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Abstract 

A prestressed steel stayed column is a structural component that is reinforced by 

either cable stays or rods such that its strength is increased in axial compression. 
This system provides a considerable increase in axial strength due to the restriction 
from the stay of the primary buckling movement. 

In the past, greater emphasis was placed on its higher critical load, and hence, ex- 

tensive studies were performed on this. However, knowledge of the post-buckling 
behaviour is rather important for designers to ensure the safety and the cost- 

effectiveness of the structure. Despite its potential importance, the post-buckling 

response has not previously been investigated satisfactorily. Therefore, the primary 

aim of the current study was to investigate the theoretical post-buckling behaviour 

of stayed columns. 

A geometrically nonlinear model accounting for the post-buckling behaviour of a 

single-crossarm stayed column was formulated using the Rayleigh-Ritz method; 

then, the model was validated using the finite element method. Geometrical im- 

perfections and the occurrence of possible material failure were also considered to 

account for realistic behaviour in addition to the theoretical behaviour of the com- 

ponent in a perfect state. 

As part of the study, finite element models were developed to account for interactive 

buckling. The results suggest that interactive buckling gains practical importance 

when higher modes become critical. Using the same model, the optimal value of 

prestress was also investigated through the application of more rational structural 
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optimization indicators proposed in the thesis. It was revealed that the optimal level 

of the prestress was higher than that previously thought based on linear buckling 

analysis. Furthermore, comparisons of the optimization indicators for different cases 

allowed the ideal configuration of the stayed column to be inferred. 

2 



Acknowledgements 

This work was carried out under the supervision of Dr Ahmer Wadee, Senior Lecturer 

in the Department of Civil and Environmental Engineering. I am extremely grateful 
for all of his expert help and advice and his continuous encouragement throughout 

the project. 

I would like to acknowledge the financial support for the project provided by the 

Overseas Research Students Award Scheme (ORSAS). 

I would also like to acknowledge The Royal Academy of Engineering for partially 
funding the attendance of the third international conference on structural engineer- 
ing, mechanics and computation in Cape Town, South Africa in September 2007. 

I would like to thank John Hughes, the coordinator of the English Language Support 

Programme (ELSP) for his dedicated language support throughout the course of my 

studies. 

I am also grateful to my colleagues, Arash Soleiman Fallah, Miguel Castro, Rafee 

Mukbol, Tak Ming Chan, Jason Treadway, Alan Nip, Mohammad Reza Haidar- 

ali, Alexandre Delsavio and Michal Jandera for valuable suggestions about Various 

subjects together with their emotional support. 

Finally, I will be grateful to my wife, Marni and parents for their support and 

encouragement throughout the course of my studies. 

3 



Contents 

1 Introduction 22 

1.1 Background ................................ 
22 

1.2 Methodology ............................... 
25 

1.2.1 Object of the study ........................ 
25 

1.2.2 Overview of analysis methods .................. 
26 

1.3 Introduction to Post-Buckling Analysis ................. 27 

1.3.1 Post-buckling stability ...................... 
27 

1.3.2 Interactive buckling ........................ 
28 

1.3.3 Nalve optimum .......................... 
34 

1.4 Energy Principles ............................. 36 

1.4.1 Total potential energy ...................... 36 

1.4.2 Post buckling analysis with total potential energy ....... 36 

1.4.3 Rayleigh-Ritz method ...................... 
39 

1.5 Outline of Thesis ............................. 
41 

2 Development of Theory for Prestressed Stayed Columns 43 

4 



2.1 Studies on the Critical Load ....................... 43 

2.2 Imperfection Studies ........................... 47 

2.3 Studies on Maximum Strength ...................... 48 

2.4 Miscellaneous ............................... 49 

2.5 Remaxks .................................. 51 

3 Formulation of Analytical Post-BuckIing Model 52 

3.1 Introduction ................................ 52 

3.1.1 Methodology ........................... 52 

3.2 Model Formulation ............................ 54 

3.2.1 Displacement functions for the column ............. 55 

3.2.2 Displacement functions for the crossarm ............ 56 
I 

3.2.3 Stress and geometrical changes in the structure ........ 61 

3.2.4 Energy formulation ........................ 68 

3.3 Critical Buckling ............................. 72 

3.3.1 Numerical results ......................... 74 

3.4 Post-Buckling Response ......................... 77 

3.4.1 Zones of behaviour ........................ 79 

3.4.2 Validation for the tip displacement coefficients ......... 82 

3.4.3 Validation for the post-buckling response ............ 83 

3.5 Remaxks .................................. 87 

5 



4 Imperfection and Failure Model 89 

4.1 Introduction and Methodology .................. .... 89 

4.2 Methodology ........................... .... 90 

4.3 Formulation ............................ .... 91 

4.3.1 Imperfections ....................... .... 92 

4.3.2 Displacement functions for the column ......... .... 93 

4.3.3 Displacement functions for the crossarm ........ .... 95 

4.3.4 Stress and geometrical changes in the structure .... .... 99 

4.3.5 Energy formulation .................... .... 105 

4.3.6 Failure criteria ...................... .... 106 

4.4 Equilibrium Path with Imperfections .............. .... 107 

4.4.1 Buckling behaviour .................... .... 109 

4.4.2 Validation for the tip displacement coefficients ..... .... 112 

4.4.3 Finite element validation ................. .... 113 

4.4.4 Sensitivity studies ..................... .... 116 

4.5 Remarks .............................. .... 119 

5 Interactive Buckling 123 

5.1 Introduction ................................ 
123 

5.2 Methodology ............................... 124 

5.2.1 Imperfection ............................ 124 

5.2.2 Prestress .............................. 126 

6 



5.2.3 Assumption 
............................ 127 

5.3 Numerical Results ............................. 127 

5.3.1 Buckling analysis ......................... 128 

5.3.2 Interactive buckling behaviour .................. 129 

5.3.3 Sensitivity to prestress ...................... 135 

5.3.4 Sensitivity to imperfections ................... 136 

5.4 Remarks .................................. 137 

6 Optimal Prestressing and Configuration 144 

6.1 Introduction 
................................ 144 

6.2 Methodology ............................... 145 

6.2.1 Model development 
........................ 146 

6.2.2 Analysis procedure ........................ 146 

6.3 Numerical Results ............................. 150 

6.3.1 Buckling analysis ......................... 150 

6.3.2 Riks analysis ........................... 151 

6.4 Further Parametric Studies ........................ 156 

6.4.1 Buckling analysis ......................... 157 

6.4.2 Riks analysis ........................... 157 

6.5 Remarks .................................. 161 

7 Conclusions and Suggestions for Further Work 167 

7 



7.1 Concluding Remarks ........................... 167 

7.2 Suggestions for Further Work ...................... 171 

A Hessian Matrix for Zone 3 174 

B Error Evaluation and ImPerfection Amplification 176 

B. 1 Error Evaluation and Error Increase in Mode 2............ 176 

B. 2 Hypothesis and Methodology for Investigation ............. 177 

B. 3 Effect of Imperfection Amplification ................... 178 

BA Corrected Analytical Response ...................... 179 

B. 5 Summary ................................. 180 

C Supplementary Data for Parametric Studies 182 

CA Required Stress .............................. 182 

C. 2 Column Element Efficiencyq and Stay Efficiency 77 ........... 183 

References 188 

8 



List of Figures 

1.1 Principle of the prestress steel stayed column: stays are pretensioned 
to provide lateral restraint against overall buckling ........... 23 

1.2 Use of stayed columns in the construction phase of Rock in Rio III 

main stage ................................. 24 

1.3 Building 5 at Chiswick Park, London-the stayed column system was 

adopted for the faýade in conjunction with the shading fins ...... 25 

1.4 Variation of stayed column: (a) single-crossarm, (b) split-up (bipod) 

crossarm, (c) double crossarm, rectangular, (d) triple crossarm, bow- 

string. Note that by increasing the number of crossarms, the effective 

length of the column will be reduced; thereby, even higher buckling 

loads can be achieved ........................... 26 

1.5 Stable post-buckling response of a simply-supported plate ....... 27 

1.6 Unstable post-buckling response of a restrained column ......... 28 

1.7 Interactive buckling in a plate, after Everall (1999). Note that the 

existence critical (C) and secondary (S) bifurcations occur when equi- 
librium paths cross ............................. 30 

1.8 Interactive buckling in an arch-(b) consists of the components in (c). 31 

1.9 Interactive buckling in a cylindrical shell ................. 32 

9 



1.10 Interactive buckling in a stiffened plate .................. 32 

1.11 Structural model of a reticulated column, showing the interaction 

between overall and local buckling .................... 33 

1.12 Interactive buckling in a compressed sandwich panel: (a) pre-buckling; 
(b) overall buckling; (c) interactive buckling (Wadee, 1999) ...... 33 

1.13 Optimum design for thin walled members represented by the van der 

Neut model-a thin walled member which has an idealized section 

comprising two load-carrying flange plates with an unspecified web 

which simply serves to maintain the structural integrity of the strut 

without contributing to the transmission of axial stresses: the flange 

plates are assumed to be simply-supported along their edges-after 
Thompson and Lewis (1972). The "na: fve" optimum occurs when the 

dimension b= bA. Note that the overall buckling load is associated 

with a increasing function of b, while the local buckling load corre- 

sponding to the walls of the section is associated with a decreasing 

function of b................................ 35 

1.14 Periodic deflection of the axially-compressed plate ........... 37 

2.1 Model investigated by Chu et al. (1963)-crossarms are pin-connected 

to the stays and to the column ...................... 44 

2.2 Critical buckling load PC versus initial prestress T as found by Hafez 

et al. (1979) 
................................. 46 

2.3 Critical buckling load PC versus initial prestress T with imperfections 

imposed, arising from the results of Wong et al. (1982) 
......... 47 

2.4 Maximum load capacity versus initial prestress T, arising from the 

results of Temple et al. (1984) 
....................... 48 

10 



3.1 Structural model of the stayed column: column length L, crossarm 

length a, axial load P, angle between the stay and the vertical a and 

stay length L,. The quantity Aix represents the end-shortening of the 

column, where subscripts i and X represent a buckling mode number 
(1 or 2), and a buckling type (A, B or C) respectively. Subscripts 1, 

2,3 and 4 after X represent the number of the individual stays. ... 53 

3.2 Buckling Modes 1 (symmetric) and 2 (antisymmetric) 
......... 55 

3.3 Buckling types in Mode 2......................... 57 

3.4 Ree body diagram to determine the bending moment at an arbitrary 

cross section (y >, 0) of the crossarm. Note that the subscript X 

represents the buckling type classification which can be either B or C. 58 

3.5 Elongation of the stays and reaction forces at the tip of the crossarm. 60 

3.6 Effect of the initial prestress ........................ 62 

3.7 Geometry of the stayed column in buckling modes 1 and 2....... 65 

3.8 Equilibrium free body diagram for the column. Note that RHiX is 

the horizontal reaction force at the end of the column ......... 66 

3.9 Stress-strain relationship of the stays ................... 71 

3.10 Critical buckling load PC versus initial prestress T. The state of the 

stays and their strains -, at the instant of buckling are also shown. . 75 

3.11 Comparison of Pmc,,. values with those of the Hafez model: (a) vary- 

ing crossarm length, (b) varying stay diameter, (c) varying Young's 

modulus. Symbols (0), (o) and (o) represent the cases of n=1, 

n=2 and n=3 respectively ....................... 76 

3.12 Critical buckling load Pc versus the initial prestress T showing the 

selected points for the study ........................ 78 

11 



3.13 Post-buckling responses for Mode 1 represented by axial load P versus 

midspan buckling displacement q, - q3 .................. 80 

3.14 Post-buckling responses for Mode 2 represented by axial load P versus 

midspan buckling rotation q2 - 2q4 .................... 81 

3.15 Selected points for the validation of the tip displacement coefficients. 83 

3.16 Comparison Of 7-02X(y) and hx. Note that the values Of W2X(y) and 
hx coincides at the tip of crossarm, y= 305 mm ............ 84 

3.17 Equilibrium paths for Mode 1 comparing the FEM and the analytical 

models ................................... 85 

3.18 Equilibrium paths for Mode 2 comparing the FEM and the analytical 

models ................................... 86 

4.1 Stress-strain curves for column and stay ................. 91 

4.2 Buckling Modes 1 (symmetric) and 2 (antisymmetric) with initial out- 

of-straightness ............................... 92 

4.3 Initial profiles. Note that aij shows the angle between the column 

and each stay at the ends of the column ................. 94 

4.4 Free body diagram to determine the bending moment at an arbitrary 

cross section (y >, 0) of the crossarm. Note that the subscript X 

represents the buckling type classification which can be either B or C. 95 

4.5 Elongation of the stays and reaction forces at the tip of the crossarm. 97 

4.6 Effect of the initial prestress ........................ 100 

4.7 Geometry of the stayed column in buckling modes 1 and 2....... 102 

4.8 Equilibrium free body diagram for the column. Note that RHjx is 

the horizontal reaction force at the end of the column ......... 103 

12 



4.9 Equilibrium paths for Mode 1 represented by the axial load P versus 

midspan displacement W(L12)IL. Note that the highest path in 

each sub-figure occurs when 5=0, and the lowest path occurs when 

J= 1/200 ................................. 
110 

4.10 Equilibrium paths for Mode 2 represented by the axial load P versus 

midspan buckling rotation E)(L/2)/27r. Note that the highest path in 

each sub-figure occurs when J=0, and the lowest path occurs when 

J= 1/400 .................................. 
ill 

4.11 Selected points for the validation of the tip displacement coefficients. 113 

4.12 Comparison Of W2X(y) and hx. Note that the values Of W2X(y) and 

hx almost coincide at the tip of crossarm, y= 305 mm ........ 113 

4.13 Equilibrium paths for Mode 1 comparing the FEM and the analytical 

models for J= 1/300. Three paths from the FEM are plotted in each 

sub-figure in order to spot the failure points ............... 117 

4.14 Equilibrium paths for Mode 2 comparing the FEM and the analytical 

models for J= 1/600. Three paths from the FEM are plotted in each 

sub-figure in order to spot the failure points ............... 118 

4.15 Imperfection sensitivities of the system (Mode 1) ............ 120 

4.16 Imperfection sensitivities of the system (Mode 2) ............ 
121 

5.1 Interactive buckling of the stayed column ................ 124 

5.2 Buckling loads with the stay diameter 0, varying ............ 
128 

5.3 Buckling loads with the crossarm length a varying ........... 
128 

5.4 Equilibrium paths with the stay diameter 0, varying when the im- 

perfection combination is Case 2..................... 130 

13 



5.5 Equilibrium paths with the crossarm length a varying when the im- 

perfection combination is Case 2..................... 131 

5.6 Equilibrium paths represented by the axial load P versus the end- 

shortening A with the stay diameter 0., varying ............. 132 

5.7 Equilibrium paths represented by the axial load P versus the end- 

shortening A with the crossarm length a varying ............ 133 

5.8 Maximum load capacity P,.,,. in conjunction with critical loads PC 

at T=T. pt ................................. 134 

5.9 Transition of the axial forces in the stays Tj when T=T. Pt, and 

pi = 0.5. The given modes in the parentheses show the critical 
buckling mode ............................... 139 

5.10 Sensitivity to the imperfection combination represented by the max- 

imum load capacity Pm., versus p, with the stay diameter 0, varying. 140 

5.11 Sensitivity to the imperfection combination represented by the maxi- 

mum load capacity Pj 
....... versus it, with the crossaxm length a varying. 140 

5.12 Equilibrium paths represented by the axial load P versus the end- 

shortening A with the stay diameter 0,, varying when T=T. pt and 

T= 2T. pt, and it, = 0.5 .......................... 141 

5.13 Equilibrium paths represented by the axial load P versus the end- 

shortening A with the crossarm length a varying when T=T. pt and 

T= 2T. pt, and p, = 0.5 .......................... 141 

5.14 Sensitivity to the imperfection combination represented by the maxi- 

mum load capacity P, ýI, ma,, versus p, with the stay diameter 0., varying 

when T=T. pt and T= 2T,, pt. The arrow with the doted line show 

an increase in the maximum load capacity from T. pt to 2T. pt. .... 142 

14 



5.15 Sensitivity to the imperfection combination represented by maximum 

loading capacity PI, max versus p, with the stay diameter a varying 

when T=T. pt and T= 2T. pt. The arrow with the doted line show 

an increase in the maximum load capacity from T. pt to 2T. pt. .... 142 

5.16 Equilibrium paths represented by the maximum load capacity P,,,,,, a., 

versus the end-shortening A with a variation of the imperfection J 

when p, = 0.5 and the case of a4/F3 were adopted ........... 
143 

5.17 Maximum load capacity versus the imperfection 9 with a vari- 

ation of the prestress T when p, = 0.5 .................. 143 

6.1 Required material resistance to achieve the elastic maximum load 

capacity PI, ma ................................ 147 

6.2 Maximum elastic load capacity PI, ma ................... 152 

6.3 Required column yield stress fy, req to reach the maximum elastic load 

capacity Pq,,,, a. ............................... 
152 

6.4 Ratio of the maximum elastic load capacity to the required structural 

resistance for the column 77-the higher a value of 77, the more effective 

buckling resistance the column has .................... 
153 

6.5 Required stay resistance to reach the maximum elastic load capacity 

Pel, max .................................... 
155 

6.6 Ratio of the maximum elastic load capacity to the required structural 

resistance for the stays ? 7, -the higher a value of 77, the more efficiency 

the stays have ............................... 
155 

6.7 Buckling loads at T,, pt with a variation of the crossarm length a and 

the stay diameter 0 ............................. 163 

15 



6.8 Maximum elastic load capacities against prestress with a variation of 

the crossarm length a and the stay diameter 0 .............. 164 

6.9 Maximum q for each case-the higher the value of q, the more effi- 

ciency in terms of the load carrying capacity to the required structural 

resistance of the column. Note that the double diamond shows the 

highest value in each sequence ....................... 165 

6.10 Maximumq, for each case-the higher a value ofq,, the less structural 

resistance is required to support a given load. Note that the double 

diamond shows the highest value in each sequence ........... 166 

B. 1 Error between the analytical and the FE models, when J= 1/300 for 

Mode 1 and J= 1/600 for Mode 2.................... 177 

B. 2 Imperfection amplification ratio Aj, when 6= 1/300 for Mode 1 and 
J= 1/600 for Mode 2........................... 178 

B. 3 Error between the analytical and the FE models in Mode 2 when 
ý= 1/600 .................................. 179 

CA Required column yield stress fy,, eq .................... 184 

C. 2 Required stay design stress fs, Rd, req .................... 185 

C-3 Values of the column element efficiency q................ 186 

CA Values of the stay efficiency 77 ...................... 187 

16 



Notation 

Coordinates, Stress, Strains, Loads and Energy 

X Longitudinal direction along column length 

y '11ansverse direction along crossarm length 

ECiX Axial strain in column 

Esixj Axial strain in stay 

O's Axial stress in stay 

'St initial strain in stay 

Ect initial strain in column 

Eat initial strain in crossarm 

T Initial prestress force in stay 

T, Initial prestress force in column 

Ta Initial prestress force in crossarm 

Tixj Axial force in stay 

Cix Compression force in column 

Six Shear force in column 

Mix Bending moment in column 

Max Bending moment in crossarm 

Rhx Horizontal reaction force at crossarm tip 

R, x Horizontal reaction force at crossarm tip 

dFX3, dFX4 Axial force changes in stays 

Vix Total potential energy 

17 



Ucbi Strain energy of bending in column 
Uab2X Strain energy of bending in crossarm 
UcaiX Axial strain energy in column 
UcaiX Axial strain energy in column 

Psix Work dove by load 

P External load 

PC Critical buckling load 
PZCoinell PZC. 

ne21 
PZCoine3 Critical buckling load for each zone 

PmCax Maximum buckling load 

PE Euler load 

Topt Initial prestress at the maximum buckling load 
Tmin Minimum-required initial prestress to increse buckling load 

Prestressed Stayed Column Properties 

Geometry 

L Column length 

a Crossarm length 

L, Stay length 

a Angle between column and crossarm 

011 Outside diameter of the column 
06 Inside diameter of the column 
Oao Outside diameter of the crossarm 
Oai Inside diameter of the crossarm 

08 Stay diameter 

18 



Material Properties 

E Young's modulus of column 
E,, Young's modulus of crosssarm 
E, Young's modulus of stay 
A Cross sectional area of column 
A,, Cross sectional area of crosssarm 
A, Cross sectional area of stay 

Cross-sectional second moment of area of column 
Cross-sectional second moment of area of crossarm 

Stiffness 

K, Axial stiffness of a column 
K. Axial stiffness of a stay 
K,, Axial stiffness of a crossarm 

Displacements and Degrees of Freedom 

Post-buckling 

W1 (X) 
i 

W2 W Displacement functions of column 

E) 1 (x), E)2(X) Angle functions of column 

W2X(Y) Displacement functions of crossarm 

hx Tip displacement of crossarm 

CB 9 CC Tip displacement coefficients 

L, ixj Stay length under loading 

19 



aixj Stay angle under loading 

qj, q3, q2m-1 Amplitudes for Mode 1 buckling 

q2j q4, q2m Amplitudes for Mode 2 buckling 

Aix End-shortening of column 

bpx, btx, bmx, b,,, Ix End-shortening coefficients 

7 Angle between the horizontal and crossarm 
A Angle between the vertical and column end 

Imperfections 

W16) W2J Imperfection displacements of a column 
Ji 611 J2 Amplitude of imperfection 

L, ij Initial stay length with imperfection 

aij Initial stay angle with imperfection 

. 60 Mean square measure end-shortening of total initial imperfection 

P17 P2 Coefficients for imperfection combinations 

Optimal level of prestress 

P, I, max Elastic maximum load capacity of a stayed column 
fy, 

req Required column yield stress 
fs, Rd, req Required stay design stress 

77 Ratio of the elastic maximum load capacity to 

the required structural resitance for the column 

77s Ratio of the elastic maximum load capacity to 

the required structural resitance for the stay 
Tr'Pt Optimal level of prestress 

20 



Tr. pti 
Optimal level of prestress obteined from 77 

Tropt2 Optimal level of prestress obteined from q,, 

Buckling reduction factor 

21 



Chapter 1 

Introduction 

1.1 Background 

A prestressed steel stayed column (Figure 1.1) is a structural component that is 

reinforced by either cable stays or rods such that its strength is increased in axial 

compression. Ordinary columns have a propensity to buckle under axial compression 

primarily due to their characteristic of being slender. To counter this, a prestressed 

steel stayed column is equipped with pre-tensioned stay systems; these restrain the 

column buckling displacement through horizontal crossarms placed at some inter- 

mediate distance from the column ends. Consequently, this additional system acts 

to prevent the principal movement during conventional column buckling and poten- 

tially provides a considerable increase in axial strength. 

An application of this column type can be found where slender supports or towers 

are required; for example, it was used as a temporary support during the erection 

phase of the main stage of the "Rock in Rio UP stadium in Rio de Janeiro, Brazil 

(De Andrade et al., 2003a; De Andrade et al., 2003b)-see Figure 1.2. In this project, 

it was required to support the large roof structures as high as 36 metres above 

ground level. Conventional construction methods would have required a massive 

and complicated shoring system with a commensurate time penalty. To counter 
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(L 
0 

ion 

Figure I. I: Principle of the prestress steel sta * yed cohinin: stays are pretensioned to 

provide lateral restraint against overall Imckling. 

this, the engineers decided to adopt stayed columns as the shoring system. Owing 

to its structural simplicity and superiority in resisting axial loads, this choice allowed 

the engineers to save significant time in the construction process. 

Another exampIc (-all be found in Building 5 ýit Chiswick Nrk, London as shown ill 

Figure 1.3. Owing to all m, sthctic requirement, the columns that support aluminium 

solar shading fills were designed to be slender. Ill order to this requirement, 

stein was adopted. the stayed colimin sy, 

In addition to these practical uses, a number of research works on stayed columns, 

have existed shice the 1960s, such as those evaluating critical buckling loads (CIiii 

& Berge, 1963; Mauch & Felton, 1967: Sinith ct al., 1975ý Tcinpleý 1977: Belen. va. 

1977: Hafez ct. al., 1979), imperfection sensitivity studies (Wong k Teiliple. 1982: 

Chan ct al., 2002). and examining the coluinn's maxiinuin axial strength (Temple 

ct al.. 1984. Sinith. 1985). 
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Figure 1.2: Use of stayed cohinins in the constniction phase of Rock in Rio IR maill 
stage. 

Despite this progress. to the best knowledge of the author. the post-buckling re- 

spoilse has not been investigated satisfactorily. This information is crucial to make 

the design safer and more efficient: stability in the post-buckling railge implies that 

the design load could potentially be set higher in consideration for the post-buckling 

stiffness: conversely, instability in the post-buckling range nicans the design load 

should be significantly reduced in order to ensure safet. v and the potentialitY of the 

structure being sensitive to imperfections (Thompson k Hunt. 1973). 

With the background mentioned above. the aims of the research presented herein 

are as follows: 

1. To reveal the post-buckling response of stayed columns. in particular the sta- 

bility of the equilibrium response after buckling. 

2. To propose design recommendations for stayed coliumis iii the light of the 

results obtained. 

In the current stud. y. the post-huckling response was invcstigated by developing 

analytical models using energy principles and numerical models using the finite 

element method (FENI). 

24 
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CHAPTER 1. INTRODUCTION 

Figure 1.3: Bnilding 5 at Chiswick Pm-k. London Illc stayed colmlin system was 
adopted for the faýade in conjiniction with the shadhiP., fins. 

