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Abstract 

For counter-parties to an options contract, the method employed to hedge 

their exposures depends on the agents' risk preferences and the underlying 

asset. The thesis begins with a rudimentary model exploring the effects 

of sequential decisions to an investment problem. The insights gained from 

this analysis are discussed, as are the refinements necessary for more detailed 

investigation of the problem under consideration. 

Incorporating these into the rudimentary model leads to the main model 

for the thesis, one which describes agents' behaviour in a dynamically con- 

strained optimisation framework, and holds similarities to models of markets 
for storable commodities. When combined with fundamental results about 

the quadratic variation of stochastic price processes, the model provides a 
link to option pricing. The analysis thus facilitates the development of a 
financial instrument that can assist agents in reducing the risk associated 

with volatility of corporate cash flows. The instrument can be priced using 
fundamental (financial statement) analysis and market prices, both of which 

also provide information related to corporate creditworthiness, thus allowing 

corroboration of the results from the option pricing model. 

Under a variety of assumptions related to this model, the behaviour of 

a set of inter-connected agents is simulated. The results are suggestive of 

structures in market prices whose characteristics of which can be described 

in terms of price volatility. This allows the calibration of option prices by 

means of wavelet-based price processes, which are especially suitable for 

modelling quadratic variation. Our model generates related time series for 

unit prices as well as quantity flows. Selected aspects of this are elaborated 

upon to illustrate areas for future application of the concepts developed in 

the thesis. 
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Chapter 1 

Introduction and Literature 

Review 

The fields of finance and economics utilise mathematical techniques to for- 

malise the analysis of the problems of production, exchange, allocation and 

consumption. This approach has been very successful, delivering significant 
leaps in our understanding of scarce resource allocation and risk, but it has 

its limitations as succinctly described by a quote in Coase (1937) [37]: 

"Mrs. Robinson has said that "the two questions to he asked 

of a set of assumptions in economics are: Are they tractable? 

and: Do they correspond with the real world? " Though, as Mrs. 

Robinson points out, "more often one set will be manageable 

and the other realistic, " yet there may well be branches of theory 

where assumptions may be both manageable and realistic. " 

As mathematical methods have developed, it has become possible to use 

assumptions that more closely approximate real activities. Notable mathe- 

matical tools include the formalised treatment of chance through probabil- 

ity theory as well as Newtonian and stochastic calculus. In recent decades, 

increases in computing power have gradually opened up the possibility of 

using simulation to learn about economic activity. This is done by compar- 

ing the results of simulation and predictions of analytical methods against 

8 



observations in life. 

The development of large corporations and banks, 1 along with interna- 

tional financial markets large enough to accommodate them, has created 

a focal point for applying these techniques. The widespread adoption of 

mathematical and computational tools has allowed more efficient methods 

of financing economic activity and dealing with risk. A common feature of 

negotiations in the financial world is the desire of each party to maximise its 

financial flexibility and minimise the risk to which it is exposed. The issue 

of flexibility is central to this thesis and its effect on economic behaviour is 

investigated in several ways. 

Financial flexibility is clearly an important issue for businesses and indi- 

viduals. They have traditionally used loans as a principal source of financing 

their activities and this service, principally supplied by banks, has retained 

its importance even as the financial markets have grown in scale arid scope 

and reduced the role of banks as intermediary in various economic activities. 
Bank loans exist in various forms, tailored to suit the specific circum- 

stances of various kinds of borrower. For example, many borrowers do not 

need a lump sum of money for immediate use but want the certainty of 
being able to borrow money as and when their own circumstances dictate. 

Chapter 4 looks at a financial instrument that can, in some circumstances, 

take the place of this type of bank facility and provides a methodology for 

pricing the instrument. The key features of this type of bank lending are as 
follows. 

The batik commits to providing a loan facility that the borrower may 

draw on at any time. The unpredictability of cash flows in the borrower's 

business is thereby passed from the borrower to the bank, which now needs 

to have enough cash ready to lend for as long as the loan facility is contracted 

to be available. This creates a cost for the bank which is related to the bank's 

ability to match the sources and uses of its own funds. Consequently, banks 

will often propose restrictions on when and how the borrower can withdraw 

'See Chandler (1990) [33] and Morrison & Wilhelm (2004) [1531 for accounts. 

9 



cash, in order to be able to offer competitive interest rates on the funds they 

lend. 

A company may want to draw on a loan in response to fluctuations in its 

operations resulting from predictable factors such as seasonality of sales as 

well as some unpredictable factors. However, in addition to internal opera- 

tional reasons, a company's cash flow is dependent on the prices for goods 

and services related to it. If the company has insufficient cash to purchase 

or provide these, it may adversely affect its ability to operate smoothly and 

reduce the value of the company. These situations are avoided by main- 

taining financial and/or operational flexibility. Both forms come at some 

cost and it is not always clear which is more attractive, given that there are 

many ways of achieving both sorts of flexibility. 

Operational flexibility reflects the ability of the company to change its 

method of doing things, either temporarily or permanently, and continue 

making a profit. The manifestations of this flexibility can be found in all 

scales of analysing a business: from the intricacies of changing the process 

used on a production line, to the global strategy for the company, its business 

partners and its shareholders. The analysis of operational flexibility often 

falls under the scope of `real options' theory, which has had some success 

in analysing the economic rationale behind some working practices as well 

as guiding companies on future decisions. The models developed in chapter 

2 are the most closely linked to analysis of operational flexibility and were 

suggested by real options literature. 

As far as financial flexibility is concerned, a committed loan facility from 

a bank is often a cheaper solution than holding cash reserves in a bank 

account. Both of these solutions tackle shortfalls arising from any cause, 

be it operational or from external market events. However, it may be more 

efficient for the company to use market instruments to hedge financial risk 

arising from market events, instead of using the static approaches of holding 

cash or paying for a loan facility, or even resorting to diverting funds from 

other parts of its own operations. Chapters 2 and 3 investigate quantitative 
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methods to implement the idea and, in the process, develop a model to 

approximate various economic activities. Its predictions are investigated 

using both analytical and computational methods. The remainder of this 

chapter introduces the concepts and previous works that motivate the choice 

of tools in the thesis. 

1.1 Scarcity of information and of control 

Economics is the study of decisions. The work of Black & Scholes (1973) 

[15] and Merton (1973) [149] significantly reduced the uncertainty about the 

valuation of choice embodied in financial option contracts. Their observa- 

tions allowed researchers to focus on other areas of uncertainty, leading to 

better understanding and modelling of the volatility of prices and also to 

dealing with problems like transactions costs, jumps in prices and intermit- 

tent trading opportunities. The advances in financial option pricing have 

not however solved the problem of decision-making in general. ' 

The principal consideration is that decisions have to be made under phys- 
ical constraints of varying degree, including informational constraints since 

information is retrieved through physical means. In large scale activities, 

finite information processing power imposes a limit on what can be gleaned 

front numerous and detailed observations. Meanwhile, small scale obser- 

vations are constrained by the accuracy of measuring tools (in addition to 

the intrinsic impossibility to determine all the properties of an object being 

observed). 

Given that choices appear real, whether free will exists or not, and de- 

cisions must be made without all the information, it is necessary to use 

guesses and estimates based on prior assumptions. As described by Debreu 

(1959) [47] (p. 37), the economic 

"agent is characterized by the limitations on his choice, and by 

2Although its applications are being broadened through real option valuation theory, 

see Dixit & Pindyck (1994) [53] for an introduction. 
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his choice criterion. " 

The forms of the limitations and of the criterion are now discussed. 

Nature dictates people have consumption requirements that motivate 

them to avoid the undesirable consequences of not satisfying them. Invari- 

ably, things perceived as requirements are hard to distinguish from more 

peripheral wants, leading to a possibly unending list of aspirations. Both 

needs and wants steer the direction of choices in daily decisions. The limi- 

tations imposed by nature translate into the fundamental choice criteria. 

The perception that choices have to be made suggests that people are 

able to control their surroundings to a sufficient degree for achieving some of 

their goals. There are many concurrent choices to be made in any situation 

and it is not feasible to consider each one consciously. Instead, rules of thumb 

develop through habit formation as well as social and individual learning. 

Choices are not isolated and, while it is possible to analyse sequential 

decisions under some circumstances, most choices are subject to complex in- 

teractions3 making it difficult to identify the applicable rule correctly. Fur- 

thermore, learning from the consequences of previous decisions has limited 

scope, resulting in rule-of-thumb behaviour that is frequently sub-optimal. 4 

Adam Smith (1776) [193] divided the factors of production into three 

segments: labour, capital and land, with the latter constantly compared 

against labour. While wages, profit and rent are the rewards to each kind of 

stock, it appears that wages reflect effort expended rather than some other 

measure of labour. As such, it is reasonable to include mental analysis and 

learning as tasks that contribute to wages. This is akin to the notion of re- 

search that leads to human capital and technological progress in endogenous 

growth thcory. 5 

'See Carr (1988) [24] for an example of analytical treatment of sequential decisions and 

Trigeorgis (1991) [2021 for examples of complex interactions in real option theory. 
4This is a common issue in statistics and artificial neural networks, where calibrating 

or training the system on one data set can reduce its performance with regard to other 
data. 

5toiner (1996) [1741 Section 3.9 provides a good discussion of models. 
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Viewing basic consumption and assets as ideal types suggests the fol- 

lowing definitions. Ideal-type consumption is a purely transient good that 

quickly reaches satiation, turning from an economic good into a bad beyond 

a certain rate of consumption. The satiation point is dictated by physics, 

nature, society, etc. An asset is an infinitely storable good, which yields 

no consumable flow by and of itself and can be accumulated and improved 

ad infinitum. In practice, goods form a spectrum with varying degrees of 

storability and consumability, with neither consumption goods nor assets 

existing as ideal types. 

Ownership of an asset is usually defined as a relationship whereby the 

costs and benefits inherent in owning the asset accrue to the owner. It is 

implicit that the owner has control of the asset. Accordingly, the option to 

buy or sell an asset is the ability to create or dissolve the relationship and 

change the costs and benefits to which the owner has access. 

Assets are traditionally viewed as having limited liability, but the pre- 

ceding arguments suggest that the relationships between assets and their 

effect on the owner can blur the limit. Limited liability implicitly deals only 

with assets that can be disposed of at no cost, which is an embedded option 

to sell for a zero price. This embedded put option contributes to the value 

of the asset and guarantees a non-negative value. 

Usually, economic agents only have limited control over the allocation of 

scarce resources. Relaxing the assumption of an embedded put option, to 

reflect an aspect of the lack of control, means that non-negative asset value 

is not necessarily certain. Assets do include other types of optionality but, 

given the informational constraints, it is not certain that the owner will be 

able to use them to replicate the put option and ensure limited liability. 

Following this argument, the model in section 2.1 views the consumable 

yield and value of an asset as arising solely from the ability of the owner to 

understand and exploit embedded options rather than as an intrinsic prop- 

erty of the asset. It explores the nature of the interplay between an ideal- 

type asset and ideal-type consumption in a scenario where the embedded 
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optionality of the capital asset is limited and subject to some uncertainty. 
It considers an economic agent seeking to maximise consumption power 

at a future point in time following a sequence of decisions. The agent begins 

with an endowment of ideal-type assets, that have the embedded option to 

be exchanged for a varying amount of consumption goods. Each period, 

the agent chooses between exchanging the assets for consumption goods, 

or increasing assets held by giving away consumption goods. Increasing 

the amount of assets held increases the magnitude of subsequent decisions, 

whereas accumulating consumption goods makes direct progress towards the 

goal of accumulating consumption power. The terms of forthcoming options 

are not clear in advance, so the agent has to make non-trivial decisions. The 

results show that the agent takes the high risk strategy of investing heav- 

ily in assets before selling as much as possible in a small number of large 

trades before the terminal period of the model. By comparing this with 

other models of portfolio selection and investment behaviour, the distorted 

picture of real behaviour can be identified as being due to the equal empha- 

sis placed by the agent on incremental losses and incremental successes. It 

corresponds to unlimited ambition (no satiation constraint) and no fear of 

loss (no minimum constraint). In practice, the same physical and infornla- 

tional constraints mentioned earlier prevent the agent from consuming an 

unlimited amount in any given time period. If he wishes to consume without 

limit, the agent will still be aware of the limitations. Acting in accordance 

with those limitations is a necessary part of rational behaviour, so where 

behaviour along the lines of the high-risk strategy is observed, it can be 

attributed to bounded rationality arising from limited information. 6 

While describing the role of metals as currency, Smith [193] writes, 

"These qualities of utility, beauty and scarcity, are the original 

foundation of the high price of those metals, or of the great quan- 

6See Arrow (1986) [41 and two review articles by Conlisk (1996) [391 and Vriend (1996) 

[2051 that discuss the nature of rationality and optimality in the context learning and 

decisions that have to be made with restricted resources. 
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tity of other goods for which they can everywhere be exchanged. " 

In present-day economic theory, utility - something that can be more easily 

measured and compared across people - and beauty - that can be measured 

only indirectly if at all and may not be comparable between different people 

- are usually combined into one mathematical function. The function then 

represents the preferences of the person or group for whom it was calibrated. 

The axiomatic analysis of economic equilibrium requires a complete pre- 

ordering of preferences with the properties of insatiability, continuity and 

convexity. Preferences are taken to describe only the individual's consump- 

tion behaviour and are not affected by the resale value of the goods. In 

addition, preferences are taken as fixed over time (since the pre-ordering 

includes different locations and times). It can be argued that real behaviour 

is not consistent with objective utility because of differences in perception 

and that behaviour and the apparent utility function would change if dif- 

ferent information and other necessary resources were available to everyone. 

The view will not be incorporated because, to quote Vriend (1996) [2051 (p. 

269): 7 

"If preferences were flexible, then the concept of self-interest 

would no longer be defined. " 
... "Pushing the logic of economics 

to its limits, and following its line of argument consistently into 

every conceivable corner of social event, [the Chicago School has] 

demonstrated that the rationality postulate is necessarily con- 

strained to be essentially contentless in economics. " 

In addition to interacting directly with nature, people in society interact 

with each other. It is often possible to fulfil the imposed commitments to 

nature through social means. Social commitments can be used to reduce 

the uncertainty around the hard constraints of nature. Contracts are the 

formalisation of the process and, although meant to be honoured, they are 

not enforced as unequivocally as natural laws and do not cover every possible 

7Italics by the Vriend. 
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eventuality, resulting in some residual uncertainty and allowing agents to 

apply discretion. 

Historically, it has been more difficult to perform verifiable experiments 

with pure consumption than with (physical) assets8 so models of the econ- 

omy from an asset-based approach are more easily testable than from a con- 

sumption approach. Almost all economic activity is viewed as the pursuit of 
indirect goals, which provide only the means of meeting basic consumption 

requirements. Consequently, the majority of economic activity is governed 

by soft constraints. A similar discussion by Hull (2003) (p. 41) [97] describes 

consequences of immediate consumption requirements on the behaviour of 

markets, although it implies that contracts and corporate operational plan- 

ning entail hard, rather than soft, constraints. 

The second model of the thesis, in section 2.2, introduces soft constraints 

and risk aversion into the behaviour of agents, implicitly dealing with in- 

vestment assets rather than dealing directly with consumption goods. The 

following section introduces related models and compares their features. 

1.2 Prices in the economy 

Scarcity of a valuable resource increases its value, but value is only imper- 

fectly measured by the amount of money, corn, or other items for which it 

can be exchanged. Taking the view that the majority of economic decisions 

concern the management of assets that indirectly generate and control con- 

sumable goods, the price of an asset reflects its usefulness as a tool rather 

than its direct consumption value. 

The time, effort and other scarce resources that treed to be spent on 

achieving an aim are not easily measured because of the wide variety of forms 

of the resources and the indirectness of aims. It is also difficult to measure 

the improvement of welfare that a resource brings, even if the resource-cost 

'As the economy develops and the role of intangible assets grows, the difficulty of mea- 
suring assets gains prominence and impairs the ability to corroborate financial accounts. 

See Lev (2001) [127] for discussion. 
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is measured, especially in areas where innovation is rapid. 9 

Smith's (193 approach to measurement is to value resources in terms of 
labour (p. 133): "The value of any commodity, [... ] is equal to the quantity 

of labour which it enables him to purchase or command. " The method 

extends to the rent of land and profit of capital, each viewed as the price of 
the portion of labour that they can command (p. 153): "Labour measures 
the value not only of that part of price which resolves itself into labour, but 

of that part which resolves itself into rent, and that which resolves itself into 

profit. " The effort that goes into acquiring - investing in - an asset depends 

on the perceived benefits that it will yield. 
Investment theory describes the decisions made in this manner and only 

suggests the price at which an asset should be bought and sold. The way 
in which people interact with each other in managing assets, formalised 

in various market-clearing mechanisms, determines the actual, observable 

price. The next paragraphs describe the salient points of investment theory 

and then discuss some market-clearing mechanisms considered in the thesis. 

The naive accelerator model of investment considers a producer that 

maintains a certain stock of capital as part of the production of goods. It 

states that investment - changes in the stock level - is equal to the change 

of output, implying that the producer-investor reacts instantaneously to 

exogenous changes in output. This is represented aslo 

It =OKt=vOY, (1.1) 

where It is the investment between time periods t-1 and t, Kt is the level 

of capital stock at time t, v is a constant and Y is the level of output. 

The flexible accelerator model, which includes lagged output changes as 

explanatory variables of investment, suggests a limited supply rate of capital 

goods or behaviour arising from adaptive expectations formation. However, 

it is not possible to determine if the cause of lagged effects is due to physical 

supply issues, expectation formation or some combination of the two. 

9See an example by P. Krugman at http: //web. mit. eclu/krugnian/www/viagra. htinl. 
"Notation in this section follows Precious (1987) [166]. 
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The model of investment building on the work of Jorgenson (1963) [108] 

begins to investigate the effect of particular decision-making mechanisms. 

By declaring its assumptions more precisely than the accelerator models, it 

becomes possible to test hypotheses regarding the structure of the economy 

through its effect. Specific examples are discussed in Precious (1987) [166]. 

First, a simple investment model assumes a perfect market for the supply 

and disposal of a homogeneous capital good (all units of which have the same 

quality which does not change over time). The assumption can be violated 

by the presence of adjustment costs, transaction costs, a lack of continuous 

clearing of the market by other means and a changing nature of capital goods 

over time. These have been investigated in detail using models of q theory 

and convex adjustment costs, costs of searching, auction models and putty- 

clay models of investment where the ex-ante production function provides 

more flexibility than the corresponding ex-post function of investment. " 

Second, given a well-behaved production function, it is possible to cal- 

culate the rate of investment at any moment from relative prices in the 

economy at the time. For example, with a Cobb-Douglas production func- 

tion, Yt = AKt LQ where Lt is the labour employed at time t and A, a and 

ß are constants, the first order condition ä= 9t(rt 60-9t 
results in 

_ 
dKt 

_d 
YtPt l) 

It 
dt - adt 

qt(rt + dt) - 4t/ 
1.2 

where qt is the price of capital goods with the qt being its instantaneous rate 

of change, pt is the price of output, rt is the unique interest rate and 8t is 

the rate of depreciation of capital stock. 

It implies that a rational investor can base decisions on only the con- 

current data, without considering the future demand for his output or the 

relative prices of inputs. The `myopic' optimal behaviour depends on the 
11See Hayashi (1982) [87J, Abel et. at. (1996) [1J for discussion of q theory and adjust- 

ment costs, Stigler (1961) [1971 and others for search theoretical approaches, Smith et. 

at. (2003) [1941 for a recent model of market clearing mechanisms. Parallel work starting 

with Coase (1937) [371 introduces transaction costs to the structure and behaviour of the 

firm. 
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known price of capital goods, which may not necessarily be assumed given 

the previous point. More interestingly, the result emphasises the effects on 

investment behaviour of relative prices, interest rates and tax regimes rather 

than demand constraints. The firm may produce as much as it wishes within 

the limits of a production function and budget constraint. A demand con- 

straint can be implied by assuming a cost-minimising (rather than profit- 

maximising) firm and several approaches are described in [166]. 

Following the approach leads to a third observation, that the rational 

behaviour of the investor and the informational structure of each model 

are crucial determinants of the predictions. Apparent deviations from ra- 

tional behaviour and imperfections in the flow of information are observed 

in practice and have been investigated. The work of Lucas (1976) [137] 

provides a critique of the application of rational expectations in macroeco- 

nouiics and policy formation. Works following that of Keynes (1936) [118] 

and of Kahneman & Tversky (1979) [110]12 suggest that `rules of thumb' 

can be appropriate ways of characterising behaviour of real people. Review 

articles such as those by Conlisk (1996) [39] and Vriend (1996) [205] dis- 

cuss the rationality of such behaviour given costs of acquiring information 

and making decisions, while Cochrane (1989) [38] compares the properties 

of near-rational models of behaviour to rational ones. 

A last point to note is that the firm is assumed to be able to react instan- 

taneously to changes in economic variables. A problem with this assumption 

is that step changes in the environment can cause an infinite investment rate, 

unless other, potentially unrealistic, assumptions are made about the way 

that the variables can change. 

The thesis models an economy in which a stock of cash is moved between 

agents, all of whom prefer the circulation of larger volumes, all other things 

being equal. While the model creates a growing trend in the level of economic 

activity, the economy can show modes of behaviour where the flow of cash 

falls due to a perceived lack of sufficient cash to act as a buffer against 

"See Hansen & Sargent (2001) [83] for a recent discussion. 
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fluctuations. 

Most economic literature is concerned with the competitive aspects of 
the economy. The analytical models discussed so far share that focus. A 

good example of such an approach in computational finance is the Minority 

Game, 13 in which objectives of agents are conflicting. These forms of model 

have been used to investigate the conditions under which a large economy 

with many agents converges to perfect market models. 14 

This thesis investigates the effect of co-ordination and expectation in an 

economy made up of self-interested agents with imperfect information. In 

contrast to the minority game, the agents are not in direct competition with 

each other for a scarce resource. 

The agents in sections 2.2 and 2.3 assume that the economy is in one 

of two particular growth states. Each agent therefore estimates this state 

variable in addition to any others. It could try to estimate the properties of 

the two growth states and of the transition probabilities between them, but 

the depth of estimation has to be truncated at some level and is a strong 

argument for the use rules of thumb. 

