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The transmission of infectious disease through a population is often modeled assuming 
that interactions occur randomly in groups, with all individuals potentially interacting with 
all other individuals at an equal rate. However, it is well known that pairs of individuals 
vary in their degree of contact. Here, we propose a measure to account for such hetero-
geneity: effective network size (ENS), which refers to the size of a maximally complete 
network (i.e., unstructured, where all individuals interact with all others equally) that cor-
responds to the outbreak characteristics of a given heterogeneous, structured network. 
We simulated susceptible-infected (SI) and susceptible-infected-recovered (SIR) models 
on maximally complete networks to produce idealized outbreak duration distributions 
for a disease on a network of a given size. We also simulated the transmission of these 
same diseases on random structured networks and then used the resulting outbreak 
duration distributions to predict the ENS for the group or population. We provide the 
methods to reproduce these analyses in a public R package, “enss.” Outbreak dura-
tions of simulations on randomly structured networks were more variable than those on 
complete networks, but tended to have similar mean durations of disease spread. We 
then applied our novel metric to empirical primate networks taken from the literature and 
compared the information represented by our ENSs to that by other established social 
network metrics. In AICc model comparison frameworks, group size and mean distance 
proved to be the metrics most consistently associated with ENS for SI simulations, while 
group size, centralization, and modularity were most consistently associated with ENS 
for SIR simulations. In all cases, ENS was shown to be associated with at least two other 
independent metrics, supporting its use as a novel metric. Overall, our study provides a 
proof of concept for simulation-based approaches toward constructing metrics of ENS, 
while also revealing the conditions under which this approach is most promising.

Keywords: social network analysis, compartmental modeling, simulation modeling, group size, parasites, disease 
ecology, disease outbreaks
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INtRodUCtIoN

Theoretical models allow us to make sense of complex phenomena 
by applying a set of simplifying assumptions. In many cases, how-
ever, empirical observations of the phenomena do not conform 
to these assumptions. Understanding how observations compare 
to their theoretical ideals is thus critical to the interpretation of 
any such model. Within biology, one of the earliest attempts to 
compare observations to their theoretical ideals was the work of 
Wright on effective population size (1). Effective population size 
models take an observed population with a certain amount of 
genetic diversity and predict the size of an idealized population 
under the assumptions of Fisher–Wright populations that groups 
are of finite and fixed sizes, individuals mate randomly, and 
generations do not overlap (2–4). The generalizability of effective 
population size allows biologists to compare populations, which 
is useful in many contexts, including wildlife management and 
conservation policies (5).

Infectious disease represents another phenomenon in which 
the concept of an idealized population is useful. As with effective 
population size, a set of simplifying assumptions exist that can 
be repurposed to formulate theoretically idealized populations, 
given an observed population. Compartmental disease models 
aim to predict disease transmission by using assumptions similar 
to those in Fisher–Wright populations. For example, they assume 
that individuals transmit pathogens freely throughout the popula-
tion, similar to the Fisher–Wright assumption of random mating 
(the free association assumption); individuals do not immigrate 
or emigrate, maintaining a Fisher–Wright constant population 
size; and there is no age structure within the population, with 
non-overlapping generations (6). However, these assumptions 
are rarely met in natural populations. As shown through early 
critiques of compartmental disease models (6) and more recently 
through the resurgence of social network studies, interactions 
are not random, but instead structured along social ties between 
specific individuals based on affiliative interactions, mating, and 
other social behaviors (7).

Here, we investigated how changes specifically to the free 
association assumption, through structuring in social networks, 
affect the time it takes for a disease to transmit through a popula-
tion. To assess the deviation of an observed population from a 
theoretical ideal in disease transmission through structured 
groups, we must define what represents an idealized population 
and disease outbreak. Many ecological and environmental factors 
can affect group size and structure, including food distribution 
and predation. By “ideal,” we are referring to a perfect adherence 
to the assumption of free association. By “free association,” we are 
referring to the fact that all individuals have equal probabilities to 
interact with every other individual in the population, perfectly 
mirroring the mass action properties of traditional compartmen-
tal disease models at infinite population sizes.

In a review of network modeling of epidemics, Keeling and 
Eames (8) suggest that a variety of idealized networks exist, 
depending on the end goal of the model. The purpose of our 
model is to allow free association between individuals in a social 
network. The earliest modeling of disease transmission through 
networks was conducted on lattices (9), with regularly structured 

connections between individuals (Figure 1A). However, lattices 
show too much deviation from the Fisher–Wright assumption of 
completely free and random association to be used as an idealized 
population. Instead, given the assumptions of basic compartmen-
tal models, the most fitting network arrangement to be used as an 
ideal is a maximally complete network, in which each individual 
has uniform ties to each other individual in the network, allowing 
for effectively free association among all nodes (Figure 1B).

As for the epidemiological model, either deterministic or 
stochastic models are used to model the transmission of disease. 
As we are aiming to simplify assumptions about the transmission 
of disease, deterministic models would provide more straightfor-
ward, less complicated views of disease transmission. However, 
deterministic models require an intimate knowledge of the 
dynamics of disease transmission within a population; unknown 
variables, such as the effect of social structure on outbreaks, make 
this sort of modeling impossible. Stochastic models, which are 
often more representative of real-world heterogeneity in disease 
transmission, allow for uncertainty in variables or dynamics 
by simulating many different, randomly selected values for 
important variables (11). For this reason, we employed stochastic 
models for our study.

