
Aalto University

School of Science

Master’s Programme in Computer, Communication and Information Sciences

Ville Ojaniemi

Computationally aided product concept
generation for field devices

Boosting product concept creation

Master’s Thesis
Espoo, June 4, 2018

Supervisor: Professor Antti Oulasvirta
Advisor: Niraj Dayama Ph.D.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/159158567?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Aalto University
School of Science
Master’s Programme in Computer, Communication and
Information Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Ville Ojaniemi

Title:
Computationally aided product concept generation for field devices Boosting
product concept creation

Date: June 4, 2018 Pages: 71

Major: Computer Science Code: SCI3042

Supervisor: Professor Antti Oulasvirta

Advisor: Niraj Dayama Ph.D.

This thesis aims to solve the problem of optimally selecting features for internet
connected field device, the accompanying cloud service and client devices such
that designer goals, feature properties and relationships with other features are
considered. This information could be used during concepting of new products
as a support to better handle possibly large number of features and relationships
between them. This could also bring up new ideas that were not considered
before.

We solve the problem by formulating it as an Integer Linear Programming(ILP)
problem, and utilize Monte-Carlo methods to find interesting solutions to the
problem, and visualize them in a way that allows easy comparison of different
solutions to the problem.

The proposed model is very stable, as adjusting weights in the ILP objective func-
tion causes fairly linear and predictable change in the outcome. The model also
produced feature sets that were fairly comparable to human generated ones. The
model was also tested in a real project in real work environment. The model per-
formed well in this environment, however forming the input was considered very
laborious, time consuming and complicated in some parts. These issues can be
dealt with by organizing training and workshops. With further adjustments the
model could be used to generate interesting concepts for many kinds of products.

Keywords: feature selection, field device, monte-carlo, integer linear pro-
gram

Language: English

2



Aalto-yliopisto
Perustieteiden korkeakoulu
Tieto-, tietoliikenne- ja informaatiotekniikan maisteriohjelma

DIPLOMITYÖN
TIIVISTELMÄ

Tekijä: Ville Ojaniemi

Työn nimi:
Laskenta avusteinen tuotekonseptien generointi kenttälaitteille Tuotekonseptoin-
nin tehostaminen

Päiväys: 4. kesäkuuta 2018 Sivumäärä: 71

Pääaine: Tietotekniikka Koodi: SCI3042

Valvoja: Professori Antti Oulasvirta

Ohjaaja: Filosofian tohtori Niraj Dayama

Tämän työn tavoitteena on ratkaista kuinka valita toiminnot internettiin kytket-
tyyn kenttälaitteeseen optimaalisesti, sekä siihen kytkettyyn pilvipalveluun sekä
asiakaslaittesiin siten, että suunnittelijan tavoitteet, toimintojen ominaisuudet
sekä toimintojen väliset suhteet ovat huomioituna. Tätä tietoa voidaan käyttää
uusien tuotteiden konseptoinnin tukena auttaen käsittelemään mahdollisesti suu-
ria määriä toimintoja ja niiden välisiä suhteita. Tällä tavalla voidaan myös löytää
uusia ideoita joita ei ole aiemmin tullut ilmi.

Ratkaisemme ongelman mallintamalla sen Intereg Linear Programming(ILP) on-
gelmana, sekä hyödyntäen Monte-Carlo metodeja löytääksemme kiinnostavia rat-
kaisuja ongelmaan, sekä visualisoimme ratkaisut tavalla joka mahdollistaa eri rat-
kaisujen helpon vertailun.

Esitetty malli on hyvin vakaa, sillä painoarvojen muuttaminen ILP tavoite funk-
tiossa aihetuttaa melko lineaarisen sekä ennustettavan muutoksen lopputulokses-
sa. Malli myös tuotti toimintosettejä jotka olivat melko vertailukelpoisia ihmisen
tuottamiin. Mallia testattiin myös oikeassa projektissa oikeassa työympäristössä.
Malli toimi hyvin tässä ympäristössä, mutta syöte datan tuottaminen koettiin
hyvin työlääksi, aikaa vieväksi ja monimutkaiseksi joissain osissa. Nämä on-
gelmat voidaan kuitenkin selvittää järjestämällä koulutusta ja workshoppeja.
Lisäominaisuuksien ja säätöjen avulla mallia voitaisiin käyttää monenlaisten tuot-
teiden konseptien kehittämiseen.

Asiasanat: toimintojen valinta, kenttälaite, monte-carlo, integer linear
program

Kieli: Englanti

3



Acknowledgements

I would first like to thank my thesis supervisor Prof. Antti Oulasvirta and
instructor Ph.D Niraj Dayama from Aalto university for providing support,
feedback and guidance thorough the thesis. I want to thank both Antti and
Niraj for allowing me free hands during the thesis, and also steering me to
right direction whenever I needed it.

I also want to thank Panu Kilponen from Vaisala for regular feedback and
guidance. Special thanks to Sauli Laitinen from Vaisala for providing sup-
port especially in organizing the workshop and interviews. I’m very grateful
for both Panu and Sauli for finding time to help me even with their busy
schedules.

I would also like to thank Vaisala personnel who contributed to the in-
terviews, workshop and validation of the results, the thesis would not have
been what it is now without their input.

Finally, I wish to express my gratitude for Vaisala for funding this thesis
and giving me this opportunity to learn. I have learned so many skills, and
gained experience on many different areas that are invaluable in working life.
Thank you.

Espoo, June 4, 2018

Ville Ojaniemi

4



Contents

1 Introduction 7
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . 10

2 Methods 11
2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Integer Linear Programming . . . . . . . . . . . . . . . . . . . 13
2.3 Monte-Carlo Approach . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Pre-study Interviews . . . . . . . . . . . . . . . . . . . . . . . 14

3 Implementation 15
3.1 Pre-study Interviews . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 ILP Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Nodes and Arcs . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.3 Dependencies . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.4 Objective Function . . . . . . . . . . . . . . . . . . . . 24
3.2.5 ILP Model Implementation . . . . . . . . . . . . . . . 25

3.3 Monte-Carlo Method . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.1 Random Sampling . . . . . . . . . . . . . . . . . . . . 31
3.3.2 Mining Solutions . . . . . . . . . . . . . . . . . . . . . 31

3.4 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 Concepting Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Evaluation 37
4.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Real Use Case and validation . . . . . . . . . . . . . . . . . . 43

4.2.1 Feature Generation . . . . . . . . . . . . . . . . . . . . 43
4.2.2 Ratings and Dependencies . . . . . . . . . . . . . . . . 47
4.2.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . 48

5



5 Discussion 54

6 Conclusion 59

A Interviewing template 64

B Code snippets 66
B.1 Reading dependencies . . . . . . . . . . . . . . . . . . . . . . . 66
B.2 Weak dependencies . . . . . . . . . . . . . . . . . . . . . . . . 67
B.3 Strong dependencies . . . . . . . . . . . . . . . . . . . . . . . 68
B.4 Reading feature ratings . . . . . . . . . . . . . . . . . . . . . . 69
B.5 Sampler class . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6



Chapter 1

Introduction

This chapter introduces the thesis, its purpose and background. We first
provide background on the problem. Then we state the problem we aim
to solve and explain how the results could be used. Finally we provide an
overview of the thesis structure.

1.1 Background

Consider a situation where there is a field device, a cloud service, remote
client and a local client. The device could be something like Vaisala’s WXT530
series sensors, which are compact and flexible, all in one weather instruments[4].
The local client uses the device locally, e.g. with a Ethernet/serial cable and
thus needs to physically be in the vicinity of the device. The remote client
uses the device remotely through internet. The remote client can connect
directly to the device, but can also connect to a cloud service and operate
the device through it. This is illustrated in figure 1.1. Each directed arc
represents a data connection between different nodes. The implication of the
arc’s direction becomes apparent in later chapters.

Each of these connection approaches have their pros and cons. Local con-
nection can be hard to establish as one must physically travel to the device,
however using local connection is somewhat less risky, as any errors made
can be reverted by resetting the device physically. Also verifying that data
is correct is easier as you can see what is physically happening around the
device. Verifying the data similarly is not possible with remote connections
as visual confirmation is not possible.

Remote connections come with greater risk, as mistakes could lead a
device to become unresponsive and thus impossible to operate remotely. This
would require a trip to the device installation site to correct the problem.

7



CHAPTER 1. INTRODUCTION 8

Figure 1.1: Illustration of the scenario of four nodes and four arcs between
them. Each node, the device, the cloud, remote client and local client has arc
to at least one other node. These arcs represent a data connection between
the nodes. Between local client and device the connection can be physical,
but in the other 3 arcs the data transfer happens through the internet. The
arc’s direction is also important which becomes apparent in later chapters



CHAPTER 1. INTRODUCTION 9

The cloud connection offers additional security and processing power with
more powerful hardware. It also allows centralized data collection and moni-
toring from multiple devices. The cloud connection however does add delays
in communication with the device and increase maintenance costs because of
the costs of operating the cloud.

Each of the introduced nodes, the device, cloud, remote client and local
client, have set of different features which defines how the node operates.
Some of the features are shared between the nodes and some are exclusive to
certain nodes. In this scenario, for example measuring data should only be
possible in the device, as it is the only node with measurement capability.

Each of the features can also have some relations to the features in the
same node and to features in the other nodes. For example, if the device
can measure data from a sensor, a client should be able to view the data
somehow. Also other way around, viewing the data is not possible if there is
no data to view.

One feature might also be more important than the other, for example
one could value ability to log data to cloud more than ability to log the data
in the device. There can be multiple perspectives to this as well. One device
should be as low powered as possible, because it runs on batteries. Another
device should be as low cost as possible, because the device is intended to be
deployed as large networks.

Considering all these at the same time, to produce the optimal set of
features for each of the node can be difficult. The selection of functionalities
and features is a recognized but under-researched subproblem in interaction
design[19]. While it would be easy to just select every feature to the product
to cover all the possible needs of every customer, the result would be messy
to say the least. Research has shown that the designer should avoid ”feature
creep” as this can lead to decrease in usability and increase in cost[25]. An-
other study has shown that unneeded extra features provide reasons against
buying the promoted brands and are seen as susceptible to criticism[21].

This provides incentive to limit the number of features and try to se-
lect only those features that are needed. Naturally the features that are
needed are very product and application specific. This suggests that build-
ing products that are very focused on single application would be the best
option. However having a different product for every application makes man-
ufacturing, selling, buying and maintaining the product portfolio much more
complicated and costly.

The best option is most likely somewhere in the middle of the two ex-
tremes, a balance between enough features that it covers enough applications
and avoids ”feature creep”. This balance can be difficult to find, especially
if there is very large number of features and relationships between them. To



CHAPTER 1. INTRODUCTION 10

ease the search of this balance, some help from computational methods could
be used.

1.2 Problem Statement

This thesis aims to find a way of choosing optimal feature set considering
properties such as usefulness, complexity, configurability and power con-
sumption for each feature, relationships between the different features and
designer preferences for the properties. Computational methods are utilized
to deal with possibly hundreds or even thousands of different features and
relationships between them.

Computational methods are justified as even with only 50 features and
four nodes there are 4∗(250) = 4, 503, 599, 627, 370, 496 possible combinations
of features. Even with multiple constraints in place, such design spaces are
too large for manual search.

