

ROLE OF CLAMS IN REGULATING BIOGEOCHEMICAL PROCESSES OF **ASHTAMUDI LAKE**

*Prema, D; K. S. Mohamed; V. Kripa; B. Jenni; P.S. Alloycious; K. K. Sajikumar; K. S. Aswathi; K. S. Abhilash and P.S. Anilkumar

Central Marine Fisheries Research Institute

*premadicar@gmail.com

Need for the Study

Among bivalve molluscs, clams form an important resource as meat for human consumption and for shells in the cement industry. The Ashtamudi Lake Ecosystem in Kerala (southwest coast of India) is well known for its clam resources. This estuarine system between latitude 8°45' - 9°28' N and 76°28' - 77°17' E contributes approximately 80% of the overall clam export trade in India, providing livelihoods for at least 3,000 local people.

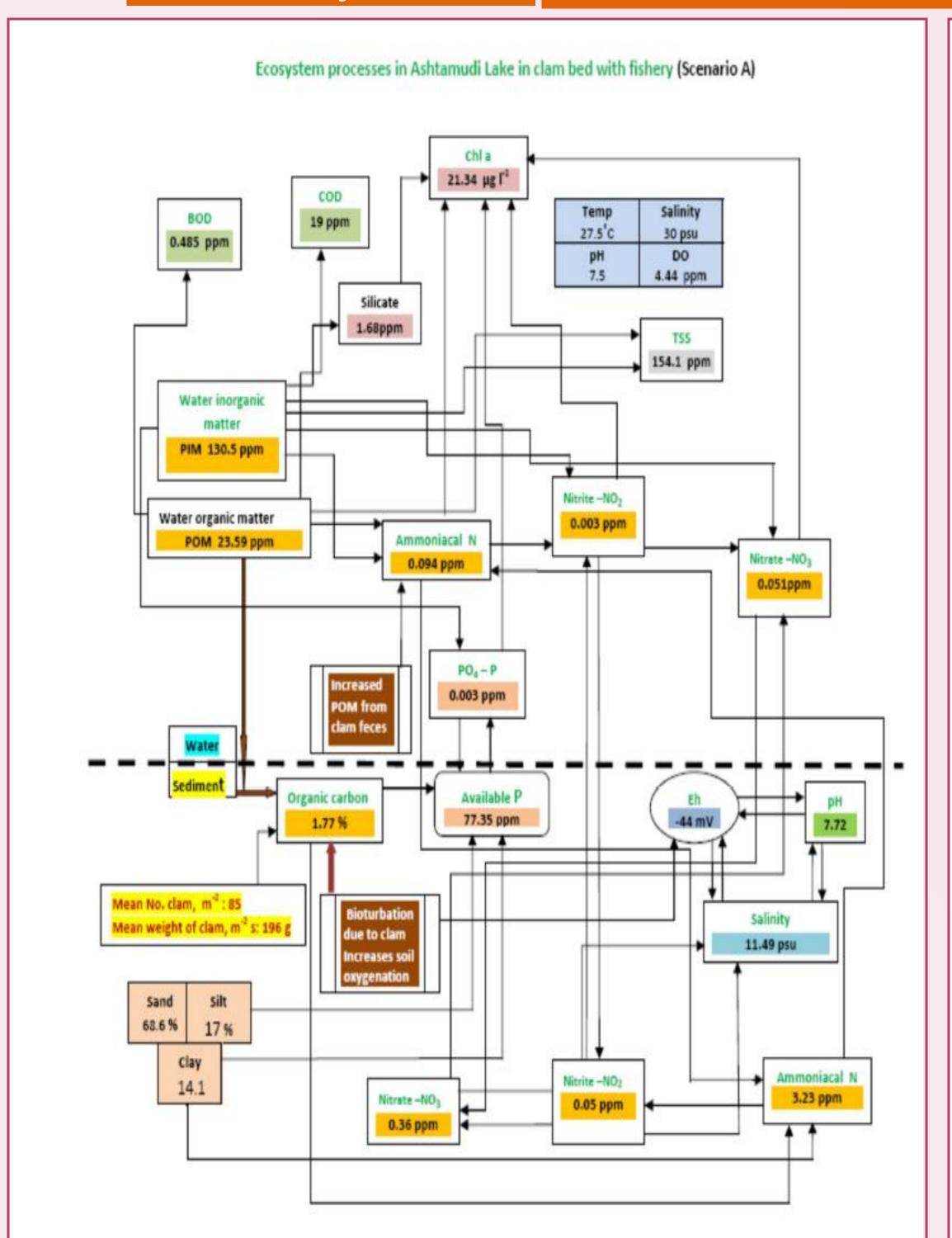
As part of eco-labelling the scientifically managed clam fisheries of Ashtamudi Lake, the Central Marine Fisheries Research Institute (CMFRI) in collaboration with, World Wide Fund for Nature (WWF), in 2014, probed into the ecosystem benefits coming out of the management initiatives. Accordingly, a rapid appraisal of selected biogeochemical processes was carried out analyzing two scenarios viz. a) Clam bed with fishery and b) Non clam zone in Ashtamudi Lake.

