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Abstract

Detecting selection in B cell immunoglobulin (Ig) sequences is critical to understanding affinity 

maturation, and can provide insights into antigen-driven selection in normal and pathologic 

immune responses. The most common sequence-based methods for detecting selection analyze the 

ratio of replacement (R) and silent (S) mutations using a binomial statistical analysis. However, 

these approaches have been criticized for low sensitivity. An alternative method is based on the 

analysis of lineage trees constructed from sets of clonally-related Ig sequences. Several tree shape 

measures have been proposed as indicators of selection that can be statistically compared across 

cohorts. However, we show that tree shape analysis is confounded by underlying experimental 

factors that are difficult to control for in practice, including the sequencing depth and number of 

generations in each clone. Thus, though lineage tree shapes may reflect selection, their analysis 

alone is an unreliable measure of in vivo selection. To usefully capture the information provided 

by lineage trees, we propose a new method that applies the binomial statistical method to 

mutations identified based on lineage tree structure. This hybrid method is able to detect selection 

with increased sensitivity in both simulated and experimental data sets. We anticipate that this 

approach will be especially useful in the analysis of large-scale Ig sequencing data sets generated 

by high-throughput sequencing technologies.
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Introduction

A diverse repertoire of immunoglobulin (Ig) receptors on B cells allows the adaptive 

immune response to recognize a universe of antigens. The initial diversity of naïve B cells 

results from a complex genetic rearrangement process in the bone marrow, where the Ig 

receptor heavy and light chains are formed through the recombination of V(D)J segments, 

with additional diversity generated at the junction boundaries (1–3). During T cell dependent 

immune responses, the affinity of B cell Ig receptors is fine-tuned by the dynamic process of 

affinity maturation. This critical component of adaptive immunity, which normally occurs 

within the specialized micro-environment of germinal centers (GCs), protects the host from 

recurring infections and ever-evolving pathogens (4). In the GC, antigen-activated B cells 

clonally expand and undergo somatic hypermutation (SHM), which introduces an average of 

approximately one point mutation per division in the variable region of the Ig gene (5, 6). 

These mutations can alter the affinity of the Ig receptor, and the resulting diversification 

provides the substrate for affinity maturation. B cells acquiring affinity increasing mutations 

are preferentially expanded (positive selection), most likely through a survival advantage 

(7). B cells that acquire mutations that decrease affinity or adversely impact structural 

integrity of the Ig receptor are removed from the population (negative selection) (8, 9). 

Multiple rounds of division, mutation and selection result in populations of high-affinity 

memory and long-lived plasma B cells, which help clear the current infection as well as 

protect the host against future infections (10–12).

The ability to detect selection, especially positive selection, in experimentally-derived Ig 

sequences is critical not only in understanding the role of affinity maturation in 

physiological immune responses, but also in pathological ones. Auto-reactive B cells 

derived from lupus-prone mice are clonally expanded and carry numerous somatic mutations 

with a distribution that suggests a role for selection (8, 13). In Rheumatoid Arthritis (RA), B 

cells form ectopic GC-like microstructures in the synovium and are the source of auto-

reactive rheumatoid factors (14, 15). Similarly, expanded B cell clones contribute to CNS 

immunopathology in Multiple Sclerosis (MS), and analysis of antigen-driven selection could 

help identify mechanisms that drive the disease (16–18). Along with providing insights into 

disease pathology, the ability to detect selection may have prognostic value, as in the case of 

B cell lymphomas (19–21).

SHM introduces point mutations into the variable (V) region of Ig gene at the rate of ∼10-3 

per base-pair per division (5, 6). In the absence of selection, the fraction of mutations that 

result in an amino acid change (i.e., replacements (R)), can be estimated based on a model of 

SHM hot/cold-spots and substitution bias (22–25). Since only R mutations can modify Ig 

receptor affinity, we expect selection to skew the observed ratio of R and silent (S) 

mutations. If the frequency of R mutations is higher than expected, this is assumed to 

indicate positive selection, while a reduced frequency is associated with negative selection. 