It is useful also to compare the model in this thesis to the recent work 

of Beaudry & Portier (2004) [101, who show that changes in expectations in 

a neoclassical framework can generate business cycles, defined as the posi- 

tive co-movement of consumption, investment and employment. However, 

as they point out, it is necessary to create a multi-sector economy with in- 

teractions between the sectors subject to economies of scope15 to generate 

the result. The model shown in section 2.3 of this thesis achieves a similar 

result without explicitly defining separate sectors within the economy and 

allowing for a form of market non-clearing. 

The market clearing mechanism is an important determinant of the be- 

haviour of prices. The model of section 2.3 introduces an imperfect informa- 

13See Jefferies and Johnson (2002) [104] and references therein for a recent overview. 
"'See for example Sabourian (1999) [176]. 
15See Chandler (1990) (33]. 
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tion structure similar to that of an unobserved aggregate price level16 while 

also creating dynamics resembling those of an economy with staggered price 

adjustment with state-dependent pricing. 17 It allows for perceived surpluses 

as each agent spends enough to equate his perceived marginal prices of saving 

and investment. Since the spent money is dispersed between many agents, 

no single market price is visible or defined. 

Laroque (1989) [124] shows that, when prices are not set through a 

process of tätonnement, inventory behaviour can generate cycles between 

two unstable stationary competitive equilibria. Trades may take place at 

a non-competitive price and the aggregate quantity of money is constant 

over time. But in contrast to this thesis, Laroque's distinguishes between 

(overlapping-generations) consumers and (non-profit making) firms. It deals 

with three types of goods: labour, money and output, and the latter two 

can be saved as cash and inventories. As such, the paper presents a very 

different model to the one described here. 

Related work in Sabourian (1999) [176] shows that a form of measurement- 

noise or uncertainty is an important requirement for the convergence in be- 

haviour of an economy with a finite number of agents to that of a perfect 

market. This is present in all the models (sections 2.1,2.2 and 2.3), with risk 

aversion being introduced in going from 2.1 to 2.2 and uncertainty about a 

global state variable being added to the last model. 

Assumptions about market structure and agent behaviour can be used 

to generate one or more prices that change over time. Such time series can 

be recreated by following each step of the process generating the prices in a 

numerical simulation. Under some sets of assumptions, the characteristics of 

the price changes are simple enough that the time series can be used directly 

and the underlying mechanism overlooked. The simplest time series arises 

in an informationally efficient and frictionless market, yielding the random 

walk hypothesis for financial markets. The concept was used in finance as 

early as Bachelier (1900) [5] with a rigorous exposition of the hypothesis in 

"For example as described in Lucas (1972) [1361 and Phelps (1970) [164[. 
17See Caplin and Spulber (1987) [221 and Akerlof (1969) is an important earlier paper. 
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Samuelson (1965b) [179]. 

Studies of the random walk hypothesis and the efficient markets hypoth- 

esis are presented in Fama (1970,1991) [63], [64]. It is noted that tests for 

market efficiency involve supporting hypotheses so that no clear consensus 
has been reached on its validity. The random walk hypothesis is more easily 

tested and, while it is generally accepted in the weak form for a wide variety 

of markets, studies taking different approaches have questioned the valid- 

ity of the strong form of the hypothesis. 18 This is particularly the case for 

variables such as household saving and consumption, which do not follow 

the random walk as implied by the permanent income hypothesis of Hall 

(1978) [81]. Nevertheless, the random walk approximation has allowed the 

development of tractable models, notably the option pricing theory of Black 

& Scholes (1973) [15] and Merton (1973) [149]. 

The random walk is a discrete time stochastic process, the continuous 

time limit of which is the Brownian motion that has well studied proper- 

ties. 19 Brownian motion can be viewed as a subset of stable stochastic pro- 

cesses, which are in turn a subset of infinitely divisible stochastic processes 

that can be represented as the sum of i. i. d. random variables. 20 Brown- 

ian motion is the only stable process with probability distributions of finite 

variance describing increments over finite periods of time and is the only 

continuous process with stationary increments. It also has infinite linear 

variation, meaning that the up and down increments over any finite time 

period sum to infinity. The behaviour is reconciled with financial markets 

by Harrison et. al. (1984) [85], noting that prices with bounded variation 

would be inconsistent with an idealised (frictionless) market. 21 Quadratic 

variation, the notional sum of squared increments, increases at a constant 

rate. This non-random property makes analysing and transforming Brown- 

ian motion easier, notably through Itö's Lemma. 

"See for example Lo & 11facKinlay (2001) [131]. 
'9For examples, see Freedman (1971) [71] and Harrison (1985) [86]. 
20See Mantegna & Stanley (2000) [145]. 
2 1Also implicit is the assumption of costless information, as discussed earlier. 
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1.3 Replication Methods 

Financial options exist as traded contracts and many forms can be priced 
because it is relatively easy to specify the costs and benefits of ownership 

of a financial security. One way of pricing, based on an elementary trading 

strategy, shows the theoretical link between an option's price and particular 

properties of the underlying price process. Quadratic variation, the key 

property of Brownian motion, can be analysed and synthesised by wavelet 

methods in an elegant and intuitive way, preparing the way to price options 
based on a broad class of wavelet-based price processes. 

Two common methods for determining the price of an option are: 

" the expected amount the seller of the option is going to gain or lose; 

" the cost of recreating by other means the payoff created by the con- 
tract. 

The standard Black & Scholes (1973) [15] and Merton (1973) [150] analysis 

takes the latter approach, trading (continuously) in the underlying asset 

and riskless bonds. The quantities of underlying asset and bond that are 

required in the portfolio change smoothly with respect to the price of the 

underlying and other variables (such as time to expiration). As mentioned 
in [15] (p. 642): 

Thus the risk in the hedged position is zero if the short position 
in the option is adjusted continuously. If the position is not 

adjusted continuously, the risk is small, and consists entirely of 

risk that can be diversified away by forming a portfolio of a large 

number of such hedged positions. 

If trading is done in continuous time, as is assumed in the model, no costs 

are incurred during the lifetime of the hedge - the strategy is self-financing. 

The price of the option is the cost of setting up the replication portfolio by 

borrowing (using bonds) in order to finance buying the required amount of 

the underlying asset. This cost is known with certainty. 
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An alternative replication strategy was proposed that seems to provide, 

with certainty, prices that conflict with Black-Scholes-Merton. 22 The main 

element of the strategy, a stop-loss order, is abundant in markets. Since all 

trades are supposed to take place at the strike price, the strategy appears 

to be self-financing. This paradox was resolved in a series of papers, see 

Seidenverg (1988) [187], Omberg (1989) [157] and Carr & Jarrow (1990) 

[25]. 

The intuitive solution arises from identifying the false assumption that all 

trades can be made at the strike price. The mathematical solution, which 

draws the link to local time, is due to the result that Brownian motion 

and its common variations in the form of semi-martingales have unbounded 

variation (Harrison et. at. (1984) [85]) and bounded quadratic variation. 

Chapter 4.2 describes how the result can be used to develop a trading strat- 

egy for general variance-based derivatives. Chapter 4.3 develops pricing 

methodologies and shows applications. 

22 The issue arose from discussion of delivery options, see Livingston (1987) [1301 and 

Kane & Marcus (1988) [114]. 
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Chapter 2 

Models for Generating Price 

Processes 

Any intertemporal economic model can generate price processes in some 
form. Neoclassical models as well as models with incomplete nominal price 

adjustment, typified by Keynesian theory, generate equilibrium prices that 

vary over time in response to exogenous shocks. The time required to reach 

equilibrium can result in different forms of behaviour and different equilibria 
depending on the starting conditions. 1 

This chapter will investigate two parsimonious models which generate 

prices that change over time. Unlike many economic frameworks, prices of 

goods and wages to labour are not treated separately. This abstraction from 

complexity of the observed economy highlights the rich features that can be 

obtained from simple assumptions. 

The first section (2.1) investigates the dependency of price on the nature 

of current and future opportunities to exchange one good for another. By 

maintaining an abstract form, it emphasises the role of choice in creating 

value. The model is placed in a multi-period but finite-horizon setting with 

each period reflecting one choice and the nature of choices described by a 

'More complete comparisons of economic theory can be found in most textbooks, e. g. 
Romer (1996) [1741. 
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limited number of variables. The choice available at each period is a binary 

one: the agent is offerred the ability either to exchange a limited amount 

of one good for another or else to remain in his current position. The 

price derived is a ratio at which the agent will be indifferent to carrying 

out the exchange. The price or value depends on coordinated timing of 

favourable exogenously offered terms of exchange, which implies natural 
flexibility or a strong bargaining position and these are aspects that have 

not been modelled. 

By attributing the choice available at each moment to one of the two 

goods, such that a larger quantity of it provides a larger magnitude of choice, 

the model attributes value to the good with which it is linked. As such, the 

choice is embedded in the good itself and is not a characteristic of the agent 

making the decisions and links with literature on compound options (notably 

papers by Ceske (1979a) [75]). Referring again to flexibility and bargaining 

power, it is therefore the asset with the embedded option that implicitly 

provides these to the agent that owns them. 

Successful selection of the correct direction for each decision does depend 

on the agent. The decision is based on the characteristics of the current and 

future choices. In this regard, the model maintains ambiguity regarding in- 

formation structure in order to show the clear distinction between embedded 

optionality and information. The price in the model can be equally well be 

considered as absolute or based on the perception or beliefs of the agent. In 

light of these restrictions, the purpose of the model is to show the value of 

flexibility in an idealised form. 

The remainder of the chapter (starting with section 2.2) changes the 

basis of analysis to one bearing closer resemblance to real situations, but 

still keeping the intention of showing the role of flexibility and its limitations 

on the measure of value. The sections gradually introduce more features but 

at each stage the basis of the model remains that of an agent with periodic 

choices which are constrained to a greater or lesser extent depending on 

the amount of cash (or other good representing flexibility) that has been 
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`purchased' up to that point. The principle of section 2.1 is maintained, 

although the perspective moves from that of absolute and exogenously given 

flexibility to one of variable and discretionary efforts to avoid constraints. 

The more advanced versions of the model in this chapter begin to discuss 

the nature of information and uncertainty in relation to decision making and 

their influence on behaviour of individuals and groups. While the modelling 

assumptions and structure become more involved, the variables can still be 

taken to represent a variety of situations. For example, the model can be 

used to describe some commodity storage decisions, from which literature 

some aspects of the model have been taken. Similarly, other sources of the 

approach in this chapter are models that have been developed in business 

cycle theory in order to describe consumption and saving behaviour in the 

broader economy. 

2.1 A Simple Exchange Model 

Consider a firm initially endowed with capital assets and (liquid) funds. 

At a set of points in time, the firth can exchange a proportion, positive or 

negative, of its capital for a quantity of funds. The quantity of funds paid 

or received in the exchange depends on both the quantity of capital and 

an exogenous exchange rate, or unit price of capital. The random variables 

affecting each exchange opportunity are independent of each other and of 

variables at other dates. The realisation of each random variable is not 

determined until the date of the exchange opportunity that it describes. 

The firm wishes to maximise expected wealth, or accumulated profits, at 

a given terminal date, defined as any liquid funds remaining at the terminal 

date. All remaining capital is valueless and can be disposed of without cost. 

There is no other way for the firm to alter the amount of either asset and this 

is the only activity in which the firm is engaged. We wish to find the value 

of the firm, given initial endowments of capital and funds and probability 

distribution functions for the random variables. 

Exchange opportunities occur sequentially and are proportional to the 
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amount of capital held at the time. This creates interactions related to 

compound options, described in detail in Trigeorgis (1991) [202] and Abel 

et. al. (1996) [1], which do not have straight-forward valuation methods. 

The problem can represent various situations. 

1. valuation of a portfolio of two securities in a finite liquidity setting; 

2. modelling the production possibilities set of a firm that is engaged 

solely in transformation of one asset into another; or 

3. valuing a project with a large number of interacting expansion/contraction 

real options with uncertain properties. 

It is worth noting that the framework presented here avoids assuming an 

external continuous price process and of continuous, unrestricted trading. 

This section develops a recursive algorithm for valuing the firm, given 

distributions of a set of random variables characterising future exchange 

opportunities. The adopted method avoids complexity that would arise from 

approaching the problem as in [202] and [1]. Section 2.1.1 introduces the 

model and notation. Section 2.1.2 derives the valuation result for a general 

case. Section 2.1.3 discusses a numerical implementation of the model and 

section 2.1.4 discusses its features and shortcomings. 

2.1.1 The model 

The firm's endowment of infinitely divisible funds and capital are denoted 

by xa and yo respectively and at subsequent time steps by xt and yt, where 

tE [0, T] and t and T are positive integers. The objective of the firm is to 

maximise its expectation of XT. 

We assume that the quantity of assets that the firm can exchange at 

time t is proportional to yt, where the proportionality is via an exogenous 

random variable ct. If the exchange is carried out, we have 

Yt+1 = (1 + ct)yt, (2.1) 

and we can think of ct as a growth rate. 
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The exchange opportunity occurring at time t has an exchange rate, At, 

determining the quantity of funds that must be paid in exchange for one 

unit of capital. In general, the exchange rate can be any finite real number. 

For any exercise date, only one exchange rate and one growth rate apply. 

Funds do not affect the quantity of assets that can be traded and can be 

thought of as being passive. Therefore we write the effect of an exchange on 

the quantity of funds by 

Xt+t = Xt - Atctyt, (2.2) 

which can be rewritten with At as the subject: 

(Xt+l - Xt) (yt+i - yt) . 
(2.3) 

The change in quantity of funds is affected by the quantity of capital and it 

is clearly possible for xL to become negative. In contrast, it is reasonable to 

define ct such that it is never less than -100%, with the result that yt will 

not change sign -a realistic assumption when interpreting yt as installed 

capital. 2 

The dynamics described above are equivalent to the firm holding a port- 

folio consisting of yj units of capital where each unit has associated with it 

an option with the payoff function 

max [ctValuet - ctAt, 0], (2.4) 

where Valuet is the value of capital relative to funds, to be determined. 

When ct = 0, there are no options. ct >0 corresponds to a call option 

such that ct =1 is an option to double the amount of installed capital. 

ct <0 corresponds to an option to put Ictyti units of capital at unit price 

At. ct = -1 is then an option to abandon with salvage value Atyt. Note that 

it is assumed that the option cannot be partially exercised - either Ictyt! 

units of capital are traded or none. Lastly, if the option is not exercised 

then xt+1 = Xt and yt+1 = yt. 

2The restriction on cg can be relaxed in a continuous-time problem to {ci}t>o E C2. 
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To snniinarise, the activity of the firm consists of selecting an action 

at E to, l} at every tithe step. determining the portfolio evolution 

. i: t t= ct - atAtc"t)/t (2.5) 

yt. t= (1 +at(-t)? /t. (2.6) 

As suggested above, c'r c; 1. x) and yo >U in order to ensure that yr is 

(11W(IVs iiuti-negative. Sinke rt and yt have tu be greater than zero, we have 

cl>-1 and 1- c', Ar 
>0 (2.7) 

where r, =y. The shaded area in figure 2.1 shows the region of valid 

combinations of e, and Ar. 

P///7, 
�X IISf 

jyfall 

-r1 

both fall 

V/// 
Figure 2.1: Effect of an exdtattgc being carried out 
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increases 

the amount of capital at all dates tS and gives rise to a ("Orresl>ottdint; 

increase in the number of future exchange options. Equivaletttly. the exer- 

cise of a call-type option purchases a quantity of capital phis a portfolio of 

30 



its embedded options in return for a quantity of asset x. This highlights 

the compound character of the options and that there may be interaction 

between exercise decisions. 

The uncertainty concerning ct and At is assumed to disappear (only) at 

the exercise date and to be constant at other times. The first part ensures 

that the properties of each expiring option will be known by the firm so it can 

make its exercise decision with regard to the estimated effect on subsequent 

options. The second part of the assumption regarding uncertainty will be 

explained later. 

The model can be used to describe notions of liquidity and reversibility 

as follows. A liquid market is one where exchange opportunities are dense on 

the timeline with a continuous cumulative probability distribution function 

for ct and where at E R. Restricting at to be chosen from {O, 1} introduces 

irreversibility while liquidity in a weaker sense remains because exchange of 

some sort can take place at every instance. 

The existence of exchange opportunities at time T or beyond is not 

relevant due to the fact that the firm is maximising XT and that exchanges 

at T and beyond will only affect xT+l and yT+1 and later points in time. 

It is equivalent to the assumption that, Vt > T, ct - 0. Similarly, the use 

of a finite number of discrete trading points is equivalent to a model with 

more trading points where a certain proportion of intermediate points have 

ct=0. 

Comparison to financial options The region At >0 contains exchange 

opportunities where the quantity of one asset is decreased if the quantity 

of the other is increased. The region with At <0 involves simultaneous 

increases (or decreases) of both assets, suggesting creation (or destruction) 

of assets. For ct < 0, At < 0, standard financial options would never be 

exercised since (xt, yt) dominates (xt+1, yt+1) - assuming a positive Valuet 

function for yt. For ct > 0, At <0 all financial options will be exercised since 

the point (xt, yt) is dominated. Situations with At <0 can be interpreted 
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as the destruction of assets, receiving of gifts or the effect of some other 

externality and are not wholly unrealistic outside the financial markets. 

2.1.2 Valuation 

The value of all future exchange opportunities is valued using a backwards 

induction argument. Since ct and at are independent from xt and yt as well 

as from other c, and A� (s L t), the option at time t=T-1 is exercised if 

it will increase the quantity of XT. Since the realisations of cT_1 and AT-1 

are known at t=T-1, the exercise decision is determined. At any other 

date s<T-1, the estimated probability of exercising the final option is 

given by: 

PEaT-1 = 11 _ IF[YT-1cT-1AT-1 < OI. 
a] 

= ]P[CT-1 XT-1 < OI2 }. 

since yt >0 by design. This probability will only change in response to 

changes in the degrees of belief about cT_1 and AT-1- Particularly, the 

exercise decision will be made only on the realisations of cT-1 and AT-1 and 

on the value of capital at the next time step T, which is known to be zero. 

For times more than one step before termination, it is not immediately clear 

which variables form the criteria for the exercise decision. 

The quantity MT can be written explicitly in terms of XT_� and yT_� 

and subsequent exercise decisions, as follows. 

XT = xT-1 - aT-1cT-1)T-1yT-1 

= XT-1 - aT-1cT-1AT-1YT-2(1 + aT-2cT-2) 

_ XT-2 - aT-2cT-2\T-2YT-2 

-aT-1CT-1, \T-1JT-2(1 + aT-2eT-2) 

= XT-2 - aT-2cT-2, \T-2YT-3(1 + aT-3cT-3) 

-aT-1CT-1AT-lYT-3(l + aT-3CT-3)(1 + aT-2CT-2) 
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T-1 V-1 
Xt -E avcvAvyt 

11 (1 +aucu) 

v=t u=t 
T-1 v-1 

= xt-yt avcvAv11 (1+aucu) 
, 

v=t u=t 

using the conventions that a sum over an empty set is 0 and a product over 

an empty set is 1. 

Consider the choice of at at some arbitrary time. If at is chosen to 

maximise 1Et[XT], then at =1 if and only if 

Et [xT I at = 1] > IEt [xT I at = 0] 

Inserting the expression for XT yields 

T-1 V-1 
Et xt - ytctAt - yt(1 + ct) 

{avcv. 
\v (1 } aucu) 

v=t+1 u=t+1 

11 

[xt_Yt {avcvAv 
> ]EfJ (1 + auc,, ) 

l 

v=t+1 u=t+1 

ýJ 

By assumption, ct and At are known at time t and are independent random 

variables before. xt and yt are known and yt >0 by design, so 

T-1 I v-1 

ct At + lEt avcvAv + aucu) 
=t+1 u=t+1 ) 

Note that this criterion holds for any objective function that is monotonically 

increasing in XT and that does not depend on capital yt. Introducing new 

variables xt (a random variable) and it such that 

T-1 

t= EE-1 [z }= E-i 
{avcvAvTl'(l+aucu)}] 

v=t u=t 

allows the following simplifications: 

ct(At + zt+l) < 0, (2.8) 

at = 1{'t(ae+it+, )<01, (2.9) 

Et[XT} = xt - ytzt. (2.10) 
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It is possible to express zt as a recursive formula 

T-1 
zt =E 

{avcvAvTi 
auto) (1 + 

v=t u=t 
T-1 v-1 

= atct. \t + (1 + atct) 
{avcvAv 

fi (1 + a. ucu) 
v=t+1 u=t+1 

= atct)it + (1 + atct)zt+i 

= zt+i + atct(\t + zt+i). 

Note that zt is independent of xt and yt. It depends on exogenous random 

variables c� and a� for v>t and, through at, on their expectations at 
t. Inspection of at shows that it is not zt+1 that determines each exercise 
decision but rather the expectation zt. 

It has been assumed that, Vs < t, the density functions for ct and At are 

unchanging with respect to s. The following notation can therefore be used: 

E[Ctl. F, l 
E[A IF3] _ , Lat. 

The effect on ZT_1 = CT-1AT-1aT-1 is that it is also unchanging, leading to 

the notation JE[zT-1IFs](= pz. 
_1) = zT-1" By separating zt into its mean 

and a deviation term zt = it + , Et, the deviation term has zero expectation 

at all times s<t. For t=T-1, 

ET-1 = aT-1cT-1AT-1 - zT-1 

where 2T_1 = IE3[CT-1AT-1I aT-1 = 11" 1Ps[aT-1 = 1]. Similarly fort=T-2, 

ZT-2 = ZT-1+ aT-2cT-2(AT-2+ ZT-1) 

= xT-1 + ET-1 + aT-2cT-2()IT-2 + zT-1 + ET-1)" 

= 2T-1 + Ey [aT-2cT-2(AT-2 + zT-1)] + 1Ey [aT-2cT-2ET-1]" 

The last term is zero because ET-1 is independent of the other terms so that 

1Es[aT-2cT-2ET-1] = E3[aT-2cT-2]IEs[ET-1] and, by construction, E3[ET-1] = 

0. So 

2T-2 = xT-1 + E. [QT-2CT-2(AT-2 + xT-1)} 2.11) 
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and 

ET-2 = xT-1 + aT-2cT-2(AT-2 + xT-1) + (1 + aT-2cT-2)ET-1 

-zT-1 - E3[aT-2eT-2(AT-2 + zT-1)] 

ET-2 = ET-2 + (I + aT-2CT-2)ET-19 (2.12) 

where 6T_2 = aT-2cT-2(, \T-2 +zT-1) -E5[aT-2cT-2(. \T-2+xT-1)]. It can 

be proven by backward induction that the relationships 2.11 and 2.12 hold 

for all 0<t<T. Note that if it can be established for any t, then formula 

2.10 for Et [XT] can be applied. 

