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Data Descriptor: Spatiotemporal
incidence of Zika and associated
environmental drivers for the
2015-2016 epidemic in Colombia
Amir S. Siraj1, Isabel Rodriguez-Barraquer2, Christopher M. Barker3, Natalia Tejedor-Garavito4,5,
Dennis Harding6, Christopher Lorton6, Dejan Lukacevic6, Gene Oates6, Guido Espana1,
Moritz U.G. Kraemer7,8,9, Carrie Manore10, Michael A. Johansson11,12, Andrew J. Tatem4,5,
Robert C. Reiner13 & T. Alex Perkins1

Despite a long history of mosquito-borne virus epidemics in the Americas, the impact of the Zika virus (ZIKV)
epidemic of 2015–2016 was unexpected. The need for scientifically informed decision-making is driving research
to understand the emergence and spread of ZIKV. To support that research, we assembled a data set of key
covariates for modeling ZIKV transmission dynamics in Colombia, where ZIKV transmission was widespread and
the government made incidence data publically available. On a weekly basis between January 1, 2014 and
October 1, 2016 at three administrative levels, we collated spatiotemporal Zika incidence data, nine
environmental variables, and demographic data into a single downloadable database. These new datasets and
those we identified, processed, and assembled at comparable spatial and temporal resolutions will save future
researchers considerable time and effort in performing these data processing steps, enabling them to focus
instead on extracting epidemiological insights from this important data set. Similar approaches could prove useful
for filling data gaps to enable epidemiological analyses of future disease emergence events.

Design Type(s) data integration objective • database creation objective

Measurement Type(s) transmission of virus

Technology Type(s) database extract, transform, and load process

Factor Type(s) DataTypes

Sample Characteristic(s)
Zika virus • Colombia • Homo sapiens • Aedes aegypti • anthropogenic
environment • elevation • humid air • hydrological precipitation process •
temperature of air • vegetation layer
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Background & Summary
Zika virus (ZIKV) emerged as a pathogen of global concern in 2015 when it rapidly spread through the
Americas and was associated with Guillain-Barré syndrome (GBS) in adults and congenital Zika
syndrome (CZS) in fetuses and neonates1. Though ZIKV had been discovered several decades earlier,
recognition of severe outcomes and the explosive nature of ZIKV epidemics was only established
recently2–5. Moreover, an estimated 80% rate of asymptomatic infection2,7–8 and the presence of more
infections with relatively mild symptoms who go unreported9 complicate efforts to estimate disease
incidence and further make modeling the spread of ZIKV a challenging task. Despite these issues and the
chronic lack of data at the appropriate spatio-temporal scales, efforts to understand the spatiotemporal
dynamics of ZIKV rely heavily on access to data about its spatiotemporal drivers6.

ZIKV is transmitted primarily by Aedes aegypti mosquitoes, which also transmit chikungunya, yellow
fever, and dengue viruses. Like these other viruses, ZIKV transmission is highly dependent on the
environment. Climatic conditions, for example, regulate the population dynamics of vectors10–11, and the
built environment plays an important role in human-vector interaction and in providing breeding
grounds for mosquitoes12. Even though the importance of these factors is widely recognized, their specific
roles are more difficult to understand but can be aided by model-based analysis combining
epidemiological and environmental data13.

The availability of spatiotemporal incidence data is critical to both current and near-future responses
and to planning for responses to emerging infectious disease outbreaks. For example, during the Ebola
epidemic in 2014-2015, mathematical and statistical models using incidence data were critical to
informing resource allocation and placement of new hospital beds14, plans for vaccine trials15, estimates
of intervention effectiveness, and understanding how the outbreak started and where it spread in time
and space16. Similarly, spatiotemporal ZIKV data has informed efforts to estimate the number of people
at risk for infection and the number of pregnant women infected6. Such data are also potentially
important for selecting sites for ZIKV vaccine trials17.

Despite the widely recognized importance of spatiotemporal incidence data, there is often limited
availability of such data sets for emerging infectious diseases18. In the case of Zika, there has been some
effort to broaden access to these data (e.g., the cdcepi Github repository19), but the data available through
these settings are often not internally consistent and are not made available with important covariates,
such as population and weather conditions. Colombia is one country for which data has been made
available online by its Instituto Nacional de Salud20 and is of particular interest due to the high resolution
of data there (available weekly for each of 1,122 municipalities). This data set is also of particular interest
for modeling the spatio-temporal spread of ZIKV due to Colombia’s diverse landscape and because of
substantial heterogeneity in the timing and intensity of ZIKV transmission there21. Together, these
factors offer a unique opportunity to examine the role of environmental and social influences on the
spread of ZIKV22.

