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A reduced rate of neurogenesis occurs in the adult brain of patients with neurological diseases, with the
rate of new neuron proliferation not sufficient to replace neuron loss. Neurogenesis can be induced by
several factors, including basic fibroblast growth factor, epidermal growth factor, and brain-derived neu-
rotrophic factor.

Neurogenesis determination is a valuable parameter for determining disease progression and monitor-
ing various treatments. Currently, neurogenesis detection is possible by invasive methods, such as
bromodeoxyuridine (BrdU) cell labeling and immunohistological analysis of immature neuron markers.
However, these are not compatible with alive model examination. Neurogenesis detection by noninvasive
methods, such as radiolabeling of specific antibodies and scintigraphy imaging, could shed light on
immature neuronal markers.

We propose that brain scintigraphy after radiolabeling of a specific antibody of an immature neuronal
marker is a useful new modality for neurogenesis detection and that it would aid the management of

neurological diseases.

© 2013 Elsevier Ltd. All rights reserved.

Introduction

Neuron loss is deemed to be irreversible in the adult human
brain because brain tissue, unlike other tissue, has a limited inabil-
ity to replace neurons with new cells. Progressive neuron loss
eventually results in neurological diseases, such as Parkinson’s dis-
ease and Alzheimer’s disease [1]. Although neural stem/progenitor
cells (NPCs), defined as primitive cells, are abundant in different
discrete regions of the brain during embryonic and postnatal
development, the adult brain contains these NPCs in a limited
number of brain regions, including the subgranular zone (SGZ) in
the dentate gyrus and the subventricular zone (SVZ) in the lateral
walls of the lateral ventricles where NPCs migrate and form neu-
rons in the hippocampal dentate gyrus and the olfactory bulb,
respectively [1].

Proliferation and neurogenesis occur in all vertebrates, includ-
ing mammals, following central nervous system (CNS) tissue dam-
age to replace and repair the injured nerves [2]. Several studies
have reported that neurogenesis can be induced by stress, the envi-
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ronment, and exercise, as well as by various CNS diseases, such as
seizure and stroke [3,4].

Several methods have been used to detect neurogenesis, such as
bromodeoxyuridine (BrdU) cell labeling, incorporation of thymi-
dine analogs, retroviral labeling, and immunohistological analysis
of immature neuron markers [3,4]. However, these techniques
are invasive and cannot be used to detect neurogenesis in live ani-
mal and human models [4].

A new noninvasive method is necessary to evaluate neurogene-
sis and to aid the management of neurological diseases. We pro-
pose that brain scintigraphy after radiolabeling of a specific
antibody of an immature neuronal marker is a useful new modality
for neurogenesis detection.

Neurogenesis distribution

During embryonic development, continuous divisions of NPCs
that exist in the periventricular region and around the spinal cen-
tral canal terminally form the CNS [5]. After the embryonic period,
many of these precursors leave the precursor cell cycle and even-
tually differentiate into astrocytes and oligodendrocytes that are
associated with the formation of the ependymal single-cell layers
of the periventricular zones [5]. New neurons are produced in
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the cerebellum and the brain stem nuclei for a short time early in
the postnatal period [2].

In adults, the hippocampal dentate gyrus, the subependymal
zone (SEZ), and the olfactory bulb are the main sites of neurogen-
esis. NPCs are also found in the neocortex, spinal cord, tegmentum,
substantia nigra, amygdala, and brain stem of adults. Although the
role of these NPCs in these brain regions is not clear, it seems that
they enter the neurogenesis pathway after appropriate stimulation

[1].

Neurogenesis stage

Neurogenesis occurs in several phases, including proliferation,
migration, differentiation, survival, and integration of the new pop-
ulation of the neurons into the neural network [1]. New neurons
are generated from bipotent radial glia-like stem cells (type-1
cells), which traverse two intermediate stages of neural develop-
ment involving type-2 and type-3 cells and are terminally trans-
formed to early postmitotic and to mature neurons [6].

Type-1 cells are the early precursor population, which has mor-
phological and antigenic properties similar to radial glia cells.
Type-1 cells usually have an apical process and the capability to
penetrate the molecular layer [7]. The radial glia-like stem cells
(type-1) exist in a large number of different areas of the CNS. They
have a low propensity for proliferation, although some neurologi-
cal diseases (e.g., hypoxia or seizures) can provoke proliferative
activity of these type-1 cells [8].

