. We find that LSTM
has the best accuracy for predicting directional movements for the most important cryptocur-
rencies of CRIX and that an equally weighted portfolio beats CRIX on the first quarters of 2017.

Keywords: Deep learning, multilayer perceptron, recurrent neural network, long short-term
memory network, cryptocurrencies, CRIX
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Introduction

On December 17th 2017, Bitcoin prices worthed almost over 20 000 dollars while at the beginning
of the year, it was selling for 1000 dollars. Was this rapid growth predictable ?

Stock price forecasting is one of the most important task of quantitative finance. Indeed,
profits are the guiding force behind most investment choices. Stock market investors need to
know the appropriate time to buy or sell stocks in order to maximize their investment return.
However, stock market prices do not behave as simple time series. The theory of price prediction
is a major discussion topic in Finance. The Efficient Market Hypothesis, which states that price
prediction is useless for profit maximization, has attempted to give a definite answer. However,
with the appearance of Behavioral Finance, many financial economists believe that stock prices
are at least partially predictable on the basis of historical stock price patterns, which reinvigorate
Fundamental and particularly Technical analysis as tools for price prediction.

Deep Learning models, particularly deep feedforward neural networks, have already found
numerous applications in quantitative finance, such as volatility forecasting. In a supervised
learning scheme, neural networks are useful tool for price prediction since no strong assumption is
needed for their application, which contrasts with traditional time series models, such as ARIMA
and its extensions. Moreover, deep learning architectures catch patterns with an important
generalization power and most recent LSTM networks seem more appropriate for sequential
data such as time series. Nevertheless, Deep Learning is frequently criticized for lacking a
fundamental theory that could crack open its black box.

In this thesis, we explain the neural network theory and investigate how LSTM networks
can outperform, in terms of prediction accuracy, former deep neural network architectures,
such as MLP and RNN, on the cryptocurrency market, which recently sparked the interest
of new investors on the financial market. In order to reflect trading decisions, we show how,
in supervised learning, a deep neural network successfully predicts price movements within a
classification task. Then, we build a simple investment strategy based on a long-term portfolio
comprised of the most important cryptocurrencies from CRIX, the cryptocurrency index from
Trimborn and Härdle (2016). These results may be used as a basis for a trading strategy.

We first overview deep MLP, RNN and LSTM models by explaining the basic concept of
neural networks, their elements and architectures. Then, we explain the deep learning method
for neural networks. Finally, we present our application of these models on the cryptocurrency
market by building a simple trading strategy.
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Chapter 1

Deep neural networks

In this chapter, we discuss different architectures of deep neural networks. We explain how they
corresponds to different representation of nonlinear functions, from a static relation thanks to
deep feedforward networks (section 1.1) to dynamic process thanks to recurrent neural networks
which, as we will see in sections 1.2 and 1.3, are necessarily very deep architectures. We explain
also how these models are built, defining their elements by discussing essentially the notions of
neurons and activations functions.

1.1 Deep feedforward networks

Deep feedforward networks, also called feedforward network or multilayer perceptron (MLP) are
of extreme importance to machine learning. They form the basis of all the extended neural
networks architectures and have many commercial applications.

The idea behind feedforward neural networks is a non-linear system, which goal is to ap-
proximate a function y = f∗(x). A neural network maps the input x into the output ŷ through
a function ŷ = f(x, θ) that is an approximation of f∗. Its goal is to learn the parameters θ of
the mapping to get the best approximation ŷ of the targeted output y.
It is called feedforward because the information flow is unidirectional, from the input x through
the function f and to the output ŷ. There are no cycle, or feedback connection, where the output
is fed back into the network. Networks with such cycles are called recurrent networks presented
in Section 1.2.
It is called network because we can see the model as a directed graph whose nodes are grouped
in several levels, which are called layers. For example, Figure 1.1 shows a feedforward network
with one input layer, one hidden layer and one output layer. By composing in a chain two
functions, this network maps the output ŷ as follows

ŷ = f (2)(f (1)(x)) (1.1)

where f (1) is the hidden layer and f (2) is the output layer. The number of hidden layers, or the
length of the chain, gives the depth of the network.

Finally, because the role of each node is analogous to a brain neuron, we call the network
neural and nodes neurons. The number of neurons in the hidden layers gives us the width of the
model. We will first explain how neurons in neural networks works.

1.1.1 Nonlinear Neurons

The basic idea of nonlinear models is to start from a linear model and apply it to a transformed
input φ(x) instead of x, where φ is nonlinear transformation. The goal of deep learning is then
to determine how to choose the function φ. In practice, we do not know a piori this function,

1



2 CHAPTER 1. DEEP NEURAL NETWORKS

thus we need to learn it. We can then reformulate the model as follows:

ŷ = f(x; θ, w) = φ(x; θ)>w

where we use the parameter θ to learn φ and parameter w to map φ(x) to the desired output
(Goodfellow et al.; 2016).

A famous primary example is the XOR function, ”exclusive or” function, which takes the
binary variable x = (x1, x2)

> ∈ {0, 1}2 as input and produce the output y = f∗(x) as follows:

y = 1, if either x1 = 1, or x2 = 1,

y = 2, if x1 = x2 = 0, or x1 = x2 = 1

To approximate f∗, we need to learn the parameter θ of the function ŷ = f(x; θ). It is easy
to show that a linear model, such as Rosenblatt’s perceptron, (Rosenblatt; 1958), cannot learn
the XOR function. The perceptron uses a linear combiner, g : x 7→ w>x + b, followed by a
threshold function x 7→ 1x≥0. By noting w = (w1, w2), the weights vector of the perceptron and
b, a bias vector, the parameters of the model are θ = (w, b). The perceptron maps the input x
to the output ŷ as follows:

ŷ = f(x;w, b) = 1w>x+b≥0

We can easily see that it is a linear classifier that map an object x, into two classes C0 and
C1, when the output variable ŷ is 0, respectively 1. Nevertheless, the latter is true only when
the two classes are linearly separable.

Definition 1.1 (linearly separable)
For p ≥ 1 two subsets X0,X1 ⊆ Rp are called linearly separable if w ∈ Rp, b ∈ R exists with

b+ w>x > 0 for x ∈ X1,
b+ w>x ≤ 0 for x ∈ X0.

The perceptron corresponds to an hyperplane defined by w1x1 +w2x2 +b = 0, that separates
the two classes. However, in the case of the XOR classifier, we can easily see that no hyperplane
exits, making the linear perceptron incapable of learning the XOR function.
For example, let the input-output matrix be:

x1 x2 ŷ

0 0 0

0 1 1

1 0 1

1 1 0

We have the following equations:

0 ∗ w1 + 0 ∗ w2 + b ≤ 0 ⇔ b ≤ 0 (1.2)

0 ∗ w1 + 1 ∗ w2 + b > 0 ⇔ b > −w2 (1.3)

1 ∗ w1 + 0 ∗ w2 + b > 0 ⇔ b > −w1 (1.4)

1 ∗ w1 + 1 ∗ w2 + b ≤ 0 ⇔ b ≤ −w1 − w2 (1.5)

We can see that Equation (1.5) is contradictory with Equations (1.3) and (1.4). Indeed,
because the inputs are not linearly separable, the XOR problem cannot be learned with a
linear perceptron. We can solve this problem by using a different function φ that map the
inputs into another feature space that can represent the classifier.
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Let us create a simple feedforward network with one hidden layer with two units, see Figure
1.1. The vector of hidden units h = (h1, h2) is computed by the function f (1) : x 7→ f (1)(x;W, c),
the output layer ŷ is then computed by the function f (2) : x 7→ f (2)(x;w, b) using h as in-
put. Thus, the network is represented in the chain function: f : x 7→ ŷ = f(x;W, c,w, b) =
f (2)(f (1)(x)). We must choose a function for f (1) and for f (2) but we can not use linear func-
tions otherwise the network would be linear. Neural networks uses nonlinear perceptrons as a
regular function for hidden units. The nonlinear perceptron consists of a fixed nonlinear function
g, called an activation function, or squashing function, applied to Rosenblatt’s linear perceptron:

h = g(w>x+ b)

where w = (w1, . . . , wp)
> is the weights of the hidden layer, b its biases and g the activation

function chosen.

x

h1

h2

ŷ

W1

W2

w1

w2

Hidden
layer

Input
vector

Output
layer

Figure 1.1: Simple neural network with two hidden units, for clarification the biases are not
represented

Definition 1.2 (Activation function)
The activation function at hidden neuron i applies element-wise the operation hi = g(W>:,ix+bi),
where W:,i is the vector of weights connected to the neuron i and bi its bias.

Neural networks use different activation functions and one of the most common function, for
a classification task, is the logistic function, often called sigmoid function:

σ(x) =
1

1 + exp(−x)
, x ∈ R (1.6)

Using the sigmoid function as activation function both for the hidden and output neurons,
the complete network is then:

ŷ = f(x;W, c,w, b) =
1

1 + exp(−w>h− b)
, with h =

1

1 + exp(−W>x− c)
We can now give a solution to the XOR problem. Let

W =

(
20 −20
20 −20

)
,

c =

(
−10
30

)
,

w =

(
2
2

)
and b = −3.
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Let us explain how the model processes a batch of inputs. Let x(1), x(2), x(3), x(4) ∈ R2 be
the set of inputs, called the training set and which we can represent in matrix form with one
example per column:

X =

(
0 0 1 1
0 1 0 1

)
During the first step in the neural network, we multiply the input matrix by the first layer’s

weight matrix:

W>X =

(
0 20 20 40
0 −20 −20 −40

)
Then we add the bias vector c, to obtain:(

−10 10 10 30
30 10 10 −10

)
To get the value of h for each input example, we apply the sigmoid function:

h '
(

0 1 1 1
1 1 1 0

)
After this transformation, the inputs are not on a single line anymore, thus, we can find a

hyperplane. Let us process this inputs through the final output layer, we multiply by the weight
vector w, add the bias b and apply the sigmoid function to get:(

1 0 0 1
)

We can solve the XOR problem with different neural networks, using other activation func-
tions. In modern applications, the default use is the rectified linear unit or ReLU (Jarrett et al.;
2009), defined by the activation function g(z) = max(0, z), z ∈ R. A neural network with only
one hidden ReLU unit and a linear perceptron as output layer solves the XOR problem.

1.1.2 Multilayer perceptron

As we can see with the latter classification problem, determining the architecture of a neural
network is of great importance. The architecture refers to the structure of the network that
is defined by its depth, its width and the connections between its units. Most neural networks
combine hidden layers in a chain structure, as in Equation (1.1), where the output of the previous
layer is the input of the next layer:

h(1) = g(1)(W (1)>x+ b(1))

h(2) = g(2)(W (2)>h[1] + b(2))

. . .

h(d) = g(d)(W (d)>h[d−1] + b(d))

We call this architecture a multilayer perceptron (MLP) or multilayer neural network. Figure
1.2 represents such a multilayer perceptron.

The question of the depth of the network, when determining the architecture of a neural
network is very important. Hornik et al. (1989) showed that a feedforward network with a
single hidden layer with sufficiently many hidden units and arbitrary bounded and nonconstant
activation functions, such as sigmoid activation function, are universal approximators for finite
input. Thus, a multilayer perceptron can approximate any continuous function mapping from a
finite dimensional discrete space to another.
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x1

x2

x3

x4

y

Hidden
layer 1

Hidden
layer 2

Input
vector

Output
layer

Figure 1.2: Multilayer perceptron
MLP with 4 inputs units corresponding to the input vector x = (x1, x2, x3, x4), 2 hidden layers with 8 and 4 units
respectively and 1 output unit corresponding to the output variable y

The universal approximation theorem has also been proved for a wider class of activation
functions, such as ReLU, (Leshno et al.; 1993). While this theorem means that a sufficiently
large MLP can represent any function, it does not mean that we can necessarily learn it. As
we will see in the next chapter, very large network are very slow to train, that is why we often
prefer deep rather than large networks.

1.1.3 Back-propagation

Introduction to statistical learning

We know that we can implement a neural network to represent any function from input to
output, but we need to define how to find the network parameters based on a training set and
output targets.

In the XOR function example, we gave a specific solution to the classification problem that
has no error. In real application, the training set can have billions of observations that we want
to classify in a model that uses many parameters. In that case, we need to learn the parameters
of the model in a way that they produce the smallest error as possible, to get a ”good” if not
a ”perfect” classification (Franke et al.; 2015) of the training set. We define that error as a
loss function of the parameters, Q(θ), that we want to minimize with respect to the parameter
θ. Each machine learning problem is different, for example, we can use neural networks for
regression and classification problems, that is why we define different loss functions, each one
corresponding to a specific problem, see Section 2.1.2.

Let us consider the training set (x1, y1), . . . , (xn, yn) where xi and yi are input vectors and
target vectors respectively. We estimate the target y by the neural network function ŷ = f(x; θ)
and we estimate the parameter θ so that Q(θ) is minimum, thanks to an optimization algorithm
such as gradient descent, see Section 2.2. In learning algorithms, the gradient of the cost function,
called error gradient with respect to the parameter, ∇Q(θ), is required at each layer, in order
to understand how changes on the weights at the input layer can impact the loss function,
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computed at the output layer. This computation is very complicate for deep neural networks
and we need a particular numerical method.

Back-propagation algorithm

• Forward pass: In feedforward networks, when we feed an input x, information propagates
forward through the hidden layers in the network to produce an output ŷ. This step is
called the forward pass (Graves; 2012). This forward propagation of information continues
while we train the network over the training set until it produces the scalar loss Q(θ). To
be able to update the weights of the network correctly, we need to be able to propagate
the information from the loss, backward in the network, during a second step called the
backward pass.

• Backward pass: The back-propagation algorithm, or backprop, (Rumelheart et al.; 2012),
allows this feedback of information that enable the computation of the gradient. It is
the most well known method for supervised training of MLP. Backprop is not a learning
algorithm; it is only a computation method that allows the network to learn using an
optimization algorithm such as gradient descent. We will describe the back-propagation
algorithm applied to a neural network function, f , with a single output.

To understand how back-propagation works, we can represent a neural network as a compu-
tational graph, as on Figure 1.2, where each node applies the nonlinear perceptron operation.
An example of computational graph for linear regression is given on Figure 1.3.

b

w

x

u(2)

+
operation

u(1)

dot .
operation

ŷ

σ

Figure 1.3: Computational graph of linear regression: ŷ = σ(w>x+ b)

Backpropagation is an algorithm that expressed the error gradient with respect to quantities
of a given neuron as a function of its outgoing neurons. This is possible thanks to the chain rule
of calculus that computes the derivatives of the composition of several functions. Let x be a
real number, and f and g real functions. We take the composition of f and g to get the output
z = f(y) = f(g(x)), the chain rule states that:

∂z

∂x
=
∂z

∂y

∂y

∂x

Using the chain rule, it is easy to explicit the expression for the error gradient of a scalar
with respect to any node in the computational graph that produced that scalar. Figure 1.4
represent a part of a multilayer perceptron computational graph, with zi the activation of unit
i, ui the input of unit i, wij the weight between unit i and j, b the bias of the perceptron and
Q(θ) the loss function.
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From this graph, we can write the error back-propagation explicitly using the partial deriva-
tives.