Infectious diseases that are transmitted and maintained in 
populations can be modeled using a variety of epidemiological 
models. For instance, susceptible-infected (SI) models are useful 
for investigating the transmission of diseases caused by lifelong 
infections, where no recovery is possible; these models include 
specialized types of SI diseases, like sexually transmitted diseases, 
where transmission rates vary depending on which sex of indi-
vidual is interacting. For following disease outbreaks through a 
population where recovery and resistance is possible, the simplest 
sufficient compartmental model would be a susceptible-infected-
recovered (SIR) model, where susceptible individuals become 
infected from other infected individuals, but they will eventually 
be removed from the population of susceptible and infectious 
individuals, either recovering with full immunity to further 
infection or dying from the disease (which, for the purposes of 
our research, are functionally equivalent). To capture the large 
amount of variation among diverse types of diseases, and to be 
as relevant as possible to researchers studying a potentially wide 
variety of pathogens, we investigated SI and SIR models in this 
study using per contact transmission and recovery rates that were 
realistic but would still allow time for recovery or extinction in 
SIR models.

Previous work on determining the effective size of a network 
has focused on very specific aspects of network structure and 
has thus maintained a restricted conception of what constitutes 
an idealized network. In the only comparable epidemiological 
research on this topic, Caillaud et  al. (12) proposed a measure 
of “epidemiological effective group size.” This metric considered 
the variation in sub-group size within a meta-population and 
the impact of this variation on the outbreak of a disease within 
the meta-population. By using maximally complete networks of 
sub-groups connected to other maximally complete sub-groups, 
the researchers calculated the likelihood of an epidemic outbreak 
throughout the meta-population based on the size of the index 
sub-group. Thus, Caillaud et al.’s (12) metric is essentially a novel 
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FIGURe 1 | Examples of a population of 10 individuals showing various representative network structures, as discussed in the text. These different structures and 
their applications are (A) lattice structure as has been used in other network models for disease transmission, where ties are regular, but not exhaustively complete; 
(B) maximally complete structure as was used for our idealized networks with free association, each individual is connect to all other individuals in the population; 
(C) Erdõs-Rényi generation structure with every possible tie existing with a probability of 0.25, thus the number of ties in this graph are a quarter of those present in 
panel (B); and (d) an example of an empirically observed network of social interactions among primates [Pan troglodytes (10)].
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measure of an invasion-specific critical community size needed 
to maintain an outbreak (13), which in addition to the previous 
measure, also takes variation in meta-population structure and 
sub-group size into account.

In addition, another notion of effective group size has been 
utilized in estimating the number of distinct cultural behaviors, 
or cultural richness, that is maintained within a human popula-
tion. This approach was first theoretically developed by Henrich 
(14) using assumptions of even mixing for cultural transmis-
sion of multiple behaviors through a population; results of this 
analysis demonstrated that a decrease in the size of a population 
through geographic isolation could explain the loss of complex 
cultural behaviors among Tasmanian islanders. This method was 
further developed by Powell et al. (15) to incorporate spatial and 
temporal variability through estimates of population density and 
migration rates, respectively. Using this method, the researchers 
showed that the variability in human population density and 
migratory activity, resulting in “effective population sizes” for 
human groups, explained much of the geospatial distribution 
in cultural behaviors during the Late Pleistocene Epoch. These 

methods are closely related to those described in our study, in that 
each is using population structure to explain observed richness, 
either cultural or parasitic. However, the models for explaining 
observed richness of human behavior did not explicitly incor-
porate social network structure; this is the main contribution of 
our own method.

While our methods do incorporate the complexities of net-
work structure in diseases transmission, we are omitting many 
other important factors of social structure and disease ecology. 
As just noted, social structure can have important impacts on the 
maintenance of cultural behaviors (14, 15), and cultural behav-
iors themselves have been shown to have significant impacts on 
disease transmission (16). In addition, several other factors can 
influence the structure and size of a group, including the rela-
tive despotism or tolerance of a group (17, 18), ecology (19), or 
resource availability (20). Our goal in omitting these factors from 
the following analyses is not to downplay any of their impacts 
on social network structure or disease transmission but rather to 
isolate the effect of social network structure on disease transmis-
sion using a simplified model.
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The first specific aim of our study is to quantify the rela-
tionship between networks of various sizes and outbreak 
durations for diseases with and without immunity, and with 
variation in epidemiological parameters (focusing on variation 
in per contact probability of transmission). Here, we expect 
that infectious diseases transmitted through larger networks 
will show longer outbreak durations than disease transmitted 
through smaller networks (12). We investigate the relationship 
between group size and outbreak duration to provide a basis for 
calculating effective group size. The second specific aim is to 
generate randomly structured networks and to simulate disease 
transmission through those randomly structured networks to 
predict what sized maximally complete network would have the 
same outbreak duration; we call these the effective network size 
(ENS) of the social group. Just as we establish a relationship 
between outbreak duration and maximally complete network 
size to provide a baseline relationship between them, we use this 
same relationship between network size and outbreak duration 
to predict the ENS of randomly structured groups from the out-
break durations of their SI and SIR simulations. It is important 
to note that our measure of ENS will always be equal to or larger 
than the original group size, which differs significantly from 
effective population size, which is always equal to or smaller 
than the original group size. Among these simulations, we 
compare the accuracy and precision of using regression models 
to predict ENS from distributions of outbreak durations on the 
randomly structured networks. All of the methods described 
in this study can be easily replicated with a publicly accessible 
R package, enss, developed specifically for this study (https://
www.github.com/collinmmccabe/enss), and the relevant func-
tions for each step of the analysis are noted throughout the 
Section “Methods.”