If successful, this method could be taken into use as a tool in product con-
cepting phase to support the process. The method is not intended to provide
the definitive best product concept, as the method almost always simplifies
the problem. Instead it is intended to be used as iterative supporting tool
to help the designers to come up with new ideas. The tool generates few
different concepts and then designers can combine ideas from the generated
concepts to the actual concept, or use them as an inspiration for better ideas.

1.3 Structure of the Thesis

This thesis consists of 6 chapters. The first chapter introduces the problem
and provides some background and also explains the thesis structure. The
second chapter explains the methods used to solve the problem, and also
examines previous work on the subject. The third chapter explains how
the solution was actually implemented. In the fourth chapter we present
experiments and other tests of how well the presented solution actually works.
In the fifth chapter we discuss the results and their implications, and see
whether we were successful at creating a useful method/tool to help with
product concepting and what could be done better. In the final chapter we
conclude the work, by providing a summary of all the subjects that were
discussed.



Chapter 2

Methods

This chapter introduces the methods used to solve the problem. We also
examine previous work on the subject and explain how this thesis uses ideas
from them. We also introduce the pre-study that is used to gain an under-
standing of the scenario before actually attempting to solve it.

First we examine the previous work, and then introduce the pre-study
and finally explain how we use Inter linear programming and Monte-Carlo
method to solve the problem.

2.1 Related Work

Traditionally product concepts are often generated by coming up with sketches
of possible ideas [10, 14, 26, 31]. Sketches are mappings from designer’s vi-
sion to the physical representation of the vision as a sketch on paper[26].
Studies have shown that during sketching, quantity of sketches, especially in
the start and mid sections of design process, plays a big role in the result of
the final outcome[14, 31].

Sketching is considered fast and intuitive technique to represent the op-
portunistic flow of ideas[27]. However considering every property and relation
between features simultaneously can be hard or even impossible if there is
very large number of features to be considered. To counter this we look into
computational methods that could help with the large number of features.

Indeed computational methods have been used in concept generation pre-
viously as well, we describe some of them in this section to provide a brief
overview of the possible methods.

In papers by Tang[24] and Albritton[5] they used ant colony optimiza-
tion(ACO) to find the best mix of product features. ACO heuristics are
efficient at searching through a vast decision space and are extremely flexible

11



CHAPTER 2. METHODS 12

when model inputs continuously change[5].
Another approach, where design-by-analogy methodology is used by search-

ing patent databases[11, 16, 17], as they provide attractive sources of analo-
gies and concepts that can lead to innovative solutions [13]. Similarity rank-
ing tools are used to retrieve the patents with the highest degree of relevance
to the functional description of a given design problem and the most relevant
patent results are presented to the user[11, 16, 17].

Another approach is presented in work by Bryant [8]. The presented
method works by utilizing predefined functions, with known inputs and out-
puts, and combining those to fulfill the needs of the product.

The prior work described uses variety of different methods, but do not
suit our needs perfectly. Some of the mentioned methods do find the opti-
mal feature sets, but do not consider their relationships, some consider only
the relationships between features, but do not allow favoring different kinds
of features for different kinds of products. Combining these is not a triv-
ial task either, because they utilize very different methods. However two
papers, one by Oulasvirta[19] and other by Park[20] utilize Integer Linear
Programming(ILP) to find best balance between features.

In the work by Oulavirta [19] they use ILP to optimize the feature set for
an note-taking application. The objective function was to maximize useful-
ness, satisfaction, ease-of-use and profitability of the chosen feature set. Each
feature was rated for its usefulness, satisfaction, ease-of-use and profitability.
Dependencies between features are modeled as pair-wise usefulness. Meaning
that each feature has usefulness score based on the presence or absence of an-
other feature. This allows creating dependencies between features, by giving
negative usefulness for a feature if the dependent feature is not present. As
an example they provide print setup making not sense without print, thus
pairwise usefulness for having print setup but not print should be negative.

In the work by Oulavirta [19] they also use the Monte-Carlo approach
of Beyer and Sendhoff [6] to find a robust solution. In the paper they also
present a way of finding diverse solutions [19]. The resulting feature sets
were visualized in list form for easy understanding and comparison.

In the work by Park[20] they used ILP to find optimal solution UI element
assignment problem across devices. The objective function was to maximize
quality and completeness of the elements in different devices. The aim was to
create adapting multi-user interface for real time collaborative environment.
The model considered each elements’ properties and features in each device
to make sure that the elements are possible to assign to that device and
that they fit on the device screen. Different user roles were also considered
as well as user preferences. The elements had minimum size and maximum
size determined, and the ILP model could adjust the element size to fit



CHAPTER 2. METHODS 13

different elements on limited screen size. Different user roles had different
rights to different elements and the ILP model had constraints to allow only
the allowed elements on the screen for each user role separately.

Aside from being able to handle large amounts of features, computational
methods can be used to generate large amounts of varying concepts, in short
time as well and as previously mentioned, the number of sketches plays a
great role in the result of the final outcome [31]. This provides reasoning for
using computational methods in support for product concept generation.

2.2 Integer Linear Programming

Similarly to the previous work by Oulasvirta[19] and Park[20] we aim to solve
this problem as an integer linear programming (ILP) problem. Integer Linear
programming in a special case of linear programming in which all variables
are required to take on integer values only[29]. Linear programming is the
optimization of an outcome based on some set of constraints using a linear
mathematical model[18].

ILP suits our problem well, as the variables we control are all binary
variables, having values 1 or 0. Each variable describes whether a certain
feature is present in a certain node similarly as in previous work[19, 20].
Linear objective function is also suitable for our problem, because linear
terms are intuitive to the designer to understand and thus control[19]. Also
constraints for features and their relationships can be modeled with linear
models[19, 20].

Another advantage to using ILP is its speed. ILP solvers are generally
very fast at solving the problem and are guaranteed to provide the most
optimal result. These properties are exploited in the Monte-Carlo approach
explained in 2.3. Using ILP with the Monte-Carlo method yields multiple
optimal solutions in relatively short time.

Another strength of modeling the problem as ILP problem is that there
are numerous ILP solvers readily available, such as the open source Cbc
(Coin-or branch and cut)[1] or the commercial Gurobi[2]. This makes mod-
eling the problem as an ILP problem attractive, as we can use these solvers
to actually solve the problem and find the optimal solutions. Thus we only
need to define the problem in ILP form and feed it to the solver. This makes
the implementation faster, and it is also guaranteed to find the optimal solu-
tion, especially when using previously proven and tested solvers, such as the
Cbc and Gurobi.



CHAPTER 2. METHODS 14

2.3 Monte-Carlo Approach

The Monte-Carlo Method means any method which solves a problem by
generating suitable random numbers and observing that fraction of the num-
bers obeying some property or properties. The method is useful for ob-
taining numerical solutions to problems which are too complicated to solve
analytically[30].

We use Monte-Carlo method described in previous work[6, 19]. This
method includes taking many random samples for each rating for input data
and solving the problem optimally for each sample. From these samples a
robust solution[6, 19] and diverse solutions[19] are searched for. The robust
solution is the best compromise among all the solutions, while the diverse
solutions are a set of most distinct solutions in the solution set. This idea of
presenting several diverse options is a technique called Design Gallery[15].

Using this method allows us to find differing and interesting solutions to
the problem. The random sampling of the input data is also important, as
the input data most likely is not the objective ground truth for the data. The
input data is entered by humans, and thus is likely to be somewhat biased.
The random sampling allows us to diminish the effects of the bias as we do
not rely completely on the user inputted data, but use it more as an estimate
and guide for the actual input. It also outputs multiple different solutions at
the same time, allowing the user to find interesting ideas more easily.

2.4 Pre-study Interviews

Before the actual problem is considered, a pre-study is conducted by inter-
viewing relevant people on field device usage, uses and needs. Main goals
are to understand who are the users and why they use the device and what
are their goals. Also the uses are mapped, what the device is supposed to do
and why. The aim is to gather an sufficient understanding of the scenario.
With this information it is possible to define the most important properties
to consider for each feature in the device, cloud and the clients.



Chapter 3

Implementation

This chapter introduces the ILP model implementation, and how the model
is used with the Monte-Carlo method to find the robust and diverse solutions.
First we discuss the pre-study interviews and how the collected data is used
in the ILP model.

From the ILP model, we first introduce the nodes and arcs between them.
Then we discuss how each feature is rated for different properties, and how
they are considered in the objective function. Then we introduce the depen-
dencies between different features. After explaining the functionality of the
model on higher level, we show how it is actually implemented. We describe
all the variables, constraints and objective function of the ILP model.

Then we describe how this model is used with the Monte-Carlo method
to find the robust and diverse solutions. Lastly we show how the results are
visualized for easy comparison and briefly describe the user interface made
for the model for ease of use.

3.1 Pre-study Interviews

The interviews were done to gain a sufficient understanding of the device’s
users and uses. Main goals were to understand who are the users and why
they use the device and what are their goals. Also the uses were mapped,
what the device was supposed to do and why.

As this thesis was done for Vaisala, the interviewees were mainly Vaisala
employees, with varying titles, experience and expertise. This was done to
avoid favoring single areas, which could lead to insufficient and biased results.
A single person outside Vaisala was also interviewed to slightly mix the data
with a different viewpoint. List of the interviewees can be seen in figure 3.1.

All the interviewees were given a short introduction to the subject in the

15



CHAPTER 3. IMPLEMENTATION 16

Product Manager 31 years
R&D Manager 20 years
Business Development Manager 18 years
Senior Scientist 17 years
Application Manager 17 years
R&D Project Manager 9 years
Product Manager 7 years
Product Manager 7 years
Application Manager 5 years
Postdoctoral Researcher 1 year

Figure 3.1: Titles of the interviewees and years in Vaisala or Aalto University

invitation before the interview to make sure the interviewee could prepare
for the interview and to allow them to think the subject beforehand.

All interviews were done face-to-face each in 30-60 minutes long session.
The interview was loosely structured around interviewing template in ap-
pendix A. The interview was kept only loosely structured to encourage the
interviewee explaining his/her ideas and views as naturally as possible in a
conversation-like manner, getting into ”storytelling mode”. This was done to
allow the conversation naturally branch, possibly exposing things that would
not have come up with strictly scripted conversation.[12, p. 4] The conversa-
tion was returned to the template if the conversation started to branch too
far from the subject.

The interviews were documented by taking notes as the conversation went
on. The interviews were also recorded to avoid missing details. However some
interviews were not recorded due to the wish of the interviewee.

The data gathered from the interviews contained different notes about the
device, containing ideas, functionalities, requirements, problems, strengths,
customer hopes, and other observations about the device and its uses and
users.

3.2 ILP Model

3.2.1 Nodes and Arcs

We represent the problem in terms of a directed graph G(N,A). The nodes N
of this graph represent the different locations at which the specified features
can be chosen (device, cloud, remote- and local client). The arcs of this graph



CHAPTER 3. IMPLEMENTATION 17

node description
The device The field device itself, e.g. remote sensor
The cloud A cloud service, running on a server
Remote client A client device, located away from the site
Local client A client device, located at the site

Table 3.1: Table describing the nodes

tail head
device cloud
device remote client
device local client
cloud remote client

Table 3.2: Table describing arcs between the nodes, the arcs are directed
from tail to head

represent the data connections between these nodes. The arcs are directed
from tail node to head node[28]. The direction of an arc is used in the inter-
dependency explained in following sections. In our scenario there are four
nodes and arcs described in tables 3.1 and 3.2 and previously in section 1.1.

