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COMPUTER SCIENCE

Making data matter: Voxel printing for the digital
fabrication of data across scales and domains

Christoph Bader," Dominik Kolb," James C. Weaver,”> Sunanda Sharma," Ahmed Hosny,>
Joao Costa,’ Neri Oxman'*

We present a multimaterial voxel-printing method that enables the physical visualization of data sets commonly
associated with scientific imaging. Leveraging voxel-based control of multimaterial three-dimensional (3D) printing,
our method enables additive manufacturing of discontinuous data types such as point cloud data, curve and graph
data, image-based data, and volumetric data. By converting data sets into dithered material deposition descriptions,
through modifications to rasterization processes, we demonstrate that data sets frequently visualized on screen can
be converted into physical, materially heterogeneous objects. Our approach alleviates the need to postprocess data
sets to boundary representations, preventing alteration of data and loss of information in the produced physicaliza-
tions. Therefore, it bridges the gap between digital information representation and physical material composition.
We evaluate the visual characteristics and features of our method, assess its relevance and applicability in the pro-
duction of physical visualizations, and detail the conversion of data sets for multimaterial 3D printing. We conclude
with exemplary 3D-printed data sets produced by our method pointing toward potential applications across scales,
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disciplines, and problem domains.

INTRODUCTION

While physical visualizations and representations of data are as old as
prehistoric cave paintings (I), modern approaches still predominantly
rely on the two-dimensional (2D) display of 3D data sets on planar
computer screens. Scientific visualizations account for a wide range
of such virtual information displays, including volumetric rendering
of patient data obtained from magnetic resonance imaging (MRI) or
point-based rendering of geospatial data obtained from photogramme-
try methods. These visualizations map, process, and represent data and
aim to allow a user to gather insights through perception and computer-
aided interaction (1).

Although conventional screen-based media visualizations are
known to be effective, it has been argued that physical manifestations
of data sets can leverage active and spatial perception skills, enabling a
more comprehensive understanding of presented information in an in-
herently intuitive manner (2). Immersive visualization through virtual
and augmented reality displays aims to improve the shortcomings of
2D information displays but currently lacks the tangible interaction
offered by physical information displays. Advancements in the acces-
sibility and affordability of digital fabrication workflows, such as addi-
tive manufacturing, enable a “resurrection” of data in their physical
manifestation. Consequently, the representation of data sets in a phys-
ical form through digital fabrication has emerged as a research area and
practice (3). More broadly, the manifestation of data as a physical em-
bodiment is often collected under the term “data physicalization” (4) or
“physical visualization” (5).

One of the earliest additive manufacturing methods introduced for
the fabrication of scientific visualizations in physical form was powder-
based binder jetting (6). This method has become particularly popular
as it enables the digital fabrication of boundary representations with
associated colored textures. While this approach allows the use of color
as a parameter for the encoding of information on an object’s surface,
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the supplied data format must be given as a closed two manifold trian-
gle mesh with associated texture or vertex attributes. Therefore, com-
mon representations used in scientific visualization must be converted
to these boundary representations through geometry processing tasks,
which may, in turn, result in partial loss or alteration of the data set at
hand. Alternatively, crystal laser engraving provides a method to di-
rectly fabricate discontinuous data sets. In this process, a pulsed laser
beam creates a large number of etched points captured within an op-
tically transparent material. However, because this method works by
introducing damage to a material, it is restricted to monochromatic
visualizations and is limited in the spatial density of dots that can be
achieved. Furthermore, the enclosing geometries are mostly constrained
to simple forms such as rectangular blocks. Complex data sculptures—
such as objects visualizing sound, landscapes, or graph-like structures—
are often produced using selective laser sintering, where a laser fuses
powder in a layer-by-layer fashion to form a solid object. Because of
its ability to fabricate complex geometries without support scaffolds,
it is suitable in cases in which intricate objects are required. However,
given the very nature of the fabrication process, it does not enable the
production of parts with varying translucency or color.

Furthermore, despite the availability and progression of 3D printing
technology, fundamental 3D printing workflows have remained essen-
tially unchanged for the past 30 years. These workflows are limited by
the fact that shape specification is directly linked with material speci-
fication. This limitation is also reflected in the STL (stereolithography)
file format, which was introduced three decades ago for the first stereo-
lithographic 3D printers and is still considered the standard file format
for additive manufacturing.

The STL file format represents objects through a closed regular sur-
face, which is described by a list of triangles, defined through their verti-
ces. During the 3D printing process, each surface is considered a solid
object, where space inside the triangle boundary representation is oc-
cupied by a single material. Unfortunately, these design and additive
manufacturing workflows do not think “beyond the shell” of objects,
despite the fact that commercially available 3D printers can print up to
seven materials simultaneously. This means that to 3D print any data
set, especially those that are not naturally representable as surfaces, all
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data first must be converted into a boundary representation. Specifical-
ly for scientific data, this conversion process is problematic, as, in many
cases, it introduces computational overhead, alteration of data, and
even loss of information. We show two examples of these drawbacks
in figs. S1 and S2.