Finally, as a proof of concept, we apply our new metric for 
representing disease transmission to a collection of primate 
networks (21). We then compare the information represented 
by ENS to other, more established network metrics to determine 
the novelty of our metric, as well as its associations with other 
metrics. The specific metrics that we investigate here are leading 
eigenvector modularity, mean distance, diameter, clustering coef-
ficient, and eigenvector centralization, as were also investigated 
by Nunn and colleagues (22). In Data Sheet S1 in Supplementary 
Material (Supplementary Analysis), we also provide an example 
use case of ENS from these same primate species, comparing it to 
raw group size as a predictor of parasite richness.

Methods

simulation and Regression of disease 
transmission on Maximally Complete 
Networks
To address the first aim of correlating idealized networks with 
disease transmission times, we generated maximally complete, 
unweighted, undirected networks for groups of size 3–200 in R, 
version 3.3.2 (23) with packages igraph (24), statnet (25), and 
functions that we developed and distribute in enss. We then 
simulated SI models (with a per contact transmission rate, β, of 

0.10, and per capita interactions per day set at three times the 
group size) and SIR models (with an additional parameter, γ, or 
the daily recovery rate set at 0.10) to saturation or extinction (the 
points at which pathogens could not be transmitted further) on 
each of these networks 1,000 times. β and γ were both parameter-
ized at 0.10, following previous disease simulations as described 
in Griffin and Nunn (26). For β, this value of 0.10 indicated 
that for every interaction between a susceptible and an infected 
individual, there was a 10% probability that the susceptible would 
become infected; for γ, the 0.10 indicated that per daily timestep, 
each infected individual had a 10% probability of recovering. 
These methods are available through R package enss as functions 
“clust_sim_SI” and “clust_sim_SIR,” respectively. Although we 
chose to focus our efforts by using unweighted networks and test-
ing only one value for β, we also present analyses that investigate 
the effects of incorporating weighted ties and varying values of β.

Per capita social interaction rates per day were chosen arbi-
trarily to be at a rate of three interactions per individual per day 
in the analyses presented here. This means that for a group of size 
10, 30 random interactions were independently chosen from the 
set of all available interactions between individuals in the group, 
which was then repeated for each daily timestep of the model’s 
simulation. Days and per capita interaction rates per day were 
used as familiar, but ultimately arbitrary demarcations of time in 
our models so that “outbreak duration” could be measured in a 
uniform manner.

Our algorithms for disease transmission on networks took 
place in multiple stages. The first stage involved generating and 
recording social networks as edgelists, where each social tie 
between two individuals is recoded as its own row of data. This 
method can be replicated using enss function “gen_max.” We 
also tracked the infection status of each node, or individual in 
the network, as susceptible, infected, or recovered. From among 
these nodes, one was selected as an index case and was infected 
at the outset of the simulation.

Following previous disease simulations from Griffin and 
Nunn (26), we then selected consecutive random edges, or social 
ties between individuals, to determine whether the disease could 
be transmitted from one node to another (with a probability β 
of transmission for each interaction); the number of edges that 
were selected depended on the per capita interactions per day, 
or 3N, and the number of individuals in the network (ranging 
from 3 to 200). So, for a network of 10 individuals, we chose 30 
random edges each day, allowing for the possibility of repeated 
sampling of social ties. For each of these edges, we checked 
whether transmission was possible; in our models, the only 
opportunity for disease transmission was the case where an edge 
connected an infected individual with a susceptible one, ignor-
ing any directionality in the interaction. Each edge over which 
transmission was possible resulted in an actual transmission 
event (where the susceptible individual becomes infected) with 
probability β = 0.10, as described above; this would result in 10% 
of interactions between susceptibles and infecteds resulting in 
transmission. After all random edges had been considered for a 
day, each infected individual in SIR models randomly recovered 
with a probability γ. The simulation then moved to the next day, 
and only stopped when the criteria for simulation completion 
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were met. No maximum duration was set for either SI or SIR 
models (because these models would eventually reach either 
saturation or extinction).