In this scenario the device is a remote sensor measuring data. The clients
are computers that run a client software and the users interact with the
system through these computers. The Local client is located near the device
at the sensor installation site, physically connected to the device. To establish
this local connection the user must travel to the device physically. The remote
client operates the device remotely. The remote operation is done directly
through the internet or through the cloud. The cloud is a server running a
service, to co-operate with the device and the remote client.

3.2.2 Features

Features are the items that may or may not be selected for a certain node.
Because the solver works on very abstract level the features can be as specific
or general as needed.This is useful when generating product concepts on
different stages of product concepting. At the beginning of concepting the
features can be very general, e.g. ’Graphical UI’, ’wireless connectivity’, and
as the concepting progresses and ideas start to clear, more specific features
can be added, e.g. ’log in button’,’registration form’, ’LoRa’,’WiFi’.



CHAPTER 3. IMPLEMENTATION 18

Some features can be allowed only on certain nodes. This is important
as some features just aren’t possible to be implemented in some nodes. This
could be for example displaying graphical elements on a device that does
not have a screen. Another case might be that data logging cannot be im-
plemented in the clients, as there is no guarantee that the client is online or
connected to internet to log the data, while the cloud and device itself should
always be available for data logging.

Similarly to work by Oulasvirta[19] we give each possible feature scores
based on different properties. The different properties come from the pre-
study introduced in the previous section. Each feature can have many ratings
for each property, which are combined to single normal distribution, based
on the mean and standard deviation of the ratings.

As in work by Park[20] the ILP model allows features to be selected in the
different components, also allowing some features in only some components
by defining constraints for these features.

Each feature is rated based on its usefulness, complexity, cost, power con-
sumption and configurability. The ratings are used in the objective function
to describe each features desirability. This section describes the different
properties on which the features are rated for.

Many of the properties in this section are aggregates of many different
things, instead of all of the different things being separate, they are grouped
into larger entities to ease the process of forming the input data. While this
does sacrifice some details, it is a compromise between granularity and effort
needed to form the input data.

Aside rating the properties the ratings also contain a confidence value,
indicating how sure each person is about his/her ratings being close to the
underlying ”truth”. This information is later used in the sampling of the
ratings as described in section 3.3.1.

Usefulness is related to user satisfaction and competitive edge. Highly
distinct features compared to competitors is considered useful as it attracts
customers.

Complexity of feature means increase of complexity of the system if the
feature is chosen. It relates to ease of use inversely, meaning that highly
complex feature makes the device harder to use. Very low complexity means
that the selection of the feature does not increase the complexity of the
system and can even make it simpler.

Cost is related to all costs associated with the feature. This can mean
work hours or actual money related to implementation and maintenance for
example. It is also related to increase of cost of the device. Some feature
might need lot of memory or processing power which require better hardware,
which comes with a cost. Cost can also be interpreted as risk, if a feature is



CHAPTER 3. IMPLEMENTATION 19

prone to information security problems, it can increase the cost.
Power consumption means increase of power requirements of the device.

Heating for example uses lots of electricity. Also a feature might require the
device to be constantly on and listening for input for example, this naturally
increases the power consumption of the device as it cannot go to low power
sleep mode.

Configurability describes how configurable and customizable the feature
is, and how much can this feature change the behaviour of the device. This
is important metric as the device is often not just a standalone device but
has to integrate into larger systems and these systems can be very different.
Making the device flexible in configuration sense, makes it appealing to more
customers. Features such as ’set IP address’ allow some, although very lit-
tle, configurability, while allowing the device to read configuration files and
custom programs makes it very configurable.

3.2.3 Dependencies

The dependencies are relations between features. They generate constraints
for the ILP solver, by not allowing every combination of features. This
makes the output of the solver more useful, as illegal combinations are never
generated and it also speeds up the solver, as the constraints limit the search
space for the optimal solution.

Dependencies can be used to group features together, meaning that if a
feature is chosen, it’s counterpart defined by a dependency is also chosen.
They are also used to make sure that a feature is possible to be selected in a
certain node. A feature might depend on other feature’s output, and cannot
be used without this other feature. Defining a dependency between these
features ensures that the feature is not chosen if it cannot be used. There
are two different types of dependencies called inter-dependency and intra-
dependency. There also exists two variants of each dependency, weak and
strong. These dependencies can be chained to make complex dependency
structures between the features.

Inter-dependency

The inter-dependency is a dependency along an arc, between nodes. Each
arc is directed from tail node to head node. To define this dependency let us
consider a situation between the cloud and device nodes. There exists an arc
from device to cloud, Making device the tail and cloud the head. The inter
dependency in this case means that if there is feature A in the head node



CHAPTER 3. IMPLEMENTATION 20

Figure 3.2: Illustration of inter-dependency. If there is inter dependency
from feature A to feature B, and feature A is chosen in a head node, i.e.
node where an arc points to, then feature B must be chosen in the tail node
as well.

with inter-dependency to feature B, then feature B must be selected in the
tail node to satisfy the dependency. This is illustrated in figure 3.2 .

This dependency is used to define dependencies where a feature needs
another feature to be present in another node for the feature to be useful. As
an example data logging in cloud is possible only if a device transmits data
to the cloud. This means that feature ”data logging” has inter-dependency
to feature ”transmit data”.

Inter-dependency is also used to ensure a feature is ”supported” in the
tail node. For example feature ”set device IP address” might not have any
dependencies, and could thus be freely chosen in any node. However this
feature in a client node is useless if it not supported in the device i.e. in
client software there is possibility to set the address, but the address cannot
be changed in the device. This is solved by defining an inter-dependency
from the feature to the feature itself. This way if a feature is selected in a
client node, it also must be selected, ”supported”, in the device node.



CHAPTER 3. IMPLEMENTATION 21

Figure 3.3: Illustration of intra-dependency. Dependency within node, if
feature A has intra-dependency to feature B, and feature A is selected in a
node, then feature B must also be selected in the same node.

Intra-dependency

The intra-dependency is dependency within a node. This means that if
feature A has intra-dependency to feature B and feature A is selected in a
node, then the feature B must also be selected in the same node. Illustrated
in figure 3.3.

This dependency is useful for grouping items together. For example fea-
ture ”log in” should always be accompanied with ”log out”, as either of
them alone is not very useful. This could be defined as ”log in” having
intra-dependency to ”log-out” and vice versa.

Intra-dependency can also be used to define that a feature belongs to a
certain group, e.g. permission level. A device could have feature ”admin-
level” and all features that should be allowed only to system administrators,
should have intra-dependency to ”admin-level”. This way a administration
feature cannot be selected in a node where the ”admin level” feature is not
allowed.



CHAPTER 3. IMPLEMENTATION 22

Weak and strong dependencies

The two previously mentioned dependency types, intra and inter, also have
two versions of them,weak and strong, making the total number of different
dependencies to four.

Strong dependency as the name suggests must always be satisfied. Mean-
ing if a feature has a dependency to another feature, and the feature is
selected, then the other feature must always be selected. The strong depen-
dency acts as logical AND case when there are multiple strong dependencies
for a feature, meaning that each one of them must be satisfied.

Strong dependencies are useful for ensuring that another feature is always
present. This could be the case for features ’log in’ and ’log out’, which
should always be together to be any use. In this case both features should
have strong dependency to each other.

Weak dependency on the other hand is not as strict. The weak depen-
dency acts as logical OR case when there are multiple weak dependencies,
meaning that it is enough that one of the weak dependencies are selected.

Using weak dependencies allow the feature to be satisfied by multiple
different ways. For example feature ’data logging’ depends on having some
data to be logged, this could be acquired by taking a sensor measurement
directly, or listening to a transmission from a remote sensor. This could
then be defined as ’data logging’ having two weak dependencies to features
’measure data’ or ’receive data’, and the ’data logging’ feature would be
satisfied if either of the two features are chosen.

In case a feature has multiple weak and strong dependencies, one of the
weak dependencies and all of the strong dependencies must be selected to
satisfy the feature dependencies. If a feature has only a single dependency,
it does not matter whether it is weak or strong, as in the weak case atleast
one, and in strong all of the dependencies must be selected and in this case
they both mean that the one dependent feature must be chosen.

Dependency combinations

While the four previously described dependencies: weak inter-dependency,
weak intra-dependency, strong inter-dependency and strong intra-dependency,
are useful on their own, using them together is what allows complex and flex-
ible dependency structures to be defined.

As an example of the dependency structures let us consider features ’data
logging’, ’measure data’, ’transmit data’ and ’receive data’. The ’data log-
ging’ naturally needs data to log to be useful. The data could be acquired
by measuring the data ourselves, or receiving the data from somewhere else.



CHAPTER 3. IMPLEMENTATION 23

Figure 3.4: Three solutions to the example scenario. The black squares rep-
resent nodes, black arrows arcs between nodes, red arrows intra-dependencies
and blue arrows inter-dependencies. In the top most solution, there exists
only one node, which measures and logs the data, the middle one, has two
nodes, one of which logs received data and one measures and sends the data,
the bottom one, is similar to the middle one, but with one extra node, that
forwards the data to the logging node.

Transmitting data also requires either measuring the data or receiving it from
somewhere else. Measuring data does not depend on anything. Receiving
data naturally depends on someone transmitting data.

The dependencies in this case should be defined as follows. The ’receive
data’ should have strong inter-dependency to ’transmit data’, ’transmit data’
should have weak intra-dependency to measure data and receive data. Data
loggin should have weak intra-dependency to measure data and receive data.
We present three solutions to this scenario in figure 3.4.

Different combinations can also be used to define ’feature modules’, where
choosing a feature chooses a set of other features. For example there could
be a feature called ’admin user level’ which itself is not an actual feature,
but groups together different admin level features using strong dependencies.
Another example could be ”wireless communication” that has weak depen-
dencies to different wireless communication methods, e.g. WiFi,LoRa. Then
a feature could have strong dependency to ’wireless communication’ without



CHAPTER 3. IMPLEMENTATION 24

needing to define the different communication methods explicitly for each
feature that needs some sort of wireless communication. This also simplifies
defining dependencies allowing utilizing sort of ’divide and conquer’ method
by allowing feature abstraction.

3.2.4 Objective Function

The objective function is based on seven terms. These terms are based on the
objective functions as discussed by Oulasvirta et al., where the objectives are
Usefulness, Satisfaction, Ease-of-use and Profitability[19]. These objectives
are adjusted based on the pre-study interviews to fit the current scope bet-
ter. The resulting terms are Ease of use and installation(E), Usefulness(U),
Configurability(G), Simplicity and cost of device(S), Overall cost(C), Low
power(P ) and independence(I).