Selection is usually analyzed separately for the complementarity determining regions 

(CDRs), which are most likely to interact with antigen and the framework regions (FWRs), 

which are mainly responsible for maintaining structural integrity of the Ig molecule (13).
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The earliest methods to rigorously test for selection operated on single sequences, and 

compared the observed frequency of R mutations to their expected frequency under the null 

hypothesis of no selection using a binomial statistical framework (13, 26, 27). However, 

these methods have been criticized for their high false positive rate (28, 29). This low 

specificity was due, at least in part, to a failure to fully account for the intrinsic biases of 

SHM, which can give the appearance of selection. In previous work, we developed the 

Focused binomial test, which improved specificity through a better model of intrinsic biases 

and corrected for the effects of cross-talk between positive and negative selection using a 

carefully derived null model (25). A further improvement, the Focused Z-test, allowed for 

the combined analysis of multiple sequences, potentially using different germline V(D)J 

segments, which increased the sensitivity for the detecting selection while maintaining 

specificity (30). All of these methods result in a p-value that can be used to reject the null 

hypothesis that the observed mutation pattern occurred in the absence of selection. Most 

recently, we developed a statistical framework for Bayesian estimation of Antigen-driven 

SELectIoN (BASELINe), which shifts the problem from one of simply detecting selection to 

one of quantifying selection (31). Despite these improvements, these R:S-based methods 

generally suffer from low sensitivity (32).

An alternate approach to detect selection is based on the analysis of B cell lineage trees, 

which can be created from sets of clonally-related Ig sequences using methods such as 

maximum parsimony (33–35). Unlike the R:S-based methods, lineage trees preserve the 

substantial information present in the pattern of shared and unique mutations among clonal 

sequences, which reflects the dynamics of the underlying diversification and selection 

processes (5, 8, 36, 37). Lineage tree analysis was instrumental in establishing germinal 

centers as the site of SHM, and the concept of step-wise affinity maturation (38, 39). B cell 

lineage tree shapes have been suggested to reflect the degree of underlying selection, with 

“pruned” trees reflecting greater selection compared to the “bushy” trees (37, 40). 

Simulation studies have been carried out to identify linkages between specific lineage tree 

shape measures and underlying selection (34, 41). These tree shape measures have been 

applied in several studies to compare selection in different lymphoid tissues, autoimmune 

diseases, and lymphomas (42–44). However, the specificity of these methods remains 

uncertain as current approaches do not account for the potentially confounding influences of 

experimental factors, such as the number of generations in the clone and the number of 

sequences sampled, which might give the appearance of spurious selection.

In this paper, we quantify the relationship between B cell lineage tree shape measures and 

immune selection, while accounting for critical experimental factors. Despite the correlation 

between several tree shape measures and selection, we show that existing measures are 

affected by experimental factors likely to lead to poor specificity in practice. This problem is 

overcome by utilizing a hybrid method that combines lineage tree information within an 

R:S-based framework that significantly improves the sensitivity for detecting selection over 

existing methods.
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Methods

Simulation model of B cell affinity maturation

The simulation is based on the “Clone” model and its more recent extensions (6, 9, 25). It 

includes B cell clonal expansion, somatic hypermutation, and affinity-dependent death. The 

simulation is seeded with a single B cell and proceeds in discrete, synchronous generations. 

During each generation, all cells divide once and accumulate a Poisson distributed number 

of mutations with average µ=0.3. The impact of every mutation is determined stochastically 

according to the distribution described in Figure 1 of (25). Briefly, the probability that a 

mutation falls in the FWR is given by pFWR=0.75, and otherwise it falls in the CDR (1-

pFWR=pCDR=0.25). Within each region, the probability of a mutation being an R is given 

by pR=0.75, and it is otherwise an S (1-pR=pS=0.25). All S mutations are neutral. R 

mutations that fall in the FWR are considered lethal with probability λ={0, 0.5}, and cells 

that accumulate such mutations are removed at the end of each generation. A value of λ=0 

indicates no negative selection, while λ=0.5 is used for realistic levels of negative selection 

(9, 13).

Negative selection is modeled by death (or removal) of the B cells that acquire lethal 

mutations at the end of each generation. Independent of lethal mutations, a fraction of B 

cells die at the end of every generation. R mutations in the CDR are considered 

advantageous (i.e. affinity increasing) with probability fCDR_A=0.75, and these mutation 

provide a survival advantage to the cell by decreasing the death rate (7). Specifically, the 

death rate (di) for a given B cell (i) is given by:

Where dmax=0.4 is the maximum death rate, ai is the number of advantageous mutations 

accumulated by the cell, and the selection factor (s={1,…,7}) determines the cumulative 

effect of advantageous mutations. An s value of 1 indicates no positive selection in the 

simulation, and increasing s causes each mutation to have a greater proportional effect on 

the death rate. Moderate values of s produce the greatest average affinity increases, with s=7 

being optimal (data not shown).