Type-2 cells are intermediate precursor cells, with high prolifer-
ative activity [8]. Type-2 cells demonstrate overlap in glial (nestin)
and neuronal marker expression (doublecortin [DCX] and the
polysialylated neural cell adhesion molecule [PSA-NCAM]) [7].

The type-3 cell stage involves a shift from a “neuroblast,” with
slow proliferative activity, to a postmitotic immature neuron. Usu-
ally, type-3 cells exhibit only slight proliferative activity. In con-
trast to type-2 cells, type-3 cells do not express glial markers,
but they do express neuronal lineage markers (DCX, PSA-NCAM,
neuroD, Prox1). The developmental transition of type-3 cells is dy-
namic, with processes of different lengths and components and
various directions that constantly change from horizontal to verti-
cal. The termination of the cell cycle mainly takes place at the type-
3 cell stage, with the temporary expression of the calcium-binding
protein calretinin [7].

Neurogenesis markers
NeuroD

NeuroD is a basic helix-loop-helix transcription factor, which
plays a basic role in the regulation of the cell cycle and neuronal
differentiation [9]. NeuroD is predominantly associated with early
aspects of neuronal differentiation [10].

The protein is expressed in a specific population of neuronal
cells in the central and peripheral nervous systems. Its expression
is transient and is limited to the terminal differentiation and gen-
eration of mature neurons [11]. The expression of neuroD1 is con-
sidered one of the earliest markers of granule cell development
[8].The ventricular zone stem cells do not express neuroD because
the protein does not have a role in the early stages of neurogenesis
(e.g., proliferation and migration) [ 10]. Steiner et al. evaluated neu-
rogenesis stage in adult mice hippocampal and showed expression
of neuroD protein by anti-NeuroD1 on type-2 cells in the early
stages of neurogenesis [8].

During the early postnatal period, the adult neocortex has a low
level of expression of neuroD mRNA, making it difficult to detect
the protein by the in situ hybridization method [10]. However,

neuroD is continuously expressed in a specific subset of mature
neurons in the adult brain, including pyramidal neurons in the
CA1-CA3 region of the hippocampus, granule cells of the dentate
gyrus, and granule cells of the cerebellum [10] (Fig. 1).

Doublecortin

DCX is a protein involved in the binding and stabilization of
microtubules. It participates in different events related to the neu-
ronal cytoskeleton, including the migration stage. Similar to neu-
roD, DCX is a neurogenesis marker [4]. Brown et al. investigated
the temporal expression pattern of DCX by Immunofluorescence
method in neurogenic regions of the adult rat brain [4]. The expres-
sion of DCX during the neuron proliferation period increases on
days 4-7 after BrdU labeling and then rapidly decreases. The
amount of DCX falls to a low level 1 month after labeling (about
2%) and by 2 months, it is undetectable [4].

The expression of DCX coincides with the migration of neuronal
stem cells throughout the development of the CNS. In the embry-
onic brain, DCX is expressed in a high concentration, and it can be
identified in most embryonic intermediate zone and cortical plate
cells. In the embryonic period, DCX is expressed mainly by neuronal
precursors and during radial and tangential migration [12].

Although the expression of DCS is limited within the adult
brain, some neurogenic regions, including the hippocampal den-
tate gyrus, the SEZ, and the olfactory bulb, preserve DCX expres-
sion . In addition to immature neurons, mature neurons in non-
neurogenic areas, including the cortex, the striatum, and the cor-
pus callosum, express DCX, although in very low amounts. Brief
DCX expression outside the neurogenic area is attributed to prob-
able neurogenesis processes in the region and to structural plastic-
ity, such as sprouting [4,13] (Fig. 1).

Polysialylated neural cell adhesion molecule

The carbohydrate portion on the cell surface of PSA-NCAM par-
ticipates in different stages of CNS development [14]. PSA-NCAM is
mainly expressed during CNS development, but populations of ma-
ture interneurons in the hippocampus and in the prefrontal cortex
express PSA during adulthood [15].

The marker is expressed by neuroblasts and young neurons.
Compared with DCX, it appears to be expressed later and for a
longer time [12]. Type-1 cells do not express PSA-NCAM [6].
Although PSA-NCAM is a maker of neurogenesis, mature neurons
can also express this molecule in specific circumstances, such as
synaptic plasticity [12] (Fig. 1).