E't[xT] = E't[E't+l[--T]] 

= E't[xt+l] - E't[yt+lzt+l] 

= xt - atctAtyt - (1 + atct)yt1Et[xt+1] 

= xt - atctAtyt - (1 + atct)ytzt+l 

= Xt - yt {zt+l + atct(At + zt+l)} 
. 

It is known that zt+l depends only on the expectation of exogenous random 

variables cu and A,, in the future u>t (we have shown this to be the case 

for T-2 and will need to show that it holds earlier). Since at =1 if and 

only if 

iEt[xTlat = O] < ]Et(TTIat = 11, 

Xt - Ytzt+1 < Xt - Yt {t+l + Ct(%\t + zt+l)} 

ct(At. + zt+l) < 0. 

Therefore, at depends only on expectations of exogenous random variables 

ct, At and on zt+l. Since zt+t depends only on the expectations of exogenous 

random variables cu, A further in future (u > t) and the expectations at 

s<t of variables at t do not change with s, then at depends only on 

{IEt[c,,, ]}t<u<T and {IEt[Au]}t<u<T" Taking the expectation of it at s<t 

yields the recursion relationship as required. 
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To summarise, the following system of equations applies for 0<t<T: 

xt+1 = Xt - at)tctyt (2.13) 

Yt+1 = (1 + atct)yt (2.14) 

it = zt+1 +IE[atct(Xt +. t+l)I"Fo] (2.15) 

zT = 0 (2.16) 

at = I(C, (ae+z, +i)<o} 
(2.17) 

Et [XT] = Xt - Ytzt" (2.18) 

it would only change if beliefs about c,, and . 1u (t <u< T) change over time. 

As it is necessary to assume that such change is not possible, it becomes 

apparent that the model cannot describe situations where gradual resolution 

of uncertainty about individual variables is significant. 

Due to the inherent restrictions present in trading opportunities, xt and 

Jt will change in an unknown manner and will depend on the particular 

realisations of ct and At. However, since we know a formula for lEt [xT] 

valid for all t including zero, there is a formula for the initial value of the 

investment opportunities: 

JEO[xT] _ Xo - Yozo" 

zt is a random variable that is only known at T (when all z1 for all t 

become known simultaneously). By assuming that the decision maker is 

maximising ]Et[XT], the uncertainty regarding zt is not taken into account. 

The existence of the recursive formula for et allows, at least in theory, the 

determination of moments and other risk measures such as value at risk, 

if given sufficient detail about the distributions of ct and At. As such, it 

is possible to extend this valuation technique to a framework with other 

risk-preferences and is left for future investigation. 

Inspecting equation 2.17 shows that the decision maker compares zt+1 

directly to \t at each decision point. We interpret the variable zt as indi- 

cating the value of capital at time t. Its estimated value it is the Valuet 
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function referred to earlier and At is the price (or cost) of capital. The intu- 

itive as well as mathematical definition of it is very close to that of marginal 

q in investment theory. However, the added property of it is that it has 

been derived under the less idealised assumptions of uncertain investment 

criteria and that capital does not, of itself, provide a stream of cash flows. 

2.1.3 Numerical implementation 

Of the system of equations 2.13 - 2.18, equation 2.15 can be easily imple- 

mented for hypothetical situations with many time steps. This was done on 

a spreadsheet with a model for 50 time steps (i. e. maximising Eo[x, 1]). It 

shows the dependence of the value of capital it on the underlying parameters 

of the model and how it evolves over the investment period. 

The formula for it can be written explicitly as 

it = xt+i 

+ 1E0[cc (Ac + zt+i) Ice (At + ze+l]) < o] " 1PO[ce(As + zc+i]) < o] 

= zt+i +ffZ, (fit + it if (ei, Ai)daidce 
c. _ =o i=-oo 

0 /'coo 
+JJ ct (At + zt+i) f (ct, at)d, \rdct. 

where f (ct, At) denotes the joint probability distribution. Note that the 

formulation is still valid for cases where, as suggested earlier, the marginal 

probability density function of ct includes a delta function at zero. 

At and ct were modelled as independent distributions to make the joint 

distribution function f (ct, Jar) separable. The A are distributed normally 

with variance vat, so each has a density function 

(l A`) Z fl (At 1. ) exp (At 
2 1. 2a, \, 

Next, specifying a log-normal distribution for ct +1 constrains ct within 
[-1, oo) so the density function, f2, becomes 

. 
%(Cc1ýo) = pct + 1) 

1 

irc 
exp 

{Jln(ct + 12ýc1n (, uce + 1) 

t 
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Note that the log-normal distribution is skewed and also imposes the un- 

necessary restriction of zero probability density at ct = -1. Given yo > 0, 

it follows that lP[yt < 0] = Odt. 

The results indicate that the value of capital can be consistently non-zero 

for a wide range of parameter values. Two effects were commonly observed. 

The first effect is that it decays to zero as we approach the termination 

date, which is consistent with the observation that the value of the options 

embedded in capital is compounded. 

Second, it is typically very large (and negative as expected) for 0«t« 

T. This is due to the number of options being strictly proportional to the 

amount of capital and due to the lack of a minimum funds constraint (xt 

may be negative without limit and typically will be so). The large valuation 

placed on capital for 0«t«T suggests that the firm should `borrow' as 

much as possible. It should initially exercise every option that buys capital 

even if that means xt < 0. The strategy maximises the quantities of assets 

that can be traded for any given set of {ct}tE[O, T) and {At}tE[o, T). Given 

that trades which the decision maker thinks are probably detrimental can 
be avoided, the strategy will maximise profits. 

2.1.4 Discussion 

The basic version of the consumption-based capital asset pricing model de- 

scribes the nature of the interplay between the two ideal types under certain 

conditions, such as the asset being exchangeable for money at a price that 

changes over time in a regular fashion. 

In Merton (1973) [149] develops "... an equilibrium model of the capital 

market which (i) has the simplicity and empirical tractability of the capital 

asset pricing model; (ii) is consistent with the expected utility maximization 

and the limited liability of assets; and (iii) provides a specification of the 

relationship among yields that is more consistent with empirical evidence. " 

but goes on to say that it cannot be constructed without assumptions like 

homogeneous expectations, which "make the new model subject to some of 
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the same criticisms. " 

The model developed in the chapter above uses transformations to rep- 

resent real options, occasions when the firm has the ability to increase or 

decrease the scale of a project, or amount of installed capital, conditional 

upon a corresponding injection or release of funds. Alternatively, the oppor- 

tunities can represent the possibility to exchange with another party some 

quantity of one asset for some quantity of the other. 

As compared to portfolio theory, the assets are not tradable except at 

certain dates corresponding to the transformation dates. As compared to 

real options theory, we have introduced an element of uncertainty to the 

properties of future exchange opportunities: the quantities of assets that can 
be traded are not known with certainty until the date at which the exchange 

can take place. In both cases, the lack of continuous tradability means that 

there is no explicit market price for the assets. The model proposes a val- 

uation despite such `market imperfections', although the valuation depends 

entirely upon subjective beliefs. 

Particular cases of the model's solutions are realistic optimal strategies 

and are robust to variation in the parameters. When there is uncertainty 

about both the exchange ratio and quantity of options, which is the most 

realistic of the scenarios, the model's valuation is unrealistic. The main 

source of the problem is the strict scaling of trading opportunities with the 

amount of capital. This is, however, necessary to ensure non-negativity of 

capital and is a close approximation of many real situations. 

Maximising expectation implies that the investor does not care more 

about negative increments of the terminal cash balance than positive ones, 

encouraging the extreme borrowing strategy. Such behaviour is not realistic 

in situations of constrained borrowing and for risk-averse economic agents3, 

or where conversion of cash to consumption is not a linearly scalable process. 

Various formulations of solvency constraint are possible, reflecting the vari- 

3The term `risk' meaning either the probability of loss or the spread of possible out- 

comes. 
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ous legal solvency measures and the results of debtor-creditor bargaining. 

So far, the model is of an agent interacting with nature. A market 

economy populated with interacting agents could be used, with one desirable 

aim being to endogenise the distributions of the exogenous variables in terms 

of other parameters. The variables lE[Ictl] and At may take on meanings 

closer to those of market liquidity and spot price respectively. 

While Appendix A points to several direct extensions of the framework, 

Section 2.2 develops a different model to include solvency constraints in a 

more natural manner. It is subsequently extended to incorporate interaction 

between agents. 

2.2 Recursive Optimisation Models 

The previous model required characterisation of all future exchange oppor- 

tunities. In the following analysis, the decision at each time period is allowed 

to be implemented in degrees, rather than as a boolean choice, which takes 

away from the idealisation of the previous model and brings the analysis 

closer to a wider variety of economic situations thereby addressing some of 

the questions raised in section 2.1.4. The following sections gradually work 

towards a model of an economy populated by agents making choices subject 

to broadly similar aims and constraints on choice. 

The initial versions follow easily tractable models that characterise small 

scale or isolated behaviour of individuals under a set environment (which is 

subject to some uncertainties nevertheless). Once some of the properties of 

the environment are endogenised and interaction between agents is included, 

the agents can in principle have much greater control of their environment. 

Concurrently, given that the agents have limited means of communication 

and gathering information, their degree of control is limited again to a level 

that is commonly observed in the global economy. Although the two con- 

flicting drivers maintain an overall balance, the types of behaviour possible 

become much broader and the analysis is more easily done by computer 

simulation. The chapter ends by summarising the results of investigation of 
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the simulation model, showing the varied forms of individual and systemic 

behaviour that can be created by changing parameters of the model. 

2.2.1 Sequential Storage Decisions 

Smith (p. 207) writes, 

"The constancy or inconstancy of employment cannot affect ordi- 

nary profits of stock in any particular trade. Whether the stock 

is or is not constantly employed depends, not upon the trade, 

but the trader. " 

Although the ordinary profits are not an easily identifiable quantity in many 

markets, the statement nevertheless makes the point that participants in the 

economy spend effort on using available resources in the best way possible. 

The reasons for holding stock are most commonly cited as 

"a transactions demand depending on the volume of trade and that is 

dictated by the nature of the business and its processes, 

"a contingency stock held to act as a buffer against unforseen events 

that can have a negative impact upon the flow of resources, 

. stock held in anticipation of changes in the value of stock in the future, 

including seasonal changes of demand as well as speculative holding of 

stock that will not necessarily be used by the business. 

In all cases, holding stock can be considered as providing the trader with 

flexibility and give a greater choice but not an obligation to perform certain 

actions. The notion of stock here therefore holds the same meaning as the 

asset in the previous section. In the same vein as before, the following 

analysis shows how the trader may plan employment of stock. 

A profit-maximising business aims to make profitable investments. If it 

has almost unlimited access to resources, it can invest in all available projects 

that are in some sense profitable. In practice, there are many limitations 
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to the choices the firm can make and this section considers limitations that 

can be attributed to scarcity of resources. 

A business uses a large number of different resources, ranging from tan- 

gible examples such as money, employees and machinery to intangibles such 

as brand loyalty, trade relationships and corporate culture. In general, the 

resources can be used by the business to realise profit from its investments. 

The fact that investments do frequently lose money is attributed to arising 

from imperfect control of resources and measurement error. Examples are 

apparent in the issues of incomplete contracting, bargaining and principal- 

agent interactions. 

The nature of scarce resources and the interactions between them means 

that some are seen as assets while others can become liabilities. The follow- 

ing analysis will treat money as separate from other resources in order to 

create a framework that uses familiar tools of economic theory. 

A business usually has access to a finite quantity of funds at any time, 

making them a scarce resource. Consequently, businesses need to make 

some form of decision about how much of the available funds to commit 

to investments. By entering into financial contracts or arranging its non- 

financial projects suitably, the business can protect itself against situations 

when exogenous influences cause liquidity problems. The reduction of risk 

means the firm can control its financial flexibility more easily and reap the 

benefits of its improved risk characteristics. 

As an initial approximation, exogenous influences can be treated as a sin- 

gle source of noise and the company's resulting financial flexibility modelled 

using a stochastic process. In practice, the various accounting measures of fi- 

nancial flexibility4 would need to be represented by a set of related stochastic 

processes. The model developed in this section, with a single source of noise, 

provides an estimate of the probability of running into financial distress and 

gives a direct link to hedging and pricing the insurance contract5. However, 

4Measures such as the cash conversion cycle, the quick ratio and debt service cover 

ratio are used to measure flexibility at various levels of corporate activity. 
sas shown in Section 4.2 
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this method is not well suited to dealing with non-stationarities present in 

the environment. It also does not allow for information and assumptions 

held by the business that affect its plans and actions. It is therefore desir- 

able to compare the method to a model of the firm's behaviour in response 

to exogenous influences and calibrate prices using both methods. 

It is customary to classify investment as the sum of a maintenance part, 

needed to keep capital stock constant, and a part that represents increases in 

the stock level. Due to the fact that the model will use business plans that 

frequently contain non-stationary time series, the classification used here 

will be slightly different. ' Investment by the firm consists of a voluntary 

investment component that increases the firm's quantity of installed capital 
faster than the business plan and of a maintenance component necessary for 

continuity of business (again, according to the business plan). 

Cash returns from the investment part of capital expenditure may take 

place many months or years after the cash outflow, whereas the returns on 

maintenance spending are assumed to be relatively short-term. As an initial 

approximation to the complicated path-dependent behaviour of cash flows, 

it is therefore assumed that the growth of average profits from expected 

investments is already contained in the business plan and that any significant 

cash effects due to deviations from the business plan occur after the planning 

horizon. This ensures that the framework of expected profit maximisation 

remains applicable. 

The model described here draws on two papers and applies the results 

in the context of behaviour of a firm. The main parameters discussed here 

are the amount of voluntary investment7 and the quantity of liquid funds 

held by the firm. The first paper, Deaton (1991) [44] shows a rational expec- 

tations equilibrium model of the saving behaviour of liquidity-constrained 

consumers. The second, Routledge et. al. (2000) [175] develops a link re- 

6Similarly, terminology is borrowed from accounting throughout the thesis but does 

not necessarily adhere to accounting conventions, the definitions being driven instead by 

the models developed herein. 
7The term `voluntary' will be implicit unless stated otherwise. 
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quired to price derivatives but in the context of commodity pricing. The 

fundamental parameters in the thesis necessarily have different meanings 

than in either of the papers above, however the structure of the models are 

closely related. 8 Despite the similarities, a few differences were introduced 

to the model developed here for the following reasons. 

Both the commodity market and consumer behaviour models assume 

strictly positive income that must be redistributed between immediate use 

and storage, given an objective function that has a form resembling dis- 

counted expected utility. The commodity market model assumes the exis- 

tence of a well-behaved invertible demand function that gives the market- 

clearing price of the commodity for any given level of immediate use. The 

market discount rate is given by the cost of holding inventory (assumed 

to be proportional to the quantity stored) per unit time. The consumer 

behaviour model uses utility functions, yielding a marginal utility of con- 

sumption at each point in time. Future utility of consumption is discounted 

at the consumer's personal time discount rate. 

The firm here is assumed to maximise expected profits and to have no 

time-preference or risk-aversion apart from that implied by its cost of funds. 

Consequently, the firm maximises the sum of expected profits discounted at 

the appropriate cost of funds for each project. The firm's funding mix is left 

undefined and is only altered by the effect of the choice between investing 

current profits now or adding them to an inventory of liquid funds. 

In contrast to the other models in the references above, it is necessary 

for the firm to be subject to a risk of some form of loss - of being forced 

to make negative `investment'. Consumer saving and commodity market 

models typically maintain strictly positive consumption (or immediate use) 

when the liquidity constraint becomes binding. The feature is appropriate 

for those models, where negative consumption does not have a physical coun- 

terpart and because income (or supply) is assumed to be strictly positive. 

sRoutledge et. al. (2000) [175] also derive convenience yield as an endogenous result. 

It is interesting to consider the meaning of the equivalent concept when applied to the 

internal `market' for cash within the firm. 
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Businesses, however, have financial obligations and face costly bankruptcy, 

liquidation or closure. The risk of loss can be introduced by allowing cash 

flow and investment to be negative. The profit function (corresponding to 

the inverse demand and utility functions) needs to become negative at some 

point, although not necessarily as soon as voluntary investment becomes 

negative (as this only represents investment becoming less than the business 

plan). 

Under normal circumstances, a firm that reduces costs is still investing 

since each action increases the expected profits. While in some circum- 

stances, a firm may sell assets because it can sell them at a profit (the price 

exceeds the profits they would make for the firm), in other circumstances 

assets may be sold in a fire sale situation. While the firm is still aiming 

to maximise profit, the assets may be sold for less than the profit they 

would generate for the firm on a standalone basis. This is an indication 

that the short-term value to the firm of an incremental quantity of money is 

higher than the profitable investment it sells. The fact that it had previously 

started the investment suggests that money was more easily available and 

that the firm has encountered financial distress. 

Lastly, when used for commodity price modelling, the cited papers use 

market price histories to calibrate many unobserved parameters. In contrast, 

many of the fundamental parameters here are observable or more easily 

estimated by the firm than the shadow price of marginal funds, leading to 

a different procedure of calibration. 9 

2.2.2 Objective and Constraints 

The firm earns a low, riskless real return (possibly negative) on its cash 

balances whereas physical investments are risky. In each period, it must use 

gross cash income to cover operating costs. The remaining cash flow, which 

'The cost of funds in some cases can be estimated using the cost of standby liquidity fa- 

cilities, commercial paper programs and other short-term, dynamic financing mechanisms. 
This can be useful to check the assertion above. 
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may be negative in some instances, is hereafter referred to simply as cash 
flow and denoted at. It is assumed that the firm will keep liquidity (the sum 

of undrawn borrowing facilities, marketable securities and cash) if doing so 

raises the discounted expected value of the firm. 

The firm can use the cash flow in each period plus any liquidity remaining 

from previous periods to make net investments (capital expenditure needed 

to maintain its capital stock is included in operating costs), pay dividends 

or raise its cash balance. All of these expenditures are assumed voluntary 

and are denoted by ct. Implicit in this assumption is that the firm can, to an 

extent, control some of its cash flows (change capital expenditure, accumu- 
late or run down work in progress, change the timing of transactions with 

trade debtors and creditors, etc. ). From here on, the differences between net 

investment in operating projects and payment of dividends are ignored. It is 

assumed that the value of the firm's equity corresponds exactly to the value 

of investments, so maximising shareholder value is equivalent to maximising 

returns on investments. 

Changing the level of investment can be thought of as changing the 

size and constitution of its portfolio of active projects, attacking the lowest- 

return projects first. Such actions are accompanied by costs or benefits (such 

as increased revenues, redundancy payments, etc. ) that will be realised at 

various points in the future. 1° The future benefits of such deviations will 
be summarised only by a decrease in the firm's current marginal return on 
investment. The marginal return function is finite, invertible and decreasing 

in the current voluntary investment level. 

The model will use projections of cash flows that are subject to two risks, 

both of which increase with time into the future: 

" Forecast error. Overall profitability yt is assumed to grow along a 

geometric path in most business models so that yt is not stationary. 

The growth gt = yt/yt-1 -1 may be higher or lower than assumed in 

10It is assumed that there are no hysteresis effects from raising and lowering investment, 

i. e. from starting up and shutting down marginal projects. 
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the budget and such deviations from the forecast tend to be persistent. 

If the forecast growth is denoted µt, then gt - izt can be modeled as 

an autocorrelated series of random variables. 

. Short-term fluctuations. Receipts and payments in any one period fol- 

low seasonalities due to periodic payments to and from customers and 

suppliers. These seasonalities might not be treated explicitly in the 

business plan (and therefore not appear in lit). In addition, cash flow 

in each period may be larger or smaller than the long-term average 
because of uncertain timing of cash flows, resulting in short-term fluc- 

tuations of the cash balance. These fluctuations will be summarised 
by a negatively autocorrelated zero-mean series of random variables 

et, such that at = yt(1 + et). 

These cash flow shocks are driven by exogenous random variables and are 

ultimately what determine the behaviour of prices. 

Both supply and demand for cash are stochastic, whereas the model 

assumes that investment is a deterministic function of the income state (yt), 

so the variables gt and et can be seen as including the stochastic part of 

investment as well as of income. The chosen framework means that it is 

necessary to use three variables, gt, et and xt, in order to describe the state 

of the system fully, where the new variable xt represents the amount of cash 

available to spend in period t and is described below. 

If there is no storage, each period's cash income, at, must be spent, 

so that the equation ct = at would apply in every period. Introducing 

storage (cash deposits and equivalents), qt > 0, means that the cash at 

hand, xt := qt +at, in any period is the sum of deposits remaining from the 

previous period (plus interest accrued) and the current cash flow: 

xt41 = (1 + r)(xt - ct) + at+t, (2.19) 

where r is the (riskless) real return on cash deposits. Note that expenditures 
do not have to equal income xt and can be negative. The firm's decision 
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variable each period is (only) the level of investment. The return on invest- 

ment is assumed equivalent to the increase in value of equity, denoted by 

v(et) and takes the form of a von Neumann-Morgenstern utility function. 

The firm's value function is therefore shareholder value, given by 

ct) V0 =1Eo Zf 
(1 + 5)t 1 (2.20) 

t=o 
A well-known result (see e. g. [461) states that the convexity of the profit 

function is sufficient to introduce prudence (holding a non-zero quantity 

liquid reserves) into the firm's behaviour. 

Saving in one period makes additional funds available in the next period 

that can be used to increase investment - the firm has the option to sell cash 

to its future operations at the return on marginal investment. The expected 

gain from the marginal unit of liquidity is, therefore, given by: 

Et[7rt+i] =1 +rEt, 
[A(ct+i)] - A(ct), (2.21) 

where the notation A(ct) = a" c` has been introduced. It is by now appar- 

ent that the setup is following the dynamic programming approach and that 

equation 2.21 is the Euler equation. A profit-maximising firm (that is there- 

fore also maximising shareholder value) will increase or decrease current 

investment until lEt[irt+l] = 0. 

Introducing the constraint, ct < xt Vt E {0,1, 
..., TI, to the firm's max- 

imisation problem means that it cannot choose its investment level without 

bound. Note that this constraint is equivalent to a non-negativity constraint 

on cash balances, qt > 0.11 This borrowing constraint is maintained here. 