Generating lineage trees

During the simulation, the entire B cell lineage was tracked. After D generations, q cells are 

randomly sampled from the population and the remaining cells are pruned from the lineage. 

The resulting tree, which is a sub-tree of the exact simulated lineage, is comparable to a 

lineage tree obtained using experimentally derived sequences created using maximum 

parsimony (6). Unless otherwise specified D=22 and q=20. All of the simulated data used in 

this study are available at: http://clip.med.yale.edu/papers/Uduman2013JI.

Lineage trees shape measures

Twenty-nine graph theoretical properties were computed to quantify the shape of each 

lineage tree. These shape measures involve terms based on counting various types of nodes 
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(sequences), and the distances (number of mutations) between them. In many cases, the 

maximum, minimum, and average value for each shape measure is also calculated. For 

example, the numbers of mutations from the root to the leaves of a lineage tree has an 

average (across all leaves), a maximum and a minimum. While all 29 shape measures were 

thoroughly analyzed, detailed results are presented for the seven shape measures that were 

reported by (45) to be highly correlated with selection and three additional measures that we 

found to be significantly correlated (Table 1). Please refer to Figure 1 of (45) for a visual 

representation of lineage tree shape measures.

Quantifying the influence of selection on lineage tree shape measures

To determine the effect of selection on a lineage tree shape measure, its empirical 

probability distribution was determined from a simulation that includes selection and 

compared with one in the absence of selection (λ=0, s=1). Several different kinds of 

selection are considered: only positive selection (λ=0, s=7), only negative selection (λ=0.5, 

s=1), and a combination of negative and positive selections (λ=0.5, s=7). The shift in these 

two probability distributions was quantified using numeric integration to estimate the area 

under the curve (AUC) as described in Equation 7 of (31).

Quantitative framework for detecting selection using lineage tree shape measures

To estimate the true and false positive rates for a shape measures' ability to detect selection 

we first determined the distribution of the shape measure under the null hypothesis of no 

selection (λ=0, s=1). Based on this null distribution, a cutoff value for the measure is given 

by the 5% tail of the distribution. The direction of the tail was determined beforehand based 

on the expected influence of selection on the tree shape measure's distribution. For each 

lineage tree simulated in the presence of selection, the null hypothesis of no selection was 

rejected if the tree shape measure was more extreme than the cutoff. The fraction of trees 

rejected over many simulated lineage trees provides the sensitivity or 1-specificity of the 

shape measures' ability to detect selection.

IgG sequence dataset from a healthy male

Peripheral blood mononuclear cells (PBMCs) were isolated from a healthy Personal 

Genome Project subject (46), and RNA was extracted from B lymphocytes. Immunoglobulin 

heavy chain (IgH) genes were amplified using gene specific reverse transcription and 

sequenced by emulsion PCR and 454 GS FLX. The sequences were processed through 

IMGT/HighV-QUEST (47) to identify V(D)J germline gene segments and aligned using 

IMGT numbering (48). Sequences were further filtered for functionality, quality redundancy 

and isotype resulting in 7,738 unique IgG sequences. Clonally related sequences were then 

identified by first grouping based on common V and J gene family assignments, and 

junction region length. Within these larger groups, sequences differing from one another, in 

the junction region, by three or fewer point mutations were defined as clones. This resulted 

in 1,369 clones containing multiple sequences (ranging from 2 to 36 sequences), with an 

average size of 2.9 sequences per clone. These data are available at: http://clip.med.yale.edu/

papers/Uduman2013JI. BASELINe (31), using the Focused test statistic (25, 30), was 

applied to estimate selection strength.
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Non-terminal branch mutations

Non-terminal branch mutations are defined as the set of mutations that occur on branches of 

the lineage tree that are not connected to a leaf (Figure S3 B). For computational efficiency, 

the set of non-terminal branch mutations was approximated as those that are shared between 

more than one sequence in a clone.

Results

Influences of selection on lineage tree shape measures

It is not possible to link tree shape measures with selection using experiments alone, since 

the parameters that influence selection are not easily modified or controlled. Instead, a 

computer simulation (described in Methods) was used to produce synthetic data sets with 

known levels of positive and/or negative selection pressures. Importantly, the simulation 

also allowed us to control experimental factors, such as number of sampled sequences (q) 

and cell generations (D). Using the simulation, we evaluated the influence of selection on 29 

lineage tree shape measures, many of which have been previously proposed to correlate with 

selection (34, 45). Some of these shape measures, such as the average out-degree (number of 

children per node; OD_Avg), increase with both positive and negative selection (Figure 1A). 