The objective function is defined as maximizing the linear combination of
the terms E,U,G, S, C, P and I, each term is also associated with a weight ω
to allow weighting some terms more than others. This is useful in generating
concepts for different products. If the concept is for a device that should be
battery powered, then the weights for low power, and simplicity should be
increased. And if the device should be standalone multipurpose super device,
then usefulness, independence and configurability should be increased.

The following descriptions of each objective are based on work by Oulasvirta[19]
and the pre-study interviews.

Term E considers the ease of use and install of the system. Naturally
easy setup and usage of system is important, because customer most often is
interested in the data the device provides, and not the device itself, thus the
installation should be as painless as possible. The terms is defined as negative
sum of complexity. To have easy to use and install device, we should avoid
having lot of complex features.

Term U considers the usefulness of the system. The system should of
course be of maximum use, and as attractive as possible for the customer.
The term is defined as sum of usefulness of all features. We should favor
features with high usefulness score.

Term G considers the configurability of the system. There are many needs
for the device, and thus the system should be modifiable to meet these needs.
The term is defined as sum of configurability scores of the features.

Term S considers the cost of device, which is an important factor, espe-
cially if the device is intended to be deployed in large numbers to form a
network of devices. Also simple device, with less features is cheaper and less
likely to break and thus need maintenance. S is defined as sum of negative
cost scores and number of features in device.



CHAPTER 3. IMPLEMENTATION 25

Term C considers the total cost of the system, while S considered only the
device itself. The cost of device is not considered in this term, as it already
is considered in S, otherwise the costs of the device would be counted twice.
Thus C is defined as sum of negative cost scores of all features except those
selected in device.

Term P considers power usage of the device. Low power can be important
factor in many devices, especially those running on battery. This means that
features that use lot of power should not be selected in the device. P is
defined as sum of negative power consumption scores of features selected in
device.

Term I considers how standalone the device is. Independence in this
context means that the device should not rely on other parties to operate.
The device should implement all of its functionality on its own, as connecting
to a cloud service is not always feasible or even possible. I is defined as
negative sum of features selected in cloud.

3.2.5 ILP Model Implementation

The ILP formulation is coded in Python 3.6 and the actual ILP solver used
is the default in the PuLP python package called CBC [1, 3]. All the vari-
ables are defined in table 3.3, and explained in more detail in the following
subsections.

Nodes and arcs

Each node is represented with an integer index, 0, 1, 2, 3 corresponding to
device, cloud, remote client and local client respectively.

The arcs are defined as binary decision variable, directed from node j ∈
{0, 1, 2, 3}, to node i ∈ {0, 1, 2, 3}.

zji =

{
1 if there is an arc from j to i

0 otherwise
(3.1)

If some connections are not permitted or undesirable, they are precluded
by forcing the variable to be 0 with a constraint

zji = 0, if arc from j to i is not allowed (3.2)

Features

Each feature is represented with an integer index ranging from 0 to F − 1,
where F is number of features.



CHAPTER 3. IMPLEMENTATION 26

Variable Description
xfi ∈ {0, 1} assignment of feature f to node i
zji ∈ {0, 1} existence of arc from node j to i
αfigj ∈ {0, 1} satisfaction of weak inter-dependency of fea-

ture f in node i to feature g in node j
βfgi ∈ {0, 1} satisfaction of weak intra-dependency of fea-

ture f to feature g in node i
γfigj ∈ {0, 1} satisfaction of strong inter-dependency of

feature f in node i to feature g in node j
δfgi ∈ {0, 1} satisfaction of strong intra-dependency of

feature f to feature g in node i
µfu ∈ R usefulness of feature f
µfx ∈ R complexity of feature f
µfc ∈ R cost of feature f
µfp ∈ R power consumption of feature f
µfg ∈ R configurability of feature f
ωE ∈ R Weight for term E
ωU ∈ R Weight for term U
ωF ∈ R Weight for term F
ωS ∈ R Weight for term S
ωC ∈ R Weight for term C
ωP ∈ R Weight for term P
ωI ∈ R Weight for term I

Table 3.3: Table describing the variables in the ILP implementation



CHAPTER 3. IMPLEMENTATION 27

Each feature f = 0, 1, ...F can be chosen in any node i ∈ {0, 1, 2, 3}, if
not restricted. This is represented with a binary decision variable xfi.

xfi =

{
1 if f is selected in i

0 otherwise
(3.3)

For each feature f = 0, 1, ...F−1 that is not allowed in node i ∈ {0, 1, 2, 3}
, we force the feature in that node to be not selected by defining constraint:

xfi = 0, if f not allowed in i (3.4)

Each feature has real valued scores for usefulness, complexity, cost, power
consumption and configurability. The scores for feature f is marked with
following variables.

µfu ∈ R for usefulness (3.5)

µfx ∈ R for complexity (3.6)

µfc ∈ R for cost (3.7)

µfp ∈ R for power consumption (3.8)

µfg ∈ R for configurability (3.9)

Dependencies

For each defined weak inter-dependency between two features there is variable
αfigj,

αfigj =

{
1 if dependency is satisfied

0 otherwise
(3.10)

Where f = 0, 1..F − 1 is a feature with weak inter-dependency to feature
g = 0, 1..F − 1, and i ∈ {0, 1, 2, 3} is the node for f , and j ∈ {0, 1, 2, 3} is
the node for g

For each defined weak intra-dependency between two features there is
variable βfgi,

βfgi =

{
1 if dependency is satisfied

0 otherwise
(3.11)

Where f = 0, 1..F − 1 is a feature with weak intra-dependency to feature
g = 0, 1..F − 1, and i ∈ {0, 1, 2, 3} is the node for f and g.



CHAPTER 3. IMPLEMENTATION 28

For each defined strong inter-dependency between two features there is
variable γfigj,

γfigj =

{
1 if dependency is satisfied

0 otherwise
(3.12)

Where f = 0, 1..F − 1 is a feature with strong inter-dependency to feature
g = 0, 1..F − 1, and i ∈ {0, 1, 2, 3} is the node for f , and j ∈ {0, 1, 2, 3} is
the node for g

For each defined strong intra-dependency between two features there is
variable δfgi,

δfgi =

{
1 if dependency is satisfied

0 otherwise
(3.13)

Where f = 0, 1..F − 1 is a feature with strong intra-dependency to feature
g = 0, 1..F − 1, and i ∈ {0, 1, 2, 3} is the node for f and g.

To enforce that αfigj is 1 exactly when the dependency is satisfied, and
0 otherwise we define the following constraints.

αfigj ≥ xgj + zji − 1 (3.14a)

αfigj ≤ xgj (3.14b)

αfigj ≤ zji (3.14c)

Here equation 3.14a forces the variable αfigj to be 1 if the dependent
feature is selected in the tail node and the arc from tail to head node is also
selected. However, this equation alone does allow the variable to be 1 in other
cases as well. Equation 3.14b forces the variable to be 0 if the dependent
feature is not selected in tail node, and equation 3.14c forces the variable to
be 0 if the arc is not present. Together these equations force the variable to
be 1 when dependency is satisfied and 0 otherwise.

Similar equations apply also for γfigj.

γfigj ≥ xgj + zji − 1 (3.15a)

γfigj ≤ xgj (3.15b)

γfigj ≤ zji (3.15c)

Equations 3.14 and 3.15 were about forcing the inter-dependencies to correct
values. In the following we do the same for intra-dependencies. To force βfgi
to be 1 exactly when the dependency is satisfied and 0 otherwise we define a
constraint:



CHAPTER 3. IMPLEMENTATION 29

βfgi = xgi (3.16)

Similarly for strong intra-dependency:

δfgi = xgi (3.17)

Equations 3.16 and 3.17 constrain the dependency variable to be 1 if the
dependent feature is selected and 0 otherwise.

The above equations 3.14, 3.15,3.16 and 3.17, indicate whether a feature
dependency could be satisfied if the feature is chosen. Now we must also
make sure that a feature is only selected when its dependencies are selected.

As explained in section 3.2.3 weak dependencies mean that atleast one
of the weak dependencies defined for a feature must be selected to satisfy
the weak-dependencies for this feature. In our ILP implementation this is
ensured with defining following constraint for each feature f = 0, 1...F − 1
in each node i ∈ {0, 1, 2, 3}.

F−1∑
g=0

(βfig +
3∑

j=0

αfigj) ≥ xfi (3.18)

Equation 3.18 counts the number of satisfied weak dependencies for a
feature, and requires that sum to be greater or equal to the feature decision
variable. This results the sum to be at least 1, if the feature is selected.

Each strong intra-dependency has the following constraint:

δfgi ≥ xfi (3.19)

A node can be the head node for multiple arcs, and it is enough that
one of these arcs satisfy a strong inter-dependency for a feature. This means
that if a feature has a strong inter-dependency to another feature this another
feature does not need to be in every node there is an arc coming from. So
for each strong inter-dependency there is a following constraint.

∑
j∈N

3∑
j=0

γfigj ≥ xfi (3.20)



CHAPTER 3. IMPLEMENTATION 30

Objective function

The objective function is defined as maximizing H

H = ωE ∗E + ωU ∗ U + ωG ∗G+ ωS ∗ S + ωC ∗ C + ωP ∗ P + ωI ∗ I (3.21)

WhereG is the total objective,E,U, S,G,C, P, I are the terms, and ωE, ωU , ωF , ωS, ωC , ωP , ωI

are the corresponding weights for each term.

E =
F−1∑
f=0

3∑
i=0

−xfi ∗ µfx (3.22)

U =
F−1∑
f=0

3∑
i=0

xfi ∗ µfu (3.23)

G =
F−1∑
f=0

3∑
i=0

xfi ∗ µfg (3.24)

S =
F−1∑
f=0

−1− xf0 ∗ µfc (3.25)

C =
F−1∑
f=0

3∑
i=1

−xfi ∗ µfc (3.26)

P =
F−1∑
f=0

−xf0 ∗ µfp (3.27)

I =
F−1∑
f=0

−xf1 (3.28)

The equations 3.22, 3.23, 3.24 and 3.26 are sums of all selected features’
relevant scores. The equations 3.25 and 3.27 are sum of relevant scores for
features selected in device. This is noted with the value 0 in xf0 as the node
with index 0 corresponds to the device node. Similarly in equation 3.28 the
value 1 in xf1 notes the cloud node.

3.3 Monte-Carlo Method

We used a Monte-Carlo method similarly as in work by Oulasvirta[19] and
work by Beyer [7]. The method consists of two parts, first sampling the rat-
ings and solving the model for each sample and then searching the solutions
for robust and diverse solutions.



CHAPTER 3. IMPLEMENTATION 31

3.3.1 Random Sampling

Each feature has multiple ratings for each of the properties, also each rating
has a confidence level. The confidence level is used to give more weight for
ratings with high confidence and less weight to those ratings where confidence
level was low. This is useful as not all persons who rate the features are
experts on every feature domain. Someone can know more about network
related features and some about UI related features, and their vote should
matter more on features related to their field.

The confidence levels and the different ratings are used to compute a mean
and standard deviation for each property for each feature. These values are
used to construct a normal distribution for each property for each feature.

Before the ILP solver is run, each feature property’s normal distribution
is sampled. This sampled value is then used in the solver as the property
value. The LP problem is constructed with these samples and then solved.
Each run of the solver solves the problem optimally for those sampled ratings.

