Aalto University
School of Science
Degree Programme in Computer Science and Engineering

Morley Zan-Bi

Comparative Evaluation of Glossy Sur-
face Shading Using Object-Space Light-
ing and Screen-Space Shading

Master’s Thesis
Espoo, June 4, 2018

Supervisor: Jaakko Lehtinen, D.Sc. (Tech.), Professor, Aalto University
School of Science
Advisor: Jaakko Lehtinen, D.Sc. (Tech.), Professor, Aalto University

School of Science

A' Aalto University
|

Aalto University

School of Science ABSTRACT OF
Degree Programme in Computer Science and Engineering MASTER’S THESIS
Author: Morley Zan-Bi
Title:

Comparative Evaluation of Glossy Surface Shading Using Object-Space Lighting
and Screen-Space Shading

Date: June 4, 2018 Pages: vi + 117

Major: Computer Science Code: T-111

Supervisor: Jaakko Lehtinen, D.Sc. (Tech.), Professor, Aalto University
School of Science

Advisor: Jaakko Lehtinen, D.Sc. (Tech.), Professor, Aalto University

School of Science

The field of computer graphics places a premium on obtaining an optimal balance
between the fidelity of visual of representation and the performance of rendering.
The level of fidelity for traditional shading techniques that operate in screen-space
is generally related to the screen resolution and thus the number of pixels that we
render. Special application areas, such as stereo rendering for virtual reality head-
mounted displays, demand high output update rates and screen pixel resolutions
which can then lead to significant performance penalties. This means that it
would be beneficial to utilize a rendering technique which could be decoupled
from the output update rate and resolution, without too severely affecting the
achieved rendering quality.

One technique capable of meeting this goal is that of performing a 3D model’s
surface shading in an object-specific space. In this thesis we have implemented
such a shading method, with the lighting computations over a model’s surface
being done on a model-specific, uniquely parameterized texture map we call a light
map. As the shading is computed per light map texel, the costs do not depend
on the output resolution or update rate. Additionally, we utilize the texture
sampling hardware built into the Graphics Processing Units ubiquitous in modern
computing systems to gain high quality anti-aliasing on the shading results. The
end result is a surface appearance that is expected to theoretically be close to
those resulting from highly supersampled screen-space shading techniques.

In addition to the object-space lighting technique, we also implemented a tradi-
tional screen-space version of our shading algorithm. Both of these techniques
were used in a user study we organized to test against the theoretical expecta-
tion. The results from the study indicated that the object-space shaded images
are perceptually close to identical compared to heavily supersampled screen-space
images.

Keywords: computer graphics, real-time rendering, object-space lighting,
texture-space shading, user study

Language: English

i

A, , Aalto-yliopisto

Aalto-yliopisto

Perustieteiden korkeakoulu DIPLOMITYON
Tietotekniikan koulutusohjelma TIIVISTELMA
Tekija: Morley Zan-Bi

Tyo6n nimi:
Komparatiivinen arviointi kiiltdvien pintojen valaistustuloksista mallintilan va-
laistuksen ja ruuduntilan valaistuksen valilla

Paivays: 4. kesidkuuta 2018 Sivumaéasra: vi 4+ 117
Piiaine: Computer Science Koodi: T-111
Valvoja: Jaakko Lehtinen, TkT

Ohjaaja: Jaakko Lehtinen, TkT

Tietokonegrafiikan alalla optimaalisen tasapainon saavuttaminen kuvanlaadun
ja laskentanopeuden vélilld on keskeisessd asemassa. Perinteisilld, kuvaruudun-
tilassa toimivilla valaistusalgoritmeilla kuvanlaatu on tyypillisesti riippuvainen
kéytetyn piirtoikkunan erottelutarkkuudesta ja néin ollen kuvaelementtien koko-
naismaarastia. Tietyt sovellusalueet, kuten stereopiirtdminen keinotodellisuusso-
velluksille, edellyttavat korkeata ruudunpéivitystaajuutta seké erottelutarkkuut-
ta, miké taas johtaa laskentatehovaatimusten kasvuun. Néin ollen on tarkoituk-
senmukaista hyodyntéda algoritmeja, joissa valaistuslaskenta saataisiin erotettua
néistd ominaisuuksista ilman merkittavad kuvanlaadun heikkenemista.

Yksi algoritmikategoria, joka tayttdd ndmé asetetut vaatimukset on valaistus-
laskenta 3D-mallikohtaisessa tilassa. Tdmén diplomityon puitteissa olemme to-
teuttaneet tdhén kategoriaan lukeutuvan valaistusalgoritmin, jossa valaistuslas-
kenta suoritetaan mallikohtaisella, yksikésitteisesti parametrisoidulla tekstuuri-
kartalla. Tamé tarkoittaa, ettd valaistuslaskennasta koituvat suorituskykykus-
tannukset eivit ole riippuvaisia aiemmin mainituista ruudun ominaisuuksista.
Valaistuslaskenta yksilollisiin tekstuurikarttoihin mahdollistaa néytonohjaimiin
sisddnrakennetun teksturointilaitteiston kayttamisen korkealaatuiseen valaistus-
tulosten suodattamiseen. Lopputuloksena saavutetaan piirretty kuva, jonka teo-
reettisesti oletetaan olevan laadultaan 1dhelld merkittavasti ylindytteistettyé ruu-
duntilan valaistusalgoritmeille saavutettuja tuloksia.

Mallikohtaisen tilan valaistusalgoritmin lisdksi toteutimme perinteisen ruudunti-
lan valaistusalgoritmiversion. Molempia toteutuksia kaytettiin jarjestaméssamme
kayttajatestissd, jonka tavoitteena oli testata toteutuuko mainittu teoreetti-
nen oletus kaytdnnossd. Kéyttédjatestin tulokset viittasivat vahvasti oletuksen
patevyyteen, kiyttéjien kokonaisvaltaisesti kokien ylindytteistetyn perinteisen va-
laistuslaskennan tulokset ldhes identtisiksi mallintilan valaistuslaskennan tulok-
siin.

Asiasanat: tietokonegrafiikka, reaaliaikainen renderdinti, valaistuslasken-
ta mallintilassa, tekstuuritilan valaistuslaskenta, kéayttajéatesti

Kieli: Englanti

il

Acknowledgements

I would like to thank my advisor, professor Jaakko Lehtinen, for his guidance
throughout the entirety of the thesis work and for being a reference on what
to strive towards. I also wish to thank Jukka Hakkinen for the valuable
feedback he provided on the user study’s design.

Finally, but most importantly, I would like to thank my mother Eija for
giving me the opportunity to get to this point in life. While I am hopeful
that the future still holds even greater achivements, I have also learned the
importance of living in the present and being grateful for the positive aspects
of one’s life.

Espoo, June 4, 2018

Morley Zan-Bi

v

Contents

Introduction

1.1 Background and Motivation
1.2 Thesis Scopeo
1.3 Structure of the Thesis

Theoretical Background

2.1 Visibility Determination
2.1.1 Object Geometry Representation
2.1.2 Transforming from Object-Local to View Space
2.1.3 Perspective Projection
2.1.4 Sampling

2.2 Shading
2.2.1 The RGB Model and Radiometric Units
2.2.2 Physically-Based Rendering
223 Materialso o
2.2.4 Texture Maps
2.2.5 Filtering Normal Maps
2.2.6 The Cook-Torrance BRDF

Practical 3D Rendering

3.1 The Programmable Graphics Pipeline
3.1.1 The Input Assembler and the Vertex Shader
3.1.2 The Pixel Shader
3.1.3 Forming the Final Image
3.1.4 The Compute Shader

3.2 Rendering Methods L.
3.2.1 Forward Shading
3.2.2 Deferred Shading

4 Object-Space Lighting 51

4.1 Motivation for New Rendering Techniques 51
4.2 Shading in Object-Space 53
4.3 Practical Implementation of Object-Space Lighting 54
4.3.1 The Software Used for Implementation 55
4.3.2 Object-Space Lighting Algorithm Overview 56
4.3.3 Mesh Parameterization o7
4.3.4 Rasterization L. o7
4.3.5 The Edge Function 60
4.3.6 Conservative Rasterization 64
4.3.7 The Structure of a G-Buffer Texel 68
4.3.8 Shading and Normal Mapping 70
4.3.9 Dilation oo 73
4.3.10 Screen-Space Shading Implementation 75

4.3.11 Summary Diagram of Texture-Space and Screen-Space
Implementations 79

4.3.12 Comparison of Texture-Space and Screen-Space Shaded
Results 79
5 The User Study 83
5.1 Test Material, 84
5.1.1 Test Scenes 84
5.1.2 Video Production 85
5.1.3 Testing methods 88
5.1.4 User Study Results 91
6 Conclusions 96
6.1 Summary of Results L. 96
6.2 Avenues for Future Developments 97
6.3 Final Thoughts, 98
A Unity Script Pseudocode 105
B Rasterization Pseudocode 110
C Conservative Rasterization Pseudocode 114

vi

Chapter 1

Introduction

1.1 Background and Motivation

The field of computer graphics is one of notable relevance to modern human
society. Its contributions can be seen and appreciated in a wide variety
of applications ranging from those that are purely entertainment-centric to
those strictly intended for industrial or scientific developments.

