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Clear cell renal cell carcinoma (ccRCC) is the most common subtype among renal cancer

whose prognostic is affected by the tumor progression associated with complex gene

interactions. However, there is currently no available molecular markers associated with

ccRCC progression and used or clinical application. In our study, microarray data of 101

ccRCC samples and 95 normal kidney samples were analyzed and 2,425 differentially

expressed genes (DEGs) were screened. Weighted gene co-expression network analysis

(WGCNA) was then conducted and 11 co-expressed gene modules were identified.

Module preservation analysis revealed that two modules (red and black) were found

to be most stable. In addition, Pearson’s correlation analysis identified the module

most relevant to pathological stage(patho-module) (r = 0.44, p = 3e-07). Functional

enrichment analysis showed that biological processes of the patho-module focused

on cell cycle and cell division related biological process and pathway. In addition, 29

network hub genes highly related to ccRCC progression were identified from the stage

module. These 29 hub genes were subsequently validated using 2 other independent

datasets including GSE53757 (n = 72) and TCGA (n = 530), and the results indicated

that all hub genes were significantly positive correlated with the 4 stages of ccRCC

progression. Kaplan-Meier survival curve showed that patients with higher expression

of each hub gene had significantly lower overall survival rate and disease-free survival

rate, indicating that all hub genes could act as prognosis and recurrence/progression

biomarkers of ccRCC. In summary, we identified 29 molecular markers correlated with

different pathological stages of ccRCC. They may have important clinical implications

for improving risk stratification, therapeutic decision and prognosis prediction in ccRCC

patients.

Keywords: clear cell renal cell carcinoma (ccRCC), differentially expressed genes (DEGs), weighted gene co-

expression network analysis (WGCNA), survival prognosis, pathological stage
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INTRODUCTION

Renal carcinoma is a common malignancy of the urinary system
and accounts for 2–3% of adult malignancies (Siegel et al.,
2017). Renal cell carcinoma (RCC) accounts for about 90% of
renal cancers, the vast majority (70–85%) of which are clear cell
subtypes (Cairns, 2010). RCC can be divided into 4 pathological
stages according to tumor size, the extend of invasion and
metastasis (Motzer et al., 2015). Surgery treatment is effective
for localized RCC, however, once the RCC becomes metastatic
the survival rate of patients will drop sharply. In addition, about
30% of patients with RCC had metastasis when diagnosed. The
standard treatment for localized RCC is surgery including radical
or partial nephrectomy due to its insensitive to radiotherapy
and chemotherapy (Motzer et al., 1996). For metastatic RCC,
immunotherapy with interleukin-2 (IL-2) and interferon (IFN)
was once the standard treatment, but it had limited curative
effects and strong side effects (Negrier et al., 1998). Targeted
therapies including sorafenib (Hutson et al., 2010) and sunitinib
(Motzer et al., 2006) were approved for metastatic RCC in 2005
and 2006 respectively, with better effects and fewer side effects
compared with immunotherapy. However, targeted therapies
were still limited and prone to drug resistance (Coppin et al.,
2011; Ljungberg et al., 2015). Therefore, more effective diagnosis
biomarkers and therapeutic targets are in urgent need.

Gene expression profiles such as microarray and RNA-
sequencing have been widely used to identify biomarkers
associated with clear cell renal cell carcinoma (ccRCC)
progression (Dahinden et al., 2010; Gerlinger et al., 2014).
However, most of the published studies focused on the
screening of differently expressed genes (DEGs), ignoring the
high correlations between genes, although genes with similar
expression patterns might be functionally related (Tavazoie et al.,

1999).Weighted gene co-expression network analysis (WGCNA)
was applied to explore the correlations between gene clusters and
clinical features (Langfelder and Horvath, 2008). Recently, many
studies related to WGCNA regarding biological information and
systems biology have been published in well-known journals
(Kunowska et al., 2015; Luo et al., 2015). TheWGCNA algorithm
had been applied to screen for biological processes and treatment
targets of cancer as well as specific biomarkers related to
complex disease, such as familial combination of hyperlipidemia
(Plaisier et al., 2009), Alzheimer’s disease (Miller et al., 2010)
and osteoporosis (Farber, 2010). Similarly, WGCNA was also
used to identify key genes significantly correlated with clinical
indicators of tumor progression including tumor stages, grades
and metastasis for different tumor types (Chen P. et al., 2017; He
et al., 2017).

