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• A new and efficient variable selection

based on clustering of variable con-

cept has been suggested for PLS.
• Selection the most useful variable is

simple and straightforward.
• CLoVA concept can be used as alter-

native instead of using interval based

variable selections for PLS.
• Analyses of different data sets indi-

cate the superiority of CLoVA respect

to available variable selection algo-

rithms.
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a b s t r a c t

Recently we have proposed a new variable selection algorithm, based on clustering of variable concept

(CLoVA) in classification problem. With the same idea, this new concept has been applied to a regres-

sion problem and then the obtained results have been compared with conventional variable selection

strategies for PLS. The basic idea behind the clustering of variable is that, the instrument channels are

clustered into different clusters via clustering algorithms. Then, the spectral data of each cluster are

subjected to PLS regression. Different real data sets (Cargill corn, Biscuit dough, ACE QSAR, Soy, and

Tablet) have been used to evaluate the influence of the clustering of variables on the prediction per-

formances of PLS. Almost in the all cases, the statistical parameter especially in prediction error shows

the superiority of CLoVA-PLS respect to other variable selection strategies. Finally the synergy clustering

of variable (sCLoVA-PLS), which is used the combination of cluster, has been proposed as an efficient

and modification of CLoVA algorithm. The obtained statistical parameter indicates that variable clustering

can split useful part from redundant ones, and then based on informative cluster; stable model can be

reached.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Multivariate calibration/pattern recognition models, such as

partial least squares regression/discrimination, are usually applied
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hen the number of variables is much higher than the number

f samples [1]. Nevertheless, certainly all the variables are not re-

ated to the response vector and some of them are redundant and

heir responses do not possess useful information about the stud-

ed parameter(s). So that, the input variables of multivariate cali-

ration contain the mix information from both useful and redun-

ant parts [2]. In other words, both regions, useful and uninfor-

ative variables, participate in model building. This subject can be
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onsidered as the main weak point of multivariate calibration. Usu-

lly this problem can be solved using variable selection concept.

uge numbers of publications regards to this subject [3–7] high-

ight its importance.

Variable selection in multivariate calibration can be used for

everal reasons. One of the main advantages is to reduce the num-

er of variables. With this aim, the model prediction can be im-

roved. Another benefit of variable reduction is the better inter-

retation of obtained model [1]. Various mathematical strategies

or variable selection have been proposed in the literature which

ave been tried to achieve the aforementioned purposes. These al-

orithm has own strengths and weaknesses which Anderson et al

1] has been addressed some of them in his article. On the other

and, variable selection might be complicated and fails to obtain

he promising result when the number of predictor variables re-

pect to the number of samples substantially exceeds [8,9]. This

tudy has the aim to propose a simple and efficient variable selec-

ion in multivariate calibration. Moreover a comparative study has

een done to evaluate the prediction performance of this approach

espect to other variable selection algorithms for all studied data

ets.

. Theory

.1. Notations

The standard chemometrics notations will be used. Capital and

owercase letters in boldface demonstrate matrix and vector, re-

pectively. Matrix dimensions are shown as (I × J), where I and

are the number of rows and columns, respectively. The data ma-

rix is denoted by X, in which the rows are absorbance spectrum of

ach sample. The data matrix is divided to different sub-matrices

clusters), shown by Xi so that X = [[X1] [X2] … [Xq]], where q

s the number of clusters and the dependent variable (measured

roperty) is denoted Y.

.2. Partial least square regression (PLS)

Different algorithms have been proposed for PLS in literature

10]. The goal of all of them is to finds components that com-

romise between fitting of X and predicting Y. The central idea

f partial least square regression is to approximate X by a few,

ay R, specifically constructed component (the partial least squares

egression components) and to regress Y on the R components.

ence, partial least squares regression tries to model X and Y using

he common score component T:

= TPT + EX (1)

= TQT + EY (2)

here T is an I × R matrix of scores; P is a J × R matrix of X-

oadings; Q is a matrix of Y loadings; EX and EY are residual ma-

rix [11]. The R components are constructed such that they have

aximum covariance with Y. The algorithm starts using normal-

zed weight vector (W) which has been calculated according to Eq.

3).

= X ′Y (3)

The PLS was first applied to evaluate near infrared (NIR) spec-

ra by Martens and Jensen in 1983, and is now used routinely in

cademic institutions and industry to correlate spectroscopic mea-

urements with related chemical/physical data.
.3. Interval partial least square regression (iPLS)

As the Anderson et al mentioned [1] “if data are highly corre-

ated, such as spectral data, windows of variables should be used

nstead of doing variable selection on each variable individually”.

ence, interval-PLS has been introduced and now is one of more

enerally used variable selection methods. In iPLS, the whole spec-

ral data is divided into some intervals (equal or unequal length)

nd then PLS models are applied on each of these intervals sep-

rately [12]. The main idea behind the iPLS algorithms is to find

he interval’s, which gives the better prediction respect to situa-

ion when the full spectrum is used. It should be mentioned that

he comparison between interval performances is usually based on

oot mean square error for cross validation (RMSECV). This is an

ttractive and simple approach to wavelength selection, but im-

roper selection of interval size in iPLS can corrupt the predictive

erformance in regression model [13].

.4. Synergy interval partial least square regression (siPLS)

Synergy-iPLS is the modification of iPLS using different interval

ombinations and it selects the lowest RMSECV combination. Al-

hough, investigation of all combination of variables seems perfect

nd simple in theory, it is impossible in practice. Remarkably ac-

ording to Bro comment “Even with the most advanced computers

he number of variables combinations to investigate, becomes pro-

ibitive even for, say, 50–100 variables” [1].

.5. Backward interval partial least squares (biPLS)

In this efficient variable selection algorithm, the concept of in-

ervals (spectral regions) has been reserved. The main idea of this

lgorithm is that, iPLS is applied to the data and then followed

y backward elimination. The algorithm is continued such that in

ach time, the interval whose removal causes the lowest RMSECV

s eliminated. According to Leardi comment, a key point which is

o be optimized in biPLS is the number of intervals. Small and large

umber of intervals has their own problem which should be con-

idered [14].