1.2 Methodology 

1.2.1 Object of the study 

There are inailY possible forms of' stayed columns, as (-an be seen ft'oin Figure 1.4. 

With large numbers of crossarnis. the effective length of the colunin (-an becoilie even 

shorter. which provides the structure with a inuch higher axial resistance in coinpres- 

sion. In the current work. a two-dimensional', single-crossarin stayed colunin, tile 

simplest type, shown in Figure 1.1, was modelled. It is known f'roin previous work 

that investigating the stayed colunin with an analytical procedure inevitably in- 

volves inatheinatically sophisticated formulations; therefore, modelling the simplest 

structure is a rational first step to revealing its post-buckling response. Moreover, 

the majority of the literature deals with this single-crossarin type: lience. validation 

and comparisons with previous research are possible. 

'In a three-dimensional case, tile buckling direction does not occur in the same plane as tile 
one where the stays exists, which would render the analytical model even more sophisticated 
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Figure 1.4: Variation of stayed colmim: (a) sin, gle-crossarm. (b) split-iip (bipod) 

crossarm, (c) doiible crossarm, rectangiflar, (d) triple crossarin. bowstring. 
Note that by increasing the miniber of crossarins. the effective length of the 
cohnnn will be redticed; thereby, even higher biwkling loads can be achieved. 

1.2.2 Overview of analysis methods 

In order to perform post-buckling analysis with ail analytical method. the total po- 

tential energy principle was applied with the use of the Ba. vl(, igli Ritz inethod, which 

is covered in some textbooks (Thompson k Hunt. 1973: Thompson k Hunt. 1984: 

Simitses. 1976; Allen & Bulson, 1980). Although this is a, classic approach compared 

with a, numerical approach such as the ilonlincar FENI. and sometimes. inevitably 

involves considerable error due to its approximation, this inethod does not require 

imposing geometrical initial imperfections onto the inodel to investigate equilibrium 

patIls. Which a, llows lis to understand the buckling responses of a structure more 

systematically. The detalls of this analytical method are described in ý1.4. 

Finite element (FE) analysis was also conducted for validation and parametric study 

purposes, expecting to evaluate the behaviour of the stayed column accurately. As 

the main focus of the research is overall scale buckling. not local buckling of the 

main column element. the model was developed on a two-dimensional basis -, A-itli the 

use of beam and truss clements, which allows the model to be less computationally 

expensive than fully three-dimensional models. By taking this advantage. a large 

number of parametric studies were conducted, including investigation into interac- 

tive buckling behaviour. Further details of the numerical model are described at the 
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rclcvallt stage ill the thesis. 

1.3 Introduction to Post-Buckling Analysis 

1.3.1 Post-buckling stability 

From I lie viewpoint ()f dcsign engineers. post-kickling analysis, might secill less im- 

pm, tant. because ()rdinar. v columns call be designed largely kvith considel-ation 4011ly 

theii- critical loads and thed yield stress (Dowling d at. 198& nwhad d at. DHH). 

III fact. the ordinary c()hunn hit,; an almost flat but slightly stable post-buckling rc- 

syme: thus WTV is IV) s"NOW10 post-Imufling stIvilgth imr stiffness, whicli means- 

that any cmisiSmAm towards its ImAickling response is basically unuccessary- 

Despite the response 4 ordinal-Y columns. when a structure is thin-walled m. stiff- 

ciled. the post-buckling response usually gains impm-tance. In platcd structures. 

significant stahle paths can be fmind in their Imst-buckling resimnse (s(, (, Figure 

1.5): thwebre. jdated swuluns (on bc dvsigm, d with the thought that they can 

(orry a Nrgvr hmd than thpir (Tit4ol hnul- Rmthpr (walliples are rest rained c(AIIIIIIIS 

13 

Figure 1.5: Stable post-bucklim, ()f ýI Sill IpI v-sl Ipport cd platc. 

(s(, (, Figure 1.6); hi this (aw the (ht&nl bad W own be sew higher thiinks to its 

SIIp porti IIg spri IIg. bI It 1111"'t aI )Ic pit I I,, con cinerge ýiftvr b uck I ing (Ts-ic I I. 19-12: 11111 It. 

l9, S9). III such cases. "'afetly factors and semsitivitics to illit iill imperfect iolls should be 

carefiffly exandiwol to enmue stnulmal snfo4y nnol inu%rh, As the suq"l cohmm 
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Bifurcation 
Point 

P( 

E. ulet, Load 

w 

Figure 1.6: Unstable post-buckliin, of a restraincd column. 

is All example of a stiffelled structure. a complicmed and significimt post-buckling 

reslumv (oil be expected. Thus. information about its post-blickling response is es- 

spiAiml. WAT to inakv Hip imat (A squomal Armigt1i milen t hc postlMling Imth 

is stable. or to ('11-sure structural sah-tY wlwn th, postImulling Imth is unAabk. 

1.3.2 Interactive buckling 

Diff'crew wavelengt Its ()I' buckling may occur wit hill I Ic ,t Ilre: ill t It(, case 

of t1w listrailud (Minni showil ill Figure 1.6. it half wave an(I it full length wave (-all 

be observe( I. depell( IiIIg ()it II ic st iffnes's of' II ic sI wing. Different xx-avc1ciigt I is of' I )I ick- 

ling create ill(' possible pi-oblein of' '-inleractive I)ii(-kliiig*'. which is a pliciloillellon 

ill which diffcrent modes of buckling occur simultaiwously. 11 has beell reported 

as ofurte it notorious phenomenon for structural safety ill previons work. When a 

sti'lictlire is cOil 1pressed, typicailly overall buckling. buckling along the total length 

of, the structiliv, occul. ", as Ihc first failure modc. If' afterwards thc coillpres'sion is 

inailitailled. i. c. if' Ill(, structure goes into it post-huckling shitc. a differeill niode 

of buckling may cinerge at some poilit. depending ()It Ihe shape of' the sti'lictlire. 

This new mode combines with the overall buckling and results ill it new rather com- 

plicat c(I iiit cnict ive h uck I ing ill odc slia I w. (A mst nq)hic st ruct ura I fifilure ca II he 

trigg(ml by this internOW Imulling thmigh a sliddell loss, of' "'ti'lictill-al stiffiles's: 

therefore, avoiding interactive buckling is considered to be one of' dic most impor- 
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CHAPTER 1. INTRODUCTION 

tant issues for the safety of structures. Since interactive buckling seems to be one 

of the important issues in the current work because of the structural configuration, 

more examples of this phenomenon are reviewed in this section. 

A relatively simple type of interactive buckling can be found in ordinary plates. 
As shown in Figure 1.7, two different wavelengths of overall buckling can be com- 
bined (Supple, 1970). Furthermore, with large deflections, the interaction with 

other modes also occurs (Everall & Hunt, 1999), resulting in a further complicated 

post-buckling response. 

Arches-beams initially deflected upwards whose horizontal movements are restricted 

at both ends-have similar interactive mode shapes to plates though an unstable 

post-buckling response occurs rather than a stable response (Huseyin, 1974; Zeeman, 

1977; Thompson & Hunt, 1984). An asymmetric buckling profile is observed after 
buckling; the configuration consists of two different wavelengths of overall buck- 

ling, as can be seen from Figure 1.8, the asymmetry being a key feature indicating 

interactive buckling. 

Cylindrical shells (Hutchinson & Koiter, 1970; Hunt et al., 1986; Hunt et al., 1997) 

have a more complicated type of interactive buckling system than ordinary plates 

and arches. Different wavelengths of local buckling appear consecutively due to the 

interruption of the longitudinal deflection caused by the cross sectional deformation. 

Despite the perfect symmetry of each buckling mode in isolation, in combination 

they can account for the diamond pattern of buckling, as shown in Figure 1.9, where 

the symmetric breaking mode is observed axially. Interactive buckling is also found 

in skin-stringer stiffened plates (Murray, 1973; Koiter & Pignataro, 1976; Luongo 

& Pignataro, 1988; Sridharan & Peng, 1989; Ronalds, 1989; Azhari & Bradford, 

1995; Falzon & Cerini, 2006), which are commonly used in aeronautical and bridge 

structures. In this case, overall skin buckling can induce localized stiffener buckling 

(local buckling, known as tripping), as shown in Figure 1.10. 

The reticulated column (Thompson & Hunt, 1973), shown in Figure 1.11, is also an 

interesting example illustrating interactive buckling. This structure is composed of 
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(a) bucklinl- mode 

Figure 1.7: Interactive buckling, in a plate. after Everall (1999). Note that thc existcilce 
critical (C) and secondarY (S) bifurcations occur when cquilibrium paths 
cross. 

I'M 

G) one half-wave (n) two half-waves (in) coupled waves 
(interactive buckling) 

(b) post-buckling equilibrium patli n 
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(a) InitiL State 
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Figure 1.8: Interactive buckling in an arch-(b) consists of the components in (c). 

small members, forming a truss. When the structure is compressed, as illustrated in 

Figure 1.11 (c), overall buckling along the total length and local buckling in individual 

truss members may occur simultaneously. The local buckling causes a sudden loss 

of the structural rigidity, and together with overall buckling, the structure fails 

catastrophically. 

Sandwich structures, with two stiff face plates separated by softer core material 
(Allen, 1969; Hunt et al., 1988; Hunt & Wadee, 1998; Wadee, 1999), can also suffer 

an interaction between overall and local buckling. Overall buckling of the structure 

in combination with local buckling of the face plates is shown in Figure 1.12. This 

instability behaviour is responsible for severe destiffening in the post-buckling range 

and a consequent sensitivity to geometrical imperfections. 

31 



CHAPTER 1. INTRODUCTION 

Figure 1.9: Interactive buckling in a cylindrical shell. 
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Figure 1.10: Interactive buckling in a stiffened platc. 
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(a) 

(b) 

13 
0 

(C) 

Figure 1.11: Structural model of a reticulated column, showing the interaction between 
overall and local buckling. 

Impoww- 

(it) 

Figure 1.12: Interactive. buckling in a compressed sandwich panel: (a) pre-buckling; (b) 

overall buckling; (c) interactive buckling (Wadee, 1999). 
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CHAPTER 1. INTRODUCTION 

In the work presented herein, combinations of different wavelengths of overall buck- 

ling are to be considered, as discussed later; thus, the interactive buckling in plates 

and arches described above is more relevant to the current work. 

1.3.3 NaYve optimum 

It is also worth mentioning that, when the configuration of a structure allows two 

separate buckling modes to occur together, i. e. an initial buckling mode coincides 

with a secondary mode, the critical load for design become the highest, which is 

sometimes regarded as design optimization for instability. However, at the expense 

of the maximized critical load, significant instability can be observed in the post- 

buckling response (Johns Chilver, 1971; Thompson & Lewis, 1972; Thompson 

Supple, 1973; Thompson Hunt, 1973; Wadee, 2000). 

The buckling of thin walled members, shown in Figure 1.13, is a suitable example of 
this design optimization dilemma (Thompson & Lewis, 1972). In this case, overall 
buckling and local buckling possibly occur, and an increase in the dimension b allows 

a rise in the critical load for overall buckling, but simultaneously reduces the load 

for local buckling. The design load for buckling is defined as the lesser load from 

these two loads; the highest design load can be obtained when overall buckling and 
local buckling loads are at the same value, which is the case for point A in Figure 

1.13. At the expense of this increase, the most unstable response can be observed 
in its post-buckling response. Consequently, this point cannot simply be defined as 

the optimized point, and this dilemma is sometimes noted as the "ndive" optimum 
(Koiter & Pignataro, 1976). 

In the current work, this problem is also seen in relation to the initial prestress. In 

fact, the most significant instability can be seen at the prestress which maximizes 

the buckling load, which is described in Chapter 3. 
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Figure 1.13: Optimum design for thin walled members represented by the van der Nent 

model a thin walled member which has an idealized section comprising 
two load-carrying flange plates with an unspecified web which simply serves 
to maintain the structm-al integrity of the stnit without contribliting to 

the transmission of axial stresses: the flange plates are assumed to be 

simply-supported along their edges after Thompson and Lewis (1972). 

The '*iiaYx-c" optimum occurs when the dimension b= bA. Notc that the 

overall buckling load is associated with a increasing function of 1). while the 

local Imckling load corresponding to the walls of' the section is associated 

with a decreasing finiction of b. 
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CHAPTER 1. INTRODUCTION 

1.4 Energy Principles 

In this section, applied energy methods-the total potential energy principle with the 

Rayleigh-Ritz method-for post-buckling analysis are presented. Firstly, the basic 

approach for formulating the total potential energy is presented. This is followed 

by the methodology involved in investigating the post-buckling response with the 

total potential energy. As with most practical structural systems, it is difficult to 

express a buckling shape function precisely with a simple mathematical expression 

without a complicated analytical process such as the calculus of variations from a 

continuum formulation. Hence, the Rayleigh-Ritz method, one of the well-known 

approximate methods, needs to be introduced. 

1.4.1 Total potential energy 

As it is assumed that the model of the current work is a static conservative system, 

the total potential energy, V, stored in the system consists of internal (strain) energy 

and the work done by an external load. Thus 

V= U- PS7 (1.1) 

where U is the strain energy stored in the structure and PE is the work done by a 

load, which is given as the load P multiplied by the distance E that the load moves 

in the direction of P. 

1.4.2 Post buckling analysis with total potential energy 

The first general approach-for the modelling of post-buckling behaviour was devel- 

oped by Koiter (1945). He used the calculus of variations to minimize the potential 

energy of a structure V; the formulation of his theory is given as follows: 
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L dx, (1.2) 

where L is equivalent to the Lagrangian function in dynamical systems (Fox, 1987) 

and x is the spatial coordinate. When the first variation of V vanishes, this equation 

gives the stationary points, which, as will be shown later, can reveal the post- 

buckling equilibrium behaviour. 

This work was extended considerably by Thompson k Hunt (1973), introducing gen- 

eralized coordinates in conjunction with Koiter's pioneering work. It was assumed 

that post-buckling profiles can be expressed as a series of inodes, and that each 

inode can be expressed with generalized coordinates Q,,,, which define amplitudes 

of distinct buckling inode shapes. The subscript to represents an arbitrary integer 

number. For instance, it is known that the buckling niode for the siniply-supported 

plate shown in Figure 1.14 can be expressed as a truncated Fourier series: 

7FX 7TX (Q, sin -+ Q2 Sill -++Q,, Sill Sill 7FY, LLL) 

where n represents the number of degrecs of freedom in the model. 

p 

// 

Figure 1.14: Periodic deflection of the axially-compresscd plate. 

With reference to equation (1.2). and using general coordinates Q, the total po- 
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tential energy is expressed as 

V': -: V(Ql? Q27 Q37, ,*I Qn) P)l 

where P is the applied load. Applying Koiter's theory to the equation above, an 

equilibrium state can be expressed as 

av 

OQM 
(1.5) 

Thompson & Hunt also discussed the stability and instability of post-buckling be- 

haviour; a stable path appeared when energy is a locally minimized. A single degree- 

of-freedom (SDOF) system is appropriate to illustrate their theory. Defining a gen- 

eralized coordinate as Q, the potential energy as V= V(Q), and a perturbation 

for Q as c, and using a Taylor series expansion, for the perturbed potential energy 

V(Q + c), the following expression is obtained: 

2V2 

.1d 
nV 

+n+ V(Q + V(Q) + dQ 2! Q2 6 

As we consider the equilibrium state of the system, we can obtain the following 

equation from (1.5): 
dV 
-= dQ 

Hence, equation (1.6) can be rewritten as 

(1.7) 

V(Q + V(Q) =1d 
2V 

62++1d 
nV 

fn 
2 dQ2 n! dQn 

In order that V(Q) is minimized, the equation above has to be positive for any 

small e, which would imply that the system is stable. In the first instance, the sign 

of the equation is controlled by the terms of the second derivative of V, as can be 

seen. When the second derivative of V vanishes, it implies that it is a bifurcation 

or critical state because the energy level is locally flat. A small energy change is 

made when the system is perturbed by E; in the neighbourhood of such states, the 
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second derivative of V cannot give the stability of equilibrium, and thus the higher 

derivatives of the energy must be examined (Wadee, 2007). 

Rom the discussion above, Thompson & Hunt's work presented the two famous 

axioms that allow the use of V for analysing the structural stability of a system: 

Axiom 1A stationary value of the total potential energy with respect to the gener- 

alized coordinates is necessary and sufficient for the equilibrium of the system. 

Axiom 2A complete relative minimum of the total potential energy with respect to 

the generalized coordinates is necessary and sufficient for the stability of an equilib- 

rium state. 

In the current work, the first axiom is used to describe all equilibrium states and the 

second axiom is used to find the critical load and the stabilitY of the post-buckling 

equilibrium states. 

1.4.3 Rayleigh-Ritz method 

The Rayleigh-Ritz method is an approximate method which can be used to investi- 

gate any type of structural deflections through the calculation of the total potential 

energy; this method is covered in some textbooks (Ba2ant & Cedolin, 1991; Allen 

& Bulson, 1980). In general, the more complicated a structure is, such as the 

stayed column, the more difficult it is to express the post-buckling behaviour of 

the structure precisely with a continuum formulation. In such cases, applying the 

Rayleigh-Ritz method along with the energy formulation is a useful approach to 

obtain approximate mathematical equations which express the equilibrium states. 

Owing to the structural complexity of the stayed column, the Rayleigh-Ritz approx- 

imation is used in the current work. The general concept of this method is discussed 

in this section. 
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For the Rayleigh-Ritz method in structural analysis, an approximate function for a 
deflected shape f (x) is generally assumed as follows: 

f (X) : -- Ql01 (X) + Q202 (X) + Q303 (X) +*'*+ QnOn (X) 
) 

(1.9) 

where Q1, Q21 Q37 ---, Q,, are generalized coordinates, and 01(x), 02 (X) 
7 03 (X) 

i ... I 
0,, (x) are arbitrary functions to express the units of the post-buckling shape along 

a structure, and which are usually defined as sinusoidal or polynomial functions. 

In general, the higher the number of these generalized coordinates and arbitrary 
functions become, the more accurate the post-buckling profile f (x) becomes. 

With this function of f (x), the strain energy U and the work done Ps can be ob- 
tained, which leads directly to the total potential energy V. Subsequently, by Axiom 

1, the first derivative of V with respect to each Q,,, can be set equal to zero; this 

condition produces n simultaneous equations expressing the relationship between 

the applied load P and Q,,,. By solving these equations, it is possible to express the 

relationship between P and f (x), which implies that the approximate post-buckling 
deflection can be obtained by substituting a certain value to the applied load P. 

The major benefit of this method is that an approximate post-buckling shape in 

relation to loading can be obtained without resorting to purely numerical methods, 

such as the FEW, just by executing differentiations and solving simultaneous equa- 

tions. In addition to this, as a deflected shape f(x) is obtained as an analytical 

expression, it can provide more comprehensive and qualitative meaning. It is also 

a great advantage that f (x) can be obtained without imposing geometrical initial 

imperfections onto the model; the behaviour obtained by this method is able to 

show the principal behaviour of the structure in a perfect state. 

Although these conveniences and advantages should be fully appreciated, there are 
'Note that the FEM also adopts the Rayleigh-Ritz method to determine the deformation of each 

element. However, since a large number of elements are used in the FENI-this is of assistance 
in increasing the accuracy of the analysis-it quickly becomes cumbersome to understand the 
effects of individual modes in conjunction with each element shape function, and hence the FEM 
is regarded as a purely numerical method. 

40 



CHAPTER 1. INTRODUCTION 

also some disadvantages. First of all, being an approximate method, the Rayleigh- 

Ritz method is not accurate unless it is a case in which f (x) can express the actual 

shape accurately. Hence, the Rayleigh-Ritz method usually underestimates the 

displacement of structures in their post-buckling states due to its in-built approxi- 

mation in f (x). The consequence of this is that if the assumed post-buckling shape 

f (x) does not have reasonable accuracy, the obtained solution finishes far away from 

the actual post-buckling behaviour. If f (x) is not realistic, f (x) has to be modi- 

fied with an increase in the number of Q,, and 0,,, (x) or by changing the arbitrary 

function 0,,, (x). However, in order to achieve accuracy, sometimes it is necessary 

to increase the number of Q,,, and 0,,, (x) by an excessive amount. In that case, 

the Rayleigh-Ritz method is no longer a practical procedure; consequently, other 

numerical solution processes, most commonly the FEM, have to be considered. 

Rom the discussion, it can be seen that in practice, the Rayleigh-Ritz method can be 

generally applied to the case in which the shape function f (x) is reasonably accurate 

with a relatively small numbers of Q,, and 0,, (x). Despite this limitation on its 

application, in this work, as discussed later, each mode shape of the stayed column 
is approximated with few sinusoidal functions; thus the Rayleigh-Ritz method is 

considered to be effective, and its advantage will be shown in the results. 

1.5 Outline of Thesis 

This chapter has provided a concise introduction to prestressed stayed columns, 

post-buckling behaviour including interactive buckling and the analysis methods. 
Also the broad aim of this research has been stated. 

Chapter 2 describes a review of the literature that is relevant to this research project. 

The review is intended to given an overview of the development of theory for the 

stayed column, with some of the important papers being introduced, which are 

discussed later in the thesis. 
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Chapter 3 contains the formulation of the analytical model, which illuminates the 

theoretical post-buckling behaviour of the stayed column. Subsequently, Chapter 4 

describes necessary modifications to the analytical model to account for imperfec- 

tions and possible material failure. These analytical models presented in Chapters 

3 and 4 are validated by comparing them against previous research and results from 

the FEM. 

Chapter 5 presents work on modelling interactive buckling; the results were ob- 

tained from FE analysis. Parametric studies are also presented in order to find the 

structural configuration for which interactive buckling gains importance. 

Chapter 6 presents parametric studies using the validated FE model to seek the 

optimal design of the stayed column. The concept of the ratio of the maximum 

elastic load capacity to the structural resistance of each component is introduced, 

and the optimal prestress and configuration which maximize this ratio is presented. 

A summary of the important findings from the project, conclusions and suggestions 
for further work are provided in Chapter 7. 
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Chapter 2 

Development of Theory for 

Prestressed Stayed Columns 

There is a considerable body of literature on the behaviour of prestressed stayed 

columns; each has a different method of analysis as mentioned in the previous chap- 

ter. In this chapter, the literature on stayed columns is divided into four types and 

reviewed: on the critical loads, on imperfections, on the maximum strength, and on 

miscellaneous topics. 

2.1 Studies on the Critical Load 

The earliest published research on stayed columns seems to have been conducted by 

Chu and Berge (1963). They developed a general solution for the elastic buckling 

load of stayed columns with multiple pin-connected crossarms (see Figure 2.1). The 

solution indicated that regardless of the number of symmetrically placed interme- 

diate crossarm supports, the maximum possible buckling load would be a four-fold 

strength increase over the Euler load of the simply-supported column without any 

stays. Although their work should be regarded as significant and the first attempt 

to find the critical load of stayed columns, it has to be mentioned that pin-connected 
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crossarms arc not common iii pnictice. aild tllýlt with rigi(HY-collilected crossm-llls 

to the (. 011111111. stalved colilillils cilli provide illore Stl'('Ilgtll: the practical appliciltiOll 

of their Nvoi-k is therefore limitc(l. 

n-2 

r- 

Figure 2.1: Model investigated by ('1111 et al. (1963) an, to 
the sta. vs alld to the coluillil. 

subse(picutlY. AI'llich mid F(, 11()ii (1967) cmitimied the work of' Chu and Bergc. de- 

veloping all mmllytical f'ouildatioll. Their lildicatioll wils, HIM at low vidlics, of' the 

structlinil 111(1(, X, defilled ns, PIL', thc use of stýi. ved columns, offi, red a potenhid 

saving In steel weight of up to 50% compm-c(l willi ordiiiiii-Y tubulm- columns. The 

efficielicy of' Stayed (-Olllllllls Was fii-,,, tl, v ex-aluatc(l with Mmich and Felton's Nvork. 
which Should be noted. tli(,. v were still working with the a, "umptloil of' 

pill-collilected crossal-ill's, Which reduces, the vallic of, I heir coiltriblit loll soillewhat . 

Sill It Ii ct a 1. ( 1975) dex-cloped an mlýil. vtlca I expression for tI le buck II ng Ion (I of sta. yed 

(. 011111111s, Nvith a sillgle-cl-OSSaT111. WhICII W8S i(lCall. ', ý I)III-COMICOC(I to HIC Stil. VS Mid 

fixed tot I Ie (. 011111111. bY solving Ille goverl IIIIg It 1,11 vq IImI oI IS. Alsoý tI Ic critica I 

load's ill different Inodes Were revealcd ill i-chition to the structunil dimensions. Their 

work showed ill all mialytical way thilt sta. yed colimills have evell higher potentlid 
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efficiency as an axial load carrier in compression than had been thought previously. 

Belenya (1977) presented previous work on stayed columns which was conducted 

in the Soviet Union in the early 1970s. In order to find the critical load of stayed 

columns with arbitrary numbers of crossarms, ordinary differential equations were 

presented with the assumption that the initial prestress was zero. These equations 

were solved in the case of a single-crossarm; the procedure for predicting the critical 

load in relation to its dimensions was presented. Despite its success, the assumption 

of zero prestress is hardly considered to be realistic. The result of experimental work 

was also presented, and according to his statement, the critical load was 2.5 to 3 

times larger than that of an ordinary column. 