Here, and in contrast to the methods described above, we present an
approach to physical data visualization through voxel printing using
multimaterial 3D printing to improve the current data physicalization
workflows. Multimaterial 3D printing with photopolymeric materials
enables the simultaneous use of several different materials, and by
using dedicated cyan, magenta, yellow, black, white, and transparent
resins, full-color models with variable transparency can be created.
The ability to create objects with and inside transparent material
enables the physical visualization of compact n-manifolds (n < 3) such
as unconnected point cloud data, lines and curves, open surfaces, and
volumetric data.

Multimaterial 3D printers (7) operate by depositing droplets of sev-
eral ultraviolet-curable resins in a layer-by-layer inkjet-like printing
process to construct high-resolution 3D objects. High levels of spatial
control in manufacturing can be achieved by generating a set of layers
in a raster file format at the native resolution of the printer, where each
pixel defines the material identity of a droplet and its placement in 3D
space. The set of layers can be combined into a voxel matrix. A printer
can then process these droplet deposition descriptions given as a voxel
matrix to digitally fabricate heterogeneous and continuously varying
material composites. This approach is often described as bitmap-based
printing (8) or voxel printing (9).

Commercially available multimaterial 3D printers can have a build
envelope of 500 mm x 400 mm x 200 mm with a droplet deposition
resolution of 600 and 300 dots per inch and a layer separation of down
to 12 pm, which results in 929 billion individually addressable material
droplet positions, or voxels, through the approach described above.
This high-resolution build space enables two key characteristics rele-
vant for physical visualization: (i) volumetric color and opacity gradi-
ents, achieved by varying the spatial density of droplets of different
materials, and (ii) preservation of detail, achieved through a clear en-
closure volume, which allows the digital fabrication of highly detailed
structures with fine features.

While multimaterial 3D printing is used in the sophisticated design
processes of advanced products (10) with complex geometries (11), it
has only recently been used for the generation of data sculptures
containing data-informed patterns (12). Our approach to physical data
visualization through voxel printing using multimaterial 3D printing
presented herein enables direct digital manufacturing of numerous data
sets commonly found in scientific visualizations through rasterization,
without the need to create intermediate representations for 3D printing.
As a result, the method and its various applications point toward the
elimination of the digital/physical divide, bridging digital on-screen data
and their physical manifestations.

METHODS

Similar to Bader et al. (8, 12), we used high-resolution material dith-
ering to achieve optical transparency and color gradients in the pro-
duced artifacts. An overview of our method is shown in Fig. 1. For a
given data set or a collection of data sets, an approximating hull must
be generated first. This hull can be a rectangular box or any other con-
tainment such as a detailed boundary representation of the enclosed
shape. The dimension of the hull, combined with the resolution of
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the 3D printer, determines the number of layers the printer will fabri-
cate for a given representation. Then, for each layer, internal material
information sourced from the given data set was computed. This pro-
cess was specific to the type of data set used and was detailed for point
cloud, volume, line, and image-based data sets in Results. Any area
within the layer that was not occupied by the data set—but was inside
the approximating hull—was specified as transparent. Per-layer material
information was then converted to material-mixing ratios. This was
achieved by looking up the specific material-mixing ratio in a compre-
hensive material information database and assigning this mixing ratio
to each pixel. The material information database was constructed by
characterizing material properties and matching them with material-
mixing ratios. This was done by producing a set of exemplar specimen
with known material-mixing ratios specified through the material dep-
osition descriptions and subsequently characterizing them. Material-
mixing ratios were then materially dithered (13) into droplet deposition
descriptions, from which the 3D printer could determine where to de-
posit which material. The droplet deposition instructions could be bi-
nary raster layers, one for each material of the 3D printer, encoding
whether or not a droplet should be deposited at a pixel’s location for
the particular material. An example of this process is shown in Fig. 2,
where opaque and transparent materials were mixed at different ratios,
resulting in a gradient from opaque to transparent.

However, material-mixing ratios did not linearly translate to per-
ceivable, optical properties. Only objects with high transparent material
content showed differences in transparency, while objects in the range
of 0 to 70% transparent material content barely exhibited any variation
in transparency, especially in the thick regions of a given sample (Fig. 2).
This phenomenon must be taken into account for the visualization of
volumetric data because a linear mapping from material information to
material mixing will not yield linear changes in perceivable transparen-
cy or translucency.

Whereas color is linked to an object’s reflectance, translucency is
not linked to measurable physical or perceptual quantities, which
makes the establishment of psychometric functions for converting
physical quantities associated with translucency to perceptual uniform-
ity particularly difficult. As a result, we used transmittance measure-
ments and a lookup table as described in fig. 54 to partially reduce
the nonuniformity of material-mixing ratios and perceived translucen-
cy. However, other more sophisticated models using scattering and ab-
sorption in conjunction with psychophysical experiments have been
recently proposed (14).