∂Q(θ)

∂ui
=

∂zi
∂ui︸︷︷︸
g′(ui)

∑
j

∂Q(θ)

∂uj

∂uj
∂zi︸︷︷︸
wij

,

which gives us the backward equation of the back-propagation algorithm:

∂Q(θ)

∂ui
= g′(ui)

∑
j

∂Q(θ)

∂uj
wij

We can then compute the gradient parameter as follows:

∂Q(θ)

∂wij
=
∂Q(θ)

∂uj

∂aj
∂wij︸ ︷︷ ︸
zi

and
∂Q(θ)

∂bj
=
∂Q(θ)

∂uj

∂uj
∂bj︸︷︷︸
1

which gives:
∂Q(θ)

∂wij
=
∂Q(θ)

∂uj
zi and

∂Q(θ)

∂bj
=
∂Q(θ)

∂uj

We can generalize the implementation of the back-propagation algorithm to any multilayer
perceptron, using its matrix form.

ui gi(.)
Activation
function

zi wij
Σ uj

Σ

Σ

b ∂Q(θ)

∂uj

∂Q(θ)

∂zi

∂Q(θ)

∂ui

Figure 1.4: Error back-propagation

Back-propagation in matrix form

Let us consider a multilayer perceptron with:

z l : vector of neuron activations at layer l (1.7)

W l,l+1 : matrix of weights connecting layer l to layer l + 1 (1.8)

b l : vector of biases at layer l (1.9)

gi(.) : function that applies elementwise the activation (1.10)

function of unit i, gi(.) (1.11)

• Forward equations:

u l+1 = W >
l,l+1.z l + b l+1 (linear perceptron) (1.12)

g l+1 = g(u l+1) (1.13)
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• Backward equations:

∂Q(θ)

∂z l
= W l,l+1

∂Q(θ)

∂u l+1
(1.14)

∂Q(θ)

∂u l
= g ′(u l)�

∂Q(θ)

∂z l
where � is the element-wise product (1.15)

• Weights updates:

∂Q(θ)

∂W l,l+1
= z l.

∂Q(θ)

∂u l+1

>
(1.16)

∂Q(θ)

∂b l
=

∂Q(θ)

∂u l
(1.17)

1.2 Recurrent neural networks

In the previous section, we considered MLPs without any cyclic connection, which makes MLP a
static model in the sense that the input-output pairs are mutually independent (Back and Tsoi;
1991). This seems inefficient if we want to modelize sequential data, where the input features
are interdependent. If we allow such cyclic connections, we obtain a recurrent neural networks,
(RNN), which can modelize dynamic processes, for example time series.

Indeed, when we are interested in such dynamic process, we need a model that can represent
the relation between the previous input-output pair and the next one, where the output is a
function of the previous output. That is the model need to process examples one at a time,
retaining memory that represents a contextual information that we can reuse at the next time
step. Thanks to this recurrent formulation, by comparison to a multilayer perceptron, a recurrent
neural network shares the same weights across several time steps (Goodfellow et al.; 2016).
Recurrent networks are now used in various applications such as stock price forecasting, language
or music processing.

1.2.1 Architectures

Jordan (1986) presented a first architecture as a superset of feedforward artificial neural networks
that has one or more cycles. Each cycle make possible to follow a path from a neuron back to
itself, allowing feedback of information. These cycles, or recurrent edges, allow the network’s
hidden units to see its own previous output so they give the network memory (Elman; 1990)
and introduce the notion of time into the model. The recurrent neurons are sometime referred
to as context neurons or state neurons. The structure of a simple recurrent neural network is
shown on Figure 1.5.

x h o

W

Input
layer

Hidden
layer

Output
layer

Figure 1.5: Simple Recurrent Neural Network with one hidden layer

Jordan (1986) introduced the notion of time in the model thanks to state units that represent
the ”temporal context”. The output information is produced from the input and state units
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through the hidden units. Finally, the recurrent connections from the state units to themselves
and from the output units to the state units allow the output information to be fed back in the
network at the following time step. These recurrent connections constitute Jordan network’s
memory as in Figure 1.6.

Input
layer

Hidden
layer

Output
layer

State units

Figure 1.6: Jordan Recurrent Neural Network

Let us now explain how RNN process a sequence of inputs.

1.2.2 Back-propagation for recurrent neural network

The most used algorithm to calculate weights derivatives for RNN is a slightly modified version
of the back-propagation algorithm from Section 1.1.3. It is called back-propagation through
time, BPTT. The idea behind BPTT is to unfold the recurrent neural network in time (Rojas;
1996), by stacking identical copies of the RNN and then apply the standard back-propagation
algorithm. Indeed, this unfolding process results from the fact that recurrent neural networks
share weights across time steps. In comparison, a traditional MLP has separate parameters
for each input feature. Recurrent neural networks lie at the core of deep learning because, by
unfolding these networks, we obtain very deep architectures. The unfolded graph of the simple
recurrent neural network from Figure 1.5 is given on Figure 1.7.

Back-propagation through time

As for the multilayer perceptron, BPTT as two steps:

• Forward pass: The forward pass of an RNN is the same as that of an MLP with a single
hidden layer, but the activations at the hidden layer comes from both the current input
and the hidden layer activations at the previous time step (Graves; 2012).

Let us consider an input sequence, x, of length T presented to a RNN with I input units,
one hidden layer with H hidden units and K output units. Let us also denote I the index
interval for the input to hidden layer connections, H the index interval for the hidden to
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u1

h1

x1

t=1

u2

h2

x2

t=2

u3

h3

x3

t=3

u4

h4

x4

t=4

u5

h5

x5

t=5

Output layer

Hidden layer

Input layer

W W W W

Figure 1.7: Unfolded Recurrent Neural Network for 5 time steps

hidden layer connections (recurrent connections) and K the index interval for the hidden
to output layer connections.

Consider the following notation:

– xti: the value at time t of the input unit i, i ∈ I
– utj the network input to unit j, j ∈ I or j ∈ K
– ztj the activation of unit j at time t, j ∈ H or j ∈ K
– wij the weights of the network where i and j belongs to I, H, K indifferently. That

is wih is the weight of the connection between input unit i and hidden unit h, wh′h
the weight of the connection between hidden unit h′ and hidden unit h and finally,
whk the weight of the connection between hidden unit h and output unit k.

This notation, inspired from Williams and Zipser (1995) and Graves (2012), will make the
equations of the algorithm easier.

As in a regular MLP, see Section 1.1.3, we have for the hidden units:

uth =
I∑
i=1

wihx
t
i +

H∑
h′=1

wh′hz
t−1
h′ h = 1, . . . ,H (1.18)

Activation functions are then applied exactly as for MLPs to get the output of hidden unit
h, zth, and the output units of the network, utk at time t:

zth = g(uth) h = 1, . . . ,H (1.19)

utk =
H∑
h=1

whkz
t
h k = 1, . . . ,K (1.20)

To ease the notation we did not consider the bias vector, bi at unit i. By applying Equations
(1.18) and (1.19) for every t = 0, . . . , T , we get all the activations for the hidden layer.
Nevertheless, we must choose an initializer for z0i , corresponding to the network’s state
before it receives any information for the input dataset. We often set it to 0, which works
well for sequence-to-sequence learning, but in some cases, we can use non-zero or noisy
initial state, as in Zimmermann et al. (2006).

• Backward pass: To compute the backward pass, we need derivatives with respect to the
weights. We use the back-propagation algorithm that applies standard back-propagation
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to the unfolded RNN as in Figure 1.7 thanks to the chain rule (see Section 1.1.3). But in
the case of RNN, both the output layer at the current time step and the hidden layer at
the next time step are influenced by the activation on the hidden layer at the current time
step (Graves; 2012), which gives the following back-propagated error:

∂Q(θ)

∂uth
= g′(uth)

(
K∑
k=1

∂Q(θ)

∂utk
whk +

H∑
h′=1

∂Q(θ)

∂ut+1
h′

wh′h

)
t = 1, . . . , T − 1 (1.21)

We first compute ∂Q(θ)

∂uTh
with t = T and then apply Equation 1.21 recursively to get each

term for t = 1, . . . , T − 1.

Finally, because, in the unfolded graph, the repeated weights are duplicated to get unique
ones across time steps in the hidden layer, we can use standard back-propagation as usual,
the difference being that we sum up the gradients at each time step. Thus for all weights
in the network, we get the following update rule:

∂Q(θ)

∂wij
=

T∑
t=1

∂Q(θ)

∂utj

∂utj
∂wij

=


∑T

t=1
∂Q(θ)
∂uth

xti, if i ∈ I and j ∈ H∑T
t=1

∂Q(θ)
∂uth

zth′ , if (i, j) ∈ H2∑T
t=1

∂Q(θ)
∂utk

zth, if i ∈ H and j ∈ K
(1.22)

1.2.3 The problem of long-term dependencies

We saw that RNN are very useful when we want to modelize a present input thanks to previous
information, but in practice, they cannot always explain this relation. We refer to this problem as
the vanishing gradient problem or the exploding gradient. Indeed, what if the context information,
that we need to explain the current task, must be find at a very deep time step, rather than
the previous one. The computational graph of such a recurrent network would be very deep. A
simple RNN is unlikely to understand this long-term dependency. We need to explain further
the computation of the gradient with the back-propagation algorithm.

Let us illustrate this phenomenon with the simple RNN from Figure 1.7 with t = 1, . . . , T .
Let us suppose that the activation function is the logistic sigmoid, we can rewrite Equation
(1.22) using the chain rule:

∂Q(θ)

∂W
=

T∑
t=1

∂Q(θ)

∂ut

∂ut
∂ht

∂ht
∂hk

∂hk
∂W

1 ≤ k ≤ T

and applying again the chain rule on ∂ht
∂hk

, we get:

∂Q(θ)

∂W
=

T∑
t=1

∂Q(θ)

∂ut

∂ut
∂ht

(
t∏

i=k+1

∂hi
∂hi−1

)
∂hk
∂W

1 ≤ k ≤ T (1.23)

∏T
i=t+1

∂hj
∂hj−i

=
∏T
i=k+1W

>diag(σ′(hj−1)), where σ is the sigmoid activation function, is a

Jacobian matrix and as a norm inferior to 1. Indeed, we use the sigmoid activation function
that squashes the output values in [0, 1] and the derivatives [0, 1/4], see Pascanu et al. (2013)
for a complete demonstration. Thus, sigmoid layers can easily squash their input to a smaller
output region. If it happens repeatedly on stacked multiple sigmoid layers, even a large change
in the parameters of the first layer can finally have a really small impact on the output.

Indeed, according to Equation (1.23), long-term contributions, for which T − k is large, can
go to 0 exponentially fast with the T − k order matrix multiplication, if the absolute value
of the largest eigenvalue of the recurrent weight matrix W is inferior to some boundary γ.
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Pascanu et al. (2013) showed that for tanh and sigmoid activation functions, γ = 1 and γ = 1/4
respectively.

Moreover, the long-term components can explode instead of vanishing. We can invert the
latter condition to get a necessary condition for exploding gradient.

Solution to the vanishing gradient problem

• Williams and Zipser (1995) built an approximation to the BPTT algorithm by truncating
the backward propagation of information to a fixed number of prior time steps, called
Truncated Back-Propagation Through Time, TBPTT. They showed that when vanishing
gradient occurs the TBPTT algorithm can give a good approximation to the true error
gradient.

• Using a L1 or L2 weight penalty on the recurrent weights can also be a solution. Pascanu
et al. (2013) address the vanishing gradients problem using a regularization term such that
back-propagated gradients neither increase or decrease too much in magnitude.

• Pascanu et al. (2013) proposed a gradient clipping to deal with exploding gradients. They
rescale the gradients, g, whenever their norm, ‖g‖ go over a threshold, v:

If‖g‖ > v then g ← gv

‖g‖

• Glorot et al. (2011) proposed to use Rectifier Unit, ReLU, which activation function is
rectifier(x) = max(0, x), x ∈ R. The function computed by each neuron is then linear
by parts and because of this linearity, there is no vanishing gradient due to nonlinear
activations like tanh or sigmoid. Indeed, ReLU does not have this property of squashing
the input space into smaller region.

• We can also change the structure of the model to cope with the vanishing gradients prob-
lem. By introducing a new set of units called Long Short-Term Memory units (LSTM
network), Hochreiter and Schmidhuber (1997) enforce a constant error flow through ”con-
stant error carousels”, thanks to input and output gates.

1.3 Long Short-Term Memory network

This section of the chapter discusses one of the most used approaches to cope with the difficulty
of learning long-term dependencies, LSTM units. This problem remains an important challenge
in deep learning and we could have chosen other solutions such as Echo State Networks or Leaky
Units, one can refer to Goodfellow et al. (2016) for a general introduction.

We chose to discuss about LSTM networks, because it is one of the most effective sequence
models, with the Gated Recurrent Unit (GRU). Both are gated recurrent neural networks. The
idea behind GRU and LSTM units is to create connections through time with a constant error
flow, thus the gradient neither explodes nor vanishes. LSTM networks are explicitly designed to
avoid the long-term dependency problem. Remembering information for long periods of time is
practically their default behavior, that is why they are the most popular neural network model
for sequence learning.

1.3.1 LSTM architecture

The architecture of LSTM is similar to RNN, the difference being that, as RNN are supersets of
MLP, LSTM networks are supersets of recurrently connected subnets, known as memory blocks,
(Graves; 2012). The basic memory block has three single neural network layers, interacting with
each other instead of one:
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• One (or more) memory cell sc, called the cell state, is the central feature. It is referred to
as constant error carrousel (CEC) in Hochreiter and Schmidhuber (1997). The cell state
produces only some minor linear transformations, achieving a constant error flow through
the memory block. It is a linear unit with a fixed recurrent self-connection. Controlling
the cell state, gate cells are added to the memory cell(s).

• One multiplicative input gate unit is introduced to protect the current memory content
stored in sc to be perturbed by previous states.

• One multiplicative output gate unit is also introduced to protect next units to be perturbed
by the currently irrelevant memory content.

These gates gives to LSTM the ability to control the information flow in the cell state and
have a sigmoid activation function, which gives the amount of information to let trough. They
are closed when the activation is close to 0 and are opened when the activation is close to 1.
Thus, the input gate decides when to keep or override information in the memory cell.