In addition to spatiotemporal incidence data, several variables are commonly incorporated into
analyses of the transmission dynamics of ZIKV and related pathogens23,24. First, temperature plays a
dominant role in ZIKV transmission due to its influence on vector and virus life traits25,26. Because the
effect of temperature on transmission depends not only on mean temperature but also on daily
temperature range27, we include estimates of mean, minimum, and maximum daily temperature. Second,
a number of metrics related to moisture—including precipitation, humidity, and normalized difference
vegetation index (NDVI)—are commonly used for modeling mosquito population dynamics due to their
relevance to the immature stages of the mosquito life cycle11. Third, we include spatiotemporal estimates
of relative mosquito abundance28, a spatial estimate of purchasing power as a proxy for the effect of
socioeconomic effects on mosquito-human contact6,29, and spatial estimates of travel time to allow for
exploration of the effects of connectivity on spatiotemporal transmission dynamics24. Fourth, we include
demographic projections30 of total population and annual births to allow for quantification of the
population at risk of ZIKV infection and severe outcomes such as GBS and CZS.

Here, we collated data on the aforementioned variables at three administrative scales on a weekly basis
between January 1, 2014 and October 1, 2016, which spans the majority of ZIKV transmission activity in
Colombia. Our hope is that this effort will increase access to this data set and reduce duplication of the
considerable effort required to process data for epidemiological analyses of ZIKV transmission dynamics.

Methods
To achieve our central objective of assembling and collating multiple data sets pertaining to ZIKV
transmission in Colombia, we first identified key data and then translated those data to comparable
spatiotemporal resolution using a variety of methods. In some cases, this was as simple as downloading
raster datasets and clipping them to shape files. In other cases, this involved statistical modelling to
transform existing data products from certain scales into a single data product at some other desired
scale. In all cases, our methods involved taking input data (Table 1) and generating output data (Table 2
(available online only), Data Citation 1) at a weekly timescale between January 1, 2014 and October 1,
2016 for each of three administrative scales (Fig. 1). Throughout, we generated output data at the national
scale, for each of 33 departments, and for each of 1,122 municipalities, as defined by GIS shapefiles from
the National Geographical Information System of Colombia31.
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Zika case reports
The weekly number of Zika cases, by municipality, was reconstructed using two data sources. The main
data source was a website20 of the Colombian National Institute of Health (Instituto Nacional de Salud)
where the official weekly reports on the cumulative number of Zika suspected and confirmed cases for
each municipality have been published since the beginning of 2016.

While the peak of the Colombian epidemic occurred in 2016, a significant number of cases were
reported during 2015. In order to capture this initial portion of the epidemic, we used an additional data
source, also available in the INS website20. Unfortunately, the number of cases reported in the latter data
source seemed to consistently underreport the total number of cases reported by the INS at the national
scale. For example, while the official data source reports a cumulative number of 11,712 cases by the end
of 2015, this secondary source only reports 3,875 cases for this same period. Therefore, in order to
reconstruct the 2015 portion of the epidemic while accounting for the better known total number of
cases, we multiplied the weekly 2015 data by a correction factor. This correction factor was calculated as
the ratio between the cumulative number of cases reported by each municipality up to the first week of
2016 according to the official source and the alternative source. The raw and the corrected weekly counts
for each municipality are included in the data set. To account for cases from unknown municipalities
within a department, we also provide data at the departmental level.

Human demographics
We obtained gridded population data across Colombia for the year 2015 at a resolution of 3 arc seconds
(~93 m) from the WorldPop website (http://worldpop.org.uk). Similarly, we obtained high-resolution (30
arc seconds) unpublished gridded data on the number of births for the year 2015 from the WorldPop
project. These high-resolution products were developed to ensure consistencies with subnational data on
sex and age structures, as well as subnational age-specific fertility rates, while adjustments on births were
made at subnational scales using data from the government of Colombia32,33, followed by national-level
adjustments to contemporary numbers based on 2012 and 2015 United Nations Population Division
data30,34.