However, if cash flow at is negative and qt is small enough, xt may be neg- 

ative and, in such instances, investment ct will be negative. 

The finite-life firm's maximisation problem can be decomposed into a 

stepwise backward induction process. It can be represented in terms of a 

value function maximisation or in terms of the price of marginal investment, 

"A result of the cited models is that the degree of prudence is increased by the borrowing 

constraint, which does not obviously carry over to this paper. 
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both of which follow. The solutions are linked by the envelope property 

pt=Vt. 

Vt(xt, 9t, Et) = 
Oma 

1 
v(ct)+119Et[Vt+1(xt+1,9t+1, Et+1)]1(2.22) 

Pt(xt, 9t, Et) = max 
(A(xt), 

1+ 
Et (pt+1(xt+1,9t+1, Et+1)]J (2.23) 

The first term on the right hand side of the second equation is the price of 
funds if all available funds (xt) are used for investment in the current period, 

leaving no cash deposits for future periods. The second term is the expected 

marginal return on investment in the next period discounted at the firm's 

cost of funds. 

2.2.3 Non-Stationarity and Equilibrium 

The existing literature (e. g. Deaton and Laroque (1992) [45] and Routledge 

et. al. (2000) [175]) proves existence of a stationary rational expectations 

equilibrium (SREE) in the form of a set of functions that describe the op- 

timal level of investment and corresponding marginal price at all times as 

a function of the amount at hand xg, assuming the firm's planning horizon 

T in equation 2.20 is infinite and that the state of the system evolves in a 

stationary manner (in this case ensured by making {at}t>o i. i. d. random 

variables). The solution and proof use an iterative algorithm starting with 

a straightforward finite-life solution, letting T -+ oo and showing that on 

successive iterations, the time-zero optimal function converges to a unique 

solution. 12 

It is straightforward to apply the same solution technique to models with 

more state variables, by defining the equilibrium functions as functions of 

all the state variables. The number of computations required to solve the 

enlarged problem is kept tractable by approximating the (continuous) state 

variables by a finite number of states. 

121n general, the infinitely lived agent setup is formally equivalent to one in which agents 
live only a finite number of periods themselves, provided they derive utility from the utility 

of their descendants (a bequest motive). The argument is detailed in Barro (1974) [6]. 
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The behaviour of the firm during the business plan cannot be found in 

terms of a stationary solution. 13 Instead, a finite-life utility maximisation 

must be performed, with an appropriate choice of terminal boundary condi- 

tion for the iterative solution algorithm. The boundary condition determines 

the firm's behaviour in the final period. A firm that really has a finite life 

can be thought of as investing all remaining funds in the final period (and 

reaping the returns subsequently). This boundary condition is used to find 

the stationary equilibrium solution, however it does not approximate the be- 

haviour of a going concern at the final date covered by its current business 

plan. The SREE model needs to be used to solve for the firm's optimal be- 

haviour beyond the business plan where, in line with conventional valuation 

methods, the model's parameters can be assumed constant over time. This 

creates a model yielding optimal behaviour that can change during the cur- 

rent planning horizon in response to anticipated fluctuations of the business 

environment. 
In order to be able to reach a stationary equilibrium solution with non- 

stationary income, the variables for investment, income and the quantity of 

cash at hand are scaled by yt, so that the equilibrium functions are defined 

in terms of ratios (see [44], section 2.1). The new variables are 

wt = xtl'Jt = (qt + at)/yt 

Ot = ct/yt, 

and the other state variables, income growth and cash flow noise, appear as 

1+ et = at/yt 

1 +9t+i = yt+i/yt. 

The equation describing the evolution of the amount at hand ratio becomes 

wt+1 =1+ et+1 + 
(l 

(1 ++r 
r) ) (Wt - Bt) (2.24) 

gtf 1) 

13The business plan can be characterised as a non-stationary, non-random change in 

the mean. 
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and the price equation linking investment across periods of time becomes 

pt(zwt, gt, Et) = max 
((Wt) 

,1+ rEt 
[pt+1(wt+1, gt+1, et+1)]J " 

(2.25) 

The subscript of the variable Ot is omitted if it is the stationary solution, re- 

flecting the fact that it will not depend on the time period (only on the other 

three state variables gt, et and wt). The terminal condition for the finite- 

horizon solution is pT = A(xT). The iterative solution method, whether 

stationary or not, keeps the following relationship between 0 and p: 

Pt (xt, 9t, et) =A (et (xt, 9t, ft)) , 
(2.26) 

since both quantities are the rational expectations optimal solutions for that 

state. 
As a result of allowing negative income and using ratios in deriving 

stationary equilibrium, the choice of profit function is important. References 

[44] and [175] choose the iso-elastic function, but it is not appropriate for 

negative investment values. The exponential function 

A(c) = be--" and v(c) =b {k - e-Pc} (2.27) 
P 

with b>0, p>0 has several properties that warrant exploration. First, 

A is convex over the entire real line, corresponding to diminishing marginal 

returns to investment. Second, v is bounded above by bk/p, indicating 

that even though an infinite amount of money can be invested profitably, 

there is a finite availability of profits from investments. This is a reasonable 

approximation of a firm with a finite set of investment opportunities. 

If k=1 then v preserves the sign of its parameter c. This corresponds to 

a situation where any disinvestment is unprofitable (and reduces the over- 

all value of the firm's equity). Higher values of k indicate that a degree of 

disinvestment can take place that still makes an overall profit. This corre- 

sponds to the assumption that the firm's normal operations (business plan) 

generate a stream of profits. Usefully, this choice is arbitrary since optimal 

investment behaviour is derived by equating marginal returns over time. 14 

14The choice of k does affect the growth rate of an economy populated with many agents 

and is not arbitrary if using the framework to value the firm. 
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In order to facilitate finding the SREE function 0, the profit function 

needs to take 0 as its parameter rather than c. Making the change yields 

A(9) = be-PO (2.28) 

z(B) = JC-ý 

ýct 
dc = 

byt {k- 
e-Po} (2.29) 

Yt p) 

Interpreting v(O) rather than v(c) as the actual profits from investment 

creates a situation where the profits available to the firm are bounded above 

but the boundary scales with the size of the firm's average cash income yt. 

As a result, larger firms have access to more investment opportunities while 

all firms have access to identical returns on investment and so firms of all 

sizes face similar restrictions to their ability to expand suddenly. 

The incentive to invest and expand is included in the model, implicit 

in the utility function, but a period of large positive investment does not 

directly raise the model's average cash flow in later periods. In a version of 

the model to be explored later, high spending by one firm does raise the cash 

flow of its neighbours in the next period, so an indirect effect can take place. 

Consequently, the model should only be applied to short horizon plans. 

2.2.4 Investment Asset or Consumption Good 

Routledge et. al. (2000) [175] classify two ways in which a commodity is 

priced: as an asset or consumption good. If it is optimal for the commodity 

to be consumed in the current period, it is priced as a consumption good. 

If it is optimal for the commodity to be stored for future use, it is priced 

as an asset. A consumption good reaches satiation point at a finite value, 

whereas an investment asset does not. 

The form of the (sub)profit function and the resulting indirect felicity 

(referring to the utility-like function determining the agent's choice criterion) 

and value functions also give rise to two measures. First, the expected sum 

of discounted total return on future investments is equal to the level of the 

value function, giving rise to the valuation of the firm as an asset. Second, 

the gradient of the value function can represent a demand function, so that 
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it corresponds to the price of marginal investment or consumption. 15 

The asset value of the firm rises with expected investment levels and 
has a fairly straightforward interpretation. The marginal price aspect is a 

direct model of the marginal value of short-term funds to the firm - i. e. a 

short-rate model of interest. Each aspect has interesting consequences for 

existing theories. 

The asset value aspect emphasises the difference between obligations and 

options. It suggests that debt financing cash flows should be considered as 

part of the company's operational, rather than financing, costs because of 

the necessity to service debt in order to continue business as usual. 

The recursive optimisation model of the firm's discretionary cash flows 

provides, through methods very similar to well-established financial models, 

a single model of the first three observations. The recursive optimisation 

model of the firm's discretionary cash flows may be able to illustrate links 

between the `market' rate of interest as well as individual credit spreads. 

This is the topic of the next section. 

2.2.5 Forward prices for liquidity 

Following Routledge et. al. (2000) [175, the marginal return on investment 

in each period (and its variability with respect to the state variables) can be 

used to derive forward value of investment and some dynamics of the for- 

ward price. Although the model in [175 is intended for pricing commodity 

derivatives, the concept can be applied to the current context. The method- 

ology makes it possible in principle to price options and other derivatives 

on the company's liquidity state by using the standard deviation and other 

'5The appropriateness of each measure depends on the situation being modeled and on 

the parameters of the model. Hull (2003) [97] refers to the relative abundance of financial 

investors and (non-financial) consumers in the market as a determinant of the nature of 

the market, due to liquidity effects arising from their behaviour. This description is close 

to the cno(lel of the section, with different definitions of the wealth-to-noise ratio. 
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properties of the forward prices. 16 

Since the marginal prices for liquidity are calculated at discrete inter- 

vals of time, the resulting forward prices will not allow a continuous time 

specification of the demand for liquidity. The inter-period price changes 

are directly modelled but intra-period price changes are not. This issue is 

addressed by interpolation between time periods and is now described. 

First, a measure of the magnitude of intra-period fluctuations can be 

derived by extending the analysis to more than one agent and measuring the 

dispersion of marginal prices for liquidity across different agents at the same 

time. Second, the measure of short-term volatility can be used to determine 

the quadratic variation of a Brownian path (bridge) between the start and 

end points of the time period, where the forward price has been determined. 

The Brownian bridge can be simulated using the wavelet method, which is 

described in Chapter 3. The analysis required to generate these time series 

is described in section 2.3. 

2.3 Building Up Model Complexity 

This section will introduce more complexity to a basic recursive optimisation 

model in an attempt to add more realism. The models will create time 

series that can be likened to those of a market. Importantly, WValsrasian 

equilibruim will not be assumed to exist at each point in time. Neither will 

it be assumed that a market-maker or other explicit market-order matching 

mechanism operates. 
Beginning with a model similar to that of Deaton (1991) [44], the fol- 

lowing changes are made: 

" There is a market consisting of N agents. All agents assume that 

future cash flows follow the same behaviour as in the basic recursive 
16The resulting predictions may need to be checked for features such as the effect of 

parallel existence of spot and forward-contract markets. See e. g. Carlton (1979) 12: 31 for 

a model without storage. 
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optimisation model and do not learn about the model parameters (or 

the model structure) or subject it to any confidence testing. I also 

assume that each agent's cash flows are generated in an exogenous 

manner, with the same global variable yt applying to all agents. In 

addition to the Deaton [44] model, each agent i has to infer the states 

gt and ei, t (and therefore of yt) from the history a2, t, which they know 

exactly. It is important that agents do not know yt exactly (or even 

approximately) except by learning from the observed time series ai, t. 
In the first version of the model, agents begin the time series with 

identical prior beliefs regarding the initial state (yo, go, ci, o). This will 
be relaxed in later versions. 

Under these assumptions, agents may make different estimates of the 

regime due to their independent cash flow noise variables. 17 The sets 

of asset values and commodity prices generated over time in this way 

yield time-series for the market. 

" The agents' behaviour is as the previous case. I assume that the 

market is the entire economy and I define its structure and define each 

agent's idiosyncratic cash flow noise and the global income yt, thereby 

allowing the finite-size economy to be deterministic. I will compare 

the time-series generated in this way with those generated from the 

simpler model. 

" Agents are aware of the mechanisms operating in the economy, but 

do not know all the state variables of the economy. This necessitates 

their continued use of the stochastic regime-switching model for the 

economic macro-state, the validity of which they do not, however, 

question. They use their knowledge of the mechanics to estimate the 

'TThis model may represent a market populated by agents that are a small subset of 

the economy and whose cash flow incomes are dominated by factors outside the market 

model. Under a commodity market view, the model represents agents with access to a 

costly storage technology and who use a commonly assumed market demand curve to 

make inventory decisions. 
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beliefs and consequent behaviour of other agents, in order to refine 

their own estimates of the transition probabilities between the assumed 

states. 

9 Each agent uses observations in order to adapt its estimates of the 

stochastically stable growth rates in each regime as well as adapt its 

estimates of transition probabilities. The agents still formally assume 

a regime-switching model but, if the two stochastically stable states 

coincide and the noise processes are not regime-dependent, there is in 

effect no regime switching. 

2.3.1 Simplest market model - no interaction 

The market consists of N agents, indexed by i, with identical profit functions 

vi(O) = v(Oi) who seek to tnaxiuiise the stun of expected discounted profits 

as before. The average income quantity yt applies to all agents, therefore so 
does the growth rate gt =-1. Each agent experiences a cash flow noise 

ei, t that is independent from and identically distributed to the cash flow 

noise for that period for all other agents. Furthermore, ei, t depends only on 

ej, t-i" In summary, the market consists of N agents acting independently 

of each other, who do not affect each other or the market's overall growth 

rate and whose only shared property is the market size variable yt and its 

corresponding growth rate. 

The time series are constructed in the same way for all models, as will 

be described now. At each time period, the effects of the actions of all 

agents in the previous time period are calculated, yielding global income 

and income growth rate as well as the individual cash flow noise for each 

agent. Based on the new amount at hand and estimate of the corresponding 

growth regime, each agent makes a spending decision. The decision-making 

process implicitly involves a valuation of expected future profits, or `asset 

value', and a marginal value of current funds, or `commodity price'. 

Each agent is assumed to make the decision in turn, in an arbitrary but 

constant order. The agent's asset value and commodity price are posted in 
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the time series as they make their decisions, but no agent has access to the 

current-period actions of others. This reflects to some degree the discrete, 

periodic monitoring employed by most market participants. Once all agents 

have made their decisions, the calculations for the next time period are 

made. Decisions in the next period are added to the end of the time series 

as before. The model does not describe a market-clearing mechanism, but 

the movement of cash is consistent - i. e. cash is conserved and its flow is 

traced precisely. 

The intra-period time series generated by this method cannot be ex- 

pected to yield any useful information about market dynamics and only 

generate a distribution of marginal prices within the period. The inter- 

period changes of each individual's marginal price and the overall price dis- 

tribution indicate the characteristics of the market and show features to be 

compared to empirical market price dynainics. 18 

Some parameters will be more important than others, with some affect- 

ing only the scale of certain types of behaviour, while some will determine 

whether or not a particular mode of behaviour takes place at all. It is 

expected that the marginal price formula's exponent, which controls the 

curvature of the marginal price of consumption with respect to the quan- 

tity of consumption, is an important variable. To repeat the price formulae 

above, 

A(B) = be-°° 

v(0) =p 
{k 

- e-P} 

the parameter p affects both the sensitivity to changes in consumption as 

well as the maximum level of profit that can be earned in any one period. 

2.3.2 Estimation method used by the agents 

The agents estimate the current state and make spending decisions by adapt- 

ing an algorithm presented by Hamilton (1989) [82]. A change is required 

"Features such as local or stochastic volatility, leverage effect and regime switching. 
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in order to compensate for the dependence of a pair of probabilities that are 

assumed independent in [82]. The procedure is outlined here. 

The historical path of growth states st from time to to T will be denoted 

as STi_to. Given a value for yto_1, each path defines the income level yt and 

for all time steps tE {to, to + 1, ... , 
T}. When combined with the observed 

history of cash flows, it implies a noise state for each time period through 

the relationship 

yt(1 + e;, t) = a=, t di, t. 

The observed history of cash flows is denoted as aT+-to. The combination of 

8Ti-to and aT+-to : 

STt-to n (2T+-to = WTr-to 

defines the complete state-space history of the agent. The realisation of any 

random variable X at time tin a particular path is denoted Xt(wT+--to) for 

to <t<T. 

Starting with a known income amount yt-ii_,, an observed history of 

m+1 cash flows at+t_m and a vector P(st«-t-mtatý, 
-t-m) of length 21+1 

containing the probability for each possible growth state path over rn +1 

time steps we can calculate the probability of the next growth state for each 

path history as a vector of length 2m+2, 

ýýst+lý-t-mlatt-t-mý _ 

where the conditional probability ]Pst+1 kwt+-t-m) simplifies to ]P(st+1 Ist) due 

to the assumption that growth state transitions are independent of other 

variables and governed by a first-order Markov chain. 

The cash flow probability density in the next period is given by proba- 
bility of the income level - assumed to be concentrated at two point masses 

- superimposed on an independent first-order Markov multiplicative noise 
distribution. This will create a mixture of distributions that need to be 

placed in the same vector. 
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Assuming we have a probability density function f (ytlag, 
-t_71) for the 

distribution of the income level, we can write as a mixture of distributions 

f ýyt+l ýatt-t-mý _ .f 
(t+l n st+l =l ldt+-t-m) 

f (yt+l n st+l = O! at, -t-m) 

= .f 
(yt+i lst+l =1n att-t-m)P(st+l = l! att-t-m) 

f (yt+l lst+l =0n ate-t-m)IP(st+l = OIdll-t-m) 

= , 
f(yt(l+9)latt-t-m)P(st+l = llatt-t-m) 

+f (yt(1 + 9)Iate-t-,, )P(st+1 =Olaf, --t-ºn)" 

The joint conditional density function for the next period's cash flow and 

growth state is given by 

f (at+l n st+lt-t-mlatt-t-m) 

= Ist+it-t-m att-t-m) - }(at+1 Ist+1 n wtF-t-m), 

which is a vector with NE x 21+2 elements, NE being the number of noise 

states used in the discretisation of the continuous multiplicative noise quan- 

tity. The conditional probability is decomposed into a part for the first-order 

Markov noise term and a part for the implied income level yt+1, which de- 

pends on the realised growth state st+l, 

"f 
(at+ljst+1 n wtr-t-m) 

_ 
at+1 

_ 1st+l n wtF-t-m 
Jt+l(st+lt-t-m) 

I ý(st+lr-t-ýnýwtý-t-m) 

Wtrt-m 

fE 
(1Jt+1(st+1 

_t-m) 
- list+l n wtt-t-m ]? (st+lIst(wtt-t-m)) 

Wtrt-m 

fcyt+l(tat+1 at 

+l+-t-m) 
- ll 

Yt(st+--t-m) -1 fl st+l)' ý(st+lýst(wtf-t-m)) 
Wtrt-m 

_ fE(Et+1("t+1t-t-m)IEt(wtt-t-m)) 
' 

P(st+lI st(wtt-m)) 

Wtrt-m 

and ff(... ) is the probability density function of noise et+l conditional on 

noise et in the previous period implicit in the path wtf-t-m. 
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The sum of the joint likelihoods over all possible paths gives the un- 

conditional density for the cash flow in the next period given the observed 

history of cash flows: 

2m+1 

f (at+l Iat4_t-m+1) =E if 
(at+1 fl path, latE--t-m+1)) 

n=1 

Once the cash flow a, t+l is observed, it can be used to update the likelihood 

for each path, using Bayes' rule: 

ý(st+lý-t-m+lýat+lt-t-m+l) _f 
(at+l n st+lý-t-m+llatf-t-,,, +, 

) 

,f 
(at+l lati-t-m+l ) 

which involves storing a history of m+1 cash flow observations. This cannot 

be maintained by the agent's finite memory, so the probability vector is made 

smaller by merging together the probability pairs of paths with the same 

period t-m+1 growth state. Note that, since the initial-period income 

level yt_m+1 was taken as certain, the next-period income level Yt-m+2 must 

be used in the same way in order to keep the finite memory property. This 

is again calculated as the expectation: 

yt-in+2 
Yt-m+l 

1 1 

_ (1 +glo) IP(3t+14-t-m+2 n st-m+1 = OIat+l+-t-m+l) 

gt+1=° 8t-m+1=0 

1 1 

+ (1 + glo + gadd) E""" E 1F(3t+1, 
-t-m+2 n st-m+1 =l lat+l+-t-m+l) 

8t+1=0 et-m+1=° 

Once all next-period actions have been calculated and estimates have 

been updated with the new observation of cash flow, the historical paths 

are one period longer than is permitted under the finite memory bound. 

The paths are enumerated with a binary form based on the growth state 

in each period, so shortening involves dropping the least significant bit (the 

earliest remembered time period in this system) and shifting the remaining 

hits (dividing the resulting even number by 2). A complication arises in 

the program due to the shifting of the mean income level implied by each 
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path over time, so that the probability weights used in the discrete cash flow 

grid dealing with multiplicative noise have to be adjusted. The adjustment 

procedure can cause rounding errors and result in probability mass `leaking' 

between grid points or out of the distribution altogether. Fine tuning of the 

code has kept this to less than 0.001% of probability in each period, which 

is deemed acceptable given that the results of the model seem unaffected by 

rounding errors. 

2.3.3 Interacting Agents 

While different agents may have different initial endowments of stock and 

the dynamics are specified as a `push' mechanism whereby the decision to 

spend some amount of money is made only by the holder of the money, 

nothing in principle prevents from its flow between agents being very high, 

zero or even negative-19 This is in contrast to models of bargaining where 

two or more parties must agree on a price and quantity20. 

My model differs from models of markets populated by many agents 
(with profit-maximisation or other aims) in that it aims to characterise 

part-localised income generation while the market models aim to repli- 

cate the characteristics of quoted market prices. Similarly, price-quotation 

and market-clearing or market-making mechanisms are not specified in de- 

tail. 21The market mechanism is important because it affects price discovery 

as well as the way prices are quoted. However, these mechanisms are social 

and legal constructions designed to facilitate the more fundamental nature 

of spending of income over time. While the microstructure may have signif- 

icant unintended macro-economic consequences, the fundamental drivers of 

behaviour are mostly constant over time and place. 
'9A negative flow corresponds to stealing or defaulting on a loan contract, whether it 

be performed due to perception or need. 
20See Bergman & Callen (1991) [11] for an example. 
21For examples of market microstructure models, see Precious (1987) [166] and Smith 

-et. al. (2003) [194]. 
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Model Class Hypothesis We define 

N 

9t =N> {v(9=, t-1)} (2.30) 

and 
eti, t =NN {a,, 

3v(9, i, t-1)} + rJi, t. (2.31) 

=1 

Agents are identified by the index iE {1,2,..., N}. All agents have common 
knowledge of the global variable gt while each agent i knows the fluctuation 

variable ei, t corresponding to its locality. Given that each agent only has 

limited information, it uses the current and past values of the variables to 

estimate future values of its income. 