With this architecture, the cell state, sc, is updated based on its current state and three
sources of inputs: netc, the input to the sell itself through the recurrent connection, netin and
netout the inputs to the input and output gates, (Gers et al.; 2000). At each time step, during
the forward pass, all units are updated and the error signals for all weights are computed during
the backward pass.

If LSTM have found a large success and numerous applications, Gers et al. (2000) identified
a weakness when they process continual input streams, without explicitly resetting the network
state. In some case, the cell state tends to grow linearly during learning which can make the
LSTM cell degenerate into an ordinary recurrent network, where the gradient vanishes, see Gers
et al. (2000). Gers et al. (2000) proposed to add to the memory block a forget gate that allows
the memory block to reset itself, thanks to a sigmoid activation function. For now on, we will
only consider the extended LSTM with forget gates from Gers et al. (2000). Figure 1.8 illustrates
such a LSTM cell.

ct

Cell

× ht×

×

ft Forget Gate

itInput Gate otOutput Gate

xt

xt xt

xt

Figure 1.8: LSTM cell with a forget gate, source: Graves (2013)

Let xt be one observation at time t of the input vector, the LSTM cell from Figure 1.8 is
implemented by the following equations (Graves; 2013):



14 CHAPTER 1. DEEP NEURAL NETWORKS

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (1.24)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (1.25)

ct = ftct−1 + it tanh(Wxcxt +Whcht−1 + bc) (1.26)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (1.27)

ht = ot tanh(ct) (1.28)

where σ is the logistic sigmoid function, and i, f , o, c are respectively the intput gate,
forget gate, output gate and memory cell activations. Wxi, Whi, Wxf , Whf , Wcf , Wxc Whc, Wxo

Who Wco, which indexes are intuitive, are the input-input gate weight matrix, hidden-input gate
weight matrix, etc.

1.3.2 Back-propagation for LSTM networks

Like previous neural networks, LSTM are trained with gradient descent that requires the error
gradient. In this section, we present the computation of the exact LSTM gradient with BPTT.
We use the following notations:

• wi,j the weight of the connection between units i and j

• utj the network input to unit j at time t

• ztj the activation of unit j at time t

• indexes i, f and o refer to input gate, forget gate and output gate respectively.

• c refers to one of the C memory cells

• stc is the state fo cell c at time t

• f the activation function of the gates

• g and h are respectively the cell input and output activations functions.

• I the number of inputs

• K the number of outputs

• H the number of cells in the hidden layer

• h refer to the hidden to hidden unit connections.

The forward and backward passes are calculated as in Section 1.2.2. For more details, the
reader can refer to Graves (2012) from which we took the equations.

Forward pass

Let us introduce:

δtj =
∂Q(θ)

∂utj
(1.29)

We have the following equations for each gate:
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Input gates

uti =
I∑
i=1

wix
t
i +

H∑
h=1

whiz
t−1
h +

C∑
c=1

wcis
t−1
c (1.30)

zti = f(uti) (1.31)

(1.32)

Forget gates

utf =
I∑
i=1

wifx
t
i +

H∑
h=1

whfz
t−1
h +

C∑
c=1

wcfs
t−1
c (1.33)

ztf = f(utf ) (1.34)

Cells

utc =

I∑
i=1

wicx
t
i +

H∑
h=1

whcz
t−1
h (1.35)

stc = ztfs
t−1
c + ztig(utc) (1.36)

Output gates

uto =

I∑
i=1

wiox
t
i +

H∑
h=1

whoz
t−1
h +

C∑
c=1

wcos
t−1
c (1.37)

zto = f(uto) (1.38)

Cell Outputs

ztc = ztoh(stc) (1.39)

Backward pass

Let us introduce some notations:

εtc =
∂Q(θ)

∂ztc
εts =

∂Q(θ)

∂stc
(1.40)

Cell Outputs

εtc =
K∑
k=1

wckδ
t
k +

H∑
h=1

wchδ
t+1
h (1.41)

Output gates

δto =
∂f(uto)

∂uto

C∑
c=1

h(stc)ε
t
c (1.42)

states

εts = zto
∂h(stc)

∂stc
εtc + zt−1f εt+1

s + wciδ
t+1
i + wcfδ

t+1
f + wcoδ

t
o (1.43)

Cells

δtc = ztig
′(utc)ε

t
s (1.44)
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Forget gates

δtf =
∂f(utf )

δutf

C∑
c=1

st−1c εts (1.45)

Input gates

δti =
∂f(uti)

δuti

C∑
c=1

g(utc)ε
t
s (1.46)

Thanks to its complex architecture, LSTM is easier to train than RNN. Nevertheless, we
need to define how training occurs in neural networks.



Chapter 2

Learning a neural network

In the previous chapter, we discussed the architecture of neural networks and how they can
represent a mapping from an input x to an output ŷ = f(x; θ) that approximates the targeted
output y = f∗(x) where f∗ is unknown. To do that, neural networks need to learn the parameter
θ. In this chapter, we will explain how to learn θ to get the best approximation of y. The deep
learning procedure consists of choosing a specification for the dataset, f(x; θ), a loss function,
that corresponds to the task, and an optimization algorithm for a given model (Goodfellow
et al.; 2016). We will explain these three steps.

2.1 Statistical learning

In machine learning, we distinguish mainly three learning methods (Duda et al.; 2000):

• Supervised learning, where each input of a dataset is associated with a label or target. We
have a teacher that provides a cost for each input that we want to reduce. Most tasks
are classification or regression problems. In this thesis, we only discuss about supervised
learning algorithms.

• Unsupervised learning or clustering tries to learn structures in the dataset. There is no
explicit teacher and the model forms clusters of input patterns.

• Reinforcement learning interacts with an environment and lies in between supervised and
unsupervised learnings. It is similar to supervised learning with a feedback, a critic, that
we get from the real targeted category label to improve the classifier.

2.1.1 Maximum likelihood estimation

The goal of supervised learning algorithms is to estimate an unknown probabilistic distribution
p(y | x). This distribution is called the true probability. To estimate it, we can use a family of
known distributions indexed by a parameter θ, p(y | x; θ). For example, if we want to predict the
future prices of a stock, we can assume that the price follows a nonlinear autoregressive process
(NAR) and estimate it with a RNN. The maximum likelihood estimation for the parameter θ
will give us the best approximation for the true probability. Most modern neural networks are
trained using maximum likelihood (Goodfellow et al.; 2016).

Definition 2.1 (Maximum likelihood estimator) Consider the data generating distribution
p(x), which is the true probability. Consider the training set x = x1, . . . ,xn independently dis-
tributed from p(x). Let p(x; θ) be a parametric family of probability distributions over the space

17
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x estimating the true probability. The maximum likelihood estimator for θ is then defined as:

θMV = arg max
θ

p(x; θ)

= arg max
θ

n∏
i=1

p(xi; θ)

and if we take the logarithm, which has no incidence to the value of arg max, we transform the
product in a sum, which is much more easier to deal with:

θMV = arg min
θ

n∑
i=1

ln p(xi; θ) (2.1)

and we define  L(θ) as the log-likelihood function:

 L(θ) = ln p(x; θ) =

n∑
i=1

ln p(xi; θ) = Ep̂ ln p(x; θ) (2.2)

The usual approach to find θMV is then to minimize the negative log-likelihood, −
∑n

i=1 ln p(xi; θ).
We can interpret maximum likelihood estimation as minimizing the Kullback-Leibler distance

(KL distance) between the model probability, p(x; θ) and the empirical distribution, p̂(x).

Definition 2.2 (Kullback-Leibler distance) The KL divergence between the two probability
distributions p(x; θ) and p̂(x) is given by:

DKL (p̂(x) ‖ p(x; θ)) = Ep̂ [ln p̂(x)− ln p(x; θ)]

However, as ln p̂(x) is not a function of the model, minimizing this KL divergence corresponds
exactly to minimizing the cross-entropy between the training data generated by p̂(x) and p(x; θ).

Definition 2.3 (Cross-entropy) The cross-entropy between the two probability distributions
p̂(x) and p(x; θ) is given by:

Q(θ) = −Ep̂ [ln p(x; θ)]

where p̂ is the empirical distribution of the true probability on the training set x.

For some problems, such as simple linear regression, computing the maximum likelihood
estimator can be easy by using the normal equations. However in practice, it is much more
challenging for neural networks. Indeed, there is no analytical solution for their optimal weights
and we must search for them using the log-likelihood.

2.1.2 Loss functions

In the previous section, we discussed the specification of the dataset we present to the network
and how we can estimate it. We consider the training set (x1, y1), . . . , (xn, yn) where xi and
yi are input vectors and target vectors respectively. We estimate the target y by the neural
network function ŷ = f(x; θ).

We must now define a loss function, L(x, y, θ) that will measure the quality of the estima-
tion ŷi for each input xi in the training set. The most common loss function is the negative
log-likelihood, or equivalently the cross-entropy between the network output and the targeted
output, because, as we saw, minimizing this loss function brings to maximum likelihood estima-
tion.
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The per-example loss function measure the distance between each network output ŷi and
the targeted output yi, but we need to get a measure of performance over all of the training
set. That is why we sum all the elementary loss functions to get the loss function on the whole
training set, also called risk function:

Q(θ) = −Ex,ŷL(x, y, θ) =
1

n

n∑
i=1

L(xi, yi, θ)

where L(x, y, θ) = − ln p(y | x; θ)

The choice of loss function is directly related to the type of output units in the neural
network, which are themselves depending on the task.

Linear regression

For linear regression, we can simply use a linear perceptron as output. Given the hidden in-
termediate activations h = f(x; θ), the output of a linear perceptron will be ŷ = W>h + b. In
that case, maximizing the log-likelihood is similar to minimize the Root Mean Squared Error
(RMSE), defined as follow:

RMSE =

√√√√ 1

n

n∑
i=1

ŷi − yi (2.3)

Classification

If we want to represent a K-class classifier, the standard approach is to use K output units
each having a softmax activation function to obtain the estimations of the class probabilities,
p(y = j | x) = ŷj . Because ŷj is a probability, it needs to be between 0 and 1 and the vector
ŷ = (ŷ1, . . . , ŷK) needs to sum to 1. The outputs are then:

ŷj = p(yj | x; θ) = softmax(zj) =
exp(zj)∑K
k=1 exp(zj)

(2.4)

where z = W>h+ b.

It is convenient to use a one-hot-encoded vector for the target class y which is a binary vector
with all elements equal to zero except for element k, corresponding to the correct class, which
equals one. The target probabilities are then:

p(y | x; θ) =
K∏
k=1

ŷykk

The loss function is then:

Q(θ) = − 1

n

n∑
i=1

K∑
k=1

yi,k ln p(yi,k | xi; θ) = − 1

n

n∑
i=1

K∑
k=1

yi,k ln ŷi,k (2.5)

In the particular case of a binary classifier, the network needs only to predict one class
probability, ŷ = P (y = 1 | x). In that case, we can use a single output unit with a sigmoid
activation function and the output is:

ŷ = σ(w>h+ b)

where σ is the sigmoid function defined in Equation (1.6). The loss function is then:
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Q(θ) = − 1

n

n∑
i=1

yi ln p(yi | xi; θ) + (1− yi) ln((1− p(yi | xi; θ))

= − 1

n

n∑
i=1

yi ln ŷi + (1− yi) ln(1− ŷi)

2.2 Optimization for neural networks

In the previous sections, we only described how to compute the derivatives of the loss function
through the network so it can be trained with gradient descent. However, we need to ensure
that training is effective. For that, we need to choose an optimization algorithm for the loss
function so we can learn the parameters of the model.

2.2.1 Gradient descent

The simplest algorithm is known as gradient descent where we repeatedly take small steps in
direction of the negative error gradient of the parameter θ. We get the following update for a
given iteration:

θ = θ − η∇Q(θ)

where η is the learning rate and ∇Q(θ) is the gradient of the cost function with respect to the
parameter.

Gradient descent is difficult to use in practice, because it gets easily stuck in a local minimum.
Moreover, it can be very slow to converge, because it follows the gradient of the entire training
set, technique that is called batch learning. That is why most deep learning algorithm use
Stochastic Gradient Descent (SGD).

Indeed, instead of following the gradient on the whole training set, SGD computes the
gradient on minibatches, that is small samples of the training set that can be randomly chosen.
The size of the minibatches is determined by the batch size. As we can see, the batch size
controls when to update the network weights during training, it is one of the most important
hyper-parameters of the model. Then we estimate the whole gradient with the average of the
minibatches gradients, which is an unbiased estimator (Goodfellow et al.; 2016, Chapter 8). We
get the following update for a given iteration:

θ = θ − η∇
n∑
i=1

Q(θ, xi, yi)

where {x1, . . . , xm} are m mini-batch examples of the training set, x.

SGD is a mini-batch learning algorithm, it can also be used as an online learning algorithm
that updates the weights for every samples presented to the network, where the batch size is
set to 1. For large networks with redundant information in the training sets, it is known to
be better to use mini-batch learning algorithm. For more information on online learning, see
Bottou (1998).

If SGD is very popular, it can sometimes be slow. Qian (1999) proposed a method that
accelerates SGD convergence by helping SGD to take the right direction. It introduces the
contribution of previous gradients to the current gradient through a variable v and a hyper-
parameter γ determining the fraction of that contribution. The update rule for an iteration is
then:
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v = γv + η∇Q(θ)

θ = θ − v

2.2.2 Adaptive optimization algorithms

SGD is the basis for many other learning algorithms, such as AdaGrad or RMSProp, the dif-
ference being, that these algorithms have an adaptive learning rate. Indeed the learning rate is
another important hyper-parameter of neural networks because the loss function can be sensitive
or not in some directions in the parameter space. For example, the gradient can get stuck in
local minima or flat regions.