Spatial aggregation of covariates
Aggregation of raster data at the level of administrative units requires some assumption about how raster
values should be weighted to obtain a single value for an administrative unit. Due to the fact that Zika
virus transmission occurs predominantly in human-dominated areas, we used human population
(WorldPop Project) as our weighting variable. We applied this weighting procedure to aggregate all
covariates at municipal (e.g., as in Fig. 2), departmental (e.g., as in Fig. 3), and national levels.

Aedes aegypti abundance
We obtained one hundred posterior samples of Aedes aegypti occurrence probabilities in raster format,
from the published work of Kraemer et al.28, which we used to derive weekly mosquito abundance
measures for all 52 weeks of the year. We based our method on the assumption that mmosquitoes at time
t, m(t), can be represented by a Poisson distribution with rate parameter λ=− ln(l-occurrence
probability), consistent with existing ZIKV transmission models29,35. We obtained such an estimate of the
relative density of mosquitoes across a 4.65 km x 4.65 km grid for each of 52 weeks. In addition, we
generated aggregated values at the municipality, department and national scales after weighting the raster
data values by population (see the section on Spatial aggregation of covariates).

Temperature
We downloaded meteorological readings from 30 stations across continental Colombia from National
Oceanic and Atmospheric Administration (NOAA)’s Climate Data Online, an online archive of daily
meteorological readings36. The variables we extracted from this data set included minimum daily
temperature, maximum daily temperature, mean daily temperature, and relative humidity, all on a daily
basis between January 1, 2014 and October 1, 2016.

To facilitate interpolation of these climate variables across a more complete spatial coverage of the
country, we downloaded a digital elevation dataset at a resolution of 30 arc seconds from the Global 30
Arc-Second Elevation (GTOPO30) product37. Similarly, we downloaded the WorldClim gridded long-
term average of monthly minimum temperature, maximum temperature, and precipitation at a 4.65 km x
4.65 km spatial resolution38, as well as NOAA’s Climate Prediction Center (CPC) global monthly mean
air temperature at 0.5 arc-degrees resolution39.

To generate smooth, high-resolution surfaces of climate variables based on calibration to point
readings from the 30 meteorological stations, we tested two approaches of spatial interpolation: (a) using
non-parametric surface fitting with thin plate splines (TPS) with or without fixed-factor covariates40; (b)
using spatial models (kriging) with or without covariates41. We selected the best interpolation models for
each environmental variable based on leave-one-out cross validation, as described in the Technical
Validation section.

The thin plate spline (TPS) follows the general form,

Y xð Þ ¼ μ xð Þ þ P xð Þ þ ε ð1Þ
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where Y is the dependent variable evaluated at location x, μ is the fixed effect component of the model
with optional covariates at location xi, P is the implicit spline polynomial function over the spatial
coordinates, and ε is measurement error, assumed to be uncorrelated across sites and normally
distributed with mean zero and standard deviation σ.

The kriging approach follows the concept that spatial autocorrelation is dependent on distance
between locations. We used the krige function in the geoR library of R with parameters chosen based on
maximum-likelihood estimation42. The model of a spatial process indexed by spatial locations xi follows

Y xð Þ ¼ μ xð Þ þ S xð Þ þ ε ð2Þ
where Y is the dependent variable evaluated at location x, μ is the fixed effect component of the model at
location xi, S is a stationary Gaussian process with variance σ2 (partial sill) and a correlation function
parametrized by φ (range), and ε is the error term with its variance τ2 (nugget variance). When μ is
included, the trend is implemented using lm, the regression model function in R, and S(x) is fitted to the
residuals of the regression model41.