.6. GA-PLS

Theory of evolution is a fundamental concept in Genetic Al-

orithm (GA) technique. This technique consists of several steps

15,16]. First, a vector with the size corresponding to the number

f variables is created. This vector is called chromosome. The ze-

os and ones are randomly defined for a vector. These zeros and

nes resemble genes and a PLS model with selected genes is de-

ned as an individual. Number of different individuals can make a

tart population (typically in the range between 20 and 500). The

uality of each PLS model can be given in the term of RMSECV.

he recombination of initial chromosome produces offspring. In

his step, those chromosomes with higher prediction ability have

ore chance to be copied. Two phenomena, cross-over and muta-

ions are performed on the chromosome. Finally when the prede-

ned numbers of iterations has been met, the variable evaluation

y GA is stopped.

.7. Competitive adaptive reweighted sampling (CARS)

CARS is an efficient regression coefficients-based variable se-

ection method which has been proposed by Li et al [17]. Briefly

n this method, the regression coefficients are first computed on

ull spectra. The exponentially decreasing function (EDF) is then

mployed to put in force feature selection which led to removing

ariables with small absolute regression coefficients. Consecutively,
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Fig. 1. Architecture of a Kohonen self-organizing map or Kohonen network.
adaptive reweighted sampling (ARS) is performed to realize a com-

petitive feature selection based on the regression coefficients.

2.8. Moving window-PLS

Moving window-PLS uses a fixed-size window that moves

through the entire spectra and establishes PLS models of different

latent variables (LVs) for each window [18]. As a result, a series of

PLS models together with the sums of squared residues (SSR) are

calculated. Consequently, the wavelength interval with smaller SSR

and fewer LVs is selected to build the final calibration model.

2.9. Interval random frog (IRF)

Since the identification of important genes is a challenge in mi-

croarray based disease diagnosis, Li et al [19] used the reversible

jump Markov Chain Monte Carlo (RJMCMC)-like strategy for vari-

able selection. This method which is called random frog starts with

a randomly selected variable subset. Then new variable subset is

generated based on the previous one and is accepted with certain

probability. This step iteratively continued until predefined itera-

tions are finished. As the author [19] indicated proposed algorithm

possesses the advantages of RJMCMC methods and is much easier

to implement.

2.10. Iteratively retaining informative variables (IRIV)

To obtain the optimal combination of variables in a high dimen-

sional data set, an efficient variable selection namely iterative re-

taining informative variable (IRIV) has been proposed by Yun et

al [20]. The basic idea behind the strategy is that considers the

possible interaction effect among variables through random com-

binations. Besides, with this algorithm the variables are classified

into four classes as strongly informative, weakly informative, unin-

formative and interfering variables. Strongly and weak informative

variables have been retains in every iteration until no uninforma-

tive and interfering variables exist.

2.11. Segmented principal component regression (SPCR)

In SPCR algorithm, which has been applied firstly in QSAR anal-

ysis, a segmentation approach is combined with PCR. Briefly the

descriptors are segmented into different segments and then prin-

cipal component analysis (PCA) is applied to each segment sep-

arately to extract significant principal components (PCs). Conse-

quently, with this strategy the PCs having useful and redundant in-

formation are separated. Finally, a linear regression analysis based

on stepwise selection of variables is then employed to connect a

relationship between the informative extracted PCs and biological

activity of compound. It’s abilities to regression analysis also have

been investigated by Hemmateenejad et al research group [21].

2.12. Stacked PLS

The stacking concept has been introduced by Wolpert in 1990

[22] and then generalized in 1996 by Breiman [23]. The central

idea of stacking regressions is to exploit the information in the en-

tire spectral response. The basic idea of stack PLS is to apply a lin-

ear combination of different predictors (wavelengths) to improved

prediction accuracy. Stacked PLS is based on cross validation crite-

ria, so that aims to have a set of weights from whole region that

minimize the cross-validated error in the stacked regression model.
.13. Interval variable iterative space shrinkage approach (iVISSA)

This new variable selection algorithm which has been proposed

y Deng et al [24] combines the global and local searches toward

teratively. It is also intelligently optimize the locations, widths and

ombinations of the spectral intervals. For global search procedure,

ses the advantage of soft shrinkage from VISSA to search the loca-

ions and combinations of informative wavelengths, whilst for the

ocal search procedure, it utilizes the information of continuity in

pectroscopic data to determine the widths of wavelength inter-

als. Both global and local search procedures are carried out alter-

atively to realize wavelength interval selection.

.14. Clustering of variable using Kohonen self- organizing map

SOM)

A Kohonen self- organizing map (SOM) is a two dimensional ar-

ay of neurons, which each neuron containing a weight vector that

as the same dimension as the experimental variable data set. A

OM is trained to reflect as much as possible the relationship be-

ween individual pieces of data. That is able to map multidimen-

ional information into a surface (the 2D array). Likewise princi-

al component analysis, SOM reduces multidimensional informa-

ion to two dimensions with maintaining the topology of informa-

ion. However, in contrast to PCA, SOM has advantages to use the

onlinear relationship between the variables in data matrix. Fig. 1

hows the structural design of a Kohonen network. Each column in

he grid represents a neuron and each box in such a column rep-

esents a weight (a number). In our case, the objects are the sam-

les and the variables are wavelengths, wavenumbers, descriptors

nd etc. First of all, before the starting training, the weights take

he random values. It should be noted that the learning is a com-

etitive process. This step includes the adjustment of the weight

uring the training phase. The procedure is as follow. (1) A vari-

ble from training set is introduced to the network. (2) The neuron

hat its weight vector is the most similar (determined using the

uclidean distance) to the input variable is called the wining neu-

on or the best matching unit (BMU). (3) The network modifies this

inner neuron weights to become much more similar to the input

escriptors. (4) With the same aim, neighborhood neurons are also

orrected. However the amounts of these corrections depend on

heir distance from the winning neuron. (5) All these steps repeat

teratively to reach a predefined number of cycles (epoch) and then

he process stops. Finally, when the entire variables are entered

n the Kohonen network and the process is completed, similar in-

ut (in our case similar spectral information) vectors are clustered

ased on their similarities [25].
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.15. Clustering of variable based PLS (CLoVA-PLS)