It is also a field that is characterized by its rapid pace of advancement.
As more powerful computing hardware has over time become both more
available and more affordable, the number of practical application areas
has continued to increase. One example of this is the recent drive towards
consumer-targeted Virtual Reality (VR) applications, that aim to provide a
more immersive user experience.

VR applications also serve to highlight an aspect of computer graphics
that has remained constant through the technological evolution — the contin-
ual strive towards an optimal balance between the visual quality of rendered
images and the computational requirements placed by the utilized rendering
techniques. For VR, interactivity is a vital component in achieving immer-
sion, so the latency between user input and the visual results following from
it has to be kept minimal. This is important both for the level of immersion
as well as for ensuring user comfort [41]. Although 15 Hz can be seen as a
lower limit for the refresh rate of real-time applications [5], current VR de-
vices, including the Oculus Rift and PlayStation VR head-mounted displays
support high refresh rates of up to 90 Hz and 120 Hz, respectively, for this
reason. This is notably higher than the 60 Hz or 30 Hz update rates which
have historically been common for non-VR 3D applications.

VR applications frequently also make use of stereo rendering, in which
a 3D scene is rendered individually for both of the user’s eyes. This can

CHAPTER 1. INTRODUCTION 2

lead to a worst case scenario, where the rendering resource usage is doubled
compared to single view rendering, provided that the resolutions per view
are the same across techniques.

In traditional rendering techniques, that we will collectively refer to over
the course of this thesis as screen-space shading, object surface appear-
ance is computed through sampling the 3D scene using a rectangular grid of
picture elements (i.e., pixels). In the basic case, the pixel centers are used
as sampling locations. The frequency of sampling, and accordingly the num-
ber of pixels we use, determines how high frequency visual information we
can theoretically sample without information loss. As the end result for the
sampling process, we have a value for the light reflected by a surface at each
sample point. While the sample points themselves do not have have an area,
the pixels on physical output device, such as a computer monitor used for the
final output, do have a non-zero area leading to a reconstruction step to be
necessary. In the simplest case of reconstructing the 2D image of the scene
from the sample points, we simply fill the screen pixels with their respective
center sample values - a common but inaccurate method which paired with
an inadequate sampling frequency can lead to visual error patterns known
as aliasing.

Aliasing is especially visible when rendering highly reflective glossy sur-
faces, as their strong dependency on high frequency surface material param-
eters also leads to high frequency reflection patterns — which in turn require
very high sampling rates to avoid information loss. Additionally, popular
specular reflection models such as the Cook-Torrance BRDF' [9] (covered in
Chapter 2) take a statistical approach to the modelling of surface orientation
at a micro scale, which is susceptible to further errors due to the way in
which the distributions are generated using higher scale surface orientation
information. Due to the sensitivity to the reflection parameters (which given
movement in a scene can vary for a sampling location over time), glossy re-
flections often produce reflected light values which vary unnaturally sharply
both spatially as well temporally. The temporal artefacts (referred to as
temporal aliasing) are commonly seen as shimmering or flickering patterns
in the rendered images.

Both spatial and temporal aliasing can be mitigated by increasing the
sampling frequency (the number of pixels used), as well as by using filter-
ing techniques to band-limit the highest frequency patterns in the 3D scene.
As the pixel density is commonly uniform for a single rendered image, the
increasing of pixel count can lead to wasteful processing in the areas of im-
age where higher sampling rate is not needed. Additionally, as the sampled
light values are tied to their specific pixel samples (they represent the sur-
face appearance at a specific sampling location), it can be problematic if we

CHAPTER 1. INTRODUCTION 3

wanted to reuse already computed values for temporally subsequent images.
The reuse of light values could potentially be used to increase rendering per-
formance by decreasing the temporal sampling rate for surfaces or objects
we deemed to have low impact on the overall image quality. In essence we
would like to have the flexibility to adjust the sampling rate both based on
the spatial frequency of visual details present on an object surface as the
temporal rate at which we update the sampling results.

In order to decouple rendering performance from the spatial frequency
(the given screen pixel resolution), it is advisable to look into methods for
performing the lighting computations in spaces other than screen-space. One
such alternative is object-space lighting [7], where lighting computations
are performed in a 3D model-specific space. For this thesis we chosen and
implemented an object-space lighting technique where the lighting calcula-
tions are performed per texture element (texel) onto a uniquely parametrized
rectangular 2D buffer (commonly referred to as texture maps in rendering),
leading performance to be relative to this texture map’s texel count and not
to that of the screen pixels’.

While this decoupling can be interesting in and of itself, true practical
value from an alternative lighting technique can be derived only if the visual
quality of the rendered images is not significantly decreased. A welcome side
effect from using a texture map to store the reflected light of a model surface
is that we can use the built-in graphics processing unit (GPU) texture filter-
ing hardware to achieve fast and high quality anti-aliasing. Anti-aliasing is a
term commonly used to denote the process of decreasing or eliminating alias-
ing artefacts by either limiting or removing the high-frequency components
of the sampled signal before sampling takes place. In the case of texture
filtering, anti-aliasing removes high-frequency patterns which would result
in a distorted result for the chosen screen pixel resolution. By performing
this manner of filtering only on the final lighting results we can achieve im-
ages that are more accurate to reality than images generated by traditional
screen-space lighting techniques, where already the light computation input
values are interpolated through the use of texture filtering methods. This
also means we are able to avoid the earlier mentioned problem associated
with the generation of micro-scale surface orientation distributions, further
improving the lighting results.

The use of texture filtering for object-space lighting leads to the theoreti-
cal expectation that given a high enough texel count, the final image quality
achieved by the technique should be close to that of a very high pixel count,
screen-space technique where the final screen pixel values are computed as
an average of multiple sample values and where the lighting routine utilizes
only point sampled (and thus minimally filtered) input values. As part of

CHAPTER 1. INTRODUCTION 4

this thesis, we conducted a user study where the results suggest that the
theoretical expectation is also valid in practice.

1.2 Thesis Scope

In this thesis we set out to implement an object-space lighting technique and
evaluate its qualitative results compared to high quality renderings from a
traditional screen-space technique. Performance was not a significant consid-
eration for our implementation, and accordingly we do not provide evaluation
on matters pertaining to it. This means that we also do not provide analysis
or discussion on how object-space lighting should be used for optimal results
in a practical scenario, where multiple factors need to be taken into account.

1.3 Structure of the Thesis

In the second chapter of the thesis we cover the aspects of the theoreti-
cal fundamentals of 3D computer graphics rendering that were required for
our implementation of both the object-space and screen-space shading algo-
rithms. During this chapter we start by covering the basic transformation
pipeline, before moving onto the texture filtering operations relevant for our
texture-space shading implementation. We close the chapter by describing
the Cook-Torrance BRDF which we use as a shading model in the imple-
mentation.

The third chapter focuses on mapping the theoretical background to prac-
tical rendering application interfaces (APIs), with the Direct3D 12 pipeline [38]
used as an example. An introduction to the differences between forward and
deferred shading techniques is also given, as the former is used in our screen-
space shading algorithm while a logically very similar version of the latter is
used for the object-space lighting implementation.

Chapter 4 describes our object-space lighting in detail and showcases
example results gained through it. In chapter 5 we explain the design for
the user study we conducted and provide our findings. Chapter 6 concludes
the thesis by summarizing the overall results, while additionally providing
suggestions for future research relating to object-space lighting techniques.

Chapter 2

Theoretical Background

Figure 2.1: The Utah teapot, a classic example of a rendered 3D model. Im-
age by Wikipedia user Dhatfield, distributed under a CC BY-SA 3.0 license.

Taking on any task of significant complexity necessitates the understand-
ing of the fundamentals governing it. Without there being a solid foundation
laid beforehand, effort could be wasted and the eventual end results com-
promised. It is for this reason that we take the time to dilligently cover and
describe in this chapter the theoretical fundamentals of computer graphics to
the extent that is relevant for our implementation of an object-space lighting
algorithm.

The rendering process of 3D computer graphics utilizes the language of

CHAPTER 2. THEORETICAL BACKGROUND 6

mathematics to describe the objects and information that are then used to
produce the desired output image. As the world and the objects within it
that are to be rendered are three dimensional (3D) entities, while the output
devices that are used to view the images are two dimensional (2D) displays,
it is clear that a we need a way to perform a mapping from 3D to 2D (see
figure 2.2).