The fluctuation variable ei, t is assumed to be temporary as well as local, 

while the global growth variable fit has a permanent effect on the size of the 

economy yt. This is a direct consequence of the model's assumptions, as 

shown by 

at = yt(l+ex, t) 

yt = yt-i(1+9t) 
(1 + Ej, t) at = at-i(1 +9t) (1 + Ei, t-1) 

(1 Ei, t+l) 
at+i = ae-i(1 + 9t4-i)(1 + 9t)' 

+ 

(1 + Ei, t-1) 

and so on for r>t. 

2.4 Results 

Cyclical economic activity appears in the endogenous model (as well as the 

exogenous model in which Markov regime shifts are imposed). Under the 

endogenous model, agents with longer memory increase the periodic length 

of each cycle but the number of agents does not affect the cycle period or 

amplitude. 

Exogenous noise results in persistent uncertainty and diversity of state 

among agents. Over time, most initial coordination between agents is lost 
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and there is persistent disagreement between agents' estimates of state vari- 

ables, but regime estimates stay correlated and cyclicality of the economy 

remains. 

Endogenous noise, which arises purely from different starting values of 

agents, disappears in each set of conditions examined. Coordination between 

agents increases but cyclicality of economic activity dies down until the flow 

of money becomes stable. 

The estimates of the growth rate ("est_y" and "lag_est_y") in figure 2.2 

show stronger regime-switching behaviour than the global activity growth 

rate ("true-y"). This suggests that it is possible for a prior regime-switching 

hypothesis to make the economy appear to its agents to behave in a regime- 

switching manner. 

The next three figures, 2.3,2.4 and 2.5, show the features existing at 

the scale of the individual agent. Figure 2.3 separates spend ratios of agents 

who estimate the economy to be in a growth state from those of agents who 

estimate the economy to be in decline. It shows that most agents agree 

with each other as to the state of the economy. However, agents' estimates 

of their income level are less accurate. In addition, the actual spend ratio 

achieved (shown in yellow) does not match what each agent is trying to 

achieve. This is further shown in figure 2.4. The mis-estimation of noise 

is more systematic, in that the dispersion of the estimate is approximately 

symmetric around and proportional to the true value, shown in figure 2.5. 

As expected, the distribution of marginal prices is highly skewed, with 

a few having a very high price when nearing liquidity constraints, shown in 

figure 2.6. 

The standard deviation and skew of various measures of perception follow 

the cyclical pattern of cash flow, as shown in figure 2.7. This suggests that 

By defining a negative spend ratio as a default (although the agent would 

not necessarily be in default of a particular loan, it would nevertheless be 

in some form of financial distress), the time series shown in figure 2.8 is 

generated showing that defaults are cyclical. This result is not apparent from 
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the outset, since the cash flow noise term for each agent is multiplicative so 

that probability of negative cash flow does not change and its magnitude 

grows with the size of the economy. The cyclicality of defaults arises from 

that of the wealth ratio (both true value and as perceived by each agent), 

shown in figure 2.9, combined with the estimation lag present in the system, 

shown in figure 2.10. 
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Figure 2.8: Simulated Default Rate 

One aspect of the behaviour over time of the population of agents is 

shown in figure 2.10. As the proportion of agents estimating the economy in 

growth increases, average error in agents' estimate of the level of economic 

income follows with a lag. While the lag reduces slightly over time, the 

phase diagram seems to settle onto an attractor, suggesting that the lag is 

a permanent feature under the chosen set of parameters. 

Further to the features illustrated above, another feature of interest is 

that as long as agents' states are heterogeneous, the mean income time series 

does not become negative. However, once the agents become coordinated 

(homogenised) as regards wealth and their estimates of the state variables, 
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then a sign-change becomes possible. It seems that an exogenous random 

factor is necessary to maintain a degree of certainty of the mean income 

of the whole economy not becoming negative, although this has not been 

investigated. 

2.5 Comparison of Predicted Time Series 

While the time series generated by each method share common properties, 

the choice of parameters can result in significant changes in the behaviour. 

This section describes some of those observed. 

Several sets of initial conditions were investigated, generally divided ac- 

cording to starting with randomised or homogeneous cash balances. When 

starting with randomised balances, the initial differences between agents - 

both actual states and their estimates of those states - are gradually evened 

out over time. 

When starting with homogeneous rather than randomised cash balances, 

three modes of behaviour appear, noting that some might be an artefact 

of demand curves that don't reach 0=1 (i. e. they flatten out below 1) 

because of the recursive recalculation of the demand curve with possibly 

slow convergence. 

In the following parameter ranges (all starting with up to 3000 cash and 

trueincome[0] = 269.74, noise standard deviation = 1): 

When agent memory is 7 time periods long, income time series are 

irregular-looking around p=2.5 - 6, begin with cycles that dissipate at 

p=1.95, although some cycles observed at p=1.4, and have geometric 

negative-ratio growth somewhere between p=1.5 and p=1.2. 

With agent memory of 6 periods, income time shows dissipating cycles 

at around p=2 to p=1.4 (with dual mode behaviour over the whole range, 

with one or more cycles before switching to smooth growth, with p>2 there 

are cycles for at least 600 steps, but later reversion is not ruled out) and 

geometric negative-ratio growth at p=1.3. 

Shortening agent memory to 5 steps results in dissipating cycles at p= 
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1.99885 (with a sharp transition at this value), although there is dual mode 

behaviour at p=2.1 (and not at 2.0), flat to geometric negative-ratio growth 

below p=1.5. In an economy where agents have shorter memory, the 

ranges of p with different behaviour are not well-defined and may not be 

continuous. The large number of parameters and the nature of their effect 

on the behaviour of the model indicates that it is at the limit of tractability. 

However, the ability of the model to recreate features similar to those found 

in various parts of the economy suggests that framework is a fruitful area 

for future research. The suggested extension to the work of this chapter 

is to compare the time series to market data, in order to dismiss certain 

parameter ranges as well as to refine the assumptions. 

Although the models developed in this thesis bear closer semblance to 

imperfect information models than staggered price adjustment, the following 

is worth noting. The implications of models with staggered price adjustment 

depend on their assumptions. The models developed in this thesis implicitly 

assume that contracts set prices for a fixed period and that the price is 

constant, rather than varying in a predetermined manner during the period 

of the contract. Additionally, although prices derived respond to changes in 

the state of the economy, prices only change at fixed periods and will respond 

to any magnitude of change of state. Altering either of these features can 

have important consequences. 
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Chapter 3 

Synthesis of Time Series 

Using Wavelets 

Agents in the economy are not homogeneous. The way in which they differ to 

each other can be in terms of the time scale of planning horizon, complexity 

of analysis of the available information, memory length, etc. The variety of 

time scales over which agents store information and plan behaviour suggests 

that different sectors of the economy behave in different ways, corresponding 

to the scale appropriate to the sector. Wavelet analysis has several features, 

not present in other methods, that help it to capture these features if present. 

This section describes the salient aspects of wavelets and analyses exam- 

ple outputs of the model to show the capabilities of this line of research. 

3.1 Wavelet-based construction 

Wavelets can be thought of as a generalisation of Fourier analysis and asso- 

ciated techniques. The immediate difference between the two is that sines 

and cosines have global support - that is, they are non-zero over infinite 

time - whereas wavelets are designed to have compact support. ' To repre- 

sent a local function, vanishing outside a short interval of space or time, a 

1" otherwise, Fourier is virtually unbeatable", as noted in G. Strang (1993) [199]. 
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global basis needs to ensure cancellation over the entire range. Reasonable 

accuracy needs many terms of the Fourier series. Therefore wavelets, as a 

local basis, are more appropriate for approximating or analysing time series 

that have changing properties over time. 

A wavelet is not just one function (or pair of functions) like the Fourier 

basis, but a large family of functions that share common relationships. It 

is often a significant advantage to be able to choose from a dictionary or 

design specific wavelets in order to satisfy certain properties. 

Wavelets are a broad class of basis functions not dissimilar to the Fourier 

basis functions (e=``'t+O). A wavelet is a function ? /i E C2 (R) with a zero 

average: f +oo 
(t)dt t=0. 

It is normalised 11iPI1 =1 (where 11 " 11 is the 2-norm) and centered in the 

neighbourhood of t=0, but not necessarily symmetric. A family of time- 

frequency atoms is obtained by dilation of 0 by s and translation by ii: 

ýGu, s(t)= 
7ib(t --j. 

These atoms remain normalised jjtP,,, ajj = 1. The wavelet transform of a 

function fE £2(R) at time u and scale s is 

Wf (u, s) =J 

+00 
f ýtý 

_ 

ýj" 1tuJ 

00 

A= (f, Ou, 
a) 

V°\ 

where the * represents the complex conjugate. In this paper we only deal 

with real-valued wavelets. The wavelet transform can be rewritten as a 

convolution product: 
Wf (to, s) =f (U) 

with 
ý, (t) 

ýýý \ 

t/ 

The noted advantage of wavelets over sinusoids is that wavelets can have 

compact support, meaning that each wavelet is non-zero only over a finite 

range. This makes wavelets better suited than the Fourier basis to localising 
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features in time: the Fourier transform does not immediately tell us where 

a feature is located until we include phase information, whereas the wavelet 

transform is immediately linked to the position of the feature. If a signal 

f (t), defined on the interval 0<t<1, is zero after t=4, only a quarter of 

the later basis functions are involved. The wavelet expansion directly reflects 

the properties of f in physical space, while the Fourier expansion is perfect 

in frequency space. The commonly used `windowed Fourier transform' is an 

ad hoc approach whereas wavelets are a systematic construction of a local 

basis. 

The wavelet transform of a time-series or signal is just the correlation 

function of the signal to the wavelet. Repeating the correlation with time- 

shifted wavelets at different scales, we end up with a series of correlation 

functions. Putting these next to each other, we have a two dimensional 

array that can be converted into an image called a scalogram. Scalograms are 

similar to spectrograms, in that they show the `frequency' content of a signal, 

with the addition of showing how the content changes over time. Figure 3.1 

shows an example of a time series and its corresponding scalogram. 2 

A scalogram provides a convenient way of showing the characteristics of 

a signal and how they change as we zoom in or out. This multiresolution 

property of wavelets makes them suitable for separating different levels of 

detail, as well as providing a link to fractals (of which Brownian motion is 

an example). 

The following condition ensures that the wavelet transform provides a 

complete, stable and redundant representation of the signal: 

+00 
I. ýj( 

w 

w, 
I2 

Co= 
oý 

dw<+oo 

where ý is the Fourier transform of the wavelet 1P. The wavelet transform is 

then left invertible and the redundance implies the existence of a reproducing 

kernel. ) 

2Figure is from Mallat (1999) [142], made publicly available to aid oral presentations. 
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Figure1.7: Real wavelet trnmfurn, [t 
. 
/(u... ) (utnl)tuP(I with a Mexi au hat 

wiwelet. The vertical axis rrltre,, eiit lug.,.,. Black. gray and white Ipoint5 

correspond respectively to positive. zero and negative «avvh i coefficients. 

Figure 3.1: A tiuie series and its scalograiii 

Wavelets can he made c)rt111)gOI1 i1 aucl it is it very- common feature di s 

to the computational efficiencies that derive from the property as well as 

the fact that they are used as a iiiore complicated foriu Of Fourier aiialvsis. 

Ort ho 
. -oim u tv is defined as 

(4'i, ti'i) 0. i/ 
. i. 

With carefully constructed wavelet. ", we call tiiciýýtitly approximate ally sig- 

h al using clyaclic" - iu)n-overlapping nng - sc al(ý... v - 2.1. when, lýZ (the set ()I* 

integers). This is iiiost itsehil for signal processing, where minimising data 

size is important, and allows the formulation of a fast wavelet transform 

similar to the fast fourier transform. It may also he useful in this investi- 
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gation by allowing us to calibrate models using a finite set of data points. 
Wavelets can be discretised and various filters can be used to represent their 

behaviour as well as aid in reconstructing signals. 
An issue related to orthogonality is the number of vanishing moments of 

a wavelet. A wavelet has n vanishing moments if: 

j +0 tk7p(t)dt=0, for 0<k<n. 
00 

Such a wavelet can be interpreted as a multiscale differential operator of 

order n. This yields a first relation between the differentiability of f and its 

wavelet transform decay at fine scales. Vanishing moments are thus useful 

for analysing regularity of time-series such as Brownian motion. 

The Haar basis gives rise to the simplest wavelets, with the fundamental 

('mother') wavelet taking the value +1 on [0,1/2) and the value -1 on [1/2,1]. 

Many other wavelet bases can be designed with specific properties. Some 

examples are the 'Mexican hat' wavelet, which is the second derivative of 

the normal probability function, and the Daubechies wavelets, which are 

optimised to have the most compact support while having a specified number 

of vanishing moments. 

3.2 Proposed Applications 

Ramsey & Zhang (1997) [171] analyse time series under highly redundant 

representations using `waveform dictionaries' (see Mallat & Zhang (1993) 

[143]) covering wavelets and Fourier analysis. Matching pursuit algorithms 

are used to choose dynamically the best set of waveforms (called `atoms') 

that yield a parsimonious representation of the function. They report the 

following results from analysing financial time series: 

"... despite the relatively low number of atoms needed to provide 

a very good approximation to the data, about 100 is sufficient, 

there is little opportunity for improved forecasting. This is be- 

cause, while relatively few structures are needed to represent the 
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data, the bulk of the power is in chirps and there does not seem 

to be any way of predicting the occurrence of the chirps. "3 

Capobianco (2003) [21] is among several authors to have used the same tech- 

nique to analyse volatility. It may also be appropriate to analyse financial 

time series using wavelet packets. This technique is a further generalisation 

of the main recursive analysis and synthesis algorithms used in wavelet and 

allows the use of a wider range of wavelet shapes that remain orthogonal in 

some manner. 

As a result of investigations to date, there are two proposed uses of a 

wavelet-based model of prices. First, to provide a volatility model that can 

be used to price derivatives in the manner suggested by liquidity options. 

Second, to provide a closer link to micro-structure and (macro-)economic 

models of price movements through the design of appropriate waveform dic- 

tionaries. 

The ability of wavelet techniques to deal efficiently with multi-resolution 

models of time series (of one or more dimensions), makes them suitable tools 

for analysis and synthesis of price processes similar to Brownian motion. 

This is because Brownian motion itself is a fractal and can be constructed 

in a very elegant manner as an "integrated Gaussian noise", as shown by 

Levy and Ciesielski (1969) [36]. Recent work by Dobric, Gundy and others 

(see for example Gundy (2002) [80]) aims to formalise the mathematics of 

stochastic processes using wavelets. Many papers in the past two decades 

have shown how to synthesise other processes, such as fractional Brownian 

motion (see e. g. Flandrin (1992) [68]). 

The construction of Brownian motion allows proof of almost all proper- 

ties, except continuity of the sample path of the process. This includes the 

ability to show the quadratic variation of the sample path in the theoret- 

ical case where the process is defined using an infinite number of wavelet 

scales. We propose to create wavelet-based stochastic processes in the same 

manner and show the quadratic variation property in each case. It may 

3froin Ramsey (1999) 11691. 
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then be possible to extend the model to cover a dictionary of wavelets and 

have a conditional volatility model which will be a subset of the stochastic 

volatility models of Britten-Jones and Neuberger (2000) [20] and similar to 

regime-switching models discussed in the paper. 

The second application of wavelet based models can be seen as deriving a 

dictionary based on economic models of rational bubbles. Following the lit- 

erature from the initial papers starting with Blanchard (1979) [14], there has 

been much discussion on their usefulness as a model, both in terms of being 

testable and empirically accurate. Several papers by Sornette and various 

co-authors develop rational bubble models that involve super-exponential 

growth of the market price with stochastic critical time at which the price 

would reach a singularity. At such a point there would be a crash with 

certainty. However, they show that the probability of a crash increases in 

a characteristic manner before the critical time, corresponding to a hazard 

rate model. 4 Such a model could be used to develop a dictionary of wavelets 

to apply to financial time series modelling in order to pick out the exis- 

tence of any such behaviour in the market (analysis and calibration) and to 

simulate price processes (synthesis) for the purpose of pricing derivatives. 

3.3 Discrete time synthesis and validation 

The first step taken in this investigation was to test the range of validity 

of numerical simulations, via the Haar wavelet construction, of Brownian 

motion. This involved writing Afatlab code and generating various reali- 

sations of Brownian motion with different simulation parameters, such as 

the number of wavelet scales used and the number of data points in the 

time-series. To test the success of these simulations, two main properties of 

Brownian motion were tested: (a) the dependence of the conditional mean 

and variance of the process only on the time interval and (b) the lack of 

correlation between increments. 

"See Sornette and Nlalevergne (2001) [195 for a description of the model. 
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(a) The first property is framed as follows 

P[xt+,, - xt] ^' N (, UB, oä(u, s, L)) (3.1) 

where u, s and L are time-shift, scale and signal length respectively. The 

aim is to test whether or not 

IP[xt+u - Xt] -+- N(0, u) as s, L --* oo (3.2) 

and the range over which the approximation is acceptable. This was investi- 

gated using the non-parametric Kolmogorov-Smirnov test, which measures 

the maximal vertical difference between the empirical (cumulative) distribu- 

tion function and the distribution under test. The most accurate Brownian 

motion (i. e. including the smallest wavelet possible) fit very closely (to 

within 99% confidence levels) a normal distribution with mean zero and 

variance of 2. Figure 3.2 shows the empirical distribution function and a 

standard normal distribution. The empirical variance is not unity because 

of the normalisation of the Haar functions. This test was carried out on 

series with 16,384 entries. 

(b) The autocorrelation function of the Brownian motion increments 

should be zero. This test was straightforward to apply. From this test we 

can develop the Ljung-Box statistic which, for any given time increment (or 

`lag') provides a measure of the correlation. The statistic for a lag of k, 

Q(k), is distributed as Chi-squared with k degrees of freedom. If rk is the 

value of the autocorrelation function for a lag of k then 

k2 
Q(k) = T(T + 2) r 

n=1T -n 

Figure 3.3 below shows the Q(k) statistic against k for simulated Brownian 

motion returns, plotted with lines of 90% and 99% one-tailed confidence for 

the Chi-squared distribution. For values of k (degrees of freedom) greater 

than 30, the following expression provides approximate values for X2: 
3 

k 1-9kfx 
9k ' 
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Figure 3.2: Comparison of simulated series and ideal distribution 

where 1 is the normal deviate cutting off the corresponding tails of a normal 

distribution. If ö is taken at the 0.02 level, so that 0.01 of the normal 

distribution is in each tail, the expression yields X2 at the 0.99 and 0.01 

points. For very large values of k, it is sufficiently accurate to compute 

27, the distribution of which is approximately normal around a mean of 

2k -1 and with a standard deviation of 1. 

Figure 3.3 shows that the simulated process falls within the bounds. 

Points near the boundaries might he (tile to imperfections in the random 

number generator used. 

The proposed model was described at the end of section 2.2.5 and in- 

troduces two regions of scale. Fine scale movements are assumed to be 

governed by Brownian motion while coarse scale movements are governed 

by a model chosen from section 2.3. Both of these can he represented tin- 

der a unified approach using wavelets and the method of choosing these is 

discussed below. 
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Figure 3.3: Ljung Box analysis of the simulated process 

3.4 Multiresolution analysis of financial time se- 

ries 

The time series of income estimates generated in section 2.3 are analysed 

here using the Daubechies wavelet in order to illustrate a way in which the 

tool can he used. The Dauhechies wavelet, shown in figure 3.4. is chosen 

because it has the most compact support for the given number of vanishing 

moments (in this case 4). The wavelet transform at each scale is used to 

remove short-term fluctuations from the time series, denoted by the letter `d' 

in figure 3.5 and a subscript for the scale to which it corresponds, leaving the 

approximation time series remaining. Histograms of the wavelet coefficients 

are shown in figure 3.6. 

By comparing the s and alp series in figure 3.5, as well as the histograms 

of s and ai0 in figure 3.6, the wavelet-based approximation technique has 

separated short-term fluctuations from the medium-term cycles of income. 
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Figure 3.4: Datibecliies level -4 (DR4) waling function and wavelet 

This could be <lnautified in term of the poNtier of va h of the detail tiiiie 

series ((11 to dio). which would be approximately ccxistaaut across scales and 

over t ime. The lack pof apparent st ricture in any of t he chat ail series or i heir 

histograms suggests that there is no further structure present at tl! O>s(' scalcS 

and/or the chosen wavelet iiicthocl w"js nut the appropriate one to huh any 

structure that may exist. 

Time choice of wavelet was made oil account ()f its compact slippa. t. 

iIuwcver. in Unter to) check for predicted feature, ill , ris, it is 

possible to choose wavelets according to Other criteria. Instead of using it 

matching pursuit algorithiii, it is possible to design it wavelet basis from the 
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features being sought. One m ethotd is described in ('ha pm k4 Pilo (2000) 

34] which uses a timte series approach. while other papers tend toi use use 

frequency-based features for wavelet design. Development of this ittetltu(l is 

left for future research. 

83 



0.1 

0.08 

0.06 

S 

0.04 

0.02 

0 

0.1 

0.08 

0.06 

ago 
0.04 

0.02 

0.05 

:a 
I 

L ý 
{ 

d, 
0 

-0.2 -0.1 0 0.1 
011 

.6 0 
d9 

0.1 0.05 

AM 

{ 

. 02 

d 8 

0.1 
o. o0 

0.02 0.02 

d 
7 

0.15 
0.1 

0.05 
ý 

_ýý 

ý L'ýý 1 d6 

-0.2 -0.1 0 0.1 Q. 2 0.15 

0.1 0.05 
0 

0 0.2 

d 
5 

0.15 

0.05 

0bä 

d4 

d3 

-1 -0 5 

°b1 
o. d 

-1 T_ 
1 

0.1 o. oo 

d 2 

d 

-1 -0.5 0 0.5 1 

on signal - reconstructed approximations and details 

Figure 3.6: Histograins of log-differeu("c'(I iiiulti-agent e tiiuatell income se- 

rtes 

84 

o Iwwu1wgwwuUU ... __ý 

-2 -1 012 



Chapter 4 

Stop-loss start-gain: a risky 

strategy to replicate 

contingent claims 

Introduction 

The previous two chapters described how certain fundamental aspects of 

economic activity, such as flexibility and human choice, potentially give rise 

to tradable goods and investigated ways of generating and analysing time 

series with some interesting features such as cyclical behaviour. The current 

chapter shows one way in which a direct financial link can be created between 

a tradable good and the value inherent in the ability to trade it. It describes 

a way of applying the earlier concepts to creating a financial product that 

yields cash returns - and therefore increases financial flexibility - when the 

availability of cash from other sources is itself falling. 