In particular, the high resolution of our method allows for the
physical visualization of finely detailed information. Ordinarily, these
3D-printed objects would be too fragile or—as in the case of an un-
connected point cloud—otherwise impossible to print as self-supporting
structures. Nonetheless, these structures can easily be produced within
a transparent enclosure. In this way, it is possible to additively manu-
facture feature sizes below 1 mm that closely resemble what can be vi-
sualized on screen. Given the nature of the dithering process, highly
transparent features will however begin to blur and may appear fuzzy
because mixing ratios with high clear content will result in overly dis-
persed droplets of opaque material. Geometric primitives made out of
pure opaque material were perceivable even at small scales—specifically,
at a diameter of 0.01 mm (in the case of a line) or a diameter of 0.1 mm
(in the case of a sphere)—whereas geometric primitives made out of
more transparent material were barely visible at that scale. For visual-
izations, these feature sizes must be considered, and thinner elements
have to be mapped to material-mixing ratios of higher opaque content
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A B Z

Fig. 1. General workflow for the conversion of data sets to 3D-printed data physicalizations. For a given composition of data sets (A), a hull is generated first (B). Here, the
composition of data sets contains a volumetric (1), point cloud (2), graph (3), and image stack (4) data set. (C) The enclosure, together with the available printer resolution, thus
determines the dimension and number of the generated layers. The data set is then processed for each layer (D), according to “Volumes,” “Point clouds,” “Curves and graphs,”
and “Image-based” sections, respectively (E), to generate, to generate per-pixel material information. Here, every layer’s pixel contains an associated position and is given the
actual data set and additional information governing the desired appearance of the final physical visualization. The material information of each data set is then composited
(F) and converted to material-mixing ratios (G). Finally, the material-mixing ratios are dithered to binary bitmap layers (H), one for each material given in the printer.

if they are to be retained (see fig. S3). While very thin features can be
produced through the deposition of opaque material inside transparent
enclosures, the manageable limit for the production of external geomet-
ric features through this technology, including printing, cleaning, and
postprocessing, is approximately 0.5 mm.

Models shown herein were printed on a Stratasys Objet500 Connex
(two material), Stratasys Objet500 Connex3 (three material), and
Stratasys J750 (six material) 3D printers. VeroClear (RGD810) was used
as transparent material, while for colors, VeroWhitePlus (RGD835),
VeroBlackPlus (RGD875), VeroYellow (RGD836), VeroCyan (RGD841),
and VeroMagenta (RGD851) were used.

RESULTS

Point clouds

Point clouds are often encountered in scientific visualizations as they
are frequently used for geospatial imaging. They are particularly prom-
inent in geographic information systems, commonly obtained by LIDAR
(light detection and ranging), where they are used to capture digital
elevation maps (15) or to observe the development of agricultural
(16) or urban environments (17). Further areas of application include
archaeology, where point clouds are used to capture and preserve arti-
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facts and sites (18). A point cloud is usually defined as a set of points
represented by its coordinates, where each point may contain addition-
al properties such as color, normal direction, and luminance. Additive
manufacturing typically requires boundary representations; thus, a given
point cloud must first be converted through processes such as Poisson
surface reconstruction (19), resulting in a triangulated mesh that is us-
able for common 3D printing workflows. However, if a closed surface is
not a necessity by design, and the given point data set is particularly
disconnected or fragmented, volumetric voxel printing presents a val-
uable alternative. Rather than reconstructing a surface, we can directly
rasterize each point to a layer used in the multimaterial 3D printing
process. In this way, we can use the point cloud data for the creation
of a 3D printable artifact, without applying intermediate conversion
steps, which may alter or distort the original data.

The conversion of point cloud data to 3D material deposition de-
scription is shown in Fig. 3. First, the dimensions of an enclosure that
will act as a transparent container to hold the point cloud are deter-
mined. This enclosure can be an accurate boundary representation cre-
ated from the points through surface reconstruction methods, a convex
hull, or a simple bounding box. The enclosure is oriented such that
minimal z height can be achieved. The dimensions, resolution, and
number of layers needed to build up the volume of the 3D print are
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Fig. 2. Variability in optical transparency as a function of transparent to opaque resin mixing ratios. (A) A typical single layer of different material-mixing ratios
acquired through material dithering. White pixels in the bitmap represent physical material droplets of opaque and transparent material, respectively. Numbers relate to
transparent material ratios, and in combination, the two material descriptions result in an opacity gradient. The corresponding 3D-printed objects are shown in (B). Here, it
is apparent that visual characteristics are not linearly related to material-mixing ratios. In (C), we show that perceivably separable differences accumulate at mixing ratios of
high clear material content and that small changes in additionally deposited opaque material droplets can have a dramatic change in perceived opacity.

calculated from the enclosure. This is generally dependent on the x, y, z
resolution of the multimaterial 3D printer, the dimensions of the object,
and the 3D printer’s build envelope.

The point cloud is traversed layer by layer in the direction perpen-
dicular to the print bed (z axis in Fig. 3), generating a raster image for
each layer (Fig. 3C), and the layers are separated by the z-step size of the
printer. Each of these layers’ pixels carries information about its position
in space (Fig. 3D). We use this information in combination with the
layer height to spatially query, for each pixel in each layer, the point cloud
data for the next 1 to n nearby points within a certain distance threshold
or radius from the pixel (Fig. 3E). This spatial query can be efficiently
implemented using common spatial data structures. The advantage of
using a spatial data structure is the localization of data in regions or
clusters, which can be stored in physical memory on a single page or
disk block.