3D Scene

2D Display

Figure 2.2: The 3D objects have to be mapped onto a 2D display.

To this end, an especially important field of mathematics for rendering
is that of linear algebra due to it providing the means to handle calculations
involving multi-dimensional variables in a simple form. Using the vector and
matrix mathematics linear algebra provides us, we are able to take a surface
point on a 3D object and through multiple matrix transformations project
and finally color it on its appropriate position on the display screen. All of
these steps put together are commonly referred to as the graphics pipeline or
rendering pipeline. An example of a possible end result is given in figure 2.1.

On a high level we thus have two major tasks that need to be performed.
The first one is to determine the object surface points that are visible on a
viewer’s field of vision, represented as the projection plane. From this point
forward we will refer to this viewer as the virtual camera. We will use the
term wistbility determination for this first task.

The second task is then to calculate the color the given surface point
should have based on multiple parameters. These include its location, orien-
tation and surface properties (normally referred to as material properties),
the position of the virtual camera and the incoming irradiance (i.e., the total
incoming radiant flux per the surface point’s area, discussed in section 2.2.1).

CHAPTER 2. THEORETICAL BACKGROUND 7

Using parameters such as these as the input to a reflectance function we are
able to calculate the outgoing radiance reflected from the surface point to-
wards the virtual camera. This determines the appearance of the visible
object surfaces. We will refer to this task by the term shading.

Throughout the thesis, we will use the term 73D scene” or simply ”scene”
to refer to the collection of all of the objects, light sources and the cameras
that participate in the rendering process of a 2D image. A more detailed
discussion on both of the visibility and shading tasks is given next.

2.1 Visibility Determination

The visibility of a surface point is determined by multiple factors that we
divide in this thesis into three conceptual categories. The first category’s
factors include the position and orientation of the 3D model the surface
point belongs to, so in effect its positional attributes independent of any other
objects in a scene. The second category is then the possible occlusion caused
by other objects in the scene. Intuitively it is clear that a part of an opaque
object’s surface, positioned and oriented approripately, could partially or
entirely obstruct the surface of another object from being visible to the virtual
camera. The third category consists of the properties of the camera, e.g., how
wide it’s horizontal and vertical fields of view are, how near and far it is able
to see, as well as the position and orientation of it.

2.1.1 Object Geometry Representation

As visibility is in its essence a multi-faceted problem, we need to be able
relate the locations of the 3D objects and the camera in the same context.
In mathematical terms this means we have to find a way to represent the
objects and the camera in the same coordinate system. In the common case
the 3D objects are represented as 3D models, which have been produced us-
ing a 3D modelling software, such as the 3ds Max and Maya applications
from Autodesk, Inc. [6]. The models are usually composed from multiple
subparts, i.e., meshes, which themselves are built from geometric primitives.
The geometric primitives most commonly in use are triangles, but other op-
tions such as quads are also available. In addition to the geometric data, 3D
models may also contain other surface property information stored in texture
maps. An example of a 3D model is given in figure 2.3. It should be noted
that although meshes are the most common 3D modeling technique, other
methods such as constructive solid geometry and point cloud representation
are also used.

CHAPTER 2. THEORETICAL BACKGROUND 8

Figure 2.3: A rendering of a 3D dolphin model where the triangle edges have
been rendered in black to more clearly show the primitive structure. The
triangles are defined by the endpoints of their edges, i.e., the vertices.

In the common case where triangles are used as the primitives, each of
them is formed by three vertices. While in the simple mathematical defini-
tion we would be mostly interested in the positions of these vertices, their
usage in computer graphics is notably more general, with them being varied
data structures in and of themselves. For photorealistic imaging, the aim
of 3D modelling is to produce accurate, while also computationally efficient
representations of the underlying real-world shapes and materials the mod-
els correspond to. For this reason properties such as vertex color, surface
normal direction and texture map coordinates are additionally stored inside
vertices. This information is then used as inputs for the shading tasks of the
rendering pipeline. More detail on " per-vertex” data is given in sections 2.2.3
and 3.1.1.

2.1.2 Transforming from Object-Local to View Space

Returning back to the production of 3D models, for the ease of creation the
models are each defined in their own, local, coordinate systems. Now, when
the models are imported to a 3D scene for rendering they would by default
all have the same origin and their coordinate axes would also be oriented
the same. Depending on the possible scaling factors and positional offsets
from the origin for the models, the models would be likely to be rendered

CHAPTER 2. THEORETICAL BACKGROUND 9

in a formation resembling a matryoshka doll with its nested structure, each
centered (or very close to) about a single origin (see figure 2.4). Clearly this
is rarely the desired outcome.

A

World
Coordinate
System

) g

Figure 2.4: Here the objects have been positioned and oriented by incorrectly
assuming their vertices to have been defined directly in the world coordinate
system (depicted by the large axis arrows).

What is usualy done is to specify a world coordinate system which acts
as a universal coordinate system relative to which all of the objects in the
scene are described. The individual objects should each have three variables
defined: the translation or displacement vector, the rotation or orientation
variable (typically either a 3D vector or a 4D quaternion [5, p. 72]) and the
scaling factor vector. These represent the object’s local coordinate system
in the world coordinate system’s context. Knowing these three variables and
the origin and the coordinate axes of the world coordinate system, we can
in theory place objects in the scene properly positioned, oriented and scaled.
In practice, we would be well-served to utilize linear algebra and so compose
matrices for translation, rotation and scaling.

While rotation and scaling are linear transformations, meaning that they
can be represented as matrices operating on 3D vectors in a straightforward
manner, translation is an affine transformation which requires the use of
homogeneous coordinates. In practice this means the addition of a fourth

CHAPTER 2. THEORETICAL BACKGROUND 10

component, the w coordinate (in addition to the usual z, y and z coordinates)
to our vectors.

As matrix multiplication corresponds to the composition of transforma-
tions, we will go a step further and combine all of the aforementioned trans-
formations into a single matrix. This is usually called the world or model
transformation. It is worth making the distinction clear that to transform an
object’s surface representation, i.e., the triangles it is formed of, we need to
transform each of the triangle vertices to their world coordinates, as simply
transforming an object’s local origin would not help us much in rendering
the object in its intended location.

A

Y/

L

d / Object B’s
Object A's Wor . Local .
Local Coordinate Coordinate Coordinate
System System System

Object C’s
Local Coordinate
System

Figure 2.5: Here the objects have been positioned and oriented in the scene
by transforming their vertices from the local coordinate systems (depicted
by the object-specific small axis arrows) to the world coordinate system (de-
picted by the big axis arrows). The vertices are correctly assumed to have
originally been declared relative to the local coordinate systems which are
object-specific.

Although we are now able to represent all of the scene’s objects’ locations,
orientations and scales using a single coordinate system, for visibility deter-
mination we still need to understand their relation to the camera’s position
and orientation. This is done by first describing the camera’s position and
orientation in the world coordinate system’s context again using a compo-

CHAPTER 2. THEORETICAL BACKGROUND 11

sition matrix, resulting in the camera’s world matrix. As external objects
appear to move to the opposite direction that the viewer is moving, this ma-
trix will have to be inverted to achieve the proper end result. This end result
is referred to as the view transformation.

By using the view transformation to perform matrix-vector multiplica-
tions on world space vertex position vectors, these vertex positions are trans-
formed into view space coordinates. Typically, in an effort to reduce the num-
ber of computations needed, we would compute a model-specific world-view
transformation, which would then be used for any of the model’s vertices
to take them straight from the object-local space into view space, the vir-
tual camera’s coordinate system. Many times however, we do need the world
space coordinate’s for our subsequent shading calculations so a separate world
transformation matrix is usually stored as well.

2.1.3 Perspective Projection

At this point we are able to describe a 3D model’s surface in camera-relative
coordinates. As previously noted, for display the primitives need to projected
from 3D to a 2D projection plane, also called the projection window. This
plane can be thought of as the view space representation of the display screen.
The algorithms to accomplish the desired projection fall into two main cate-
gories: rasterization and ray-tracing. In rasterization we start from a 3D
model’s surface point’s view space location and compute its corresponding
location on the projection window. In ray-tracing, on the other hand, we
start from knowing the location on the projection window and finding out
which surface point in the scene corresponds to it. FExpressed differently,
the algorithms progress conceptually in the reverse order from each other.
This has several implications of which the most important are those relating
to the speed of rendering as well the complexity of implementing shading
algorithms.