The chapter investigates a trading strategy - mentioned earlier in the 

thesis - that creates a stochastic quantity of returns depending upon the 

outcome of the time series of the underlying asset's price. The distribution 

of the returns from the strategy can, however, be known if the underlying 

time series falls into a fairly broad category of mathematical forms. Accord- 

ingly, the risk-adjusted expected returns from the strategy can be priced 
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based on these assumptions. It must be noted that in addition to the as- 

sumptions that are stated explicitly, other potentially crucial assumptions 

are not investigated. For example, the assumption of being able to buy 

and sell assets with equal case (the ability to search for and find a counter- 

party to the trade, negligible spread between bid and offer prices, etc. ) will 

be maintained, despite evidence in many markets that such liquidity is not 

present in equal measure across different states of the world. 

Idealisations and approximations 

Following the discussion in section 1.3, it seems at first possible to replicate 

without cost the payoff of a European-exercise option by trading the un- 

derlying asset according to the stop-loss start-gain strategy ('SLSG'). The 

strategy aims to hold the entire committed quantity of the underlying asset 

when its spot price is above the strike price of the option and to hold none 

when it is below. ' If the spot price happens to cross the strike price during 

the hedge, the trader performs the necessary trade as the price crosses the 

boundary. Since all trades arc supposed to take place at the strike price, 

the strategy appears to be self-financing. 

This idealisation is not possible in practice due to time-lags between 

observations of the spot price and other market frictions. However, the 

principal observation and source of ambiguity is the result that this appar- 

ently self-financing strategy has a zero set-up cost if the option is initially 

out-of-the-money (and a cost equal to the spot price when it is initially 

in-the-money) and not the values suggested by the Black-Scholes theory - 

despite being based on the same assumptions. This paradox was resolved 

in a series of papers, see Seidenverg (1988) [187], Omberg (1989) [157] and 

Carr & Jarrow (1990) [25]. 2 

'The converse is true if replicating a put option rather than a call: below the strike 

price, the trader shorts the committed quantity, and holds no position if the price is above 

the strike. 
2The result has been extended to fractional (arithmetic and geometric) Brownian ino- 

tions, see [95] for an accessible derivation for Hurst parameter H>0.5 (positive auto- 
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There are two approximations used to describe the intuition behind the 

trading strategies and resolving the paradox. 

Carr & Jarrow (1990) [25] and Seidenverg (1988) [187] assume continuous 

monitoring of the price process. There is a self-financing boundary, equal 

to the strike price of the option, where the portfolio that the trader holds 

is arbitrary. Therefore the portfolio is decided (arbitrarily in advance and 

in a non-anticipating manner). The crucial observation is that there must 

be a stop-loss boundary which is not self-financing and located arbitrarily 

close to the self-financing boundary. This is because the price may move 

in the wrong direction from the self-financing boundary given whichever 

arbitrary portfolio decision had been made and this will occur about one- 

half the time. Trades at this stop-loss boundary require positive financing. 

By letting the stop-loss boundary approach the self-financing boundary, the 

external financing required for each trade becomes infinitessitnally small. 

The papers show that, due to the infinite variation of the process, there 

is a corresponding increase in the number of trades that require external 

financing and that the product of the two tends to the local time of the 

process at the self-financing boundary. 

The framework developed by Oinberg [157] can be interpreted as a 

rule dictating trading at observed crossings of the self-financing boundary 

where the process is monitored at discrete time intervals chosen in a non- 

anticipating manner. Even though there is infinite variation of the process 

between two trading dates, the infinite number of crossings in one trading 

interval may not generate a trade at all, if the process is on the same side 

of the boundary at the two monitoring times. The paper shows that the cu- 

mulative cost of these trades, that almost always occur off the self-financing 

boundary, is equal to the cumulative cost of one-period (i. e. near-expiration) 

and near-the-money options (call or put depending on the portfolio held at 

the start of each period). This cost is equal to the quadratic variation of 

the process at the strike price. 

correlation) and [60] for the complete range HE [0,1]. 
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Despite the very different approximations, the limiting results are the 

same in both cases. Trading at deterministic times is consistent with stan- 

dard constructions of stochastic integrals and is closer to standard pricing 

methods that use nmltinomnial trees with deterministic trading intervals. 

Both the price-trigger and time-trigger models can be close approximations 

to real market trading and which one is a closer model will depend on the 

application. 

4.1 Local Time and Variation of Diffusions 

The results for local time have been extended to general diffusions in [93]. 

Corresponding concepts exist for Levy processes as local time and p-variation 

and these have been discussed by Eisenbaum (2001b) [59]. The analysis in 

[93] examines the half-line local time of a diffusion along a line: that is, 

the relative amount of time spent by a diffusion along a line of the form 

y= at +b (for a, bE R) over the period tE [0, oo). This differs slightly from 

the local time referred to above, which is a continuous stochastic process 
defined for every tE [0, oc) and is equivalent to the density of its occupation 

time. The implications will be discussed briefly below. A useful didactic 

result from the paper is the identification of the probability density of this 

relative local time. It is shown that the distribution is characterised by 

a weighted mixture of an exponential function and a Dirac delta function 

(point mass) at zero. 3 

We now derive the Tanaka formulas for a non-standardised geometric 
Brownian motion following 

df = pfdt+ofdz, 

using the exposition in [157]. The derivation for a standardised arithmetic 
Brownian motion follows a similar method. Given a continuous twice- 

3See Karatzas and Shreve (1988) for similar results for Brownian half-line local time. 
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differentiable function F= F(f, t), Itö's theorem states that 

T f 
dF = F(fT, T) - F(fo, 0) 

T 8F fo T OF a2 2ä2F1 fo 
0 

afcdit +[ 
at +2 ft ä fý J dt. 

Consider the function 

F(ft) = max [ft - X, 01 

with derivatives 

OF 
=1 for ft>X eft 

OF 
=0 forft<X Ffe 

i92F 
eft =0 for ft#X 

92F 
a f` = +oo for ft =X 
8F 
- =0 everywhere. 

The obvious barrier to applying Itö's theorem is that the function is 

not twice-differentiable at the point f=X where the function is kinked. 

The approach is to smooth the function and make it twice-differentiable by 

inserting a small quadratic curve at the kink, then apply Itö's theorem and 

take the limit as the curve vanishes. Consider the smoothed function 

F(ft) =ft-X forft>X+e, 

F(ft) =0 forft <X-e, 

F(ft) = 
If, _(4 -f)1' forX -e< ft <X+e, 

with derivatives 

dF 
=1 for ft >X+e dit 
=0 for f <X-e 

_ -X-f forX-E<f <X+E ?E 
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d2F 
=0 for f>X+E, f<X-e 

df 2 

=2E forX-e<f <X+e 
dF 

_0 everywhere. dt 

Substitute the smoothed function and its derivatives into Itö's theorem 

and take the limit as e -a 0. From the definition of local time, 

1fT 
L(T, X, ft) = Ihn - l1x-E, x+E1(. ft)dt 

the Tanaka formula for a non-standardised geometric Brownian motion 

fT2 
max [ fT - X, 0] = max [ fo - X, 0] + 1[x, +oo] (fe)dit +2 X2 L (T, X) 

follows immediately. A second formula 

T2 
max [X - fT, 0] = max [X - fo, 0] -f 1[-co, x] (ft)dfe +2 X2L(T, X) 

0 

can be established by a parallel proof and a third 

IIT -X I= I f0 -XI . +. fT 
0 

sign[ft - X]dit +a2X2L(T, X) 

by combining the first two. 

4.1.1 Quadratic Variation 

Quadratic variation is a deterministic property of Brownian motion. It 

is defined as Q�(t) =1 (titit4 - tiVi, 
_1)2 

in the limit as n -+ oo of the 

partition 0= to < ti < ... < t� =t of [0, t]. 

It is possible to show convergence with a uniformly spaced partition of 

[0, t]. Define 
ýV, e - LV; 

_1 e 
_^n Zn'. 

n 
2. 

and rewrite Qn(t) =t Ei 1n. The weak law of large numbers shows that 

the distribution of the sum tends to a point mass at the expectation of each 

ZZ, i. Since Z,,, i are I. I. D. standard normally distributed random variables, 

E[Zn, i]=1and so Qn(t)-+tas n--*oo. 
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The relationship between quadratic variation and local time is apparent 

when the Tanaka formula 

X dit + i2X2L(T, x) fT - XI = ijo - XI +Tf0f Oft 
is compared to the Ito formula 

T OF T OF o2 202F F(fT, T)=F(fo, 0 + dt+ +ft- dt 
i) 

[, 

0 äft f ät 2 aft 
Other things being equal, an option written on a process with higher quadratic 

variation will have a higher time-value, so it is important to model the 

quadratic variation accurately. 

4.2 Applying the Models to a Financial Product 

A few of the largest corporations can borrow directly through the market 

mechanism, thereby avoiding banks in their role as financial intermediary. 

The remainder of businesses need to use bank debt to borrow money. In 

order to signal to third parties that a company can continue trading in the 

event of a sudden problem until other arrangements are made, some loan 

facilities are arranged that are usually never drawn. The remote chance of 

a drawdown means that the bank can allocate much less capital to the loan 

and can charge a smaller commitment fee to the obligor. 

The loan facility acts as a form of insurance against short-term liquidity 

problems. Insurance companies tend to offer insurance against more specific 

events, in part because of the difficulty in identifying and quantifying the 

severity of a liquidity shortfall. Similarly, derivative contracts such as for- 

wards and options provide protection against adverse changes, but are only 

useful if there is a single market price that can be identified. More recently, 

derivatives have been developed that have payoffs depending on the values 

of several market prices, especially in credit derivatives where default risk 

of several obligors can be correlated. 

The advantage of derivatives over bank facilities and insurance contracts 

is that the price of the risk is determined to a large part by market par- 
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ticipants, making the nature of the instrument being sold more transparent 

and reducing transaction costs. This section develops a derivative that aims 

to replicate the role of a standby loan facility. In doing so, the price of the 

risk as estimated by the market can be compared to that of the bank's risk 

management. 

4.2.1 Volatility and Liquidity with RESLSG Trading Strat- 

egy 

The Tanaka formulae shown above suggest a way of isolating the volatility of 

a price process through trading in an appropriate portfolio. In this section, 

we show how this is done and the properties of the dependence on volatility. 

The central result was derived by Carr and Madan (1998) [27], where 

they show how to price and hedge a variance swap under the assumption of 

a continuous semi-martingale price process, but no other assumption about 

the behaviour of volatility. Their derivation uses two results: first, a contract 

that pays the log of the spot price can be easily delta-hedged, so that the 

hedged payoff is equal to the realised variance (Neuberger (1994) [155]); and 

second, a log price payoff can be replicated from European options (Breeden 

and Litzenberger (1978) [18]). When trading is done using the SLSG, it 

is equivalent to assuming zero (and therefore deterministic) volatility and 

equivalent to hedging a variance swap with a zero-volatility fixed leg. 

The opposite end of the spectrum to a variance swap is a contract that 

pays the future variance of the price process along a line. This is replicated 

in the manner suggested by the Tanaka formulae. We will show the case 

using one call option, although versions with a put option or with a put and 

call are also possible. Rearranging the formula gives 

fa ýX2L(T, 

max [fT - X, 0] - max [fo - X, 0] +J -1iX, +ooj (f )df =X )" 

The first term on the left can be replicated by purchasing a call option of 

maturity T and strike X. The second term corresponds to selling a futures 

contract and borrowing X if the futures price is greater than X and trading 
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nothing otherwise, i. e. starting the reversed SLSG portfolio and the third 

term describes the cumulative gains from trade according to the reversed 

SLSG. The term on the right is the quadratic variation of the futures price 

process at X, or the time value of an option of maturity T with strike X. 

The actual payoff may be greater or less than the time value, but are equal 

in (risk-neutral) expectation. 

Between the two extremes is the corridor variance swap, where the con- 

tract is only active within a price band. This is done by restricting the 

log-price terminal payoff to a price band, with the payoff outside that band 

following a constant gradient equal to the gradient of the payoff at the near- 

est edge of the band. Since these payoffs are replicated with options and 

terminal payoffs of options end with constant gradients, the corridor variance 

swap involves buying options with strike prices covering a band of prices. 

The corresponding trades of futures follows the reversed SLSG strategy for 

each option bought. Note that, in order to isolate sensitivity to variance, 

rather than the absolute quadratic variation, we need to scale each contract 

by the inverse of the square strike price, since the payoff from each contract 

is proportional to a2K2L(T, X). 

Due to the fact that a price corridor will only be covered by a finite num- 

ber of strikes, there will be a limited number of reversed SLSG strategies 

and, therefore, limited trading in the portfolio. The portfolio can equiva- 

lently be thought of as being approximated by a finite number of contracts 

for the variance along a line. Following this idea, a liquidity option is cre- 

ated by weighting these contracts to form a desired density of local liquidity, 

or variance-sensitivity, across different time periods and strike prices. The 

term local liquidity arises from the intuition in Carr et. al. (2000) [28] that 

a European option provides the effective payoff arising from the ability to 

run a SLSG strategy and trade always at the strike price even when the 

market price is not at strike. The cumulative gains due to this property can 

be considered as total liquidity, with the interim arrival rate of gains from 

trade as local liquidity provided by the option. 
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In principle, the properties of the overall derivative can vary drastically 

from one price and time to another. In practice, though, these will be 

limited by the number of strike prices and maturities of commonly available 

options as well as the fact, noted above, that the required weighting for low 

price-levels is high. For example, in order to maintain constant variance- 

sensitivity for all prices, the position at a price 25% of the current level 

will require 16 times as many options and will result in trades of 4 times 

the market value. If the liquidity option is to cover price levels significantly 

below their current level, it will often not be possible due to lack of liquid 

options of the required strike price. Even if such options are found, it may 

face trading difficulties in the event of the price reaching that level. 

A point to note is that the strategy dictates reverse trades to the delta- 

hedge: when the price of the underlying is low, the hedger holds more futures 

(is less short) than when the price is high. This reduces the likelihood of 

problems arising from self-reinforcing price fluctuations, which are especially 

prominent if the market for the underlying is small and/or dominated by 

agents following a similar strategy to the hedger. It also reduces the prob- 

lem of an otherwise liquid market drying up in the most crucial instances 

when liquidity becomes most valuable, since the hedger will effectively be 

supporting the market. 

Note that if the strategy is performed using only put options rather than 

calls, there is no possible requirement to short the underlying asset. This 

fact can be used to accommodate short-selling constraints, although the 

purchase of large numbers of put options will send a negative signal to the 

market. Increased use of put options instead of calls will, however, reduce 

the contrarian dynamics of the strategy described in the previous paragraph. 

The flexibility in choosing the specific implementation of the strategy, 

as noted above, suggests that it should be possible to trade any reasonably 

liquid security, even the company's own stock and bonds. However, the 

conclusion is treated with caution since the market dynamics caused by 

use of this strategy and the initial large trades involved in setting up the 
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portfolio are not investigated further. 

A further favourable point is that the cost of the product is related to the 

time value of the options that need to be bought. Since most market traders 

(here meaning banks) have short options positions and therefore want to buy 

volatility, the operation of a few large liquidity option contracts will satisfy 

this requirement as well as result in economies of scale due to the cancellation 

of a significant portion of dynamic trading requirements. 

Also related to the time-value of the options, note that we can use calls, 

puts or a combination of the two types of options in creating a liquidity 

option. Since, at high price levels, the option premium is greater for (in- 

the-money) puts than (out-of-the-money) calls, and vice-versa for low price 

levels, the value of the initial trades can be minimised by buying only OTAI 

options. This also reduces the initial position in futures (this can be seen 

from put-call parity). However, it does not ensure that future positions and 

future trade sizes will be small. 

Finally, the risk arising from the individual profit/loss on the contracts 

with different clients can be partly hedged through diversification - given 

that the hedger forms contracts with a wide variety of clients. It is an- 

ticipated that, in a world with predominantly risk-averse corporations, the 

swap contracts will almost always be set with the fixed leg volatility at zero. 

This was assumed above, since the SLSG strategy is effectively delta-hedging 

with the assumption of zero volatility. This is in order to induce in liquidity 

options the behaviour of a financial hedge since corporations will use liq- 

uidity options to reduce exposure to price level changes first and foremost. 

Reducing exposure to changes in the variance rate will be of secondary im- 

portance. 
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4.2.2 Modelling Behaviour and Probability of Exercise from 
Commodity Model 

Definition of Liquidity Option Payouts 

The guarantee pays out if the firm's optimal behaviour would require neg- 

ative investment, in which case physical voluntary investment formally be- 

comes zero. The model can be expressed algebraically as follows: 

at = yt(1 + et) (4.1) 

yt = yt-i(1 +9t) (4.2) 

xt = 4t + at (4.3) 

4t+t = (1 + r)(xt - ct + It) (4.4) 

lt/yt = max(-Bt, 0) (4.5) 

ct/yt = max(Ot, 0), (4.6) 

where Ot is a function of the state variables Xt, gt and et. Combining equa- 

tions 4.4,4.5 and 4.6 and noting that Ot < wt due to the constraint in 

equation 2.25 yields 

4t+t 
= Xt + lt - Ct, l+r 

= xt + yt (max (-Bt, 0) - max (et, 0)) 

_ xt - ytOt 

> Xt-ytwt-0 

showing that the non-negative cash constraint is satisfied. 

As discussed in the introduction to section 2.2.1, the price of liquidity 

must be chosen in such a way as to avoid going to infinity and creating 

a borrowing constraint again. If the marginal return function \ is set as 

the required return on payouts from the guarantee, returns during negative 

investment periods have create no added value for the owners of the company 

(who would, according to standard theory, cede control of the company to 

creditors). The choice has the added convenience of avoiding a discontinuous 

slope in the firm's return-on-investment function. 
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In order to minimise moral hazard, the payout of cash from the guarantee 

must not confer a net gain to the decision-makers in the firm. But the cash 

effect of the cost (excess) must be delayed relative to the cash payout in 

order to case short-term liquidity constraints, since the firne will be lacking 

the liquidity needed to cover any excess. It is possible to limit the number 

of projects or subsidiaries of a company that are insured, but the cash flows 

between subsidiaries as well as effects of the seniority structure of claims 

and control rights in the event of financial distress could result in the need 

for complicated arrangements for the excess to be effective. 

A risk-neutral lender would set the required excess based on estimates of 

default probability and severity, but the method (coupled with asymmetric 

information problems) is the main cause of borrowing constraints. Using the 

fact that the guarantor receives an initial premium to cover expected losses, 

it seems possible to choose a price for cash payouts that is less than the 

risk-neutral cost of borrowing yet exceeds the benefit to the firm's decision- 

makers, thereby allowing the firm to increase its financial flexibility. 

Setting the price of cash payouts equal to A suggests a simple way of 

charging the firm for the cash payout. Since the firm's value mirrors the 

value of its assets, transfer of ownership of a group of assets in exchange for 

the cash payout will align the firm's incentives with the guarantor. It is a 

close parallel to asset sales, which often take place when a company is in 

financial distress. 

The transfer of ownership is best arranged through the sale of ordinary 

or preferred shares or asset-backed securities. Equity will have to be from 

a stock of authorised share capital reserves and the size of the approved 

reserves in effect sets the exposure limit for the guarantor. The use of 

asset-backed securities provides better security for the guarantor, but the 

existence of negative pledges to current creditors may be an obstacle as may 

the problem of finding ring-fenced assets that are suitable for piecemeal 
4Except that there is not necessarily one single large transaction and there are fewer 

problems associated with fire sales and the lack of appropriate buyers because the trans- 

action size (and, in theory, the price) are deterministic functions of the state. 
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securitisation. 

The value of investments transferred to the guarantor are 

S(Ot) = (v(o) - ti(Ot))1{0<<o} 
_ 

(byt 
(k - 1) - 

apt 
(k - e-v9°)1 1 fo<<o} 

_ -6pt(1 

which is a positive number when Ot <0 and is also independent of the 

particular choice of k. The cash payout in this situation is lt = -Otyt1{ot<o}, 

so the return when 0<0 is 

R(O) = 
S(Bt) 

= 
peg 

R(Ot) -* +oo as O -i -oo so that the largest payouts would be very prof- 

itable for the guarantor. 5 For O /110,1'H6pital's rule shows that R(O) -+ b 

and is valid for all p#0. If b>0 (the NPV of the first marginal unit of 

discretionary investment is positive), the guarantor makes a positive return 

on all payouts. Figure 4.1 compares the return resulting from guarantee 

payments to the marginal return on investment A. 

The expected sum of losses from cash payouts discounted at the guar- 

antor's cost of funds gives the total premium for the guarantee: 

I 

t=o 

T S(ec) 
P __ IEo 

(1 + r)t 
(4.7) 

Simulation 

This section shows how the payoffs from liquidity options can be simulated. 

For simplicity, we consider here only the case of a RESLSG using call options. 

The extensions to using put options or both follow the same method. The 

net position, equal to the accumulated liquidity that will result at the end 

In practice, because O>I+ et and et is discretised, pOt will be bounded. In most 

cases, the bound will erasure that all payouts are unprofitable for the guarantor. 
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Figure 4.1: The return on topups (R) and on investment (\) for b= 30% 

and p=1.6 

of the strategy, is given by calculating net assets (in an accounting sense). 
Assets are cash and the intrinsic value of the option; liabilities are from the 

short position in the underlying security. When x>K, 

assets = intrinsic value of call option + cash = (x - K) + cash 
liabilities = (short) share =x 

When x<K, 

assets = intrinsic value of call option -r cash =0+ cash 

liabilities =0 

Overall, net assets 

a= cash -1 {s> K}-K= cash + number of shares " K. 