Recently we have proposed an efficient variable selection algo-

ithm for classification problem [26] based on clustering of variable

oncept. The strategy of our algorithms (like the other variable se-

ection methods) is that, all the variables cannot be informative for

odeling. In other words, some of them are related to Y-variable

dependent variable) and the others not. Variables contain useful

nformation about y-variable, as well correlate with each other,

ave similar information and can be considered as collinear vari-

bles. The same rule also is true for non-informative ones. On the

ther hand, the input variable of PLS multivariate calibration is the

atent variables (LVs) which are constructed from whole region of

pectral data. This is the main subject of this study; because the

ll variables have been contribute to construction of latent vari-

bles (LVs). The objective function of clustering of variable con-

ept is to find the cluster of variables (instead of interval) based on

heir similarities, which has high correlation respect to dependent

ariable (Y). Hence, the variables of each cluster are used as input

f the multivariate calibration/QSAR analysis separately. However

t should be noted that, one of the common features between us-

ng clustering of variable strategy and other variable selection al-

orithms is that, the dimension of huge data sets (LC-MS, GC-MS,

ene expression) is reduced. In these data sets, the ratio of vari-

bles to samples are high and this leads to be obtained the over

tted model which is known as small sample size problem in lit-

ratures [9,27]. In the following section we will show the potential

bility of variable clustering for building the stable models in re-

ression.

The algorithm of CLoVA-PLS can be described in three stages:

1. Suppose we have a data (X) which is arranged in the ma-

trix with (Isample × Jvariable) dimension. The variable dimension

can be wavelength (uv–vis), wavenumber (IR spectra), chemical

shift (NMR), descriptors (QSAR), mass value (GC/LS-MS) and so

on. In general, clustering strategy can be applied in both dimen-

sions (sample and variable space). However, since the CLoVA-

PLS algorithm has been proposed to clustering of variables in-

stead of samples, the data matrix should be transposed before

applying the Kohonen SOM.

(a) Clustering of variables into q cluster (which is defined by

user), using Kohonen self- organizing map:

= [X1|X2| . . . |Xq] (6)

When the variables are clusterised, each ith cluster set of vari-

bles constitutes a reduced set of data Xi (with i = 1,2,…,q). For

xample for q = 2, Kohonen SOM produced 4 clusters. Since the

umber of cluster size (q) is very important parameter for building

he stable multivariate calibration, its value should be optimized.

o that, in order to find the optimum network size following steps

hould be considered:

2. For each cluster size, in order to find the most useful clus-

ter of variable, all of the produced sub-matrix (clusters) has

been investigated using PLS regression separately. The statis-

tical parameters (RMSECV, RMSEP) of constructed model from

each cluster, are used to judgment for selecting the informa-

tive one(s). It is worthy to mention that, calibration samples

have been used to train and select variables, while test sam-

ples have never used during the optimization stage and there

subsequently predicted by means of the models optimized in

the training samples.
Generally, suppose PLS is applied in the selected cluster Xic of

alibration data and the latent variables which have high covari-

nce with Y variable is calculated:

ic = TicPT
ic (7)

T and P matrices are the latent variable and loading matrices

f the selected cluster (Xi) respectively. The superscript “T” indi-

ates the matrix transpose notation. This equation suggests that

he latent variable of CLoVA-PLS is calculated from specific parts

f X-variables while those of conventional PLS (without variable

election) are calculated from all variables in the X matrix. In other

ords, these latent variables constructed just form useful region of

pectral data.

Besides according to equation (2), the score and loadings of Y

atrix also obtained. These matrices are used to calculate the PLS

egression coefficient vectors (b i ) for specific cluster [10]:

i = Wi

(
P′

i Wi

)
Qi (8)

Like conventional PLS procedure, this regression coefficient (ob-

ained from specific part of data) with Y variable has been used to

onstruction the model in calibration step.

Finally, the prediction of Y-value of unknown sample (Yiup) is

alculated as follows:

iup = Xiubi = XiupWi

(
P′

i Wi

)
Qi (9)

3. The variables of selected cluster(s) have spectral information

that is more correlated with chemical property of studied sam-

ples. Consequently in order to know which subsets of vari-

ables are more useful for model building, PLS regression co-

efficient vector of constructed model for informative cluster(s)

have been searched. The MATLAB codes for CLoVA-PLS are

freely available upon request. Also in the parallel study the

combination of clusters has been investigated. In this strat-

egy, which we would like to call it synergy CLoVA-PLS, several

combinations (two, three and four) have been examined and

the best ones (based on statistical parameter) are selected. By

this approach you can use the useful information in the other

clusters.

As it was mentioned, in the CLoVA based PLS, a clustering algo-

ithm is followed by a regression method. Therefor the key ques-

ion is that which clustering algorithms can be used for clustering

f variables. Recently [21], we have shown that nonlinear cluster-

ng algorithm like Kohonen self- organizing map (SOM), has supe-

iority respect to PCA (loading plot), K-means, Fuzzy – c-means,

nd hierarchical for clustering of variables. Consequently, in the

resent study, Kohonen self-organizing map (SOM) has been used

s clustering method.

. Experimental

.1. Real data sets

In order to investigation the efficiency of proposed variable

election algorithm, five experimental data sets, including near-

nfrared (NIR), and QSAR of different samples have been ana-

yzed. The descriptions of data sets are summarized in Table SI

rom supplementary materials. The first benchmark data is Cargill

orn data set. This data can be obtained from Eigenvector Re-

earch (available from http://www.eigenvector.com/Data/Data_sets.

tml; accessed on 14 September 2014). NIR spectra of Cargill corn

ata set involve the estimation of four properties of corn sam-

les including moisture, oil, protein, and starch. In accordance

ith Eigenvector research incorporated, these properties have been

http://www.eigenvector.com/Data/Data_sets.html
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measured on three separate instruments (m5, mp5, andmp6) over

a wavelength range of 1100–2498 nm at 2-nm intervals (700 wave-

lengths). In the present study, moisture and starch contents of 80

corn samples from the m5 (first data set) instrument have been

analyzed. As proposed by Brown et al [28] two samples, (75 and

77) have been removed as outliers. The remaining samples have

been divided into model building and prediction test sets (39/39)

[28].