In ray-tracing the surface points for each partial element of the projec-
tion window are calculated through ray-object intersections, with the ratio-
nale being that the closest intersected surface point is the one ”"seen” by that
ray. The ray is created by having it originate from the camera position (i.e.,
the origin of view space) and setting its direction so that it passes through
the center of a given projection window element. These elements can be
thought of as a sampling grid, where each of them is commonly referred to
as a picture element or a pizel. As both the origin and the direction of the
ray is known, a parametric representation of it can be formed and used to
perform intersection with various geometric entities. Usually these are either
triangles or planes, but ray-tracing enables the use of many other shapes

CHAPTER 2. THEORETICAL BACKGROUND 12

A

Object A’s Local
Coordinate System

Object B’s Local
Coordinate System

World

Coordinate
System
The Camera’s)

@

Coordinate

Object C’s Local
Coordinate System

Figure 2.6: The 3D scene in world space, with the virtual camera added to the
scene. The pyramid-like shape with a truncated top is the view frustum for
perspective projection. Note how the virtual camera has its own coordinate
system as depicted by the axis arrows originating from the camera.

such as spheres and cylinders. These cannot be used as is in rasterization
without first deriving a corresponding triangle mesh, due to modern graphics
processing units (i.e., GPUs) being optimized for triangle processing.
Although many acceleration structures have been devised for ray-tracing,
the ray-object intersection process remains a computationally taxing one [§],
making ray-tracing unsuitable for the majority of use cases necessitating real-
time rendering speeds. This is also why ray-tracing will not be dicussed any
further in this thesis, with the focus being on rendering utilizing rasterization.
In rasterization, coming from view space we need a method to map
the view space coordinates onto the projection window. As the projection
window can be thought of as a canvas that the images are painted onto, as
well as the virtual representation of the display screen, we know that it has to

CHAPTER 2. THEORETICAL BACKGROUND 13

be of finite size. This size is determined by the horizontal and vertical fields of
view of the virtual camera, giving the view volume boundaries in both width
and height. Additionally, to limit the number of rendered surfaces and for
enabling us to perform depth comparisons while using a finite precision, the
view volume is also limited in its depth. This volume is commonly referred
to as the view frustum (see figure 2.6).

The situation calls for the use of a projection transformation — and since
we use linear algebra, a projection matriz. There is a variety of different
projections one could use to build the needed projection matrix from, but in
3D imaging the most common one is the perspective projection. This trans-
formation introduces to the rendered image a foreshortening effect similar to
how the human eye works with objects further away appearing to be smaller
in size. In practice this effect is achieved by dividing the view space z and
y coordinates by the z coordinate of a surface position. This operation is
known as the perspective divide. As this division cannot be represented using
a matrix-vector multiplication, it has be performed in a separate step after
the multiplication. The view frustum for perspective projections resembles
a pyramid shape with its top cut off, due to the intersection with the near
clipping plane. A 2D diagram of the view frustum for pespective projection
is depicted in figure 2.7.

It is important to realize that vital properties for 2D display, like a display
screen’s physical pixel resolution or the system-provided rendering window
size can vary from one hardware/software configuration to another. This
means that it is not possible to define a single projection transformation
from 3D into the actual 2D screen pixel coordinates which would hold in the
general case.

Thus, we need an intermediate coordinate system called the NDC' (Nor-
malized Device Coordinates) space, in which the z, y and z coordinates are
mapped to a [—1,1] range (in OpenGL [47], that is — DirectX [36] uses the
[0, 1] range for the z coordinate). This is the coordinate system the vertices
reside in after the projection transformation. Additionally, the fact that the
view frustum is of finite size opens up avenues for performance optimization,
as the primitives situated outside of it can be discarded entirely while those
intersecting one or more of its total of six boundary planes can be clipped
against them.

Keeping in mind the NDC ranges, it would be simple to clip against the
range boundaries, but a further optimization step means that the we perform
the clipping before the perspective divide and thus in an intermediate space
before the perspective transformation is complete. This space is called the
clip space corresponding to its functional role. In clip space we effectively
compare the absolute values of the z, y and z coordinates after the projection

CHAPTER 2. THEORETICAL BACKGROUND 14

N

Far Clip Plane

Near Clip Plane

Projection Window
_—)J

Figure 2.7: The dolphin model has been transformed into the view space,
ready to be projected. The relations between the different clip planes and
the projection plane/window are also depicted.

matrix multiplication against the absolute value of the vertex’ depth value,
stored in the homogeneous w coordinate. The comparison result is the same
as if we had clipped against the NDC boundaries except slightly more per-
formant done in this order. After the clipping has been done, the perspective
projection can be completed by finally performing the perspective divide: the
division of the z, y and z values by w.

2.1.4 Sampling

The only step left now is the wviewport transformation which takes the NDC
coordinates into screen space, i.e. the actual screen pixel coordinates. This
is done by first transforming the coordinates into the range [0, 1] and then
scaling them by the viewport’s pixel dimensions. As we now have the screen

CHAPTER 2. THEORETICAL BACKGROUND 15

positions of the vertices we could proceed to drawing (or filling as its known in
computer graphics) the insides of the triangle they form. This however would
leave an important part of visibility determination — occlusion, unaddressed.

For this we need to compare the screen space z coordinate values (in the
[0, 1] range) to the possibly already filled pixel’s z values. In other words we
are comparing the depths which is why the buffer storing these values for
each drawn pixel is called the depth buffer (also commonly referred to as the
z-buffer). Following from the fact that the values are stored per screen space
pixel, the dimensions of the depth buffer have to match those of the back
buffer (where the drawn pixel colors are stored). In a typical usage scenario,
the depth values are at first initialized to the maximum possible value of 1.0
(the far clip plane). After this we only update those back buffer pixels whose
corresponding depth buffer value is greater than the currently drawn triangle
fragment’s depth value. This in effect means that only the surfaces nearest
to the camera per back buffer pixel are visible, as we desired. An example
of a triangle filled into a pixel grid can be seen in figure 2.8.

Figure 2.8: A solid color triangle rasterized onto a screen pixel grid. The
sampling location for rasterization here is the center of the pixel cell. Note
how this form of sampling results in aliasing artefacts on the triangle’s edges.

From the figure it can clearly be seen that the reproduced triangle ex-
hibits jagged edges unlike the mathematical definition of a triangle. This is
due to the sampling process in which the triangle has to be presented as a
finite collection of discrete pixels on the back buffer. The error in reproduc-
tion makes it seem that (solely based on it) the original shape could have
plausibly been something else than a triangle. This confusion between the
original and reproduced images, or more generally signals, is in the field of
signal processing referred to as aliasing, as the identity of the original signal

CHAPTER 2. THEORETICAL BACKGROUND 16

can be confused with another separate signal. The possible presence and
magnitude of aliasing therefore depends on our ability to reproduce the orig-
inal signal without information loss, so that no misidentification can occur.
This depends on two aspects: the frequency of the original signal and the
frequency of the reproduction.

Before explaining this further, it is worth underlining that one of the key
aims of computer graphics is to achieve photo realism, so as to be able to
render virtual worlds that would appear as real to us as the real world viewed
through our eyes does. Now, while the real world is continuous (at least to
the extent relevant to this thesis) computers operate on discrete information.
It follows that even if we used a continuous mathematical model of a real
world phenomena a discretizing (or ”sampling”) step would still need to be
performed to quantize the derived values. While sampling can be thought
of as a simplifying reproduction of the original signal, it does not necessarily
introduce information loss as long as the sampling frequency is high enough
compared to the frequency of the original signal. The answer as to what "high
enough” means is given by the Nyquist frequency. The Nyquist frequency is
defined as a sampling frequency that is twice that of the highest frequency
present in the original signal. Provided that our sampling frequency is equal
to or greater than that of the Nyquist frequency, it is theoretically possible
to reconstruct the original signal from the sampled values [5, p. 119].

While a solid theoretical basis, the Nyquist frequency does not help in
many practical cases in computer graphics, as no upper limit exists for, e.g.,
the frequency of change for the color values a surface assumes between ad-
jacent points. The end result is that we sample a surface (and the material
properties needed for shading) which, while correct for that particular sam-
pled point without an area, is incorrect when used as is for the projection
window pixel which does have a non-zero footprint on the surface.

The situation can perhaps more easily be understood by relating the way
in which our virtual camera functions compared to real-life photography. In
real photography there exists a class of devices very similar to our virtual
camera called the pinhole camera. Without delving too deep in to the par-
ticularities of the pinhole camera, the key similarity to our virtual camera
is that they both project visible surface points in the external world onto
unique positions on a projection plane. To be precise, while the virtual cam-
era maps exactly one external point onto its corresponding projection plane
point, the real pinhole camera collects light from a small angle around the
to-surface-direction vector, introducing a degree of blur into the produced
image. In effect this serves as a low-pass filter, removing high frequency
detail from the image leading to decreased aliasing. The cause is that no
real-world pinhole camera actually has an infinitely small aperture size (i.e.,

CHAPTER 2. THEORETICAL BACKGROUND 17

the pinhole).