Methods

Samples of water, sediment, plankton and benthos were examined using standard methods. Water quality (in terms of nutrients, particulate organic matter, particulate inorganic matter, chlorophyll, TSS, BOD etc.) and sediment quality (in terms of organic carbon, oxidation reduction potential, available nutrients, texture etc.) were assessed using standard procedures.

Results

Table1. Selected Biolo	gical Characterist	ics
Scenario	Clam with	No Clam
	fishery	
Clam (numbers)	85	-
Clam weight (g)	196	-
Ratio of Clam Weight to Nos.	2.3	-
Diatom count, millions ml ⁻¹	3.51	3.11
Benthos (Biomass), g m ⁻²	48.44	95.16


	able 2 . Sedim	ent Qual	ity			
Scenario	Clam with	No	Optimum range			
	fishery	Clam				
Organic carbon, %	1.77	0.9	1.5 – 2.5			
Eh, mV	-44	-97	> -200			
Salinity, PSU	11.49	7.15	> 2.2			
Ammonia – N, ppm	3.23	1.85	Together as available			
Nitrite- N, ppm	0.05	0.02	N, 250-750ppm			
Nitrate-N, ppm	0.36	0.33				
Available P, ppm	77.35	60.29	> 60			
рН	7.22	7.65	6.5 – 7.5			
Sand, %	68.6	82.1	40			
Silt, %	17.0	10.9	30			
Clay, %	14.1	6.8	30			