The second data set comes from an experiment designed

to check the possibility of NIR spectroscopy to obtain accurate

measurements of four properties (dependent variables) of biscuit

dough pieces. These characteristics include percentages of four in-

gredients fat, sucrose, flour and water from unbaked biscuits. The

training set consist of 40 samples with 700 wavelengths (1100–

2498 nm in 2-nm intervals) and a further 32 samples were used

as a separate validation set. In this study the fat content of biscuit

dough has been analyzed. A further description of this data set can

be found in Brown’s article [29].

One of the important research areas which illustrate the capa-

bilities of variable clustering is QSAR data analysis. For this pur-

pose, a dipeptide data set has been evaluated which contains a set

of 58 angiotensin-converting enzyme (ACE) inhibitors. The struc-

tures and description of the dipeptide with their experimental ac-

tivity are found in Ref. [30]. Because the calculated descriptors

have different scales, they were subjected to scale unit variance

before analysis [30].

The fourth data set consists of 54 soy flour samples which mea-

sured on NIR spectrometers. The spectra were recorded from 1104

to 2496 nm in 8 nm intervals (175 wavelengths) [31]. The moisture

values were used as the responses. According to the Leardi com-

ments the samples have been divided into 40 samples calibration

set, and the other 14 samples have been used as the independent

test.

Fifth data set is NIR transmittance spectra of pharmaceutical

tablets which are available on the website: www.models.kvl.dk/

datasets [24]. The major property of this data set is high number

of studied samples. The spectra were measured for 310 tablets hav-

ing different dosage of active substances (4.3–22.8 mg) and man-

ufactured by various production scales (full, pilot and laboratory

scales). The spectral data acquisition range is 7400–10,507 cm−1,

led to a total of 404 variables per each sample. The response

variable is the relative content of active substance in the tablets

(% w/w) which is measured using high performance liquid chro-

matography (HPLC). According to Liang comment Kennard-Stone

algorithm has been applied to divide the 310 samples into cali-

bration and test set group with 210 and 100 samples, respectively.

The more description of data set can be found in Ref. [24].

In the present study, except for QSAR data set, the maximum

latent variable was set to 20, and the optimum number of latent

variables obtained by five-fold cross validation. Also all the data

sets were mean- centered before model building.

3.2. Computational details

Computational processing was performed in the framework of

MATLAB software (Math works, Inc., Natick, MA, USA, version 7.2).

PLS calibrations was based on the-PLS Toolbox version 4 from

Eigenvector Research. The genetic algorithm provided by Leardi,

has been downloaded from the website of (http://www.models.kvl.

dk/GAPLS). The Kohonen self- organizing map Toolbox, provided

by Todeschini and Ballabio has been downloaded from the website

of Milano Chemometrics and QSAR research group (http://michem.

disat.unimib.it/chm/download/kohoneninfo.htm). iPLS, siPLS and

biPLS regression have been calculated using iPLS Toolbox which is

available at www.models.life.ku.dk.
. Results and discussion

.1. Real data sets

.1.1. Data set 1 (Cargill Corn)

The NIR spectra of the Cargill corn samples are depicted in

ig. 2a. As we mentioned in the previous section two properties

moisture and starch) have been considered for our study. Since

ll the wavelengths are not informative related to studied parame-

ers, the useful ones need to be extracted. Some of them have the

imilar information and it helps us to collect them in one cluster.

herefore, as the first step in CLoVA based PLS regression, Koho-

en self-organizing map (SOM) is used to cluster the wavelengths

ased on their similarities. The SOM network projects the similar

avelengths in the (q × q) array of neurons. Hence, the cluster of

ariables numbers which is created by each Kohonen SOM is q2.

ig. 1b shows the distribution pattern of variables in the (4 × 4)

OM network size for moisture content. The numbers from 1 to

00 in this figure refer to wavelengths of 1100–2498 nm (in 2 nm

ntervals) respectively. Each cluster is identified as Si,j, where i and

are the coordinate of the rows and columns of the clusters in Ko-

onen SOM map. The first feature which is evident in Fig. 2b is the

on- homogenous distribution pattern of NIR wavelengths. Clusters

1,1, S1,3, S2,3, and S3,3 have a high population of variables whereas

n S4,1 and S2,4, a small number of variables are observed. One of

he important parameters which should be optimized in all clus-

ering algorithms is the cluster size. The number of clusters can be

aried from 1 to the number of variables. For example if one set

he number of cluster size (q) to 1, all the variables contribute in

odel building and can be considered as the conventional PLS. In

ractice, the number of clusters size can be optimized by gradu-

lly increasing the cluster size (q) and followed the statistical pa-

ameter to find a model with the satisfied result (usually the least

rediction error). Here, seven SOM network sizes (2–8) have been

xamined. In order to find the most informative wavelength(s) re-

ated to our studied parameter, each cluster (Xi) has been sepa-

ately subjected to PLS regression. Some statistical parameters of

he PLS models, which have been obtained for moisture property

rom different clusters of network size q = 2 are listed in Table 1.

y studying the obtained result, cluster S2,1 has been selected as

most informative ones, which their variables leads to more ap-

ropriate regression model than the full spectral data. This cluster

ossesses root mean square errors of 0.0083, 0.0109 and 0.0090 for

alibration, cross-validation and prediction, respectively. The im-

ortant subject is that the selected cluster (S2,1) does not have high

umber of variable. The cluster(s) are not necessarily selected in

ccordance with their population but they are chosen based on

heir correlations with the studied properties. Finally in order to

now that which subset of wavelengths are more useful for model

uilding of the moisture content, the corresponding regression co-

fficient of the best constructed model (S2,1) has been investigated.

he selected variables (wavelengths) are shown in Fig. 2c.