We also considered transmission models where each tie 
in a graph was sampled once per day, rather than randomly 
in proportion to the number of nodes, because the number 
of edges in networks grows exponentially with the number 
of nodes (Equation S1 in Supplementary Material), and per 
capita interaction rates in large networks would be less likely 
to represent a given tie than in a smaller network. We call 
this the “alternative model,” and give results in Figure S1 in 
Supplementary Material. These methods are available in enss 
as functions “clust_sim_SI_unif ” and “clust_sim_SIR_unif.” In 
addition, we also considered transmission models where ties 
were weighted. In such models, ties with greater weights, or 
intensity of interaction between two individuals, were sampled 
more often than lesser weighted ties. In these models, ties were 
still sampled randomly at the per capita interaction rate per day, 
but the likelihood of sampling a given tie was proportional to its 
weight. This model is called the “weighted model” in analyses 
that follow. These methods are also available in enss as functions 
“clust_sim_SI_w” and “clust_sim_SIR_w.”

We recorded the number of days until the simulation ended as 
“outbreak duration.” For SI models, simulations ended at satura-
tion, defined as the point at which all individuals had transitioned 
from susceptible to infected. For SIR models, simulations ended 
at extinction, defined as the point at which no infected individu-
als were present in the population, either because all susceptible 
individuals had been infected and subsequently recovered, or 
because all infected individuals recovered without being able to 
sustain further transmission to remaining susceptible nodes. We 
then found a line of best fit through the results for each epidemio-
logical model, using regression models to predict network sizes 
from outbreak durations. The output for these linear models can 
be generated in enss with functions “predict_SI_max” and “pre-
dict_SIR_max,” respectively, as can a graphical representation 
of these models with function “plot_predict.” For SIR models, 
only simulations where all individuals had been infected at some 
point in the simulation were considered sufficient. This resulted 
in exclusion of 26.9% of simulations in which the disease failed 
to infect every individual. The purpose of this screening was to 
ensure that a single continuous metric, outbreak duration, could 
be used to compare all simulations.

To determine under which conditions our method would be 
most useful, regression models were calculated with raw network 
size as the response and outbreak duration as the predictor. The 
association between raw network size and outbreak duration was 
exponential rather than linear, as would be expected from an 
exponential growth system like disease transmission in SI models 
(27). To determine the area of the graphs where we could reliably 
predict network size from outbreak duration, we used piecewise 
OLS regressions to predict two separate relationships between 
outbreak. We did not transform these data at this point, because 
by splitting the relationship into two separate regressions with 
piecewise regression, this approach allowed us to identify por-
tions of the graph where prediction could be made appropriately. 
In the first portion, duration outbreak would show a relatively 

shallow relationship with network size, making prediction 
reasonable. But in the second, much steeper portion, relatively 
small increases in outbreak duration would show much larger 
increases in predicted network size, making prediction tenuous. 
We estimated piecewise regression models in R with package seg-
mented (28) to determine where the breakpoint between the two 
portions of the graph would be; this method optimizes the linear 
fit of each portion by randomly varying the breakpoint until the 
best split is achieved. This can be replicated in enss with func-
tion “breakpoint_max.” We also simulated the simpler SI models 
with varying values of β to determine if raising or lowering this 
parameter had any effect on the breakpoint in these piecewise 
regressions. Such a result would indicate that altering β would 
allow for better or worse predictions of large network sizes from 
longer outbreak durations.

In addition to considering piecewise regression models, we 
separately ran regression models with log-transformed network 
sizes to achieve a linear fit. For each set of 1,000 iterations of 
disease simulation on a given network, outbreak durations were 
quite variable. Thus, we used reduced major axis (RMA), esti-
mates of model II regressions to control for the uncertainty in 
outbreak duration in addition to that in network size, calculated 
in R with package lmodel2 (29). RMA estimates consider the 
variation in both the independent and dependent variable when 
fitting regression models rather than, as in OLS models, only 
considering variation in the dependent variable. RMA provided 
the most suitable control for estimating how variation in out-
break duration would affect our predictions of fixed network 
sizes.

We then exponential transformed the output of these equa-
tions to back-transform for the log-transformation. These 
exponential-transformed equations formed the basis for calcu-
lating “effective” network sizes from outbreak durations of dis-
eases simulated on observed networks. Back-transformations 
from log-transformed data introduce bias into predicted values 
because of the difference between errors in log-transformed 
variables and their untransformed counterparts (30, 31). We 
considered accounting for this bias by using the “consistent I 
estimator” from Hayes and Shonkwiler (30), and compared this 
approach to our own method of calculating network size from 
the uncorrected RMA models; the equation for the consistent 
I estimator is:

 y
a b x s

=
+ +

2

2

e
ln ln( ) ( )











 