Introducing an index n to denote the trading step, 

(n=Cn+0n. K. (4.8) 

The amount of cash is given by c,, = C�-1 - (On - On-Oxn - IOn - On-11 E, 

where e is the (assumed constant, as opposed to price- or volume-proportional) 
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transaction cost for each trade. Note that the last assumption is reasonable 

because all trades occur near the (known) strike price and always refer to 

the trade of a known volume of securities. The trading strategy is then 

represented by the following iterative formula: 

an = an-1 + (0. - On-1)(K - xn) - lOn - On-1I Ee (4.9) 

which can be written as: 
n 

an = ao +E ((On-r+l 
- On-r)xn-r+l - IOn-r+1 

- On-rlf). 

r=1 

The strategy's payoff is highly path-dependent. Modelling on a tree, as is 

done first in this paper, would require a non-recombining tree. However, it is 

preferable to use a (recombining) lattice considering the easier computation, 

storage and visualisation of a lattice on a computer. This requires mapping 

many nodes in a tree onto one node in a lattice and could make calculations 

very complex. The fact that the payoffs are path-dependant, but not the 

strategy, allows us to make this mapping. Note that this approximation 

also relies on the transaction cost formulation given above. Surveys of the 

effects of transaction costs and discrete trading, as well as the parameters 

of the Black-Scholes formula, have been presented in various papers such as 
Figlewski (1989) [66] and Toft (1996) [200] for delta-hedging. Note that [66] 

includes the (non-reversed) SLSG as a special case of portfolio indivisibility, 

although the paper does not analyse it beyond pointing out that the replica- 

tion cash flow variance is very large. I performed corresponding simulations 

for the RESLSG. 

For reasons outlined later, the tree-based and the other explicit discrete 

trading-times models are not very convenient. As a result, the proposed 

method for valuation is to use the analytical, continuous trading-times, 

arbitrage-free formula for option time value derived in [25] as a benchmark. 

Then, using Monte Carlo simulations along the lines of [66], the analytical 

results are adjusted for the effects of key market imperfections, namely, trad- 

ing only at finite intervals and non-zero transactions costs. The next best 
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pricing method is to use a trinomial tree and try to account for inaccuracies 

of the model. 

The effect of the interest rate is not presently included for two reasons. 

1. If the trading strategy is adjusted to be active at the present value of 

the strike price and we look at the present value of cash flows, then the 

result matches that of this paper with the stock price re-based with 

the riskless bond price as numeraire. 

2. In implementation, the risky asset traded is likely to be futures on the 

underlying asset. Due to the low margin requirements, the opportunity 

cost of holding risky assets rather than an interest-bearing money- 

market account is considerably smaller than the risk-free interest rate. 

It should be noted that when trading bonds, the natural trading criterion 

is the price. The price includes both the (credit) spread and interest rate 

effects, with the result that the payoff from the liquidity option is also af- 

fected. Since the price falls with rising credit risk and rising interest rates, 

the product effectively hedges the effect of interest rate risk as well as credit 

risk on refinancing costs. This will be investigated later. 

Each option with its associated dynamic trading portfolio provides liq- 

uidity, in the form generated cash, whenever the price crosses the strike 

before the maturity of the option. By setting up many such strategies at 

different strikes and with different maturities, we can arrange for a particu- 

lar rate of cash generation contingent upon the underlying price and time. 

Under zero transactions costs, the value of such a compound product is 

simply the sum of the prices of the constituent strategies. However, with 

realistic transactions costs, it is possible under trading strategies other than 

the SLSG, that some portfolios will have offsetting positions. Due to the 

fact that the offsetting positions are determined by the controllable and en- 

tirely known portfolio weights, and also that transactions costs are assumed 

proportional to traded volume, it is possible to include them for pricing 

purposes. 
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The state-contingent cash flows can take on a more complicated form 

if we trade in several underlying securities. For example, if using a multi- 

dimensional tree to calculate incremental mean-variance formulae, the for- 

mula for each step will contain many more terms and increase rapidly with 

additional dimensions. Note that we still only need to store two numbers at 

each node: the expectation and variance of net assets. However there will be 

more parameters, such as correlation of transition probabilities, that need to 

be defined, modelled and estimated. It may then be appropriate to revert to 

using a trinomial lattice as the basic building block of the multi-dimensional 

tree in order to reduce computational requirements. 

Corresponding continuous time analytic formulae have been developed. 

Notably, Föllmer and Protter (2000) [70] provide a d-dimensional general- 

isation of Itö's formula (further extended to a class of Levy processes by 

Eisenbaum (2001a) [58]) where the quadratic covariation of the process re- 

places the quadratic variation terms in the Itö formulas. 

4.3 Valuation Methods 

4.3.1 Discretisation and Risk-Minimisation Issues 

The convergence of actual cash flows to the continuous-time results described 

earlier is an important issue when using discrete-time trading to approximate 

the stop-loss start-gain strategy of a Black-Scholes market. We now consider 

two methods for quantifying imperfections in trading using analytic results. 

There is a large literature investigating the optimal strategies for repli- 

cating option payoffs in imperfect markets. The approach taken in Bouchaud 

and Sornette '94 [16] and several subsequent papers including [188] empha- 

sises that there is a continuous range of strategies available to the hedger, 

each of which is optimal in some sense. They show that in the case of 

a market satisfying the Black-Scholes assumptions, the delta-hedge elimi- 

nates all risk and that, if the assumptions are not satisfied (for example 

discrete-time trading or correlated or non-Gaussian distribution of returns), 
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then the delta-hedge is not necessarily the optimal strategy. The analysis is 

set in an implicit utility-maximisation framework with mean-variance pref- 

erences, which has been investigated more rigorously elsewhere (see, e. g., 

[186]). However, the main idea drawn from the paper is the adjustment of 

the delta-hedge function in order to minimise risk. 

First, we note that the local time of a continuous stochastic process is 

itself a stochastic process. A comparison can be drawn to approximate the 

variability of payoffs from the SLSG. The trading strategy can be seen as a 

delta-hedge performed under the assumption of zero volatility. The price of 

an option under zero volatility is given by its intrinsic value. The cost of an 

option under non-zero volatility is given by the sum of its intrinsic value and 

time value. As a result (and shown in [25]), the expected payoff to the SLSG 

hedge is the time value of the option. However, the variation of the payoff 

around the expected value will be significant. It follows that strategies with 

equivalent volatility assumptions between zero and the market-price option 

implied volatility will result in non-zero riskiness of the payoffs, even in a 

Black-Scholes world. (This issue is described in [16]. ) 

Combining this idea with those of Arrow-Debreu pricing theory, it be- 

comes possible to replicate all contingent claim payoffs using combinations 

of forwards and options. The example shown in figure 4.2 shows how we can 

approximate the Black-Scholes delta hedge using a finite number of stop-loss 

orders (four in the figure). 

Using this framework allows us to analyse the variability of cash flows 

from trading based on deterministic boundaries for price changes. This is 

similar to the approximation used by Carr and Jarrow (1990) [25] where 

trades take place at a price-boundary. Note, however, that their model has 

very different properties to the discrete trading-time model followed by [157]. 

The latter approach will be used to arrive at prices and might also be more 

robust to the fact that there are deviations from even this model. 
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4.3.2 Models for Calibration to Market Prices 

In cwlcr to model price pir()ccssces fror Itricittg cof Iicfiti(IiIy options. ilte vcclatil- 

itv characteristics durst be modelled accurately - principally becallse the 

instrument is a volatility derivative based on variance swaps. We inves- 

tigate two broad classes of models: deterministic (or local) volatility au(l 

stochastic volatility. They are based on using market pricey of options of 

various strikes and tuaturitics to calculate implied price processes. 

The first result comes from Breeden and Litzenberger (1978) ý 18J. which 

derives the risk-neutral prctl>ahilitv density of the stock price at time t and 

price S as: 
1 

'I)(S. t) = 
cý 

. 
t) 

assuming that the (trice of a European call option C'(fi. 1) i, twice difler- 

entiahle. The result corresponds to twice differentiating tIn Bl<tck-5cluolcc, 

fortlntla altltctttgh vttlicl fctr a wider range of options price fornmijiv. 

Tue next result. by Dupire (199! ) [5ni 
. 

is commonly known as local 

valet ilitv. It asseuntes t hat volatility is a clef ertttittitit is fnºtct ion of t inne and 

asset price, with the resulting identity. 

Ot 

O-k 

The identity can be proved using the Arro v-Debreit pricing rc, i>ouilg of [18' 
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and combining with the forward Kolmogorov equation 

1/2äsa2 
a 

2 (o2(s, t)s2(b (S, t)) - ät-P (S, t) = 0. 
A version of the above has been developed by Derman and Tian (1994) [50] 

for binomial trees. 

The above models assume that volatility is a deterministic function of 

price and time. In such a framework, liquidity options are used to hedge 

price-level changes. Due to the deterministic changes in volatility, the trad- 

ing portfolios can be designed exactly to produce a certain contingent cash- 

flow rate. While this is a neat result, it highlights the fact that such a model 

assumption is not realistic and ignores volatility risk. 

Britten-Jones and Neuberger (2000) [20] describe a general stochastic 

volatility model and show that there are many price processes for the un- 

derlying that are consistent with market prices of options. The paper gives 

two conditions that must be met by such models (i. e. two forecasts that can 

be made from options prices), given in discrete and continuous time forms. 

First, the expected variance rate at some time t in the future 

E[OrZ] _2 
00 1 c_C(K, t) dK to K2 8t 

and second, the expected average variance rate between two times t and T 

[fT 
(cfst)2] 2 

oo C(K, T)- C(K, t) dK. E 
st 0 

K2 

We will use this framework as it provides calibration results that are valid 

for non-Markovian volatility processes as well as more standard time- and 

price-dependent models. 

4.3.3 Tree-based pricing 

The reversed, enhanced (with an option position) stop-loss start-gain strat- 

egy (RESLSG) has a payoff that increases linearly with time spent at the 

strike price and with the variance of the underlying price process. This 
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reflects the fact that the time value of an option is greatest when the un- 
derlying price is near the strike price and increases generally as volatility of 

the underlying increases. Therefore, a first approximation to a price using 

a binomial tree price model would be to calculate the expected product of 

the two. In the simplest case with constant volatility: 

P(xt = xt, sIpo) =t C. " 7r' " (1- 7r)(t-8) 

2T 
Price = Eo(cashflow) 2 [P(xt = Kixo)] 

t=i 

where the node corresponding (most closely) to the strike price, K, is (t, 3K) 

where 
[log 

yö _t. log d] 
SK log u/d 

rounded to the nearest integer. Selecting 

u=e, ur+0 V"r 

results in is = 0.5. This provides an approximation to the limiting case of 

continuous trading and a continuous price process. However, it is difficult 

to incorporate transaction costs, does not explicitly model monitoring fre- 

quency and does not give an indication of the spread of possible payoffs (of 

which the price is the mean). 

On a lattice, the calculated value of local liquidity, a,,,,, at each node 

is the expectation of a,,,, from nodes that can lead to it and, as such, each 

a,,,, is a weighted sum of several of formula 4.9, with the weights being the 

corresponding transition probabilities, so: 

an, s = [1ri(an-l, 
s-L+i + (c5n, 

s - On-l, 
s-L+i)(K - Xn, s) - 

I0n, 
s - On-l, 

s-L+ijf)1+ 
i 

(4.10) 

and the sum will consist of between 1 and L terms, where L is the number 

of branches from each node and s is the node height. 
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By assuming a shape for the distribution of the local liquidities at any 

lattice node, it is possible to derive a formula for the variance of the local 

liquidity at the next lattice node in time. In particular, a normal distribution 

assumption allows one to specify fully the distribution of local liquidity at 

each node by mean and variance, so the formula for u>ean and variance at 

the next step are relatively compact. 

Figure 4.3 illustrates the process and formulae are given below. The solid 

lines represent distributions at various nodes at time n and the dashed lines 

are the distributions as claiige(l by any trading between time n and nf1. 

The heights of the distributions correspond to the transition probability from 

Probability 

Node n, s-4 sus-3 ns-2 MS-1 res 

Local liquidity - 

Figure 4.3: Lattice Liquidity Distributions 

the indicated node to node (äi 1. s), so the area 1111clcr the whole graph is 

unity. The mean and variance of the (list rilxttion at node (u+l, s) is tile, the 

inean and variance of the resulting mixture-of-no rnials prcýl)ahilit, y density 

function. In practice, these distributions will overlap niucli more than shown, 

so summarising the overall (list ril)utiott as a single bell shape is acceptable 

for the current purposes. The partic"idar figure shown corresponds to a 

case where the prices at the top two nodes (n. s) and (11. s-1) are atl)ove attcl 

below strike respectively and the price at node (n+ Ls) is alcove strike. No 

trade occurs between (n, s) and (n+1, s) so the dashed line and the solid hue 

coincide, whereas the prices at the other nodes are below strike so a trade 

takes place in moving across to (u + I, s) and alters the liquidity position. 

Note that the distributions will not generally have the shown order. For 

example, one of the middle nodes could have the highest liquidity by nature 
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of having 'spent more time' near the strike price in previous steps. 

Also note that trading does not affect the spreads (or heights) of the 

constituent distributions, as it shifts all the points within each distribution 

by an identical amount (see equation 4.13). Mean-shifting and the non- 

negative payoffs of the strategy can induce skew in the overall distribution, 

so inclusion of skew (and higher moments) in the calculations would increase 

accuracy, although at the expense of increased complexity of the algorithm. 

The mean payoff at each node is the expectation of the trade-adjusted 

means of the previous nodes (4.11). The variance of the payoffs is given by 

applying an incremental formula (4.12), which is the solution of 

high +oo ai 1 

L"2 3) > (- 

ai 27r exp 2ai 
da 

i=low 

µn+l, a 

high 
Iri 

= Nýn, s-L+i ý1 (4.11) 

i=low 

2 
n+l, s a 

high 
7f { 2 

=E 
(0, 

n, s-L+i 
(lins-L+i 

- /in+l, s)2), 
(4.12) 

i=low 

Nýn, s-L+i = lin, s-L+i + xn+l, a - Xn, a-L+i) (K - Pn+l, s) 
(4.13) 

- 
lXn+1, 

s - Xn, s-L+il f (4.14) 
high 

_E1i (4.15) 
i=low 

L is the branch-order, as before, and `low' and `high' account for the edges 

of the lattice. They are given by: lace = max(1, L- s), high = znin(L, (L - 

1) *n+L- s). The mean payoff at any point in time (i. e. across all nodes 

at that time) is equal to 

(L-1)n 

Jn =Z [Pn, s " IP(Pn = Pn, s I ra)], (4.16) 
s=0 

and the variance is given by 

(L-1)n 

an = 
[ýýn, 

s 
+ (fin, 

a - 1,102) ' ý(Pn = 1ýn, sITýO)j . 
(4.17) 

s=0 
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The most important numbers for pricing the strategy are the terminal 

mean and variance, µT and vT, which give the expected payoff of the strategy 
(equal to the option's time value) and its riskiness. 

All of the aforementioned calculations depend on the number of branches, 

L, in the lattice. The payoff of a liquidity option depends on the price- 

variance of the underlying security as well as having a path-dependent value. 

Therefore, the lattice used for valuation must reflect non-constant volatility. 

Due to the fact that trading occurs at discrete time steps, we should also use 

a price model that reflects the market's inter-trade price changes accurately. 

As a result, the optimal price model may be different for different instances of 

the same product, in particular for different markets and different maturities. 

Simple binomial lattices are unsuitable, as they cannot model time- 

varying volatility. The next step up, to a trinomial lattice, provides for 

time-varying volatility if we accept having different transition probabilities 

along the time-line of the lattice. 

The formula for the probability of getting to any particular node is a 

little more complicated than in the binomial case. Furthermore, it is only 

valid in that form if we do away with the ability to change local volatility. 

This issue remains with higher-branched lattices if we wish to explicitly 

control local volatility, but it is possible to circumvent that problem as 

shown earlier. Another weakness is that the trinomial tree has only two 

significantly different sizes of price step: apart from the middle branch that 

entails a, typically very small, drift (ud), the other branches `up' (u2) and 

`down' (d2) are roughly equal in size. This limits the extent to which it can 

model the possibility of 'jumping' across the strike, which has a bearing on 

the nature of the cash flows generated by trading. 

For these reasons a pentanomial lattice is investigated, which permits 

incorporating skew and kurtosis of price returns to reflect a non-constant 

volatility and the possibility of 'jumps'. Note that, in the selected pen- 

tanomial framework, it is not possible to model stylised facts like persistence 

of volatility and the relationship between volatility and price level. 
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To create the pentanomial lattice, a set of equations as described in Ya- 

mada and Primbs [212] and shown in Appendix B are solved. Assuming 

valid probabilities are found, it is possible to use a shadow lattice as men- 

tioned in the appendix to store the probability of being at any node, which 

we only need to calculate once. Also, given a node number and time, the 

value of a is given by the user-specified function so it can be calculated 

explicitly if required. By rearranging the order of calculations, this process 

can be made only slightly more time-consuming than the constant-volatility 

case. 

T2 In the program, I use ans = Q2 (0.5 
+ Z+n e which varies between 

4&2 and v2, being equal to öZ at the lowest node in each time period and 

equal to is&2 along the mean growth path. Changing the formula to in- 

crease o,,, beyond &2 results in negative transition probabilities with the 

formula for a being used. It is not possible to use a stochastic or auto- 

regressive volatility model without more significant changes to the valuation 

procedure. 

4.3.4 Explicit discrete trading under continuous prices 

The expected profit for a general independent-increments process is given 
by: 

N-1 

E [aT] _ 7r0 +E {XUP + XDoWn} (4.18) 
n=o 

where 

XUp =E [K - xn+l Ixn ? K, xo] 
K 

oo x 
(K - Jº)P(xn+l = Alin = µ)dAP(xn = PI xo)dp 

and 

XDown =E [K - xn+l Ixn < K, xo] 
Kf' 

,/ 
(K - A)P(xn+1 = Alxn = ft)dAP(xn = lilxo)d, i. 
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For a Gaussian absolute increments process the integral can be simplified 
(and assuming zero drift for brevity) to give: 

XUp=J 
{(K 

-{c)N\ 
IK-pl )-QTN (�14) ()dji 

or Vfr- 

and 

/ 

fK{ 
(K - p) N 

(- Ih-hIJ+ 
v2TN' 

(K -/} N/ 
(11 -1o) dd XDown = /r Q-'fT Q nT 

where N'(. ) denotes the standard Normal probability density function and 
N(") the cumulative. Beyond this stage, numerical approximations can be 

used to compute prices. 

The formulae for Gaussian relative increments are not analytically solv- 

able. It is possible to evaluate the double integral numerically and can be 

used to price the overall product if it has a simple structure. However, 

if the product is extended to cover multiple underlying assets, the effect 

of inter-dependencies between the asset prices will make the computation 

much more involved. 

There may be a way to avoid the cumbersome integrals in the case when 

the overall liquidity option required has a smooth, put-option like payout 

profile. In this case, it may be possible to follow work by various authors 

such as [200] and [172] who have investigated analytical formulae for the 

payoffs from delta-type hedging of options. This is because the trading that 

takes place over the whole portfolio of a liquidity option may be closer to 

simulation using a continuous function rather than the special case of the 

SLSG. 

4.3.5 Continuous model with discrete-trading adjustment 

Due to the difficulties in pricing liquidity options using miiltinomial trees 

and the above discrete-time trading approaches, a third way is investigated 

whereby the analytical formula for the expected time-value is used to arrive 

at a benchmark price for the liquidity option, which is then adjusted to take 

into account the limited number of trades and the existence of transactions 
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costs. This would allow a simple and fast formula to be used to price the 

components of a liquidity option. 

In [25] and [95], the prices for European call and put options are de- 

composed in terms of intrinsic and time value. The former paper analyses 

the classical Black-Scholes market with a geometric Brownian motion as the 

underlying risky asset price, whereas the latter paper extends this to geo- 

metric fractional Brownian motions with Hurst parameter H greater than 

1/2 (where H= 1/2 corresponds to the Black-Scholes case), i. e. where there 

are positive long-term correlations between price increments. The method 

used is based on the Meyer-Tanaka formula. Both papers give usable results, 

but the fractional price process has not been simulated in this thesis. The 

fractional price process is a good example where application of a wavelet 

based construction technique can be convenient and make it possible to get 

tractable analytical results. 

Monte Carlo simulations were made with various parameter values, that 

followed the exact trading strategy in the underlying asset, including discrete 

trading and transaction costs. The simulated cash flows were then stored 

with the corresponding parameter values that are drawn uniformly from the 

following ranges: 

Tenor, 0.5 to 10 years 

Drift, 0 to 10% p. a. continuously compounded 

Variance, 0 to 60% standard deviation (p. a. ) 

Strike price, (relative to xo) 

Number of trades, 2 to 200 

Transaction cost, 0 to 10 basis points 

500 independent realisations of the price process from each set of parameters 

were used to get an average cash flow. This was repeated for 1000 different 

parameter sets. The resulting data set is regressed against the risk-neutral 

expected local time of the price process with the given parameters as well 

as the number of trades and transaction costs. For comparison, regressions 

were also done with the basic parameters alone, without transformation into 
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local time. Both versions of regressions were also repeated on the same data 

sets as polynomial regressions up to order 3. The resulting R2 values are as 

follows: 

Plain multiple regression R2 = 0.41 

Polynomial regression R2 = 0.45 

Plain local time R2 = 0.28 

Polynomial local time R2 = 0.36 

Note that it is also possible to calculate the variance, or any other measure 

of spread, of the cash flows for any parameter set. In this respect, the model 

is flexible and does not fall behind the tree-based approach. The regression 

results show that the local time transformation does not improve the basic 

regression model and all models struggle to explain more than 60% of the 

variation of the average cash flow. As such, the approach does not present 

an adequate general pricing formula and so the pricing of each component 

of a liquidity option would need to be based on simulations with the specific 

parameter values. 

4.3.6 Model comparison 

The three models investigated - discrete trades and prices modelled on 

multinoinial trees, discrete trades with continuous prices modelled with in- 

tegrals, and adjusted analytical formulae modelled with regressions - all 

have weaknesses. Tree based approaches are faster but susceptible to errors 

due to the small number of allowable prices. Adjusting analytical formulae 

using regression has shown to be limited in its scope. Explicit modelling of 

the trades, with continuous prices, leaves one with complicated numerical 

integration, but is the least susceptible to errors and seems to be the best 

of the relatively fast methods investigated so far. Monte Carlo simulation 

of the payoffs of each liquidity option structure is the last resort. 