Once the ability of CLoVA based PLS has been confirmed, its

fficiency over the other variable selection should be investigated.

his part has been divided to two sections. The first ones (section

of each table) involve the results of three interval based variable

election methods (iPLS, siPLS and biPLS). Moreover the results of

A-PLS, as a conventional variable selection, and PLS have been

lso reported in this part. In the second section (section B of each

able) the results of available methods (in the literature) have been

resented for each data set. In the case of CARS result, to the best

f our knowledge there were no available results in the literatures

or Corn, Biscuit and QSAR data sets, therefore we have also cal-

ulated this algorithm and the obtained result are reported in the

ection A of each table. But for those with the reports of CARS’s

esults in literature, the section B of each table (available method)

http://www.models.kvl.dk/datasets
http://www.models.kvl.dk/GAPLS
http://michem.disat.unimib.it/chm/download/kohoneninfo.htm
http://www.models.life.ku.dk
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Fig. 2. (a) NIR spectra of Cargill corn data set. (b) Distribution pattern for the wavelengths of the Cargill corn data set obtained by 4 × 4 Kohonen network size. The

numbers from 1 to 700 refer to the wavelengths of 1000–2498 nm in 2 nm intervals, respectively. (c) selected variable based on CLoVA PLS of S2,1 form network size q = 2

(d) Results of iPLS analysis of the NIR spectral data. Bars are the number of RMSECV for each interval and the numbers are the PLS latent variables used. The line is error of

the full-spectrum model. (e) selected regions by biPLS algorithm (f) selected regions by siPLS algorithm (g) selected region synergy clustering of variable strategy (sCLoVA).



76 M. Farrokhnia, S. Karimi / Analytica Chimica Acta 902 (2016) 70–81

Table 1

Statistical parameters of the CLoVA-PLS models obtained from different cluster of network size q = 2: Cargill corn data (moisture content).

Clusters in (2 × 2) Kohonen map Nw
a R2

C RMSC RMSECV R2
P RMSEP

CLoVA-PLS (S1,1) 250 0.941 0.0817 0.1094 0.907 0.1127

CLoVA-PLS(S2,1) 176 0.991 0.0083 0.0109 0.993 0.0090

CLoVA-PLS(S1,2) 149 0.841 0.1607 0.2132 0.678 0.2033

CLoVA-PLS(S2,2) 125 0.957 0.0378 0.0707 0.957 0.0665

a Number of wavelength in each cluster.
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includes their CARS’s results. Since CARS is selective and predictive

algorithm therefore has been selected for our comparison. At first,

CLoVA-PLS has been compared with conventional PLS regression

without variable selection. Obviously by clustering of variable, the

prediction ability of PLS model is improved. This is very common

issue because the PLS uses all parts of the spectral data and thus

the irrelevant regions reduce its prediction ability. Furthermore ob-

tained result has been compared with interval based-PLS. Since

the number of interval in iPLS is critical parameter to obtain the

appropriate model, its values should be optimized. Different inter-

val numbers have been examined and iPLS model of 4 equidistant

sub-intervals (resulted in lower prediction error) has been selected

(Fig. 2d). This figure shows the prediction error of cross-validation

(RMSECV) for each interval (bars) using optimized number of la-

tent variables. Apparently, the interval number 3, which is related

to the wavelength range of 1800–2150 nm, produced better re-

sults than other intervals. The statistical results of selected interval

(iPLS) have been reported in Table 2. It is evident that the CLoVA

based PLS model presents much better results than iPLS for both

calibration and prediction. Although the advent of iPLS caused the

improvement of PLS statistical parameter, it has its own limitation.

The main disadvantage of this algorithm is that iPLS just selects

the small part of data for modeling and discards the information

of other spectral region. The selection of one interval is similar

to lose the information of other intervals for regression problem.

On the other hand, although CLoVA gives better results than iPLS,

but iPLS appears simpler because of less optimization required and

faster.

Two efficient variable selection algorithms namely backward

iPLS (biPLS) and synergy iPLS (siPLS) have been applied in this data

and the results are shown in Table 2. From the obtained result,

though both algorithms produced promising result, but CLoVA-PLS
Table 2

Comparison between root mean square errors of validation and prediction of the obtained

Methods Moisture

Section (A) RMSECV RMSEP

PLS 0.0334 0.0406

iPLS 0.0227 (4 int) 0.0197

siPLSa 0.0121(20int,3comb) 0.0122

biPLSb 0.0094(40int,3comb) 0.0071

GA-PLS 0.0068 0.0065

CARSc 0.0067 0.0067

CLoVA-PLS 0.0109(2 × 2,S2,1) 0.009

sCLOVA-PLSd 0.0053(4 × 4, S1,3&S3,3) 0.0046

Section (B)

Available method

SPLSe 0.0224 0.0197

SMWPLSf 0.0234 0.0137

OSC-PLS 0.0238 0.0189

a Synergy interval PLS.
b Backward interval PLS.
c Competitive adaptive reweighted sampling.
d Synergy clustering of variable PLS.
e Stacked PLS.
f Stacked moving-window PLS.
as lower prediction than these methods. The selected regions by

hese algorithms have been depicted in Fig. 2(e) and (f) for mois-

ure content.

Furthermore the result of genetic algorithm (GA-PLS) as a con-

entional single variable selection is also given in Table 2. One can

bserve the superiority of the proposed methodology for discover-

ng more predictive models.

Besides, for the investigating of clustering combinations on PLS

erformance, the results of synergy CLoVA-PLS have been calcu-

ated for moisture and starch parameters. It is evident from this

able, synergy CLoVA has been improved the prediction power of

LS regression even respect to interval based methods and also

ARS algorithms. When the prediction ability of sCLoVA is com-

ared with the biPLS and CARS results, the RMSEP values decrease

5.2 and 31.3% respectively for moisture content. This improve-

ent for starch content is 65.9 and 52.4% respectively. The selected

avelengths using sCLoVA algorithm for moisture content has been

epicted in Fig. 2(g). Based on Fig. 2, we can observe that the

elected regions by interval based methods are selected by clus-

ering based methods (sCLoVA) too; nevertheless sCLoVA not only

dentifies these wavelengths but the other wavelengths which their

nformation is correlated with these wavelengths, are selected as

ell. The informative spectral regions were 1900–1924 nm and

100–2124 nm, which correspond to the water absorption and the

ombination of O–H bond. Our result is in agreement with previ-

us report for this data set [24]. According to Liang et al comments

oth regions are responsible for constructing the satisfied model.