where a is the intercept, b is the slope, x is the independent vari-
able, and s2 is the mean squared error for the model. Because mean 
squared error is constant within each model, such a correction 
would create a consistent upward shift in all estimates of network 
size by a value of s2/2; this would not have any impact on further 
linear models’ slope coefficients, and so uncorrected RMA model 
back-transformations were chosen for simplicity of interpreta-
tion throughout the main text. Back-transformed predictions 
can be obtained in enss with function “estimate_backtrans_ens.” 
Comparisons of observed versus effective outbreak duration 
distributions are given in Figures S2 and S3 in Supplementary 
Material.
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Accuracy, Precision of Predicting eNs 
From Randomly structured Graphs
To investigate the second aim, we generated large sets of Erdős-
Rényi (E-R) graphs (Figure 1C) for predetermined group sizes 
and predetermined density of ties present; to reduce variability, 
these were used as set numbers of ties, rather than probability 
that ties would be present between two given nodes, as is more 
typical in density-determined E-R graphs in R with package 
igraph (24). Random graphs were used as the baseline in this case 
because they represented the only source from which we could 
obtain a large enough sample size to validate our methods. Group 
sizes for these were kept smaller than the maximally complete 
networks to allow for direct comparison of outbreak duration 
distributions, and they are in good agreement with the observed 
network sizes of primates ranging from 4 to 35 typically (32). Tie 
proportions were kept relatively low to increase differentiation 
from maximally complete networks. We sampled blocks of 111 
networks for each combination of group size (n = 10, 30, and 50) 
and tie proportion (15, 25, and 35% of possible ties), generating 
999 total random networks. To ensure that disease simulations 
could reach full saturation and (for SIR) subsequent extinction, 
we screened each randomly generated network to ensure that all 
nodes were part of a single, connected network. This method can 
be reproduced using function “gen_erg” in package enss.

We then simulated the same SI and SIR models (as discussed 
in Section “Simulation and Regression of Disease Transmission 
on Maximally Complete Networks”) over 1,000 iterations on 
each of our 999 randomly generated models, recording outbreak 
durations of the models (again with enss functions “clust_sim_SI” 
and “clust_sim_SIR,” respectively). Because all outbreak dura-
tions for random networks of size N are expected to be greater 
than those of the idealized network of size N, these simulations 
were conducted to determine the scale of increase in outbreak 
durations and consequently in ENS. The mean of outbreak dura-
tions for a given random network with a given epidemiological 
model were used as the predictor variable in the RMA regression 
equations described in Section “Simulation and Regression of 
Disease Transmission on Maximally Complete Networks.” Only 
simulations which reached saturation were analyzed here, and so 
some runs of the SIR simulations were removed due to stochastic 
extinction events. This reduced the sample size of analyzed simu-
lation runs and may have biased our results for SIR comparisons. 
These values were then exponential-transformed and rounded to 
the nearest integer to arrive at a directly comparable ENS for each 
random network (using enss function “estimate_backtrans_ens”). 
Thus, ENS were calculated twice for each random network; once 
for SI models and once for SIR models.

To gauge the accuracy and precision of our methods, we 
compared each distribution of outbreak durations on a given E-R 
network (hereafter, called the “observed network”) to that of the 
original outbreak durations on the maximally complete network 
of the same size as the predicted ENS of the observed network 
(hereafter, “effective network”). We compared these distribu-
tions graphically (with enss functions “plot_compare_SI” and 
“plot_compare_SIR”) and statistically (with enss functions “com-
pare_SI_erg_ens” and “compare_SIR_erg_ens”). For accuracy, 

we compared the observed and effective network distributions in 
means of outbreak durations, with more similar means indicat-
ing that simulating disease spread on effective networks is more 
accurately capturing expected spread on the observed network. 
For precision, we compared the observed and effective network 
distributions in SDs of outbreak durations, with more similar 
SDs indicating that the precision of simulating disease spread 
on effective networks is similar to what would be obtained on 
the actual networks. We statistically compared the distributions 
of outbreak durations between observed and effective network 
simulations with Kolmogorov–Smirnov tests in R with package 
dgof (33). Significance on these tests indicates that the two distri-
butions likely did not come from the same original distribution.

Associations Between eNs and other 
Metrics
As one example application of our methods, we used our predic-
tive models to estimate ENS of primate social networks that had 
been recorded in the literature (e.g., Figure 1D). These networks 
mainly consisted of the dataset of weighted sociomatrices col-
lected by Griffin and Nunn (26), supplemented with more recent 
publications. Batch importing of empirical social networks was 
accomplished in enss using function “import_emp.” A full listing 
of the sources for each of these networks, as well as the species 
and interaction type to which each corresponds, is provided in 
Table  1. ENS were again calculated by simulating SI and SIR 
models and then inputting the resulting outbreak duration 
means into the equations described in Section “Simulation and 
Regression of Disease Transmission on Maximally Complete 
Networks.” For each of the empirical social networks, we then 
calculated weighted and unweighted versions of five common 
network metrics leading eigenvector modularity, which is a 
measure of how subdivided a network is into cliques, with higher 
values indicating more extreme subdivision, was calculated using 
function leading.eigenvector.community from package igraph 
(24). Mean distance, or the average of the shortest paths between 
each combination of two nodes, was calculated using function 
distance_w from package tnet (34); greater distances between 
nodes indicate that information will take longer to spread across 
the network. A related metric, diameter, measures the longest of 
these shortest paths across the entire network; it was calculated 
using function diameter from package igraph (24). Clustering 
coefficient, a measure of complete connectedness among triplets 
of nodes which have at least two connections among them, was 
calculated using function clustering_w from package tnet (34); 
higher clustering coefficients indicate that if three nodes are con-
nected by at least two connections, they likely also include the third 
connection. Eigenvector centralization measures the skewness 
in the centrality, or connectedness of each node within the net-
work, with higher values indicating greater skew from a uniform 
distribution of centralities; this was calculated using function 
evcent from package igraph (24). These metrics can be calculated 
for any set of networks using the “calculate_metrics” function 
in enss, which simply automates the calculations performed by 
functions provided in packages igraph (24) and tnet (34). Then, 
we compared models with all combinations of these metrics as 
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tABle 1 | Raw and ENSs of primate species included in the established metric comparison models, as well as source information for each of the networks.