On the basis of the queried points’ material information, the pixel’s
material information is determined. The points’ material information
can describe color, opacity, stiffness, or any other material properties,
which may be encoded through the original data acquisition process in
the point cloud.

Bader et al., Sci. Adv. 2018;4:eaas8652 30 May 2018

The spatial indexing returns the # closest points within a distance
threshold and their associated information, which can then be used
to filter the found information. Filtering can be done in several different
ways. For example, using distance-weighted averaging, the queried n
closest points can be evaluated and weighted, such that information
from adjacent points has more influence than information from points
that are farther away. The resulting value is then used to determine the
material information for the querying pixel. Other filters may include
any mapping of the found queried values and respective distances. If the
spatial query does not result in any point within the given threshold but
lies within the enclosing object, the querying pixel’s material infor-
mation will be specified as fully transparent. If a radius property is as-
sociated with a point, we can discard the point from further evaluation if
the distance from pixel to point is below this radius.

After filtering the points, material-mixing ratios are determined
from the filtered material information. The pixel’s material information
is an m-dimensional vector of material ratios, where the number of
vector components is equal to the number of materials in the printer.
This vector determines the desired material mixing for the spatial loca-
tion specified by the pixel. To determine this vector of material-mixing
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Fig. 3. Point cloud data processing workflow and representative 3D-printed models from point cloud data sets. (A) Initial point cloud data containing point-
specific attributes. (B) Determination of containment for the point cloud. (C) The containment, combined with the available printer resolution, determines the
dimension and number of the generated layers. (D) The point cloud is processed for each layer. (E) For each pixel within a single layer, the point cloud is queried
for nearby points, which are interpolated and rasterized to generate the final material data. (F) Material information is dithered into binary material deposition descrip-
tions. (G) and (H) show representative 3D-printed models from point cloud data sets. (G) The point cloud representing a statue from the Tampak Siring Temple in Bali
consists of 3.6 million points and was generated through an automated, cloud-based, photogrammetric processing service (38). The digital elevation model of the
moon shown in (H) is represented through a point cloud of 21 million points. The data were captured by NASA’s Lunar Reconnaissance Orbiter, which was launched in
2009 and has since orbited the moon (39).

ratios, a lookup of the specific material-mixing ratios in the material  raster file. One bitmap raster file specifies the spatial region in space in
information database is performed, and material-mixing ratios are as-  the build envelope of the printer where material of a respective material
signed to the pixel. type should be deposited. A 0 in the bitmap indicates no deposition of

Finally, each layer containing the material-mixing ratios is dithered = material, whereas 1 indicates deposition of material. This set of bitmap
into the material droplet deposition descriptions in the form of a binary files is then sent to the printer to instruct it to build a part accordingly.
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This described process is executed for each generated layer. A layer is
generated at machine-dependent vertical layer deposition heights (for
example, at every 12 um) from the enclosing object’s lowest to highest
positions. After the last layer is processed and the material deposition
instructions have been sent to the printer, a physical object will be ad-
ditively manufactured. Two examples using this method are shown in
Fig. 3 (G and H).

Figure 3G contains an archaeological point cloud consisting of
3.6 million points, generated through photogrammetry methods (18)
provided through a cloud-based photogrammetric processing service
(20). The point cloud was processed from its original obtained form
with minor postprocessing operations. In addition to 3D coordinates,
an RGB color attribute was associated with each point extracted from
the accompanying image data. The point radius in Fig. 3G was specified
as 0.5 mm, resulting in a surface thickness of about 1 mm and an overall
opaque, solid appearance of the printed object. Figure 3H shows a
digital elevation model of the moon, provided as gridded data records
by NASA’s Planetary Data System and captured by the Lunar Orbiter
Laser Altimeter aboard the Lunar Reconnaissance Orbiter (21). The
data consist of 21.2 million points with color information that was gen-
erated as a function of surface elevation. For this example, a point radius
of 0.125 mm was used, resulting in an approximately 0.25-mm-thick
semitranslucent surface.

Volumes

Volumetric data can be obtained from numerous scientific fields. In the
medical sciences, for example, volume-based data are generated from
magnetic resonance and x-ray computed tomography (CT) approaches.
In simulations, volumetric representations are used for spatial domain
discretization in finite-difference and finite-element approximations of
partial differential equations for the modeling of fluids and solids. For
the representation of a discretized scalar or multidimensional field, the
use of regular or adaptive grids—where each grid node stores one- or
multidimensional information—is quite common. Additive manufac-
turing processes use surface representations that, for a given volume,
can be generated by using isosurface extraction methods such as march-
ing cubes (22) or dual contouring (23). However, these methods pro-
duce visible loss in detail when compared to the original data set, and
volumetric gradients of the original data cannot be reproduced with
these methods. Moreover, to assign uniquely different materials to dis-
tinct regions in space, distinctive domains must be isolated through
segmentation methods (24), which can further complicate data pre-
processing for 3D printing. By using voxel-printing methods, super-
fluous preparation overhead and loss in detail can be prevented. This
approach enables one to directly translate volumetric property gradients
to 3D printable material gradients. Hence, if preservation of the given
data representation is of importance, including volumetric color, trans-
parency, or continuous material property transitions, our method
presents a valuable alternative to current practices.