Temple (1977) worked on the buckling loads and modes of stayed columns with 

multiple crossarms, which were ideally pinned to the stays and fixed to the column, 

using the FEM. He pointed out those rigid connections of the crossarms yield much 
higher critical loads in general, and that the multiple crossarms result in more 

complicated modes of buckling. The advantage of the use of multiple crossarms 

was numerically presented, but being numerical work, their work is meaningful only 
in a quantitative sense for a limited number of cases. 

Important features of stayed columns were discovered by Hafez et al. (1979); they 

found how the buckling load changed in relation to the level of the initial prestress. 

For all of the models discussed earlier in this section, it was assumed that all of the 

stays keep their residual tension at the instant of buckling, and hence the relation- 

ship between the critical load and the initial prestress remained undiscovered. The 

solution presented by Hafez et al. indicated that the critical load would be divided 

into three zones in relation to the prestress as shown in Figure 2.2. Parametric 

studies were also conducted for the buckling loads. Despite their achievement, the 

FEM was still required to determine the maximum critical loads in relation to its 

initial prestress; thus their work did not consist of complete analytical procedures, 

which implied the critical loads were still not obtainable with an purely analytical 

process. To determine the maximum critical loads using an analytical process is to 
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be one of the important contributions of the current work. 

Pi 

Pi 

Figure 2.2: Critical buckling load PC versus initial prestress T as found by Hafez et al. 
(1979). 

Howson and Williams (1980) worked on critical loads for ten different types of stayed 

columns using a specific plane frame program to find the optimum structural type 
for design. By measuring the ratio of the steel weight saving for each structure, 
the type of stayed column that required the least steel material was successfully 
discovered. 

Howson and Williams continued their work (1984), dealing with the optimum struc- 

tural type of the stayed column discovered from their earlier research mentioned 

above (1980). They varied certain structural parameters, such as the crossarm length 

and the number of joints, in order to find the values of the structural parameters 

that minimized the steel weight. Also, the effect of the residual prestress of the stays 

after buckling was examined with the conclusion that it did not make a significant 
difference in values of the buckling loads. Although the optimum shape and struc- 

tural dimensions of stayed columns had been discovered by Howson and Williams, 

their attention was only paid to the critical load. The effect of post-buckling was ig- 

nored, which should be included in the argument for optimized design, as discussed 

in the previous chapter and investigated later in this thesis. 
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2.2 Imperfection Studies 

Imperfection studies on stayed columns were conducted by Wong et al. (1982) for 

the first time. They examined the effect of initial out-of-straightness of the column 

element on the buckling load of a single-crossarm stayed column in conjunction with 

the FEM. The result indicated that the initial out-of-straightness significantly re- 

duces the buckling load of the stayed column' (see Figure 2.3), which gave good 

agreement between the theoretical and experiment results. As imperfections are 

essential factors in practical behaviour, their contribution ought to deserve proper 

attention; however, as they did not perform parametric studies, sensitivities to im- 

perfections could not be established from their work. 

When Imperfections are imposed, the critical 
PC load is diflned as the applied load when 

the tension In the stay is lost. 

Pcmax 

IV 
....... ---------- ........ 

Perfectcase 

withgeometrical 
Initial Imperfection 

J# : 

EL 

PE 
Zone 1 Zone 2 Zone 3 

0 
Tmin Topt T 

Figure 2.3: Critical buckling load PC versus initial prestress T with imperfections im- 
posed, arising from the results of Wong et al. (1982). 

Chan et al. (2002) examined the sensitivity of the buckling load' to changing initial 

imperfections and other structural dimensions; this research was conducted by us- 

ing the FEM with nonlinear elements called the point wise equilibrium polynomial 
(PEP) element. They illuminated the sensitivities of the critical load to imperfec- 

tions in relation to the dimensions of stayed columns, which is definitely useful for 

calculating the buckling load of real structures. It was therefore concluded that 

'Note that in their analysis, the buckling load was defined as ýhe load at which the tension in 
the concave side of the stays is lost, not the maximum load capacity of the structure. 

'The same as the above. 
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the stayed column was quite a sensitive structure to initial imperfections. However, 

it should be noted again that their contribution does not include sensitivities to 

post-buckling behaviour, which is to be discussed in the current work. 

2.3 Studies on Maximum Strength 

There are studies on the maximum strength after the buckling of stayed columns. 

Although these did not investigate post-buckling responses in detail, they indicated 

that with a certain condition, maximum strength emerged after the critical buckling 

load. This finding implies the importance of post-buckling studies, even though they 

did not seem to mention it explicitly. The earliest work was carried out by Temple 

et al. (1984)-they sought the maximum axial load capacity of a single crossarm 

stayed column by means of the FEM and experiments. The results indicated that 

the stayed column with lower values of prestress possess a much greater strength 

than the critical buckling load as shown in Figure 2.4. Their work deserves attention; 

however, as being numerical and experimental work, their work is only meaningful 

in a quantitative way for a limited number of cases. 

PC 

fcfpýx 
............................ 

PE 
Zone 1 Zone 2 

v Tmin 

Suckling load 
Maximum load capacity with 
geometrical Initial 
Imperfection Imposed 

Zone 3 

Topt T 

Figure 2.4: Maximum load capacity versus initial prestress T, arising from the results 
of Temple et al. (1984). 

Smith (1985) sought an analytical solution for the maximum axial load capacity of 

stayed columns by solving differential equations. He also included the effect of initial 
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out-of-straightness to their formulation to take imperfections into account. The 

analytical model accounting for initial imperfections to find the maximum strength of 

stayed columns was successfully presented. Despite this achievement, his analytical 

solution requires a trial and error procedure to determine the values of the buckling 

loads; thus the result may be considered to be too complicated to serve practical 
design purposes. 

2.4 Miscellaneous 

Jemah and Williams (1990) presented experimental work on stayed columns that 

had three frames of stays and bipod-crossarms (see Figure 1.4(b)) subject to all 

practical prestress levels. The result indicated that the obtained critical load was 
typically 10% below the theoretical buckling load of the perfect column, and that, 

with relatively low prestress, this difference tended to be larger. It was also shown 

that a method known as the "Southwell plot" (Southwell, 1932) was effective for 

predicting experimental critical loads. 

Steirteghem et al. (2005) also worked on stayed columns with the bipod-crossarms 

in conjunction with the FEM. They discovered that because the bipod-crossarms 

provided a rather large rotational stiffness, they frequently led to a symmetrical 

mode of buckling. Furthermore, parametric studies were conducted for investigating 

sensitivity to the buckling loads with a variation in crossarm length, stay diameter, 

crossarm properties and the opening angle of the bipods. It was concluded that with 

the bipod crossarms, the efficiency of a stayed column as a load carrier is increased 

by more than 20% when compared to a single-crossarm stayed column. Although 

the current work is not dealing with bipod-crossarms, the potential advantage of its 

use should be noted. 

Araujo et at al. (2006) presented experimental work on full-scale three-dimensional 

stayed columns for the first time in conjunction with FEM simulations. It was shown 

that the actual stayed columns can provide more strength than ordinary columns 
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with the actual experiments conducted. Despite their achievement, the presented 

FEM results showed less good agreement with their experimental results in load ver- 

sus displacement curves. Improvement in their experimental tests, such as replacing 

the provided semi-rigid boundaries by reasonably ideal hinges and eliminating large 

amounts of the initial deflection arising from the self-weight displacement of the 

column in the test owing to the test specimen being in the horizontal plane, may be 

necessary in order to gain good agreement between the two. 

Liew et al. (2006) investigated the maximum strength of three-dimensional stayed 

columns with a number of horizontal crossarms in a part of the paper using the 

FEM. The optimal level of pretension was examined along with the adequate length 

and number of crossarms for certain cases using the maximum load capacity as an 

indicator for the design optimum. Despite work on the design optimum, the number 

of studies is limited; their work is meaningful only for the cases they examined. For 

generalization, more numbers of studies in conjunction with a more generalized 

indicator for the design optimum rather than the maximum load capacity would be 

necessary. The current research also aims to tackle this issue. 

Table 2.1 gives a summary of all experimental tests conducted on stayed columns; 

all of the tests listed in the table have already been presented in the current chapter. 

Although this thesis focuses upon theoretical work, the imprtance of laboratory tests 

should be not be understressed. 

Publication Structural 
Type 

Column Length No. of 
(m) tests 

Hafez et al. (1979) 21), single crossarm 3.05 U 
Wong et al. (1982) 2D, single crossarm 3.05 7 

Temple et al. (1984) 21), single crossarm 0.813 8 
Jemah and Williams (1990) 3D, bipod-crossarm 0.820 203 

Araujo et al. (2006) 3D, single crossarm 12 2 

Table 2.1: Experimental works in literature. "2D" and " 31)" represent two-dimensional 
and three-dimensional respectively. In the 2D experiments, the structures 
were only allowed to deflect in one plane only. "U" represents the number of 
tests being unspecified. 
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2.5 Remarks 

This chapter has presented an overview of the development of theory for prestressed 

stayed columns, which allows further detail of the literature to be referred to at the 

appropriate stage. It can be seen that, although significant progress has been made 

to understand the buckling load of the system including imperfection effects, post- 
buckling analysis has not been attempted satisfactorily, and interactive buckling 

effects have not been investigated at all. Illuminating these areas and deriving 

design recommendations from the results, which enables a more efficient and safer 

approach to the structural design of stayed columns, are the aims of the research. 
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Chapter 3 

Formulation of Analytical 

Post-Buckling Model 

3.1 Introduction 

As stated in Chapter 1, a number of research works on the stayed column have 

been conducted. Although previous studies (Wong & Temple, 1982; Temple et al., 
1984; Smith, 1985; De Araujo et al., 2006) also had a look at the post-buckling 

response of the stayed column in either an implicit or explicit way, they did not 

provide the comprehensive theoretical post-buckling response of the stayed column. 
This chapter aims to illuminate the theoretical post-buckling response of the stayed 

column by developing analytical models using energy methods, the results of which 

were validated by the FEM. 

3.1.1 Methodology 

As stated in Chapter 1, in the current work, a single-crossarm stayed column, the 

simplest type shown in Figure 3.1, was modelled. In order to formulate the model, 

the total potential energy principle was applied in conjunction with the Rayleigh- 
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q, IP 

(a) Profile (b) Structural Illodel 

Figure 3.1: Stnictural model of the stayed cohnim: cohinin length L. crossarin length 

a. axial load P. ail. -Ic between the stay and the vertical (v and stay length 
L, The quantity A, v represents the cild-shorteninp of the colimm, where n 
siibscripts i and X represent a, Imckling, mode iminber (I or 2), mid a Imickling 
type (Aý B or C) respectively. Siibscripts 1.2. :3 and .4 after X represent tbc 
imiliber of the individnal stays. 

Ritz method (Thompson k- Hunt, 1973). The total potential energy V for the 

prestressed stayed column was developed as a multiple degree-of-frecdoni (NMDOF) 

system. A set of algebraic equilibrium equations was derived froin iiiiiiiinizing V 

using the symbolic computation software NIAPIA, (Heck, 2003). The structural 

response was revealed by this process. and was subsequentlY validated by the FEM 

using the well-established code ABAQUS (ABAQUS, 2006). For the analytical 

modelling, the following assumptions were made. 

1. The column is simply-supported. 
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2. The connections between the stays and the column, and between the stays 

and the crossarms, are ideal hinges. The connections between the crossarm 

and the column are rigid. 

3. The column is centrally loaded and perfectly straight, i. e. imperfections are 

not taken into account in the analysis at this stage. 

4. The axial deformation of the crossarm and the bending deformation of the 

stays are both ignored. 

5. The stay goes slack the instant it goes into compression; hence it does not 

carry any stresses in compression. 

6. The analysis is purely elastic; hence, the stress-strain relationship is com- 

pletely linear apart from the stay slackening. 

7. Changes in geometries from applying the prestress are ignored, i. e. the initial 

configuration is kept after the introduction of the initial prestress. 

Changes in geometries from the prestress do not yield significant effects unless the 

initial prestress has the same level as the Euler load of the column. As this level of 

prestress leads to a considerable amount of compressive force in the column, which 

significantly diminishes the axial buckling resistance, this situation is considered to 

be impractical. 

3.2 Model Formulation 

In this section, the MDOF system is developed by considering, in turn, the displace- 

ments of each component and the geometrical changes after applying the prestress. 

This leads to the total potential energy function. 
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3.2.1 Displacement functions for the colunin 

Two different buckling inode sImpes for the are considered: a ""villilictriC 

Shape (Mode 1. aild all antis, vininetric shape (Nlodc 2. about the 

(. 011111111 lind'spall. as shown in Figure 3.2: these arc the basic Imssible deflection 

Mode I 

Figure 3.2: Buckling Modes I (syminctric) mid 2 (antisymnictric). 

shapes for hu(Ibing in the shqh"Tossarni 4HYMI (01111111.111 Mode 1. Zero 

ture (-an be found at both ends: in Mode 2. zero curvature cmi be found at the 

(. 011111111 Illid'spall and both cilds. Each mode can be expressed as a summation of' 

sinusoidal waves. Defining the column length as L (sce Figure 3.1) and the gener- 

alized coordinates as q.. w1wre the subscript III is all illte"'el. representing a 

of freedom for a sinusoidal wave that has a mvetength of 2L/nL thp QWmA 
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functions for the column W, and W2 can be assumed to be as follows: 

7rx 37rx 
Wl(x) qjL sin T +q3Lsin 

L 
+... 

n (2m 
- 1)7rx 

(3.1) 
E 

q2m-, L sin 
L 

M=l 

TV2 (x) q2 L sin 
27rx 

+ q4L sin 
47rx 

+ 
LL 

n 2m7rx E q2,, L sin L 
M=l 

(3.2) 

where n represents the number of degrees of freedom in the model. As the individual 

components of the stayed column tend to be long and thin, Euler-Bernoulli bending 

theory can be applied; the angles of the members to the vertical E)l(x) and E)2(X) 

are therefore approximated as the first derivative of the displacement with respect 

to X: 

7rX 37rx 
E)l(x) qj7r COS T+ 37rq3 COS 

L+--- 

n (2m - 1)7rx (3.3) 
1: (2rn - 

1)q2? 
n- 7r COS 

L 
M=l 

27rx 47rx 
()2(X) 2q27r COS + 47rq4 COS -T- +--- 

n 2m7rx (3.4) 
2mq2m7r COS 

L 
M=l 

3.2.2 Displacement functions for the crossarm 

3.2.2.1 Buckling type distinction 

The deflected shape of the crossarm and the function for the end shortening of the 

column depend on the stress state of the stays (see Figure 3.3). To account for these 

effects in the current model, the following three states are considered: 

1. Type A: all of the stays are slack in compression. 

2. Type B: all of the stays axe active in tension. 
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, rN, pe A 

Mode 2 

Type B 

TIC 

W-, Iý(Y) 

Figure 3.3: Bucklin- in 2. 

3. Typc C: two sta. vs are active in tension. 

N Note that Typc A occurs with a siliall viduc of the mitiol prestress: Type 11 m-curs, 

wit Iia "-, I I fficic I it aI 110111 It of tI I(, I I, it iý II prest ress Nv IIIdl ollows, tIw stays not to sI acken 

until buckling: Type C buckling call ('it her after Type A. B or the fundinnental 

(pre-buckling) state. Shape functions for the crossarm fOr each tYpe can he ohtained 

by solving differential equation's, reflectilig each tYpc of' ". "tres's 'state ill the staYs alld 

the reaction forccs developed ill the cros'sarin. 

3.2.2-2 Shapc functions 

First. the bending moment for y>0 in the crossarin Figure 3.4) is given 

b. x, ý 

MaX ý -1? /), V[IIX - U2X(Y)l + Rv, V(0 - Y)- (3.5) 
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where and I?, \ý are llorizmAal mul wrtiml readimi hms r(spvctively at the 

tip of' the crossnrlw ll., ý is the displacement at the tip of' the crossal-ill: y is the 

ll"I'iZolltal aXiS: all(I (1'2, V(Y) iS the deflection of' the crossarin perpendicular to the 

coordinate. Ignoring higher-order terills and the of the cild-shortc1lilig of the 

a 

R, xj X 

RhX 

oN 
hx 

Figure 3.4: Five bmly dia-rain to thc bell(III10 1110111(lilt at all arbiti-an, (. I, ()Ss 
section (y > 0) ()f' the cn)sSal-in. Note flint the subscript X repi-csents the 
buckling tYpc classification which can be cillier B ()r C. 

(TOSSM'111. the basic diff'Ci-clitial equation fOr the bending of the ci-ossm-in I Acs Ilic 

forill: 

M,, ý - -E, j], la, 
11 (3.6) 2X 

(Y) 
- 

prillics repre"'('11t diff'' -claii1tioll with respect to the ilidl lildepelidellt 

11, tjjpý ýjnd E, mid I, mv the Young',; modulus, mid the cross- 

Sect lowil second Illoilleill of, m-ca of, t he crossarill respect Slibstit lit iiiýý ('(111M ion 

(3.6) into (3.5) leiids to 

2 [?,, v+ 11 A, 2 (Y) + A.. v ? I'., \ý (Y) 
E, I, 

(a Y) x 

where 

kx 
FWIT 

(3.8) V E, I,, 

The gencral solution of differential vquMion (3.7) is 

11ý2X (Y) ý Hý\ý shi A-x y+K. \ý cos A, 
A. 2 

I? 
IA (a 

.vE, 
I, 
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where Hx and Kx are constants of integration that are determined from the bound- 

ary conditions, thus: 

W2X(O) ý 01 W2X(O) -= 7, W2X(a) = hx, 1 (3.10) 

where -y is the angle between the horizontal and the crossarm at the midpoint, 
defined as 

n 
E)2 (L/2) = 2q27r - 

4q4-7r +---=E (- 1)'-' 2m q2.7r. (3.11) 
M=l 

The second condition comes from the assumption that TV2(x) intersects the crossarm 

at right angles. Applying this condition yields the following expressions: 

Hx 
1 (_ &x 

+, y) , (3.12) 2 ix ký'EaIa 

Kx - 
Rxa 

hx, (3.13) 2 kýEaIa 

hx = 
(-yEJakx' - Rx) sin kxa + kxgxa cos kxa 

. 
(3.14) 

kx' Ea Ia cos kx a 

In order to find the actual shape of the crossarm. with equation (3.9), it is also 

necessary to establish equations for RX and RhX- With reference to Figure 3.5 and 

then by taking the leading terms Of A2X and hX, the changes in the axial force in 

Stays 3 and 4 dFX3 and dFX4, resulting from the structural displacement, can be 

expressed as follows: 

dFX3= EA. 
Ls2X3 

- L,, 

Ls 

(-1ý12X + 2hx) 
Cos 

2 
a, L 

dFX4 EA, 
Ls2X4 - L, 

Ls 

46ý2X + 
2hX) 

COS2 a, L 

(3.15) 

(3.16) 
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t14 

Figure 3.5: Elongation of the stays and reaction forces at the tip of the crossarm. 

where A., is the cross sectional area of the stay with E, being the Young's modulus. 
Rom the expression for dFX3 and dFX4, the vertical and the horizontal reaction 
forces for Type B, I? 

vB and RhB, can be obtained thus: 

RvB (T + dFB3)cos a2B3 -(T + dFB4) COS a2B4 

4hB 22 
(3.17) 

f- (T sin a+ EA, COS a) COS a, 

RhB (T + dFB3) sin a2B3 + (T + dFB4) sin a2B4 
(3.18) 

2 [T + (T - E., A, )A2B COS2 a] sin a. 

As only one stay is active on each side in Type C, RC and RhC, can thus be 

obtained from dFC3. However, including the hC term in the RhC equation causes 

a computation problem that leaves the governing equation untractable'. To rectify 

this we apply the approximation hc =0 in RhC, which applies when the stays first 

'Note that in the RhB expression, the hB term does not exist as this drops out in the process 
of summing the horizontal components of dFB3 and dFB4- 
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slacken, thereby enabling us to obtain an approximate expression for RhC: 

R, c = (T + dFC3)cos a2C3 

l6k2C - 
2hc 

sin 
2a+ EA, 

Cos 
2 
a)] Tcosa, 

(3.19) 

LT 
RhC I-- (T + dFC3)sin a2C3 

c 
Cos 2 

a] Tsina (3.20) 1+ 1ý12C - 

ý, C) 
(1 

- 

') ILT 

[(l + 1ý12C COS2 a) T-E,, A, 16L2C COS2 a] sin a. 

Note that in the following energy formulation, equation (3.9) adopts approximated 

equations of hX, later shown in equations (3.23) and (3.26) for Types B and C 

respectively, and the leading terms with respect to 1ý12x and -y were taken in that 

equation in order to render the analytical model tractable. 

3.2.3 Stress and geometrical changes in the structure 

Stress and geometric changes in the structure are investigated prior to the energy 

formulation presented in the following section. The investigation includes items 

such as the stress changes by the prestress, the elongation of the stays and the 

end-shortening of the column. 

3.2.3.1 Initial stress of the column with prestress 

With reference to Figure 3.6, the initial prestresses that are introduced to the column 
T, and the crossarm T. are 

T, = 2T cos a, T,, = 2T sin a. (3.21) 
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st; sta 

st /-I\ 

11, , 
F, T, T., T, 

11, 

11,1 11, 
(Y 

tay 3 
'ý 

/ 

t-I 

I gnorv (-outiL! m; tti(m 
hangv, 1). \ 

the initial prestre, s 
a 

Figure 3.6: Efi'(, (-t of the initial prest ress. 

Therefore. the straills, III the shlY the and the crossill-ill 
ýflj MV 

rc, "pect ively: 
T 2Tcos (i 2T sin o (3.22) 

E, A, ct EA at E, 4(1 

where A mid A, are defined ýis the cross sectionill arcýis willi E, 111d h", being ille 

youlig's illodlill of the collillin and the crossarin respectivel. y. 

2.3-2 Tip displaccnictit cocIficirrit 

The tip displacenivi it oft he crossi IrIII is liecessal-Y to fi I ld tIw chn lgatiol I of' tI Ic Stays. 

This displacement is Urvady 1wemiaNI in (Mum ion (3.11). However. ýls t lic direct 

expressions that can be obtýiilled froill that expl-cs"Sioll ilre loo complicated for the 

analytical illodel. these m-c simplificd bY using a Taylor expansion. 

III the (-ýisc of TYpe B buckling. bil I's expailded to the third ordcr with respect to 

A/ý. aild thell, III thilt equation. the leading order terills, with to A. )/ý Mid -1, 
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are taken, which yields the following: 

hB ý CBay, (3.23) 

where cBis a factor expressing the magnitude of the tip displacement of the crossaxm 
for Type B: 

and AB iS 

CB + 
2EA, 

a2 sin a COS2 a 
-1 

(3.24) 
3EaIa 

I 

AB= akB- (3.25) 

The same expression of the tip displacement can be obtained using the work of 
Smith et al. (1975). In the case of Type C, similarly, hC is expanded to the fifth 

order with respect to Ac, and then, in that equation, the leading order terms with 

respect to A2C and -y are taken, which yields the following: 

hc = cc a-y + cca aA2C+ cco a, (3.26) 

where cc, ccA and cco are factors expressing the magnitude of the tip displacement 

of the crossarm in Type C: 

CC = 
(15EaIa - EAa'sin a) a2 Tsina COS2 a+ 15(EaIa (3.27) 

5(2 

CCA ý-- 
[(3E,, I,, + 2EA, a'sinacos'a) Tsin 2a+ (EA, COS2 a] a2 COS a (3.28) 

(2 1 

Cco 
OT cos a (3.29) 

where 

and Ac is 

C= (3E,, I,, + EA,, a'sin a COS2 Ce) , (3.30) 

Ac = akc. (3.31) 

Note that this simplification becomes less accurate as the initial prestress T becomes 

larger. 
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The accuracy of the third and fifth order approximations for hB and hC are discussed 

in the validation section later in this chapter. 

3.2.3.3 Elongation of the stays 

The post-buckling shapes are sketched in Figure 3.7; these geometries allow the new 

stay length L, ixj, where the subscript i refers to the stay number as indicated in 

Figure 3.6, to be evaluated through Pythagoras's theorem, which leads to the strain 

in the stays purely arising from the applied load P in the stays. Subsequently, this 

equation is expanded as a Taylor series up to second order with respect to qm and 
Aix. In this process, the cross and quadratic terms of Aix such as Aixq,,, and Aix 

are dropped, as these terms are considered to be small from numerical observation. 
By combining the expanded strain Wixj with the initial prestress T, the total strains 
in the stays cixj can be obtained, giving a sequence of expressions, here written in 

a compact format: 

6sixj = Vixj + est. (3.32) 

3.2.3.4 End-shortening of the column 

In order to find the end-shortening expression of the column Aix, equilibrium is 

considered at the end of the column where the external load P is applied with the 

free body diagram approach shown in Figure 3.8. Vertical force equilibrium and 

moment equilibrium around the point 0 give the following equations: 

Tixlcosaix, +TiX4COSaiX4+P-CiXCOSOi-SiXCOSOi--"ýOi (3-33) 

Alix -ý Six cospix - Wj(ý)Sjx sinfli - Wj(ý)Cjx cos, 3i +ý Cix sin, 8i = 0, (3.34) 

where Tixj is the axial force in stay j with Cix, Six and Mi being an axial force, a 

sheax force and a bending moment respectively in the column at a point which is a 

small distance ý away from 0; Oi is the angle between the column and the vertical; 
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11) 

Figure 3.7: Gconictry of thc staycd column in bucklim, modes I and 2. 
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7 

i =qi 71+3q; i7r+. .. 
2= 2q2 71 +4q2 71 +. .. 