A more important difference however is that a real-world pinhole cam-
era’s image sensors are physical entities with a non-zero area, meaning that
they can sample light for the entire area they represent. This leads to an
image sensor forming a final sample value for the incoming light that is an
average of all the light entering the sensor. This is in contrast with the vir-
tual camera’s "sensors” which are infinitely small, singular points. When
the final output image is reconstructed from these point samples, projection
window’s pixel cells are filled in by extending these sparsely laid out sample
points’ values to each cover the entirety of their corresponding pixel. This
causes aliasing partly due to the sampling method which can be inadequate
depending on the sampling and source signal frequencies, but also due to the
chosen renconstruction method.

The problem can be made less apparent by increasing sampling frequency
- in this case the number of pixel samples taken. If the number of pixel
samples we take is higher than the number of pixels in the final output image,
we can form the final pixel values as averages from the pixel samples. This
is referred to as supersampling. The higher sampling frequency ensures that
less information is lost in the sampling process, while the averaging process
(downsampling) limits the highest frequencies present in the samples used
for the final pixel values. However, as noted the highest frequency present in
the original signal in the general case is unbounded, so supersampling and
the accompanying downsampling do not solve the problem completely.

In practice, low-pass filtering methods are usually employed to limit the
maximum signal frequencies present in the input data we use for coloring
the screen pixels. As the storing of this data is commonly perfomed using
texture maps, modern graphics hardware support a variety of texture filtering
methods (discussed in section 2.2.4) to minimize aliasing in a performance
efficient manner.

Other, common anti-aliasing methods in popular use today include mul-
tisample anti-aliasing (MSAA) [33], a form of geometry anti-aliasing which
performs supersampling only for pixels inhabited by fragments from multi-
ple triangles, and various post-process techniques such as SMAA [23] and
FXAA [30] which operate only on the back buffer’s pixels after all of the
shading computations have already been performed.

2.2 Shading

After peforming the world, view, projection and viewport transformations
to take a triangle’s vertices from object-local space coordinates through clip

CHAPTER 2. THEORETICAL BACKGROUND 18

space coordinates into window coordinates, we are able to fill the triangle
shape into the screen pixel grid. While it is possible to perform this filling-
in simply by using a single uniform color value for the entire triangle, this
would hardly result in a realistic appearance. Thus, there is a need for a
more sophisticated method for coloring, or shading, the pixels. From our
experience of the real world we know that the surface appearance of objects
depends on many different factors, including the direction and intensity of
light sources emitting light rays to the environment as well as the properties
of the objects themselves.

As touched upon already in section 2.1.1, we store some of these object
properties on a per-vertex level. The most obvious one is of course the vector
for the positional coordinates of a vertex, but for shading many other details
such as the facing direction of a surface are also important to know. These
per-vertex values are linearly interpolated using the barycentric coordinates
of a given point inside a triangle to then gain approximations for the values
as they would be for that coordinate location. This interpolation is discussed
further in chapter 4 where we delve into to the details of our object-space
lighting implementation. We will now move on to the theoretical basis of
surface appearance.

2.2.1 The RGB Model and Radiometric Units

The matter of determining the color of a surface point is philosophically
speaking a case two sides. On one hand, the visual appearence of an object is
related to the light that is reflected towards a viewer. Light can be described
as consisting of particles referred to as photons. Each of these photons holds
a certain amount of energy, and so it is also meaningful to measure the
amount of energy of the light rays an emissive surface emits. If an object
emits photons, it is a light source. In addition to emitting photons, objects
can also reflect photons and thus light, which is how humans are able to
perceive surface appearance. We can also consider the flow of photons and
the energy associated with them in relation to the passage of time. This flow
of energy per a duration of time (i.e., a second) — in other words the ”power”
is called the radiant flux. [5]

While the object surfaces and the photons reflected from them can be
thought of as what physically exists, the other side of the coin is what humans
are able to perceive of them. For this end it is useful to examine light from
another perspective. lin addition to its particle nature, light can also be
described as having wave-like properties. Evolution has resulted in humans
possessing a complex formation of the eye, the optic nerve pathways and the
brain’s visual cortex to enable visual perception. All of these components put

CHAPTER 2. THEORETICAL BACKGROUND 19

together are commonly referred to as the human visual system (HVS). In the
context of the HVS, the eye serves as an optical sensor through the use of its
rear surface called the retina, which is formed by several neuron layers. The
central part of the retina, where the eye’s lens focuses the incoming light rays
is called the fovea. For our purposes the most important of these neurons
are the light sensitive rod and cone cells. The rod cells vastly outnumber
the cone cells (by 100 million to 6.5 million) and are mostly situated in the
regions away from the fovea (leading them to be vital for peripheral vision).
They are unable to sense differences in the wavelengths of the light rays, and
their visual resolution is low, but they are very sensitive to even low intensity
light — resulting in rod cells being mostly responsible for vision in low-light
conditions.

Unlike the rod cells, the cone cells are mostly situated in the foveal region
of the retina and have a higher visual resolution due to manner in which
neural signals are collected from them. The different wavelengths sensed by
the rod cells are processed by the human visual system (HVS) resulting in
the perception of different color hues. It is worth noting that only a limited
range of wavelengths — from approximately 380nm to 780nm, i.e., the visible
spectrum can be seen by the eye [5]. Neighboring the visible spectrum on
the low end side is ultraviolet radiation while on the high side the rays are
categorized as infrared, or heat radiation. For computer graphics we usually
are mainly interested in what a human eye can see, so we limit ourselves to
only the visible spectrum of light rays.

The topic of color perception is a complex one, and it is important to
understand that color perception does not solely depend on the light’s wave-
length but also the amplitude of the wave. This gives colors their perceived
brightness, which can result in colors of identical hues being perceived dif-
ferently. Although it would be possible to compute the colors based on an
emitted (or reflected) radiant flux when the associated spectral distribution
for the flux is known, this degree of physical accuracy is rarely sought. In-
stead, a simplified RGB color model is popularily used in computer graphics.
In the RGB model colors are represented as a mix of the three primary colors
of the additive color theory: red, green and blue. The effect of brightness on
perceived colors has been incorporated into the RGB values so that we can
define any of the entire color gamuts’s individual colors as just as the ratios
of the three primary colors.

The coverage of the RGB model’s gamut in relation to the HVS’s gamut
is decided by the choice of which colors the red, green and blue primaries
exactly map to, while the resolution or the ability to discern between the
values inside the gamut is governed by the precission (the number of bits)
we use to represent the RGB components.

CHAPTER 2. THEORETICAL BACKGROUND 20

We now know how to quantify the traveling light rays, in relation to
human perception and computer graphics, in a meaningful and efficient way
so the next step is to examine how light interacts with objects. Provided that
the object in question’s surface is a non-self emitting one, the only way for
humans to see it is through the surface reflecting visible light from external
light sources to the viewer’s eye. Self-emitting surfaces can of course also be
seen by humans, but we will not discuss the rendering techniques related to
those cases.

Another source of complications is how in the real world the incoming
light to a surface could arrive after potentially multiple bounces on other sur-
faces in its environment. This category of surface illumination is traditionally
referred to in computer graphics terms as global illumination. However, we
will also limit the discussion so that we only consider light arriving directly
from a light source to a surface, i.e., the local illumination. Following this, if
we were to have only one light source, with no area, the theoretical maximum
for the radiant flux reflected by a surface area would be determined by the
following equation:

L, = E;*xmaz(n-1,0) (2.1)

where L, and FE; are measures of radiance and irradiance, respectively. In
computer graphics it is common to express both as RGB vector quantities.
The n, the normal vector, signifies facing direction of the surface while 1 is
the to-light source vector. Both of these vectors are unit length. The dot
prodcut between them is clamped to result in 0 at the minimum, as negative
values would indicate that the surface is being lit from behind its normal’s
direction.

Irradiance is the density of the radiant flux originating from all incoming
directions passing through a unit surface area. In essence it is the area density
of the light power and it governs how much a surface is being illuminated by
a light source. For a given amount of light power, the irradiance decreases
as the area onto which the light spreads increases and vice versa. If instead
of examining radiant flux passing a unit area we think of the flux arriving
onto a surface from a given originating direction, i.e., the radiant flux per
unit solid angle we are describing what is called the flux’s radiant intesity.

Combining these two concepts of irradiance and radiant intesity we get
the density of the radiant flux with regard to both a single incoming direction
and the surface area the flux passes through: the area density of the flux per
unit solid angle. This measure is the radiance to a surface point.