Our method for additively manufacturing objects that are repre-
sented as volumes is given in Fig. 4. First, an outer enclosure containing
the volumetric data is specified, from which the dimensions and num-
ber of layers containing material information are calculated. This can be
done via a simple bounding box or a more complex extracted isosurface
as shown in Fig. 4 (G and H, respectively). However, if the source vol-
ume provides a clear distinction between those voxels that do not repre-
sent internal information and those that do, this boundary description is
redundant and a 3D printable surface can be reconstructed from the
volume alone. Similarly, in the process of printing point clouds, the vol-
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ume data are processed layer by layer (Fig. 4D), and for every layer, a
material description in raster file format is generated. The spatial
information of each pixel is used to sample the volume, and interpola-
tion methods such as trilinear interpolation can be used to determine
the pixel’s material information (Fig. 4E). Pixels placed within the outer
shell, not occupied by the volumetric data itself, will result in transpar-
ent resin droplet information. Voxel data can be directly converted to a
rasterized description by matching the source volume’s voxel resolution
to the printer’s droplet-voxel resolution. Using this approach, however,
does not permit the visualization of intermediated transparencies po-
tentially encoded in the voxel. Hence, interpolation of the voxel data
for each pixel in a printing layer might be necessary for best results
(Fig. 4E). As previously shown, each layer is dithered to raster files
containing the material droplet deposition descriptions (Fig. 4F).

Figure 4 (G and H) shows two examples of volumes additively
manufactured through our method, where properties from the source
volumes are converted into transparent material gradients. Figure 4G
shows an example where the flow of three fluids is simulated inside a
volume, resulting in chaotic mixing and the formation of realistic
patterns. Figure 4H shows a cross section of the volume of a patient’s
hand with arthritis that was captured through CT scanning. The data
stored in the captured volume represent radiodensity in the Hounsfield
scale, which represents the relative inability of electromagnetic radiation
to pass through different tissues and bone in the human body. On
screen, these data sets are usually visualized as grayscale gradients,
where white represents the densest bone areas and black represents
air, with the intermediate grayscale values corresponding to other tissue
types in the patient. In Fig. 4H, the radiodensity gradient in the captured
CT scan volume is converted to a material gradient of opaque white
material (bone) and completely transparent material (skin/soft tissue).
An isosurface generated from the CT scan was used as the outer volume
containment. As the examples show, some data sets have a natural en-
closure, such as the CT scan of a hand shown in Fig. 4H that can be
obtained through isosurface reconstruction, while others, such as the
fluid shown in Fig. 4G, do not. Therefore, the choice of enclosure needs
to be made on a case-by-case basis. Our method is not constrained to
regular grids, and we give an additional example of volumetric data rep-
resented as a tetrahedral mesh in fig. S7. The level of detail and high
fidelity of the seamlessly varying transparency gradient in the above
examples demonstrate the strength of our approach, especially for the
reproducible additive fabrication of volumetric data. In contrast, com-
mon 3D printing workflows using segmentation strategies are not ca-
pable of producing this level of visual quality.

Curves and graphs

Visualizations using curves and graphs are one of the simplest tech-
niques to present complex information in a comprehensible fashion.
While graphs and networks are typically known to represent spatial re-
lationships, curves and line-based visualizations are often used to con-
vey a sense of motion where it is not otherwise perceivable. For example,
superposition of nuclear magnetic resonance spectroscopy structures of
macromolecular complexes are often visualized through graphs (25),
while velocity and magnetic fields are often showcased by flow lines,
generated by tracing particles in the given fields. For common printing
workflows, such 1D curve and graph data must be converted to closed
two-manifold meshes. For curves, this can be easily achieved by lofting
operations, while for graphs and networks, algorithms generating po-
lygonal struts are common (26). The generation of surface geometries
causes significant computational overhead, especially for data sets with
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Fig. 4. Volumetric data processing workflow and representative 3D-printed models from volumetric data sets. (A) Initial volumetric data from which an external
enclosure is generated in (B). (C) Layers are generated and processed in parallel. (D) Here, a voxel intersecting a layer is shown and (E) for each pixel within a given layer, its
position information is used to find interpolated values for per-pixel material data from the surrounding voxel. (F) Material information is dithered into binary material
deposition descriptions. (G) and (H) show representative 3D-printed models from volumetric data sets. (G) A computational fluid simulation of the chaotic mixing of white
and green fluids in a transparent volume. (H) A CT scan of the left hand of a patient with arthritis. The radiodensity information stored in the CT volume is mapped to a
material gradient of opaque white and transparent material. White areas represent bone with the highest density and transparent regions represent skin and soft tissue,
while semitransparent gradients in between represent lower-density bone, muscles, and tendons. In this example, the transparency was globally adjusted to emphasize
the subtle differences in bone mineral density, while the local skin contours define the external hull geometry of the hand.

many lines, curves, and intersections. We therefore propose a method  the vertices of line segments or, for example, in the case of Bezier curves,
that integrates curve and graph data directly with the voxel-printing  in their control points. The input data are traversed layer by layer, and—
process, without the need to generate a mesh structure. for each pixel within each layer—the spatially closest line segment or curve