This process of sampling the ratings, and solving the problem with the
samples is repeated multiple times, few thousand times for example. Multiple
runs are necessary as each time the ratings are sampled, the optimal solution
for those samples can be very different from the other solutions. Sampling
multiple times increases the likelihood of finding the samples which, when
solved with, produces the most useful solutions.

3.3.2 Mining Solutions

After running the solver with different samples for some hundreds or thou-
sands times, we have some hundreds or thousands solutions to the problem.
This section introduces how this set of solutions are searched for the robust
and diverse solutions similarly as in previous work[6, 19].

The difference in two solutions is computed as the Hamming distance, i.e.
number of differing elements. In our case it means the number of differing
features chosen. It can be computed as XOR of the two feature sets, and
counting the number of elements in the resulting set. This number is called
the distance between the two sets in the following sections.

Robust Solution

The robust solution is the best compromise between all the solutions. It is
the solution that has lowest total distance to every other solution.

Robust solution is found with algorithm 1. The algorithm computes the
total distance to all the other solutions for each solution, see line 4 in al-



CHAPTER 3. IMPLEMENTATION 32

gorithm 1, and choosing the one with lowest total distance, see line 8 in
algorithm 1

Algorithm 1 Robust solution search

Input: solutions list of solutions from monte-carlo method
1: minTotDist←∞
2: robust← null
3: for all s1 ∈ solutions do
4: totDist← 0
5: for all s2 ∈ solutions do
6: totDist← totDist+XOR(s1, s2)
7: end for
8: if totDist < minTotDist then
9: robust← s1

10: minTotDist← totDist
11: end if
12: end for
13: return robust
Output: the solution with lowest total distance to other solutions

Diverse Solutions

The diverse solutions are a set of most distinguished sets, or most different
from each other. The set contains K solutions, and this set should have the
highest possible distance to each other.

The set is searched with algorithm similar to the one introduced in work
by Oulasvirta[19]. The algorithm first chooses a random solution, and inserts
it to the set, as seen in algorithm 2, line 4. and then finds the most distant
solution to that, at line 11, and inserts to the set, at line 16, then finds
the most distant solution to all of the previous solutions in the set similarly,
this is repeated K times. After that we have a set of K solutions that are
maximum distance away from each other.

This process of finding the K solutions is repeated M times, and the set
with highest mean distance,see line 23 between the solutions in the sets is
chosen as the diverse set, at line 30, and the solutions in that set are the
diverse solutions.



CHAPTER 3. IMPLEMENTATION 33

Algorithm 2 Diverse solutions search

Input: solutions list of solutions from monte-carlo method
1: maxMeanDist← 0
2: maxMeanset← null
3: for m = 0 to M do
4: set← []
5: set[0]← random s ∈ solutions
6: for k = 1 to K − 1 do
7: maxD ← 0
8: maxDsol← null
9: for all s1 ∈ solutions do

10: minD ←∞
11: for all s2 ∈ set do
12: if XOR(s1, s2) < minD then
13: minD ← XOR(s1, s2)
14: end if
15: end for
16: if minD > MaxD then
17: maxD ← minD
18: maxDsol← s1
19: end if
20: end for
21: set[k]← maxDsol
22: end for
23: dsum← 0
24: for k1 = 0 to K − 1 do
25: for k2 = 0 to K − 1 do
26: dsum← dsum+XOR(set[k1], set[k2])
27: end for
28: end for
29: dsum← dsum/k
30: if dsum > maxMeanDist then
31: dsum← maxMeanDist
32: maxMeanset← set
33: end if
34: end for
35: return maxMeanset
Output: set of K solutions, with maximum mean distance to each other



CHAPTER 3. IMPLEMENTATION 34

Figure 3.5: Screenshot of the visualization for the computed feature set with
dummy data. A colored cell indicates that the feature on the row, is selected
in the node on the column.

3.4 Visualization

The robust and diverse sets are visualized in a grid form, where each row
corresponds to a feature, and a column corresponds to a node. at the inter-
sections, there either is a empty cell or a colored cell. A colored cell indicates
that the feature on the row, is selected in the node on the column. Empty
cell indicates that the feature is not selected in that node. All features are
displayed on the visualization to see which features were not selected and
which were not. The visualizations are in HTML form. The HTML form
allows using hyperlinks to jump between solutions, this makes comparing the
solutions easy. The HTML can be shared easily and can be opened basically
on any device, without needing other applications than a web browser. A
screenshot of the visualization can be seen in figure 3.5

3.5 Concepting Tool

The system is used with a simple user interface, allowing the user to choose
the different features, ratings, nodes, arcs and dependencies by selecting files
to read. The ratings are read from multiple files, each containing a single
set of ratings for each feature, and the allowed nodes for each feature. The
different arcs between nodes are read from a file as well, arcs defined as an
adjacency matrix. The dependencies are also read from a file, with F × F



CHAPTER 3. IMPLEMENTATION 35

matrix of dependencies. Screenshot of the tool can be seen in figure 3.6.
The tool has three run configurations, test, normal and comprehensive.

The test mode runs fast as it does only 10 iterations of the Monte-Carlo
method. It outputs 3 diverse solutions and the robust solution. The test
mode is used to test the tool to see what the output is like with the given
settings. The normal mode is slower and runs 1000 iterations, and outputs
5 diverse solutions, and the robust solution. It’s used to find more diverse
solutions than the test case, as it iterates 100 times more than the test mode.
The comprehensive is the slowest as it runs 10000 iterations, and finds 6
diverse solutions and the robust solution. The comprehensive mode tries to
find even more diverse solutions. It is intended to be used when the weights
are determined to produce suitable results, using test and normal mode. It
is not very suitable for fast iterative use, as single run can take long time.
With 103 features and 154 dependencies the test mode runs for about 30
seconds, normal mode about 10 minutes and comprehensive couple of hours.

Once the tool is done computing the solutions it opens the visualization
in the computer’s default browser. The console also outputs information
about the progress, and gives some information about the performance, for
example how long it took to iterate and solve the solutions, how long it took
to find the robust solution and the diverse solutions.



CHAPTER 3. IMPLEMENTATION 36

Figure 3.6: Screenshot of the user interface for the tool. The UI allows select-
ing files and folders to define the optimization problem, and allows the user
to adjust sliders to weight different terms differently. There is also possibility
to run the tool with different configurations. The test configuration runs the
Monte-Carlo method 10 times, and find the robust solution and 3 diverse
solutions. Normal mode runs 1000 iterations and find the robust solution
and 5 diverse solutions while comprehensive runs 10000 iterations and find
the robust solution and 6 diverse solutions.



Chapter 4

Evaluation

This chapter shows how the model stability was tested, by varying the weights
and seeing how sensitive it is. This information is useful for evaluating the
usefulness of the tool.

In this chapter we also show how the output of the tool was validated.
The validation is a lightweight test to see how they compare to user generated
ones. The test is conducted by having the tool generate solutions, and we
also generate own solutions, then ask few people in what order they would
rank the solutions. This was done as a part of the real use case test.

4.1 Sensitivity Analysis

The model’s sensitivity to weight adjustments was tested by adjusting the
weights and seeing how much does each term’s weight affect the results. The
test was conducted by running the model while adjusting a single term’s
weight with values 0, 0.5, 1, 1.5, 2 and 3, while keeping the rest at a default
value of 1.0. This was repeated for each term. At each run the number of
features were logged for each node. Optimal result is that the weight change
causes a linear change in the number of features chosen for the affected nodes.
Linear effect is easy to understand and adjusting the model to find suitable
feature sets becomes easier.

In the tests there were 103 features, and in total 154 dependencies defined
between the features. The data set is same as in chapter 4.2. The model
was run with 100 iterations and K = 4. Each run took approximately 25
seconds.

The seven terms E,U, S,G,C, P, I were tested with 5 different weight
values. With 4 diverse sets and a robust set this results in 7*5*5 = 175 data
points, the model was also run with all weights at the default 1.0, resulting

37



CHAPTER 4. EVALUATION 38

in 5 more data points, thus in total there were 180 data points.
The weights’ effect to the number of features in each node for each ob-

jective are visualized in figures 4.1 - 4.7. Each figure also contains a linear
fit to see how linearly the number of features change in each node when the
weights are adjusted. The robust solutions are marked with an orange cross
marker, while the diverse solutions are marked with blue dots.

Figure 4.1: Effect of ωE on the number of features on each node

Figure 4.1 shows that increasing ωE causes the number of features to
decrease fairly linearly in each node. Each graph is very linear when ωE is
between 0 and 2, but at 3 the graph start to curve a bit. This is likely caused
by the number of features starting to plateau somewhere between 2 and 3.



CHAPTER 4. EVALUATION 39

Figure 4.2: Effect of ωU on the number of features on each node

Figure 4.2 shows that increasing ωU causes the number of features to
increase fairly linearly in each node. Quadratic fit could have been a better
fit in Local client and Remote client.

Figure 4.3: Effect of ωG on the number of features on each node



CHAPTER 4. EVALUATION 40

Figure 4.3 shows that increasing ωG causes the number of features to
increase very linearly in each node. Only Local client might have been a
better fit with a quadratic curve.

Figure 4.4: Effect of ωS on the number of features on each node

Figure 4.4 shows that increasing ωS causes the number of features to de-
crease fairly linearly, clearly faster in Device node than other nodes however.
This is expected as The term S punishes for each feature in the device. This
reflects to other nodes as well, because of the dependencies. Some features
can only be selected if a specific feature is selected in the Device node, and
now we limit features in the device node causing the features in other nodes
to be limited as well.



CHAPTER 4. EVALUATION 41

Figure 4.5: Effect of ωC on the number of features on each node

Figure 4.5 shows that increasing ωC causes the number of features to
decrease linearly, slightly slower in Device node than other nodes however.
This is expected as the term C punishes for features that are not in Device.
This reflects to Device as well, because of the dependencies. There is no use
selecting features in the device if they cannot be used in other nodes.



CHAPTER 4. EVALUATION 42

Figure 4.6: Effect of ωI on the number of features on each node

Figure 4.6 shows that increasing ωI causes the number of features to
decrease linearly in the Cloud node, but other nodes are not affected. This
is expected as well as the term I punishes for each feature in the cloud. This
does not reflect on other nodes, because there is also arc from Device to
Remote Client bypassing the cloud completely.



CHAPTER 4. EVALUATION 43

Figure 4.7: Effect of ωP on the number of features on each node

Figure 4.7 shows that increasing ωP causes the number of features to
decrease linearly in the nodes, clearly faster in the Device node however.
This has the same effect as explained previously with figure 4.4 causing the
other nodes’ features to decrease as well.

4.2 Real Use Case and validation

This section introduces how the method was used on a real use case in Vaisala.
The main point of this chapter is to discuss how well this method works in
actual work environment with a real project and timetables. We also do result
validation in this section to see how well the computer generated solutions
compare to user generated ones. This section consists of three parts. First we
discuss how the input feature list was generated and then and then we discus
how ratings and dependencies were generated for these features. Finally we
see how good the results were in a light weight empirical study.