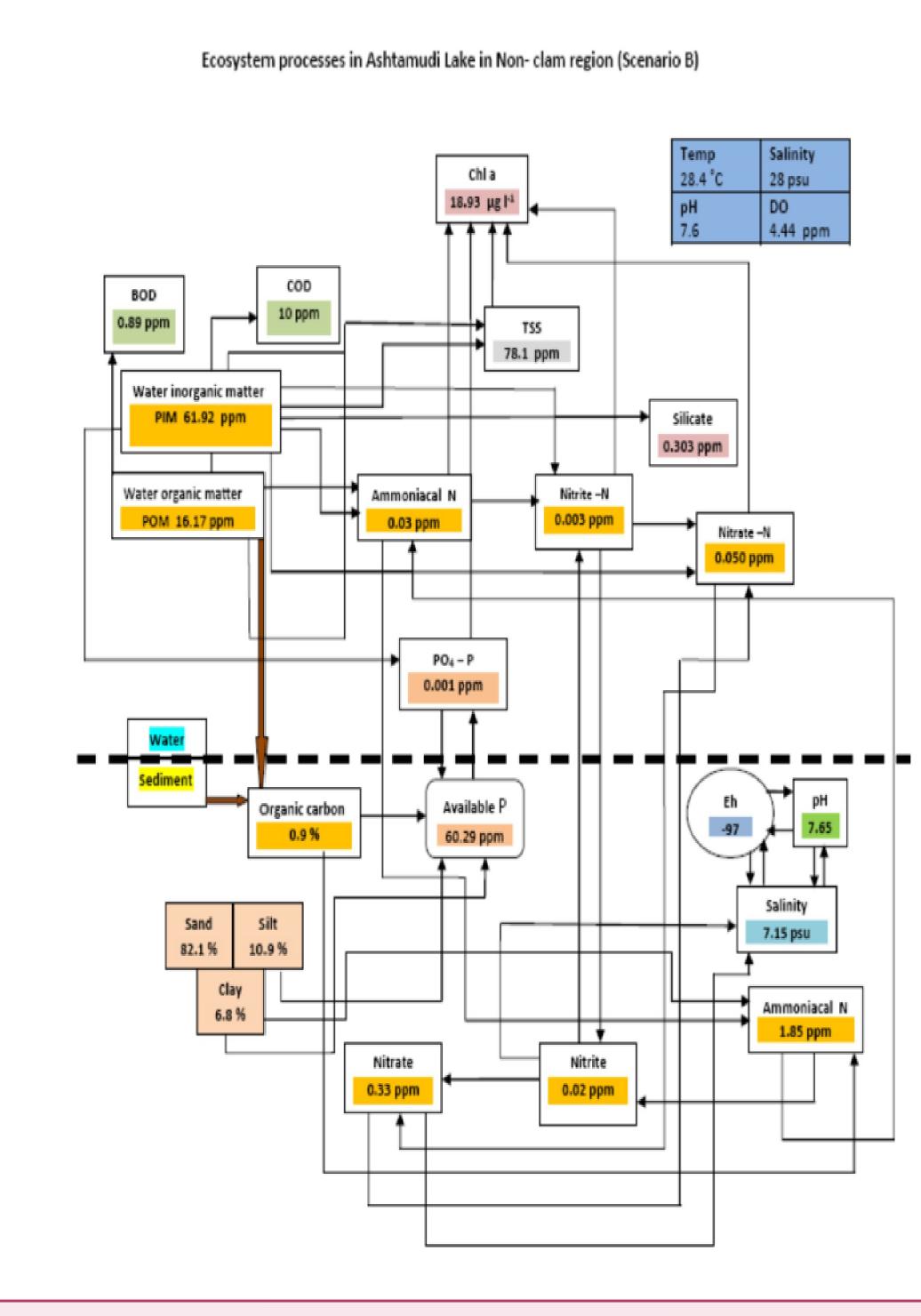

Hand dredging for clams in **Sorting clams Ashtamudi Lake** Map of Ashtamudi Lake showing clam sampling zones Water sampling Sediment sampling

Table 3.	Table 3. Selected Water Characteristics		
Scenario	Clam with	No Clam	Optimum range
	fishery		
Chlorophyll a, µg l ⁻¹	21.34	18.93	17-40
Temperature, °C	27.5	28.4	25-32
Salinity, PSU	30	28	2 - 48
DO, , mg I ⁻¹	4.44	4.44	5 -10
TSS, mg I ⁻¹	154.1	78.1	25-200
BOD, mg I ⁻¹	0.49	0.89	<15
COD, mg I ⁻¹	19	10	<70
POM, mg I ⁻¹	23.59	16.17	
PIM, mg I ⁻¹	130.5	61.92	
pH	7.5	7.6	7.0-8.7
Total ammonia – N, mg I ⁻¹	0.094	0.03	0-0.1
Nitrite – N, mg I ⁻¹	0.003	0.003	0-0.5
Nitrate – N, mg I ⁻¹	0.051	0.05	0.1-3
PO ₄ –P, mg I ⁻¹	0.003	0.001	<0.01
Silicate, mg I ⁻¹	1.68	0.303	> 5