species Group size eNs sI eNs sIR Weighted eNs sI Weighted eNs sIR Group status Interaction class source

Alouatta caraya 5 7 8 9 7 Captive Grooming (36)
Ateles geoffroyi 15 36 22 75 23 Free-ranging Grooming (37)
Cebus apella 12 20 18 43 18 Wild Grooming (38)
Cebus capucinus 6 9 10 9 9 Wild Grooming (39)
Cercopithecus aethiops 8 11 13 15 12 Wild Grooming (40)
Cercopithecus mitis 16 43 21 57 26 Wild Grooming (41)
Colobus guereza 8 13 13 43 13 Wild Grooming (42)
Eulemur fulvus 11 16 16 20 15 Free-ranging Proximity (43)
Lemur catta 12 16 17 20 16 Wild Proximity (44)
Macaca arctoides 19 31 26 53 26 Captive Grooming (45)
Macaca assamensis 19 36 26 79 28 Wild Grooming (46)
Macaca fascicularis 10 20 15 70 17 Captive Grooming (47)
Macaca mulatta 28 34 35 37 30 Captive Proximity (48)
Macaca radiata 16 25 22 32 22 Wild Grooming (49)
Miopithecus talapoin 8 11 13 16 12 Captive Grooming (50)
Pan troglodytes 7 10 11 12 9 Wild Grooming (10)
Papio ursinus 14 24 21 27 18 Wild Grooming (51)
Saguinus fuscicollis 7 10 12 16 11 Captive Grooming (52)
Saguinus mystax 6 9 10 10 9 Wild Grooming (53)
Theropithecus gelada 7 15 12 16 10 Captive Sociopositive (54)

“Network size” is the count of nodes in the observed primate network. “ENS” indicates effective network size, with “SI” or “SIR” indicating the type of transmission model used for 
estimating ENS, and “weighted” indicating that tie weights were also included in simulations for estimating ENS. In some cases, weighted ENS measures were very different from 
their unweighted counterparts, indicating a strong effect of adding in tie weight information. In other cases, SI and SIR ENS estimates varied widely within species; these typically 
indicate an effect of removing non-total transmission simulations from SIR models, lowering ENS.
SI, susceptible-infected; SIR, susceptible-infected-recovered.

FIGURe 2 | Comparison between distributions of outbreak durations for susceptible-infected simulations with varying values for β. Lower values for β have larger 
ranges of outbreak durations, but the shapes of curves are qualitatively similar when scaled to the maximum outbreak duration for a given value of β.
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predictors of ENS in a model comparison framework with AICc 
as the model selection criterion, using a cutoff of two AICc units 
for preferring a model over other models. AICc values were 
calculated in R with package MuMIn (35) and can be calculated 
in batch form with the enss function “AICc_ens_metrics.”

ResUlts

Optimization of piecewise regression models estimated a break 
at a network size of 80 nodes, indicating that predictions of ENS 
above 80 individuals would be considerably less reliable than 
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FIGURe 3 | Associations between log-transformed network size and outbreak duration for different disease models. Data points for each graph, limited to networks 
of 80 nodes or less (n = 78,000), were too dense to make scatterplot representations intelligible, thus heatmaps were used to illustrate the results, with lighter colors 
of blue representing a higher density of data points. Log-transforming network size makes for a linear relationship, and reduced major axis model 2 regression lines, 
represented in red, account best for the joint variation in the x and y axes. (A) Susceptible-infected (SI) model. (B) Susceptible-infected-recovered (SIR) model.
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those of 80 or below. Furthermore, altering the values for β had 
no effect on the breakpoints, although as would be expected, the 
ranges of outbreak durations were inversely related to the value 
for β (Figure  2). All piecewise regressions revealed breaks at 
between 79.45 and 81.75 nodes. RMA model II regressions of 
log-transformed maximally complete network size versus out-
break duration for SI and SIR models fit relatively well, with R2 
of 0.470 and 0.376, respectively (Figure 3). The regression equa-
tions, listed in Figures 3A,B, were then used to calculate ENS. 
Alternative model results, with ties sampled regularly rather than 
randomly, showed similar results for SIR models, but tended to 
oversample ties in large networks for SI models, leading to unrea-
sonably short outbreak durations in these networks (Figure S1 in 
Supplementary Material).

We then compared the distributions of E-R graph (observed) 
outbreak durations to those of their equivalent maximally com-
plete (effective) network’s outbreak durations to assess accuracy 
and precision. This was done to determine whether disease out-
breaks on observed networks were accurate, or similar to those on 
maximally complete networks, in terms of the distributions of the 
outbreak durations from simulations on effective and observed 
networks. Figure 4 shows the results of the SI model comparisons. 
Accuracy of our RMA predictive model was high, with means 
similar between observed and effective network outbreak dura-
tions (Figure 4B), but outbreak durations from observed network 
simulations showed higher SDs than those from effective net-
works (Figure 4C). Kolmogorov–Smirnov tests show that these 
two sets of distributions were often significantly different, with a 
critical value for the D-statistic at 0.60 (Figure 4D). However, this 
method is extremely sensitive to small changes in distributions 
and may not be best suited for determining similarity between the 
observed and effective network outbreak duration distributions.