- ll. ( ', x 

Figure 3.8: F(Im I ihi-mm fice 1)()(I. \ (I iilgli III1 14)1 11 le (. ()I IIIIiII. N(Oc I Ili II /I'//, \ 
zoutal reactiml 1*01-ce at tIlc cild of the cohimil. 

(ViXI MA ()"'(4 are t he allgles betweell cilch stýl. v mid t Ilc vel-I icýll. These angles. 

iliterilid fOrce", and ilmillents ilced to bc defilicd iii to S()Ivc IIIc c(pillibrillill 

c(pultimis aild to Obtmil ml cXpression f'()i- A, \ý. Firstly. . ý, cim bc ()btiiiiied by 

Substituting x=0 into defined In equatimis (3.3) mid (3.4): 

rI 
31 =(-), (O) =qjýT+3qj7T+--- = 

Y, (2m -- 1) (12... 17. (3.35) 

1ý32 = ()2(()) 
= 

2q2ýT + 'Iql 7-1 2'm (1211)7- (3.36) 

\Vith reference to Figures 3.7(a) (c). cosoix, aild cosaix., arc ohtýuiwd through 

0 I 4 

trigolloilleti-Y: subse(picillI. N1, . those relationships are expressed to the leading order 
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with respect to q. and Aix. For example, cos ajxj is given as 

'L(l 
COS aIX1 

Aix) 
rn2 

[IL(l 
- 

Aix )] 2+ [1: L(-J)m-lq2,, 
-, +a 2 

M=l 

1 

(3.37) 

,: tý (1 - Aix sin' a) cos a. 

As all of the required angles are defined, the forces and bending moments Tix, Cix, 

Six, and Mix in the free body diagram then need to be investigated. Firstly, with 

the strain expressions of the stays shown in the previous section and the assumption 

that the stays do not resist compression, the axial forces in the stays Tjxj and TjX4 

are defined as follows: 

TiAl ý-- TiA4 :` TiC4 ý 01 

(3.38) 
TiBl 

-= EsiB, E,, A., TiB4 
-= EsiB4E,, A,,, Tic, = Eic, E. A,. 

The axial strain in the column cix is expressed as a summation of the compo- 

nents Aix and Et minus the effect of the relaxation from the buckling displacement. 

Therefore, the axial strain for each mode is expressed as follows: 

1L1 '2 
Ecix = Aix + Ect -L 

JO 

2 
IVj (x) dx 

n 1)2,7r2 2 (3.39) 
2T cos a (2rn - q2m-1 

= Aix +--EI 
EA 

M=l 
4 

1 Ll 
, Ec2X = A2X + Ect -L2 IVý2 (x)dx 

if) 

n (3.40) 
= A2X + 

2T cos a-Em2 7r 
2q2 

EA 
M=l 

2m' 

Thus, the axial force CiX is expressed as 

Cix = EAeix. (3.41) 
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With linear bending theory, the bending moments Ali are expressed as follows: 

(ý) 
n (2m - 

1)2 7r 2 Ejq2m-1 (2m - 
1)7rý 

M, = -EIW, " ELL (3.42) 

M=l 
n )27r2 

E (2m EIq2m 2M7ý 
A12 

= -EIIVý 
M=l 

L sin L 
(3.43) 

where I represents the cross-sectional second moment of area of the column. The 

shear force Six can be defined by substituting equations (3.41) and either equation 
(3.42) for Mode 1 or equation (3.43) for Mode 2 into equation (3.34) and then by 

taking the limit ý --+ 0. 

By substituting equations (3.38), (3.41) and an expression for the shear force, either 
(3.42) for Mode 1 or (3.43) for Mode 2, into equation (3.33), expressions for Aix can 
be obtained. Subsequently, the solution is expressed as a Taylor series with respect 

to T, P and q,,, up to second order, which gives the following simplified expressions: 

222 Aix = bpxP + btxT + blxql + b3Xq3 ++ bllxql + bl3xqlq3 + b33Xqi + 
nn 

bpxP + btxT +E b2m-lxq2m-1 +E b2m-121-lxq2m-121-jq2m-121-ls 

M=l M=I, I=I, M<, l 

(3.44) 

22+ A2X 
= bpxP + btxT + b2Xq2 + b4Xq4 + ''' + bUxqý + b24xq2q4 + b244Xqi 

nn 
bpxP + btxT +E b2mxq2m +E b2m 21 X q2m 21 q2m 21 

M=l M=1,1=1, M, <l 

(3.45) 

where bpx, btx, b,, x and b .. Ix are coefficients for P, T, q,,,, and q,,, ql respectively. 

3.2.4 Energy formulation 

The total potential energy Vix comprises components of the strain energy and the 

work done by the load. In a general state of deflection, there are four components 

of strain energy: from bending in the column (Ubi) and the crossarm (U. bix) with 
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axial strains in the column (U,,, ix) and stays (Uix). Note that the bending energy 

in the crossarm (U,, bix) only exists for Mode 2 in buckling Types B and C as the 

crossarm does not bend in the other cases. 

3.2-4.1 Bending energy 

The bending energy components in the column Ucbi arise from a linear curvature 

expression for Wi, thus: 

1 
12 Ucbl -' 2 

EI 
10 

lVj (x)dx - 
Ubo 

n (27n - 1)4 EIq22m-17r4 
_ Ucb0i F-I 

4L 
M=l 
1 

W, 12 Ucb2 --' EI 2 (x)dx - Uc 
2 

10 
: b0 

n )4 2rn 4 (2m E42 lr 
- Ucb0 2ý 

4L 
m=l 

(3.46) 

(3.47) 

where Ubo is the existing column bending energy at the beginning of each buckling 

type. 

In a similar way, the bending energy in the crossarm for Mode 2 Types B and C 

can be obtained. Note that the crossarm symmetry accounts for the doubling of the 

standard bending energy expression: 

a 
"2 Uab2X ý Eala W2X (y) dy - 

UabO 

E,, 1,, k 3f 2HxKx - Hx2 cos kxa sin kxa + Hx2kxa + Kx2kxa (3.48) 
B 

+ KX2 cos kxa sin kxa - 2HxKx COS2 kxa}/2 -UabO i 

where U,, bo is the existing crossarm bending energy at the beginning of each buckling 

type. Note that Ubo and Uabo have independent values from q,,,, and therefore, they 

do not affect the critical load nor the post-buckling path as they simply vanish on 
differentiation. Although these terms vanish, as shown later, in Type C buckling, 
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the column and the crossarm are not necessarily straight at the onset of the buckling 

type; hence, the existing bending energies Ubo and U,, bo should be expressed in the 

formulation of the total potential energy V. 

3.2-4.2 Axial energy 

The axial energy U,,, ix in the column accounts for the energy gained through the 

axial compression from the load P together with the effect of the relaxation from 

the buckling displacement; using equations (3.39) and (3.40) as the ending points of 
integration for each mode, the axial energy is obtained as 

c ix 1 
(e2. 

X _ r2 Uc, ix = EALEde = -EAL cl ýCXO), 
(3.49) 

C., x0 

ic 

where eXO is the existing strain at the beginning of each type. 

The axial energy in the stays is obtained by integrating the stress-strain relationship 

over the stay volume-written as the product of the cross-sectional area A,, and the 

length L,,: 
44 

U. ix = 1: Uixj =EI 
sixj A,, Lu(E, ixj) de, (3.50) 

j=l j=1 SX0 

where Uixj is the strain energy stored in stay j for Mode i Type X, and E, xO is the 

existing strain at the commencement of each buckling type. The stress-strain curve 

of the stays is assumed to be piecewise linear as shown in Figure 3.9, thus: 

or, (Esixj E., E,, ixj for c, ixj > 0, 
(3.51) 

0 for Csixj <, 0. 

Rom equations (3.50) and (3.51), the total stay energy for Mode i Type X in stay 

is given as follows: 

! E, A, L, (E2.2 ) for E, ixj 0, 
U, ixj 

2 sixj - Esxo 
(3.52) 

0 for E,, ixj 0. 
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Figure 3.9: Stress-strain relationship of the stays. 

Note that ExO and E, xO affect neither the critical load nor the post-buckling path, 
because they are independent of q,,, and vanish on differentiation. 

3.2.4.3 Work done by the load 

The work done by the load PSjX is defined as the external axial load P multiplied 
by the corresponding end-shortening AjXL: 

PSix = PAixL - PSOX, (3.53) 

where PSOX is the work done by the load before the commencement of each buckling 

type. Note that, again, this value affects neither the critical load nor the post- 
buckling path for the same reason as stated in the previous section. 
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3.2.4.4 Total potential energy function 

The total potential energy is a summation of the bending and axial strain energies 

minus the work done, thus: 

ViX ý-- Ucbi + UabiX + UcaiX + UsiX - PSiX- (3.54) 

In the Mode 2 Type C analysis, higher terms of P are then truncated as they are not 

the dominant terms in the function and leave the governing equation untractable. 

For equilibrium, the total potential energy Vix must be stationary with respect to 

the generalized coordinates q,,. Therefore, the equilibrium paths can be computed 
from the condition: 

avix 
= 0, (3.55) 

Oq�, 

which is derived from Axiom 1 in §1.4.2. 

3.3 Critical Buckling 

Having formulated the total potential energy, the critical buckling load of the stayed 

column is investigated using linear eigenvalue analysis. From the earlier work of 

Hafez et al. (1979), it is known that the critical load is divided into three zones in 

relation to the magnitude of the initial pretension in the stays. 

Zone 1 The tension in the stays disappears completely before the external load 

reaches the buckling load. Therefore, the critical load is exactly the Euler 

load (Type A buckling). 

Zone 2 The strain in the stays becomes zero when the applied load reaches the 

critical load, i. e. the structure resists buckling until the tension in the stays 
becomes zero. Thus, all the stays remain effective until buckling, which sends 

the critical load potentially to a level that is significantly higher than the Euler 
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load (Type C buckling). 

Zone 3 The tension in the stays is nonzero at the instant of buckling. As a large 

amount of the pretension has been introduced, all the stays remain effective 
for some while after buckling. The value of the critical load falls somewhat 

as the initial prestress increases because the initial compressive stress in the 

column diminishes its axial load capacity (Type B buckling). 

As the formulation of the model ensures that the profile of the structure maintains 

perfect symmetry during the fundamental state, a bifurcation point can be observed 

when q.,, = 0. With the type B formulation, conventional linear eigenvalue analysis, 

i. e. finding when the Hessian matrix forViBbecomes singular, yields the critical 

load for Zone 3PZCoin 
e3 

directly. The details on the process and equations obtained 

can be seen in Appendix A. 

For Zones 1 and 2, it is necessary to consider geometrical nonlineaxities in order to 

find the critical load. In these zones, the end-shortening of the column releases the 

axial energy in the stays during the fundamental stage, which does not allow linear 

eigenvalue analysis to yield the critical load. Moreover, linear buckling analysis in 

the FEM does not detect the critical load for Zones 1 and 2 either, the analytical 

method being therefore essential to find the critical load in this range of T. 

In Zone 1, where the axial energy in the stays is already lost before buckling, this 

problem can be simply resolved by adopting the Type A buckling energy formulation 

and then following the same process as for Zone 3. Because in Zone 1 (Type A 

buckling) all of the stays are slack at the instant of buckling, no substantial changes 
in the way of determining the critical load are necessary. As the stays are therefore 

effectively absent, the critical loads for Zone 1 for Mode i are 

PZC. i. 
e1 --: = 

i2, X2EI 
L2 * (3.56) 

As can be seen from this equation, the critical load for Zone 1 is the exactly same 

as the Euler buckling load PE. 
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For Zone 2, the critical load can be found from utilizing the condition that the strain 
in the stays becomes zero at the instant of buckling. As all of the stays are active 
during the pre-buckling stage, substituting q.,, =0 and hB =0 into equation (3.32) 

with the adoption of subscript B and solving the equation for P gives the following 

critical load for Zone 2 for Mode i: 

PcT Zone2 '-- bpB E, A, COS2 a' 
(3.57) 

where 
bpB ý [2EA, cos' a+ EA] -1. (3.58) 

Note that Modes 1 and 2 have the same expression for the Zone 2 critical load. In 

fact, the instability behaviour in Zone 2 is not a classic bifurcation response: at 
the point of "buckling" there is a sudden release of the axial energy of the column, 
forcing the column to buckle, which is immediately followed by the reactivation of 
the convex side stays as the column displaces laterally. 

By plotting the critical loads against T, the relationship between the buckling load 

and the initial prestress, which was first presented by Hafez et al. (1979), can be re- 

produced. This relationship is shown in Figure 3.10, where T,, Ii,, represents the initial 

prestress at the boundary between Zones 1 and 2-the minimum effective pretension 

required to raise the buckling load above the Euler load PE. RC represents the inax 
theoretical maximum buckling load that is observed at the boundary between Zones 

2 and 3, and T,, pt represents the initial prestress where PmCax is exhibited. 

3.3.1 Numerical results 

In this section the aim is to compare theoretical PC,,. values obtained from the 

previous section with those from the Hafez model as a benchmark for validation. In 

the Hafez model, PmCax was obtained by the FEM, so that the accuracy of the current 

model in terms of the critical load can be evaluated. In the Hafez model, Pm. was 
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shown in Figure 3.11 between the Hafez and the current model. However, with the 

two degree-of-freedom (2DOF) model, this error between the two becomes almost 

negligible. In Mode 2, however, gaps between the Hafez model and the current 

model can be seen to be more significant. With the three degree-of-freedom (3DOF) 

model, which is the most sophisticated model presented and therefore is expected to 

have the least error, some differences are still evident. Although these figures show 

relatively less good agreement compared with those of Mode 1, the trend is that 

increasing the number of freedoms increases the accuracy but with computational 

expense and analytical complexity. 

Considering that the difference between the 2DOF and the 3DOF models is not 

significant, and that the solutions from the 2DOF model are relatively close to the 

benchmark solutions, the 2DOF model will be used in order to obtain reasonably 

accurate solutions for the post-buckling behaviour without it being excessively de- 

manding computationally. 

3.4 Post-Buckling Response 

Equation (3.55) expresses the equilibrium states after buckling, which can be solved 

using the symbolic computation package NIAPLE. In Mode 1, the same dimensions 

and properties as in §3.3.1 were also applied for the post-buckling analysis, with 

the stay diameter, 0, = 4.8 mm being chosen. The critical buckling loads obtained 

with those dimensions against the initial prestress are shown in Figure 3.12. As 

illustrated, eight points are selected from each diagram to investigate changes in the 

post-buckling response as T changes, the selection criteria being shown in Table 3.1. 
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Point Initial prestress T 
Criterion expression Mode 1 (kN) Mode 2 (kN) 

1 0 0.00 0.00 
2 Tmin/2 0.23 0.93 
3 Tmi, 0.46 1.86 
4 (Topt Tmin)/3 + Tmin 1.47 2.50 
5 2(T,, pt T, ý, j. )13 + Tmi. 2.48 3.14 
6 T. pt 3.48 3.78 
7 2T. pt 6.97 7.55 
8 4T. pt 13.93 15.10 

Table 3.1: Selected points for the post-buckling investigation. 

3.4.1 Zones of behaviour 

The post-buckling responses for Modes I and 2 in each zone are represented in 

Figures 3.13 and 3.14. For Mode 1, the relationship between P and q, - q3 is shown, 

the latter quantity being the normalized horizontal displacement at the column 

midspan, obtained by evaluating TV, (L12)1L. For Mode 2, the relationship between 

P and q2 - 2q4 is shown, the latter quantity being the normalized rotation at the 

column midspan, obtained by evaluating E)2(L/2)/2-7r. 

For both modes the post-buckling path in Zone 1 has two distinct stages, as shown 

in (a) and (b) in Figures 3.13 and 3.14 respectively; P remains practically at the 

critical load in Type A buckling (all stays slack) for a while, then the equilibrium 

path stabilizes with Type C buckling (convex side stays reactivated). Note that, as 

shown in (b) in Figures 3.13 and 3.14, the initially flat range becomes shorter as the 

prestress T is increased. 

As shown in the graphs in (c) of Figures 3.13 and 3.14, in Zone 2, stable paths 

can be observed in the initial post-buckling range with relatively low values of the 

prestress, such as for Points 3,4 and 5, whereas unstable paths can be observed 

with relatively high values of the prestress, such as for Point 6. The initial prestress 

at the transition from stability to instability can be found when T=2.79kN for 

Mode 1. The reason for this transition in Zone 2 can be considered as follows: with 
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the stays on the concave side being slack, which implies that in Zone 2 the post- 

buckling response has Type C characteristics. 

As shown in the graphs in (d) of Figures 3.13 and 3.14, there is also a discontinuity 

in the post-buckling response in Zone 3. The load P remains nearly at the critical 

load in Type B buckling for a while, and this initial stage is followed by Type C 

buckling with a sudden loss of the stability; unstable paths are then observed when 

the concave side stays go slack. The discontinuity of Zone 3 is basically a mirror 

image of the response in Zone 1, where slackening of the stays occurs rather than 

their reactivation. 

Also these two diagrams suggest that the most unstable paths after the critical loads 

occurs when the prestress level is equal to T. pt (Point 6), which is located at the 

boundary of Zones 2 and 3. Since the prestress T,, pt gives the highest value of the 

critical load as shown in 3.10, T. pt was considered to be the optimal level of the 

prestress (Hafez et al., 1979). Despite that statement, this unstable response is not 
favourable at all and often renders the maximum load capacity extremely sensitive 

to geometrical imperfections. Hence, a greater level of the prestress than T. pt would 
be recommended for design as a stable path appears with a higher level of prestress, 

which allows the system to be more reliable when buckling may occur. 

For all of the zones, the only difference between Modes 1 and 2 is the active stays in 

the Type C buckling response: the active stays are 1 and 2 for Mode 1 with 1 and 

3 for Mode 2. 

3.4.2 Validation for the tip displacement coefficients 

In order to investigate the tip displacement coefficients for the crossarm, the third 

and fifth order expansions with respect to Ax were formulated for buckling Types B 

and C respectively. Although this approximation gives much computational advan- 

tage to the analytical model, the accuracy of the process has not yet been estimated. 

Hence, in this section, the numerical values of the approximated tip displacements 
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To examine the aoual ishus of hx rupi uox(y), (splibrium points, were 

from the post-buckling response at the prestress level of Point 7, as shown in Figure 

115. Points EBI EB4 are Imn OR, path in Tylw B. and PohAs ECI E(A are hinu 

the path in Type C. 

P [kNj 

140 (1 
Point 7 

EC2 
120 C3 

100 EB1, E B-2-E-B; 37E 

ýB4 : ýý 

___EýCý4 

c 3 

Type C 
80 

Type B 

60 

40 

20 

0 0.002 0.006 0.01 0.014 0.018 
q 2-2q4 

Figure 3.15: Selected points for the Validation of the tip displacement 

Fig ure 3.16 1 )lots hv ý111( I 11'2X (Y) ý It tII Os(' select ed poi I Its fn )I IItI Ic ('(I IIiIiI wi IIIIII )i It II 

shown in Figure 115. As (an be SMIL 1101 11111ch difference is observed betweell 

tll(",, (, two curves at tl1c tip of thc crossni-in for oll points. Thus, it cým be sýiid thilt 

the approxilimtion for /), Y is appropriate and has been vdidiltcd With the prescilled 

comparison. 

3.4.3 Validation for the post-buckling response 

Using the FENI prograin ABAQUS. a purely miiuericýd model was developed mid thc 

post-buckling response was revealed bY nonlinear Riks ýmal. vsis to výdldiitc the results 

presented in the previous section. Ill this procedill. c. the (. 011111111 and the crossai-ill 
modelled as bcaill (, I(, Ill('IltS HIld HIC StHYS NA'('I'(' Modelled as truss clellicilt"'. The 
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W2B(Y) [MMI 
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2 
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ECI 
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y Imml 

(a) Type B (b) TYpe C 

Figure 3.16: Comparison of U'2X(Y) ýnld li. y. Not(, that the vahies of w, -)x(! j) alld lix 

coincides at the tip of crossarin. y= 305 inin. 

"No compression opt ion" 
, which prevents any compres'sion force ('111 cring the truss 

elements, was also adopted to simulate anY slackening ill t he stays. Flirt hermoreý it is 

essential in t his type (A umdhamr analysis to int r(uhmv a gCoMA Wal iIIIIHAMMI. III 

the current study, this was achion-cd using tho, MY Imckling displacement generated 

by eigenvahic analysis. The magnitude of the imperfection Was intended to be 

deliberatelY sinall such that the perfect I. c. "'polise would be approximatcol. 11) trigger 

N 10 de 1. aI101 It -of-straigI It I less of LI 10000 was im p osed at tI I(, middle of' tI ic coI I ii I Ili. 

To trigger Mode 2, an oukof-straightness (A L/14142 wits imposed at dic quarter 

and the thnv-(Viarter points alonig the (Aunni such that the horizontal displacement 

at AMP points mllot 1W the saille as that in Mode 1. 

3.4.3.1 colliparzSOTIS 

Figures 3.17 and 3.18 show the post-huckling responscs from the FENI nlong with 

those froill tll(, analytical illodels at Points, 1.3.6,7 and 8. As cmi he seen in 

Figure 3.17, for Nlodc 1. the post-buckling paths of the FENI model almost coincide 

With those of the analytical illo(l(, I. However. Figure : 3.18 shows less good agreement 

between the FENI and the analytical models iii Nlo(l(, 2. Regardless of the les's 
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(b) Zone 2 
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ql-q3 

(c) Zolle 3 

Figure 3.17: E(Itillibrimn paths for Nlodc I compai-ing thc FENI and the analytical mod- 
cls. 

good agreement In Nlodc 2, the Smile trend call still be (Ictect(ld fi-onl these two 

models: therefore, the analytical models, for Modc 2 ýirc still useful for predicting 

the (Imilitative buckling behaviour. 

These comparisons suggcst that using the current 2DOF aimlytical modelling. the 

Mode I huckling behaviour of the shi. yed (. 011111111 call he silmilated with excellent 

accuracy. It is also sho-wii tliýit the current analYtical 2DOF model can yield the 

approximated Mode 2 post-buckling rcspoiiscý it has to be adinit ted that t lic aimlyt- 

ical model involves a certain discrepancy with the imincrical model. This in8ccur8cy 

can he i-educed bY increasing the number of (1(, gi-(, (, s of' freedom, but this process is 

computationally demanding as discussed earlier. 
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Figure 3.18: Equilibrium paths, for Mode 2 comparing, the FENI and the analYtical niod- 
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3.5 Remarks 

This chapter has described the theoretical post-buckling behaviour of the prestressed 

steel stayed column, especially focused on the relationship between the equilibrium 

response and the initial prestress. Previous studies (Wong & Temple, 1982; Temple 

et al., 1984; Smith, 1985; De Araujo et al., 2006) also investigated a limited number 

of the post-buckling responses of the stayed column in their work, but they did 

not work on a theoretical model, nor on a relationship between the post-buckling 

response and the initial prestress since their focus was placed upon on the ultimate 

strength. 

The results indicate that the post-buckling response is strongly linked to the zone 
distinction of the critical loads that was found by Hafez et al. (1979) for the first two 

buckling modes. In Zone 1, the response is initially similar to that of Euler buckling, 

which is followed by a rather stable path thanks to the reactivation of the convex 

side stays. In Zone 2, the critical load is increased to more than the Euler load, 

and either a stable or an unstable path emerges after buckling; the stability of the 

response depends on the level of the prestress. In Zone 3, the critical load reaches 
its theoretical maximum, and the post-buckling path becomes unstable, after an 
initially flat but slightly stable response, due to some of the stays slackening. These 

results have been validated using the FEM. It has been shown that the current 

analytical model for Mode 1 has excellent agreement with the FEM model; however 

it is less accurate for Mode 2 when compared to Mode 1, even though the model is 

still useful to find approximate post-buckling responses for that mode. 

It has also been shown that the most unstable path occurs at the prestress level 

T. pt. This implies that this level of the prestress is not favourable; hence the greater 

level of the prestress would be recommended as a stable path occurs with a higher 

level of the prestress. 

Despite these findings, geometrical imperfections and plasticity in the materials 

were neglected in the current analytical formulation. These are important factors to 
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predict the actual response of the stayed column. Further work is needed to reflect 

these factors in the current models, and these modifications are presented in the 

following chapter. 
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Chapter 4 

Imperfection and Failure Model 

4.1 Introduction and Methodology 

In the previous chapter, the post-buckling behaviour of the stayed column was mod- 

elled analytically, and the accuracy of the results was validated using the FEM. Al- 

though a good correlation was found between these two models, the analyses were 

based on the assumption that all the materials were purely elastic; the models there- 

fore did not account for any plasticity in the materials. Furthermore, component 

geometries were assumed to be perfect. Hence, it should be noted that the model 

did not necessarily reflect the real response of the stayed column. 

In order to predict a more realistic structural response, a modified model was devel- 

oped; geometrical imperfections were incorporated in terms of an out-of straightness 

of the column, and possible failure modes-column yielding and stay fracture-were 

also investigated using the symbolic computation software MAPLE (Heck, 2003). In 

addition, FE analysis was conducted in order to ensure that the obtained results 

were sufficiently accurate using the code ABAQUS (ABAQUS, 2006). 