Figure 5 illustrates our voxel-printing method for processing curve or  in a given distance is queried (Fig. 5E). The properties associated with the
graph data. Properties such as color and transparency can be stored in  input data set are interpolated at the point on the curve or line segment
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Close-up of graph complex Pixel’s value determined by Transferred
in relation to current layer proximity to segments | material information

\————— N

which dimensions and number of printing layers are determined (C). (D) For each pixel in each layer, the closest curve or line segment is queried (E), and properties associated with
the curve or line segments are interpolated and rasterized to the layer. (F) Every material information layer is dithered into binary material composition layers, one for each material
that is needed to fabricate the input data set. (G) Protein crystal structure of apolipoprotein A-l. The data set consists of 6588 points (representing each atom) and 13,392 line
segments, representing the interatomic bonds. (H) White matter tractography data of the human brain, created with the 3D Slicer medical image processing platform (37),
visualizing bundles of axons, which connect different regions of the brain. The original data were acquired through diffusion-weighted MRI, where 48 scans are taken for each
MRl slice, to capture the diffusion of water molecules in white matter brain tissue, which is visualized as 3595 individual fibers. The fiber data set consists of a total of 291,362 line
segments that are colored according to their orientation in 3D space.

that is closest to the current pixel while still within a point-to-line dis- Figure 5 (G and H) shows two examples of line-based data sets.
tance threshold, and the evaluated information is assigned to the querying ~ Figure 5G shows the reconstruction of the 3D structure of apolipoprotein
pixel. Each material information layer is then again dithered to material ~ A-1, a protein necessary for lipid metabolism in the human body. The
deposition descriptions. By using a transparent enclosure, especially de-  data were taken from the Protein Data Bank (27), an Internet database
tailed visualizations with many discontinuous elements are producible.  that archives the 3D structures of large biological molecules. These data
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are commonly visualized on screen in the form of a ball-and-stick
model, where atoms are visualized as points and their bonds to neighbor-
ing atoms are visualized as line segments. The lines are voxel-printed
according to the method described above, whereas the points are pro-
cessed according to the method described in the “Point clouds” section.

Figure 5H shows white matter tractography data of a human brain.
The fibers in this visualization represent bundles of axons in high re-
solution, which connect different regions of the brain. These fiber data
are created using diffusion tensor imaging, a process that captures the
diffusion of water molecules in white matter brain tissue through MRL
The line segments are color-coded according to their 3D orientation. In
this example, an isosurface was extracted from the MRI data to act as an
easily interpretable transparent enclosure.

Image-based

Image-based data sets are frequently used to record the fine structural
details of 3D objects. Such a format allows for convenient previewing,
editing, and file handling. Furthermore, this format of data representa-
tion is most prevalent in biomedical imaging disciplines, such as radi-
ology (x-ray, CT, MR, and ultrasound) or confocal microscopy, where
physical volumes are observed layer by layer and captured as image
stacks. A different approach uses a single image to store spatial infor-
mation, mostly elevation or displacement, in scalar or multidimensional
raster formats. One such example is digital elevation models in geo-
graphic information systems, where height maps are used to represent
topographic surface elevation (fig. S8). Similarly, bump-, normal-, and
vector-displacement maps are frequently used in visualization to repre-

10 mm

sent depth and surface features in the context of the reproduction of
archaeological or cultural heritage artifacts (28).

As image-based data sets are already in a raster file format, they are
easily integrated into our voxel-printing workflow. In most cases, an
image stack must be preprocessed before the voxel-printing process
to achieve the best visual results. Noise filtering or image alignment
can be important preprocessing steps. Following preparation, image
stacks can be processed using an approach similar to that described
in the sections above. As the input image stack and the material infor-
mation layers are both in a raster file format, one pixel from the image
stack could be mapped to one pixel in the material description. How-
ever, since several material droplets are needed to generate intermediate
material compositions, for best results, one pixel from the image stack
should be interpolated to several pixels in the material description.

Figure 6 shows two examples of voxel-printed image data captured
via optical microscopy methods. Figure 6A contains a confocal micros-
copy data set that embodies in vitro reconstructed living human lung
tissue grown in a microfluidic device (29). The data set shows physio-
logical pseudostratified airway epithelium, as found in the human lung.
Here, the transparency of the cilia was slightly altered to better empha-
size the organization of the other cell types. The confocal microscopy
image stack in Fig. 6B shows a magnified tissue sample of a “Brainbow”-
labeled mouse hippocampus, imaged through expansion microscopy
(proExM) (30). With this microscopy method, a specimen is anchored
to a swellable gel that physically expands the sample before it is observed
under a conventional microscope, offering results comparable with the
use of specialized super-resolution microscopes (30).