Figure  5 shows the results of the SIR model comparisons 
between effective and observed network simulations. Again, 
similarity between mean values of outbreak durations for 

simulations on effective and observed networks (i.e., accuracy) 
was high (Figure  5B), but outbreak durations from observed 
network simulations actually showed lower SDs than those from 
effective networks (Figure 5C); this was likely due to the exclusion 
of simulations where the disease went extinct, which would have 
drastically reduced the variance of results. Kolmogorov–Smirnov 
tests show that these two sets of distributions were often signifi-
cantly different, again with a critical value for the D-statistic at 
0.60 (Figure 4D).

In our model selection framework comparing unweighted ENS 
to other established unweighted network metrics, the best fitting 
model for SI ENS included positive associations with raw group 
size (b = 1.13), mean distance (b = 116.93), and clustering coef-
ficient (b = 66.71), as well as a negative association with eigenvec-
tor centralization (b = −107.31); the model had an adjusted R2 of 
0.971. There were four best fitting models for SIR ENS within two 
units of the minimum AICc value, and thus each of the follow-
ing models were tied for best fit: SIR best fit #1 included positive 
associations with raw group size (b = 1.15), clustering coefficient 
(b = 3.44), and eigenvector centralization (b = 17.61); the model 
had an adjusted R2 of 0.993. SIR best fit #2 included positive asso-
ciations with raw group size (b = 1.16) and eigenvector centrality 
(b = 20.27), as well as a negative association with mean distance 
(b = −4.25); the model had an adjusted R2 of 0.993. SIR best fit 
#3 included positive associations with raw group size (b = 1.17) 
and eigenvector centralization (b = 17.23), as well as a negative 
association with leading eigenvector modularity (b = −13.35); the 
model had an adjusted R2 of 0.993. SIR best fit #4 included posi-
tive associations with raw group size (b = 1.15) and eigenvector 
centralization (b = 5.69); the model had an adjusted R2 of 0.992.

Meanwhile, for the weighted models, the best fit for weighted SI 
ENS included positive associations with raw group size (b = 2.40) 
and mean weighted distance (b  =  51.26), as well as a negative 
association with weighted diameter (b  =  −15.15); the model 
had an adjusted R2 of 0.706. Again, there were four best fitting 
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FIGURe 4 | Comparison between distributions of outbreak durations for susceptible-infected simulations on observed and effective network. Throughout the figure, 
the term “observed” refers to results from simulations on Erdó́s-Rényi graphs, and “effective” refers to results from simulations on reduced major axis-predicted 
equivalent maximally complete networks. Network sizes are limited to a maximum of 80 individuals, as this was the condition under which we were reasonably 
confident in our results. Panel (A), a histogram with a representative pair of observed (dark gray) and effective (light gray) distributions of outbreak durations plotted 
together for viewing overlaps, shows that the distributions, compared on a pairwise scale had a considerable amount of overlap. Panel (B) shows means of 
outbreak durations from observed networks plotted against those from their predicted effective networks; red line indicates 1:1 equivalence, at which effective 
means match observed means. Panel (C) shows a paired line plot of SDs in outbreak durations for simulations on observed and effective networks; observed 
networks showed higher SDs than their paired effective networks. Panel (d) shows a histogram of Kolmogorov–Smirnov D-statistics for pairwise statistical 
comparisons between observed and effective network outbreak durations, with values above 0.60 indicating significantly different distributions.
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models for weighted SIR ENS within two units of the minimum 
AICc value, and thus each of the following models were tied for 
best fit: weighted SIR best fit #1 included positive associations 

with raw group size (b = 1.14), leading eigenvector modularity 
(b = 15.88), and eigenvector centralization (b = 4.29); the model 
had an adjusted R2 of 0.949. Weighted SIR best fit #2 included 
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FIGURe 5 | Comparison between distributions of outbreak durations for susceptible-infected-recovered simulations on observed and effective network. Again, the 
term “observed” refers to results from simulations on Erdó́s-Rényi graphs, and “effective” refers to results from simulations on reduced major axis-predicted 
equivalent maximally complete networks. Network sizes are also limited to a maximum of 80 individuals, as this was the condition under which we were reasonably 
confident in our results. Panel (A), a histogram with a representative pair of observed (dark gray) and effective (light gray) distributions of outbreak durations plotted 
together for viewing overlaps, shows that the distributions, compared on a pairwise scale had a considerable amount of overlap. Panel (B) shows means of 
outbreak durations from observed networks plotted against those from their predicted effective networks; red line indicates 1:1 equivalence, at which effective 
means match observed means. Panel (C) shows a paired line plot of SDs in outbreak durations for simulations on observed and effective networks; observed 
networks showed higher SDs than their paired effective networks. Panel (d) shows a histogram of Kolmogorov–Smirnov D-statistics for pairwise statistical 
comparisons between observed and effective network outbreak durations, with values above 0.60 indicating significantly different distributions.
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positive associations with raw group size (b =  1.16) and mean 
weighted distance (b = 5.30), as well as a negative association with 
weighted diameter (b = −1.84); the model had an adjusted R2 of 