• RMSProp algorithm is a modified version of AdaGrad algorithm which goals is to perform
better with non-convex function (Hinton; 2012). It changes the gradient, g, by dividing
the learning rate, η, by an exponentially decaying average of squared gradients. We have
the update learning rule for a given iteration as follows:

θ = θ − η√
E[g2] + ε

g

• Adam (Kingma and Ba; 2015) is another adaptive algorithm and is nowadays one of the
most used optimization algorithm. It is a combination of RMSProp and momentum SGD
algorithms. We have for given parameters value β1, β2, e:

m = β1m+ (1− β1)g
v = β2v + (1− β2)g2

where m and v are estimates of the first moment (mean) and the second moment vectors
of the gradient, g. These estimations are biased, so the authors compute a bias-correction
at time step t:

m̂ =
m

1− βt1
v̂ =

v

1− βt2
Finally, we can formulate the update rule for a given iteration:

θ = θ − η√
v̂ + e

m̂

2.2.3 Batch normalization

Batch normalization is an optimization strategy that is not an algorithm. It is a method of
adaptive reparametrization developed by Ioffe and Szegedy (2015) to make training of very
deep models easier. Indeed, training deep neural networks is complicated by the fact that the
distribution of each layer’s inputs changes during training, as the parameters of the previous
layers change. Ioffe and Szegedy (2015) refer to this phenomenon as internal covariate shift.
To reduce it, they normalize the layers’ inputs with a Batch Normalization layer. While the
network is trained, the method performs normalization for each training mini-batch allowing
higher learning rates. Batch Normalization also acts as a regularizer preventing the need of L1

or L2 penalties to the loss function (Goodfellow et al.; 2016).
Let us define the Batch Normalization transformation as in Ioffe and Szegedy (2015).
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Definition 2.4 (Batch Normalization layer) Consider a mini-batch of size m, B = {x1,...,m}
with x the values over the mini-batch B. Let µB = 1

m

∑m
i=1 xi be the mini-batch mean and

σ2B
1
m

∑m
i=1(xi − µB)2 the mini-batch variance. Let x̂1,..,m be the normalized values of x, x̂i =

xi−µB√
σ2
B+ε

, where ε is a constant. Finally, let y1,...,m be their linear transformation. We have:

BNγ,β(xi) = yi = γx̂i + β

where γ and β have to be learned.

Now that we know how to train neural networks, we need to explain how can we measure
that the learning is indeed effective.

2.3 Generalization methods

The ability of a model to perform well on previously unobserved inputs is called generalization.
The challenge of machine learning model is to have a good generalization power, which indicates
that the model can perform well on new inputs. In this section, we present some problems that
deep neural networks can face for generalization and some solutions.

2.3.1 Model selection

To establish the superiority of a learning machine over the other, we must make data-generating
assumptions, ŷ = f(x; θ), and know the optimal parameter θ, under these assumptions. How-
ever, it is difficult to know in advance which learning machine to select. To find the best
model corresponding to our data, defined by the parameters θ, we need to establish a clear and
reproducible procedure based on some evaluation criteria.

Holdout selection procedure

The holdout selection procedure consists in partitioning the available data in three sets, a train-
ing set, a validation set and a test set. We use the training set to consider different learning
machines (MLP, RNN and LSTM with different parameters) and we apply these models to the
validation set. We select the model which has the best performance on the validation set and
apply this model on the test set in order to measure the generalization error. The generalization
error evaluates the prediction power of a model on unknown data, here the test set, which was
not used for the training of the model.

The generalization error is indeed essential because of the overfitting phenomenon described
in the next paragraph.

Underfitting and overfitting problems

Underfitting and overfitting problems are the main challenge in machine learning.

• Underfitting occurs when the model cannot learn the underlying structure of the data,
which implies a large training error. Underfitting phenomenon can appear when the com-
plexity of the model, defined in the next paragraph, is too small.

• Overfitting occurs when the model learns too exactly the patterns in the training data
and cannot generalize these patterns for prediction. In other terms, overfitting happens
when the trained model learns also the noise in the sample. Thus, the model will have a
good performance on the train set, but not on the test set. Overfitting implies a large gap
between training and test error and can appear when the complexity of the model is too
large.
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Model selection

To select the best model, we use the generalization error on the validation set and we select
the one with the lowest error with respect to the first Occam’s Razor from Domingos (1999):
”Given two models with the same generalization error, the simpler one should be preferred
because simplicity is desirable in itself.”.

We have different possible measures of complexity such as the number of parameters of
the model, the choice of variables the model receives as input, the properties of the function
(continuity, slope), the VC-dimension that provides a bound on generalization error or the
number of training iterations. Overfitting phenomenon is essentially related to the complexity
of the model.

Generalization error measure

How can we measure the generalization error? The statistical learning theory gives the famous
bias-variance decomposition, which is defined as follows:

Error(fθ̂) = Bias(fθ̂) + Variance(fθ̂)

where θ̂ is a random variable. From this equation, we can see that bias and variance con-
tribute in different proportions to the error depending on the complexity. From this, we are
invited to use while training the model, the famous method of early stopping developed by Yao
et al. (2007), which we described in Section 2.3.2. Yao et al. (2007) show that the number of
training iteration is connected to the overfitting phenomena. Stopping training too early may
reduce variance, but enlarge bias; and stopping too late may enlarge variance though reducing
the bias. Thus solving this bias-variance trade-off leads to the early stopping rule.

Metric

For the model evaluation, we need to look at the generalization power of the model, which is
given by the scalar loss, but we need also an evaluation metric which is a performance measure
for a given goal. The metric used will depend on the task. For a classification task, the usual
metric is the accuracy of the model, which computes the fraction of correct predictions. The
accuracy is given by the formula:

Accuracy(y, ŷ) =
1

n

n−1∑
i=0

1{ŷi=yi} (2.6)

However, the accuracy does not reflect imbalanced class, which is a problem in our application
in the next chapter. Indeed, let us consider a binary classifier on 100 data points where 2 points
correspond to class 0 and 98 points correspond to class 1. If the classifier predict 2 points in class
0 and 98 points in class 1, it is a perfect classifier which achieve optimal performance with an
accuracy of 100%. However, if the classifier predict 100 points in class 1, the accuracy is then 98%
and the classifier looks as if it achieves a near optimal performance, but in fact, it fails to predict
any points in class 0. It is a naive classifier. Thus, we need to use an alternative performance
measure with higher robustness to class skew, for example the F-measure or F1-score.

For that, we introduce the notion of precision, a measure of exactness, which in a binary
classification task is the fraction of correctly classified positives among all examples classified
as positive. Intuitively, it is the ability of a classifier not to label as positive a sample that is
negative. We also introduce the notion of recall, a measure of completeness, which in a binary
classification task is the fraction of correctly classified positives among all positives. Intuitively,
it is the ability of a classifier to find all the positive samples.

Let us introduce some notation. TPk (True positives) is the number of points assigned
correctly to class k; FPk (Falses positives), the number of points that do not belong to class k



24 CHAPTER 2. LEARNING A NEURAL NETWORK

but are assigned to class k incorrectly by the classifier; and FNk (False Negatives) is the number
of points that are not assigned to class k by the classifier, but actually belong to class k.

The recall, ρk, and precision, πk, measure for class k are then (Özgür et al.; 2005):

πk =
TPk

TPk + FPk
, ρk =

TPk
TPk + FNk

(2.7)

We take the macro-averaged F-measure, which is computed locally over each category first
and then the average over all categories is taken. We have:

Fk =
πkρk
πk + ρk

, Fmacro =
1

K

K∑
k=1

Fk

The Fmacro does not take into account imbalanced class so it is influenced by the classifier
performance on rare categories. That is why we use a weighted F-measure, which calculates
metrics for each class and find their average weighted by support (the number of true instances
for each label). This alternative Fweighted takes into account label imbalance.

Fweighted =
1

K

K∑
k=1

wkFk

All the latter introduced metrics gives some performance measures in order to compute the
generalization error of a model. A model with a low generalization error should have a low loss
and a good metric on both train and test sets.

2.3.2 Regularization techniques

Early stopping

We can see early stopping as a very efficient hyper-parameter selection algorithm, where the
number of training steps (epochs) is just another hyper-parameter (Goodfellow et al.; 2016).
Early stopping is a method that stops training when a monitored quantity has stopped improv-
ing. Indeed, deep neural networks tend to overfit the data. Even if we often observe a decreasing
training loss, sometimes the test set error begins to increase after some training steps, which
indicates overfitting. In that case, we will have a better generalization power if we stop training
before the test set error increases.

With early stopping method, we monitor for example the loss or the metric on the validation
set after each training step and we stop training if the loss starts to increase or if the accuracy
starts to decrease (in the case that the metric used is the accuracy).

Early stopping is one of the most used regularization technique in deep learning, because of
its simplicity and its effectiveness on reducing training time.

Dropout

The most common way to avoid overfitting in deep neural networks is to use a dropout layer
as proposed Srivastava et al. (2014). The key idea is to randomly drop units (along with their
connections) from the neural network during training, by forcing the weights of the units to be
equal to 0, which reduces the number of parameters in the model.

Dropout can also be thought as an effective bagging method for many large neural networks
(Goodfellow et al.; 2016). Bagging evolves training multiple models and evaluating multiple mod-
els on each test example. With the dropout method, we train an ensemble of all sub-networks
that can be constructed by removing some input units from an underlying base network.
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Now that we explained the different architectures of neural networks and that we have
a reproducible and objective method to train and select the best models corresponding to a
specific task, let us give examples of applications of deep neural networks on financial data.



Chapter 3

Neural networks for time series
forecasting

3.1 Cryptocurrencies as financial assets

The first cryptocurrency, Bitcoin, was created in 2008 by Satoshi Nakomoto. With Bitcoin,
he invented the first unregulated digital currency designed to work as a medium of exchange
thanks to the Blockchain technology which is a distributed ledger based on a decentralized peer-
to-peer network that confirm transactions. Ten years later, 1512 alternative cryptocurrencies,
called altcoins, are identified on CoinMarketCap proving that a real cryptocurrency market has
emerged. Indeed, the cryptocurrency market is experiencing a strong growth over the last years,
which can be inferred from CRIX, developed by Trimborn and Härdle (2016).

Because the economy is becoming more and more digital, it is natural to think that the
role of digital assets, such as cryptocurrencies, in investment decisions will also grow. Indeed,
investors from the former existing financial markets are now interested in cryptocurrencies, as
new financial products on the cryptocurrency market are created with the apparition of options
and futures on Bitcoin. Eisl et al. (2015) analyzed Bictoins returns to successfully show that
adding Bitcoin to portfolios can have an optimal diversification effect. Elendner et al. (2017)
proved that cryptocurrencies are interesting for investors due to the diversification effect, because
they are uncorrelated with each other and uncorrelated with traditional asset. Finally, Trimborn
et al. (2017) showed that mixing cryptocurrencies with stocks could improve the risk-return
trade-off of portfolio formation.

As in Elendner et al. (2017), we will investigate cryptocurrencies as alternative investment
assets by studying their returns. In the following section, we will focus on the application of the
different models we presented in Chapter 1 for time series modeling, especially cryptocurrencies
prices.

3.2 Stock prices and underlying assumptions

3.2.1 Time series modelization

Numerous time series present an autoregressive structure where past observation can be used to
explain the present and future observations as in Equation 3.1. This autoregressive structure is
unknown and numerous model with different assumptions try to represent this structure.

St+1 = φ(St, St−1, . . . , St−p) p ∈ N (3.1)

The most common linear models are ARIMA or SARIMA models, which are simple models
and explain major aspects of the structure of time series such as the autoregressive process itself,
the moving average or the seasonality. These models have a considerable explanation power of

26
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the mechanism behind time series, nevertheless finding time series that can be modelized by them
is challenging. Indeed, ARIMA models have strong assumptions that in practice are very hard
to meet, such as constant parameters, white noise residuals or homoscedasticity. For example,
stock prices often present heteroscedastic residuals. To face these problems, econometricians
built a wide variety of different models such as ARCH or GARCH models.

However, if we can find a model that explain the structure of stock prices, it is questionable
that it can actually predict future values, especially in long-term horizon. In fact, the random
walk theory for stock prices implies that any predictive model for stock prices is useless.

Stock prices as time series

Stock price forecasting is one of the most important task of quantitative finance. It is particularly
challenging because of the properties of stock prices, which does not behave as simple time
series. Indeed, the random walk theory suggest that stock price returns are independently and
identically distributed over time so the past values of a stock returns cannot explain their future
values. The direct result is that the best prediction for tomorrow’s price is the price of today.
This theory led to the Efficient Market Hypothesis (EMH) which asserts that the price of stocks
reflects all relevant information available, implying that investor cannot outperform the market
with a trading strategy, based on decisions made from the available information.

To be short fundamental analysis which tries to evaluate the intrinsic value of a security,
would be irrelevant for financial market if the EMH is true. Moreover, technical analysis would
be also irrelevant. Opposed to fundamental analysis, technical analysis aims to forecast the fu-
ture price movements based on statistics, such as technical market indicators (moving average,
Bollinger intervals) or underlying variables such as price movement, volume, market capitaliza-
tion, global economic variables.

Technical analysis forbid us to use linear autoregressive models such as ARIMA for price
movements’ modelization, because ARIMA models use only the past observation of the time
series itself as regressors and supposed that the relation is linear.

In the past years, the Efficient Market Hypothesis has weakened its credibility among eco-
nomics, specially with the appearance of Behavioral Economics that revitalized Fundamental
and Technical analysis

For this thesis, we use both Technical and Fundamental analysis and we supposed that stock
prices is represented by a Non-Linear AutoRegressive with eXogenous variables model (NLARX).

3.2.2 NLARX model

Let us first define the NLARX model.

Definition 3.1 (Non-Linear Autoregressive with exogenous variables model) Let {St}1≤t≤T
be real values of a time series, {Xt = (X1,t, . . . Xd,t)}1≤t≤T the d-vectors of exogenous variables
and εt independent real random variables. A NLARX(p, x, q), (p, x, q)3 ∈ N, process represent
a mapping f∗ : Rp+xd → Rq defined as follows:

(St+q, St+q−1, . . . , St+1) = f∗(St, St−1, . . . , St−q+1, Xt, Xt−1, . . . , Xt−x) + εt

For example if p = 3, q = 1 and x = 0 we obtain the following NLARX(3,0,1) model:

St+1 = f∗(St, St−1, St−2, Xt) + εt

The mapping of a NLARX(p, x, q) can be represented by neural network function f :
Rp+xd → Rq with parameters θ defined as follows:

(St+q, St+q−1, . . . , St+1) = f(St, St−1, . . . , St−q+1, Xt, Xt−1, . . . , Xt−x; θ) + εt
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The structure of the network depends on its nature. For example, a MLP network would
have p+ xd input neurons and q output neurons.

The architecture of such network can be challenging to represent because of different time
lags in the autoregressive part of the model p and the exogenous part x.

As we can see from its definition, a NLARX process gives a great liberty in the forecasting
procedure. Indeed, we distinguish two main procedures to predict the time window of length q
of a time series St1≤t≤T

• Recursive strategy: We assume that St can be represented by a NLARX(p,1) network,
we have:

Ŝt+1 = f(St, . . . , St−p+1, St; θ) + εt

Ŝt+2 = f(Ŝt+1, . . . , St−p+2, Xt; θ) + εt

. . .