Although Stacked and its moving window strategies which

as been proposed by Brown [28] are powerful algorithms, these

ethods could not produce RMS errors lower than cluster based

lgorithms. It should be mentioned that, it might be that differ-

nt variable selection results exist for each data set, but in order
models by clustering based PLS regression methods for Cargill corn.

Starch Ref

RMSECV RMSEP

0.2920 0.2874

0.2740(12 int) 0.2567

0.1178(20int, 3comb) 0.1392

0.2478(16int,3comb) 0.2482

0.1102 0.1394

0.0749 0.1776

0.1742(3 × 3,S3,1) 0.1837 This work

0.0832(6 × 6, S3,1&S4,1) 0.0845 This work

0.1778 0.2003 [28]

0.1790 0.2143 [28]

0.2209 0.02759 [29]
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o have reasonable comparison, those published model which have

he same condition (preprocessing, validation algorithm, data split-

ing, etc) have been considered.

The same procedure has been done for starch property and the

esults have been reported in the second column of Table 2. For

his property, almost all the CLoVA-based PLS models, resulted in

romising prediction errors respect to other variable selection al-

orithms.

In order to avoid a prolonged manuscript, the results of first

ata set (Cargill Corn data) have been discussed in details and the

emaining data sets have been described briefly.

.1.2. Data set 2 (NIR spectra of biscuit dough)

Another real NIR data set which is used to indicate the ability

f variable clustering for variable selection is biscuit dough data

et. The NIR spectra of the biscuit dough samples are shown in

ig. 3a. In this study, the fat property has been selected for anal-

sis. Table 3 summarized the statistical parameter obtained from

ifferent variable selection algorithms along with clustering based

LS in the optimum of their network sizes. In accordance with
ig. 3. (a) NIR spectra of Biscuit dough samples (b) selected wavelengths for synergy CLo

PLS model for biscuit dough data (fat). Numbers shown in each bar represent the latent v

sing biPLS algorithm.
he results of Table 3, CLoVA-PLS using (4×4) Kohonen map has

ower error especially for prediction than all interval based meth-

ds (siPLS, biPLS and iPLS). Cluster S2,1 of this network size has

.186 RMSEP which improves the performance of conventional PLS

52.7%). The similar trend has been seen for prediction errors in

A-PLS (47.4%) and siPLS (11.8%). Moreover, we have investigated

he synergy-CLoVA strategy for this property. This shows com-

letely similar results to CLoVA which discloses that all the use-

ul variables are located in the selected cluster. In other word, the

ther clusters have no useful information for our modeling. Se-

ected region using CLoVA-PLS and interval based methods have

een depicted in Fig. 3b for fat property. As it is clear from Fig. 3d

nd e, both siPLS and biPLS have been selected the similar regions.

lthough CLoVA algorithm has some common feature with them, it

lso selects other region, which seems has high correlation related

o fat property.

Interestingly, CLoVA – PLS has also lower prediction error

36.5%) than SPCAR as an efficient variable selection method. Yim-

ng Bi et al [32] was also investigated the fat property of Bis-

uit dough using modified version of stacked PLS which was
VA-PLS algorithm of S2,1 from network size q = 4 (c) Cross-validation (RMSECV) of

ariables in each interval (d) selected region for siPLS strategy (e) interval selection
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Table 3

Comparison between root mean square errors of validation and prediction of the

obtained models for fat property of Biscuit dough data set.

Methods Fat Ref

Section (A) RMSECV RMSEP

PLS 0.617 0.394

iPLS 0.362(7 int) 0.322

siPLS 0.332(21int, 2comb) 0.208

biPLS 0.387(19int,2comb) 0.191

GA-PLS 0.236 0.354

CARS 0.342 0.256

CLoVA-PLS 0.359(4 × 4,S2,1) 0.186 This work

sCLoVA-PLS 0.359 0.186 This work

Section (B)

Available method

SPCRa 0.327 0.293 [21]

DSPLSb NRc 0.202 [32]

Stepwise MLR NR 0.209 [29]

a Segmented principal component analysis and regression.
b Dual stack PLS.
c Not reported.
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Fig. 4. Distribution pattern for the descriptors of the ACE data set obtained by

(4×4) Kohonen network size clustering of variables. The numbers from 1 to 98 refer

to the number of extracted descriptors.
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called Dual stacked PLS (DSPLS). Although this efficient algorithm

which contains two steps of stacked regression and PLS resulted

in promising prediction error, CLoVA methods are more predictive

than DSPLS.

Fat contents are divided into saturated and unsaturated content.

the saturated ones contain no C–C double bond, so that they are

solid at room temperature while the unsaturated fat which usu-

ally is referred as oil is unsaturated with at least one C=C bond.

The other functional group of fat is ester, carboxylic or hydroxyl

functional group. Therefor we expect that in accordance with the

fat kind of studied samples, at least one of these functional groups

exist in the IR spectrum region as fat indicator [33]. Our selected

region may refer to C–O stretching of carboxylic acid functional

group. This C–O stretching frequency usually is in the region 1000–

1300 nm. We believe that this region is particularly indicator of

fat (fatty acid) because other region are more probable to be in

common in different kind of macronutrients such as C=C, O–H and

C=O stretching in acid, aldehyde and ketone functional groups.