There are two directions that can be followed to arrive at a more elegant 

pricing solution. One is to apply the more involved analytical model of the 
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distribution of cash flows (local time) under ideal conditions. following Hjort 

and Khastnittskii (1993) [9: 3]. The pater shows that the ti('ttsity function iz, 

it mixture of it delta-futtctitnt at zero at an exponential distribution. By 

utatt"Liug liistogrttut-, of Sittuilatc(l cash How,, sucht as sLo)A-11 in fit; ttm 1. I. to 

the 0utalvtit (tl Solution for the equivalent case, it calibration method can he 

used to fit the ulO(1el's predictions to market prices of other instruments. 

The other direction is to skip the pricing of individual components of the 

liquidity Option and, - mbJec t to coustraiiit", on the shape of the local ligiiicl- 

itv -surfac"ce, apply the delta-Iueclt; ing relatccl molts (200 . 
J1721) tueItticýuccl 

earlier in this, chapter. 

Probability of gains from trade as multiple of 
notional 

100.0% 

10.0% 

1.0% 

0.1% 

Figure 4.4: Dist ril)iit ion of c<isli flow', Irani ; Iii example liqui(IitV option. The 

best-fit line fror the right tail of the (list riblition has forintila 0.015c- and 

an R2 of (). 918. 

4.3.7 Construction of Liquidity Options 

Li(tui(litv Options ratz Lc tl, e(l toi al)l>ruxituuitc tt straf ; htfin-war(l l)ric"t" level 

By increasing the local Iicliticlit v Gtr awav trout seine ()pfillwl price 

level (which (-, ill change over time), the buyer Of tIo Ile(Ige i (viI 'S uture 

cash in the event (t the price leaving its current level. This straightforward 

application is more versatile and, in some cases, tuore °ltltru1) riat(' titan 
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more common hedges such as forwards, options and swaps. There are two 
distinguishing features. 

1. The payoff depends (to varying degrees) on the prices during the whole 

period of the contract, in contrast to forwards and options. 

2. The payoff depends on the volatility of the prices during the period 

of the contract, which is a feature not directly present in any of the 

other hedges. 

The presence of positive volatility sensitivity is a useful feature in that in- 

creased uncertainty in market prices (for commodities, currencies or even 

indices such as stock prices and inflation) is at least associated with, if not 

causes, loss of profits for the company. The ability to hedge this additional 

risk using the same product as price level hedging will be valuable in most 

situations. 

The hedging argument can be used to reduce the variance of the cor- 

poration's revenues or profits (measured in an appropriate manner). This 

could be done by writing liquidity options with sensitivity to several key 

variables, for example interest rates, foreign exchange rates and an industry- 

wide bond price index. The reduced profit variance will result in reduced 

costs of bankruptcy, a better credit rating and reduced financing costs. 

4.3.8 Next steps 

It would be useful to immunise the payoff of liquidity options from the 

volatility of volatility in order to create a derivative that is based purely on 

the local time of the underlying process(es). 

Early termination options are frequent in commercial contracts, either 

for one or both parties. The choice of termination could feasibly depend 

on any one of several factors including price, realised gains and so on. The 

optimal decision rule can be determined using techniques similar to those 

for American options or credit default swaps. Davis et. al. (2001) [43] have 
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developed an elegant static hedging methodology for this type of problem 

when applied to European options. 

4.3.9 Calibration 

During calculation of the model, the theoretically continuous state variables 

need to be discretised. This allows the equilibrium functions O and pt to 

he calculated and stored for a few combinations of the state variables. Two 

methods are used here, linear interpolation and finite-state approximation. 

The amount at hand ratio wt is approximated by a finite grid of points 

with linear interpolation used for intermediate values. It is possible to prove 

that, under some conditions, the amount at hand ratio will only occupy a 

finite range in all sample paths (notwithstanding the initial ratio, which may 

theoretically be outside that range). 6 Finding the range requires trial and 

error but the process can, in practice, be avoided by calculating the solution 

over a very wide range and using linear extrapolation in cases where the 

range is insufficient. 

The other two state variables, average income growth yt and cash flow 

noise et, are approximated by a finite number of states. Transitions between 

states are defined with low-order Markov chains designed to approximate 

the autocorrelation and variance of the underlying time series. 

et follows an autocorrelated (usually negatively) time series 

Et+i ^' N(¢EEt, a, ) where 0,. <O. 

It is necessary to ensure that at least one state of at is negative in order 

to ensure the possibility of top-ups, so the state values are chosen so that 

at least one state satisfies 1+e<0. The parameter K dictates the states 

values, and needs to be at least 2.5 to provide one negative state. If K>5, 

there are two or more negative states. Given the state values, the transition 
'Proofs of this for closely related models can be found in [175] and [451. Specific proofs 

for this model are not included. 
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probabilities are to approximate the autocorrelation and variance. 

P[Et+I = Ej l Et = Ei] = 
Ttj 

Ej Tij 
(4.19) 

Tij 
,ý\ 

=1 exp I 
(Ej 

2E')2 J 
2a \ gor 

(4.20) 

-1 < <0 (4.21) 

Ei = 
(i 0.5) 

- 0.5 IK (4.22) 
5 / 

i, j = 0,1, ..., 4. (4.23) 

Note that noise states have zero mean and that normalisation is required to 

convert the density function to a valid discrete probability mass function. 

Average income growth is approximated with two states that can be 

thought of as boom and slump. This becomes similar to a regime-switching 

model that can be calibrated using business cycle data. However, the model 

also includes the expected average growth rate, ut, forecast for each period 

in the business plan and needs to compensate for any bias in the forecast. 

1P[9t+i - lit+i = 9jl gt -lit = 9z] =P where i, j=1,2 

The probabilities and values are estimated directly, rather than being de- 

signed to approximate an AR(1) time series. The transition probabilities for 

g are taken from Hamilton (1989) [82], which estimates business cycle data 

using a regime switching model similar to the one used here. 

The particular values of parameters are calibrated to market prices where 

available. In this vein, the two relevant parameters (b and p) of the profit 

function v= P(k - e-PO) are estimated using equity market data. 

It may be noticed that, although cash income in a period can be negative 

due to cash flow noise, it is assumed that average income is strictly positive. 

However, it is possible that a business plan includes periods where it expects 

negative cash income on average, leading to a breakdown of the solution 

method in this paper. Such situations indicate that the business plan is 

showing cash flows at too fine a level of detail, where influences of cash flow 

noise are showing. When this happens, the model can be changed to take 
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longer time periods as the basic increment or, equivalently, the cash flows 

can be smoothed (in a mean-preserving manner). If average income of the 

business does indeed become negative, it points to inherent unprofitability 

and neither the liquidity guarantee nor other forms of financing arc available 

to businesses subject to this kind of risk. 

4.4 Results 

The model was applied to a telecommunications company that had recently 

emerged from a financial restructuring. As part of the restructuring, the 

company was obliged to provide management forecasts covering five years 

and a detailed history of cash flows covering a period of six months. The 

forecasts contain projected figures for revenues, cost of goods sold, operating 

expenses and capital expenditure. These were combined with interest pay- 

ments, maturing of bonds and the effect of a rights issue, assuming that the 

principal of some bonds would be paid while others refinanced. Figures for 

debtor and creditor days were used to approximate the degree of financing 

used in payments and receipts. Capital expenditure was split into voluntary 
investment and maintenance components. 

The cash proportions of all forecast figures were estimated from creditor 

and debtor days provided in historical performance figures, using a steady- 

state approximation. Once credit is used to finance investment, voluntary 

or not, subsequent cash flows are fixed charges and less controllable by the 

firm. As a result, only the cash portion of voluntary investment was termed 

voluntary, while the remainder was added to fixed charges. All other receipts 

and payments are assumed to be uncontrollable in the time scale required 

to deal with short-term liquidity constraints. 

The shape of investment function 0 shows that noise is more important 

than growth when liquidity is low. Figure 4.5 plots the investment functions 

for all ten different cash flow states (two growth rates and five noise states). 
The cash flow noise dominates behaviour near the origin so that functions 

for both growth states overlap. The converse is true when liquidity is high: 
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the growth state is more important than cash flow noise. 
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Figure 4.5: Investment finietinýn, 

Figure, 4.6.4.7 and 4., S show it typical sample where the guarzttttee is 

exercised. The i eri<((Is are ()ite quarter Year in length. Figure ý1.6 sIatws 

the cash flows in absolute atuututts according to one possible saitiple real- 

isation. These are the variables observed by the agent mid it, responses 

to those ob, erv<ttions. After it negative cash flow ill period 0.5. the agent 

rtltuost depletes its licfuiditV anal evetthtally need, to receive external ftuuls 

as indicated by the traft-nl) litte. 

Figure 4.7 shows unobserved variables: the Atuututt on Hand ratios mid 

Spend ratio (H) which are related to the agent', Spending decisions, its well as 

an indicator of the growth state yt (state 1 uteutittg; higher growth than the 

zero state). Although the average profitability -rows at , tu above-expected 

rate throughout the 5-year Icriutf. the noise atlttltuuettt of (a, lt flu%%' results 

ill the Monotat ()it Haud ratio beint; consistently below the etfttililtritutt. or 

target. ratio for 3 years. 

The rise ill the target Automat oil Hand ratio (luring periods 1.00 to 2.00 

in figure 4.7 reflects the expected temporary clip ill average profit level (luring 

that taute. It "flows that the agent acts with it (le} ree of ftriideiicý by aitniu 

to store more cash as it ratio of profits during those periods ill anticifrttiom 

of larger scale uncertainty in cash flows thereafter. This is particularly clear 
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since expected cash flow is still positive and grows after 2.00. as clearly 

sliowii in figure 4.8, bitt aversion to risk (in the sense of probability of loss) 

t aase, prrulence. 
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pected profit in figure 4.8, liquidity is mapped to cash deposit in figure 4.6 

(as long as the top-up is not used) and cash discretionary spend is mapped 

to capex in figure 4.6. 

The price of the guarantee could be calculated from distribution proba- 
bilities for various sets of parameter values, as shown in figures 4.10 and 4.11 

below. The figures show distributions derived by running 50,000 realisations 

of cash flow paths by Monte Carlo simulation (using the antithetic sampling 

technique only) and noting the total top-up amount drawn over 5 years. 
This makes the figures comparable to figure 4.4. In each figure, the param- 

eter c was set first at 60% and then 80% to show the effect of changing 

cash flow volatility. It is not possible to say whether or not the shape of the 

distribution changes significantly as a result, because the sample of 50,000 

seems insufficient to approach convergence to a stable shape and no formal 

hypothesis test was performed to assess confidence levels for the shape of 

the distribution. It can be noted that in both figures, the 60% volatility 

case has fewer cases of very large payouts and lower frequency overall of any 

payouts at all. These reflect an intuitive assessment of extensions to the 

analytical theoretical frameworks described earlier in the report. 

In order to test the sensitivity of the results to the discretisation method 

chosen, the parameter K referred to in equation 4.19 was increased from 

figure 4.10 to 4.11 in order to create two, rather than one, negative cash 

flow state possible in each period. While the 60% case in figure 4.11 re- 

sembles the shape of figure 4.4, the other distributions do not, suggesting 

strongly that the discretisation in time and/or cash flow space has caused 

significant unpredictability of the payouts. This makes calibration of the 

model under this method and consequent pricing of the liquidity option un- 

reliable. The analysis has however shown that the underlying model can be 

adapted to a real-world situation including features such as non-stationary 

profitability and still produce results that reflect observed behaviour such 

as forward-looking spending and saving decisions that take into account the 

non-stationarities. 
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4.5 Extensions 

" If the premium is amortised over the life of the contract, the guarantee 

will be more marketable if it can be terminated early by the firm. Such 

an early-termination option will allow the firm to avoid paying the 

remaining insurance premia if its state improves by a large amount in 

the initial part of the contract. The strike price must be chosen to give 

a suitable probability of exercise to make it worthwhile. It must also 

minimise any loss incurred in unwinding the portfolio used to hedge 

the cash payouts, in order to keep the exposure of the guarantor small. 

The price of this option can be determined by the expected benefit to 

the firm, which is given by a process shown in Routledge et. al. (2000) 

[175]. The hedge portfolio is described in a separate paper and the 

combination of the two methods is expected to result in a range of 

suitable options. 

" It is tempting to include the possibility of Ot > wt, where it would be 

optimal for the firm to invest more than is currently available. Such a 

situation could be implemented while satisfying the non-negative cash 

constraint by adding a `financing' term to the liquidity variable, so 

that 

le/yt = max(-Ot, 0) + max (-xt + Bt, 0) 

(or, equivalently, adding another variable to equation 2.24). Due to the 

constraint placed in the present solution method, the financing term 

is always zero (because the value function is maximised by choosing Bt 

in the range [-oc, xt]). Relaxing the constraint would allow non-zero 

financing, but would require clarification of its relationship to existing 

sources of financing and the nature of the borrowing constraint. This 

would significantly expand the scope of the model and was not followed 

in order to keep the problem tractable. 

" The details of the model differ from a model of autocorrelated growth 

in [44], since it has been modified to allow for losses. Many models 
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in the referenced literature result in stock-outs: when consumption is 

equal to income and there are no savings/inventory. However they 

occur only during high growth states that have persisted several pe- 

riods, which is contrary to the evidence. They do provide two useful 

characteristics: (a) voluntary expenditure after the end of a slump is 

high, reflecting the importance of having sufficient funds to pay for 

inventory-building at the start of a boom; (b) voluntary spending falls 

rapidly following the onset of a slump and cash balances rise initially. 

Both of these effects are present, although less pronounced, in eco- 

nomic data. One attractive explanation rests on relaxing an important 

assumption is that the decision-makers in the firm are immediately 

aware of the current state (as well as the history of previous states). 

While it can be reasonably assumed to apply to the variables et and 

xg, the firm's estimate of gt may be subject to more uncertainty. If 

the firm must estimate the state in order to make expenditure deci- 

sions, the delay and residual uncertainty may improve the realism of 

the firm's behaviour. Optimal estimation of a regime switching model 

shown in Hamilton (1989) [82] may yield a suitable method, but has 

not been applied in this paper. 
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Chapter 5 

Conclusions 

The thesis has investigated concepts surrounding finite financial or opera- 

tional flexibility and behavioural features suggested by real options litera- 

ture. 

Chapter 2 postulated a rational economic agent with certain restrictions 

and analysed several versions of it. Its choice criterion was kept parsimo- 

nious throughout and focus was placed on restrictions in its choice criterion 

arising from two broad categories: first physical constraints and second un- 

observable variables and related information constraints. An extension was 

made to add effects of coordination problems and prior beliefs, following 

further observation restrictions and information constraints. The review of 

concepts in chapter 1 provided a background to the role of information ac- 

cording to existing literature in price discovery and formation in the various 

parts of an economy. It also described scarcity of resources leading to con- 

straints on behaviour in various guises and tried to highlight the fact that 

both scarcity of information and physical resources can have similar results. 

The models developed in chapter 2 showed that simple representations of 

either kind of scarcity can yield behaviour resembling that observed in many 

organised and un-organised markets as well as in situations where an agent 

interacts with physical nature alone. 

Chapter 3 linked time series created using one of the models of the previ- 
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ous chapter to the wavelet method of constructing and deconstructing time 

series. One avenue investigated in chapter 2 was the possibility of generat- 

ing part-localised income series in an economy of agents who interact only 

locally with immediate geographic neighbours. While the multi-agent econ- 

omy model did yield some structure under certain parameter sets, there were 

no discernible local patterns that could be exploited by multi-scale separa- 

tion techniques of wavelets. Newer wavelet techniques were pointed out that 

can potentially expand the area of research and its applications. Even with- 

out use of wavelet technique, chapter 4 investigated implications of a result 

that it is possible to theoretically hedge a derivative that yields cash flows 

that would protect an idealised entity against the impact of idealised liquid- 

ity constraints. It does this by exploiting a dynamic trading strategy based 

on a mathematical result related to variation of continuous-time stochastic 

processes (whether they be continuous or allow for discontinuities in state 

space). By attempting to map the stochastic process to prices of relevant 

tradable goods, as well to map the characteristics of the idealised company 

and idealised measure of liquidity to a real example, some progress was made 

in showing how such a hedge might be constructed and priced in practice. 

However, due to complications arising from discretisations (including those 

required to implement the trading strategy, those needed to perform com- 

puter calculations of probabilities and those desirable to increase speed to 

calculations) the task of calibration and assessment of risks became unreli- 

able without further investigation. 

Among the various more advanced discretisation techniques available, 

the wavelet method is proposed as a promising technique because of its 

close ties to the characteristics of stochastic processes that have been most 

prominent in this work: quadratic variation (or other measures of fluctua- 

tion, as discussed in relation to information uncertainty and risk aversion 

arising from liquidity constraints) and differences in behaviour at different 

scales (as illustrated in the model of an economy of similar agents that devel- 

ops large-scale patterns in activity). It is hoped that future work can exploit 
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the fundamental links to generate more versatile and realistic time series and 

at the same time to analyse risks and rewards of derivative contracts that 

depend on these characteristics. 
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Appendix A 

Exchange Model Extensions 

Correlations 

The variables ct and At were assumed to be mutually independent as well as 
independent of other state variables. However, such a strong assumption is 

not necessary to arrive at results and introducing dependence between the 

two variables may be fruitful. In particular, a wavelet-based model of the 

evolution of ct and At allows the incorporation of several alternative regimes 

of explicit correlations, where determining which regime is dominating any 

given data set becomes the principal task. 

Continuous time limit 

By adjusting the definition of ct, we can include the time-step length as a 

parameter. Remembering that ct is a (possible) growth rate over time, we 

define 

Yt+&t = yt(1 + atctSt) 
(Yt+at - ! /t) 

= atctdt 
Yt 

xt+st = xt - atAtytctbt 

and let bt tend to zero. In this case, we can relax the distributional assump. 

tion on ct to a (non-log) Gaussian while maintaining the non-negativity of 

yt. By iteratively substituting the formulae, we arrive at equations for x, 
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and yT in terms of the exogenous random variables over times 0<t<T in 

sum or product form 

r/et 
In (yr) = In yo lim 11 (1 + andtcf5t5t) 

ötio 
n=0 

r/bt 

= ln (yo) + lim E 
andtenbtat 

n=0 

= In(yo)+tl(atet, 
r)t 

-r/at 

xr = xo - lim E 
an8tAnbtynötattbt6t 

ät» 
n=0 

xO - P(andtandt Yndtrndt)r)2 

where µ(xt, r) is the mean value of xt over 0<t<r. The result should still 

hold if ct and A are described by any finite variance distributions. The joint 

distribution of acct and At becomes very important. 

Quadratic Variation 

Let Q,, (t) = Eý 1 (Wt, - WV1_1)2 where 0= to < tj < ... < t� =t is a 

partition of [0, t]. So, 

n 
E(Qn(t)) = E(E AIVt ) 

i. l 
n 

= E(OiV2 ) 
i=1 

n 

_ Var(tiVt, - ITt. 
_i) i=1 

_ ti - ti-1 

i=1 

so Qn(t) = tin expectation. Now consider 

Var(Qn(t)) = E((Qn(t) - t)2). 

Since LVt; - Wt; 
-1 are independent of one another, it follows that (Ilt, - 

Wto)2, (tiVt, - iVtl )2+ 
""" 

('Vtn - Wtn-1)2 are also independent. By a slight 
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extension of the lemma, 

fi 

Var(Qn(t)) = Var(> E(OW? )) 
i=1 

n 

=E Var(AW? ). 
i=1 

Now 

Var(DTV2) = ]E(06V) - E(OL?? )Z 

= ]E(OTVi) - [Var(Wt; - IVY1-1)2] 

= E(0W') - (ti - t, -1)2 

=3 (t; - tt_1)2 - (t1 - tt_1)2 = 2(t; - t; _1)2. 

Hence, 

n 
Var(Qn(t)) =2 (t; 

- tq_1)2 

i=1 

< 2( E (t1 - ti_1))meshir 

= 2tmeshir 

-º 0as meshir-+0. 

In other words, 
E((Q�(t) - t)2) -a 0 as n -+ 0. 
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Appendix B 

Pentanomial Lattice 

Construction Method 

There follow the formulae used to construct the pentanomial tree used in 

section 4.3.3. 

01+02+03+04+05 = 1, 

a)0.5 

(Tl e5 E[oi(6 
- 2i)] = 0, (drift) 

s=1 
5 

(äl E[Oti(6 
- 2i)2] = a2T, (variance) 

i=1 

(, r)1.5 ý5 [c=(6 
- 2i)3] _ (o f )3sr, (skewness) 

\a/ i-1 

5 
(a)2 ý[Oz(6 

- 2i)4] _ (as)4(3 + kr), (Fisher kurtosis) 
\ : =1 

and 
7 M7 r7* 

u=exp( 
4T)+ rýc; 

d=exp(4 - ). 

describing the log-returns process (X and i being random variables) 

X =1n(pn+l) =Fir+(G-2i) 
\ pit J VVa 
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so that p�+l, y = p�u'd(4-') with 0<s< 4n. The node number correspond- 

ing to a price K is (n, 8K) where 

SK = [log 
(E) 

- 4nlog(d)J /log (d) 

The solution of the equations gives formulae for q5ß: 

01 = (-1 + sT (av2) + aQ2/4(3 + kr))ao2/96, 

02 = (16 - 2sT (aal) - ao2(3 + kr))ao2/96, 

03 = (64 + aal(-20 + aa2(2 + kr)))/64, 

04 = (16 + 2sT (av2) - aQ2(3 + kr))aa2/96, 

ý5 = (-1 - sT (av2) + av2(3 + kr))aQ2/96. 

The choice of a affects the probabilities but not the moments of the implied 

distribution. a must be chosen in the range that gives Oi E [0,1], since 

that has not yet been specified in the constraints. The expressions for the 

valid ranges are complicated and depend on the moments that are being 

simulated. Instead, 

a= 12/[02(3 + kr] 

is used which gives valid probabilities for moderate values of skewness and 

kurtosis (i. e. absolute skewness below about 8 and kurtosis greater than 

-10). 
In order to use an explicit deterministic volatility model, we define 

=f (v, n, p) where o is a constant. To keep the tree recombining, we 

set a= 12/[cr2(3+krr] so that u and d are constant across the whole lattice. 

Only the transition probabilities are variable in this method, so calculating 

probabilities associated with any given node is slightly more complicated. 

The formula for a becomes less successful at finding valid transition prob- 

abilities, in particular, it gives negative probabilities when trying to model 

skew less than about -2. 
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