Other shape measures, such as the distance between adjacent split nodes (DASN_Avg) have 

a negative correlation with selection (Figure 1D). Of the 29 lineage tree shape measures, a 

subset of 11 measures (see Table I, Figures 1 and S1) were chosen for detailed analysis 

based on either their ability to detect positive selection in simulated data with high 

sensitivity, or having previously been reported as highly correlated with selection (45).

While many tree shape measures were clearly modulated by selection, most exhibited 

properties that were not ideal for detecting positive and negative selection in practice. For 

example, the average distance between adjacent split nodes (DASN_Avg) decreases with 

both positive and negative selection so that this measure cannot differentiate between these 

different influences. Other shape measures were affected by positive and negative selection 

in opposing manners allowing these forces to cancel each other out. This group included: 

average outdegree (OD_Avg), average and minimum distance from the leaf to the split node 

closest to the root (DLFSN_Avg and DLFSN_Min), and the average and minimum path 

length (distance from the root to the leaves of the tree; PL_Avg and PL_Min). Interestingly, 

several other tree shape measures previously proposed to correlate with selection (45) did 

not show such a relationship in our model, including the minimum distance between 

adjacent split nodes (forks) in the trees (DASN_Min). Thus, while selection influences many 

lineage tree shape measures, it is not easy to interpret most of these in practice.

The most promising measures included the minimum distance from the root to any split 

node (DRSN_Min) and the distance from the root to the first node in the tree (T). These 

shape measures were increased by positive selection, but were not influenced by negative 

selection (Table I). However, the influence of positive selection on these measures was 

minor (AUC∼0.5). The most powerful tree shape measure was the ratio of branching early 

vs. late in the lineage (OD-Ratio). This measure was specifically influenced by positive 
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selection and unlike DRSN_Min and T, the AUC increased significantly (AUC=0.85). Thus, 

OD-Ratio is a good candidate for detecting positive selection in practice.

The sensitivity of lineage tree shape measures for detecting positive selection

Having identified lineage tree shape measures with the desired properties, we next sought to 

quantify their sensitivity for detecting selection. The true positive rate (TP) was estimated by 

comparing the distribution of shape measures for simulated trees in the presence of selective 

pressures with a null distribution generated in the absence of any selective pressure (see 

Methods). Surprisingly, six of the shape measures proposed by Shahaf et al., (2008), 

including all of the minimum value measures (DASN_Min, DLFSN_Min, DRSN_Min and 

PL_Min) along with OD-Root, showed no ability to detect selection, even for the strongest 

positive selection strength (Figure 2). Of the remaining previously proposed measures, even 

the best, DLFSN_Avg, is able to detect only 13.9% of the lineage trees as being selected (for 

s=7). Similar performance was estimated for OD_Avg (13.0%) and PL_Avg (12.7%). OD-

Ratio, a new tree shape measure proposed here, had the highest sensitivity at 17.7%. Both 

OD-Ratio and DLFSN_Avg detected selection better than the Focused Z-score (30), an R:S-

based method that detected selection in 13.1% of the lineage trees (Figure 2). Overall, these 

results demonstrate the potential of lineage tree shapes to detect selection with increased 

sensitivity.

The confounding influence of experimental factors on lineage tree shape measures

In practice, lineage tree analysis involves comparing the shape measure distributions 

between two or more groups of trees (e.g., case and control) (34, 41–43, 49). Unlike the 

analysis presented in the previous section, where the null distribution only differed in 

parameters related to selection (λ and s), real experimental groups exhibit many differences. 

These experimental factors include the number of sequences used to create the lineage tree 

(sequencing depth) and the generation in the B cell clone at which the sequences were 

sampled. We hypothesized that differences in these factors alone could give the appearance 

of selection.