Certainly, other types of imperfection, such as unequal stay tensions and unequal size 

of the crossarm, geometrical imperfections in the crossarm are neglected. Although 
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this issue is also considered to be important, 

4.2 Methodology 

The analytical model was modified from that presented in Chapter 3 to account 
for the out-of-straightness, column yielding and stay fracture. The procedure to 

formulate the modified analytical models also follow that outlined in §3.1-1. The 

same assumptions were also included for this model modification as those in that 

section, except that in the current chapter the column is not perfectly straight. 
Furthermore, the following additional assumptions were made. 

1. The column has an idealized elastic, perfectly-plastic relationship. 

2. The stay has an idealized elastic, brittle relationship. 

3. Imperfections other than an out-of-straightness of the column is ignored. 

As for assumption 3, taking into account other types of imperfections, especially ones 

that are specific to the stayed column, such as unequal stay tensions and crossarms of 

unequal size, are considered to be important but secondary to the present discussion; 

therefore, it was assumed that an out-of-straightness of the column suffices. 

For the column failure in FE analysis, bilinear behaviour was assumed: linearly 

elastic behaviour until the stress reaches the yield stress U. Y, followed by a flat yield 

plateau, as shown in Figure 4.1 (a). This model forms the basis for the current Euro- 

pean design code (EN1993-1-1,2005). As for the stay, linear behaviour was assumed 

in the FEM, terminating with the stress reaching the stay fracture stress a, (see 

Figure 4.1(b)) for the following reasons: (1) stays have a mostly high yield strength, 

which tends to show brittle fracture without any significant plastic behaviour, and 
(2) the plastic region is not usually considered for tension members in design of 

practice (EN1993-1-1,2005; EN1993-1-11,2006). 
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(Is 

(Tc 

0 

(a) (b) sta., v 

Figure 4.1: Stress strain curves for colunin and sla. y. 

Strain ý, 

The slia pc finictions f'()i- geol I Ic tl. l(. i II III II lolis Were hased oll I isold aI F1 II lcl iolls 

reflecting Ihe saille t. ype as scon In previous Nvorks (Wong k Tcmplcý 1982: Sinith. 

1985). In the process of' illo(l('11111g, the two degrec-of-frecdom (2DOF) model was 

adopted its it was shown ill tIlc previous chapter that this is reasonabl. v accurate 

and not excessivc1Y (Icillailding computationall. y. The structural fallure illodes were 

found bY calculating thc stresses in the structural components using Eider Bernoulli 

beam tll(, Ol.. N,. 

4.3 Formulation 

In this . section. IN 2DOF s. ptem mmuding for initial gcometriciiI imperfections 

is developed by considering. ill till. n. the displilceillents of' citch component and 

the geometrical changcs after applying the prestress. This. agaW, bads to M hoal 

p0telitiIII elWrgy WIVIAML A Amdahon to hild thv (immIdiolis fin- t1w (Ilosen flilure 

criteria in the course of axial loading collillill vielding ýIlld stýl. v fracture Is also 

est aIAI Shed. 

91 

Strain ,, 



' NIODEL CHAPTER, 4. IMPERFECTION AND FAILIJUE 

4.3.1 Imperfections 

Two different initial buckling modes are considered for gcoinct- 

I'ICA a lialf-sillil'sol(h] wave f, ()I. I Mid a flill S11111SOld8l WMV 

for Nlode 2 as showil in Figure 4.2. The shape functions for these of out-of- 

Mode 2 

F-- 

f 

Figiire 4.2: Buckling Modes I(symnictric) and 2 (antis. vininctric) with initial wit-of- 
st rai-litiless. 

Stl'8i9lltll(", l', S li'll ý111(1 11726 iAl-(' i'S fo11()NN-S: 

T, X 
V, 6 (x) = 6L sin - (4.1) 

L 

"'240 = ýLsiii 
27. r (4.2) 

L 

Wll('I. (, 6 represents a imildillicilsiolull llorlzolltýll disphicelliclit. either at the illiddIc 

of' tlic (. 011111111 for Nlodc I Or at t hc (ImIrtcl. pollit for Nl()(I(' 2. 
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CHAPTER 4. IMPERFECTION AND FAILURE MODEL 

4.3.2 Displacement functions for the column 

As the number of degrees of freedom is set at 2, the displacement functions for the 

column W, and IV2 can be given by substituting n=2 in equations (3.1) and (3.2) 

respectively, thus: 

IV, (x) = q, L sin 
7rX + q3L sin 

37rx (4.3) 
TL 

IV2 (x) = q2 L sin 
27rx 

+ q4L sin 
47rx (4.4) 

LL 

Substituting n=2 in equations (3-3) and (3.4) yields the angles of the members to 

the vertical E)I(x) and E)2(x) respectively as follows: 

7rx 37rx 
E), (x) = q, 7r cos L+ 

37rq3 cos L' 
(4.5) 

02 (X) = 2q27r COS 
27rx 

+ 47rq4 cos 
47rx (4.6) 

LL 

With reference to Figure 4.3, the original lengths of the stays for each mode Lsij are 
defined as follows: 

L, 11 L, 12 
L2 

+ (a + JL)2, (4.7) 
ýT 

L, 13 L, 14 

ýP 

+ (a - JL) 2 (4.8) 
4 

Ls2l Ls23 

((ý 

+a sin 27rg + (a cos 27rJ) 2, (4.9) 
2 

Ls22 Ls24 L_a 
sin 27rJ + (a cos 27rj)2. (4.10) 

2 

Thus, the initial angles aij between the stays and the vertical are expressed as 

aij = arccos 
LID 

- 
( 

L, ij 
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11 

(a) Mode I (h) Mode 2 

Figure 4.3: Initial profiles. Note that oil Shows the all"Ic boweell the collillill aild each 
stýýy at the ends of the collillill. 
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4.3.3 Displacement ftinctions for the crossarin 

J1.3.3. I shal)(J'alict/olls 

The genend sllýipc I'mict loll 1, ()I, Ille cross, ýI I'll I I,,,, allvad. v givell ill equation (3.9): 

iv. ). v (y) = H, v siii A-. N: Y+h, N: c os Ax Y (4.12) 
A-2 E, I, 

X 

Note that, In this, chapter. y is the cm)l. dillate which collicides with the centre ()f 

t lic illitNil cl-ossonll profile I III, tll(, (Y) is the '2, 

(1(, fl(, (. t lo II of tI le cros-sar III p", P("' (I ic"L Ir Io tII at (. ()oi-( II iiiitv (sce FI gure -I. -I). Wil 11 

Figure 4.4: Free bmly dia-rain to detcrinine the bendin- moment at an arbiti-ary cross 
section (y > 0) of the crossarin. Note that the subscript X represents thc 
bucklinn- dwssification which can be cither B ()r C. 
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reference to Figure 4.4, the boundary conditions are given, thus: 

W2X(O) = Oe w'X(0) = -y - 
27r5, W2X(a) = hx, (4.13) 2 

where -y is the angle between the horizontal and the crossarm at the midpoint, 

defined as 

-y = -E)2(L/2) = 2q27r - 
4q47r. (4.14) 

The second condition comes from the assumption that TV2(x) intersects the crossarm 

at right angles. Applying this condition yields the following expressions: 

Hx =1 
(_ Rx 

27rJ), (4.15) 2 kx kýEj,, 

Kx = 
Rx a_ hx, (4.16) 2Eala kx 

[(7 - 27rJ) EaIak 2- Rxl sin kxa + k-XRxa cos kxa 
hx =x k' EaIa cos kxa 

(4.17) 

x 

In order to find the actual shape of the crossarm with equation (4.12), it is also 

necessary to establish equations for XX and RhX- With reference to Figure 4.5 and 

then by taking the leading terms Of 16ý2X, hX and J, the changes in the axial force 

in Stays 3 and 4, dFX3 and dFX4 resulting from the structural displacement can be 

expressed as follows: 

dFX3 E., A., 
Ls2X3 - Ls23 

Ls23 
(4.18) 

A2X + 
2hx ) 

Cos 
2 

a, L 

dFX4 EA, 
Ls2X4 - Ls24 

Ls24 
(4.19) 

1ý12X - 
Lhx ) 

COS2 a. L 

With reference to (b) and (c) in Figure 4.5 along with the expressions for dFX3and 
dFX4, the reaction forces for Type B, RB and RhB, can be defined, which are then 

96 



CHAPTER 4. IMPERFECTION AND FAILURE MODEL 

-. 4 

*Tx= hx cos 27T6 +a sin 27-r6 
*vx= asin27T6-hxcos27T6 

(a) elongation of the stays 

Rhx 

FRýT*j 

6 --------- T+ dFX4 or 0 

Stay 4 

CaV 2X4 CV 2X4 

........................... 

RhX 
iT6 2Tr6 

R,, x 

(b) reaction forces in stay 3 (c) reaction forces in stay 4 

Figure 4.5: Elongation of the stays and reaction forces at the tip of the crossarm. 
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approximated by taking the leading terms Of ýý2X, hX and J. 

R, B ---: (T + dFB3) (COS a2B3 COS 27rJ - sin a2B3 sin 27rJ) 

- (T + dFB4) (COS a2B4 COS 27rJ + sin a2B4 sin 27rJ) (4.20) 

; ztý 4 
[(hB 

sina-7rJcosa Tsina+EA,, 
LB 

COS2 a LL 
RhB (T + dFB3) (sin a2B3 COS 27rg + COS a2B3 sin 27rJ) 

+ (T + dFB4) (sin a2B4 COS 27rJ - COS a2B4 sin 27rb) (4.21) 

2 [(l + Iýk2B COS2 a) T- EAIýk2B COS2 a] sin a. 

As only one stay is active on each side in Type C buckling, with reference to Figure 

4-5(c) R, C and RhC can thus be obtained from the expression for dFX3. The same 

approximation as in §3.2.2.2 is applied, as including the hC term in the RhC equation 

causes a computation problem that leaves the governing equation untractablel. 

R, c (T + dFC3) (cos a2C3 cos 27rJ - sin C12C3 sin 27rJ) 

Lhc )2, A, 2 1- 27rJ cos a sin a- A2C - sin a+ 
El 

Cos a)] T cos a, 
ILT 

(4.22) 

RhC (T + dFC3) (sin a2C3 cos 27r6 + cos a2C3 sin 27rJ) 

sA, q 23 hC ) (1 
cos a sin a+ 27rJ cos aT 

[1 
+ 

(A2C 

-L (4.23) LT)II 

1+ A2C 1 : 
EA, 

COS2 a] sin a+ 27r6 COS3 a T. 
T) 

Note that in the energy formulation, equation (4.12) adopted approximated equa- 

tions of hX-later shown in equations (4.27) and (4.28)-, and the leading terms 

with respect to 212X) 7 and 6 were taken in that equation in order to render the 

analytical model tractable. 
'Note that in the RhB expression, the hB term does not exist as this drops out in the process 

of summing the horizontal components of dFB3 and dFB4- 
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4.3.4 Stress and geometrical changes in the structure 

Stress and geometrical changes in the structure are exhibited prior to the energy 

formulation presented in the following section. The investigation includes items such 

as the stress changes caused by the prestress, the elongation of the stays and the 

end-shortening of the column. 

4.3-4.1 Stress in the column from prestress 

The initial strain -, t in each stay from prestressing is 

T 
Est = EA. 9 

(4.24) 

With reference to Figure 4.6, the initial stress Ect that is introduced to the column 

can be obtained by solving the following force equilibrium equation: 

T, i cos(i7rJ) =T cos ail +T cos ai4- (4.25) 

As 5 is a small value, by taking the leading term with respect to J, et is approximated 

as 

Ect ý 
2T cos a (4.26) 

EA 

Note that this expression is exactly the same as the perfect case. 

4.3-4.2 Tip displacement coefficient 

The tip displacement of the crossarm is necessary to determine the elongation of the 

stays. This displacement has already been presented in equation (4.17). However, as 

the direct expression is too complicated for the analytical model, these are simplified 

by using a Taylor expansion. 
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0 

1/ 

I 

kýce 

i 

II ýýnore configun it ion 
ý: ýIflgvs I'v 

o initial preýtr", s 

Figure 4.6: Eff'(, (-t oftlic initial prestress. 

In the case of Typo, 13 buckling. 1113 is expulded to the third w-der with respect to 

Ajý. alld thell, III t hat equilt loll. I he leadilig order wit 11 resI)CO 10 A')II. ý alld 

6 arc titken, which ylclds the fOllowing: 

hlý = cBa(-, - 
2ýT6). (4.27) 

Where cl, is already in equation (3.24), and A13 llýls' the SaIM, forill expres- 

sion ýis, c(Imition (3.25). 

In the case ()f TYI)c C. slinilarlY. /1(, is expanded to the fifth Order NN-1111 respect to 

aild theil. III t hilt c(plat loll. t he leading order terills wit 11 respect to -ý aild 

6 are tAcil. which yields the following: 

11C ý ('C (I I+ (1ýý2(' + ('CO 0+ CCý (16- (4.28) 

where (-(, ý is the fm-tor expressing the Inagnitlide of' the tip displacement of tll(' 

crossariii in Type C associated Nvith the imperfection imiplitude ý: 

Cc6 - 
E, A, (i'l. siii 

20 
COS 2 

(1 (cos 2o+ 1/5) T -3E, (4.29) 
(2 
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with cc, ccA and cco being already expressed in equations (3.27), (3.28) and (3.29) 

respectively. As for the quantity Ac, this also has the same form as equation (3.31). 

Note that this simplification becomes less accurate as the initial prestress T becomes 

larger. The accuracy of the third and fifth order approximations for hB and hc are 
discussed in the validation section later in this chapter. 

4.3.4.3 Elongation of the stays 

The post-buckling profiles of the stayed column are sketched in Figure 4.7. These 

geometries allow the new stay length L, ixj, where the subscript j refers to the stay 

number as indicated in Figure 3.6, to be evaluated through Pythagoras's theorem, 

and leads to the strain in the stays purely arising from the applied load P. Subse- 

quently, this equation is expanded as a Taylor series up to second order with respect 

to q,,,, Aix, and J, depending on the buckling type. In this process, the cross and 

quadratic terms of Aix, such as Aixq,,, AiXJ and A2 are dropped, as these terms ix 
are considered to be small from numerical observation. By combining the expanded 

strain Vixj with the initial prestress T, the total strains in the stays -, ixj can be 

obtained, giving a sequence of expressions, here written in a compact format: 

68ixj --'-: Vixj + est. (4.30) 

4.3.4.4 End-shortening of the column 

In order to determine the end-shortening expression of the column Aix, equilibrium 

is considered at the end of the column where the external load P is applied with 

the free body diagram approach shown in Figure 4.8. Vertical force equilibrium and 

moment equilibrium around the point 0 give the same equations as those in (3.33) 

and (3.34), where fli can be obtained by substituting x=0 into E)i(x) defined in 
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(it) Mode 1 

r, 

(c) Mode 2 Type BC 

Figure 4.7: Gcoinctry ()f the stayed column iii buckling modes I and 2. 

rl 
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(b) Mode 2 Type A 

, x= hx cos +a sin 2 --, (, 
i x= a sin hx cos 2-, ý , 
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T/ 

(I iA +3qiK 

2q2)T +4q2 7r 

Figure 4.8: E'qmlihiiiiin frec hod. v dia-litill 1, ()l Ille m1lillill. \()I(' thill li)//,, \ I's 111c lii)l. i- 
zolltal rcactioll kit the cild of tllc collillill. 

equations (4.5) and (4.6): 

31 = 0- , (0) = q, 7r +: iql 7r. j 1,2 = (-), 
2 

(0)=2 (12 7r +4q, Tr. (4.: 31) 

NN"Ith reference to Figures 4.7(a) (c). ('OS(li, Vl HIld CoS0i, V, j mv oblailled through 

trigonometry: subsequentIly. those relationships are expressed to the lemillig order 

with respect to qjjj- and 

As all of the required angles are defilled. the f, ()I. (. (, s aild beilding moments Tx. Ca. 

S, Vý and II, V III the frev body diiigram need to be investigated. Fli-,,, tl. N,. with the 

sti-mil expressions of the stays shown III the proviolls, sectioll mid Ihe assulliptiOll 

that the stays do not resist compression. the axIA forces III the stays T,, yl and Tv., 

are defined as follows: 

TiA1 ý TiA1 ý Ti(A = 0. 

TjBj = -ý,, BjE,, A,. TB., = F,, j, 3, jT',,. -I,. 'F, (,, = 

Rlfýx 
IN( 

(4.32) 
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The axial strain in the column EjX is expressed as a summation of the compo- 

nents Aix and ct minus the effect of the relaxation from the buckling displacement. 
Therefore, the axial strain for each mode is expressed as follows: 

11L [IV'2(X) 

EciX Aix + Ect - 2L 0i- 
Wj(x)] dx 

2Tcosa 
-12 (q2 + gq32 - 

62) Aix + EA 4 
7r 

+ 
2Tcosa 222 

-S2) 7r (q2 + 4qi A2X 
EA -4 

Thus, the axial force CiX is expressed as 

Cix = EAc, ix. 

1 (4.33) for Mode 1, 

for Mode 2. 

(4.34) 

With linear bending theory, the bending moments Mi are expressed as the following: 

Mi = -EI[Wj"(ý) - Wj'6(ý)) 

7r 2 EI 7r 

L 
[(q, 

- J) sin 
7rý + 9q3 sin 

Lrý 
for Mode 1, (4.35) LL 

47r2 EI [(q2 
- 6) sin 

! 7! r 
+ 4q4 sin 

Lrý 
for Mode 2. 

LLL] 

The shear force Six can be defined by substituting equations (4.34) and (4.35) into 

equation (3.34) and then by taking the limit ý -+ 0. 

By substituting equations (4.32), (4.34), (4.35) and an expression for the shear force 

into equation (3.33), expressions for Aix can be obtained. Subsequently, the solution 

is expressed as a Taylor series with respect to T, P, q,,,, and J up to second order, 

which gives the following simplified expressions: 

Aix =bpxP + btxT + blxql + b3xq3 + b6xJ + bllxq 2+ bl3xqlq3 +b2 3xq 
2 

133 
(4.36) 

+ blgxq, 6 + b3JXq3J + b626x 62 

22 A2X =bpxP + btxT + b2xq2 + b4Xq4 + bjxJ + b22xq22 + b24xq2q4 + b44xq4 

(4.37) 
I 

2 j2 + b2JX q2 J+ b46x q4 J+ b6jx 
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where bpx, btx, bix, b,,, x, b,,, Ix, b,, j and bjS are coefficients for P, T, 9, q, q,,, ql, 

q, J, P respectively. 

4.3.5 Energy formulation 

The total potential energy Vix comprises components of the strain energy and the 

work done by the load. In a general state of deflection, there are four components of 

the strain energy: from bending in the column (Ucbi) and the crossarm (UabiX) with 

axial strains in the column (Ucýýjx) and stays (U,, ix). Except for the bending in the 

column, all of the components have the same expressions as in Chapter 3. Hence, 

only the bending energy in the column is described in this section, please refer to 

§3.2.4 for the other components. 

4.3.5.1 Bending energy 

The bending energy components in the column arise from a linear curvature expres- 

sion; thus, TVj give the following expressions for Ubi: 

ý, (X)]2 dx - Ubo Ucbi ""' 
2 

EI 
10 [lvi"(X) - Wi'6' 

EI70 (q2 + 8lq2 - 2q, J + J2) 3 UcbO for Model, (4.38) 
4L 

4EI7r4 (q2 + 16q42 - 2q26 +62) 2L UcbO for Mode 2, 

where UW is the existing column bending energy at the beginning of each buckling 

type. 
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4.3.5.2 Total potential energy function 

The total potential energy is a summation of Udi, UabiXi U, 
ýajx, 

Uix minus P. Eix: 

ViX ý Ucbi + UabiX + UcaiX + UsiX - PEiX- (4.39) 

In the Mode 2 Type C analysis, higher terms of P are then truncated as they are not 

the dominant terms in the function and leave the governing equation untractable. 

For equilibrium, the total potential energy Vix must be stationary with respect to 

the generalized coordinates q,,,. Therefore, the equilibrium paths can be computed 

from the condition: 
avix 
aq�, 

4.3.6 Failure criteria 

(4.40) 

In order to model more practically realistic behaviour, certain failure criteria are 

defined; column yielding and stay fracture are included in the study as they are 

considered to be the principal failure criteria, apart from instability, in the design 

of such structural components. 

4.3.6.1 Column yielding 

The bending moment along the column can be obtained by substituting x for ý in 

equation (4.35). Locating the maximum bending moment in the total length of the 

column at each numerical increment AIjX, na., (qj), which is uniquely determined by 

qj, and applying Euler-Bernoulli beam theory, the maximum stress can be found by 

calculating the fibre stress using Mix,,,,., (qi) and the axial force Cix(qi) thus: 

O'fiX, max(qi) = 
MiX, 

max(qi)o,, + (4.41) 
21 A 
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Increasing the value of qj leads the value of o-f jx,,,, aý, (qj) to rise; when the fibre stress 

reaches the yielding stress uy, the plasticity in the column begins to be observed. 
This approach is in line with the Perry-Robertson formula (Coates et al., 1988), 

which has been used for strut design in the UK for many years. 

4.3.6.2 Stay fracture 

Defining the ultimate strength of the stays a.,, and assuming that the stays are purely 
linearly elastic until they reach the fracture stress, the fracture strength of the stays 

can be defined as 
T= aA8. (4.42) 

When the axial force in Stay 1 (Tixl)-the convex side stay for both modes-reaches 
T,,, fracture of the stay would be expected. 

4.4 Equilibrium Path with Imperfections 

The main purpose of this work was to investigate the buckling response of the stayed 

column with geometrical imperfections and to present the occurrence of material 
failure on the elastic response. With the modified formulated total potential energy 

and the failure criteria, the post-buckling behaviour of the stayed column together 

with failure points can be investigated. The same dimensions and properties as in 

§3.3.1 were also applied for the post-buckling analysis, with the stay diameter, 0, = 

4.8mm being chosen. The column yield and stay fracture stresses were defined as 

av = 338 N/mm 2 and o,. = 614 N/mm 2 respectively. These values also originate from 

the Hafez model (Hafez et al., 1979). Five different values of the initial prestress were 

selected from the zones discussed before to investigate changes in the mechanical 

response as T changes, the selection criteria being expressed in Table 4.1. 

As for the initial out-of-straightness, the following seven different values of J shown 
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Point Initial prestress T 
Criterion expression Mode 1 (kN) Mode 2 (kN) Zone 

1 0 0.00 0.00 1 
2 (T. pt -T.. i,, )/3 + Tni,, 1.47 2.50 2 
3 T. pt 3.48 3.78 2/3 boundary 
4 2T. pt 6.97 7.55 3 
5 2.75Tpt 9.58 10.38 3 

Table 4.1: Selected prestress levels for the study. 

in Table 4.2 were adopted in the analysis. A value of 1/1500 originates from ex- 

perimental measurements (Wong & Temple, 1982; De Araujo et al., 2006); 1/500 

originates from manufacturing tolerances (EN10210-2,2006); values of 1/300 and 

1/200 are derived from the values of the recommended initial local bow imperfection 

in the global analysis of frames for hot-rolled and cold-formed hollow sections re- 

spectively in Eurocode 3, the European design code for steel structures (EN1993-1-1, 

2005). 

No Initial out of straightness 
Mode 1 Note 

00 perfect 
1 1/10000 nearly perfect 
2 1/3000 
3 1/1500 experimental measurements 
4 1/1000 
5 1/500 manufacturing tolerance 
6 1/300 Eurocode 3 design value for hot-rolled sections 
7 1/200 Eurocode 3 design value for cold-formed sections 

Table 4.2: Selected amplitudes for the initial out-of-straightness. 

In Mode 2, amplitudes of the imperfections were selected in order that the end- 

shortening caused by the initial out-of-straightness would be the same as in Mode 

1 (Wadee, 2000), thus 

2 W2 
-lViä(x)dx =- 25 (x) dx = So, (4.43) 10 
202 
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where EO is the first order approximation of the end-shortening caused by the initial 

out-of-straightness, which gives the following equation: 

J2 "1 ill 
2 

(4.44) 

where J, and J2 are imperfection amplitudes for Modes I and 2 respectively. Thereby, 

the imperfection values shown in Table 4.2 were divided by 2 for Mode 2. 

4.4.1 Buckling behaviour 

The equilibrium equations accounting for the imperfections are expressed in equation 
(4.40), which were solved using MAPLE. In addition, the yielding points of the 

column and the fracture points of the stays were investigated to find the structural 
failure points. These analyses would be expected to facilitate the prediction of more 

realistic structural response than the previous purely elastic analysis performed for 

the perfect system. Figures 4.9 and 4.10 represent the equilibrium paths with the 

imperfection for Modes 1 and 2 respectively at each point. 

At Point 1, with lower amplitudes of the imperfection (1/10000 and 1/3000 for Mode 

1, and 1/20000,1/6000,1/3000, and 1/2000 for Mode 2), the response begins with 

Type A buckling; then, at a certain value of horizontal deflection, the convex side 

of the stays reactivate, which leads to the conversion of the buckling types to Type 

C. This response pattern is exactly the same as the one seen in the perfect case. 

However, when the imperfection becomes large-greater than 1/3000 for Mode 1 and 

1/2000 for Mode 2-the response starts immediately with Type C buckling. The 

reason for this difference may be related to the fact that a large value of the out- 

of-straightness allows the structure to bend easily even at the beginning of loading, 

which renders the convex side stays immediately active after loading. 