Equation 2.1 captures the fact that as the difference in direction between
the surface normal n and the to-light vector 1 increases, the amount of energy

CHAPTER 2. THEORETICAL BACKGROUND 21

received by the surface area decreases. This is simply due to the density of
the photons hitting a surface area, i.e. irradiance from the radiant flux, de-
creasing as the elevation angle between n and I increases. It has to be noted
that irradiance from radially emitting light sources is inversely proportional
to the square of the distance between the light source and the illuminated
surface. This means that while a light source (such as a directional light)
emitting light uniformally in a single direction does not experience any dis-
tance based attenuation on the irradiance it causes, other lights source types
like point and spot lights do experience it. This is why an attenuation term is
normally used with these types to more accurately mimic the real world. An
example of a distance based attenuation function is given by the following
equation:

1
ki d? 4 kyd + ke,

where d is the distance between the light source and the surface, and k,,
k; and k. are the coefficients for the quadratic, linear and constant terms,
respectively. These coefficients can be used to subtly alter the lighting of a
scene according to artistic goals. Distance based attenuation only affects the
irradiance to a surface but not the incoming or outgoing radiance, explaining
also why humans do not perceive the brigthness of objects to diminsh or
change the further away they are.

Jar(d) (2.2)

2.2.2 Physically-Based Rendering

We proceed by noting that a light ray hitting a surface results in one of two
possible outcomes: the light ray being reflected away from the surface (sur-
face reflection) or it being transmitted through refraction into the surface.
The first case can be seen as purely an alteration to the direction the light ray
travels, while the second case involves both a change to the direction as well
as to the energy of the light ray. The change in a light ray’s energy is due to
the distance traveled inside a medium, where interactions with its particles
lead to a portion of the light’s energy being absorped into the medium [21].

It is possible for a material to completely absorb the energy of a light
ray through this internal travel, leading to no light re-emeging outside. Con-
versely, if a light ray is able to re-emerge it may do so as multiple ”sub-rays”
scattered into differing directions with a fraction of the original ray’s energy.
The changes in direction are caused by a composite material consisting of
several material with differing indices of refraction [21]. This form of re-
flection is often categorized as body reflectance or subsurface scattering. In
the real world the exit locations are generally not the same as the location

CHAPTER 2. THEORETICAL BACKGROUND 22

where the light first made contact with the surface, but this detail is often
avoided in rendering unless it is deemed to have a high impact on the surface
appearance — as is the case when vieweing materials exhibiting sub-surface
scattering, like the human skin, from a close distance [21].

A fact that is not avoided on the other hand is the effect of absoption
on the appearance, as it not only affects the brightness of the re-emerging
light but can also do so on a per-wavelength basis. This is the phenomenon
that causes the majority of the materials we encounter in the real world,
categorized as dielectrics or insulators, to have a characteristic color to them.
It is worth underlining that as this color is the result of body or diffuse
reflection, materials that do not exhibit diffuse reflection (i.e., conductors,
metals) do not have the same kind of characteristic color to them. For
conductors the appearance of a color can only derive from light source color or
through the possible bounces light rays are subjected through the impurities
immediately on top of the conductor’s surface.

During recent years, a collection of rendering techniques commonly grouped
under the name of physically-based rendering (PBR) have gained popularity
among real-time rendering implementations, due to the increases in comput-
ing power and the high visual quality PBR is able to provide [39]. In simple
terms PBR stands for techniques in which the shading of a surface is done
utilizing lighting models and surface descriptions that aim to closely approx-
imate the physical reality. Previously used, popular shading models such as
the Phong model contained simplifications that in places broke the laws of
physics. The most glaring of these was going against one of the key principles
in physics — that of energy conservation, where no energy can simply appear
from or disappear into nothing. Following the principle of energy conserva-
tion, we then know that the amount of outgoing light reflected from a surface
can never exceed the amount of incoming light, as could be deduced from
equation 2.1 earlier.

As previously noted, we also know that the outgoing light can be di-
vided into reflected and transmitted components. Transmission is a complex
phenomenon to model in rasterization-based graphics pipelines (due to the
scarcity of information during shading from other objects in the scene), and
has the most effect on the appearance of highly transparent objects. This is
why a simplification is commonly done to forego the modelling of true trans-
parency and instead to just focus on the body reflection aspect of transmis-
sion. Body reflection is depicted in figure 2.9 as the rays bouncing inside the
surface before emerging in (seemingly) random directions. This is what we
mean by the term diffuse reflection.

From figure 2.9 we can also see the surface reflection part of light-material
interaction. While the diffuse reflection can be thought of as a soft reflec-

CHAPTER 2. THEORETICAL BACKGROUND 23

Figure 2.9: The surface and body reflections are illustrated in this image. The
vectors n, 1 and r denote the surface normal, to-light and reflection vectors
respectively. While the surface reflection occurs always ”on the spot” to the
reflection vector r’s direction, the body reflection can have multiple bounces
inside the surface and thus multiple emergence points and directions. We
will not cover lighting models that take into account the distance travelled
inside the surface.

tion with view-direction independence, the surface reflections is highly view-
dependent. Expressed in another way, the surface reflections correspond to
mirror-like or specular reflections. According to the law of reflection, the
angle a reflected light ray makes with the surface normal (depicting the ori-
entation of the surface) is equal to the angle between the incoming light ray
and the surface normal. For ease of use, a reversed version of the physical
light travelling direction is usually used, as depicted in the figure.

The modelling of specular reflections leads to two interesting character-
istics. The first one is that the contribution of an incoming ray can not be
seen by the virtual camera, unless the view direction v from it to the surface
is equal to that of the reversed reflection direction —r: v = —r. The second
one is that as the specular reflection occurs exactly on the material surface

CHAPTER 2. THEORETICAL BACKGROUND 24

(as opposed to inside it), there should be no absoprtion involved in theory.
Thus, the amount of energy and — so the brightness of the light should be
unaffected, with the color of the reflected light being solely dependent on the
incoming light’s color.

On the other hand, diffuse reflection reflects incoming light out to seem-
ingly random directions with a (possibly) perceivable effect on the light color.
To model the randomized emergence directions, an idealized concept of a
perfectly diffuse surface can be used, where the outgoing, reflected light is
evenly distributed over the half-sphere (hemisphere) above a surface point.
This distribution ensures that the surface appearance is the same for all un-
obstructed view points, while simultaneously modelling the change to the
outgoing light’s color (the distributed rays have been attenuated to keep in
line with the conservation of energy). [5, p. 110]

The change to the diffusely reflected light’s color is modelled by an RGB
vector representing the amount of absorption an incoming light ray undergoes
depending on it’s spectral power distribution (in RGB model terms, the
fraction amount of each primary color the light ray consists of). This RGB
vector is traditionally called the diffuse albedo, as it expresses the fraction
of outgoing light divided by the incoming light for each primary color [5,
p. 239]. This is a characteristic property for each material type.

2.2.3 Materials

In reality, object surfaces are not entirely specular or diffuse but instead
exhibit a combination of both reflection types. This is why in computer
graphics we usually think of materials as having a certain amount of rough-
ness or glossiness to them, describing how diffusely or specularly they reflect
light.

Previously in our discussion we have also come to understand a number
of other material properties affecting how light interacts with surfaces, aiding
us in modelling realistic lighting in rendering. Let us summarize these:

e Diffuse albedo
e Specular reflectivity
e Normal

e Roughness

These are among the most common surface properties one will come
across in modern computer graphics. Going through the list, the diffuse

CHAPTER 2. THEORETICAL BACKGROUND 25

albedo represents the amount of light a surface reflects per each of the RGB
model’s primary colors. In practice this RGB vector is commonly augmented
into a four component RGBA vector, where the A component is used to store
an additional surface property. Common use cases include storing a value for
representing the opacity of a surface (for transparency using blending effects)
or for conveying the amount of ambient occlusion for a surface (a technique
used to simulate global illumination).

While the diffuse albedo governs the body reflections of a surface, the
specular reflectivity parameter serves as one of the inputs we use to de-
termine surface reflections. Every material has a characteristic amount of
surface reflection for light striking the surface head-on, i.e., when 1 = —n,
and this is what the specular reflectivity captures. For dielectric materials
this is an RGB vector, where each of the components is equal to the oth-
ers (so it could effectively be described by just a gray scale value), but for
conductors the component values vary slightly. This is an approximation
to model how metallic object do have a tinted reflection to them, although
theoretically specularly reflected light’s color should not be altered as a con-
sequence of the reflection. In the case of dielectric materials the specular
reflectivity value is equal to the FO or the Fresnel reflectance at 0 degrees.
We will be examine the Fresnel effect in section 2.2.6.

The normal is a 3D vector which denotes the general direction the surface
is oriented towards. It is perpendicular with regard to the surface tangent
and normalized to unit length. The normal can be defined at different scales
of observation depending on intended usage and thus the needed accuracy.
Common normal vector scales used in 3D rendering are primitive (e.g., a
triangle), vertex and tezel (from the term texture element) scales. These
correspond to defining normals in respectively, as primitive uniforms, per-
vertex data or as the texels of a normal texture map. As surface appearance is
heavily affected by the surface normal’s orientation, the use of high resolution
normal data can in the general case lead to more photorealistic results. The
drawback of course with the higher data resolution are the potentially adverse
effects on memory consumption and computational load.