To evaluate the potential effect of sampling depth on lineage tree shape measures, several 

synthetic datasets were generated with varying numbers of sequences 

(q={10,20,50,100,200,300}). In all cases, selection was absent and the cells were sampled 

D=22 generations. For each number of sequences (q), the number of statistically significant 

trees was calculated using q=300 to generate the control. Since selection is absent in all 

cases, this provides an estimate for the false positive rate as a function of the number of 

sequences. Of the five lineage tree shape measures that exhibited a reasonable sensitivity for 

detecting positive selection (Figure 2), DASN_Avg is most affected by the sampling depth, 

with a false positive rate of 50.3% when trees contained 10 sequences (q=10) (Figure 3A). 

OD_Avg, DLFSN_Avg and PL_Avg also exhibited high false positives rates of 35.1%, 

22.6% and 17.1%, respectively (Figure 3A). Even OD-Ratio, the shape measure with the 

highest sensitivity in detecting positive selection under ideal conditions, yielded a false 

positive rate of 13.9% (Figure 3A).
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Experimental data sets are also likely to vary in the number of generations (cell divisions), 

even when the sampling time can be fixed (e.g., equivalent number of days post-

immunization). Even more problematic, comparisons are often carried out for different 

disease states (e.g., see (42, 43, 49)), in which case it is not clear how long the B cell clones 

have been dividing. To evaluate the potential confounding effects of this variability, 

synthetic data sets were generated by sampling exactly q=20 sequences at varying numbers 

of generations (D={12, 14, 16, 18, 20, 22}). Comparing these simulated tree shapes with a 

control based on D=22 generations clearly shows that differences in the number of 

generations yield high false positive rates for nearly all shape measures (Figure 3B). 

PL_Avg and DLFSN_Avg were affected the most, with false positive rates of 76.7% and 

71.2%, respectively when trees differed by 10 division cycles. High false positive rates were 

also found for DASV_Avg (24.2%) and OD_Avg (20.7%), while the best performance was 

shown by OD-Ratio, which still had an unacceptably high false positive rate of 9.8%. 

Overall these results demonstrate that, even in the absence of any differences in selection 

pressure, variation in sampling depth and/or the number of generations can falsely give the 

appearance of selection. Thus, using lineage tree shape measures without properly 

accounting for such experimental variability can lead to incorrect interpretation of selection 

status.

Normalizations to correct for the effects of sampling depth and the number of generations 

has been suggested by previous work (34, 41, 49). Specifically, it was proposed that the 

effect of sampling depth could be normalized by dividing the shape measure by the number 

of nodes (sequences) in a lineage tree (34), while the effects of generation could be scaled 

by the average path length (PL_Avg) (49). The goal of such normalization is to allow 

lineage tree data from different sources and conditions to be compared without bias. 

However, despite their use in several studies (34, 41–44, 49), these proposed normalizations 

have never been directly tested. Results from simulated lineage trees suggest that the 

application of these normalizations actually decreases specificity (Figure S2). Note the 

trivial exceptions of DLFSN_Avg and PL_Avg, which achieved 100% specificity but lose 

sensitivity, since both of these shape measures approximate the average number of 

mutations and the normalized measure is thus always around one (Figure S2B). In summary, 

currently proposed normalization methods do not correct for the confounding effects of 

sampling depth or generation, and likely even decrease specificity.

Filtering for non-terminal branch mutations improves R:S-based methods

Given the specificity problems outlined above, along with the comparable sensitivity of 

lineage tree shape measures and R:S-based methods for detecting selection, we sought an 

alternate strategy that could combine the strengths of both approaches. We reasoned that the 

sensitivity of R:S-based methods might be improved by using information from lineage trees 

to identify a subset of mutations most likely to be selected. As mutation and selection are 

ongoing, step-wise processes (5), it is expected that mutations appearing towards the root of 

lineage trees have been subject to the strongest selection. Indeed, we have previously shown 

that recurrent mutations (most likely to increase affinity) tend to occur at “non-terminal” 

branches within in a lineage tree (i.e., branches that are not connected directly to leaves) (7). 

This relationship is a direct consequence of the clonal expansion and selection process, as it 
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can also be observed in simulated data (Figure S3). In this case, mutations appearing near 

lineage tree leaves do not show any increase in the R frequency, and their inclusion in R:S-

based tests may actually decrease sensitivity. To test this hypothesis, we implemented an 

R:S-based test (the Focused Z-score method) using mutations exclusively from non-terminal 

branches in the lineage tree, and applied this method on simulated trees to generate receiver 

operating characteristic (ROC) curves. These ROC curves show that using only non-

terminal branch mutations improves the trade-off between sensitivity and specificity 

compared to using all unique mutations in the lineage tree (Figure 4). For example, at the 

standard alpha cut-off of 0.05, using mutations from non-terminal branches yields a 

sensitivity of 23%, compared to 18% when using all mutations. Importantly, this hybrid 

method maintains the expected specificity.