Thus, our study aims to identify network-centric genes
associated with ccRCC progression by constructing a co-
expression network using DEGs through weighted gene co-
expression network WGCNA (Clarke et al., 2013; Chou et al.,
2014). To our knowledge, it is the first attempt to use WGCNA
to identify a series of hub genes as biomarkers significantly
associated with pathological stages and prognosis of ccRCC and
to distinguish localized and non-localized ccRCC.

MATERIALS AND METHODS

Data Collection
Raw gene expression profile and clinical data were obtained from
Gene Expression Omnibus (GEO) database (http://www.ncbi.
nlm.nih.gov/geo/). Datasets GSE53757 Von Roemeling et al.,
2014 and GSE36895 (Peña-Llopis et al., 2012) performed on
the same platform Affymetrix Human Genome U133 Plus
2.0 Array (HG U133 Plus 2.0) were combined and analyzed

FIGURE 1 | Clustering dendrogram of 124 tumor samples and the clinical traits. The clustering was based on the expression data of DEGs between tumor samples

and non-tumor samples in ccRCC. The color intensity was proportional to older age as well as higher pathological stage and tumor grade.
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FIGURE 2 | Determination of soft-thresholding power in WGCNA. (A) Analysis of the scale-free fit index for various soft-thresholding powers (β). (B) Analysis of the

mean connectivity for various soft-thresholding powers. (C) Histogram of connectivity distribution when β = 7. (D) Checking the scale free topology when β = 7. (E)

Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM).

to screen DEGs. Dataset GSE73731 (Wei et al., 2017) was
also performed on the same platform included 265 ccRCC
samples, of which 125 samples with complete clinical data
were used to identify hub genes with WGCNA. Two other
independent datasets GSE40355 based on the platform of Whole
Human Genome Microarray 4 × 44K v2 (Agilent-026652) and
GSE36895 were used to conduct module preservation analysis.
In addition, RNA sequencing data of 530 ccRCC samples was
downloaded from The Cancer Genome Atlas (TCGA) database

(https://genome-cancer.ucsc.edu/) for further validation. Gene
expression data was based on Illumina Hiseq’s RNA sequencing
technology. The detailed information of the datasets used in this
study was summarized in Supplementary Table S1.

Data Preprocessing and Differentially
Expressed Genes (DEGs) Screening
Raw expression data was calculated following the pre-
processing procedures: RMA background correction, log2
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FIGURE 3 | The medianRank and Zsummary statistics of the module preservation of the DEG modules using two independent dataset GSE36895 (A,B) and

GSE40355 (C,D). The medianRank of the modules close to zero indicates a high degree of module preservation (A,C). The dashed blue and green lines indicate the

thresholds Z = 2 and Z = 10, respectively (B,D). These horizontal lines indicate the Zsummary thresholds for strong evidence of conservation (above 10) and for low

to moderate evidence of conservation (above 2).

transformation, quantile normalization and median polish
algorithm summarization using the “affy” (Gautier et al., 2004)
package of R software (version 3.3.1). Besides, “sva” (Leek and
Storey, 2007) R package was used to remove batch effects between
dataset GSE53757 and GSE36895. Probes were annotated by
the Affymetrix annotation files. R package “limma” (Ritchie
et al., 2015) was applied to select the DEGs between 101 ccRCC
samples and 95 normal kidney samples. The cut-off criteria for
screening DEGs was the false discovery rate (FDR) < 0.01 and
|log2(fold change)|≥ 1.

Weighted Gene Co-expression Network
Construction
The “WGCNA” (Langfelder and Horvath, 2008) package in
R was applied to performed co-expression network using the
expression values of 2,425 DEGs from 125 tumor samples
and complete clinical data (GSE73731). First, one outlier
sample was excluded from subsequent analysis (Supplementary
Figure S2). The detailed procedure for WGCNA construction

could be found in our previous study (Chen L. et al., 2017).
Briefly, we constructed the weighted adjacency matrix using
a power function based on a soft-thresholding parameter β.
After that, the adjacency was transformed into topological
overlap matrix (TOM), and average linkage hierarchical
clustering was performed according to the TOM-based
dissimilarity measure. In this study, we chose a minimum
size (gene group) of 30 for the genes dendrogram and a
cut-line (0.25) for module dendrogram and merged some
modules.