Name Acquisition
year

Source Version,
Publication year,
License

Data Type Spatial Resolution Format/ Pixel Type
& Depth

Spatial
Reference

Spatial
Coverage

GTOPO30 Gridded
Elevation

o1996 USGS37 1996, CC0 1.0 Elevation, continuous raster 30” (~930 m) Geo-tiff/flt32 GCS WGS 1984 Regional

CPC Surface Air
temperature

2014–2016 Fan & van den Dool39 2008, CC0 1.0 Monthly surface air
temperature, continuous raster

1800” (~56 km) ESRI grids/flt32 GCS WGS 1984 Global

Worldclim Average
Temperature

1960–1990 Hijmans R.J., et al.38 v1, 2005, CCBY 4.0 Average monthly
temperature, continuous raster

150” (~4.65 km) Geo-tiff/flt32 GCS WGS 1984 Global

Worldclim Minimum
Temperature

1960–1990 Hijmans R.J., et al.38 v1, 2005, CCBY 4.0 Average monthly minimum
temperature, continuous raster

150” (~4.65 km) Geo-tiff/flt32 GCS WGS 1984 Global

Worldclim Maximum
Temperature

1960-1990 Hijmans R.J., et al.38 v1, 2005, CCBY 4.0 Average monthly maximum
temperature, continuous raster

150” (~4.65 km) Geo-tiff/flt32 GCS WGS 1984 Global

Daily Station Mean
Temperature

2014–2016 NOAA36 2016, CC0 1.0 Daily mean temperature reading
from 30 stations, continuous vector

Comparable to 1” (~30 m) HTML/flt32 GCS WGS 1984 Colombia

Daily Station
Minimum
temperature

2014–2016 NOAA36 2016, CC0 1.0 Daily minimum temperature reading
from 30 stations, continuous vector

Comparable to 1” (~30 m) HTML/flt32 GCS WGS 1984 Colombia

Daily Station
Maximum
Temperature

2014–2016 NOAA36 2016, CC0 1.0 Daily maximum temperature reading
from 30 stations, continuous vector

Comparable to 1” (~30 m) HTML/flt32 GCS WGS 1984 Colombia

Daily Station Relative
Humidity

2014–2016 NOAA36 2016, CC0 1.0 Daily relative humidity reading from
30 stations, continuous vector

Comparable to 1” (~30 m) HTML/flt32 GCS WGS 1984 Colombia

Daily Mean Dew Point
Temperature

2014–2016 NOAA36 2016, CC0 1.0 Daily mean dew point temperature
reading from 30 stations,
continuous vector

Comparable to 1” (~30 m) HTML/flt32 GCS WGS 1984 Colombia

Gridded Population of
the World (GPW)

2005 CIESIN50 v3, 2004, CCBY 4.0 Global Population Estimates,
continuous raster

150” (~4.65 km) Geo-tiff/flt32 GCS WGS 1984 Global

Confirmed and
Suspected Cumulative
ZIKV Cases

2015–2016 INS20 2016 Weekly suspected and confirmed
cumulative ZIKV cases by
municipality
from two INS sources

NA CSV/flt32 NA Colombia

Occurrence
Probability of Aedes
aegypti

1960–2014 Kraemer et al. 201528 2015, Author Global occurrence probabilities of
Aedes aegypti, continuous raster

150” (~4.65 km) Geo-tiff/flt32 GCS WGS 1984 Global

GEcon – Gross Cell
Product

2005 Nordhaus49 2006, CCBY 4.0 Global gridded gross cell product,
continuous raster

3600” (~111 km) XLS/flt32 GCS WGS 1984 Global

WorldPop Population 2015 WorldPop30 2016, CCBY 4.0 Population count, continuous raster 3” (~93 m) Geo-tiff/flt32 GCS WGS 1984 Colombia

WorldPop Births 2015 WorldPop30 2016, Author Count of births, continuous raster 30” (~93 m) Geo-tiff/flt32 GCS WGS 1984 Colombia

MODIS –MOD13A2
NDVI

2014–2016 Didan K.
(Data Citation 2)

v6, 2015, CC0 1.0 16-day NDVI from Terra MODIS,
continuous raster

30” (~930 m) HDF-EOS tiles/uint8 Sinusoidal Global

MODIS –MYD13A2
NDVI

2014–2016 Didan K
(Data Citation 3)

v6, 2015, CC0 1.0 16-day NDVI from Aqua MODIS,
continuous raster

30” (~930 m) HDF-EOS tiles/uint8 Sinusoidal Global

NOAA’s Satellite
Applications and
Research Rainfall
Estimates

2015–2016 NOAA44 2016, CC0 1.0 Daily precipitation estimates from
satellites, continuous raster