To verify that the proposed hybrid approach can also provide increased sensitivity for 

detecting selection in vivo, we analyzed isotype switched IgG sequences derived from a 

blood sample from a healthy individual (see Methods). As expected, using mutations from 

non-terminal branches led to a significant increase in the estimated positive selection 

strength in the CDR (P=0.016), and negative selection strength in the FWR (P=0.042) 

(Figure 5). Thus, when lineage tree information is available, focusing on the set of non-

terminal branch mutations can provide a significant increase in sensitivity for detecting and 

quantifying selection.

Discussion

The most commonly used methods for detecting selection in Ig sequences are based on a 

binomial statistical framework that compares the observed frequency of R mutations to that 

expected under the null hypothesis of no (or neutral) selection. Despite recent advances, the 

overall sensitivity of these methods remains low (25, 30, 31). Methods based on the analysis 

of lineage trees provide an alternative approach to obtain insights into B cell clonal 

expansion and antigen-driven selection (34, 41). In this study, we applied a simulation-based 

approach to identify several shortcomings in the use of lineage tree shape measures to detect 

selection. Rather than depending on these shape measures alone, we propose integrating this 

clonal information into an R:S-based statistical framework to improve the ability to detect 

selection in Ig sequences.

Qualitative analyses of B cell lineage tree shape measures have been used by many studies 

to infer the dynamics of the underlying immune response. Within the past decade a plethora 

of graph-theoretical measures have been proposed and applied to quantify lineage tree 

shapes and elucidate differences in selection dynamics (e.g., between samples from healthy 

individuals and those with various disease conditions) (42–44, 49). Shahaf G et al. (2008) 

demonstrated that several of these shape measures are statistically correlated with selection 

using a mathematical model of germinal center population dynamics. However, this 

previous study did not account for experimental factors, such as differences in sequencing 

depth or the time of sampling, which could lead to clones with widely varying numbers of 

cell divisions. Furthermore, the lineage trees analyzed by Shahaf G et al. (2008) were 

generated using all of the B cells in the simulation, so that some of the efficient shape 

measures simply reflect differences in the overall population size. Experimentally-derived 
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lineage trees are always a subsample of the full population. We hypothesized that 

differences in these experimental factors could confound the in vivo relationship between 

lineage tree shape measures and selection.

We developed a computer simulation of B cell clonal expansion and selection that included 

key experimental factors, such as the number of sequences sampled and the number of cell 

divisions per clone (associated with the time of sampling). Under conditions of strong 

positive selection, only two out of the eight shape measures previously associated with 

selection by Shahaf G et al. (2008) remained significantly correlated (OD_Avg and 

PL_Avg, P < 0.05). Three additional measures (DLFSN_Avg, DASN_Avg and OD-Ratio) 

were also found to be significantly associated with selection. While the absolute sensitivity 

estimated by our simulation approach can depend on parameters such as the number of 

sequences sampled (thus explaining some of the differences in efficiency between our study 

and that of Shahaf G et al. (2008)), we always found that all of these tree shape measures 

had sensitivities that were comparable to the performance of the Focused Z-score method on 

the same data. Thus, detecting positive selection using lineage tree shape measures does not 

offer an obvious advantage over R:S-based methods in terms of sensitivity. In fact, a 

significant disadvantage of lineage tree-based methods concerns their reliance on a control 

group to make inferences. For example, the distribution of B cell lineage tree shape 

measures from an autoimmune setting could be compared with healthy samples. In such 

cases, it is difficult (if not impossible) to control for the number of sequences in each tree 

and the number of cell divisions per clone. This is a significant issue since we have shown 

that differences in these experimental factors can falsely give the appearance of selection, 

and standard normalization approaches do not eliminate this effect. Thus, in practice, the 

performance of tree-based methods is likely to be significantly worse compared with R:S-

based methods.