0.949. Weighted SIR best fit #3 included positive associations with 
raw group size (b = 1.13), mean weighted distance (b = 1.83), and 
leading eigenvector modularity (b  =  14.44); the model had an 
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adjusted R2 of 0.950. Weighted SIR best fit #4 included positive 
associations with raw group size (b = 1.10) and leading eigenvec-
tor modularity (b = 18.15); the model had an adjusted R2 of 0.948.

dIsCUssIoN

These results demonstrate the potential for using ENS to 
compare infectious disease risk across groups of different sizes, 
including potentially for understanding disease transmission 
across a mosaic of many loosely connected groups within a 
larger meta-population structure, as well as for simplifying entire 
meta-populations to a single ENS. Previous studies have applied 
similar network-level metrics, like centrality and modularity, to 
the study of disease transmission through contact, grooming, 
and sociopositive networks in both wild and captive populations 
(32, 55–59). But nearly all of these measures capture only one 
aspect of networks, and they require this aspect to be considered 
in isolation from other important information about the network, 
specifically, its size. This issue is especially problematic for some 
metrics like modularity, whose value is mathematically posi-
tively associated with network size (22, 60). When compared to 
established network metrics, our single metric of ENS was best 
predicted by a combination of group size plus at least two other 
metrics. Thus, our measure of ENS provides a metric for disease 
transmissibility among individuals in a group that also accounts 
for the size of the group from which it was estimated. This dif-
fers from the previously mentioned approach by Caillaud et al. 
(12), which focused on understanding sub-group heterogeneity 
of meta-populations in light of epidemic thresholds. Specifically, 
our approach uses network structure and group size to predict 
how quickly a disease can be transmitted and maintained by 
individuals in a population.

Many more established network metrics covaried consist-
ently with our measures of ENS, although there were differences 
most noticeably between transmission modes. For both SI and 
SIR ENS, the raw, original group size (number of nodes in the 
observed network) covaried strongly and positively with ENS, 
supporting the claim that ENS presents a novel, “size standard-
ized” network metric. In addition, for SI models, both weighted 
and unweighted, mean distance was positively associated with 
ENS, perhaps indicating that SI models function through a simple 
diffusion process, where distance traveled is the best indicator of 
disease spread time. On the other hand, for SIR models, again 
both weighted and unweighted, network metrics like centraliza-
tion and modularity, which generally indicate the skewness of tie 
distributions, showed generally positive associations with ENS. 
These relationships may point more toward the importance of 
skewness of connections in impeding or bottlenecking the spread 
of diseases specifically for SIR transmission models.

Of course, social networks can be represented in many ways, 
and our approach still simplifies networks considerably from 
their real-world manifestations. First, nearly all social ties in 
the real world vary in intensity (i.e., the networks are weighted), 
yet we conducted most of our tests using unweighted networks. 
The unweighted networks were used as a less “noisy” test of our 
methods. We did, however, also test for associations between ENS 
and other network metrics using weighted primate networks, 

which generally showed weaker effects compared with using 
unweighted ENS, likely due to the increased variation introduced 
by tie weights. Additional sources of variability are also worth 
considering. For example, individuals may vary in traits that 
make them more or less susceptible to a disease or to transmitting 
it, including trade-offs between reproductive status, dominance, 
and immune system, as well as age-related effects on immune 
function (59). Networks may also vary in their structure across 
time, adding yet another variable that complicates analyses 
(58, 61–63). However, the majority of research focuses on the 
importance of structural aspects of static networks for predict-
ing and mitigating disease transmission, as this allows for more 
straightforward interpretation and comparison among different 
populations (64–66).

Additional applications of the method may open a variety of 
new routes for wildlife management and infection control. ENS 
could be used in disease outbreak risk assessments for wild or 
captive populations with known social networks. In addition, 
meta-populations of groups with known social networks could 
be simplified to their respective ENS to make prediction of 
future outbreaks easier in the future. Groups of sufficient size 
or structure could be targeted for vaccination campaigns in 
the wild or in captivity. In addition to comparing groups in a 
meta-population to one another, ENS could be used as a rough 
heuristic at a larger scale, reducing entire meta-populations to a 
single ENS. Finally, if further work is conducted to develop our 
method into a mathematical one rather than a simulation-based 
one, this approach could be applied to policy and manage-
ment applications where simulation modeling is prohibitively 
time-consuming.

Although this study has only focused on simulation-based 
solutions for determining ENS, mathematical solutions for 
determining ENS should be investigated to obtain more succinct 
and resource-efficient calculations. One such approach for these 
mathematical solutions was shown by Caillaud et  al. (12), but 
mathematicians and theoreticians interested in the effects of 
group size on disease transmission could still significantly further 
such research. In addition to this, the number of studies that have 
published social network structures is still small. For this reason, 
we encourage scientists researching social interaction to publish 
network information on species for which they already have data 
and to begin more studies of social network analysis in primate 
groups.
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