4.1.3. Data set 3 (QSAR of amino acid (AA) indices)

QSAR analysis is one of the most important research areas

which can be studied by clustering of variable concept. Due to high

important role of amino this acid (AA) in building the blocks of

proteins, they are vital to life. Clustering of variable, as a new pol-

icy in quantitative structure–activity relationship (QSAR) has been

applied to define new amino acid indices. The chemical structures

of the amino acids (AAs) have been drawn by HyperChem software
Table 4

Comparison between root mean square errors of validation and prediction of obtained mo

Methods RMSC RMSECV

Section (A)

PLS 0.404 0.505

GA-PLS 0.375 0.427

CARS 0.318 0.407

CLoVA-PLS (4 × 4, S1,3) 0.337 0.483

sCLoVA-PLS(4 × 4, S2,1, S1,3, S3,3, S4,4) 0.320 0.481

Section (B)

Available method

SPCR based loading plota (3 × 3 cluster) 0.356 0.414

SPLS based loading plotb (4 × 4 cluster) 0.393 0.453

a Segmented principal component regression.
b Segmented partial least square.
Version 7, Hypercube Inc). Semi-empirical (AM1) method has been

sed for geometry optimization of their structures [30]. Differ-

nt descriptors (Constitutional, topological indices, Galves charge-

opological indices, charge, geometrical, functional groups and em-

irical) have been extracted by Dragon software (Milano Chemo-

etrics and QSAR research group). In this way, 108 descriptors

ave been calculated for each amino acid. Therefore, our data ma-

rix has 20 (naturally occur AA) rows and 108 columns (descrip-

ors). To find the best Kohonen network size, different nodes have

een examined. The statistical parameters of the CLoVA based PLS

or optimum network size are listed in Table 4. Among them, the

LoVA model of (4 × 4) has been selected as the best, according

o cross-validation and prediction abilities (those are highlighted

n Table 4). The distributions of the original descriptors of AA in-

ices in a (4×4) network size are shown in Fig. 4. The numbers

hich are located in each cluster represent the extracted descrip-

ors for ACE data. Interestingly, descriptors which are in cluster

1,3 have relevant information for modeling the ACE activity of the

ipeptides. In conventional PLS all calculated descriptors are used

o extract the AA indices (i.e.,q = 1 in CLoVA-PLS) and it is obvi-

us from Table 4 (first row) that the performance of this model is

ignificantly lower than the 4 × 4 CLoVA-PLS [34]. Thus, variable

lustering concept can partition the contained information within

he extracted scores into informative and redundant parts. In other

ords, it is the possible to get rid of redundant variable and ob-

ains more appropriate models.
dels by CLoVA based PLS regression method for ACE inhibitors QSAR data set.

R2
C R2

CV RMSEP R2
P Ref

0.770 0.745 0.48 0.688

0.856 0.803 0.37 0.924

0.922 0.900 0.40 0.925

0.892 0.890 0.23 0.970 This work

0.902 0.895 0.19 0.982 This work

0.875 0.840 0.39 0.896 [30]

0.852 0.813 0.36 0.921 [30]
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Table 5

Selected descriptors using clustering of variable for ACE data set.

Descriptor Description Type

PW4 Path/walk 4 – Randic shape index Topological

BAC Balaban centric index Topological

Me Mean atomic Sanderson electronegativity (scaled on Carbon atom Constitutional

nN Number of nitrogen atoms Constitutional

nC Number of carbon atoms Constitutional

AAC mean information index on atomic composition Information

BIC2 Bond information content index (neighborhood symmetry of 2-order) Information

SIC3 Structural information content index (neighborhood symmetry of 3-order) Information

TIC4 Total information content index (neighborhood symmetry of 4-order Information

GGI5 Topological charge index of order 5 2D autocorrelations

JGI2 Mean topological charge index of order 2 2D autocorrelations

X5v valence connectivity index of order 5 Connectivity

nCp Number of terminal primary C(sp3) Functional group counts

G(N … O) Sum of geometrical distances between N … O 3D Atom pairs
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As it is presented in Table 4, the efficiency of CLoVA-PLS is

uch better than obtained results by Hemmateenejad et al [35]

QTMS indices). Variable clustering possessed higher R2
cv and

ower prediction error than that model. This research group also

as analyzed the AA data set based on newly methods called Seg-

ented PCR and Segmented PLS based on loading plot. The de-

cription of this algorithm can be found in Ref. [30]. Interestingly

ur proposed algorithm also shows the lower validation and pre-

iction errors than segmented-PCR and segmented- PLS algorithms

30]. Because these methods used the scores from all clusters in-

tead of few cluster.

Table 5 shows the selected descriptors by our proposed ap-

roach. It is evident from table that different groups of descriptors

re important in building a QSAR model. The selected groups in-

lude constitutional, information, topological, connectivity, 2D au-

ocorrelation, 3D atoms pairs and functional group count indices.

onstitutional indices reflect the chemical composition of samples

ut they give no information about sample geometry or its atoms

onnectivity. Information, topological and connectivity indices gen-

rally characterize structures according to neighborhood symmetry,

ize and degree of branching and overall shape. 2D autocorrelation

ndices are independent of the original atom numbering and can

e applied as descriptors which reveal physico-chemical properties

f compound. The 3D atom pairs indices show the importance of
able 6

esults of soy data set: nLVs: the number of latent variables; RMSEC: root mean

quare error of calibration; RMSECV: root mean square error of cross-validation;

MSEP: root mean square error of prediction.

Method nLV RMSC RMSECV RMSEP Ref

Section (A)

PLS 4 0.7230 0.8702 1.1090

iPLS(20 int) 3 0.7026 0.7842 1.0311

siPLS 3 0.6965 0.7353 1.0250

biPLS (15int, 3comb) 6 0.6894 0.7314 0.8870

GA-PLS 5 0.7188 0.7375 0.9853

CLoVA-PLS (4 × 4 , S3,4) 6 0.6620 0.8216 0.8900 This work

sCLoVA-PLS (4 × 4, S3,3 and S3,4) 7 0.6234 0.8211 0.8498 This work

Section (B)

Available method

MW-PLSa 2 0.7165 0.7375 1.0122 [24]

CARS 3 0.7091 0.7351 1.0062 [24]

iRFb 2 0.7083 0.7319 0.9967 [24]

iVISSAc 2 0.7067 0.7273 0.9950 [24]

IRIV 4 0.7789 NRd 1.0578 [24]

a Moving window partial least squares.
b Interval random frog.
c Interval variable iterative space shrinkage approach.
d Not reported.