Despite these issues, the information contained in B cell lineage trees can provide important 

information about the underlying biological process. We propose to leverage this 

information through a hybrid method that detects selection using an R:S-based test focused 

on the set of non-terminal branch mutations from a lineage tree. When tested on simulated 

data, this method exhibited increased sensitivity and the expected specificity. However, the 

actual performance of the method will depend on the affinity landscape of the response 

being analyzed. In the model, the landscape can be altered through the selection factor 

parameter (s). The strongest average selection occurs for s∼7, in which case the first 

advantageous mutation provides most of the selective advantage. To see that this is the case, 

consider that cells in the simulation start out with a 40% probability of dying at each 

generation and, when s=7, this decreases to 6% after the first advantageous mutation (a 

decrease of 34%). The second advantageous mutation decreases the probability of death to 

1% per generation (a decrease of only 5%), and further decreases provide little benefit given 

the relatively short time-scale of B cell clonal expansion. Under these conditions, it is easy 

to see why there is little selective pressure on mutations near the leaves of a lineage tree. To 

assume a limit on affinity maturation and a scheme of diminishing returns seems reasonable, 

though whether real immune responses operate in a similar fashion is unclear, as the shape 

of actual affinity landscapes has not been determined. For these reasons it was critical to 
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demonstrate the benefits of the hybrid method on experimental data. Indeed, using mutations 

from non-terminal branches in isotype switched IgG sequences from a healthy individual led 

to a significant increase in the estimated positive and negative selection strength in the CDR 

and FWR respectively. An additional benefit of the hybrid method is that many PCR errors, 

which are likely to appear on terminal branches, will be filtered.

With greater prevalence and affordability of next-generation sequencing technologies, larger 

and deeper sequencing of Ig repertoires is becoming more common. The hybrid approach 

developed here can take advantage of the clonal information inherent in these data, and 

provide analyses that will lead to more powerful and accurate insights into the evolution of 

B cell immune responses and malignant clones.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The influence of positive and negative selection on lineage tree shape measures
The probability distribution of (A) OD_Avg, (B) OD-Ratio, (C) PL_Avg and (D) 

DLFSN_Avg was computed for simulated data under different selection pressures: neutral 

selection (grey shaded area; s=1, λ=0), only positive selection (green line; s=7, λ=0), only 

negative selection (red line; s=1, λ=0.5) and the combination of positive and negative 

selections (blue line; s=7, λ=0.5). q=20 and D=22 for all simulations.
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Figure 2. Sensitivity of lineage tree shape measures for detecting selection
Fifteen thousand trees were simulated for a range of positive selection strengths (s={1,…,7}, 

λ=0), and the power to detect selection was assessed for each shape measure (individual 

lines) . True positive rates were calculated by comparison with the null distribution of 

neutral selection (s=1, λ=0) using a P value cutoff of α=0.05 as described in Methods. q=20 

and D=22 for all simulations.
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Figure 3. Low specificity of lineage tree-based approaches due to confounding experimental 
factors
Fifteen thousand trees were simulated assuming neutral selection (s=1, λ=0) for a range of 

(A) the number of sequences sampled, and (B) the generation at which the sequences were 

sampled. False positive rates were calculated by comparison with the null distribution of 

neutral selection (s=1, λ=0) with (A) q=300 or (B) D=22 using a P value cutoff of α=0.05 as 

described in Methods.
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Figure 4. Performance of the hybrid method for detecting selection on simulated data
ROC curves comparing the performance of the Focused Z Test (Uduman et al. 2011) when 

using all mutations (black curve) or only mutations from non-terminal branches in the 

lineage tree (gray curve). Sensitivity is based on detecting positive selection in simulated 

data with both positive and negative selection (s=7, λ=0.5). Specificity is based on detecting 

positive selection in simulated data with only negative selection (s=1, λ=0.5). The dotted 

line indicates the expected specificity at α = 0.05 and the “X” indicates the actual specificity 

at α = 0.05 on the corresponding ROC curves. The inset shows the same data focused 

around α=0.05. q=20 and D=22 for all simulations.
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Figure 5. Hybrid method detects stronger selection in vivo
Estimated selection strength in isotype switched IgG sequences from a healthy male. 

BASELINe was used to quantify selection in the CDR (top half of the plot) and the FWR 

(bottom half of the plot) using the Focused test statistic. The curves depict the posterior 

probability distributions of the selection strength using all unique mutations in the lineage 

tree (dashed), or only unique mutations on non-terminal branches (solid).
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Table I
Lineage tree shape measures

Lineage tree shape measures, their description and heat map of the area under the curve (AUC) quantifying the impact of positive and negative 
selection on the shape measures.

*
Denotes shape measures from (45), and italicized shape measures were reported to be significantly correlated with selection.
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