Analysis

COMPARING ECOLOGY OF CLAM AND NON CLAM ZONES OF ASHTAMUDI LAKE

Discussion

	Clam with		
Scenario	Clam with fishery	No Clam	Probable reason
Diatoms	More 1	Claill	More nutrient
Diatoms	IVIOLE		release
Chlorophyll	~1 12 times •		More nutrient
Ciliorophyli	≈1.13 times		release
Water temp	~Como		release
Water temp TSS	≈Same ≈2 times 1		May be due to
133	~2 times		May be due to
Water calinity	~Cama		clam fishing
Water salinity DO	≈Same		
BOD	≈Same	~2 times	Loss bio ovidatio
ВОО		≈2 times	Less bio-oxidatio
COD	.1 O time o c		in non clam region
COD	≈1.9 times		More oxidation
			due to clam
Matanall			bioturbation
Water pH	≈Same		
Ammonia-N	≈3 times		From clam faece
(water)			
Nitrite-N (water)	≈Same		
Nitrate-N (water)	≈Same		
PO ₄ - P (water)	≈3 times 👚		From clam faece
	_		
Silicate in water	≈5.6 times ↑		From clam faece
	•		
Particulate	≈1.5 times 🛖		From clam faece
organic matter			
Particulate	≈2 times 🛖		From clam faece
inorganic matter			
Sediment	≈2 times		From clam faece
organic carbon			
Sediment	≈1.6 times 🛖		More nutrient
salinity			release
Ammoniacal N	≈1.8 times 👚		From clam faece
(sediment)	•		
Nitrite N in	≈2.5 times 👚		From clam faece
sediment	•		
Nitrate in	≈1.09 times		More oxidation
sediment			due to clam
	_		bioturbation
Oxidation –	≈2.2 times		More oxidation
Reduction	more 🏫		due to clam
Potential in	oxidative		bioturbation
sediment			
Available P in	≈1.3 times 1		More oxidation
sediment			due to clam
			bioturbation
Sediment pH	≈Same		
Sand in	≈1.2 times		From clam faece
sediment	less		J. J.I. Jiaili lacot
	•		
Silt in sediment	≈2 times 🛕		From clam faece
	-2 times		i i om ciam racce
	.1 C +i		From clam faeces
Clay in sediment	2 I h timbe		

Sullillary

In clam bed with fishery, oxidation reduction potential of surface sediment was twice due to bioturbation of clams and the amount of nutrients released to water was thrice, compared to the non clam zone. Beneficial effects on bio-geo-chemical are indicated in the presence of clam with fishery. The environmental quality indicators remained well within permissible levels in clam bed with fishery, improving ecosystem processes simultaneously. Sustainable maintenance of clam beds with optimum fishery is necessary for the general ecological health of the Ashtamudi Lake.

Acknowledgements

The authors are grateful to the Director, CMFRI for providing facilities for the study. The work was carried out with financial support from M/s GIZ, India (German International Cooperation).

References

Mohamed, K S; Venkatesan, V; Kripa, V; Prema, D; Joseph, M; Alloycious, P S; Jenni, B; Valsala, KK; Saji Kumar, KK; Ragesh, N; Bose, J and Mohan, Anjana. 2013. Fishery Management Plan for Ashtamudi Lake Clam Resources അഷ്ടമുടിക്കായലിലെ കക്ക സമ്പത്ത് ഒരു പരിപാലന പദ്ധതി. CMFRI Special Publication (114). pp. 1-48.

Prema, D; Kripa, V; Mohamed, KS; Venkatesan, V; Valsala, KK; Joseph M; Alloycious, PS; Jenni, B; Anilkumar, PS; Mohan A; Bose J; Saji Kumar, KK and Ragesh, N. 2014. भारत के दक्षिण-पशिचम तट के अष्टमुडी झील में अवसाद और पानी की गुणता के परिवेश में सीपी संस्तरों का निर्धारण. विशेष प्रकाशन सं. 115 जलीय पारितंत्र का टिकाऊपन An appraisal of Sustainability of Aquatic Ecosystems (115). pp. 133-138.

Dame, Richard. F. 2012 . Ecology of Marine Bivalves : An Ecosystem Approach. Second edition. CRC Press. London. P. 271.