Ŝt+q = f(Ŝt+q−1, . . . , St−p+q, Xt; θ) + εt

This strategy has the advantage to be parsimonious in the number of parameters to esti-
mate, thus the network has minimum complexity. However, the crucial weakness is that
it accumulate the estimation error at each forecasting step. Thus, if forecast window,
q, is large, the performance can quickly degrade and the estimation of the price q-step
ahead can be really unreliable. Moreover, if this model represent the relations between
the past values (St, . . . , St−p+1), it does not learn the structure between the output values
(St+1, . . . , St+q). In sequence learning theory, it is a many-to-one model that takes as input
a sequence and produce a scalar.

Nevertheless, the recursive strategy can be applied for small forecast window. Indeed, a
smaller forecast window might need a smaller look-back window (q), which leads to less
parameters to estimate and a simpler model, which is easier and faster to train.

• Multiple output strategy: We assume that St can be represented by a NLARX(p,q)
network, we have:

(Ŝt+q, . . . , Ŝt+1) = f(St, . . . , St−p+1+q, Xt; θ) + εt

This model is capable of predicting the entire forecast window in one operation, preventing
the error forecast to increase as the forecast window grows. This model is more complex
as it needs more parameters which allow us to learn the dependence between inputs and
outputs as well as between outputs: it is a emany-to-many sequence model. Nevertheless,
this complexity implies costs from a longer training time and from a larger amount of
needed data to avoid overfitting problem.

3.3 Cryptocurrencies price movement analyze

3.3.1 Data analysis

Selection of important cryptocurrencies based on market capitalization

Thanks to CRIX dataset (http://crix.hu-berlin.de/), we have at our disposal daily data
of 631 cryptocurrencies over more than 3 years, from 2014-07-31 to 2017-10-25. Since the cryp-
tocurrencies market is in full evolution, a lot of daily price are missing. To reduce our analysis to

http://crix.hu-berlin.de/
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the most important cryptocurrencies, we selected the 8 cryptocurrencies with the largest market
capitalization over the period and without any missing values to avoid missing data imputation
problems. At the time of the start of our study (February 2017), the cryptocurrencies were
Bitcoin (btc), Dash (dash), Ripple (xrp), Monero (xmr), Litecoin (ltc), Dogecoin (doge), Nxt
(nxt) and Namecoin (nmc) from which we have data from 2014-07-31 to 2017-10-25.

nmc nxt doge xmr dash ltc xrp btc

min 2.5 5.3 8.6 0.5 5.3 40.9 40.8 2362.6
max 15.2 47.6 46.2 248.9 337.7 311.3 862.0 20884.9
mean 5.9 13.0 19.9 32.2 37.0 146.2 255.4 6898.0

median 5.4 9.4 21.2 5.4 20.1 150.7 238.6 6037.8
standard deviation 2.3 8.2 5.9 53.0 35.9 47.9 115.3 3700.9

Table 3.1: Market capitalization statistics (in Millions Dollars) of the 8 most import cryptocur-
rencies from 2014-07-31 to 2017-10-25

From Table 3.1, we can observe that btc dominates the market with a market capitalization
30 times bigger in average than xrp, the second most important cryptocurrency, and 1000 times
larger than nmc, the smallest cryptocurrency considered.

The structure of the cryptocurrency market is changing everyday and at the time of writing
this paper (January 2018) the 8 cryptocurrencies with the largest market capitalization are
different but the one we selected are still important.

Indeed if we only consider the cryptocurrencies for which we have daily prices at our disposal
until 2014-07-31, the cryptocurrencies are still in the top 13 cryptocurrencies with the largest
market capitalization in average over the period considered. We can say that the 8 cryptocur-
rencies are dominating the market of old cryptocurrencies in terms of market capitalization.

If we consider also recent cryptocurrencies, the market structure is different and this result
doesn’t hold as we can see in Table 3.2

nmc nxt doge xmr dash ltc xrp btc

position 112 93 68 26 17 12 4 1

Table 3.2: Market capitalization importance in the 631 cryptocurrencies, average on the period

Nevertheless, btc is still dominating the market over the period and xrp, ltc and dash are
major cryptocurrencies in terms of market capitalization. Over the last months, from March
to October 2017, we can say that eth, bch, neo, xem, miota and etc are the major new cryp-
tocurrencies ranking in the top 10 of cryptocurrencies with the largest market capitalization in
average from March to October 2017. It would be interesting to add them in a future analysis.

3.3.2 Application: examples with btc returns

In this section, we will show the different step to build a reproducible method for time series
forecasting with neural networks.

Let us imagine a forecast problem where we want to predict btc price two days in the
future. We can apply a NLARX(5, 0, 2) model to the btc price using technical and fundamental
indicators. We do not discuss in this part the choice of the parameters p, q, x. Let Pt be btc
price at time t, we estimate the NLARX(5, 0, 2) process with the following MLP function

(Pt+2, Pt+1) = f(Pt, Pt−1, ..., Pt−4, Xt; θ) + εt

where Xt is the 16-dimensional vector of exogenous variables which are:



30 CHAPTER 3. NEURAL NETWORKS FOR TIME SERIES FORECASTING

• suitable transformation of the daily returns such as the 14 days, 30 days and 90 days
moving averages and their respective Bollinger bands which are defined in Section 4.1.2

• the CRIX daily returns at time t

• Euribor interest rates at different horizon (year, 6 months and 3 months)

• Different exchange rates (EURO/UK, EURO/USD, US/JPY)

• Because cryptocurrencies price is available everyday, we replace the missing values on the
weekend with the last value observed at the closing of the exchange on Friday

Before, training the neural network, we need to preprocess the data. Indeed, input represen-
tation is very important for neural network. Because the price is not stationary, as we saw in
the previous section, we consider the logarithm of the differenced prices, also called log-returns.

• We take the differenced logarithm of the price series to eliminate trend and seasonality.
We get the logarithm return of holding btc for each period considered, here one day:

Rt = ln(
Pt+1

Pt
)

• We standardized the input variables to avoid any scaling problem: Jt = It−µ
σ2 where µ and

σ are respectively the mean and the standard deviation of one input variable It on the
training set. We will get standardized predictions on the test set so we will use the mean
and the standard deviation of the training set to get the predictions in their original scale.

We then estimate the NLARX(5,0,2) with the following MLP funtion:

(Rscaledt+2 , Rscaledt+1 ) = f(Rscaledt , Rscaledt−1 , ..., Rscaledt−4 , Xscaled
t ; θ) + εt

where Rscaledt , Xscaled
t represent the scaled daily returns of btc and the scaled exogenous

variables respectively. This network will give us prediction for btc returns. However, we want to
predict btc returns in order to make simple trading decisions (buy btc if the price is expected to
grow and sell btc if the price is expected to fall), thus the actual value of the price is irrelevant.
We are only interested in the future price movement. We can then reformulate the problem as
a binary classification of the future trend, that is:

Tt,k =

{
0, if ln(

Pt+k

Pt
) ≤ 0

1, if ln(
Pt+k

Pt
) > 0

We can now build the MLP network corresponding to our task by the function:

Tt,2 = f(Rscaledt , Rscaledt−1 , ..., Rscaledt−4 , Xscaled
t ; θ) + εt

In this thesis, for the implementation of the different models, we use Keras Python library
withTensorflow as backend. We use the data up to 2017-03-01 for the train set and the data
from 2017-03-02 to 2017-10-25 for the test set.

We will represent f with different MLP architectures. In terms of trading strategy, the
performance measure of the network should be the accuracy of the model (see Equation 2.6),
since it measures the number of correct predictions.

We use only tanh as activation function for the hidden layers. The final output layer has
two neurons, corresponding to the number of classes of the target variables with a softmax
activation functions in order to get the probability classes. We first build a baseline model, with
two hidden layers with 5 neurons each. We trained the network with RMSProp algorithm (see
Section 2.2.2) on 50 epochs with a default batch size of 32 and a default learning rate of 0.001.
We evaluate our baseline model with a 5-fold cross validation (see next paragraph) on the train
set. We obtain an accuracy score of 54 % with a variance of 0.06.
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Comparison of different MLP architectures: hyper-parameter tuning

Model tuning is an important step of the model construction. It consists of building various
models that have different hyper-parameters values to find the one that best fits the data us-
ing an evaluation criterion. Each model has different hyper-parameters, here we focus on the
architecture of the neural networks (width and depth).

To select the best model, we tune the number of neurons and layers with scikit-learn python
library. In order to realize this tuning with respect to the hold-out procedure, we realize a k-fold
cross validation on the train set. Let us explain briefly this method.

We split the train set in k subsamples chronologically ordered (S1, S2, ..., Sk), we train the
model on the first k samples and test it on the last sample, we repeat this operation k times.
That is we first train the model on the first sample S1 and validate it on S2. We then retrain
the model on S1 ∪ S2 and test it on S3. We repeat this operation until we train the model on
S1 ∪ S2 ∪ ... ∪ Sk−1 and test it on Sk. The final score is then an average of k-scores. We select
the model that has the best average score. Finally, the score on the test set will give us the
generalization error.

For our example, we realize a 5-fold cross validation on the train set. The model with the
best average accuracy is the final model selected. As a grid search, we tested MLP architectures
with two, three, four and ten hidden layers.

Hidden layers Neurons per layers

2
(5, 10, 15, 20, 25, 50, 100)
(5, 10, 15, 20, 25, 50, 100)

3
(5, 10, 15, 20, 25, 50)
(5, 10, 15, 20, 25, 50)
(5, 10, 15, 20, 25, 50)

4
Best step 3

(5, 8, 10, 12, 15, 18, 20, 25, 50)

10
Best step 4

(5 per layer)

Table 3.3: Grid search for hyper-parameter tuning

We first realize this tuning with a maximum number of 50 epochs and then 500 epochs. In
the following table, we present the accuracy for each final model.

Step Epochs Hidden layers Neurons per layers Accuracy (%)

Model 1 50 2 (100, 15) 55
Model 2 50 3 (50, 15, 15) 56
Model 3 50 4 (50, 15, 15, 5) 56
Model 4 50 10 (50, 15, 15, 5, 5, 5, 5, 5, 5, 5) 53
Model 5 500 2 (50, 100) 56
Model 6 500 3 (25, 10, 25) 58
Model 7 500 4 (25, 10, 25, 12) 55
Model 8 500 10 (25, 10, 25, 12, 5, 5, 5, 5, 5, 5) 53

Table 3.4: Grid search for hyper-parameter tuning BTCtuning

From this table, we can see that all architectures have an equivalent performance. Especially
adding layers does not necessarily improve the accuracy of the model. In particular, very deep
MLP architectures (model 4 and model 8) have a lower performance than the baseline model.
Nevertheless, architectures with three or four hidden layers perform at least as good as model 1
which has only two hidden layers, indicating that adding a few layer to the baseline architecture

https://github.com/QuantLet/CRIXdeeplearning/tree/master/BTCtuning
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can improve the generalization power. Finally, model 6 is the best model with a cross validation
score of 58%. The final measure of generalization error is obtain by computing the accuracy on
the test set that is unseen from the model. We obtain a final accuracy score of 51%.



Chapter 4

Application: Cryptocurrency
portfolio

This application is inspired by the pilot study that was carried out in cooperation with Com-
merzbank AG, Franke (1999). The goal was to develop a trading strategy for a portfolio made
up of 28 of the most important stocks from the Dutch CBS-Index based on predicted returns
only. We transposed this strategy to a portfolio made up of the 8 cryptocurrencies that dom-
inates CRIX, Trimborn and Härdle (2016) from 2014 to early 2017. As in Franke’s study we
restrict ourselves to the buy-and-hold strategy with a time horizon of a quarter of a year (90
trading days because cryptocurrency exchanges are open on weekends). The portfolio is created
at the beginning of a quarter and then held for three months without any alteration. We include
the cryptocurrencies whose prices are predicted to rise significantly, hold them up to the end of
the end of the quarter and sell them afterwards. At the end of the three months, the value of
the portfolio should be as large as possible. As a basis for the trading strategy a three months
forecast of the cryptocurrencies is used.

To modelize the time series Si,t, we use a NLARX process (see Definition 3.1) where Si,t
represents the price of cryptocurrency i (see Table 4.1). We have to build one model for each
cryptocurrency in order to predict the price three months ahead. Let us first present the input
data we use for each model.

4.1 Data analysis

4.1.1 Cryptocurrencies price

The prices of the height most important cryptocurrencies have different distributions but are
following the same trend. btc is clearly dominating the cryptocurrency market with an average
price of almost 1000 USD over the last three years, 25 times larger than dash, the second
cryptocurrency in value and over than 20 000 times larger than xrp, the cryptocurrency with
the second largest market capitalization, see Table 4.1.

The cryptocurrency market experienced an incredible growth in the last year as we can see
from the evolution of the CRIX price on Figure 4.1.

As a result, we can consider the price evolution of cryptocurrencies within two different
periods, from July 2014 to the first months of 2017 where each price of the different cryptocur-
rencies was almost constant closed to its minimum, and from the beginning of the year 2017 to
October 2017, where each price experienced a rapid growth until it reached a pick at the end of
the summer and start to decline, see Figure A.1 in the appendix. The fact that the price range
changes over time for each cryptocurrency can be a problem for its modelization, as we will see
in the next section, we need to preprocess the data.
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btc dash xrp xmr ltc doge nxt nmc

Min 172 1.06 0.00409 0.216 1.15 8.69e-05 0.00531 0.169
1st Quartile 296 2.75 0.00607 0.508 3.16 0.000155 0.00758 0.351

Median 452 5.79 0.00764 1.17 3.83 0.000219 0.0115 0.443
Mean 917 41.6 0.0405 12.7 9.97 0.000454 0.0257 0.703

3rd Quartile 894 12.8 0.0133 12 4.61 0.00027 0.0244 0.89
Max 6040 569 0.405 142 85.7 0.00383 0.195 3.66

Table 4.1: Cryptocurrencies prices statistics

Figure 4.1: CRIX price

4.1.2 Technical indicators

As we saw in Section 3.2.1, technical indicators can be useful variables for time series modeling.
In the forecast of cryptocurrencies prices, we decided to use three major technical indicators:
Bollinger bands at different time horizon, two weeks, one month and three months, so 14, 30
and 90 days which corresponds to 10, 20 and 60 days in the traditional market.

Let Si,t be the price of stock i at time t. We define the simple moving average of order q as:

µ =
1

q

q∑
t=1

Si,t

and the rolling standard deviation of order q as:

σ =

√√√√1

q

q∑
t=1

(Si,t − µ)2

The three components of Bollinger bands corresponds to µ, the central band, µ + δσ, the
upper band and µ − δσ the lower band, where δ is a fixed parameter historically equals to 2.
The width of the band is a direct indicator for volatility of a stock. For example, on Figure 4.2
we can observe that Bitcoin price volatility increased as the price grew during the first months
of 2017.
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Figure 4.2: Bictoin prices (red), its 20-days moving average (green) and its lower and upper

Bollinger bands (light blue) CRIXbtcBB

For each cryptocurrency model, we consider Bollinger bands of the cryptocurrency price on
three different horizons to reflect the long-term trend directions of the price and its volatility.