At the other points, the buckling response starts with Type B, and afterwards the 

concave side stays slacken at a certain value of horizontal deflection, which leads 

to the conversion of the buckling types to Type C. As can be seen from (c)-(f) in 
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Figures 4.9 and 4.10, the more prestress that is applied, the longer the stays are 

active under loading. 

The fracture and column yielding points are also presented in Figures 4.9 and 4.10. 

In most cases, column yielding is the failure mode: the yielding points occur prior 

to the stay fracture points in the loading paths. However, at Point 5 in Mode 1 

with larger values of the imperfection (1/200), stay fracture becomes the governing 
failure mode. This phenomenon is perhaps attributed to the following reasons: first, 

since a large amount of the initial prestress is already applied, there is only a limited 

capacity available for further stress increase in the stays; second, a large value of 

the imperfection allows the structure to bend easily, which causes a rapid increase 

in strain in the stays. 

4.4.2 Validation for the tip displacement coefficients 

In order to investigate the tip displacement coefficients for the crossarm, the third 

and fifth order expansions with respect to RX were formulated for buckling Type 

B and C respectively. Although this approximation gives significant computational 

advantages to the analytical model, the accuracy of the process has not yet been 

evaluated. Hence, in this section, the numerical values of the approximated tip 

displacements hX, which can be obtained from equations (4.27) and (4.28), and the 

exact shape functions for the crossarm W2X (Y) 
, which can be obtained from equation 

(4.12), are presented and then compared against each other. 

To examine the actual values of hX and W2X(y), equilibrium points were selected 
from the Point 4 post-buckling response with an imperfection value of 1/600, as 

shown in Figure 4.11. Points EB1-EB4 are from the path in Type B, and Points 

EC1-EC4 are from the path in Type C. 

Figure 4.12 plots hx and W2X (y) at those selected points from the equilibrium path. 
As can be seen, although minor discrepancies are observed at EC3 and EC4, in 

general these two curves have almost the same value at the tip of the crossarm. 
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types of FE models were developed: an elastic model, an elastic-plastic model and 

a stay fracture model. In the elastic model, all of the structural components had 

purely elastic responses except that the stays were modelled to lose their stiffness 

under compression. In the elastic-plastic model, although the stays were elastic, 

the column and the crossarm had elastic-plastic responses, see Figure 4.1(a). In the 

stay fracture model, although all of the structural components had purely elastic 

responses, the stay had a failure load in tension at which the stays lost their tension 

completely, see Figure 4.1(b). As stated in §3.4.3, this analysis was also conducted by 

a nonlinear Riks analysis using the Euler buckling displacement as an imperfection. 

The elements adopted were exactly the same as those in the previous FE analysis: 

truss elements modelled to lose their tension in compression for the stays and beam 

elements for the column and the crossaxm. 

Figures 4.13 and 4.14 show the equilibrium paths under axial loading from the FE 

models along with those from the analytical model using J, = 1/300 and 62 = 1/600 

at each point for both modes respectively. As can be seen, for Mode 1 the equilibrium 
buckling paths of the elastic model of the FEM almost coincide with those of the 

analytical model. For Mode 2, although the equilibrium paths of the FEM and the 

analytical model are in good agreement in their initial stages, these are in less good 

agreement once the load reaches the flattened region, which is observed in Type C 

buckling. Regardless of this less good agreement, the same trend can be still detected 

from these two models. All of these observations is exactly the same as the one from 

the perfect cases discussed in the previous chapter. Thus, although a certain level of 

error has to be admitted in the analytical model for Mode 2, the current modelling 

is still useful to predict the qualitative buckling behaviour; moreover, at least it can 

be said that the presented FE model seems reliable. 

As for the failure points, in Mode 1, it can be seen without exception that the stay 

fracture points of the FE model and the analytical model are in good agreement. 

Despite this correlation, the yielding points in the analytical model involve a certain 

discrepancy with those in the FEM, especially in the cases with lower values of the 
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prestress though the level of the failure load is predicted with reasonable accuracy. 

This discrepancy is possibly attributed to the yielding criterion in the analytical 

modelling-the column is assumed to have failed when the fibre stress reaches the 

yield stress. This assumption gives a good prediction when stresses from bending 

moments in columns are relatively low, but when bending stresses dominate the axial 

stress, this approach may give a rather poor prediction as high bending stresses do 

not have much impact on the plastic resistance of a column in practice (Rotter, 

2007). 

As can be seen, the horizontal deflections at the yielding points are relatively large 

in Mode 1 when the prestress is low. Therefore, the bending stress in the column 

may also be relatively large; this is probably the reason for the underestimation 

of the yield points. Particularly when the prestress is small such as Points 1,2 

and 3, the bending stress tends to become even larger as the constraint against the 

column movement that is provided from the low prestressing force is relatively low. 

Therefore, it should be noted that the presented yielding criterion might cause the 

underestimation of the yielding point especially with lower levels of prestress. 

In Mode 2, the stay fracture points of the FEM and the analytical models are in less 

good agreement. It seems that this error is attributed to less accurate analytical 

modelling, i. e. it contains fewer degrees of freedom as discussed in the previous 

chapter. Despite this discrepancy, good agreement can be seen between the yielding 

points of the FEM and the analytical models. As the yielding points occur at the 

initial stage of equilibrium paths, it may be reasonable to suppose that the effects 

from the bending moments and the accuracy of the analytical model did not affect 

the results. 

Rom these comparisons, it can be said that the presented analytical model and 

failure criteria axe reasonable, though the column failure criterion might be inap- 

propriate when lower values of the prestress are introduced-but it should be noted 

that low prestress is a practically less relevant case, and the level of the yield load 

is still predicted well despite the error in displacements. It seems that the major 
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discrepancies between the two models are attributed to the less accurate analyti- 

cal modelling of Mode 2, which arises from the lack of sufficient degrees of freedom. 

Hence, although the analytical model may be thought not to be completely accurate, 

it can at least be thought that the current FE model is quite reliable. 

4.4.4 Sensitivity studies 

Figures 4.15(a) and 4.16(a) show the maximum axial load capacity PI,,,, ax for each 

mode respectively, and Figures 4.15(b) and 4.16(b) show the midspan horizontal 

displacement for Mode 1 and the midspan rotation for Mode 2 respectively at the 

maximum loading against various imperfection values. These graphs are plotted 

from the equilibrium paths through the analytical and elastic FE models, which 
have already been shown in the previous section. 

As can be seen from (a) in Figures 4.15 and 4.16, the maximum axial strength 
Pej, max increases as the prestress T increases. It can also be seen that the maximum 

capacity is most sensitive to the imperfections at Point 3, which represents the 

prestress level of T. pt being located at the boundary of Zones 2 and 3. The prestress 

T,, pt has been considered to be the optimized prestress in the literature because 

the highest buckling load can be observed there. However, when T is moderately 

greater than T,, pt, the maximum load capacity Pq, maX becomes even larger than that 

for T. pt. With these obtained results, it can hardly be said that T. pt is the optimized 

prestress. 

As for the horizontal displacement at the maximum load, this value decreases as 

the prestress increases, as can be seen from (b) in Figures 4.15 and 4.16; the least 

sensitivity is observed in Zone 3. This result was somewhat expected because of 

the fact that the structure does not easily bend when it is restrained with a large 

prestress. 

Since the least sensitivity to the imperfections and the highest maximum load ca- 

pacities are observed in Zone 3, the value of the optimized prestress that allows 
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designers to obtain the maximum strength PI, ma., with the minimized structural 

resistance is expected to be somewhere in Zone 3, higher than T,, pt. Despite this, 

the exact value of the optimized prestress is still unknown. Although increasing 

the prestress provides the structure with more axial strength and less sensitivity 

to imperfections, the greater prestress also requires an increase in the cross sec- 

tional area of the structural components to counteract potential plasticity occurring 

earlier. The optimized prestress has to be found by balancing these two different 

aspects with certain indicators for optimization; this argument is to be developed 

in Chapter 6 along with related parametric studies. 

4.5 Remarks 

This chapter has aimed to investigate more practically realistic structural responses 

of the stayed column. Previous studies (Wong & Temple, 1982; Temple et al., 1984; 

Chan et al., 2002) also took into account the geometrical imperfections and suc- 

cessfully located the maximum load capacity. However, the equilibrium behaviour 

itself and structural failure were not previously examined in detail; in addition, the 

sensitivities to imperfections and prestress were not satisfactorily investigated. 

The equilibrium response under axial loading in conjunction with column yielding 

and stay fracture has been presented from both the mathematical model and FE 

analyses. As expected, the current analytical model for Mode 1 has excellent agree- 

ment with the FE model; however it is less accurate for Mode 2 when compared 

with Mode 1 due to the approximation of modelling, i. e. more degrees of freedom 

are necessary to obtain more accuracy in Mode 2, which was also discussed in Chap- 

ter 3. The results indicate that the presented analytical modified model can account 

for the geometrical imperfection of the column, and that the current FE modelling 

can be considered to be quite reliable. Owing to this validation, in the interactive 

buckling and parametric studies that follow in subsequent chapters, the FEM is to 

be used as the main tool for investigation. 
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The sensitivity to geometrical imperfections has also been presented from the inves- 

tigation. The results indicate that the optimized prestress that allows designers to 

obtain the maximum strength is located in somewhere in Zone 3, although previ- 

ously this value has been considered to be at the boundary of Zones 2 and 3 from 

linear buckling analysis (Hafez et al., 1979). Despite these findings, the exact value 

of the optimized prestress is still undetermined due to the lack of a rational indi- 

cator for optimization; an issue that needs further investigation and is discussed in 

Chapter 6. However, in the next chapter another important aspect for design, Le. 

interactive buckling, is discussed. 
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Chapter 5 

Interactive Buckling 

5.1 Introduction 

In the previous chapter, the post-buckling behaviour of the stayed column was mod- 

elled analytically with geometric imperfections, and possible structural failure points 

were located on the equilibrium path. Although realistic behaviour of the stayed col- 

umn was presented for distinct mode buckling, the model still ignores another prac- 

tical important aspect: interactive buckling. Interactive buckling is a phenomenon 

in which buckling modes with different wavelengths are triggered simultaneously. 

It has been reported as quite a notorious phenomenon for structural safety from 

previous work (Thompson & Hunt, 1984; Hunt, 1986). For the stayed column, the 

levels of the buckling loads for Modes 1 and 2 are often close together; therefore, 

interactive buckling would potentially occur as a combination of Modes 1 and 2 

(see Figure 5.1); it would be necessary to take into account interactive buckling 

behaviour in order to achieve structural safety in design. Despite the potential im- 

portance of this type of behaviour, interactive buckling in the stayed column has 

not been investigated at all in previous work. 

This chapter describes differences in the buckling responses between distinct mode 
buckling and interactive buckling. In order to facilitate this comparison, the interac- 
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+ - 

Figure 5.1: Int(, ractiv(, Imcklim, of the , tav(, (l cohnnii. 

tive buckling response was obtained using the code ABAQUS (ABAQUS. 2006). It 

was revealed tImt intenictive buckling becomes the worst case wherc Mode 2 govcriis 

in the critical load analysis. 

5.2 Methodology 

5.2.1 Imperfection 

The current investigation involves FE analysis: Riks analysis \výis conducted lising 

the code ABAQUS to reveal equilibrium paths for interactive buckling. Firstly. 

using FEM, buckling analysis was conducted to obtain values of the critical load for 

distinct mode buckling, which Icd to the evaluation of the benchmark prestress TO, )t: 

subsequently, the interactive buckling behaviour was investigated with the obtained 

prestress. 

Formulation of the FE model follows the saine process stated as in ý3.4.3. As 

mentioned earlier, there are a few examples of post-buckling equilibrium patlis for 
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CHAPTER 5. INTERACTIVE BUCKLING 

stayed columns in previous work (Temple et al., 1984; Smith, 1985; De Araujo et al., 

2006); however, investigations into interactive buckling have not been attempted. 

A more complicated shape of initial out-of-straightness is needed to induce interac- 

tive buckling, rather than a simple shape based on a distinct buckling mode, which 

was adopted in the analysis performed in Chapters 3 and 4. In this study, imperfec- 

tion shapes were created by combining a half sine wave and a full sine wave, ensuring 

that the interaction between Modes 1 and 2 behaviour would be induced. Thus, the 

shape function for the imperfection was expressed as follows: 

MW 
-": 

IV16 W+ W25(X) 

7rX 7r 
ýL 

Itil 
sin T+ P2 sin 

2Lx 

where yj and A2 are coefficients for the components of the imperfection, expressing 

a proportion of each wave. 

In order to investigate the transition from Modes 1 to 2 buckling through interactive 

buckling, different combinations of magnitudes of a half sine wave and a full sine 

wave were selected. As already stated in §3.4.3, amplitudes of the imperfection were 

selected in order that the end-shortening caused by the initial out-of-straightness 

would be the same (Wadee, 2000), thus 

L [IV'2 (X) + W2 (X) 
16 26 dx =CO, (5.2) 

10 
21 

where Eo is the first order approximation of the end-shortening caused by the initial 

out-of-straightness, which yields the following equation: 

22 
p, + 4P2 (5.3) 

Rom the above equation, the combinations given in Table 5.1 were obtained. As for 

the basic amplitude of the imperfection 6,1/300 was generally selected to obtain the 

actual level of the design load from the equilibrium path. As mentioned earlier, this 
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Case Coefficients 
Al A2 

Alode 1 1.000 0 
Case 1 0.750 0.3307 
Case 2 0.500 0.4330 
Case 3 0.250 0.4841 
Mode 2 0.000 0.5000 

Table 5.1: Selected combinations of pi and P2 for the imperfection. 

value represents the recommended level of an initial local bow imperfection in the 

global analysis of frames for hot finished sections in Eurocode 3 (EN1993-1-1,2005), 

accounting for the effects of all types of imperfection, including residual stress and 

geometrical imperfections, such as lack of straightness and any minor eccentricities 

present in joints. 

5.2.2 Prestress 

Rom Zone 3, the two different values of the initial prestress, T. pt and 2T. pt, were 

selected to investigate changes in the interactive buckling responses. Zones 1 and 2 

behaviour were basically not investigated as it was shown that the optimal value of 

T was located in Zone 3 from the previous chapter; thus, investigating Zones I and 

2 would be superfluous for practical design. 

Although in the previous chapters, T. pt was derived through the analytical model, 
in this section, Topt was obtained from Hafez's work (1979) with assistance from the 

FEM, which provides more accurate values of Topt as the analytical model involves 

a certain degree of error especially in Mode 2. According to his analysis, T. pt is 

expressed as 

Topt = P. '. Cii, (5.4) 

where, 
cil cos a (5.5) 

12 sin 2a2 cos 2 a) 2K, ++ K, 
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in which K, K,, and K,, are the axial stiffness of the column, the stay and the 

crossarm respectively, expressed as follows: 

K, = 
EA 

I Ks 
EA,, 

Ka = 
EaA,, 

7 
(5.6) 

L Ls a 

and P, ',,. is calculated by 

PmCax 
PZC. 

ne3, T=O (5.7) C22 I 

where PC is the critical load calculated from FE analysis when T=0, and Zone3, T=O 

C22 is 

C22 + 
Cos 2a 

COS2 a 
(5.8) 

Kc 
(I+2 

-W. K, 

5.2.3 Assumption 

The same assumptions were also made for the analysis in this chapter as those shown 
in §3.1.1 except that the column is perfectly straight. Note that in this chapter, all 

of the structural components are purely elastic in order to focus on the interactive 

buckling response. 

5.3 Numerical Results 

The investigation was conducted with the two parameters, the crossarm length a 

and the stay diameter 0,, varying. Firstly, using the FEM, buckling analysis was 

conducted to obtain values of the prestress T,, pt through equations (5.4) and (5.7). 

Subsequently, the interactive buckling behaviour was investigated with the obtained 

prestress. 

The same dimensions and properties as in §3.3.1 were also applied. The stay diam- 

eter 0, was varied from 1.6mm to 10. Omm with a classification of F1 to F6 (see 

Table 5.2) while the crossarm length a was fixed to a= 305 mm, and the crossarm 

127 



CHAPTER, 5. INTERACTIVE BUCKLING 

length a was varied from 76.25111111 to 457.5111111 Nvit Iia classificatioii of a Ito a6 (sce 

Table 5.3) while the sta. v diaineter was fixed to (, '), = 4.8inin. 

5.3.1 Buckling analysis 

Figures 5.2 ni)(I 5.3 show the buckling load I, (, 
i'ax 

with a variation of (), and a I. (, - 
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Figure 5.2: Bucklim, loads with tlie stav dianieter 0, var. ýýiiig. 
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as the cases of F3 to F6, Mode 2 becomes the governing mode. Similarly, when the 

crossarm length a is short, such as al to a3, Mode 1 becomes the governing mode, 

and when the crossarm length a is long, such as a4 to A, Mode 2 becomes the gov- 

erning mode. These relationships between the buckling modes and the structural 

configurations were already reported in previous work (Smith et al., 1975; Hafez 

et al., 1979; Hathout et al., 1979). Substituting these values of P. Cax into equation 
(5.4), values of T. pt were obtained as represented in Tables 5.2 and 5.3. 

Case 0, (mm) T. pt (kN) Buckling Mode 
Fl 1.6 0.12 1 
F2 3.2 1.16 1 
F3 4.8 3.10 2 
F4 6.4 5.39 2 
F5 8.0 8.08 2 
F6 10.0 11.79 2 

Table 5.2: Linear optimum prestress Topt and governing buckling mode with the stay 
diameter 0, vaxying. 

Case Ia (mm) T. pt (kN) Buckling Mode_ 
al 76.25 0.82 1 
a2 152.5 1.84 1 
a3 228.75 2.91 1 
a4 305 3.10 2 
a5 381.25 3.01 2 
A 457.5 2.89 2 

Table 5.3: Linear optimum prestress Topt and governing buckling mode with the crossarm 
length a varying. 

5.3.2 Interactive buckling behaviour 

In this section, the interactive buckling behaviour was investigated through Riks 

analysis in ABAQUS with the values of T. pt obtained from buckling analysis. It is 

evident from the results that the interactive buckling has a substantial effect on the 

buckling behaviour with certain configurations. 
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Figures 5.4 and 5.5 show the equilibrium paths with a variation of the stay diameter 
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0 

(a) axial load P against the nondimensionalized (b) nondimensionalized midspan displace- 
midspan displacement Wmid/L and the nondi- ment Wmid/L versus the nondimensionalized 
mensionalized. midspan rotation E)mid/27r midspan rotation E)rnid/27r 

Figure 5.4: Equilibrium paths with the stay diameter 0, varying when the imperfection 
combination is Case 2. 

0, and the crossarm. length a respectively when the Case 2 imperfection combination 

was adopted. As can be seen, when the stay diameter 0, is small or the crossarm. 

length a is short, the rotation (Mode 2) component in displacement is rather small, 

and therefore, the behaviour seems to be rather similar to Mode 1 buckling. How- 

ever, the larger the stay diameter 0, or the longer the crossarm length a, the larger 

the midspan rotation component Gmid in displacement becomes in comparison with 

the midspan displacement Wmid) which apparently leads the buckling to being more 

interactive. 

These results are also observed from Figures 5.6 and 5.7 showing the equilibrium 

paths represented by the axial load P versus the end-shortening A. When the 

diameter 0, is small or the crossarm length a is short, i. e. Mode 1 is critical, the 

lowest maximum load capacity is seen from the Mode I buckling path such as F2, 

a2, and a3, implying that Mode 1 is the most important of all of the combinations. 
However, when the diameter 0, becomes larger or the crossarm length a is longer, 
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Figure 5.5: Equilibrium paths with the crossarm length a varying when the imperfection 
combination is Case 2. 

i. e. Mode 2 is critical, the lowest maximum load capacity is seen from one of the 

interactive buckling cases such as F3, F4, F5, a4 and a5, implying that interactive 

buckling governs the nonlinear behaviour. The results suggest that when Mode 1 

is the governing mode in buckling analysis, interactive buckling behaviour is less 

important, but when Mode 2 is the governing mode, interactive buckling gains 

importance, giving a lower maximum load capacity than those with the distinct 

buckling modes. 

These results are summarized in Figure 5.8 showing the maximum load capacity 
in conjunction with the critical loads PC with a variation of the stay diameter 0, 

and the crossarm length a respectively, when the Case 2 imperfection combination 

was adopted for interactive buckling. As can be seen, when Mode 1 is critical, the 

lowest maximum load capacity can also be seen in Mode 1, whereas when Mode 2 

is critical, the maximum load capacity is always seen in the interactive cases. The 

largest difference in maximum load capacity between distinct and interactive modes 

can be seen where the curves for the Modes 1 and 2 load capacities are crossing over; 
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5.3.3 Sensitivity to prestress 

Since it was revealed from Chapters 3 and 4 that the buckling response is strongly 

linked to the magnitude of the prestress, the effect of an increase in the initial 

prestress was also investigated; FE analysis was conducted, adopting two different 

levels of the prestress, Tpt and 2T. pt. It is evident from the results that an increase 

in the prestress from T. pt would be advantageous for designers. Figures 5.12 and 

5.13 compare that the buckling responses with T=T. pt and T= 2T. pt. 

The diagrams are represented by the axial load P versus the end-shortening A with 

a variation of the parameters 0, and a respectively, while the Case 2 imperfection 

combination was adopted. Clearly, the diagram indicates that increasing the pre- 

stress allows a rise in the maximum load capacity even for the case of interactive 

buckling. This trend has already been seen in the distinct mode buckling results 

in Chapter 4. It should, however, noted that after the peak loads the response is 

more unstable at T= 2T,, pt than at T=T. pt. Although this type of instability is 

not favourable in structural stability, "snap-back", a sudden reduction in the load 

carrying capacity during the rigid loading, is not observed; therefore, the maximum 

load capacity would be still used as the design load without adopting an additional 

safety factor, i. e. the increase in the maximum load is simply thought to be an 

advantage. 

Figures 5.14 and 5.15 show the maximum load capacity with a variation of the 

parameter 0, and a respectively when T=T,,, pt and T= 2T,, pt. It can also be 

observed that increasing the prestress results in a rise in the maximum load capacity 

in every combination of the imperfections. 

As mentioned earlier in the thesis, although the maximum buckling load Pmcx can 
be seen at T=T. pt, T. pt is not the true optimal prestress value, and introducing 

the level of prestress to be greater than T. pt would be recommended in practice in 

terms of the post-buckling response and the maximum load capacity for distinct 

mode buckling. As an increase in T from T. pt also increases the maximum load 
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capacity for the interactive buckling cases (Mode 2 critical), this recommendation 

also appears to apply to interactive buckling currently being considered. 

5.3.4 Sensitivity to imperfections 

Since the sensitivity to imperfections is also considered to be an important factor 

to account for the interactive buckling response, the effect of the level of the im- 

perfection was examined, comparing the cases adopting different basic values of the 

imperfection. A variation of the basic amplitude of the imperfection J was selected 

from Table 4.2 with the Case 2 imperfection combination being chosen. Imperfection 

combination Cases 1 and 3 were not investigated as it has already been shown in this 

chapter that the post buckling response is relatively insensitive to the combination 

of the imperfections; thus investigating those combinations would be superfluous. 
As for the structural configuration, a4/F3, which is the basic configuration used 

in the analysis in Chapters 3 and 4, was adopted. With these input values, FE 

analysis was conducted to reveal the buckling response for each imperfection. In 

general, the sensitivity to the imperfection size is very similar to the cases for dis- 

tinct mode buckling. Figure 5.16 shows the buckling behaviour with different levels 

of the imperfection. 

The diagrams are represented by the axial load P versus the end-shortening A 

with a variation of the basic imperfection J and the prestress T when the Case 2 

imperfection combination was adopted. Comparing Figure 5.16 with Figures 4.9 and 

4.107 it is obvious that the buckling response is very similar to the distinct mode 

cases. It should be noted that when T=T. pt and J= 1/10000, which presents 

a nearly perfect state in FE analysis, the most significant drop can be seen from 

the peak load. This result is parallel to the finding in Chapter 3, which shows that 

the prestress T=T. pt yields the most unstable post-buckling response in a perfect 

case. It is therefore conjectured that the introduction of the prestress T=T. pt also 

promotes the most unstable path in the interactive post-buckling behaviour in a 

perfect state as well. 
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Figure 5.17 shows the maximum load capacity against the amplitude of the 

basic imperfection J. As can be seen, the maximum strength is the most sensitive to 

the imperfection at T=T. pt, and this significant sensitivity is apparently mitigated 
by increasing the level of the prestress. The increase in the prestress also contributes 

to yielding higher values of the maximum load capacity. These results also correlate 

with those from Figures 4.15 and 4.16, which present the distinct buckling mode 

cases. These results also support the recommendation that the initial prestress 

should be greater than T. pt. 

In this section, the effect of a variation of the imperfection has been presented to 

observe the sensitivity to the amplitude of the imperfection in interactive buckling 

behaviour. It seems that the sensitivity to imperfections is quite similar to that 

of the distinct modes, which leads to the suggestion that the introduction of the 

prestress to be greater than T,, pt would be beneficial when designing against both 

distinct and interactive buckling. 

5.4 Remarks 

To the best knowledge of the author, this is the first study to investigate the inter- 

active buckling behaviour of the stayed column. Although previous studies (Temple 

et al., 1984; Smith, 1985; De Araujo et al., 2006) also examined the buckling be- 

haviour, their focus was only the distinct buckling response. It has been shown 

from the current study that interactive buckling has a substantial influence on the 

buckling behaviour. 