4.2.1 Feature Generation

The list of candidate features was generated based in a workshop which was
done was done in co-operation with Vaisala personnel. Workshop event was
created to come up with lot of varying features. The workshop was also



CHAPTER 4. EVALUATION 44

organized to prevent fixating only on certain point of view. Research has
shown that co-designing and collective creation can be very powerful and
can lead to more relevant results than individual creativity and is not just
the sum of the individual creativities[7, 22, 23].

Prior to the actual workshop event, a short 30 minute briefing meeting
was organized for the participants. The purpose was to introduce the subject
and make sure everyone understands the purpose of the workshop. This was
done as a separate event before the actual workshop to make sure everyone
has prepared for the right thing and that the actual workshop event could
focus on it’s goals instead of introducing the event.

In this meeting the participants were also briefly introduced to the com-
putational methods that would be used later. This was done to make the
participants understand that the workshop event’s purpose is not to find the
optimal set of features but instead come up with as many different features
that could be in the device, even useless and silly ideas were welcomed.

The participants consisted of 10 people. The number was kept fairly low
to increase collaboration between all the participants. The workshop was
organized in two parts.

The notes taken in the pre-study interviews act as an input for the
first part of workshop. In total there were 298 notes, each containing an
idea,observation or some other insight related to the subject. From the pre-
study data and help of Vaisala personnel also different proto-personas were
generated to represent the different users, customer groups and organiza-
tions that could use such a device. Proto-personas are a modified version of
the personas that stimulate the same type of empathetic and user oriented
thinking but with less investment in time[9]. These personas were used in
the second part of the workshop. In total 9 different personas were found.
Examples being ”field technician” and ”Technical support”.

The purpose of the first part was to organize the data. This was done
by utilizing method called Affinity clustering. Affinity clustering is a graphic
technique for sorting items according to similarity. It helps identifying issues
and insights, reveals thematic patterns, builds a shared understanding.[12,
p. 40-41] We began with unsorted set of notes on table, and began grouping
them towards similar notes. Once the groups started to form, they were given
a label to describe the group. Example labels were ”data visualization”,
”cloud platform”, ”price”. Illustration of this method can be seen in figure
4.8. In total we identified 30 groups.



CHAPTER 4. EVALUATION 45

a) b) c)

Figure 4.8: Illustration of the Affinity clustering method used to reveal
themes in the interview data. a) The notes before clustering, ordered ran-
domly, b) notes clustered based on similarity, c) clusters named based on the
clusters theme.

Then in the second part, the actual ideation of features was done. This
was done in the form of creative matrix, where the columns represented each
persona, identified during the interviews and each row corresponded to one
cluster of notes from the clustering phase.

Creative matrix is a format for sparking new ideas at the intersections
of distinct categories. It helps generating large number of ideas, promotes
divergent thinking and helps with thinking new and unusual ideas.[12, p. 62-
63]

This makes Creative matrix a good choice for our purpose, as the purpose
is to come up with as many different ideas as possible. This also helps to come
up with the basic features that are needed and possibly some new features,
that we had not considered before.

The participants were given an A0 paper sheet with the creative matrix
printed on it, with the personas on top row, illusrated in figure 4.9a. Then the
participants picked one of the clusters, and placed on the left most column.
Then the participants started going from left to right filling features at each
intersection illustrated in 4.9b. The direction was also important as the
personas were set up so that they represented the life cycle of the device.



CHAPTER 4. EVALUATION 46

a)

b)

Figure 4.9: Illustration of Creative Matrix. a)Empty matrix with personas
on the columns b) filled matrix, with themes on rows and corresponding
features on the columns

After the workshop we had a list of all the possible functionalities the
system could have. In total 103 different features were identified.



CHAPTER 4. EVALUATION 47

4.2.2 Ratings and Dependencies

A questionnaire was issued to all participants of the workshop. The question-
naire asked to rate each feature found in the workshop based on the properties
described in chapter 3. The participants could also define dependencies be-
tween the features, and mark which feature was allowed in which node. The
questionnaire contained two files, the ratings file and the dependencies file.

The ratings file contained a row for each feature, and each row had
columns for each of the property the feature was to be rated for, columns
for the allowed nodes, and a confidence column, as illustrated in figure 4.10.
Each rating was on scale 0-3, allowed nodes either 0 or 1 confidence in range
1-3.

Figure 4.10: Illustration of ratings questionnaire. For each feature on a
row there is column for usefulness(U),complexity(X),cost(C),power consup-
tion(P) and configurability(G), allowed nodes, device(D), cloud(C), Remote
Client(R), Local client(L) and confidence.

The dependency file contained a row and a column for each feature making
it a 103×103 matrix. Each cell represented dependency for the feature on the
row to the feature on the column. Possible values for each cell were empty
or one of ’WE’, ’WA’, ’SE’ or ’SA’, representing weak inter, weak intra,
strong inter and strong intra respectfully. This is illustrated in figure 4.11



CHAPTER 4. EVALUATION 48

Figure 4.11: Illustration of dependencies questionnaire. Each cell represents
a dependency from feature on the row to feature on the column. Values
’WE’, ’WA’, ’SE’ or ’SA’, represent weak inter, weak intra, strong inter
and strong intra respectfully.

4.2.3 Validation

Validation of the results was done to see how good the resulting concepts
are. The validation is conducted as light weight empirical study, to get some
rough estimate how well the results compare to user generated ones. The
validation is conducted by showing the relevant people few different concepts.
some of which are computer generated and some are generated by ourselves.
The concepts generated ourselves are based on the understanding that was
gathered during the interviews and workshop.

We tested the tool with two set of concepts. Set one was called MVP,
for minimum viable product, and set two was called MVP+, which was still
minimal, but more fleshed out than the MVP. Use of these minimal concepts
was done to allow us to make good enough concepts ourselves and push
the limits of the tool. With small number of features each feature plays an
important role and small number of features is easier to handle for a human
generating the concept. This really tests how well the tool works, because the
tool must only choose the only most important ones, and allowing the tool to
choose large number of features, it could accidentally choose the important
ones as well without considering them important and this mistake would
not be noticeable. Also limiting the number of features allows more diverse



CHAPTER 4. EVALUATION 49

participant 1
MVP E-D-B-A-C

MVP+ A-D-B-C-E

participant 2
MVP D-A-B-E-C

MVP+ B-D-A-C-E

participant 3
MVP E-D-B-A-C

MVP+ A-B-E-C-D

participant 4
MVP B-E-A-D-C

MVP+ A-B-D-C-E

Table 4.1: Table showing participant rankings

concepts.
Both of the concept sets contained 5 concepts labeled A,B,C,D and E.

A and B were generated by us. C was the robust solution and E and D
were diverse solutions, generated by computer. These concepts can be seen
in figures 4.12 and 4.13. Observant reader might notice that the background
on these images is white, as opposed to blue in figure 3.5. This is because
the concepts here were printed on paper, and we wanted so save ink.

Four participants were asked to rate the concepts from best to worst based
on their preferences and opinions. All four participants also participated in
the workshop, so they already had an understanding of the scenario and
features. The participants’ rankings can be seen in table 4.1 and they are
discussed in chapter 5.



CHAPTER 4. EVALUATION 50

(a) concept A

(b) concept B

(c) concept C

Figure 4.12: Generated concepts for case MVP



CHAPTER 4. EVALUATION 51

(d) concept D

(e) concept E

Figure 4.12: Generated concepts for case MVP



CHAPTER 4. EVALUATION 52

(a) concept A

(b) concept B

(c) concept C

Figure 4.13: Generated concepts for case MVP+



CHAPTER 4. EVALUATION 53

(d) concept D

(e) concept E

Figure 4.13: Generated concepts for case MVP+



Chapter 5

Discussion

The presented model combines the feature selection method used in work by
Oulasvirta[19] and feature distribution method from work by Park[20]. The
model also extends this work by introducing the different dependency types
called inter and intra, and their variations called weak and strong. We also
evaluated the model in a more realistic case in a real work environment with
real project and timetables.

The model presented produces promising results. The weight adjustments
cause predictable change in number of features chosen. Small adjustments
cause a small change and large adjustments cause large change, and the
change is fairly linear, making it easier to estimate the effect of a weight ad-
justment. This makes iterative design with the model more efficient, because
making the adjustments is not just guessing and the effect of each term can
be learned fairly easily. This is important because the model is intended to
ease product concepting. If the model is very cryptic and produces seemingly
random results, the designers are less likely to use the model.

Adjusting the weights ”correctly” is naturally very important for finding
the best results. To find a good starting point, one could take an existing
product and try to adjust weights such that the resulting concepts are similar
to that of the existing products feature sets. These weights could then be
further adjusted based on the specifications of the new product. This method
could also be used to find the most important features in current product by
starting with the current product, and increasing weight for example total
cost term to see which features are most crucial ones.

The real use case in chapter 4.2 taught us many things about the usage
of the model. The people asked to fill in the questionnaire reported that
the questionnaire was too laborious. This is also reflected by the fact that
only 5 people of the 10 who were asked, filled the ratings at least partially
and no-one filled the dependencies completely. One participant did try to

54



CHAPTER 5. DISCUSSION 55

fill the dependencies as well, but had to give up, as he ran out of time. Un-
derstanding the differences between the dependencies and how they actually
affect the results and then considering these for each pair of dependencies
such that together they form a sensible dependency structure was too much
work for too little preparation, training and time allocated.

We filled the questionnaires ourselves for the 103 features as well. Filling
the questionnaire took 45+45 minutes, for the ratings and dependencies to-
taling 90 minutes. Naturally for us the dependencies were easier to fill as we
have been working with them for a while, and have had time to assimilate the
different dependencies. Many reported that the dependencies questionnaire
was so overwhelming that they could not even get started. This is under-
standable as the questionnaire contained 103 features, meaning 103 × 103
matrix and each cell could have 5 different values, empty or one of the four
dependency types. This totals to 103 ∗ 103 ∗ 5 = 53, 045 choices. Of course
in practice the matrix is very sparse. Our filled matrix contained only 154
defined dependencies between the features. Once we got the hang of filling
the matrix it was actually fairly straight forward. Some features were very
obviously dependent on only a single specific feature, e.g. ’log out’ and ’log
in’, while some were obviously not dependent on anything, e.g. ’measure
data’. In future the questionnaire should be organized in a workshop form,
making quitting have higher threshold. This could be organized by first going
through all the features and see that every one understands the features in
the same way, then together fill out the dependency matrix. Finally everyone
should fill out the ratings on their own, but still in ’controlled’ environment
in the workshop, where people can easily ask for clarification and help. The
ratings should still be done individually, as the model relies on sampling the
ratings, and if there is no variation the samples are always identical. This
way everyone’s opinion is also considered, instead of only the most dominant
opinion.

In the validation the computer generated concepts did compare to the
human generated ones fairly well. In the MVP case computer generated
concepts were considered best by almost all participants, and in many cases
the second best place was also computer generated. However in MVP+ case
the user generated was always best, but computer generated was still often
the second best. Interestingly the robust solution, concept C in both cases,
was always last or second to last. This is likely because the robust solutions
have lowest number of features selected. This is caused by the robust search
algorithm finding the compromise among all the solutions. This in turn
causes the robust set to mainly contain only those features that are selected
in most of the other solutions as well. However this could be used as an
advantage by setting the weights such that the model produces solutions



CHAPTER 5. DISCUSSION 56

with very high number of features. In this case the robust solution might
work better than the diverse solutions, as the robust chooses the solutions
that are common to most other solutions.