4.1.3 Fundamental indicators

To reflect the intrinsic value of prices, we chose to include also some fundamental indicators as
exogenous variables. As in Franke’s study, we use international interest rates such as Euribor
at different horizons and because our portfolio is made of cryptocurrencies, we use different
exchange rates.

To be able to catch the inner relations of the cryptocurrency market, we also use the value
of the other cryptocurrencies considered ({Sj}, 1 ≤ i ≤ 8, j �= i) and the cryptocurrency index,
CRIX.

In Table 4.2 we represent all the variables we use as input to modelize the cryptocurrency
price Si.

Technical indicators Bollinger Bands 14 days, 30 days and 90 days of crypto i

CRIX, Euribor 3 months, 6 months, 1 year
Fundamental indicators Open, low, high and close price of exchanges

UK/Euro, Euro/USD, JPY/USD
{Sj}, 1 ≤ j ≤ 8, j �= i

Table 4.2: Input variables for each model

4.2 Model architecture

Our goal is to build a portfolio with a maximum three months return, but forecast points of
time series over such a large lag are notoriously unreliable, Franke (1999) and our goal is not to
find a good forecast of the prices of the cryptocurrencies themselves, but to maximize the return
of the cryptocurrency portfolio. That is why we do not build a direct forecast strategy with
a NLARX(p,x,90) model, but we rather predict the prices movements than the actual prices.
Thus, we try only to predict the trend correctly, that is if the cryptocurrency price will increase
significantly (more than 5%), decrease significantly (less than 5%) or stay at the same level (does
not change by more than 5%).

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXbtcBB
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Let us consider the price of cryptocurrency i, Si,t at time t and let us assume that Si,t is an
NLARX(p,q,x). We estimate the function f∗ from Definition 3.1 with different neural network
architectures, f .

(Ŝt+90, . . . , Ŝt+1) = f(St, . . . , St−89, Xt, . . . , Xt−89; θ) + εt

4.2.1 Data preprocessing

• Log-returns transformation: Before feeding the inputs variables from 4.1 into the
network we need to preprocess the data. Indeed, as we saw that cryptocurrencies prices
are not easy to handle we uses log-returns. Moreover, because we are only interesting in
the forward movement of the price we use k-returns (multiple step returns) rather than
daily returns. We define the k-log-returns as follows:

Rt(k) = ln
St+k
St

• Sequence learning:

Because we are dealing with time series, we are going to use a sequence learning algorithm
which learns the inner relations of sequences as well as relations between them. That is, we
want to be able to predict if the price of a cryptocurrency will rise within a sequence but
also if it will rise after a sequence as been fed to the network, thus we use a many-to-many
sequence model.

Input variables: As inputs, we use sequences of past values of multiple log-returns
of the cryptocurrencies and past values of the exogenous variables, which we can write
(It−90, It−89, . . . , It−1)

>. It is a matrix of dimension (90, 24):
R1,t(−90) . . . R8,t(−90) Xt−90
R1,t(−89) . . . R8,t(−89) Xt−89

. . . . . . . . . . . .
R1,t(−1) . . . R8,t(−1) Xt−1


where Ri,t(k) is the k-log-returns of cryptocurrency i at time t and Xt is the vector of
exogenous variables (technical indicators of the cryptocurrency and fundamental indica-
tors) at time t. For each cryptocurrency model, we only include the Bollinger bands of
the cryptocurrency considered in order to reduce the complexity of the model and avoid
overfitting problems. Thus, the height models share all input variables except for the
Bollinger bands.

Output variables: The output variables depends both on the objective we fixed
and the activation function at the output layer.
As outputs, we use the sequence of trend classifications in the future. We need to code the
k-log-returns as three dimensional variables that reflects the price movements accordingly
to our objective.

(Ti(1), . . . , Ti(90)) ∈ {0, 1, 2}90

where, we have for k ∈ 1, . . . , 90:

Ti(k) =


1, if

St+k−St

St
≤ −0.05

2, if 0.05 ≤ St+k−St

St

0 otherwise
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We can now write f as a sequence to sequence learning problem as it follows:

(Ti(1), . . . , Ti(90)) = f
(

(It−90, It−89, . . . , It−1)
>
)

+ εt

• Scaling: Finally, because neural networks uses activation functions that squash the input
variables to their output interval, we need to scale the input data so the neurons learn
faster, see LeCun et al. (1998). The scaler used depends on the activation function.
Because we use the default LSTM activation functions, tanh, we scale the input variables
to [−1, 1].

4.2.2 Baseline model

Architecture

The general architecture of the model is constituted of an input layer of dimension (time steps ×
number of features = 90× 24), the inner structure and an output layer of dimension (time steps
× number of classes = 90× 3). Indeed, we apply at each future time step a softmax layer with
three neurons, one for each class of the output variables. We will change the inner structure of
the model to test different architectures of neural networks.

Loss function

Since our problem is a classification task, we use the cross-entropy as loss function. But, as we
saw on Figure 4.1, the market is quite stable at the beginning of the period and experienced
a rapid growth at the end, so we can expect to have unbalanced classes in the dataset. While
training we will have to balance the loss function by the class weights. From Table 4.3, we can
clearly see that, except for ltc, all cryptocurrencies have unbalanced classes.

Cryptocurrency 0 1 2

btc 0.26 0.48 0.26
dash 0.18 0.51 0.31
xrp 0.19 0.33 0.48
xmr 0.13 0.53 0.35
ltc 0.32 0.34 0.34

doge 0.29 0.31 0.40
nxt 0.16 0.29 0.56
nmc 0.22 0.24 0.54

Table 4.3: Class repartition

Thus we need to use a modified version of the cross-entropy defined in Equation 2.5 and use
the weighted cross-entropy:

Q(θ) = − 1

n

n∑
i=1

2∑
k=0

wkyi,k ln ŷi,k

where wk = n
K∗frequence of class k are the class weights.

Metric

As performance metric for model selection, we use the accuracy and the weighted F-measure
introduce in Section 2.3.1.
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Baseline models performance

Let us first present three different baseline models with two hidden layers with ten neurons each
corresponding to three type of neurons, LSTM, simple RNN and perceptron. To reduce the
training time, we used the well-known method of early stopping defined in Section 2.3.2. We
apply early stopping on the validation accuracy and the validation loss with a patience of 10
epochs. That is, we stop the model training if the validation accuracy does not increase every
10 epochs or if the validation loss does not decrease every 10 epochs. We repeat the training
of each model ten times in order to obtain a average performance which is more robust. We
present the result in Table 4.4.

Cryptocurrency Network Epochs Loss Accuracy (%) F Measure (%)

LSTM 16 1.01 65 78
btc RNN 21 0.94 56 72

MLP 23 0.95 59 74

LSTM 20 0.93 51 68
dash RNN 14 0.89 81 89

MLP 20 0.8 65 79

LSTM 11 1.15 27 12
xrp RNN 16 1.18 21 23

MLP 19 1.14 65 67

LSTM 28 0.76 90 95
xmr RNN 18 1.06 57 74

MLP 11 0.79 94 97

LSTM 11 1.13 9 11
ltc RNN 11 1.16 17 19

MLP 13 1.42 7 1

LSTM 11 1.12 46 56
doge RNN 11 1.14 25 28

MLP 11 1.25 6 6

LSTM 11 1.11 5 3
nxt RNN 11 1.62 2 4

MLP 11 1.16 27 36

LSTM 11 1.28 11 10
nmc RNN 11 1.23 14 21

MLP 11 1.37 21 20

Table 4.4: Performance of the baseline models on the test set

For btc, dash, ltc and xmr we can see that the baseline models have already a good prediction
power on the validation set with a minimum F measure of 68% for LSTM model on dash and a
maximum F-measure of 97% for MLP model on xmr.

For the other cryptocurrency, the results are mixed. MLP and LSTM models have a good
F-measure for the returns of xrp and doge respectively, since their generalization power is better
than a pure random forecast that would have a F-measure of 33%.

For the other models, it seems that each network experienced real difficulties during the
training process. For example, for nmc, the best performance of the three models occurred
after the first iteration, since the validation loss nor the accuracy did not improve after the
eleventh epoch. They have a large loss with a minimum of 1.23 and really poor prediction
performance with a maximum F-measure of 21%. The networks are incapable of extracting
general information from the training set. We can see that the same phenomenon occurred with
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ltc, doge, and nxt.
This problem is maybe due to overfitting problems, see Section 2.3.1. We can do this

diagnosis of the training process by observing the loss and accuracy curves on the training
and validation sets. We present this curves for the first 150 epochs of the training of nmc on
Figure 4.3 and 4.4.

Figure 4.3: Training (blue curve) and validation (orange curve) accuracy

Figure 4.4: Training (blue curve) and validation (orange curve) loss

From the loss and accuracy curves, we can see that the model performs well on the train set.
Nevertheless, the model overfits completely the train set. Indeed, the loss curve on the validation
set increases while training and the model has no generalization power as the validation accuracy
does not improve.

4.2.3 Best model selection: optimization methods and tuning of hyper-parameters

Regularization

As we saw in Section 2.3.2, regularization techniques are very useful to avoid overfitting problems.
To improve our baseline models, we first need to apply one dropout and one batch normalization
layer after each hidden layer to avoid overfitting and to make the training faster and easier.

Finally, to find the best architecture for each model, we have to tune the hyper-parameters
of the models, that is the depth and the width of the models, but also the learning rate and the
batch size.
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The general architecture of the models are presented in Appendix B on Figure B.1, B.2 and
B.3. The shape of the different layers is the same as the one from the baseline models except for
the last dimension that depends on the number of neurons in the layer. We explain the tuning
of this number and the number of hidden layers in the next paragraph.

Model tuning

As we saw in Section 3.3.2, model tuning is an important step of the model construction. We
realize a tuning of the width and depth of each model as in the previous chapter, but we also
tune the training parameters such as learning rate, batch size and epochs.

We first tuned the batch size with (32, 64, 128, 256) as grid search, to make computation
easier for Keras. We chose 256 as batch size to reduce the variance on the evaluation metrics,
which gives us more robust results. A large batch size also allow us to reduce considerably the
training time. Finally, we tested (0.01, 0.001, 0.0001, 0.00001) as grid search for the learning
rate and realized that small learning rates do not improve training and makes the complexity
of the model higher with the need of more epochs. Thus, we selected 0.01, 0.001 and 0.0001 as
potential learning rates.

To avoid a too large number of trainable parameters in the model, we prefer to use less
neurons and more layers. For example, a MLP with one hidden layer with 100 neurons with 10
input variables has (10 + 1) ∗ 10 = 110 trainable parameters, but a MLP with two hidden layers
with 5 neurons each has (5 + 1) ∗ 10 + (5 + 1) ∗ 5 = 85 trainable parameters. Here, we prefer
the second architecture. Nevertheless, we realize that adding a fourth layer did not improve the
F-measure of the model.

Thus, we establish a grid search of parameters for the width (2, 5, 10, 15 and 24 neurons,
24 corresponding to the number of features in our model) and for the depth (2 or 3 layers). We
select the parameters corresponding to the model with the highest F-measure.

We also could have tested much more values for the hyper-parameters of our models, but
our computational resources were limited for this study.

4.2.4 Evaluation of the final models

In the Table 4.5, we present the evaluation metrics on the test set of the tuned models.

From Table 4.5, LSTM network has the best generalization power for btc, dash, ltc, nxt and
nmc and MLP network has the best generalization power for xrp, xmr and doge. RNN always
has a lower performance except for xmr which quarterly returns are perfectly predicted by the
RNN and MLP networks with a F measure of 100%.

For each cryptocurrency, the results are different. We can see that the three different models
for btc, dash and xmr achieve a very good performance, with a minimum F measure of 79%
for xmr LSTM network. This result is important since this three cryptocurrencies are the most
expensive. For the other cryptocurrencies, we must underline that RNN network seems to fail
to extract the information necessary to perform a good generalization from the training set.
This can be explainable by the overfitting problem and a fine tuning of the batch size and the
learning rate is here necessary. We could also increase the complexity of the model by adding
more training epochs.

To allow a reproducible method, we did not realize this fine tuning. We only compared the
performance of the latter models with the performance of the baseline models and select the
ones with the best F measure.

We finally obtain our final models that we will use for our trading strategy. We prefer the
RNN baseline models for dash, xrp and doge, the LSTM baseline models for xmr and doge
and finally the MLP baseline models for nxt. From the latter, we can see that it is easier to
outperform the MLP baseline model, that indicate that the hyper-parameters of MLP network
plays a more important role on the performance of the model than for LSTM and RNN networks.
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Cryptocurrency Model Loss Accuracy F1 score

LSTM 0.68 100 99
btc RNN 1.10 60 75

MLP 0.91 65 79

LSTM 0.56 100 100
dash RNN 1.00 77 87

MLP 0.88 66 79

LSTM 1.27 55 54
xrp RNN 1.27 12 7

MLP 1.04 64 67

LSTM 1.04 65 79
xmr RNN 0.74 100 100

MLP 0.74 100 100

LSTM 1.06 64 71
ltc RNN 1.17 26 37

MLP 1.17 16 22

LSTM 1.02 66 52
doge RNN 1.37 5 0

MLP 1.08 74 73

LSTM 1.02 86 87
nxt RNN 2.37 19 6

MLP 2.73 16 6

LSTM 1.06 71 75
nmc RNN 1.26 30 14

MLP 0.95 81 86

Table 4.5: Tuned model: performance on the test set

In the Table 4.6, we present the architectures and the metrics of the final models selected.

On average, LSTM, RNN and MLP network achieve a performance of 78%, 43% and 68% F
measure respectively which shows that LSTM is the best model in terms of prediction accuracy.

From Table 4.6, it is worth noticeable that MLP networks with two hidden layers achieve
a better performance than MLP networks with three hidden layers. RNN and LSTM networks
tend to be deeper, preferring three hidden layers for four and five cryptocurrencies out of eight
respectively. The number of hidden units does not seem to have a major impact on the perfor-
mance. Finally, LSTM network prefer a small learning rate of 0.001 or 0.0001 for xrp, whereas
a high learning rate of 0.01 was selected for 5 RNN networks. Considering the low performance
of RNN networks and the fact that small learning rate for RNN networks achieve a lower per-
formance than high learning rate, we could maybe have adopted the technique of reducing the
learning rate while training, which consists of beginning the training of the network with a high
learning and reducing it by plateau monitoring the evolution of the metric considered.

Multi-training

The split into train/test sets and the amount of data in the train set may have an influence
on the results. Indeed, the train set may include some special pattern in the data that are not
useful for the generalizing purposes or may exclude general information that can improve the
performance on the test set. That is why, we finally test the stability of the forecasting method
when new information becomes available by retraining the models after each quarter.