W' T

Fig. 6. Representative 3D-printed models of image-based data. (A) In vitro reconstructed living human lung tissue on a microfluidic device, observed through
confocal microscopy (29). The cilia, responsible for transporting airway secretions and mucus-trapped particles and pathogens, are colored orange. Goblet cells, re-
sponsible for mucus production, are colored cyan. (B) Biopsy from a mouse hippocampus, observed via confocal expansion microscopy (proExM) (30). The 3D print

visualizes neuronal cell bodies, axons, and dendrites.
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APPLICATIONS

Conservation and preservation of cultural artifacts
Three-dimensional printing technologies have advanced by increasing
the achievable resolution in 3D-printed objects and allowing more and
more materials to be used in the printing process. This, in turn, makes
the lifelike reproduction of objects feasible and motivates the use of 3D
printing technology in the cultural heritage sector. These efforts can
be observed in the recreation of the Temple Lion (currently based at
Harvard’s Semitic Museum) through 3D printing or the initiative to 3D
print Cornell University’s collection of circa 10,000 cuneiform tablets
from ancient Mesopotamia (31).

The Venice Charter states that the aim of restoration “is to preserve
and reveal the aesthetic and historic value of the monument and is based
on respect for original material and authentic documents. It must stop
at the point where conjecture begins, and in this case moreover any ex-
tra work which is indispensable must be distinct from the architectural
composition” (32). This statement implies that common geometry pro-
cessing tasks used in the visualization and reconstruction of cultural
heritage, such as Laplacian smoothing or volumetric diffusion for hole
filling (33), should be minimized or entirely avoided. However, to
achieve the watertight representations required to produce 3D printable
replicas using traditional surface meshing-based workflows, these
methods are unavoidable. Our voxel-printing method can partially
eliminate this need for the generation of surfaces from 3D-scanned
point clouds by instead 3D printing point cloud data directly within
transparent volumes. In addition, the use of multiple color material
resins in combination with continuous material gradients between
colors achieved by high-resolution dithering allows a wide range of
color fidelity in the potential replica.

The incorporation of materials such as transparent resins for
controlled translucency enables the creation of realistic object replicas
with subsurface light transportation. Furthermore, the use of flexible
materials helps to mimic stiffness in a recreated artifact, making it
not only visually realistic but also “materially faithful.” While standards
for representation and reliable conversion methods have yet to be devel-
oped, the workflows presented here could help in laying the ground-
work for the large-scale adoption and utilization of this technology,
making these methods valuable for applications in the representation
and conservation of cultural heritage.

Presurgical planning

Three-dimensional printing as a visualization method is already being
used to create models for presurgical planning and intraoperative ori-
entation, reducing risks for the patient and shortening the duration of
surgical procedures (34). The typical process for creating additively
manufactured medical visualizations involves a CT scan or an MRI
scan, where the scanned image data are segmented and converted into
a set of distinct model parts with homogeneous material compositions
per part (24).

Given that the initial volumetric data are converted into discrete
parts, valuable volumetric information is lost, compromising both the
integrity and consistency of the raw data. A useful strategy to account
for such data loss is to segment the scan into several model parts that
can be printed as an assembly, where every part is assigned a different
material. These segmentation workflows are, however, time-consuming,
and the resulting model only coarsely approximates the original
scanned data, resulting ultimately in loss of visual fidelity. In contrast,
our approach for deriving the material composition of the 3D-printed
model directly from the scanned data avoids the aforementioned
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challenges. We argue that our approach is capable of reproducing
the original data more quickly and with higher visual fidelity, proving
to be beneficial, especially in surgical scenarios where visual accuracy is
desirable.

The examples shown above focus on high-resolution visualization of
data through 3D printing of optically transparent yet rigid materials.
The incorporation of flexible materials in the printing process could po-
tentially enable the reproduction of scanned body parts such as organs,
bones, and soft tissue such that they can be physically dissected as part
of the presurgical planning process.

Learning and education

Three-dimensional printing is already being used as a tool for the prep-
aration of educational content in various fields ranging from anatomy
(35) to chemistry (36) and mathematics. This widespread adoption may
be attributed to the technology’s increasing availability and its ability
to produce complex yet customized objects at a low cost. In addition,
additive manufacturing can be used to digitally fabricate customized
teaching/learning aids as an alternative for ready-made, hands-on edu-
cational materials and model Kkits.

The implementation of the voxel-printing methods described
herein, in combination with 3D objects printed with high spatial reso-
lution in manufacturing, may result in the production of artifacts with
evermore engaging qualities, reducing or altogether overcoming hurdles
associated with data that are “lost in translation,” and a compromised
quality of scientific communication. The 3D-printed display technolo-
gies presented herein do not require specialized hardware or electronics
to function, making them easy to use and accessible to a broad range of
audiences. Moreover, they are produced as single solid objects, making
them robust and durable. The models produced with our methods can
be used in classrooms, science centers, and museums, as stand-alone
visualizations or tangible accompaniments for existing screen-based
visualizations.

DISCUSSION

The data physicalization framework proposed herein offers a unified
approach that enables the production of physical visualizations based
on a wide variety of data sets found in scientific visualizations, exceeding
the visual quality of common fabrication workflows and methods as de-
scribed in Introduction.