The results indicate that the interactive buckling behaviour becomes crucial with 

lower levels of the maximum load capacity when the lowest buckling load is seen in 

Mode 2, especially where the maximum load capacities for Modes 1 and 2 coincide 

and the interactive effect seems to be the strongest. Rom previous studies, the 

convention has been that when Mode 2 is critical, designing the stayed column 

against Mode 2 buckling is enough to ensure the safety of the structure; however, 
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the presented results imply that the interactive buckling behaviour should be taken 

into account to ensure safety. 

It has also been shown that increasing the prestress T from T. pt increases the maxi- 

mum load capacity in interactive buckling and renders the system less imperfection 

sensitive. Furthermore, it has been postulated from the analysis that the prestress 
level T. pt causes the most unstable response. These results imply that introduc- 

ing a greater amount of the prestress than T. pt would be beneficial to increase the 

efficiency of the structure. This conclusion is in line with the results obtained in 

Chapters 3 and 4, which also described that introducing a greater amount of the 

prestress than Topt would be recommended in terms of the post-buckling response 

and the maximum load capacity. 

Despite these suggestions on the optimal level of the prestress, the exact value of 

the optimal prestress which allows the best efficiency of the stayed column has 

not yet been pinpointed due to the lack of a rational indicator for optimization 

that successfully accounts for nonlinear buckling, which is discussed in the next 

chapter with all of the information obtained so far including the interactive buckling 

behaviour. 
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Chapter 6 

0 Optimal Prestressing and 
Configuration 

6.1 Introduction 

In the last three chapters, it has been repeatedly stated that the level of the prestress 

T. pt, which allows the maximum buckling load PmCa., to be exhibited, is not the 

actual optimum; the real optimum level of the prestress would be greater than 

T. pt if the post-buckling strength and stability are taken into consideration. The 

use of the real optimal level of prestress TOpt would potentially allow designers 

to make substantial economic savings; investigations into the optimized prestress 

T, Opt is therefore considered to be very important for practical designs. Despite this 

potential importance, the exact value of the optimal prestress T,. pt, which maximize 

the axial load carrying efficiency, has not yet been investigated satisfactorily. 

There have been few studies of investigating the maximum load capacity at different 

levels of the prestress (Smith, 1985; Liew & Li, 2006). Certainly, the maximum load 

capacity becomes an indicator for the optimal value of the prestress for a particular 

configuration; however, the maximum load capacity does not always correspond to 

the most efficient of the system. Although the level of the prestress which achieves 

144 



CHAPTER 6. OPTIMAL PRESTRESSING AND CONFIGURATION 

the maximum load capacity in a particular configuration may be used, if the correct 

configuration were not selected in the first instance, the system could hardly be 

called an efficient axial load carrier. For instance, in the case of al in Chapter 5, the 

maximum load capacity cannot be increased regardless of the level of the prestress 
due to the lack of sufficient restraints attributed to its configuration. 

Considering that selecting an adequate configuration is also an important issue for 

designers, it would be of great assistance to present an indicator representing the 

structural efficiency, which allows us to compare the cases having different structural 

configurations and different levels of the prestress concurrently. 

The study in the current chapter presents the level of the optimal prestress Topt 

through investigations into the ratios of the maximum elastic load capacity to the 

required structural resistance for the column 77 and for the stay 77, 

These ratios are considered to represent the structural efficiency of the structural 

components in terms of the load carrying capacity to the required structural re- 

sistance. Using the code ABAQUS (ABAQUS, 2006), FE analysis was conducted 

with the stay diameter 0, and the crossarm length a varied. Numerical examples 
for the real optimal level of prestress Tr. pt are presented, and suggestions for the 

structural configurations for improving the structural efficiency are obtained through 

parametric studies. 

6.2 Methodology 

The current investigation involves FE analysis with a number of different levels 

of prestress. This process allows us to find the real optimal level of the prestress 

T,. pt by comparing indicators for structural optimization. These are the ratios of 

the elastic maximum load capacity PI,.,., to the required structural resistance for 

the column Afy, r,. q and that for the stay Ajý, M, req, which are defined as 77 and 77, 

respectively. In FE analysis, Riks analysis was conducted using the code ABAQUS, 
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which produced the necessary component to calculate the values of 71 and 77, i. e. 

the maximum elastic load capacity P,, I, ma., and the required structural resistance for 

the column Afy,, 
q and for the stay A, f., Rd,, eq. 

6.2.1 Model development 

The development of the FE model follows the same process stated as in §3.4.3. 

Note that the FE model was already validated through the comparison with the 

analytical model. The imperfection shape follows equation (5.1), which accounts for 

distinct mode buckling as well as interactive buckling. The basic amplitude of the 

imperfection ý was selected to be 1/300 to obtain the actual level of the design load 

from the equilibrium path (EN1993-1-1,2005). All of the structural components are 

purely elastic in order to obtain the maximum elastic load capacity. 

6.2.2 Analysis procedure 

The study was conducted with two parameters varying, the crossarm length a, and 

the stay diameter 0.,. Only the Mode 1 and interactive buckling equilibrium paths 

were investigated. The reason for not investigating the distinct Mode 2 equilibrium 

path stems from the results obtained in Chapter 5, which indicates that when Mode 

2 is the lowest mode in buckling analysis, the maximum load capacity in interactive 

buckling is normally lower than those in Modes 1 and 2. As for the imperfection 

combination for interactive buckling, Case 2 from Table 5.1 was selected. As it 

was already shown that the interactive behaviour is relatively insensitive to the 

combination of the imperfections, it is considered to be superfluous to investigate 

different cases of the imperfection combinations. 

Rom each analysis, the level of the required material strength for the column and the 

stay were recorded in order to achieve the maximum elastic load capacity (See 

Figure 6.1). For the column, it is required that the yield stress fy, req is more than 
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the maxiIIIIIIII fibre stress, along the column at the level of the Illaxillmill clastic load 
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From the above definition of tlic required illaterlill Strength, the required strilctural 

resistance for the column and the sta. y is simplY expressed as A. f*y., (, (, and 

respectivel. y. Thus. the ratio of the IlmXiIIIIIIII clastic loild capm-ItY to the required 

structural resistance for the column tj is expressed as 

Pel. 
illax 

Aj*N,, (, (j 
(6.1) 

Similarly. the ratio of' the clastic illaxillillill load capacity to the structural 
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resistance for the stay 77, is expressed as 

77S 
L/2 (6.2) 
LS 

where L12L, represents a correction on the stay length as this changes with the 

crossarm length a. 

The value of q represents the reduction factor in the design load from the required 

compression resistance of the column, which enablesq to be used as an indicator for 

structural efficiency in terms of the load carrying capacity to the required structural 

resistance of the column. The greater the value of 17, the smaller the influence 

of buckling becomes. Hence, in the limit when 77 = 1, effectively elastic buckling 

becomes negligible in calculating the resistance of cross-sections. The value of 77, is 

also an indicator for structural efficiency in terms of the load carrying capacity to 

the required structural resistance. The greater the value of 77,, the less structural 

resistance of the stay is required for the system to support a given load. 

The real optimal value of the prestress was sought by comparing values of 77 and 

77, at different levels of prestress. For distinction, the optimal prestress obtained 

from a comparison of ?7 was defined as Tr. pt, and the one from a comparison of 77, 

was defined as Topt2- In order to find the levels of Tr,, ptj and T,. pt2, the value of 

T. pt expressed in equation (5.4), which represents the previous idea of the optimal 

prestress as being the maximum buckling load of the system (Hafez et al., 1979), was 

used as the basis from which the prestress was increased. Note that as the values 

77 and 77, are nondimensional, although the structural configurations are different, 

these values are mutually comparable. Hence, comparing values of 77 and 77, would 

help designers to select the adequate structural configuration as well as the adequate 

level of the prestress. 

In fact, the ratio of ?7 represents the upper limit of the buckling reduction factor X 
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in Eurocode 3, where the reduction factor X is used thus: 

Nb, Rd 7--- 
xAfy for class 1,2 or 3 cross-sections, (6.3) 
'Ym i 

where Nb, Rd is the design value of the resistance to compression forces; -YM, is a 

partial safety factor, which is recommended to be taken as unity for buildings. If 

-ym, =1 is adopted, the expressions for 77 and X are exactly the same, apart from the 

fact that the different forms of the yield stresses are used, fy,, eq and fy respectively. 
As fy, req, which represents the lower limit of the yield stress, is used in place of the 

actual value of yield stress of steel fy in the expression of 77, it can be said that 77 

represents the upper limit of the buckling reduction factor X. 

Note that higher values of 77 and 77, do not necessaxily guarantee that the structure 

is cost-effective as the cost for the system is also strongly dependent on the grades of 

steel and the stays, i. e. the required design stress also becomes an important factor. 

For instance, the use of steel tension rods for the stays would be less expensive than 

the use of wire strand. In order to adopt steel rods, the design stress for the stay 

must be sustained at a relatively low value; however, high values of 77 and 77, do not 

necessarily guarantee a low value Of fs, Rd, req. For the same reason, higher values of 

77 and 77, do not necessarily guarantee that maximum load capacity of the system. 

When it is strongly required to support a heavy load even at the expense of material 

costs, these indicators might not be useful either-the maximum critical load PC max 

would be a better indicator for the design; certainly, a greater level of the prestress 

than Topt is still required. Despite these shortcomings, obtaining high levels of the 

buckling resistance with minimum stay supports is the aim of this structural system; 

therefore, 77 and 77, which represent structural efficiency in terms of the load carrying 

capacity to the required structural resistance, are important indicators for structural 

efficiency that are linked to the factor of cost-effectiveness. If 77 and 77, are used in 

conjunction with required material weights and types, the cost-effectiveness could 

be more accurately estimated-this however, is beyond the scope of this thesis. 

As for basic assumptions, the same assumptions were also made for the analysis in 
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this chapter as those shown in §3.1.1 except for the assumption that the column is 

perfectly straight. 

6.3 Numerical Results 

As stated earlier, the equilibrium response with imperfections was investigated using 

the FEM at different levels of the prestress. The same dimensions and properties 

as in §3.3.1 were also applied for the analysis, with the stay diameter, 0,, = 4.8 mm 

being chosen. The stay diameter 0, was varied from 1.6mm to 10. Omm with a 

classification of F1 to F6 (see Table 5.2) while the crossarm length a was fixed to 

0.305m, and the crossarm length a was varied from 76.25mm to 457.5mm with 

a classification of al to A (see Table 5.3) while the stay diameter was fixed to 

0, = 4.8 mm. 

Firstly, the results of the buckling analysis conducted in Chapter 5 were examined to 

reveal which mode is the lowest critical load and to obtain the value of the prestress 
T. pt. This was used as the benchmark for the minimum prestress. Subsequently, 

the optimal prestress was investigated through a comparison of the ratios 77 and 77,, 

which were obtained from Riks analysis. As stated earlier, the level of the prestress 

which maximizes both 77 and q, becomes the true optimal prestress. 

6.3.1 Buckling analysis 

The results of buckling analysis have already been shown in Figures 5.2 and 5.3. In 

the cases of F1, F2, al, a2, a3, Mode 1 is critical; hence, the characteristic Mode 

1 post-buckling would normally become critical in these cases. For the rest of the 

cases, the interactive buckling would generally govern in the equilibrium response 

as Mode 2 becomes critical. Note that buckling analysis was conducted only with 

the prestress level of T. pt; therefore, the buckling mode at T,, pt does not necessarily 

correspond to the buckling behaviour at the other levels of the prestress. Hence, in 
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this chapter, changes in the governing equilibrium behaviour is focused upon more 

rather than changes in the buckling modes as buckling analysis was only conducted 

with the prestress level of T. pt in the earlier discussion. However, the buckling 

mode at T. pt is still thought to give a good prediction in the governing equilibrium 

behaviour with different levels of the prestress. The levels of T. pt was also presented 

in Tables 5.2 and 5.3, which become the basis from which the prestress was increased 

in Riks analysis. 

6.3.2 Riks analysis 

Using the prestress based on the value of T. pt, the real optimal level of prestress 

was investigated for each case through Riks analysis using ABAQUS. Previous 

work (Smith, 1985; Liew & Li, 2006) also made a comparison of cases at different 

levels of prestress using the maximum load capacity as an indicator for effectiveness; 
however, the maximum load capacity is not a mutually comparable indicator with 
different configurations. In the current study, the optimal value of the prestress 

is clearly presented by comparing the values of 77 and q, representing the column 

element and the stay efficiencies respectively, which are mutually comparable with 

different configurations and would therefore help designers to choose an adequate 

structural configuration as well as to investigate the optimal prestress. 

Figure 6.2 shows the maximum elastic load capacity Pel,,,, a,, of the system, which 
is one of the required components to obtain 77 and 77., as shown in equations (6.1) 

and (6.2) respectively. Note that the maximum "elastic" load capacity does not 
become an indicator for the level of the optimal prestress even within the same 

configuration due to the lack of consideration for plasticity and design strength. 
Figure 6.3 displays the required the column yield stress for the column fy,, eq to 

obtain the maximum elastic load at each level of the prestress for each case. As 

can be seen, the required yield stress fy,, eqvaries with the prestress. The level of 

the prestress which minimizes the value does not represent the optimal level 

of the prestress even within the same configuration either because different levels of 
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Case 

Fl 
F2 
F3 
F4 
F5 
F6 

01 

mm 
1.6 
3.2 
4.8 
6.4 
8.0 
10.0 

Trop 

2.28 (2.75T. 
pt) 

6.55 (2.25T. pt) 
11.03 (2. OOTpt) 
16.62 (2. OOTpt) 
21.29 (1.75T. 

pt) 

Tropt Buckling 
Tropt2 Mode 

2.28 (2.75T. 
pt) 

6.55 (2.25T. pt) 
11.03 (2. OOT. pt) 
16.62 (2. OOTpt) 
21.29 (1.75T. 

pt) 

1 
1 
2 
2 
2 
2 

Governing Equilibrium 
Behaviour 

Mode 1 
Mode 1 

Interactive 
Interactive 
Interactive 
Interactive 

Table 6.1: Real optimal levels of prestress Tr. pt and governing buckling mode with the 
stay diameter 0, varying. 

Case IaT,. pt (kN) Buckling Governing Equilibrium 
(mm) Troptl Tropt2 Mode Behaviour 

al 
a2 
a3 
A 
a5 
A 

76.25 
152.5 

228.75 
305 

381.25 
457.5 

4.59 (2.5T. 
pt) 

5.83 (2. OTopt) 
6.55 (2.25T,, 

pt) 
7.52 (2.5T,, 

pt) 
8.67 (3. OTpt) 

I Mode 1 
4.59 (2.5Tpt) 1 Mode 1 
5.83 (2. OTOpt) 1 Mode 1 
6.55 (2.25T. 

pt) 2 Interactive 
7.52 (2.5Topt) 2 Interactive 
8.67 (3. OTPt) 2 Interactive 

Table 6.2: Real optimal levels of prestress TOpt and governing buckling mode with the 
crossarm length a varying. 

Figure 6.5 shows the required resistance stress for the stay f;, Rd, req to achieve the 

maximum elastic load capacity PI, m,,, for each case. The level of the required 

resistance stress fs, M, req affects the selection of cable grades, which strongly affects 

the cost and the mechanical properties of the stay (EN1993-1-11,2006). Therefore, 

carefully examining the required resistance for the stay is essential for designers in 

practice as well as increasing the structural efficiency in terms of both q and q,. 

Figure 6.6 shows the ratio of the maximum elastic load capacity to the required 

structural resistance for the stay q,. As stated earlier, when the value of 77, is 

high, less stay resistance is required to support a unit load; hence, the structural 

efficiency in terms of the load carrying capacity to the required structural resistance 

of the stays becomes high. The level of the prestress that maximizes 'q, for each 

configuration becomes the optimal level of the prestress for the stay Topt2 7which is 
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varied. Both of these are located at points where interactive buckling is the governing 

behaviour. Furthermore, F3 is located at a point where the governing behaviour is 

the interactive mode and is yet close to the transition from Mode 1 to the interactive 

mode, see Table 6.1; a6 is the longest possible length from the selection. Therefore, 

it can be conjectured that, if it is necessary to increase the structural efficiency in 

terms of the load carrying capacity to the required structural resistance of the stay, 

it would be recommended for designers to: (1) increase the crossarm length; (2) 

choose the stay diameter which renders the governing behaviour interactive and yet 

close to the transition from Mode 1 to interactive buckling. However, to validate the 

statements above, more investigations would be necessary, and these are presented 
in the next section. 

6.4 Further Parametric Studies 

As stated earlier, the purpose of the current work was to present the numerical oPti- 

mal level of the prestress and suggestions for the structural configurations. Although 

these attempts were made in the previous section, the number of the examined cases 

were limited to make definitive suggestions on the real optimal level of prestress and 

the structural configuration. 

Table 6.3 lists the combination of the stay diameter and the crossarm length that 

was investigated for this section. The symbol ", /' represents the combinations that 

were already investigated for the previous section; 36 cases were investigated in total 

including the 11 cases that are presented in the previous section. 

The analysis process is exactly the same as in the previous section. Firstly, the 

buckling analysis was conducted to investigate which mode would be critical and 

to obtain the value of the prestress T. pt, which was used as the benchmark for the 

minimum prestress. Subsequently, the level of the optimal prestress was investigated 

through a comparison of the ratios 77 and 77,, which were obtained from Riks analysis. 
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Case al a2 a3 a4 a5 a6 
Fl 
F2 
F3 V/ 
F4 
F5 
F6 IV/ 

Table 6.3: Examined combinations of the stay diameter and the crossarm length a-"VP' 
represents the combination that were presented in §6.3. 

6.4.1 Buckling analysis 

Figure 6.7 shows the buckling load Pcý, 
a., at T=T. pt with a variation of 0, and a 

respectively. As can be seen, the governing mode is influenced from both the stay 
diameter 0, and the crossarm length a. When either the stay diameter 0, is small 

or the crossarm length is short, Mode 1 tends to become the critical buckling mode, 

and when either the stay diameter 0, is large or the crossarm length is long, Mode 

2 tends to become the critical buckling mode. From these values of Pnclý',, T. pt was 

obtained through equation (5.4). 

6.4.2 Riks analysis 

In order to calculate values of 77 and 77,, the maximum elastic load capacity 

was examined. Figure 6.8 shows the maximum elastic load capacity Pq, m"-' against 

different levels of the prestress with a variation of the crossarm length a and the 

stay diameter 0,. It should be noted that in the results from the previous section, 

if the governing mode in buckling analysis at T=T. pt is Mode 1, the governing 

equilibrium behaviour is always Mode 1, and if the governing mode in buckling 

analysis at T=T. pt is Mode 2, the governing equilibrium behaviour is always 

interactive buckling. However, as can be seen, the governing modes at T=T. pt in 

buckling do not always correspond to governing equilibrium behaviour at the other 

levels of the prestress, such as (a2, F5) and (a5, F2). As stated earlier, this might be 
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attributed to the phenomenon in which the buckling mode possibly changes with the 
level of the prestress. Nevertheless, as can be seen, buckling analysis with T=T. pt 
still gives good predictions in investigating the governing behaviour for higher levels 

of the prestress. 

With the values of Pj 
...... , and the required structural resistance for the column 

Afy, reqi the level of 71 was calculated for each case. Figure 6.9 plots the maximum 77 
for different levels of prestress for each configuration. As can be seen, when either 

the crossarm length a or the stay diameter 0,, is fixed, the greatest value of 71 is 

found in a configuration where Mode 1 governs and yet is close to the transition 

from Mode 1 to interactive buckling. 

With the values of PI, na,, and the required design stress for the stay Ash, Rd, reqi the 

level of 77, was calculated for each case. Figure 6.10 presents the maximum 77, for 

different levels of prestress for each configuration. As can be seen in Figure 6.10(a), 

when the crossarm length a is fixed for comparison, the greatest value of 77,, can 
be found in a configuration where interactive buckling is the governing behaviour, 

and which is close to the transition from Mode 1 to interactive buckling. When the 

stay diameter 0, is fixed for comparison, the greatest value of 77, can be found for 

a6, which is the longest crossarm length in the examined combination as shown in 

Figure 6.10(b). 

The level of the real optimal prestress from the above analysis was also recorded from 

each analysis as shown in Tables 6.4 and 6.5. From a comparison of these two tables, 

the optimal levels of the prestress for the column T,. pt, almost coincide with the 

optimal levels of the prestress for the stay T,. pt2 though there are slight differences 

between the two for some cases. For instance, in the case of (a5, F2), a difference 

of 0.5T. pt is observed; the reason for this discrepancy seems to be attributed to 

discontinuous changes in the values of 77 and 77, with the prestress in this specific 

configuration (see Figures C. 3 and CA). This discontinuity apeears to be related 

to buckling behaviour transitions accompanied with prestress level changes, which 

might require further investigation. 
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It should also be noted that the nondimensionalized optimal level of prestress T,. pt/T. pt 
becomes lower as the stay diameter 0, increases, and as the crossarm length a ap- 

proaches a configuration where the transition of the governing mode from Mode 1 

to interactive is seen. 

Case al a2 a3 A a5 a6 
Fl 

F2 2.90 2.28 3.66 4.19 
(3.50T,, 

pt) 
(2.75T,, 

pt) (2.75T,, 
pt) 

(3.25T. pt) 
F3 4.59 5.83 6.55 7.52 8.67 

(2.50T. pt) (2. OOT. pt) (2.25T. 
pt) (2.50 T. pt) (3. OOT. pt) 

F4 5.02 7.70 9.65 11.03 11.69 13.71 
(2.75T. pt) (1.75T. pt) (1.75T. pt) (2. OOT. pt) (2.25T,, pt) (2.75T. pt) 

F5 6.90 7.95 14.54 16.62 17.50 18.64 
(2. OOTopt) (1. OOT. pt) 

(1.75Topt) (2. OOTopt) (2.25T. pt) (2.50T. pt) 
F6 9.65 15.44 18.25 21.29 22.71 24.52 

(1.50Topt) (1.25T. pt) (1.50Topt) (1.75Topt) (2.00 Topt) (2.25T. pt) 
Table 6.4: T,. ptl for each case-the dividing line represents the boundary between Mode 

1 and interactive buckling, where above the horizontal line is Mode 1 and 
below it is interactive buckling. 

As expected, all of the results presented in this section are almost identical to the 

results presented in §6.3. Thus, the following statements have been successfully 

validated with the further parametric studies presented in this section: 

1. The levels of the optimal prestress obtained from 77 and 77, are in good agree- 

ment. 

2. The level of 77 can be improved by choosing a configuration where the governing 

behaviour is Mode 1 and yet close to the transition from Mode 1 to interactive 

buckling. 

3. The level of q, can be improved either by choosing a configuration where the 

governing behaviour is interactive behaviour and yet is close to the transition 

from Mode 1 to interactive buckling or increasing the crossarm length. 
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Case al a2 a3 a4 a5 A 
Fl 

F2 2.90 2.28 3.66 4.19 
(3.50T. 

pt) (2.75T. 
Pt) (2.75T. pt) (3.25T. pt) 

F3 4.59 5.83 6.55 7.52 8.67 
(2.50T. 

pt) (2. OOT. pt) (2.25T,, pt) (2.50 T. pt) 
(3. OOT. pt) 

F4 5.02 7.70 9.65 11.03 11.69 13.71 
(2.75T,, 

pt) (1.75T. 
pt) (1.75T. 

pt) (2. OOT. pt) (2.25T. pt) (2.75T. pt) 
F5 6.90 11-93 14.54 16.62 17.50 18.64 

(2. OOT. pt) (1.50T. 
pt) 

(1.75T. 
pt) (2. OOT. pt) 

(2.25T,, pt) 
(2.50T. pt) 

F6 9.65 15.44 18.25 21.29 22.71 27.24 
(1.50T. 

pt) 
(1.25T. 

pt) (1.50T. 
pt) 

(1.75T,, 
pt) 

(2.00 T. pt) 
(2.5T. pt) 

Table 6.5: T,. pt2 for each case-the dividing line represents the boundary between Mode 
1 and interactive buckling, where above the horizontal line is Mode 1 and 
below it is interactive buckling. 

From the above arguments, it can be conjectured that 17 and 77, are maximized at 

the transition point from Mode 1 to interactive buckling in the governing behaviour 

with a relatively long length of the crossarm that does not diminish the value of 77. 

However, when the crossarm. length a is fixed, a long crossarm length allows a small 

diameter of the stay 0, at the highest values of 77 or 77, which requires a high design 

stress for the stay for the system to reach the elastic maximum (see Figures 6.9(a), 

6.10(a) and C. 2). This is not favourable for the design; it should therefore be noted 

that the crossarm length cannot be extended without limit. Hence, in addition to 

the values of q and 77,, it would be also necessary for designers to examine the actual 

value of resistance whether the required resistance allows the use of reasonably 

inexpensive steel and stays. 

As for the best configuration among all, high values of q can be found in the following 

combinations with a certain level of the prestress: (a2, F4), (a3, F5), (a4, Fl), 

(a5, F2). Of these combinations, the greatest value of q, can be seen with the 

case of (a5, F2). Thus, in terms of the structural efficiency, it can be concluded 

that this combination would be the optimal design for all the cases presented. In 

fact, this configuration has a relatively long crossarm length and is located at a 
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point near the transition point in the governing behaviour; this satisfies the above 

statement for maximizing the levels of q and 77,. In reality, the actual yield stress 

and required stress are different, thus the configuration which have high 'q and 

77, do not always become the optimal design. As stated before, it would also be 

necessary for designers to check the actual value of resistance whether the required 

resistance allows material cost-effectiveness. Despite these points, the concept of 

,q and 77, would give the theoretical optimal design in terms of the load carrying 

capacity to the required structural resistance, which could be expected to be used 

as a benchmark for designers. 