As a concrete example, the lowest resolution of normal data one would
use is the primitive scale, where the surface orientation can be described
only once per primitive leading to uniform lighting results over each primi-
tive. This results in stark discontinuities being visible at boundaries between
adjacent primitives. Utilizing per-vertex normals enables the calculation of
more precise surface orientation by interpolating the vertex normals for each
primitive to gain surface normal values for points lying inside the primi-
tives. With normal texture maps we store a large number of normal samples
over a primitive’s area and then use the texture coordinates for a particular

CHAPTER 2. THEORETICAL BACKGROUND 26

point we are interested in to index into and interpolate between these values.
As the resolution we store the normal samples greatly exceeds that of only
storing normals per vertex, normal maps allow us to gain significantly more
precise approximation for surface orientation. Texturing will be discussed in
more detail in section 2.2.4 and implementation details relating to the use of
normal map will be examined in section 4.3.8.

y}<%<

R/ -

Figure 2.10: Illustration of vertex normals and a normal texture map.

In figure 2.10, we have illustrations for two of the different scales of sur-
face normal representation, the per-vertex normals (above) and the normal
maps (below). The rough uneven surfaces depicted by the black outline
represent the real-world target we are modelling. In the upper image the
blue lines depict the primitive surfaces, with the red dots being the trian-
gle vertices where we store the surface orientation information. Orientation
for points on the blue lines between the red dots have to be derived from
these through interpolation. In the lower image, the blue lines depict normal
map texel boundaries. The resolution of information in this case is notably
higher when compared to the per-vertex equivalent. While the use of normal
texture maps allows us to greatly enhance the accuracy of geometry detail
modelling without prohibitively high resource cost, we can notice that even
then we can fail to capture very miniscule details present in the real-world
surface. To model these micro-level details we take a statistical approach
and utilize BRDF models with roughness values as inputs to approximate

CHAPTER 2. THEORETICAL BACKGROUND 27

these variations. An example BRDF model, the Cook-Torrance BRDF will
be examined in section 2.2.6.

2.2.4 Texture Maps

Material properties like normal and diffuse albedos are usually stored in
2D arrays which in rendering we call texture maps. As previously said,
the primitives we render are comprised of vertex structures which among
many other properties include texture coordinates, also known as the UV
coordinates. While the dimensions, expressed in texture elements (texels),
of a texture map may vary from one map to another, the UV coordinates use
normalized values in the [0, 1] range making them resolution independent.

It is still possible for an application to specify UV coordinates outside
the [0, 1] range in which case the approriate behaviour is decided by what
is called the texture addressing mode. The possible modes are wrap,
mirror, clamp and border color in the terminology used by Direct3D [34] —
the exact names vary between different graphics rendering interfaces. Wrap
drops the integer part of any UV coordinates outside the normalized range,
while the mirror mode mirrors the UV coordinates at integer boundaries.
Clamp limits the UVs to the [0, 1] range with any lower or higher coordinate
values mapping to 0 or 1, respectively. In effect this means that outer values
are mapped to the texture map boundaries. The border color mode allows
the developer to simply specify a value that should be used in cases where
the UVs fall outside of boundaries. We will continue the discussion with
assuming that the UV coordinates we are using are in the normalized range.

During the shading part of the rendering pipeline, when we desire to use
property values stored in a texture map, a given texture map texel can be
indexed into and its value retrieved by multiplying the U and V coordinates
by the texture map width and height dimensions, respectively. In the simplest
form of sampling, the nearest neighbor filtering (i.e., point sampling)
the texture indices (which need to be integers) are calculated simply by
truncating the floating point indices resulting from the multiplication. As
a concrete example of texture sampling, to sample the diffuse albedo value
during shading from a diffuse map one would use the interpolated UV values
from the rasterization stage for a given inside point of a primitive to create
the truncated diffuse map indices. After this we simply would index into the
texture map using these indices.

Depending on the projected size of a primitive, the UV coordinates of its
vertices and the texture map’s texel resolution, there are often cases where
a texel cell’s projection onto the screen does not exactly match a screen
pixel cell in size or alignment. The texel cell might cover a larger or smaller

CHAPTER 2. THEORETICAL BACKGROUND 28

area of the projection window compared to a screen pixel cell’s coverage
and the texel cell’s center might be offset in relation to a pixel cell’s center.
Indeed, the discrepancies in cell sizes are so common that they have their
own categorization.

In the case of a texel cell being larger than a screen pixel cell, we speak
of magnification. It is easy to picture cases where, for example, resulting
from the projection transformation, a primitive has been projected to so
as to cover a very large screen area size. In such a case the magnification
can be so significant that a large number screen pixel cells are covered by a
single texel cell. In these cases simply using point sampling would lead to a
discontinuous, ”blocky”, result due to the changes between values retrieved
from adjacent texels exhibiting more visible step changes because each texel
cell covers a larger area on the screen. This is a form of aliasing. What is
done instead is interpolation between sample values from neighboring texels
both horizontally and vertically. This process of performing the interpolation
in two dimensions is called bilinear filtering. [5, p. 159]

Figure 2.11: Nearest neighbour filtering (upper image) and bilinear filtering
(lower image).

CHAPTER 2. THEORETICAL BACKGROUND 29

Examples for both nearest-neighbour and bilinear filtering are shown in
figure 2.11. In the illustration, the blue edges denote texel cell boundaries,
the black dot is the UV coordinate location for the rasterized primitive frag-
ment and the black edges are the interpolation line segments for bilinear
filtering. In nearest neighbor filtering we take a single sample from the texel
center the UV coordinate is nearest to, which is why it is also known as
"point sampling”. In bilinear filtering we consider the four nearest texels
and interpolate between them to contruct the final sample value. Perform-
ing a given filtering method over the whole image produces results displayed
on the right-hand side of the figure.

Forming the inverse of the magnification problem are the situations falling
under the minification category, where the rasterized primitive fragments
have their UV coordinates index sparsely into the texture map. Observed
from another perspective, the texture map’s texel cells are small enough in
area compared to screen pixels so that a single screen pixel can cover many
texels. Simply taking a single sample from one of these covered texels would
in many cases lead to a value unpresentative of all of the texel values as
a whole, while the utilization of bilinear filtering would only slightly im-
prove the result. While unreprentative values cause aliasing artefacts even in
completely static images, the problem gains gravity in temporal cases where
there is motion present. In the described case a given texture moves over
the screen, leading the inadequate filtering to rapidly change resulting values
even for corresponding surface points between sequental rendered images.
This can cause visible flickering, a form of temporal aliasing.

Flickering areas in images have been shown to cause a human user’s visual
attention to shift towards them and can be perceived as annoying [53] [14].
The underlying cause for the flickering in this case is that the screen resolution
is not high enough to sample the texture map with the methods covered so
far without aliasing being introduced.

For this situation it is useful to remember the Nyquist frequency men-
tioned in section 2.1.4. The Nyquist frequency and the theory behind it tells
us that the sampling frequency (e.g., the screen resolution) has to be at least
double that of the highest frequency in the original signal (e.g., the texture
map). We then have two alternatives: either to increase the screen resolution
or decrease the texture map resolution. Increasing the screen resolution to
solve the aliasing problem in the general case is not a practical solution due
to the additional resources an even perceptually passable result would re-
quire, so we choose the latter option. Following from the Nyquist frequency,
the need for double the sampling frequency (resolution) for both dimensions
gives us a clue on the resolution we should downscale our texture map to.
Simultaneously, we keep in mind that the projected size of a single texture

CHAPTER 2. THEORETICAL BACKGROUND 30

can vary from situation to another, and resultingly that cases where little or
none downscaling is desired are possible. In other words, it would be useful
to have different resolution versions of a texture map that we could choose
from on a case-by-case basis.

Figure 2.12: An illustration of a case where a texture has undergone mini-
fication to a degree where one screen pixel cell can cover even hundreds of
texel cells.