By using recent advances in multimaterial 3D printing technologies
in combination with voxel printing, the presented process allows less
preprocessing (such as segmentation and hole filling) of the used data
sets compared to methods using boundary representations. This, in
turn, reduces information loss and enables a more direct translation
of data to matter. In addition, larger data sets can be fabricated at min-
imal additional processing cost by circumnavigating the generation of
boundary representations and working on the data directly as is shown
in fig. S1. As illustrated, for large assemblies of line structures, a 3D strut
algorithm is traditionally used to create a tubular enclosure for every
polygon chain, which consequentially increases the vertex count of
the new data set by a factor of 10 compared to the original file. This file
size increase can be mitigated through the processes outlined in the
“Curves and graphs” section.

In this way, our methods allow the production of objects with min-
imal information loss, compared to other 3D printing methods as
illustrated in fig. S2. For example, an image stack has to be converted
into a 3D volumetric data structure, where every image pixel is mapped
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to a volume voxel. Since each image of the stack already was collected at
high resolution, the generated volumetric data structure of 2 billion
voxels makes any processing on this data set prohibitively computa-
tionally intensive. For 3D printing, the generation of an STL file through
isosurface extraction can result in a surface description consisting of a
huge number of polygons that still fail to capture the fine details of the
original file.

Furthermore, this approach allows the data to be readily translated
from screen-based representations to physical models. The data objects
achieve a similar visual resolution and similarly high fidelity to the
digital visualizations, which is currently not possible through any other
method in the context of data physicalization. At the same time, the data
objects can be closely matched to the appearance of their screen-based
counterparts, as is shown in fig. S6. This is mostly due to the relationship
between rendering and 3D printing established by fundamentally using
the same workflows. While data visualized for on-screen rendering are
transformed and rasterized to a 2D image displayed on a screen, in our
method, data are transformed and rasterized to 2D layers that are then
used in the fabrication process. In comparison to screen-based visual-
ization where one image is displayed, the fabricated object contains
thousands of layers where each layer has equivalent resolution to one
displayed image, and while typical interactive editing of data and other
user interface features are no longer available in the 3D-printed models,
intuitive tactile and material interactions are gained.

Still, the precise transition from real physical object over data acqui-
sition to replication through 3D printing remains challenging. The
characterization of perceived transparency and the creation of psycho-
metric mappings from material properties to perceptual uniformity is
still a very new and ongoing area of research (14) and will improve these
transition processes in the future.

Furthermore, our method comes with two drawbacks, both of which
are associated with the clear build material. It is impossible to print
without support material, which either supports overhanging geome-
tries or acts as a glue layer that stabilizes the data objects during the
printing process. Therefore, for example, in the case of data visualization
within a clear bounding box, at least one cuboid side facing the printer
bed will be contaminated with support material. While support material
removal is quick and straightforward, it leaves those areas that were ex-
posed to the support material with a matte finish. In case of the clear
material, the matte finish affects optical clarity, as seen in fig. S5 (A and
B). However, because this is just a surface effect, optical clarity can be
restored by polishing and clear-coat lacquering the 3D-printed artifact,
which, in the case of a basic geometric shape, can be achieved within 15
to 30 min. A further effect observed when working with the clear ma-
terial is light refraction from curved surfaces. As seen in fig. S5C, due to
the high surface curvature of the brain folds, the fiber tractography data
inside the 3D print are radically distorted, but when viewed from the
opposite flat polished cross section in fig. S5D, the brain has a transpar-
ent, glass-like finish that allows an undisturbed view of the fiber data.
This visual characteristic must be considered when creating curved
surfaces for a data object. However, considering the advantages that
the clear build material brings to the fabrication process and the fact that
the actual data physicalization process can be somewhat autonomous,
minor design constraints and postprocessing steps are acceptable.

CONCLUSION
Here, we have shown that a variety of data sets commonly found in sci-
entific visualization can be directly manufactured into physical entities
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by using voxel-based 3D printing. The methods described and imple-
mented herein point toward new design opportunities for which the
perceived barriers between the digital and physical domains can be ob-
viated with ease, enabling the physical visualization of almost any type
of data set. Resulting physical visualizations closely resemble, if not per-
fectly match, their screen-based analogs, making this process valuable
for data analysis and visualization workflows across disciplines and
scales. It is thus likely that scientific visualization tools in the future will
incorporate methods similar to the ones described herein, enabling
users to access, edit, and digitally fabricate visualizations at the press
of a button. Moreover, in the future, capabilities and protocols to con-
vert digital data into their physical embodiments such as those demon-
strated herein may reveal insight into the subject they are representing
and propose—for example, through haptic engagement—materially
informed and sophisticated ways to engage with those objects in real life.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/5/eaas8652/DC1

Supplementary Information

fig. S1. White matter tractography data, created with the 3D Slicer medical image processing
platform (37).

fig. S2. Image stack that captures data observed through protein-retention expansion
microscopy (30).

fig. S3. Variability in optical transparency as a function of transparent opaque resin mixing
ratios and feature size.

fig. S4. Transmittance behavior of material samples with different transparent-to-opaque
material ratios.

fig. S5. Two observed visual characteristics that arise from the use of the transparent build
material.

fig. S6. Comparison of 3D renderings to 3D-printed models produced with our method.
fig. S7. Brief illustration of the conversion of tetrahedral meshes to 3D printable models
through our method.

fig. S8. Elevation map of a portion of the Brooks Range in Northern Alaska.
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