6.5 Remarks 

This is the first study to investigate the optimal level of prestress simultaneously with 

examination of the adequate structural configuration. The results indicate that the 

nondimensionalized optimal level of prestress Tropt/T. pt becomes lower as the stay 
diameter 0, increases and as the crossarm length a approaches a configuration where 

the transition of governing equilibrium behaviour from Mode 1 to the interactive is 

seen. It has also been revealed that the level of the optimal prestress for the column 
T,. pt, coincides with the level of the optimal prestress for the stay Tr,, pt29 implying 

that designers do not have to adjust the level of prestress to balance these two. 

It has also been shown that the best efficiency in terms of the load carrying capacity 

to the required structural resistance of the column can be found in a configuration 

where the governing equilibrium behaviour is Mode 1 and yet is close to the transi- 

tion point from Mode 1 to interactive buckling. As for the stay, the best efficiency 

can be seen with a configuration where the governing behaviour is interactive buck- 

ling and is yet close to the transition point from Mode 1 to interactive buckling. It 

ha, s also been presented that the efficiency can be improved with an increase in the 

crossarm length. Certainly, to achieve the best efficiency, the use of the real optimal 

level of prestress is needed. 
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Rom previous studies (Smith, 1985; Liew & Li, 2006), numerical examples of the 

optimal prestress for a few specific cases were presented using the maximum load 

capacity as an indicator. Certainly, the maximum load capacity becomes an indi- 

cator for the optimal value of the prestress for a particular configuration; however, 

the maximum load capacity would not become a valid indicator if the configuration 

of the structure were varied. In the current study, the idea of the ratios of the max- 

imum elastic load capacity to the axial resistance for the column 77 and for the stay 

77, are presented as indicators for optimization, which allows designers to compare 

the cases with different configurations as well as different levels of the prestress. 

Although the values of 77 and 77, are indicators for cost-effectiveness, high values of 

77 and 77, do not always guarantee that the structure is cost-effective as the cost 

for the system is also strongly dependent on the grades of steel and the stays. It 

would also be necessary for designers to examine them carefully to achieve true 

cost-effectiveness. 
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Chapter 7 

Conclusions and Suggestions for 

Further Work 

7.1 Concluding Remarks 

This section summarizes the important findings from the research and presents the 

overall concluding remarks. More detailed conclusions may be seen at the end of 

each individual chapter. 

Comprehensive theoretical post-buckling behaviour of stayed columns had not been 

investigated to any great extent before. Information on the post-buckling response 

is considered to be crucial for designers to ensure safety; therefore, it was important 

to investigate the post-buckling behaviour of stayed columns and to obtain rational 

methods to evaluate the structural efficiency. Thus, the primary objective of the 

research was to develop the analytical model to account for the post-buckling be- 

haviour of a single crossarm type of prestress stayed column. Certainly, FE analysis 

could also illuminate the buckling behaviour; however, the introduction of geomet- 

rical imperfections is required, which hinders observing the post-buckling response 

in a perfect state. Hence, the research was initiated with the analytical work, which 

can account for the buckling behaviour in a perfect state, and the FEM was mainly 
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FURTHER WORK 

adopted for validation purposes at the initial stage. 

In Chapter 3, the theoretical post-buckling behaviour of the prestressed steel stayed 

column was investigated using the Rayleigh-Ritz method with the standard com- 

ponent in a perfect state. The symbolic computation software MAPLE Was adopted 
for computation. As the previous study (Hafez et al., 1979) revealed that the crit- 
ical load varies with the prestress, the analysis was conducted with this variation. 
FE analysis was also conducted to validate the modelling with an introduction of 

a small value of out-of-straightness, where a nearly perfect state of the column was 

simulated in the FEM. 

The results showed that the post-buckling response was strongly linked to the zone 
distinction of the critical loads that was found by Hafez et al. (1979) for the first 

two buckling modes. Also the presented analytical model for Mode 1 had excellent 

agreement with the FE model; however, it was less accurate for Mode 2 when com- 

pared to Mode 1, but it was still considered to be useful to estimate approximate 

post-buckling responses for Mode 2. It was also shown that the most unstable path 

occurred with the prestress located at the boundary between Zones 2 and 3 (T. pt), 

although this prestress value gives the highest critical load. This implies that this 

level of the prestress is not favourable in terms of structural stability; hence, the 

greater level of the prestress than T. pt would be recommended, as a stable path 

occurs with a higher level of the prestress. 

In Chapter 4, initial geometrical imperfections and failure criteria for each structural 

component were incorporated into the analytical model to account for more realistic 
behaviour of the stayed column. The model was therefore modified from that in 

Chapter 3, which previously considered perfect geometries. In order to investigate 

sensitivity to the out-of-straightness, the level of the imperfection was varied in the 

analysis. 

With the modified model, the equilibrium path which accounted for initial out-of- 

straightness, column yielding and stay fracture was presented. The results were 

validated by the FEM. Again, it was revealed that the modified analytical model for 
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Mode 1 had excellent agreement with the FE model; however, it was less accurate 
for Mode 2 when compared to Mode 1, but it might be still useful to estimate 

approximate responses for Mode 2. At least, the current FE model was validated 
through this comparison. Sensitivity studies to the imperfection indicated that the 

true optimized prestress, which allows designers to obtain the maximum strength 

with minimized materials, is located in somewhere in Zone 3, although previously 

this value has been considered to be at the boundary between Zones 2 and 3, defined 

as T. pt from linear buckling analysis (Hafez et al., 1979). 

Chapter 5 described the interactive buckling behaviour of the stayed column with 

the FE model, which was validated through the comparisons made in Chapters 3 

and 4. The levels of Modes 1 and 2 buckling loads were close together; the effect 

of interactive buckling, which normally gives an adverse effect on structures, was 

therefore thought to be significant. Despite this potential importance, research on 

the interactive buckling of the stayed had never been attempted. Analysis was 

conducted with a variation of the stay diameter and crossaxm length, which gave 

cases which had different pairs of the Modes 1 and 2 buckling loads; thereby, the 

interactive buckling effect was investigated with the pairs of the buckling loads being 

varied. 

The results indicated that the interactive buckling behaviour became crucial with 
lower levels of the maximum load capacity when Mode 2 is critical, especially in a 

region just after the transition in buckling modes from Modes 1 to 2, implying that 

the interactive buckling behaviour also needs to be taken into account to ensure 

safety. It was also shown that increasing the prestress from T. pt increased the maxi- 

mum elastic load capacity in interactive buckling. This implied that introducing an 

amount of prestress greater than T. pt would be beneficial in increasing the efficiency 

of the structure. This design implication is in line with the findings in Chapters 3 

and 4, which dealt with distinct mode buckling. 

It was found from the investigation into the theoretical post-buckling behaviour 

conducted until Chapter 5 that the optimal prestress should be greater than the 

169 



CHAPTER 7. CONCLUSIONS AND SUGGESTIONS FOR 
FURTHER WORK 

previously suggested value of T. pt. Therefore, in Chapter 6, the optimal level of 

prestress was sought through parametric studies using the FEM. In addition to the 

prestress, the stay diameter and the crossarm length were varied in the analysis 

to examine the ideal configuration for the stayed column. In order to measure the 

structural efficiency, the ratios of the maximum elastic load to the required structural 

resistance for the column q and for the stay 77, were calculated as indicators for the 

structural efficiency. The required resistance was based on the necessary design 

strength that enabled the structure to reach the maximum elastic load. The use of 

these ratios enabled a comparison of each case even among cases which had different 

structural configurations as the ratios are nondimensionalized. An investigation into 

this type of indicator had never been attempted before. 

The results indicated that the nondimensionalized optimal level of Prestress T,. pt/T,, pt 
became lower as the stay diameter increases, and as the crossarm length a ap- 

proached a configuration where the governing equilibrium behaviour changed from 

Mode 1 to interactive buckling. It was also revealed that the level of the optimal 

prestress for the column basically coincided with the level of the optimal prestress 
for the stay. This implies that designers are unlikely to need to adjust the level of 

prestress to balance these two. 

It was also shown that the best efficiency in terms of the material use of the column 

could be found with a configuration where the governing equilibrium behaviour was 
Mode 1 and yet was close to the transition from Mode 1 to interactive buckling. 

As for the stay, the best efficiency could be seen with a configuration where the 

governing behaviour was interactive buckling and yet was close to the transition from 

Mode 1 to interactive buckling. It was also presented that the efficiency for the stay 

could be improved with an increase in the crossarm length a. Certainly, to achieve 

the best efficiency, the use of the optimal level of prestress was required. These 

results suggest that the configuration of the stayed column should be determined 

such that the buckling behaviour would be located at the transition from Mode 1 

to interactive buckling with an adequate crossarm length. 
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This is the first study that deals with the comprehensive theoretical post-buckling 
behaviour of a single crossarm type, including interactive buckling. Overall, the 

importance of the post-buckling response has been recognized, and all of these ob- 

tained implications could be applicable for designers, which would be expected to 

contribute to making the design safer and more efficient. Despite these achieve- 

ments, there are further potential avenues of research to explore in the future, and 

these are presented in the next section. 

7.2 Suggestions for Further Work 

As stated, this research provides the basic but comprehensive post-buckling theory 

and design recommendations for the stayed column to some extent. The current 

studies, however, do not account for the effect of stress relaxation that may occur 
due to creep and changes in the ambient temperature with the stays and the col- 

umn changing their lengths, and thereby their internal forces, causing a change in 

their stress state. In Zone 3, where the optimal prestress is considered to be lo- 

cated, relaxation may change the response of the column by reducing the prestress 
from where the column has a relatively stable initial post-buckling response (Zone 

3 buckling behaviour) to purely unstable post-buckling responses (towards where 
T=T. pt). This adverse effect from stress changes would be a key sensitivity to fo- 

cus on in future work. If this sensitivity is significant, it would also be suggested that 

designers should take into account both the initial prestress and the effective value 

of prestress after a long time period. Of course, the situation would become more 

complicated if materials of different coefficients of thermal expansion are used in the 

column and the stays respectively, or if the temperature changes are non-uniform 

within the whole component. 

Experimental studies focusing on the buckling response are also necessary in order 

to validate the analytical and numerical models. In the current studies, following 

Eurocode 3, it was assumed that the basic imperfection value ý of 1/300 covers 
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the effects of all types of imperfections, including residual stress and geometrical 

imperfections, which was considered to lead to the appropriate value of the design 

load. Certainly, this assumption has to be validated through experimental work. 

Recent work (De Araujo et al., 2006) presented full-scale three-dimensional exper- 

imental test results. Their work showed that the actual full-scale stayed columns 

could provide more strength than ordinary columns. Despite their achievement, 

there are a few points which have to be improved in further experimental work. 
Firstly, their tests were performed in the horizontal plane for the simplification of 

the measurements and the installation. This layout caused a considerable amount 

of the initial deflection from the dead weight of the system. As the current work 

revealed, the initial deflection strongly affects the buckling response including the 

interactive behaviour. This point may have to be improved to gain more accurate re- 

sponses in experimental tests. Possible solutions would be to precamber the column 

to counteract dead load deflections. Secondly, an added support at the mid-span of 

the column was added to their test by including an additional stay in order to coun- 

teract the dead load of the column. However, this support might have contributed 

to distorting the test results as this support could act as a spring, which also could 

store the axial energy. In fact, a negative deflection was observed from one of their 

tests at the initial stage of loading results, which is unlikely in the real case. The 

third point concerns support conditions for the column. Because of space restric- 

tions, they could not present the ideal support conditions-neither ideal hinges nor 

rigid supports-in their performed tests. Eventually, semi-rigid supports were pro- 

vided, which hindered them from developing FE models to simulate their actual 

experimental work. For practical reasons, the number of the feasible experimental 

tests would be limited, and FE analysis would therefore be required to complement 

experimental data in most circumstances. Hence, the support conditions also proba- 

bly need improvement. Boundary conditions would not be a significant issue if there 

were no stays in the system as ordinary structural components, because adopting 

the concept of the effective length enables the use of contraflexure points as virtual 

pin-ends. However, in the case of the stayed column, this concept cannot be adopted 
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due to the presence of the stay anchor system at the end of the column element, at 

which reasonably accurate and ideal boundary conditions have to be provided. It 

should be noted that improvements in these points would give substantial benefits 

in further experimental work. 

Moreover, the current modelling is limited to two-dimensional (21)) behaviour, it 

may become important to develop three-dimensional (31)) models. Recent work 
(Liew & Li, 2006; De Araujo et al., 2006) has used 3D modelling to address 3D col- 

lapse responses with a variety of structural configurations and boundary conditions, 

and with different levels of the prestress. In addition to these, other stability issues 

also should be investigated in 3D such as the effect of the ovalization of the tube 

section (Brazier, 1927; Wadee et al., 2006), and torsional effects if, for example, 

open sections are used instead of closed sections for the main column component. 

The results obtained from the current research and the further work outlined above 

could be used as a basis to produce comprehensive design guidance. Currently, 

codes of practice, such as Eurocode 3, are lacking in the design procedures for such 

potentially efficient and cost-effective structures; consequently, case and sensitivity 

studies in conjunction with engineering judgement are necessary to design stayed 

columns in practice. Establishing such guidance for stayed columns would facilitate 

designers to adopt this structural component more effectively. 
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Hessian Matrix for Zone 3 

When the number of degrees of freedom is two in Mode 1, the critical load for Zone 

3 can be obtained through calculating the following determinant of the Hessian 

Matrix: 

02V1B 02 Vl B 

i9q, 2 d9310q3 
2 a V ,B 19 V1B 

2 
, 9q3aql aqi 

Each component of the matrix can be expressed as 

02 V1B 
= xPlip + XtliT + X�, 2 

, Oql 
192 a2V V1B 

-, 1B- ApiiP + xt, 3T + X131 
aq, d9q3 d9q3aql 

a2 Vl B 

a2 
Xp33P + Xt33T + X33- 

qi 

The coefficients of the above equations are as follows: 

(A. 1) 

(A. 2) 

(A. 3) 

(A. 4) 
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xpll =a 
[8bpBEA, (bjIB -2 COS2 a) COS3 a+ bpBEA (4bllB 7r2) - 4b, lB] 

I 
(A. 5) 

tan a 

Xtil = 
2a (8 COS2 a- 7r2) cos a (A. 6) 

tan a 

x1l = 
(64a 2 EA, COS3 a+ Ej7r4) tan a (A. 7) 4a 

Xpl3 = 
2a [2bpBEA, (4 cos 

2a+ b13B) COS 3a+ b13B (bpBEA 1)] (A. 8) 
tan a 

Xtl3 = -16a COS3 a (A. 9) 
tan a 

X13 =- 16aEA, sin a cos 
2 

a, (A. 10) 

Xp33 =a 
[8bpBEA, (b33B 

-2 COS2 a) COS3 a+ bpBEA (4b33B 97r 2) 
- 

4b33B] 

tan a 
(A. 11) 

Xt33 = 
2a (8 cos 

2a- 97r 2) 
cos a, (A. 12) 

tan a 
X33 = 

(64a 2 E., A, COS3 a+ 81 Ehr 4) tan a (A. 13) 4a 

where: 

bilB " 
[4EA, (3 C0S2 a- 2) C0S3 a_ X2 

7r 2 EI 
-E [2E�A. cos'a + EAI -1, 

(-L2 

4 
(A. 14) 

b33B 
-"2 

[4EA» (3 C0S2 a- 2) C0S3 a_9, r2 
91r 2EI 

-' 
EA)] [2Eý, Aý C0S3 a+ EA]-1, j2- 
4 

(A. 15) 

b13B= 
-2 

[4EA, (3 C0S2 a- 2) COS3 a+ 
Mir 4 EI [2Eý, A., C0S3 a+ EA] -' L2 

1 

(A. 16) 

The critical load for Mode 2 can also be obtained by following the same process as 

that for Mode 1, but it should be noted that the expressions for Mode 2 are more 

complicated, reflecting the extra complexity in the model for that buckling mode. 
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Error Evaluation and Imperfection 

Amplification 

B. 1 Error Evaluation and Error Increase in Mode 

2 

The buckling responses with imperfections from the analytical and the FE models 

were already shown in Figures 4.13 and 4.14. Although the models were validated 

against each other, the error between the two was not precisely evaluated. 

Figure B. 1 shows the difference of maximum loading capacity between the analytical 

and the FE models when 5= 1/300 for Mode 1 and J= 1/600 for Mode 2. The 

error was calculated using the following: 

Error [%] = 
(Pel, 

max)AM - (pel, 
max)FEM (B. 1) (pel, 

max)FEM 

where (PeI, n=)Am and (Pel, max)FEM represent the maximum loads for the analytical 

model and the FEM respectively when it is assumed that all of the components 

in the models are purely elastic. The graph clearly shows that, although the error 

remained around 4% for Mode 1, this value increases from 10 to 15 % for Mode 
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2 as the initial prestress T increases. It was idready discussed III Clmpter 4 that 

the reason for le.,; s m-curacy III Nlodc 2 is caused by the lack of' the numbers of 

degrees-of-frecdoin: nevertheless. a reason for this cl-ror increase III Mode 2 have not 

yet bcen investigated. Hence. In this appcildix. some possible I-casolls for this (111,01, 

Error 
20 

Mode 2 
18 

16 
14 
12 
10 
8 
6 

Mode 1 
4 ------------------------------ 
2 

0246810 12 
T [kNj 

Figure B. l: Error bcoween tbe anal , ytical and the FE models. wheil 6= 1/300 for Mode 
I and 6= 1/600 for Mode 2. 

DICNICIS(I HI-e presented: the results may illuminate ilecessHry improvements in the 

clirrent analytical illodel. 

B. 2 Hypothesis and Methodology for Investiga- 

tion 

01 le ()f tIIc 1-ci Is() I IS fm. tII is iII crciisc in iI ic d iscrepuicy iii M odc 2 111 ig III he i It tri I) I itc( I 

to the fict that in the FENI. the amplitude of the Olit-Of-straightiless is increased 

froill the initial cOil 1pres'sion finve in the (mlinum. In fam 4 was vismunNI that the 

iidtiHI configuration is kept after the inhoduoliom of the initial prestres", i. e. the 

effect of the iniperklions being nnilAih(ql 1q, tlW alQicatioll of' the prestress Ws 

neglect(ml in the (mmmt allayli(Ol 11UHH. 

In order to assess the effect of the imperfection amplification. the level of' this im- 

perfcction amplification was Investigated lising both the analytical modelling aild 

177 



APPENDIX B. ERROR, EVALUATION AND IMPERFECTION 
AMPLIFICATION 

the FENI. Then. with obtained ilillplified illiperfCctioll vahics'. the current analytical 
ww", recalculated. NA-111CII l0d tO COITCONI I-CSIlItS. 

B. 3 Effect of Imperfection Amplification 

1111, I1 111111 c(pul- The level ()f the illilpfificatiml Nvýrsý ()btililled 11", 11- Ihc cquilibi., 

tion (4.40). As, it II ()f' t lic stays are act I ve ill tIi Is, ciuse. Type B Nviis tIw buckling type. 

The saine imidYtical model call bc us'cd ill I he calculat 1011. except that A liceded to 

be re-cValliated bY substituting P=0 into equation (3.33) and. similai-I. N% P nceded 

to bc c(plated to Zero ill Hic cilergy expressed ill equittion (4.39). Furtherillm-c. f'()I, 

Nl()(I(, 2. it xviis n(wessary for Hic cilcrýýy to he expimded to the 211(1 its a Taly1m. 

serics with respect to 7' ill to rendei- Ihe cquilibi-iiiiii equation tnictabic. FE 

allillYsis xvil", Aso cmiducted to viill(liltc the alidYticid f, ()I- tIlc sclected vidlie" 

()f prestress represented ill Table 4.1. Figure 13.2 shows the reliltimiship betweell the 
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Figure B. 2: ImperfCction amplification ratio A, ). when 6= 1/300 f'()i- Nlodc I and 6 
1/600 for Nl()(I(, 2. 

initial prestress T and the imperfect loll alliplificiltioll ratio Aý. which is defilled as 

A6 (B. 2) 

where 6,1, is the amplitude of the nondlincitsional imperfection after pi-cstressing. 

The am p] it ude of 61 was lllcýls I li-ed at tIwIII id-heigi it f0l. NI odc IoIAi It Ille 

1 7, 's 
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point for Mode 2 respectively. As expected. the 1(, N-(, l of imperf'cction amplification 

becomes W-ger ýIs Ihc prestress increases. Also it cail be Him the Mode 2 

impeilection is imich inore sciisitive to the prestress all ilicreasc of' 18V III Hic out- 

of'-straightiless call be scen with the level of' the Point 5 prestress froin FE analysis. 

Despite this significant sciisitivitY ill Modc 2. ill Mode I this ainplification Is around 

onlY 2(/( at the maxinium: therefore. this ýunplificatioii is considered to be negligible 

ill Mode 1. 'Fli(, r(, f'()r(,. it cim he said t Imt ill Mode 2. t he current analytical modelling 

1111derestillultes the level of' especiallY at 111glici. levels of the prestress, 

which call be thought to be olic of the reasons that the cri-ors IIICIVýISV SCCIi III Figure 

13.1.111 order to confirm this hypothesis. the concept of' III Iperfect loll alliplificatioll 

from the prestress was lilt I-od I Iced Into the cul-l-clit mudYlical model to correct the 

Mode 2 I)ii(-kllijg behaviour and is reported below. 

BA Corrected Analytical Response 

The vallic of the imperfoilim is imessary to r(Scol the (401 (4 hiumfow 

tiom amplification in the mirrvnt in(xlvl: As xwhiv (-an be calculated hY multiplying 

the initial imperfection by the amplification ratio . 46. Using these corrected val- 

nes (A the imperfection when 6= 1/600. which Nvere derived frmn Figure B. 2. the 

anakthal nu)(I(, l for 2 was recalculated. 
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Figure B. 3: Error boween the analytical and the FE inodels, iii Mode 2 when 6= 1/600. 
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Figure B. 3 shows that the difference of the maximum elastic load capacity between 

the corrected analytical and the FE models. For comparison purposes, the case 
in which the effect of the imperfection amplification was neglected is also plotted. 
As expected, a substantial improvement in the error is seen; nevertheless, it should 
be noted that a type of error which increases as the initial prestress T increases 

still exists. A part of the reason for this remaining error increase is thought to 

be attributed to the fact that the Nlode 2 amplification ratio was underestimated 

compared with that obtained from the FEM, as can be seen from Figure B. 2, i. e. 

the effect of imperfection amplification is not fully reflected in the obtained results. 
However, this underestimation does not seem to explain everything about this error 
increase as the degree of the underestimation is not significant. 

The results indicate that the imperfection amplification is one of the important rea- 

sons for the increase in the discrepancy between the two models as T increases, 

although introducing imperfection amplification into the current analytical model 

cannot explain everything on this error increase. Further investigation and model 

modification might be necessary to explain this phenomenon, although this modifi- 

cation would probably make the current analytical model even more complicated. 

B. 5 Summary 

In this Appendix, possible reasons for an increase in the error between the analytical 

model and the FEM for Mode 2 buckling response as the prestress T increases has 

been examined. In order to account for this phenomenon, the effect of the imper- 

fection amplification was taken into account in the current analytical modelling. To 

the knowledge of the author, the concept of the imperfection amplification has never 

been considered in previous work. 

It has been shown that including the effect of the imperfection amplification reduces 

this error increasing substantially. Thus, it can be concluded that imperfection 

amplification is one of the important reasons for the increase in the discrepancy 
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between the two models as T increases, However, it has also been shown that this 

error increase is not solely attributed to the imperfection amplification. Further in- 

vestigation and model modification might be necessary to explain this phenomenon, 

although this modification would probably make the current analytical model even 

more complicated. 
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Supplementary Data for 

Parametric Studies 

For §6.4, parametric studies were conducted to obtain the maximum values of 71 and 

77, for each case, which are presented in Table 6.3. However, all of the data were 

not presented in that section to gain the maximum value of 77 and 7b. Although 

the maximum elastic load capacities were presented in the main text, the required 

yield stress for the column fy,, eq, the required design stress for the stay fs, Rd,, eq, and 

values of q and 77, at different levels of the prestress were not presented for brevity. 

In this Appendix, these values are presented to clarify where the results originated. 

C-1 Required Stress 

Figure C. 1 shows the required yield stress for the column fy, req, which is one of 

the components to obtain values of 77, at each level of the prestress for each case. 

Figure C. 2 plots the required design stress for the stay f., Rd, req, which is one of the 

components to obtain values of 77,, at each level of the prestress for each case. 
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C. 2 Column Element Efficiency q and Stay Effi- 

ciency 77, 

Figure C. 3 shows values of 77 for all of the considered configurations and prestress. 

As can be seen, the maximum value of 77 in each diagram is basically observed 

on a curve where the governing equilibrium behaviour is Mode 1 but close to the 

transition from Mode 1 to interactive buckling. Figure CA shows values of 77, for all 

of the considered configurations and prestress. The maximum value of 'q, for each 

diagram is also observed at a curve where the governing equilibrium behaviour is 

interactive but close to the transition from Mode 1 to interactive buckling. Note 

that these points were already discussed in the main chapter. 
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