The participants often reported that they ranked the concepts by presence
of certain key features that they thought were the most important ones.
Many also ignored the information on which node the feature was chosen,
and mainly focused on whether the feature is selected at all.

The low participant rate of 5 participants, might have caused the ratings
to not be very representative of the true values for each feature. With more
participants each feature could have more realistic and less noisy values.
Examining the answers the participants gave for the ratings we noticed large
variation in the answers. This causes the random samples to be sampled
on very wide range, making the results more random. This does also make
our findings of the computer generated concepts being comparable to human
generated slightly unreliable. However as explained in 4.2.3 the MVP and
MVP+ cases were intentionally hard for the computer and the fact that the
model still produced similarly good results compared to our understanding
shows that this model is very promising. This claim is based on observing
that the top two best solutions in the validation were fairly well tied between
human and computer generated concepts.

Future expansions to the model could include allowing multiple different
dependency types between two features. In the current form the model only
allows a single dependency type between two features. For example a feature
could have weak inter- and weak intra-dependency to some feature, forcing
the other feature to be in the same node or in a connected node. This would
be useful for example in defining dependency from a feature that needs some
other feature to be present but is does not matter where the other feature
is implemented. For example ’view data logs’ needs ’data logging’ but it
does not really matter whether they are in same or different nodes, as long
as there is some way of accessing the dependent feature. The actual ILP
model does support this even in the current form, but as the dependencies
are read from a .csv file, where each cell corresponds to a single dependency,
the multiple dependencies between two features cannot be defined. This need
came up too late in the development so it was left out from this version, but
the implementation should be fairly straight forward.

Another addition to the model would be more dependency types. One
such additional dependency, or restriction actually, would be to allow defin-
ing two features to not be present in the same node together. This would
allow defining choices better, where only one option is allowed. For example
’data buffer’ and ’data logging’ basically do the same thing but in different
scale. The buffer stores only a small amounts of data to be transmitted later,



CHAPTER 5. DISCUSSION 57

while the logging stores large amounts of data more permanently. These two
have their uses but it does not make much sense to have both. Defining a
constraint that allows maximum of one of these to be present in a node would
solve this.

Another possible future addition to dependencies would be to find a sen-
sible way to aggregate multiple dependency files together. The dependencies
in a file together form a dependency structure between all the features. Com-
bining dependencies from two dependency files is not a trivial task, and this
could be subject for future research to determine if it is possible to combine
two dependency structures in a sensible manner and if so, is it useful. One
possible starting point for such research could be finding chains from the
dependency files and treating them as single units and combining those from
different files. For example in figure 3.4 there would be two chains, ”data log-
ging” → ”measure data” and ”data logging” → ”receive data” → ”transmit
data” → ”measure data”. The dependencies could also be defined in similar
way by defining tree structures in some graphical manner. This could also
be less overwhelming for participants to do than the current way.

The model was made into a tool with a simple user interface to ease the
use and testing of the model. The tool is described in section 3.5. The tool
is rather generic in the sense that it can take any amount of ratings files
with any number of features(as long as they are same in all the files). It also
allows any configuration of dependencies read also from a file, it even allows
defining the nodes and arcs with a file. But the objective function is hard
coded into the model. This makes defining additional nodes fairly useless,
as the objective function does not consider them. For future work this could
be fixed by coming up with a way to define the objective function externally
as well. This would make the tool very generic and suitable for many other
applications, products and product types as well.

The terms in the objective function are linear, which makes them simple
to understand and their behavior is easy to predict. However changing the
ILP solver to Mixed Integer Programming(MIP) solver would allow quadratic
objectives and constraints as well. Quadratic functions could be useful from
example in the cost objectives. With properly adjusted curve, the cost pun-
ishment would be lower for small number of features than in the linear case,
and higher for very large numbers. Both the previously mentioned solvers,
Cbc[1] and Gurobi[2], already support MIP.

With these changes the model could be improved and made into more
general concepting tool to produce concepts for many kinds of products.
As of now it allows only very similar product to be concepted. Based on
the feedback from Vaisala the model could be taken into use in product
concepting phase with some modifications. Most importantly the input data



CHAPTER 5. DISCUSSION 58

forming should somehow be made easier. This seemed to be the bottleneck
in our research as well. Even in the current form we believe that the model
could be useful for product concepting, if given proper training for it.



Chapter 6

Conclusion

The problem that this thesis aims to solve is, how to optimally select features
for internet connected field device, the accompanying cloud service and client
devices such that designer goals, feature properties and relationships to other
features are considered. This information could be used during concepting
of new products.

We solve this problem by utilizing computational methods to handle pos-
sibly large amount of features and their relationships. We model the problem
as an ILP problem. We rate each feature for its usefulness, complexity, cost
and configurability. We define four different types of dependencies between
the features, weak and strong inter-dependency and weak and strong intra-
dependency. The inter dependencies are dependencies across an arc between
two nodes in the graph describing the devices and their connections. The
intra-dependencies are dependencies in a node. Weak and strong variants
correspond to logical or and and case respectfully when there are multiple
dependencies for a single feature. We also utilize Monte-Carlo method to
find diverse and robust solutions to the problem, and then visualize the sets
in grid form to easily see which features were selected and where and which
features were not selected at all. The system was also given an simple user
interface to adjust preferences for each of the 7 terms: Ease of use and install,
Usefulness, Configurability, Simplicity and cost of device, Overall cost, Low
power and Independence.

This work builds on previous work by combining feature selection and
distribution methods from two papers and extends them by introducing dif-
ferent dependency types and evaluates this model in a real use case.

Sensitivity analysis of the model was carried out by adjusting weights
for each objective one by one and seeing how much the adjustment of each
weight affected the number of features chosen. The model is stable, as the
number of features change linearly as the weights are adjusted.

59



CHAPTER 6. CONCLUSION 60

The issues we encountered with the real use case were related to input
data formation. Forming the data was considered laborious and time con-
suming. The dependencies were considered too complicated to understand.
The validation showed that the model could still produce competitive result
when compared to user generated concepts. The issues with current imple-
mentation could be fixed by organizing training and workshop events where
people together work on the input data. This could lead to even better re-
sults and more useful product concepts, as everyone understands the features
similarly.

Based on these results we find that the model looks promising, and with
additional work and training the tool could be improved to produce even
more interesting and useful concepts. With more additions to the model it
could be turned into more general concepting tool as well, as now it only can
be used in similar scenarios.



Bibliography

[1] Coin-or cbc user guide. https://www.coin-or.org/Cbc/cbcuserguide.

html. referenced: 2018-04-18.

[2] Gurobi optimizer. http://www.gurobi.com/products/

gurobi-optimizer. referenced: 2018-05-09.

[3] Pulp project page. https://pythonhosted.org/PuLP/. referenced: 2018-
04-18.

[4] Vaisala website wxt530 product page. https://www.vaisala.com/

en/products/instruments-sensors-and-other-measurement-devices/

weather-stations-and-sensors/wxt530. referenced: 2018-01-08.

[5] Albritton, M. D., and McMullen, P. R. Optimal product design
using a colony of virtual ants. European journal of operational research
176, 1 (2007), 498–520.

[6] Beyer, H.-G., and Sendhoff, B. Robust optimization–a compre-
hensive survey. Computer methods in applied mechanics and engineering
196, 33-34 (2007), 3190–3218.

[7] Bissola, R., and Imperatori, B. Organizing individual and collec-
tive creativity: Flying in the face of creativity clichés. Creativity and
Innovation Management 20, 2 (2011), 77–89.

[8] Bryant, C. R., McAdams, D. A., Stone, R. B., Kurtoglu,
T., and Campbell, M. I. A computational technique for concept
generation. In ASME 2005 International Design Engineering Technical
Conferences and Computers and Information in Engineering Conference
(2005), American Society of Mechanical Engineers, pp. 267–276.

[9] Buley, L. The user experience team of one: A research and design
survival guide. Rosenfeld Media, 2013.

61



BIBLIOGRAPHY 62

[10] Elsen, C., Häggman, A., Honda, T., and Yang, M. C. Repre-
sentation in early stage design: An analysis of the influence of sketching
and prototyping in design projects. In ASME 2012 International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference (2012), American Society of Mechanical Engi-
neers, pp. 737–747.

[11] Fu, K., Murphy, J., Yang, M., Otto, K., Jensen, D., and
Wood, K. Design-by-analogy: experimental evaluation of a functional
analogy search methodology for concept generation improvement. Re-
search in Engineering Design 26, 1 (2015), 77–95.

[12] Institute, L. Innovating for People: Handbook of Human-centered
Design Methods. LUMA Institute, 2012.

[13] Kang, I.-S., Na, S.-H., Kim, J., and Lee, J.-H. Cluster-based
patent retrieval. Information processing & management 43, 5 (2007),
1173–1182.

[14] Liu, Y.-C., Chakrabarti, A., and Bligh, T. Towards an ideal
approach for concept generation. Design Studies 24, 4 (2003), 341–355.

[15] Marks, J., Andalman, B., Beardsley, P. A., Freeman, W.,
Gibson, S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H.,
Ruml, W., et al. Design galleries: A general approach to setting
parameters for computer graphics and animation. In Proceedings of the
24th annual conference on Computer graphics and interactive techniques
(1997), ACM Press/Addison-Wesley Publishing Co., pp. 389–400.

[16] Murphy, J., Fu, K., Otto, K., Yang, M., Jensen, D., and
Wood, K. Function based design-by-analogy: a functional vector
approach to analogical search. Journal of Mechanical Design 136, 10
(2014), 101102.

[17] Murphy, J. T. Patent-based analogy search tool for innovative concept
generation. PhD thesis, 2011.

[18] Noyes, J., and Weisstein, E. W. Linear programming. http:

//mathworld.wolfram.com/LinearProgramming.html. referenced: 2018-
05-22.

[19] Oulasvirta, A., Feit, A., Lähteenlahti, P., and Karren-
bauer, A. Computational support for functionality selection in in-
teraction design. ACM Transactions on Computer-Human Interaction
(TOCHI) 24, 5 (2017), 34.



BIBLIOGRAPHY 63

[20] Park, S., Gebhardt, C., Rädle, R., Feit, A., Vrzakova,
H., Dayama, N., Yeo, H.-S., Klokmose, C., Quigley, A.,
Oulasvirta, A., et al. Adam: Adapting multi-user interfaces for col-
laborative environments in real-time. arXiv preprint arXiv:1803.01166
(2018).

[21] Simonson, I., Carmon, Z., and O’curry, S. Experimental evidence
on the negative effect of product features and sales promotions on brand
choice. Marketing Science 13, 1 (1994), 23–40.

[22] SonicRim, L. S. Collective creativity. Design 6, 3 (2001), 1–6.

[23] Steen, M., Manschot, M., and De Koning, N. Benefits of co-
design in service design projects. International Journal of Design 5 (2)
2011, 53-60 (2011).