Module Preservation Analysis
To access the stability of the each module identified
above, we conducted module preservation analysis using
the modulePreservation (Langfelder et al., 2011) method
(nPermutations = 200) in the “WGCNA” package. The two
datasets GSE36895 and GSE40355 used for preservation analysis
contained gene expression profiles of 29 and 16 ccRCC samples,
respectively.
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FIGURE 4 | Identification of modules associated with the clinical traits of ccRCC. (A) Heatmap of the correlation between module eigengenes and clinical traits of

ccRCC. (B) Distribution of average gene significance and errors in the modules associated with pathological stage of ccRCC. (C) GO functional and KEGG pathway

enrichment analyses for genes in the red module. The –log10 (P-value) of each term is colored according to the legend. (D) Scatter plot for correlation between gene

module membership in the red module(patho-module) and gene significance.

Identifying Clinically Significant Modules
and Module Functional Annotation
WGCNA identifies gene modules based on their expression
similarities in samples and calculates the correlation between
the external clinical information and gene modules to identify
clinically significant gene modules. The gene modules most
correlated with clinical features were selected as modules of
interest, combined with the correlative clinical feature. To further
clarify the mechanism underlying the impact of module genes
on correlative clinical feature, genes in interest module were
uploaded to the Database for Annotation, Visualization, and
Integrated Discovery (DAVID) (Dennis et al., 2003) for GO
functional annotation and KEGG pathway enrichment analysis.
FDR < 0.05 was used as cut-off criteria.

Hub Genes Identification and Validation
Hub genes were a series of genes with the highest degree
of connectivity in a gene module and determined the
characteristics of a module. Hub genes were defined by
module connectivity, measured by absolute value of the
Pearson’s correlation (cor.geneModuleMembership > 0.8) and
clinical trait relationship, and measured by absolute value of the
Pearson’s correlation (cor.geneTraitSignificance > 0.2). In this
study, we identified hub genes in the module which significantly
correlated with certain clinical feature. In addition, we used

boxplot to show the relationship between the hub genes and the
corresponding clinical features, and the statistical significance
between them was analyzed by one-way ANOVA.

Another independent dataset GSE53757 was analyzed to
validate the hub genes. In addition, 530 ccRCC samples from
TCGA database were analyzed to compare expression of hub
genes between different pathological stages of ccRCC.

Survival Analysis
In order to evaluate the impact of all hub genes on ccRCC
patient’s prognosis, overall and disease-free survival were
analyzed. For overall survival analysis, 530 patients were divided
into 2 groups according to median expression of each hub gene
(high vs. low). Similarly, for disease free survival, 433 patients
with complete recurrence/progression survival time were also
analyzed. Then we adopted “survival” of R software for log-rank
test and Kaplan-Meier survival analysis (Goel et al., 2010).

RESULTS

Identification of Differentially Expressed
Genes in ccRCC Tissue Samples
A workflow of this study was shown in Supplementary Figure S4.
The expression matrices for 196 samples containing 101 ccRCC
samples and 95 normal kidney samples in datasets GSE53757
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FIGURE 5 | Boxplots of hub genes across different pathological stages in the GSE73731. The boxplots show the medians and dispersions of the samples of different

pathological stages for each hub gene. (A) Boxplots of hub genes from ANLN to FOXM1 (sort in alphabetical order) in different pathological stages. (B) Boxplots of

hub genes from KIF11 to UHRF1 in different pathological stages. P-values are the results of one-way ANOVA for different pathological stages. ***p < 0.001.

and GSE36895 were obtained after data preprocessing. A total
of 2,425 DEGs including 1,259 up-regulated and 1166 down-
regulated were screened between ccRCC and normal kidney
under the threshold of FDR< 0.01 and |log2FC|≥ 1. These 2,425
DEGs were then selected for subsequent analysis. The heatmap
for DEGs were shown in Supplementary Figure S1.