360” (~11 km) Net-CDF /uint8 GCS WGS 1984 Global

Travel Time to Major
Cities

2000 Nelson A.51 2008, CCBY 3.0 Travel time, continuous raster 30” (~930 m) Flt/flt32/flt32 GCS WGS 1984 Global

MODIS 500m Global
Urban Extent

2002 Schneider et al.52,53 2009, CCBY 3.0 Urban extent 15” (~465 m) Flt/flt32/flt32 GCS WGS 1984 Global

Administrative
Boundaries of
Colombia

2015 SIGOT, Colombia31 2015 Municipal administrative
boundaries, vector

Comparable to 15” (~465 m) ESRI polygon
shapefile tiles

GCS WGS 1984 Colombia

Table 1. Input datasets, used to generate gridded and administrative aggregate outputs.
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Due to Colombia’s proximity to the Equator, we ignored the small effect of distance distortion arising
from non-projected spatial layers on both models43. Because our goal is generating daily surfaces of
climate variables, rather than developing a predictive model that works for days outside those to which
we fitted the model, we treated every day separately and fitted a model for each day between January 1,
2014 and October 1, 2016 for which data was available. In addition to generating daily raster outputs and
aggregating them at weekly time steps, we generated aggregated values at the municipality (Figs 2a–c),
department (Fig. 3a) and national scales after weighting the raster data values by population (see the
section on Spatial aggregation of covariates).

Relative humidity
Rather than interpolating relative humidity directly based on station readings (which showed poor
estimates in preliminary results), we approached the task of estimating relative humidity indirectly. First,
we spatially interpolated weather station measurements of mean dew point temperature from the 30
stations across Colombia. This was followed by calculating relative humidity across the 4.65 km x 4.65 km
grid based on interpolated mean temperature and dew point temperature, using the August-Roche-
Magnus approximation for the saturation vapour pressure of water in air44, which follows

RH ¼ exp
- ab T -Tdð Þ

bþ Tdð Þ bþ Tð Þ
� �

ð3Þ

where T and Td are the mean temperature and dew point temperature in °C and a= 17.271 and b= 237.7
°C44. Finally, in addition to generating daily raster outputs and aggregating them at weekly time
steps, we generated aggregated values at the municipality (Fig. 2d), department (Fig. 3b) and national
scales after weighting the raster data values by population (see the section on Spatial aggregation of
covariates).

Normalized Difference Vegetation Index (NDVI)
Satellite-based technologies have been used to capture spatial variation in environmental factors related to
vector population dynamics45–47, including a commonly used index called Normalized Difference
Vegetation Index (NDVI) that captures the vegetation cover of regions. To account for spatial and
temporal variation in vegetation cover that could influence habitat suitability for Ae. aegypti, the primary
ZIKV vector, we downloaded NASA’s Moderate Resolution Image Spectro-radiometer (MODIS-Terra
and Aqua version 13A2) vegetation indices at 16-day temporal and 1 km x 1 km spatial resolutions (Data

Met. station reading

Rasterize

Re-sample/ 
re-project

Raster output

Multiply by population

Population weighted
spatial aggregate

Spatial aggregate

Generate weekly
gridded data

Generate daily gridded
data

WorldPop population

Travel time

Urban extent

Precipitation

NDVI

GEcon

GPW population

Administrative 
boundaries

Select spatial model 
based on leave-one-
out cross validation 

Figure 1. Schematic overview of the workflow used to produce the output raster files, and their spatial

aggregates at the municipal, departmental, and national scales. The input stages are shown in yellow, and the

processing stages are shown in orange, while the output stages are in green.
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Citation 2, Data Citation 3). These products have similar sensors but differ in their orbits as well as their
daily hours and directions of crossing the equator. We linearly interpolated between data points (days on
which data was reported) to generate a daily time series before aggregating the data back to a weekly
resolution. In addition, we generated aggregated values at the municipality (Figs 2e and f), department
(Fig. 3c) and national scales after weighting the raster data values by population (see the section on
Spatial aggregation of covariates).

Precipitation
Among the climate datasets we explored, precipitation proved to be the most spatially variable, making it
difficult to rely on spatial models to make accurate estimates. Our attempt of spatial interpolation of

Figure 2. Illustrative maps of municipality level weighted output variables for a single sample week.