We cut the test set in three sets Q1, Q2 and Q3 corresponding to three consecutive quarter
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Cryptocurrency Model First layer Second layer Third layer Learning rate F1 score

LSTM 15 5 15 0.001 99
btc RNN 10 15 15 0.01 75

MLP 5 15 0 0.001 79

LSTM 15 5 15 0.001 100
dash RNN 15 5 5 0.01 89

MLP 5 15 0 0.001 79

LSTM 5 5 5 0.0001 54
xrp RNN 5 15 0 0.01 23

MLP 24 15 0 0.001 67

LSTM 10 10 0 0.001 95
xmr RNN 24 24 24 0.01 100

MLP 5 10 0 0.01 100

LSTM 5 5 5 0.001 71
ltc RNN 5 5 0 0.001 37

MLP 5 15 0 0.001 22

LSTM 10 10 0 0.001 56
doge RNN 5 5 0 0.001 28

MLP 5 24 0 0.001 73

LSTM 15 5 0 0.001 87
nxt RNN 10 5 5 0.001 6

MLP 5 24 0 0.001 36

LSTM 2 2 2 0.001 75
nmc RNN 10 24 0 0.01 14

MLP 5 15 0 0.001 86

Table 4.6: Final models: architecture

in the test sets. We do this experiment in three steps:

we predict (Q1,pred) from the first quarter of the test set (Q1). We than add to the original
train set (T1) the first quarter of the test set. We then update the weights of the model by
training the original model on the new train set (T2 = T1∪Q1) and we predict the second quarter
(Q2,pred) with the new model. We repeat this operation to get a new train set T3 = T2 ∪Q2 and
the last prediction Q3,pred. Finally, we get predictions on the whole test set thanks to the three
models Pred = Q1,pred ∪ Q2,pred ∪ Q3,pred and we compute the F-measure on this three-steps
prediction on the whole test set to get the final performance.

We compare in Table 4.7 the performances between a one-shot and a three-steps prediction. If
the generalization power improves, the last quarter added to the train set has crucial information
for the next quarter, if not, either the model overfits on the new train set or the data itself has
special patterns that are not useful for generalization.

Cryptocurrency
MLP RNN LSTM

One training Multi training One training Multi training One training Multi training

btc 86 79 52 75 99 99
dash 91 79 24 87 100 100
xrp 41 67 23 23 54 57
xmr 85 100 63 100 95 95
ltc 34 22 42 37 71 80

doge 25 73 29 29 56 56
nxt 36 36 12 6 87 91
nmc 60 86 21 21 75 91

Average 57 68 33 47 78 84

Table 4.7: Comparison of F measure (in %) of one-shot and multi-training predictions
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From Table 4.7, we see that for LSTM network, the multi-training experiment improved
for each cryptocurrency the performance of the model, which underlines the ability of LSTM
network to capture new patterns in the data and the necessity to retrain the models at each
quarter for nmc, nxt and ltc. We obtain mixed results for MLP and RNN networks which
indicates maybe a tendency to overfit new data when the F-measure declines from the one-shot
and three-steps predictions. Nevertheless, on average we improve the generalization power by
11, 14 and 6 points for MLP, RNN and LSTM networks respectively.

4.3 Evaluation of different trading strategies

To evaluate our different models in terms of trading strategies, we need to look at another
performance measure as the F-measure. Indeed, the F-measure gives us an idea of the prediction
accuracy of each model, but not of the performance of a trading strategy based on each model
prediction. To compare each model, we use in this section the financial returns of the trading
strategies based on the prediction of each model.

Let us first define the return of a portfolio composed of cryptocurrencies.

Definition 4.1 (Portfolio return ) Let us consider a portfolio with N assets, P it the price of
asset i at time t. The T -days return of asset i is:

rit+T =
P it+T − P it

P it

The T -days return of the portfolio is then defined as:

Rt+T = w1r
1
t+T + . . .+ wNr

N
t+T

We add a constraint on the weights, so the capital invested in the portfolio is divided between
the assets included:

N∑
i=1

wi = 1

As we can see, wi can be negative allowing for short position in the portfolio. Indeed, when we
can take a short position on the cryptocurrency i, we sell on margin the cryptocurrency i, which
implies that we borrow an amount M to a broker at the risk free interest rate, rfree = 0.001.
The return of a long-short portfolio can be written:

Rt+T =
∑
l∈L

wlr
l
t+T +

∑
s∈S

wsr
s
t+T + 2|

∑
s∈L

ws|rfree

where L and S contains the long and the short positions respectively.

Moreover, we need a benchmark to compare our strategies on the test set. We use three
benchmarks, a portfolio replicating CRIX, that is CRIX quarterly returns, a portfolio based on
the predictions of the baseline models for each type of neural networks and a portfolio based on
perfect predictions or ”true signals”, that is the observed training signal on the test set. This
benchmark reflects the accuracy of our predictive models.

Finally, we do not apply our strategy at the beginning of each quarter, but we apply it
everyday, creating a new portfolio each day, as if we would have a new investor. In this way,
we can measure not only the performance of a portfolio at the beginning of the test set, but
the overall performance of our strategies on the whole test set. We can measure the overall
performance of our different strategies with the cumulative quarterly returns, regardless of the
date of investment, which gives us two ways to evaluate our strategies.
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• We first use the quarterly returns everyday. If at time t, the quarterly return is higher than
CRIX return at that date, we say that the portfolio beats the cryptocurrency market on
that quarter. We can then say that on that quarter, it is more profitable to invest in our
strategy, rather than in CRIX. We can use as indicator the number of days of investment
which gives us higher quarterly returns than CRIX’s.

• If the cumulative quarterly returns of our portfolio is higher than the cumulative returns
of CRIX at the end of the test set, we can say that our portfolio beats the cryptocurrency
market on the whole period considered. We can then conclude that it is always better to
invest in our strategy, rather than in CRIX, on the test period. We use as indicator, the
cumulative returns at the end of the test set.

4.3.1 Buy-and-hold strategy

Price weighted portfolio

First, we use a buy-and-hold strategy on the period considered, here a quarter of a year, that
is we buy the cryptocurrency that returns has been predicted to increase significantly and we
close all positions in our portfolio at the end of the quarter considered. We compare the returns
of the portfolio with a portfolio replicating CRIX.

We suppose that we buy only one coin of each cryptocurrency and we compare the values of
the portfolio at the beginning and at the end of the quarter considered. Let I be the ensemble
of cryptocurrencies that we buy at time t and Ni, i ∈ I, the number of coins that we buy of the
cryptocurrency i; the quarterly return of this portfolio at time t is:

Rt+90 =

∑
i∈I NiP

i
t+90 −

∑
i∈I NiP

i
t∑

i∈I NiP it

Since in our case, we buy only one coin of each cryptocurrencies that we include in our
portfolio, we have:

Rt+90 =

∑
i∈I P

i
t+90 −

∑
i∈I P

i
t∑

i∈I P
i
t

This portfolio correspond to a price weighted portfolio, which returns is influenced by the
most expensive cryptocurrency. Indeed, cryptocurrencies with a higher price will be given more
weight and will have a greater influence over the performance of the portfolio.

Rt+89 =

∑
i∈I P

i
t+90 −

∑
i∈I P

i
t∑

i∈I P
i
t

=

∑
i∈I(P

i
t+90 − P it )∑
i∈I P

i
t

=
∑
i∈I

P it∑
i∈I P

i
t

P it+90 − P it
P it

=
∑
i∈I

wiR
i
t+90, where wi =

P it∑
i∈I P

i
t

This formula corresponds to Definition 4.1.
For example, if we build a portfolio with the 8 cryptocurrencies we consider in our thesis,

we get on average on the test set the weights in Table 4.8.
We build three trading strategies based on the trading signals, that we obtain from the

predictions of the different models. The result is then three price weighted portfolios based
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Cryptocurrency Weight

btc 0.93
dash 0.042
doge 4.8e-07
ltc 8.4e-03

nmc 5.5e-04
nxt 2.0e-05
xmr 1.4e-02
xrp 4.1e-05

Table 4.8: Weights of a price weighted portfolio, average on the test set

on the LSTM, RNN and MLP networks predictions respectively. The results are presented in
Figure 4.5.

On Figure 4.5, we can see that LSTM portfolio clearly outperforms MLP portfolio from
March 2017, but they are equivalent before this date. Indeed, we can see that MLP portfolio
successively predicted wrong trading signals in March 2017 and Mai 2017, implying also that
RNN portfolio outperforms MLP portfolio from April 2017.

Nevertheless, the three strategies and the perfect prediction portfolio do not beat CRIX
before mid May, as we can see from the quarterly returns. Indeed, we know from Trimborn
and Härdle (2016) that CRIX is based on market capitalization indexing, which gives higher
weights to larger cryptocurrencies in terms of market capitalization (see next section for details
on marketcap indexing). Thus, the structure of CRIX returns should be more influenced by the
performance of the cryptocurrencies we consider. Nevertheless, we can see from Figure 4.5 that
CRIX returns are two times larger than our portfolio at end of March 2017.

From this result, we can say that cryptocurrencies with a lower marketcap than the height
cryptocurrencies we consider, had very large returns between February and June 2017, since
they have a smaller weight in CRIX than our cryptocurrencies. We must also remind the reader
that Ethereum, which value was multiplied by a factor of 100 during that period, is not included
in our strategies but is in the computation of CRIX returns on the test set. Yet, Ethereum is the
second cryptocurrency in terms of market capitalization, thus has the second most important
influence on CRIX returns on the test set. From this, we can explain, as we can see from the
cumulative returns, how CRIX portfolio outperforms all our strategies and the perfect prediction
portfolio on the whole period.

Nevertheless, LSTM portfolio always beats CRIX from mid May, which indicates that the
most expensive cryptocurrencies were the best investment solutions during the last quarter.
Similarly, MLP portfolio beats CRIX from mid June.

Since the returns of a price weighted portfolio are influenced by the most expensive cryp-
tocurrency, we can say that the latter strategies are highly influenced by btc changes. If one
model is wrong at predicting btc returns, it can have a very low performance, but if it is wrong
at predicting cheap cryptocurrencies, it can however have a good performance.

From this, we can clearly see that a price weighted portfolio does not profit from high returns
in cheap cryptocurrencies. Yet, xrp, nxt and doge, which are the cheapest cryptocurrencies we
study (see Table 4.1), experienced the highest returns on the test set as we can see on Figure A.2
in Appendix. That is why we also build a portfolio based on market capitalization weighting.

Market capitalization weighted portfolio

The market capitalization or ”marketcap” of a cryptocurrency i is defined as Ki
t = Sit × P it

where P it and Sit are respectively the price and the supply, that is the number of coins on the
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Figure 4.5: Price weighted quarterly returns (top) and cumulative quarterly returns (bottom)
of CRIX (blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios

(purple) CRIXportfolio

market, of cryptocurrency i at time t.

A marketcap weighted portfolio has its weights proportional to the market capitalization of
its cryptocurrencies, that is cryptocurrencies with a higher marketcap will be given more weight.
The return of such portfolio is defined as:

Rt+90 =
∑
i∈I

wir
i
t+90, where wi =

Ki
t∑

i∈I K
i
t

For example, if we build a portfolio with the height cryptocurrencies we consider in our thesis,
we get on average on the test set the weights in Table 4.8. As we can expect, the portfolio is
more diversified than a price weighted portfolio.

We present the performance of our strategies on Figure 4.6. RNN portfolio has the best
performance and beats CRIX on the whole test set thanks to very large returns during the first
quarter.

Nevertheless, the overall performance of the other strategies is similar to the price weighted

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXportfolio
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Cryptocurrency Weight

btc 0.86
dash 0.017
doge 0.081
ltc 0.011

nmc 0.023
nxt 2.8e-03
xmr 1.0e-03
xrp 4.4e-04

Table 4.9: Weights of a marketcap weighted portfolio, average on the test set

portfolio and CRIX beats MLP and LSTM strategies. Indeed, since the market is growing,
a marketcap weighted portfolio based on accurate predictions corresponds approximatively to
a basket portfolio containing the height largest constituents of CRIX, since CRIX weights are
defined by market capitalization (Trimborn and Härdle; 2016).

Finally, a marketcap strategy cannot profit from high returns in cryptocurrencies with lower
marketcap. Yet, nxt and doge, which have a low marketcap (see Table 3.1), experienced very
high returns as we can see from Figure A.2 in Appendix. In order to benefit from both high
returns in cryptocurrencies with low price and market capitalization, we build a last trading
strategies with an equally weighted portfolio, the simplest Beta strategy.

Equally weighted portfolio

An equally weighted portfolio weights each stock in the basket equally. As a result, the port-
folio is highly diversified. As opposed to marketcap weighted portfolio, it does not overweight
overpriced cryptocurrencies and underweight underpriced cryptocurrencies, which implies that
it can overweight cryptocurrencies with a larger risk. Indeed, smaller cryptocurrency have a
higher risk of failure.

Nevertheless, an equally weighted portfolio is really easy to construct, since its weights are
inversely proportional to the number of cryptocurrencies in the basket. The quarterly return of
such portfolio is defined as follows, where Nt is the number of stocks in the basket at time t:

Rt+90 =
1

Nt

∑
i∈I

rit+90

We present the performance of the different strategies based on such a portfolio on Figure
4.7. As we can see, the strategies based on our three predictive models and the perfect prediction
portfolio beat the market on the whole test set, since the cumulative returns are much higher
than CRIX portfolio at the end of the test period. Indeed, these portfolios benefit from very
high returns in cheap cryptocurrencies at the beginning of the test set, as opposed to CRIX.
However, at the end of the test period, the different strategies have a similar performance.
Indeed, cheap currencies, for example xrp, nxt or doge, experienced very low returns, close to 0
or even negative returns, from end of May 2017. Since, these cryptocurrencies are overweighted
comparing to CRIX weights, CRIX beats our equal weighted portfolios for some days in the last
quarter.

Nevertheless, the overall performance of the strategies based on our predictive models is
much higher than CRIX’s (almost 4 times higher for MLP portfolio).

Finally, from Table 4.10, we can see that the strategies based on the predictions of the tuned
model always beats the strategies based on the predictions of the baseline models for each type
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Figure 4.6: Marketcap weighted quarterly returns (top) and cumulative quarterly returns (bot-
tom) of CRIX (blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios

(purple) CRIXportfolio

of neural networks. The best strategy is an equally weighted portfolio based on the predictions
from MLP model.

4.3.2 Long short strategy

In the latter subsection, we exposed some trading strategies based on a 3 months buy-and-hold
strategy that forbid short positions, but, since we trained our neural networks so they can predict
negative returns, we can profit from these predictions by short selling cryptocurrencies that are
predicted to decrease significantly.