Weighted Co-expression Network
Construction and Module Preservation
Analysis
Co-expression network was constructed using independent
dataset GSE73731 including 124 ccRCC samples associated with
complete clinical data (Figure 1). The expression values of 2,425
DEGs were included for co-expression network constructing by
adopting “WGCNA” package. In current study, to ensure a scale-
free network, we selected β = 7 (scale free R2 = 0.87) as the
soft-thresholding power (Figures 2A–D), and identified a total of
11 modules (Figure 2E).

To determine whether the identified network can also be
found in another independent network, we performed module
preservation analysis by comparing the GSE73731 dataset with
2 other test datasets GSE36895 and GSE40355. As shown in

Figure 3, red and black modules were found to be most stable
due to their Zsummary statistics (Figures 3B,D) above 10 and
Median rank statistics (Figures 3A,C) close to minimum both in
the two test datasets.

Identification of Key Modules and
Functional Annotation
There were great biological implications to identify modules
most significantly related to clinical features. We found that red
module showed the highest correlation with pathological stage
(r = 0.44, p = 3e-7, Figure 4A). We defined the module most
relevant to pathological stage(red) as patho-module.

Besides, in relation with pathological stage, the patho-
module also exhibited the highest gene significance (Figure 4B).
Therefore, we selected the patho-module as module of interest
and analyzed subsequently. Interestingly, the patho-module also
showed high correlation with tumor grade. The genes in each
module were listed in Supplementary Table S2.

To figure out the functional involvement of the patho-
module, 209 genes in patho-module were uploaded into DAVID
database for Gene Ontology (GO) analysis and KEGG pathway
enrichment analysis. Under the threshold of FDR < 0.05,
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TABLE 1 | Hub genes in the modules related with pathological stages.

Gene Entrez ID Probe ID Co-expression analysis DEG analysis

cor.geneModuleMembership cor.gene TraitSignificance Fold change FDR

ANLN 54443 222608_s_at 0.918 0.345 4.33 0

ASPM 259266 219918_s_at 0.870 0.383 4.95 0

ATAD2 29028 222740_at 0.813 0.356 2.57 0

BUB1B 701 203755_at 0.916 0.414 2.61 0

CCNA2 890 213226_at 0.872 0.311 2.57 0

CCNB1 891 214710_s_at 0.887 0.415 2.20 0

CDK1 983 203213_at 0.850 0.221 2.28 0

CDKN3 1033 1555758_a_at 0.813 0.266 2.36 0

CENPF 1063 207828_s_at 0.861 0.332 2.49 0

CENPK 64105 222848_at 0.840 0.322 4.19 0

CENPW 387103 226936_at 0.805 0.373 2.01 0

CEP55 55165 218542_at 0.935 0.384 2.88 0

DLGAP5 9787 203764_at 0.840 0.298 2.63 0

FOXM1 2305 202580_x_at 0.832 0.378 2.03 0

KIF11 3832 204444_at 0.855 0.395 2.61 0

KIF14 9928 236641_at 0.930 0.333 2.11 0

KIF20A 10112 218755_at 0.847 0.368 3.08 0

KIF4A 24137 218355_at 0.883 0.338 2.42 0

MELK 9833 204825_at 0.850 0.323 2.23 0

NCAPG 54892 218662_s_at 0.823 0.317 2.12 0

NEK2 4751 204641_at 0.857 0.345 2.41 0

NUF2 83540 223381_at 0.891 0.416 2.30 0

PRC1 9055 218009_s_at 0.909 0.366 4.01 0

PTTG1 9232 203554_x_at 0.829 0.285 2.76 0

RRM2 6241 201890_at 0.888 0.370 5.29 0

TOP2A 7153 201291_s_at 0.917 0.392 5.59 0

TPX2 22974 210052_s_at 0.833 0.360 2.91 0

TTK 7272 204822_at 0.846 0.443 2.55 0

UHRF1 29128 225655_at 0.867 0.331 3.65 0

biological processes of patho-module were suggested to focus
on cell division (p = 1.24e-18), mitotic nuclear division
(p = 3.61e-14), sister chromatid cohesion (p = 1.26E-09),
mitotic cytokinesis (p = 2.07e-08), mitotic sister chromatid
segregation (p= 2.30e-07), chromosome segregation (p= 7.22e-
07), kinetochore assembly (p= 6.31e-06) and microtubule-based
movement (p = 2.86e-05, Figure 4C). While KEGG pathway
enrichment analysis suggested that 209 genes in patho-module
was significantly enriched in two pathways including cell cycle
(2.15e-07) and p53 signaling pathway (p= 1.36e-05, Figure 4C).