Variables include minimum temperature (a), mean temperature (b) maximum temperature (c), relative

humidity (d), NDVI from Terra MODIS (e) NDVI from Aqua MODIS (f), total rainfall (g) average per capita

gross cell product in 2005 US$ standard value (h) and average travel time to major cities in 2000 (i).
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precipitation using ordinary kriging resulted in large deviations from the observed values of the 30
stations obtained from NOAA. As an alternative, we used satellite-based data from NOAA’s Center for
Satellite Applications and Research (STAR). We downloaded daily layers of the STAR rainfall estimates
at ~ 4 km x 4 km resolution48. Once we download the daily products, we subset and resampled them into
our standard resolution (4.65 km x 4.65 km) and spatial extent compatible with the other variables
considered, before averaging across each consecutive seven days to generate weekly gridded data. In
addition, we generated aggregated values at the municipality (Fig. 2g), department (Fig. 3d) and national
scales after weighting the raster data values by population (see the section on Spatial aggregation of
covariates).

Geographically based Economic data (G-Econ)
To account for socioeconomic differences, which are potentially associated with contact between humans
and the vector, we used one-degree resolution gridded estimates of 2005 purchasing power parity (PPP)
adjusted gross domestic product (GDP)49. To express the values in per capita, we divided the gridded
GDP by the corresponding population, the latter obtained from the Gridded Population of the World
product (v3)50 after resampling the latter to one-degree resolution. We chose this version of gridded
population data for this task given that it was the one originally used to generate the 2005 gridded GDP
values. Cells with missing values were imputed with the mean of the surrounding eight grid cell values.
Once we obtained a complete grid layer at a resolution of one-degree (~111 km at the equator), we
resampled the layer, without smoothing, to a resolution of 4.65 km x 4.65 km to match the resolution of
all other gridded layers. We additionally computed aggregated results at the municipality, department
and national levels after weighting them by the distribution of population (in the year 2005) within each
administrative unit (see the section on Spatial aggregation of covariates).

Travel time
To account for the general accessibility of each municipality and department, we used travel time data
downloaded from the European Commission’s Joint Research Center at a resolution of 30 arc seconds51.
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This definition of travel time is a measure of overall accessibility rather than of frequency of travel. It is
defined as the average length of time (in minutes) it takes individuals in a region to travel to the nearest
location with a population greater than 50,000. Large travel time is indicative of a region whose
population lives relatively far from urban centers. This gridded dataset has minutes of land-based travel
time to the nearest settlement with population greater than 50,000 (as of the year 2000). The data is
developed using a cost-distance model, which accounts for travel time increments based on the available
transport networks and other environmental and political factors51. We aggregated travel time weighted
by population at the municipal level to generate estimates of travel time for each municipality and
similarly for each department (see the section on Spatial aggregation of covariates).

Urban population
To identify the level of urbanization in each grid cell, we downloaded the MODIS global 2002 urban
extent raster dataset52,53, which has a binary (0 or 1) value for each 500 m x 500 m grid cell around the
globe. By counting the number of high-resolution urban grid cells that fall within each standard grid cell
of 4.65 km x 4.65 km, we were able to generate a gridded product of percentage of the physical grid cell
that is urban. Furthermore, in combination with the population raster we obtained from WorldPop30, we
were able to generate a gridded estimate of urban population at each 500 m x 500 m grid cell in
Colombia.

Code availability
The code used to generate all gridded datasets and aggregating at municipal, departmental, and national
levels is freely available for download from GitHub at https://github.com/asiraj-nd/zika-colombia54. This
code utilizes the R programming language42 and Python version 2.7.10. Further explanation of the code is
provided in a readme file in the repository on GitHub54.

Data Records
All output datasets described in this article (Data Citation 1) are publicly and freely available through
Dryad Digital Repository. The datasets stored in the datadryad.org Repository represent the ones
produced at the time of writing, and will be preserved in their published form. Datasets of interest can be
obtained by downloading the corresponding zipped archive files (Table 2 (available online only)).