In this section, we build our portfolio in the following manner. We buy the cryptocurrencies
that are predicted to increase significantly (long position) and sell them after three months as in a
buy-and-hold strategy. Moreover, if we predict that a cryptocurrency will decrease significantly,
we borrow the cryptocurrency, or fiat money, to a broker to sell it on the same day. At the end
of the quarter, we close the short position by purchasing the cryptocurrency borrowed in order
to give it back to the broker. If the price actually decreased, we made a profit.

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXportfolio
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Figure 4.7: Equally weighted quarterly returns and cumulative quarterly returns of CRIX
(blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios (pur-

ple) CRIXportfolio

As we can see from Table 4.11, we observe first that the strategies based on the final models
have a larger cumulative return at the end of the test period than the strategies based on the
baseline models, except for the strategies based on marketcap portfolio with MLP predictions
and equally weighted portfolio with RNN predictions.

Again, price weighted and marketcap final portfolios do not beat CRIX and have quite
similar performances on the whole test set (see Figure C.1 and Figure C.2 in Appendix). Only
the equal weighted portfolios based on MLP and LSTM predictions beat CRIX (see Figure
C.3 in Appendix), LSTM equal weighted portfolio performing more than two times better than
CRIX for a final return of 627.

LSTM portfolio always beats RNN or MLP portfolios on the long run, which means that
wrong predictions by RNN or MLP networks cost a lot in terms of returns to the trading
strategies. Indeed, if we look at the returns of the equally weighted portfolio based on RNN
final predictions, we can see that the strategy has a negative performance. This is caused
by wrong predictions of long instead of short trading signals, and conversely. Indeed, LSTM

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXportfolio
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Portfolio
Baseline model Final model

Price Marketcap Equal Price Marketcap Equal

CRIX 291 291 291 291 291 291
LSTM 126 152 468 200 199 743
RNN 110 147 630 150 343 533
MLP 116 241 626 135 280 878

Maximum CRIX CRIX RNN CRIX CRIX MLP
Best NN LSTM MLP RNN LSTM RNN MLP

Table 4.10: Long strategy cumulative return at the end of the test period

Portfolio
Baseline model Final model

Price Marketcap Equal Price Marketcap Equal

CRIX 291 291 291 291 291 291
LSTM 122 136 -299 198 195 627
RNN 104 102 -193 129 133 -353
MLP 111 216 59 130 175 458

Maximum CRIX CRIX CRIX CRIX CRIX LSTM
Best NN LSTM MLP MLP LSTM LSTM LSTM

Table 4.11: Long/short strategies cumulative returns at the end of the test period

strategy has a better performance, because LSTM model has a better F-measure.

Comparison of buy-and-hold and long/short strategies

If our models would have a very low misclassification rate between ”long” and ”short” trading
signals, we can benefit from a long/short strategy. In Table 4.12, we compare the overall
performance of a buy-and-hold and a long/short strategy. We can observe that the long strategies
always beat the long/short strategy. Indeed, in a long/short strategy, it is more costly to predict
a ”long” trading signal instead of a ”short”, and conversely, than to predict a ”do nothing”
instead of a ”short” or a ”long” trading signal.

We can also see that the final performances of the price weighted portfolios based on long
or long/short strategies are quite similar, but they differ when we compare the marketcap or
equally weighted portfolios, especially for the portfolios based on MLP and RNN predictions.

Portfolio
Long Long/short

Price Marketcap Equal Price Marketcap Equal

CRIX 291 291 291 291 291 291
LSTM 200 199 743 198 195 627
RNN 150 343 533 129 133 -353
MLP 135 280 878 130 175 458

Maximum CRIX CRIX MLP CRIX CRIX LSTM
Best NN LSTM RNN MLP LSTM LSTM LSTM

Table 4.12: Long and Long/short strategies cumulative returns at the end of the test period

In general, from these results, we prefer to apply a buy-and-hold strategy that does not allow
short position, because our models predict too many trading signals of short, instead of long
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positions and conversely. However, we know that it is hard to beat an index when the market is
growing and, during the year 2017, the cryptocurrency market has known a exponential growth.
From Table 4.13, we can see that on average on all strategies, our portfolio beats CRIX on 38%
of the test set, which is quite remarkable. Moreover, the equally weighted portfolios always
beats CRIX, except for RNN long/short portfolio, with a maximum cumulative return of 878
for MLP long portfolio, that is 3 times higher than CRIX.

Portfolio
Long Long/short

Average Best strategy
Price Marketcap Equal Price Marketcap Equal

MLP 24 38 79 24 32 44 40 Equal
LSTM 32 26 72 32 25 49 39 Equal
RNN 22 45 73 22 24 15 34 Equal

Average 26 36 75 26 27 36 38 Equal
Best strategy LSTM RNN MLP LSTM MLP LSTM MLP MLP Equal

Table 4.13: Number of days (in percentage) with higher returns than CRIX portfolio
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Discussion and future works

5.1 Discussion on the method

5.1.1 Data

Data quality

In this thesis, we used Deep Learning methods that require a large amount of data in order
to estimate the parameters of the model correctly. Especially, the first solution to overfitting
problems is to collect more data. Since the cryptocurrency market is quite new, we could not
get more daily data for the cryptocurrencies we considered without introducing missing values.
A follow-up to this thesis would be to work on data with higher frequencies (for example every
five minutes) and reduce the holding period of the portfolio.

Generalization

The cryptocurrency market is a very dynamic market. Its structure has changed in comparison
with January 2017 when we started our study. Some cryptocurrencies we have considered are
not the part of largest in market capitalization, one year later at the time of writing. Major
cryptocurrencies have emerged such as Ethereum, BitcoinCash, Iota, and many more. That is
why it would be necessary to always update the initial basket in relation with the evolution of
the market structure.

5.1.2 Model architecture

First, we could have used a random grid search for the tuning of the width and depth of the
different neural networks. Indeed, it showed very good performance in the literature. We could
also have gone further in the tuning of the hyper-parameters of the models that have a low
performance on the test set. Indeed, model selection involves multiple trials and errors, which
need important computation power that we didn’t have for this study. We could also have
tested other types of models such as convolutional neural network, but we wanted to underline
the ability of LSTM to outperform former simple RNN and MLP.

5.2 Discussion on the results

The question of predictions on the financial market is very problematic, especially on the cryp-
tocurrency market were the problems of liquidity, wales or scams have raised too many times.
Moreover, 2017 has been a new example of gigantic bubble on the cryptocurrency market where
Bitcoin price reached 20 000 dollars. That is why our results have to be taken with great care,
since the question of prediction during a bubbles is quite problematic. At least, we can expect
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our models to perform very well since it is much easier to predict long positions in a highly
growing market. Thus, even if the deep learning methodology always tries to avoid overfitting,
it would be interesting to see how our models perform in a bearish market.

5.3 Towards a real portfolio management strategy

5.3.1 Model, metric and loss functions

We chose to build height different models to predict independently the price trend of each
cryptocurrencies as in Franke’s study. It would have been interesting to predict the weight
of each cryptocurrency inside a weighted portfolio and maximize its returns. To this model
we could have used a custom loss function so the model learns tp penalize misclassifications
that cost more to the trading strategy. Indeed, we satisfied ourselves with the built-in loss and
metric functions of Keras library, that is sparse categorical crossentropy() and accuracy(). For
example, in order to find the strategy with the highest return, we could have chosen the return
of the trading strategy based on predictions on the test data, as a selection criterion for our final
model. Nevertheless, if this strategy can maybe work in a short term manner, in the long run,
without taking into account any risk measure, it would eventually fails.

5.3.2 Risk management

Indeed, our strategy, which based its quarterly investment decisions only on returns, is not a
portfolio management system because it is not realistic. Indeed, we have to take into consider-
ation the volatility of the portfolio in order to reflect a real investor behavior. Economic agents
are rational and take risk into consideration. We can state some portfolio management strategies
such as Markowitz portfolio, Sharpe ratio, equirisk contribution, MaxDrawDown, Optimal diver-
sification, see Franke (1999) for an early application of neural networks in portfolio management
strategy. Nevertheless, these portfolio management solutions have very strong assumptions on
the distribution of returns, assumptions that are very hard to meet in real life, in particular on
the cryptocurrency market which is highly volatile.

5.4 Reinforcement learning

In our studies, we predict future price movements and consider them as trading signal, con-
verting directly the trend into an action for the investor. However, price predictions are not
market actions. Moreover, our models do not predict the amount we should buy or sell for each
cryptocurrency. To build a real portfolio management strategy, we need to consider another
type of machine learning, Reinforcement learning, that simulates a real artificial intelligence.
Reinforcement learning studies the reaction of an agent towards its environment thanks to a
policy and a reward function. Jiang et al. (2017) present a financial-model-free Reinforcement
Learning framework to provide a deep machine learning solution to the portfolio management
problem applied to cryptocurrencies.
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Conclusion

In this thesis, we presented a general introduction on the deep neural networks theory. We
applied it on financial time series that is why we focused our analysis on recurrent neural
networks as a nonlinear method for sequence learning. We explained the basics of MLP, RNN and
LSTM architectures and the deep learning methodology in order to open what some researchers
or practitioners called the “black box” of neural networks. The reader should have a basics
theoretical knowledge on how to choose the neural network model corresponding to its particular
problem and how to train it in order to build prediction on unseen data.

We also showed on two examples how we can apply this methodology to a real practical prob-
lem: price prevision in order to take financial decisions. With this thesis, we add to the literature
by providing a first cryptocurrencies portfolio based on deep learning asset selection strategies.
By tuning the different hyper-parameters of the model with the trial-and-error methodology that
we presented, the reader should be able to find a model with an acceptable generalization power.
We showed how this methodology is necessary since hyper-parameter tuning always improves
the prediction accuracy of the model.

If our performance results on the cryptocurrency market should be taken with great care,
since the market was experiencing abnormal positive returns, typical of a bubble situation, we
showed how neural networks, especially LSTM, are useful tool for trend predictions by achieving
high prediction accuracy. Our strategy succeed to beat CRIX index in terms of financial returns
showing how index funding can be outperformed with an AI based buy-and-hold strategy, even
in a highly growing market.

Nevertheless, predicting the market is very risky and a realistic investment system should
be implemented by taking into account the active environment where it is evolving. A neural
network for trend prediction is not able to understand the financial cost of misclassifications.
That is why it would be interesting to study how such strategy would perform by adding a
financial policy and risk measure to the learning process in a Reinforcement Learning manner.
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Cryptocurrencies

A.1 Cryptocurrencies prices

A.2 Cryptocurrencies quarterly returns
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Figure A.1: Cryptocurrencies prices in dollars
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Figure A.2: Cryptocurrency quarterly returns on the test set
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Models architectures
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Figure B.1: LSTM model
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Figure B.2: MLP model
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Figure B.3: RNN model



Appendix C

Long short portfolio

Figure C.1: Long short price weighted quarterly returns and cumulative quarterly returns of
CRIX (blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios (pur-

ple) CRIXportfolio
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Figure C.2: Long short marketcap weighted quarterly returns and cumulative quarterly returns
of CRIX (blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios

(purple) CRIXportfolio

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXportfolio
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Figure C.3: Long short equally weighted quarterly returns and cumulative quarterly returns
of CRIX (blue), perfect prediction (orange), LSTM (green), RNN (red) and MLP portfolios

(purple) CRIXportfolio

https://github.com/QuantLet/CRIXdeeplearning/tree/master/CRIXportfolio
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Trimborn, S., Li, M. and Härdle, W. (2017). Investing with cryptocurrencies - a liquidity
constrained investment approach, SFB 649 Discussion Paper (2017-014).

Williams, R. J. and Zipser, D. (1995). Gradient-based learning algorithms for recurrent networks
and their computational complexity, in D. E. Rumelheart and J. L. McClelland (eds), Back-
propagation: Theory, Architectures and Applications, Lawrence Erlbaum Publishers, Hillsdale,
N.J., chapter 13, pp. 433–486.

Yao, Y., Rosasco, L. and Caponnetto, A. (2007). On early stopping in gradient descent learning,
Constructive Approximation 26(2): 289–315.

Zimmermann, M., Chappelier, J.-C. and Bunke, H. (2006). Offline grammar-based recognition
of handwritten sentences, IEEE Transactions on Pattern Analysis and Machine Intelligence
pp. 818–821.


	Contents
	Abstract
	Acknowledgments
	Introduction
	1 Deep neural networks
	1.1 Deep feedforward networks
	1.1.1 Nonlinear Neurons
	1.1.2 Multilayer perceptron
	1.1.3 Back-propagation

	1.2 Recurrent neural networks
	1.2.1 Architectures
	1.2.2 Back-propagation for recurrent neural network
	1.2.3 The problem of long-term dependencies

	1.3 Long Short-Term Memory network
	1.3.1 LSTM architecture
	1.3.2 Back-propagation for LSTM networks


	2 Learning a neural network
	2.1 Statistical learning
	2.1.1 Maximum likelihood estimation
	2.1.2 Loss functions

	2.2 Optimization for neural networks
	2.2.1 Gradient descent
	2.2.2 Adaptive optimization algorithms
	2.2.3 Batch normalization

	2.3 Generalization methods
	2.3.1 Model selection
	2.3.2 Regularization techniques


	3 Neural networks for time seriesforecasting
	3.1 Cryptocurrencies as �nancial assets
	3.2 Stock prices and underlying assumptions
	3.2.1 Time series modelization
	3.2.2 NLARX model

	3.3 Cryptocurrencies price movement analyze
	3.3.1 Data analysis
	3.3.2 Application: examples with btc returns


	4 Application: Cryptocurrencyportfolio
	4.1 Data analysis
	4.1.1 Cryptocurrencies price
	4.1.2 Technical indicators
	4.1.3 Fundamental indicators

	4.2 Model architecture
	4.2.1 Data preprocessing
	4.2.2 Baseline model
	4.2.3 Best model selection: optimization methods and tuning of hyper-parameters Regularization
	4.2.4 Evaluation of the �nal models

	4.3 Evaluation of di�erent trading strategies
	4.3.1 Buy-and-hold strategy
	4.3.2 Long short strategy


	5 Discussion and future works
	5.1 Discussion on the method
	5.1.1 Data
	5.1.2 Model architecture

	5.2 Discussion on the results
	5.3 Towards a real portfolio management strategy
	5.3.1 Model, metric and loss functions
	5.3.2 Risk management

	5.4 Reinforcement learning

	6 Conclusion
	Appendix
	A Cryptocurrencies
	A.1 Cryptocurrencies prices
	A.2 Cryptocurrencies quarterly returns

	B Models architectures
	C Long short portfolio

	Bibliography