Calretin

Calretin is a calcium-binding protein and neurogenesis marker.
Brandt et al. evaluated expression of calretin in adult dentate gyrus
by Immunohistochemistry method and showed which the protein
is abundantly expressed between day three and the first week after
cell division [16]. The expression of calretin can be detected 1 day
after labeling of divided cells with BrdU, and it is not detectable be-
fore this time. Early after BrdU, the molecule associated with DCX
express by immature neuron cells. However, it persists for a longer
period than DCX, and its expression overlaps with that of NeuN, a
mature neuronal marker. After 6 weeks, calretin is no longer ex-
pressed in new neurons [16] (Fig. 1).

Neurogenesis and neurological disorders

Several neuropsychiatric conditions, such as stroke, mechanical
injury, Alzheimer’s disease, Parkinson’s disease, Huntington’s
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Fig. 1. Schematic of protein expression during the intermediate stage including type-2, type-3 and early post-mitotic phase: several different neurogenesis marker including
doublecortin (DCX), NeuroD, calretinin and polysialylated neural cell adhesion molecule (PSA-NCAM) transiently express in the period that may be appropriate marker for

neurogenesis determination and monitoring.

disease, and amyotrophic lateral sclerosis, are associated with al-
tered rates of neurogenesis in animal models [1].

Immature neuron markers, such as DCX, PSA-NCAM, and neu-
roD, are expressed in the hippocampus of patients with Alzhei-
mer’s disease, and the number of cells expressing these
molecules also increases, consistent with enhanced neurogenesis
in human Alzheimer’s disease [17].

Brain ischemia increases the proliferation of new neurons in
hippocampal and SVZ regions of adult animals [1]. Neurogenesis
in the hippocampus and the olfactory bulb after cerebral mechan-
ical damage also stimulates the production of new neurons in
other sites affected by the injury [1].

Hypothesis

Brain PET or SPECT scintigraphy after immature neuronal mar-
ker radiolabeling may detect neurogenesis.

As discussed above, neurogenesis is limited in the adult brain
and restricted to specific areas of the brain, although several envi-
ronmental and pathological factors (e.g., stress, exercise, ischemia,
Alzheimer’s disease) modulate and increase neurogenesis in other
areas affected by neuronal injury and loss. Currently, neurogenesis
detection depends on invasive immunohistochemistry, which is
not applicable to live animal and human models. We propose that
immature neuronal markers, such as neuroD, DCX, or calretinin,
targeted with a specific radiolabeled antibody, may show neuro-
genesis in a live environment. Radiolabeled antibodies have trivial
radioactive materials attached to them [18-20]. 99 m Tc-IgG and
111In-CYT-103 are instances of radiolabeled antibodies [18-20].
Such radiolabel antibodies have low radiation burden [18-20].

A suitable marker for this purpose should have specific proper-
ties: It should be expressed alone in intermediate stages of neuron
development. Including type-2 and type-3 cells [6] because the
expression of neuron markers in this period is transient and lim-
ited to the period during which neurogenesis is induced. It seems
the markers are not expressed in usual situation. Markers related
to precursor cells are not suitable for neurogenesis detection be-
cause they are normally expressed in other areas of the brain, such
as the SVZ and the hippocampus.

Recently, Rueger et al. used positron emission tomography
(PET) and the radiotracer 3-deoxy-3-[18F]fluoro-L-thymidine
([18F]FLT) that enables imaging and measuring of proliferation to
noninvasively detect endogenous neural stem cells in the normal
and diseased adult rat brain in vivo. This method indeed visualized
neural stem cell niches in the living rat brain, identified as in-
creased [18F|FLT-binding in the SVZ and the hippocampus. After
phosphorylation by TK1, [18F]FLT is trapped within the cell and
can therefore be visualized by PET [21].

Clinical implications

1. Neurogenesis, together with neuronal loss, is present in various
neurodegenerative diseases, with the rate of neurogenesis
lower than the rate of neuronal loss.

2. Adult neurogenesis can be stimulated by many molecular fac-
tors, including basic fibroblast growth factor, epidermal growth
factor, insulin-like growth factor 1, and brain-derived neurotro-
phic factor [22].

Clinical evaluation may be a reliable and noninvasive way of
assessing the effect of different neurogenesis-inducing factors on
neurological disorders. However, the proposed noninvasive imag-
ing method, if proven, may enable direct measuring of neurogene-
sis and replace traditional invasive methods, which have limited
capability in live models. The detection of neurogenesis by scintig-
raphy imaging can lead to a revolution in treatment in the neuro-
logical field [23].
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