[24] Tang, D., Yin, L., and Ullah, I. Matrix-based computational con-
cept design with ant colony optimization. In Matrix-based Product De-
sign and Change Management. Springer, 2018, pp. 55–82.

[25] Thompson, D. V., and Norton, M. I. The social utility of feature
creep. Journal of Marketing Research 48, 3 (2011), 555–565.

[26] Tovey, M., Porter, S., and Newman, R. Sketching, concept de-
velopment and automotive design. Design studies 24, 2 (2003), 135–153.

[27] Visser, W. Designing as construction of representations: A dynamic
viewpoint in cognitive design research. Human–Computer Interaction
21, 1 (2006), 103–152.

[28] Weisstein, E. W. Direction. http://mathworld.wolfram.com/

Direction.html. referenced: 2018-05-23.

[29] Weisstein, E. W. Integer programming. http://mathworld.wolfram.
com/IntegerProgramming.html. referenced: 2018-05-22.

[30] Weisstein, E. W. Monte-carlo method. http://mathworld.wolfram.

com/MonteCarloMethod.html. referenced: 2018-05-22.

[31] Yang, M. C. Observations on concept generation and sketching in
engineering design. Research in Engineering Design 20, 1 (2009), 1–11.



Appendix A

Interviewing template

• Who are you?

– Title/job description?

– How long have you been at Vaisala?

• Who uses the device?

– From what kind of organization they are (universities, meteoro-
logical institutes, airports... )?

– What is special about them?

– Technical know-how

– Special requirements

• What is the device used for?

– Why have customers bought the device?

– What does the device do?

– What is the devices purpose?

– When is the device used?

– Are there requirements that current devices cannot do?

• Where/how is the device used?

– Why is the device accessed?

– In what situations is a remote connection used?

∗ Who does that?

– In what situations is a local connection used?

64



APPENDIX A. INTERVIEWING TEMPLATE 65

∗ Who does that?

• Lifespan of device

– What information do clients need about the device before pur-
chase?

– What kinds of problems do customers have with operating/in-
stalling the device?

– Why is the device decommissioned?



Appendix B

Code snippets

In following sections there are few of the most crucial parts of the Python
implementation as snippets. Each section briefly describes what the part
does and then the actual code is shown.

B.1 Reading dependencies

For each row, with row number fnum, in the dependency file we read the
dependencies for feature with index fnum. For inter-dependencies we add
a dependency for each head node in every arc. Intra-dependencies are made
for each node.

dnum = 0

for n in range(1,cols):

if row[n] == "":

dnum = dnum + 1

if row[n] == "WE":

dnum = dnum + 1

for con in self.connections:

self.weak_inter[con[1]+"_f"+str(fnum)].append(con[0]+"_f"+str(dnum))

if row[n] == "WA":

dnum = dnum + 1

for nd in self.nodes:

self.weak_intra[nd+"_f"+str(fnum)].append(nd+"_f"+str(dnum))

if row[n] == "SE":

dnum = dnum + 1

for con in self.connections:

self.strong_inter[con[1]+"_f"+str(fnum)].append(con[0]+"_f"+str(dnum))

if row[n] == "SA":

dnum = dnum + 1

66



APPENDIX B. CODE SNIPPETS 67

for nd in self.nodes:

self.strong_intra[nd+"_f"+str(fnum)].append(nd+"_f"+str(dnum))

B.2 Weak dependencies

There exists a list weak inter[v] that describes all features that the feature
v has weak inter dependency to. The first for loops define a variable between
feature v and d to describe whether the weak inter-dependency between them
is satisfied. The second loops does the same for weak intra-dependencies
similarly using list weak intra[v]. Finally we enforce atleast one of these
variables to be satisfied.

def addWeakdependencyConstraints(self):

#define dependecy sat = 1 if dependency between v and d is

satisfied

#dependecy 1: weak inter dependecy 2: weak intra dependecy

#weak inter-dependencies

for v in self.weak_inter:

for d in self.weak_inter[v]:

for i in range(len(self.connections)):

c = self.connections[i]

#check that the connection arc is between the nodes

of features v and d

if c[0]+"_" == d[:2] and c[1]+"_" == v[:2]:

con = "c"+str(i)

#sat = d and c

self.prob += self.ILP_dependencysat[v+"_1_"+d] >=

self.ILP_variables[d] + self.ILP_variables[con]

- 1, ""

self.prob += self.ILP_dependencysat[v+"_1_"+d] <=

self.ILP_variables[d], ""

self.prob += self.ILP_dependencysat[v+"_1_"+d] <=

self.ILP_variables[con], ""

break

#weak intra-dependencies

for v in self.weak_intra:

for d in self.weak_intra[v]:

self.prob += self.ILP_dependencysat[v+"_2_"+d] ==

self.ILP_variables[d], ""



APPENDIX B. CODE SNIPPETS 68

#require at least one of the weak dependencies to be

satisfied for each feature

for v in self.variables:

weaklist = []

if v in self.weak_intra:

for d in self.weak_intra[v]:

weaklist.append(self.ILP_dependencysat[v+"_2_"+d])

if v in self.weak_inter:

for d in self.weak_inter[v]:

weaklist.append(self.ILP_dependencysat[v+"_1_"+d])

if len(weaklist) > 0:

self.prob += pulp.lpSum(weaklist) >=

self.ILP_variables[v], "weak depenendencies for "+v

B.3 Strong dependencies

Strong dependencies also have lists strong inter[v] and strong intra[v] defin-
ing the features feature v has dependencies to. The first for loops define
a variable between feature v and d to describe whether the weak inter-
dependency between them is satisfied. Then we define that all of them must
be satisfied, such that if the node where feature v is selected is the head
node for multiple arcs, it is enough that one of the tail nodes satisfy the
dependency.

def addStrongdependencyConstraints(self):

#define dependecy sat = 1 if feature can be satisfied

#and force it to be satisfied

#dependecy 3: strong inter dependecy 4: strong intra dependecy

#inter dependencies

for v in self.strong_inter:

for d in self.strong_inter[v]:

for i in range(len(self.connections)):

c = self.connections[i]

#check that the connection arc is between the nodes

of features v and d

if c[1]+"_" == v[:2] and c[0]+"_" == d[:2]:

con = "c"+str(i)

self.prob += self.ILP_dependencysat[v+"_3_"+d] >=

self.ILP_variables[d] + self.ILP_variables[con]



APPENDIX B. CODE SNIPPETS 69

- 1, ""

self.prob += self.ILP_dependencysat[v+"_3_"+d] <=

self.ILP_variables[d], ""

self.prob += self.ILP_dependencysat[v+"_3_"+d] <=

self.ILP_variables[con], ""

sumlist = []

for i in range(len(self.connections)):

c = self.connections[i]

if c[1]+"_" == v[:2]:

nd = c[0]+"_" + d[2:]

sumlist.append(self.ILP_dependencysat[v+"_3_"+nd])

self.prob += pulp.lpSum(sumlist) >=

self.ILP_variables[v], "strong inter

dependencies"+v+"-"+d

#intra dependencies

for v in self.strong_intra:

for d in self.strong_intra[v]:

self.prob += self.ILP_dependencysat[v+"_4_"+d] ==

self.ILP_variables[d], ""

self.prob += self.ILP_dependencysat[v+"_4_"+d] >=

self.ILP_variables[v], ""

B.4 Reading feature ratings

For each feature, i.e. row in the ratings file we have four dictionaries, one for
each node, that contains the name of the feature, Sampler object for deter-
mining whether the feature is allowed in the node, and 5 Sampler objects for
each of the usefulness, complexity, cost, power requirements and configura-
bility. For each row the values for these aspects are added to the samplers,
the value on column 12 indicates how many times the value is added to
each sampler. This is used to allow weighting user answers differently based
on their confidence. Negative values are discarded to allow answering only
partially. fnum indicates the row number, and it is used as feature index
number.

if self.nodes[0]+"_f"+str(fnum) not in self.variables:

for n in self.nodes:

self.variables[n+"_f"+str(fnum)] = dict([ ("name",row[0]),



APPENDIX B. CODE SNIPPETS 70

("allowed",Sampler()),

("u",Sampler()),

("x",Sampler()),

("c",Sampler()),

("p",Sampler()),

("g",Sampler())

])

if row[1] != ’0’ or row[2] != ’0’ or row[3] != ’0’ or row[4] !=

’0’ or row[5] != ’0’:

#if row has at least one rating, add the row to samplers,

otherwise skip row.

nodeindex = 0

for n in self.nodes:

for i in range(0,int(row[8+len(self.nodes)])):

var_u = int(row[1])

#add only positive values, to allow partial answers

#by marking unanswered cells with -1

if var_u >= 0:

self.variables[n+"_f"+str(fnum)]["u"].addValue(var_u)

var_x = int(row[2])

if var_x >= 0:

self.variables[n+"_f"+str(fnum)]["x"].addValue(var_x)

var_c = int(row[3])

if var_c >= 0:

self.variables[n+"_f"+str(fnum)]["c"].addValue(var_c)

var_p = int(row[4])

if var_p >= 0:

self.variables[n+"_f"+str(fnum)]["p"].addValue(var_p)

var_f = int(row[5])

if var_f >= 0:

self.variables[n+"_f"+str(fnum)]["g"].addValue(var_f)

self.variables[n+"_f"+str(fnum)]["allowed"].addValue(int(row[7+nodeindex]))

nodeindex = nodeindex + 1

B.5 Sampler class

The sampler class that is used for ratings. A value for feature’s aspect is
generated by combining multiple ratings into a normal distribution and then
sampling this distribution.

class Sampler:



APPENDIX B. CODE SNIPPETS 71

def __init__(self,values = None):

self.sample = 0

if values:

self.mean = np.mean(values)

self.std = np.std(values)

self.values = values[:]

else:

self.values = []

self.mean = 0

self.std = 0

def addValue(self,value):

#add new value to list of values, and compute new mean and std

self.values.append(value)

self.mean = np.mean(self.values)

self.std = np.std(self.values)

def newSample(self):

#generates new sample

self.sample = np.random.normal(self.mean,self.std)

return self.getSample()

def getSample(self):

return self.sample


	Cover page
	Contents
	1 Introduction
	1.1 Background
	1.2 Problem Statement
	1.3 Structure of the Thesis

	2 Methods
	2.1 Related Work
	2.2 Integer Linear Programming
	2.3 Monte-Carlo Approach
	2.4 Pre-study Interviews

	3 Implementation
	3.1 Pre-study Interviews
	3.2 ILP Model
	3.2.1 Nodes and Arcs
	3.2.2 Features
	3.2.3 Dependencies
	3.2.4 Objective Function
	3.2.5 ILP Model Implementation

	3.3 Monte-Carlo Method
	3.3.1 Random Sampling
	3.3.2 Mining Solutions

	3.4 Visualization
	3.5 Concepting Tool

	4 Evaluation
	4.1 Sensitivity Analysis
	4.2 Real Use Case and validation
	4.2.1 Feature Generation
	4.2.2 Ratings and Dependencies
	4.2.3 Validation


	5 Discussion
	6 Conclusion
	A Interviewing template
	B Code snippets
	B.1 Reading dependencies
	B.2 Weak dependencies
	B.3 Strong dependencies
	B.4 Reading feature ratings
	B.5 Sampler class