F

P

ll pairs of atoms in molecules, number of π bonding electrons, the

ength of the shortest bond by bond path between atoms. Finally,

he functional group count indices reveal the count of compound

unctional groups.

.1.4. Data set 4 (NIR spectra of soy data)

Related to soy data set the optimum network size was set to

= 4 for both CLoVA and synergy CLoVA PLS algorithms. The max-

mum number of latent variables for both strategies was set to 6

nd 7 using 5 fold cross-validations respectively [24]. The results

f CLoVA and sCLoVA besides other variable selection (siPLS ,biPLS,

W-PLS, CARS, GA-PLS, i-RF and i-VISSA) are reported in Table 6.

espect to full spectrum model (PLS) all the variable selection

ethods indicate the improved prediction ability. However synergy

LoVA showed the lowest RMSEP (0.8498) than biPLS (0.8870),

LoVA (0.8900), GA-PLS (0.9853) and even iVISSA (0.9950). Com-

ared to the result of full spectra, the RMSEC, RMSECV and RMSEP

f sCLoVA decreased by 13.8%, 4.1% and 23.4% respectively, which
ig. 5. Wavelengths selection using different methods on Soy data set. (a) sCLoVA-

LS (b) biPLS.
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Table 7

Results of Tablet data set: nLVs: the number of latent variables; RMSEC: root mean square error of calibration; RMSECV: root mean square error of cross-validation; RMSEP:

root mean square error of prediction.

Method nLV RMSC RMSECV RMSEP Ref

Section(A)

PLS 6 0.3200 0.3497 0.3655

iPLS (20 int) 7 0.3326 0.3454 0.3650

siPLS 6 0.3140 0.3413 0.3635

biPLS (20int, 3comb) 6 0.3312 0.3469 0.3438

GA-PLS 6 0.3127 0.3264 0.3559

CLoVA-PLS (3 × 3, S1,1) 8 0.2984 0.3472 0.3485 This work

sCLoVA-PLS (3 × 3, S1,1 S3,1, and S2,3) 7 0.3157 0.3450 0.3345 This work

Section (B)

Available method

MW-PLSa 6 0.3168 0.3443 0.3620 [24]

CARS 6 0.3152 0.3243 0.3577 [24]

iRF 6 0.3135 0.3497 0.3594 [24]

iVISSA 6 0.3075 0.3259 0.3552 [24]

a Moving window partial least squares.
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can be consider remarkable. The selected wavelength for sCLoVA

and biPLS are displayed in Fig. 5. The spectral region around 1944–

2024 nm is due to water absorption which both algorithms are

succeed to select this informative region [24]. On the other hand,

wavelength region correspond to 2032–2500 nm is rich of infor-

mation but is also complex, because it includes various combina-

tion of OH stretching with different CH, COH and OCO bending or

stretching . Therefor it is reasonable to consider this region be-

cause of its valuable information [33].

4.1.5. Data set 5 (NIR transmittance spectra of tablet data)

Finally tablet data set with highly number of samples have been

considered for analyzing using variable clustering strategy. Table 7

and Fig. 6 show the results of the tablet data set. For reason-

able comparison with other variable selection algorithm, the max-

imum number of latent variables has been selected using 5-fold
Fig. 6. Wavelengths selection using different methods on Tablet data set. (a)

sCLoVA-PLS (b) biPLS.
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ross-validation on full spectra [24]. Although the combination of

ariable selection with PLS led to improvement of prediction re-

ults, sCLoVA-PLS showed the lowest RMSEP respect to all of them

0.3345). By Comparing the prediction ability of intervals based

ethods with variable clustering, the superiority of second ones

s revealed. siPLS, biPLS, iPLS, iRF and even iVISSA have RMSEP of

.3635, 0.3438, 0.3650, 0.3594 and 0.3552 respectively. Single vari-

ble selection algorithms, GA (0.3559) and CARS (0.3577), do not

roduce the model with lower prediction than variable clustering

lgorithm.

Fig. 6 shows the selected informative regions using clustering

f variable algorithm and biPLS method. Liang and coworkers [24],

hows that genetic algorithm and their new methods, interval vari-

ble iterative space shrinkage approach (iVISSA), have been se-

ected the similar regions. This is due to the fact that both al-

orithms use the RMSECV as an objective function. As it is evi-

ent from Fig. 6, CLoVA algorithm has been selected several re-

ions for construction the stable model. One of the useful re-

ions which have been selected using synergy CLoVA is 8800–

000 cm−1. According to Dyerby et al [36]comments, the men-

ioned region can be used as finger print for estimation of ac-

ive substance tablet data set. Additional two finger print regions

7400–7500 and 8200–8350 cm−1) which have been previously re-

orted also have been selected using clustering of variables strat-

gy. Based on obtained result of Linag’s group [24], these regions

lso were selected using iVISSA and GA-PLS algorithms. The se-

ection of other spectral region(s) e.g 10,000–10,200 cm−1 is not

lear; however it led to improve the prediction ability of ob-

ained model. This is in agreement with Liang group’s results

24].

. Conclusion

In the present study a simple and efficient variable selection

ased on variable clustering concept has been proposed. In the

LoVA-PLS, the variable is divided into some clusters using un-

upervised pattern recognition based on similarities. Besides the

ffect of clustering combinations has been investigated (synergy-

LoVA) on PLS regression. Informative scores and corresponding

oadings are simply selected by applying PLS in each cluster sep-

rately. Selection the important variable is very straightforward

hich can be done by analyzing the regression vector of selected

lusters. Analyzing of different data set indicates that variable clus-

ering and its modifications (sCLoVA) combined with PLS has po-

ential to use in model building and also classification problems.

herefore clustering of variable PLS has been suggested as an al-
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ppendix A. Supplementary data

Supplementary data related to this article can be found at

ttp://dx.doi.org/10.1016/j.aca.2015.11.002.
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