Identification of Hub Genes
Under the threshold of module connectivity
(cor.geneModuleMembership) more than 0.8 and clinical
trait relationship (cor.geneTraitSignificance) more than 0.2,
29 genes with the high connectivity in patho-module were
selected as hub genes (Figure 4D). Hub genes were significantly
correlated with pathological stage were listed in Table 1.

The relationship between all hub gene and pathological
stages in the training dataset GSE73731 was shown in Figure 5.
Expression values of all hub genes in different pathological stages

were compared and statistical differences were calculated with
one-way ANOVA, suggesting significant difference (p < 0.01) of
each hub gene across different pathological stages. Interestingly,
we also found significant difference (p < 0.01) of each hub gene
across different tumor grades (Supplementary Figure S3).

Validation of Hub Genes
Then all hub genes were selected for validation using 2 other
independent datasets including GSE53757 and TCGA dataset.
In the test set GSE53757, significant difference was detected
for each hub gene expression across 4 pathological stages using
one-way ANOVA (Figure 6). Moreover, one-way ANOVA and
independent sample t-tests based on RNA sequencing data
showed that all hub genes were also effective to distinguish local
ccRCC (pathological stage I or II) and non-localized ccRCC
(pathological stage III or IV, Figure 7).

Survival Analysis
Base on TCGA RNA-sequencing data and clinical information,
patients were divided into 2 groups according to median
expression of each hub gene, and Kaplan-Meier survival curve
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FIGURE 6 | Boxplots of hub genes across different pathological stages in the validation dataset GSE53757. The boxplots show the medians and dispersions of the

samples of different pathological stages for each hub gene. (A) Boxplots of hub genes from ANLN to FOXM1 (sort in alphabetical order) in different pathological

stages. (B) Boxplots of hub genes from KIF11 to UHRF1 in different pathological stages. P-values are the results of one-way ANOVA for different pathological stages.

*p < 0.05, **p < 0.01, ***p < 0.001.

was then plotted. Patients with higher each hub gene showed
significantly shorter overall survival rate and disease-free survival
rate, indicating that all hub genes could act as prognosis and
recurrence biomarkers of ccRCC (Figures 8, 9).

DISCUSSION

ccRCC is the most common subtype among renal cancer whose
prognostic is affected by the tumor progression associated with
complex gene interactions. Exploring molecular markers of
ccRCC is important for the diagnosis and treatment of patients
with ccRCC. However, there is currently no available molecular
markers associated with the pathological stage of ccRCC for
clinical application. Here, clinical information and mRNA
expression profiling of patients with ccRCC from microarray
data were analyzed by using a systematic biological method
WGCNA. We identified 29 molecular markers correlated with
different pathological stages of ccRCC. They may have important
clinical implications for improving risk stratification, therapeutic
decision-making and prognosis prediction in patients with
ccRCC.

WGCNA, an algorithm to mine gene module information
from expression profiling microarray, was widely applied in the
RNA-sequencing data (Langfelder and Horvath, 2008). In this
method, module was defined as a group in which genes had
similar expression variation trend in a physiological process or
in different tissue samples. In another word, genes with similar
expression variation trend across different samples could be
defined as a gene module. The WGCNA clustering criteria had a
great biological significance which was completely different from
the clustering method based on the geometric distance between
data. After the genemodule was identified, the stability of module
was calculated. Then the correlation between stable modules and
clinical features such as age, gender, stage of disease, and tumor
grade were calculated. By this method, the most clinically related
gene modules which could be used to explore the primary cause
of disease development. Scale-free network was characterized
by the existence of a few nodes that have significantly higher
connectivity than the general nodes. The “few” node genes were
defined as hub genes. So, the studies for the correlation between
interest module and certain clinical feature could be simplified
as correlation between hub genes of interest module and clinical
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FIGURE 7 | Boxplots of hub genes across different pathological stages in the TCGA dataset. The boxplots show the medians and dispersions of the samples of

different pathological stages for each hub gene. P-values are the results of independent sample t-test between pathological stage I/II and III/IV and one-way ANOVA

for different pathological stages.

feature, and thus providing an important molecular basis for
exploring the mechanism of disease development.

