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Human pluripotent stem cells (PSCs) offer a scalable alternative to primary

and transformed human tissue. PSCs include human embryonic stem cells,

derived from the inner cell mass of blastocysts unsuitable for human implan-

tation; and induced PSCs, generated by the reprogramming of somatic cells.

Both cell types display the ability to self-renew and retain pluripotency,

promising an unlimited supply of human somatic cells for biomedical appli-

cation. A distinct advantage of using PSCs is the ability to select for genetic

background, promising personalized modelling of human biology ‘in a dish’

or immune-matched cell-based therapies for the clinic. This special issue will

guide the reader through stem cell self-renewal, pluripotency and differen-

tiation. The first articles focus on improving cell fidelity, understanding

the innate immune system and the importance of materials chemistry, bio-

fabrication and bioengineering. These are followed by articles that focus

on industrial application, commercialization and label-free assessment of

tissue formation. The special issue concludes with an article discussing

human liver cell-based therapies past, present and future.

This article is part of the theme issue ‘Designer human tissue: coming to

a lab near you’.

The human body is composed of hundreds of different cell types that derive

from pluripotent stem cells (PSCs). During development in utero and after

birth, different stem cell populations perform vital functions in the body. These

range from coordinated tissue morphogenesis during gestation, to tissue renewal

and homeostasis in the adult. Essential to these processes is hierarchical control of

cell potency. In the developing embryo and the adult, cell fate is determined by

niche-specific factors and executed through defined changes in gene expression.

A good example of cell fate determination is observed in PSCs, with the stem

cell master regulators, Oct-4, Sox 2 and Nanog serving to instruct stem cell

self-renewal and differentiation (for a review, see [1]).

Development starts with the fertilized egg cell, and totipotent blastomere

formation, capable of forming embryonic and extra-embryonic tissues. At the

point of blastocyst formation, the pluripotent cells of the inner cell mass

are capable forming all three germ layers in the developing embryo, with

the trophectoderm contributing to extra-embryonic tissues [2]. As develop-

ment proceeds germ layer segregation takes place and multipotent stem cell

populations are formed and differentiate into specialized tissues of the

fetus. Following birth, multi, bi and unipotent stem cell populations persist

in the neonate and the adult, serving to instruct development and/or tissue

maintenance.

Since the 1980s, PSCs have taken centre stage as a promising cell candidate

to model and treat human diseases. The successful isolation and culture of

murine PSCs was presented in 1981 and heralded a new era in cell biology,

driving important advances in our understanding of mammalian physiology

[3,4]. It was a further 17 years before the first human embryonic stem cell
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lines were isolated [5]. These studies were pivotal to

endeavours in modelling human physiology and developing

cell-based therapies. The use of PSC-based systems will likely

lead to new regulated cell-based assays in the near term, with

tissue repair in vivo a longer-term aspiration. To date, a

number of hESC-derived products are in clinical trials, includ-

ing macular degeneration, diabetes and heart disease, with

some other applications registered for clinical trial approval

[6–8]. iPSCs have been used in the clinic, with one experimen-

tal procedure performed on an individual with macular

degeneration [9]. Next year, clinical trials will commence

using PSC-derived dopaminergic neurons to treat Parkinson’s

disease. The output from those well-controlled clinical trials

will determine the suitability of PSCs for developing pioneer-

ing cell-based therapies. Although both types of PSCs are

renewable, a distinct advantage of using iPSC-based systems

is the ability to select for genetic background, promising per-

sonalized modelling of human biology ‘in a dish’ and/or

immune-matched cell-based therapies for the clinic.

The landmark discovery that mammalian DNA, from a

fully differentiated cell, could be reprogrammed to pluripo-

tency leading to the birth of viable offspring [10] inspired

the successful induction of pluripotency in mammalian

somatic cells [11]. Reprogramming success was quickly

extended to human somatic cells, providing a major advance

for the field [12]. The successful isolation of PSCs and induc-

tion of pluripotency were deemed so important for basic

research that two Nobel prizes in Physiology or Medicine

were awarded in 2007 and 2012, respectively. The ability of

PSCs to self-renew and form all cell types in the embryo

proper is a distinct advantage and offers a scalable alternative

to primary and transformed human tissue. Initially, stem cell

reprogramming relied on retrovirus transduction to deliver

transgene activity to the cells [11,12]. While this was impor-

tant for proof of concept, retroviral and lentiviral transgene

integration is problematic for basic or clinical research trans-

lation, therefore insertion-free strategies were developed (for

a review, see [13]).