Spatial interpolation method Response variable and fixed factors used MAE CV COR

Mean temperature

Thin Plate Spline None 3.85 0.21 0.38

Altitude 1.67 0.09 0.90

Altitude, distance to ocean 1.75 0.1 0.88

Altitude, CPC temp 3.58 0.19 0.66

Altitude, Worldclim temp 1.21 0.07 0.95

Ordinary kriging Altitude, Worldclim temp, CPC temp 1.23 0.07 0.94

None 3.45 0.21 0.43

Altitude, Worldclim temp 1.09 0.06 0.96

Altitude, Worldclim temp, CPC temp 1.13 0.06 0.95

Minimum temperature

Ordinary kriging Altitude, Worldclim temp 1.26 0.08 0.95

Altitude, interpolated mean temp. 1.13 0.07 0.96

Altitude, Worldclim temp, interpolated mean temp. 1.46 0.1 0.93

Maximum temperature

Ordinary kriging Altitude, Worldclim temp 1.54 0.07 0.92

Altitude, interpolated mean temp. 2.02 0.1 0.85

Altitude, Worldclim temp, interpolated mean temp. 2.03 0.1 0.85

Relative humiditya

Ordinary kriging Altitude, Worldclim temp 5.49 0.3 0.86

Altitude, interpolated mean temp. 1.40 0.1 0.92

Altitude, Worldclim temp, interpolated mean temp. 1.46 0.1 0.91

Table 3. Comparisons of model validation results for mean temperature, minimum temperature,
maximum temperature and relative humidity based on leave-one-out approach. Larger MAE and CV
values indicate worse fits, while larger COR values indicate better fit. aDerived using Equation 3.
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Technical Validation
Most datasets obtained from other sources have already been validated by independent
studies30,38,39,48–53. We therefore limited our validation to the interpolated climate model outputs
developed here by comparing spatial interpolation results to data from the 30 meteorological stations
across Colombia. These comparisons were made for the two modeling approaches and for different
combinations of covariates for each outcome: mean temperature, maximum temperature, minimum
temperature, precipitation, and relative humidity.

We used three metrics to compare model performance: mean absolute error, coefficient of variation,
and Pearson’s correlation coefficient (COR). Mean absolute error (MAE) is the mean absolute difference
between predictions and observations over n data points:

MAE ¼ 1
n

Xn
i¼1

9ŷi - yi9 ð4Þ

We also used relative MAE (of two models), which is the ratio of the two MAEs. A relative MAE m of
models A and B respectively, would indicate that predictions from model A were (1-m)% closer to the
observed values than those from model B for an m value less than 1. The coefficient of variation (CV)
evaluates the extent to which large values are dispersed relative to their mean value. It is the ratio of the
root mean square error (RMSE) to the mean of observed values,

CV ¼ 1
y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ŷi - yi
� �2s

ð5Þ

Results of our comparison are described in Table 3. Overall, the ordinary kriging approach had higher
accuracy for temperature (mean, maximum, and minimum) and relative humidity based on all three
metrics. Model results also revealed that using other covariates, such as altitude and secondary climate
data, improved interpolation results for temperature and relative humidity.

Usage Notes
This compilation of datasets can facilitate a variety of studies relevant to vector-borne disease
epidemiology in Colombia. The archive provides ready to use data both in a raster format with resolution
of 5km x 5km, and at administrative units of municipal, departmental, and national scales.

These datasets have several limitations. First, the 30 meteorological stations used in generating climate
surfaces are sparsely and unevenly distributed over Colombia, leading to uncertainty in the outputs.
Moreover, some of the original gridded data we obtained had differing resolutions, including 0.1 arc-
degrees (GPM), 0.5 arc-degrees (CPC), and 1 arc-degree (G-Econ). This meant that we had to resample
these gridded products (GPM, CPC, GEcon) with crude estimates based on average values over a large
swath of grid cells. Further, unlike all other products we used that were non-projected geographic
WGS1984 raster files, the Tera and Aqua MODIS NDVI products were in sinusoidal projections, causing
some distortions when re-projected to match population layers used in weighting.

In addition to spatial discrepancies, we also had to overcome the relatively poor temporal resolutions
of Tera and Aqua MODIS NDVI products (which come at 16-day intervals) by linearly interpolating
between two data points to fill in the 15 days in between, before aggregating the results at weekly time
steps. Furthermore, daily satellite based rainfall data from NOAA assume 12:00-12:00 hour-day, which
could potentially cause slight inconsistencies, despite the data finally being aggregated at weekly time
steps. Other limitations include the modifiable area unit problem, which arises from disparities in the
arbitrary sizes and borders of the administrative units which may bias aggregations based on these
borders.
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