The aim of the study was to identify biomarkers associated
with progression of ccRCC using WGCNA to mine expression
profiling combined with clinical data of large numbers of
patients with ccRCC. In the study of cancer, candidate molecular
biomarkers must be well distinguished between cancerous and
normal tissues. Based on DEGs screened from ccRCC, the
weighted co-expression network was constructed and 11 co-
expression modules were identified through dynamic tree cutting
method. It was found that among the 11 modules the red one
showed the highest positive correlation with tumor pathological

stage by correlation analysis. In addition, the preservation
statistics suggested that the stability of the patho-module is
good. Therefore, the patho-module was considered as a clinically
significant gene cluster. Hub genes with the highest connectivity
in a gene module largely decided the characteristics of the
module.

Functional annotation of patho-module was suggested to
focus on cell division, cell cycle, mitotic nuclear division, sister
chromatid cohesion, mitotic cytokinesis, etc. Cell cycle and cell
division are the basic process of cell proliferation, the abnormal
mediation of which will lead to the tumor progression. In current
study, 29 hub genes of patho-module significantly correlated with
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FIGURE 8 | Overall survival analyses on hub genes in the TCGA data set. Survival curves for patients in different groups. Red lines represent high expression of hub

genes, while blue lines represent low expression of hub genes.

pathological stage were identified and validated, which could
distinguish localized (pathological stage I/II) and non-localized
ccRCC (pathological stage III/IV). Interestingly, expression value
of each hub gene across different tumor grades could also be
found significant difference, suggesting that the 29 hub genes
were positively correlated with tumor grade of ccRCC as well.
These findingsmay contribute to the improvement of therapeutic
decision-making, risk stratification, and prognosis prediction for
ccRCC patients.

Previous studies using TCGA ccRCC data accurately
predicted molecular markers associated with histological grading
of ccRCC. Wan et. al identified 8 genes that could be used to
distinguish different grades of ccRCC by comparing different
histological grades of ccRCC (grade I/II vs. grade III/IV) (Wan
et al., 2017). However, this analysis method did not utilize
a global level system biological analysis method, which might
cause large false-positive results. Other studies using the collected
tissue samples for immunohistochemical analysis showed that
EphA1 (Wang L. et al., 2015), EphA2 (Wang X. et al., 2015),

and VEGFR-1 (Lkhagvadorj et al., 2014) were associated with
different pathological stages of ccRCC by directly comparing
gene expression differences. However, the results lacked large
sample support.

WGCNA is a method that can be applied to explore
potential biological mechanisms and to identify genes associated
with patient’s prognosis. The practical utility of this approach
can predict new prognostic markers. Our research may
contribute to the personalized treatment of patients with
ccRCC. Nonetheless, prior to the clinical use of these molecular
markers, multiple center randomized controlled clinical trials
and in vitro/vivo experiments should be conducted to assess
the potential application of molecular features, to predict
survival and to functionally characterize hub genes in clinical
applications.

A larger number of clinical samples were required to validate
our findings and elucidate the underlying mechanisms of how
these hub genes impacted pathological stage of ccRCC, which
were our subsequent research work.
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FIGURE 9 | Diseases-free survival analyses on hub genes in the TCGA data set. Survival curves for patients in different groups. Red lines represent high expression of

hub genes, while blue lines represent low expression of hub genes.

In summary, we established a gene co-expression network
to identify and validate network hub genes associated with
the progression of ccRCC, based on systems biology-based
WGCNA. Our work might have important clinical implications
for improving risk stratification, therapeutic decision-making
and prognosis prediction in patients with ccRCC.
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