Since those seminal studies, there has been a global push

to exploit PSC-based technology to challenge our under-

standing of human biology and to treat disease. Key

outputs from these studies have been the generation of

high-fidelity human models ‘in a dish’ and pioneering cell-

based therapies to treat human disease. Stem cell-derived

models have been developed for many tissues, including

gut, liver and brain to name a few [14–16]. Stem cell-derived

tissue systems have also been employed to study human dis-

ease [16], to study adverse drug reactions [17] and human

susceptibility to viral infection [18]. Most recently, the devel-

opment of efficient three-dimensional culture and organoid

methodologies, combined with microfluidic platforms, have

provided significant advances for the field, promising

higher-fidelity datasets and perfused human tissue [19].

Annually, more than 115 million animals are used world-

wide in experimentation [20]. While those experimental

models provide valuable information, they do not efficiently

extrapolate to human physiology, with an estimated 10% suc-

cess rate [21]. This provides a strong rationale to develop

more predictive human models. Consequently, there have

been numerous studies focused on the delivery of defined

and scalable human tissue systems. Key to producing high-

fidelity tissue in vitro is the recreation of the nascent tissue

structure, with the appropriate niche factors [22]. Attempts

to achieve this in vitro and in vivo have seen scientists from

chemistry, biology, physics and engineering backgrounds

working together. This has led to exciting developments in

human tissue engineering. With this in mind, we have pre-

pared this special edition of the journal and invited

contributions from experts around the world to describe

cutting-edge activity in their fields and future directions.

We begin with a review of the progress made in the

field of PSC reprogramming and self-renewal written by

Abu-Dawud et al. [23]. This is followed by articles that

examine the PSC somatic cell differentiation. The first

article, written by McComish & Caldwell [24], focuses on

brain differentiation. This is followed by an article review-

ing gastrointestinal differentiation, written by Fair et al.
[25]. The next article, written by Tam et al. [26], reviews

musculoskeletal differentiation. We continue the somatic

cell differentiation theme with articles focusing on the

immune system. Macrophage differentiation from iPSCs is

presented by Lopez-Yrigoyen and co-workers [27]. This is

followed by an article on the innate immune system written

by Fischer and co-workers [28]. Following on from somatic

cell differentiation, Lyall and co-workers [29] present the

use of a semi-automated differentiation system to model

fatty liver disease.

Essential to the generation of cell-based models and

therapies is the quality of the in vitro engineered tissue.

Underpinning success in technology scale-up and application

is the development of the raw materials required to produce

the somatic cells at clinical grade. A key consideration is the

extra-cellular matrix used in the production process and

this is reviewed by Hagbard and co-workers [30]. Recently,

the use of technologies that examine global patterns of gene

expression facilitated major improvements in cell and pheno-

type and scale-up [31,32]. Such advances are also necessary

to assure the quality of PSC-based products. The use of bio-

informatics to control stem cell differentiation is reviewed

by Godoy and co-workers [33]. This is followed by an article

by Meisig & Blüthgen [34] dealing with the deconstruction of

cell signalling equilibria to build bona fide tissue from PSCs.

In recent years, tremendous progress has been made in

the development of organoids from human tissue [35,36].

These studies are exciting, but for organoids to offer signifi-

cant promise they must be manufactured at scale, using

defined additives. Developments in this field of research are

reviewed by Alhaque and co-workers [37]. In order to deliver

engineered tissue at scale, it will be necessary to further opti-

mize the cell niche and automate the production process.

Materials chemistry provides a unique opportunity to ident-

ify new materials that can be used to structure, scale and

stimulate appropriate tissue formation in vitro [38]. Recent

progress in the field is reviewed by Schmidt and co-workers

[39]. Following on from this, Skeldon and co-workers [40] dis-

cuss the importance of cell bioprinting in the quest to

generate human tissue. This is followed by Brown & Khetani

reviewing the microfabrication of stem cell-derived tissue for

cell-based screening [41]. Stem cell-derived somatic cells have

already shown significant promise within industry [17]. For

these models to progress further, there are further technologi-

cal considerations. This is dealt with in an opinion piece

article, written by Williams from Astra Zeneca [42].

The ability to produce high-fidelity human tissue from

stem cells for basic and clinical application requires the devel-

opment of non-invasive monitoring technology that can
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measure and report in real time. The merits of label-free

monitoring are reviewed by Gamal and co-workers [43].

We end this special issue with an article by Iansante and

co-workers [44], which reviews the progress made in devel-

oping human cell-based therapies to treat compromised

liver function and promote organ regeneration.

We are extremely grateful to the authors, the reviewers

and the editorial team at Philosophical Transactions B for

their time and effort in delivering this special edition of the

journal. We hope that this collection of papers stimulates

interest and collaboration within the field, with a focus on

translating basic scientific concepts into game-changing

regenerative medicines for the clinic.
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