The approriate remedy is the method called mipmapping, in which pro-
gressively lower-resolution versions of the original texture map are precom-
puted and stored. During precomputing the texel values for lower resolutions
need to be detemined as ideally a collection of all of the texels values con-
tributing to a "lower resolution” texel. This is performed by using one of
several available filters, such as Gaussian or Lanczos filters, until the texture
versions with dimensions of down to 1z1 have been created. Each of the tex-
ture versions in the resulting mipmap pyramid is called a level with the lowest
of those corresponding to the highest resolution (original) texture and the
highest level corresponding to the 1z1 resolution version of the texture. [5,
p. 163]

With the mipmap pyramid complete, in cases of texture minification, we
use the approriate mipmap level to gain the closest pixel-to-texel area cover-
age match possible and thus a less aliased end result. The approximation can
either be done by taking the longest edge length of the pixel cell’s projection
onto the texture or by using gradients describing the rate of change in UV
coordinates compared to the change in screen pixels. As the mipmap levels

CHAPTER 2. THEORETICAL BACKGROUND 31

rarely result in an exact match between pixel and texel cell sizes, to further
lessen the amount of aliasing we sample two adjacent mipmap levels and
linearly interpolate between those sample values. This technique is called
trilinear filtering [5, p. 166] and it not only can improve results for static
images but also eliminate visible transition "seams” that could otherwise be
visible on screen areas where sampling changes between different mipmap
levels.

Figure 2.13: An image texture’s mipmap chain, generated using the Kaiser
filter. Mip levels 1 and 2 have been omited to save space. Note that the mip
level sizes here are only illustrative, and not according to actual resolutions.

To end the section on the fundamentals of texture mapping, we note that
the textures in a 3D scene are very rarely observed strictly from a head-on
direction. This leads to the texel cell’s projection onto a screen pixel cell
potentially not being a rectangle, but more commonly a trapezoidal or ellip-
tical shape [17]. In practice this means that the density of texels covered by
a pixel can vary inside the pixel cell. The result is that a single sample from

CHAPTER 2. THEORETICAL BACKGROUND 32

the mipmap chain is not enough in these cases as the appropriate mipmap
level can vary inside a single screen pixel cell. One mipmap level, while
appropriate for a portion of the pixel cell, might be too low resolution for an-
other, leading to a blurry appearence. This is solved with anisotropic filtering
methods, which perform multiple mipmap level estimations per screen pixel
cell and resultingly sample the appropriate mipmap levels before forming a
final filtered value for the screen pixel.

2.2.5 Filtering Normal Maps

The texture filtering methods discussed in section 2.2.4 only work correctly
when the values held by the texture maps have a linear correspondence to the
final shaded colors output by a BRDF, like in the case of the diffuse albedos,
as an example [5, p. 271]. This linear correspondence does not hold for
normal maps, as the stored normals’ influence on the BRDFs themselves is
not linear, and thus the simple method of creating a mipmap chain described
earlier does not produce correct end results when applied on normal maps.

The more precise reason for this is due to modern reflectance equations
used in shading taking a statistical approach, where a surfaces microscale
orientation is described as a normal distribution. With this in mind, per-
forming the mipmapping process would not only need to average the surface
normals (from normal map texels) but also preserve the overal shape and
size of the distribution lobe. See figure 2.14 for an illustration of this.

The incorrect results from foregoing this are especially visible on glossy
surfaces with high specular reflectivity as sharp changes in specular high-
lights which can shimmer in and out of the view even with slight changes in
viewer or surface position. In reality, specular reflections should exhibit slight
blurring as the distance between the viewer and the surface increases [42].

Several approaches to address this problem have been proposed, such as
LEAN mapping [42] and Toksvig’s method [48] which both aim to better
represent the variance in directions of the normals — and as a result the
effect mipmapping has on the normal distribution function (discussed in the
next section) which are computed based on normal map normals. Although
these approaches enable results which are closer to the ground truth, they
also introduce requirements on the storage format or precision of the normal
maps, as well as being closely tied to specific BRDFs [39].

The object-space lighting method implemented as part of this thesis per-
forms mip-mapping only on the final reflected radiance values, and accord-
ingly is not susceptible to any of the aliasing problems arising from the im-
proper averaging of BRDF input data such as the normals of a normal map.

CHAPTER 2. THEORETICAL BACKGROUND 33

Situation A: \ . /
Normal Map normals) (“
without averaging. / \ \ | i’

Situation C:
Only normal map normals averaged, distribution
generated using single averaged normal.

Situation B:
Both normal map normals and
their distributions averaged.

B e e |

Figure 2.14: Ilustration of the error caused by mip-mapping normal maps
without considering the microscale distributions the normal vectors control.
Situation B represents the case where we have correctly averaged also the
distributions, leading to a wider and less sharp lobe. In situation C the
lobe the distribution has been generated by simply considering a single av-
eraged normal map normal vector, resulting in a sharp lobe that incorrectly
represents the microscale normal distribution.

2.2.6 The Cook-Torrance BRDF

While in section 2.2 we introduced the equation for calculating the maximum
reflected radiance to a viewer, it was only able to describe surface appear-
ance for an ideally diffuse material. Real world materials are normally more
accurately modeled as a combination of diffuse and specular properties. Sim-
ilarly, the reflected radiance depends also on the relation between the to-view
and to-light directions. In general, the fraction value of radiance reflected
by a surface can be formalized for idealized, non-area light sources as the
following equation:

CHAPTER 2. THEORETICAL BACKGROUND 34

L,(v)

fLv) = EL*—(ln) (2.3)

where 1 and n are the to-light and surface normal vectors respectively,
1-v >0 and L, and Fj, are the outgoing (reflected) radiance from and the
incoming irradiance to a surface, measured perpendicularly with regard to
1. The function f in equation 2.3 is what is referred to as the bi-directional
reflectance distribution function (BRDF) as it simply describes surface re-
flectivity with regard to the two directions, 1 and v. As we have learned
in section 2.2.3, material properties including the surface orientation and
material-specific reflectance also affect the final values given by the BRDF.
These values vary depending on the wavelength distribution of the incoming
irradiance, so it follows that the irradiance, radiance and also the BRDF
result values in equation 2.3 are represented as RGB vectors.

So far we have been talking about the incoming light as a measure of
irradiance, which means that we are interested in the sum of all of the radiant
fluxes passing through a surface point. In the real world light could arrive
from every possible direction in the hemisphere over a surface point, meaning
that this sum could be mathematically thought of as an integral operating
on differential irradiances. This differential irradiance can be expressed for
a surface point p and incoming light direction wj in terms of radiance as
follows:

dE(p) = Li(wi) * (wi - n)dw; (2.4)

Knowing this we are now ready to present the equation for the total ra-
diance reflected towards a viewer. Reordering the terms in equation 2.3,
substituting incoming irradiance with incoming incoming radiance (using
equation 2.4) and adding the integral summation we get:

Lo(prcoy) = / F(Dy iy o) ® Li(pywi) * 1 - widw, (2.5)
Q

This equation means that the outgoing radiance L, to a view direction
w, is the sum of all the incoming incident radiance given by L;(p, w;) * (n - w;)
and scaled by the BRDF f. As the incoming radiance is used to represent
the differential irradiance in this equation, we need to remember to take into
consideration the distance-based attenuation from equation 2.2 when we are
dealing with spherically radiating light sources. The summation is done over
the hempisphere denoted by €2, with the BRDF f controlling the fraction
of light reflected per each solid angle w;, with the reflectivity being able to
be varied according to the material properties of the precise surface point p

CHAPTER 2. THEORETICAL BACKGROUND 35

we are examining. Note that we use the component-wise multiplication sign
when multiplying with the BRDF value as the reflectance can vary per RGB
primary color. Since we will not be examining the use of area-lights in this
thesis, equation 2.5 can be further simplified to the following form:

Lo(p,v) = Z [k v) ® Li(p)(n - lg) (2.6)

Rather than summing up the incident radiance for each solid angle over
the hemispehere we model the incoming radiance as originating from a set
number of non-area light sources in the surface point’s environment. Ly (p)
signifies the radiance from the kth light source, while taking into consider-
ation the distance-based attenuation for the radiant flux. In place of the
previous (solid) angles w; and w, for the incident and outgoing directions, we
can now use the direction vectors [, and v analogously to denote the to-light
and to-viewer directions.

There have been numerous different BRDF's devised for physically based
rendering with each having their own material types they are best suited
for. The BRDFs can also vary on how strictly they adhere to the energy
conservation and Helmholtz reciprocity principles. The one we have selected
for closer examination in this chapter and for use in the practical part of the
thesis work is the Cook-Torrance BRDF [9] following the description by
Karis [25]. Tt is a physically plausible specular reflection model utilizing the
microfacet theory. Microfacet theory will be discussed later on during this
section.

As previously noted, real world materials are most often partly specular
and partly diffuse in how they reflect light. Accordingly, for realistic results
we need an additional model to capture the diffuse reflection characteristics.
For this we employ the Lambertian reflection model which, as can be
surmised from its name, is closely related to Lambert’s cosine law, that we
introduced in equation 2.1 in section 2.2.1. Putting everything we have
learned together, we can present the following high-level equation:

fr - kd * fLambe’rt + ks * fCook—Torrance (27)

The equation tells us that the total fraction f. of the incoming light
that reflected to the viewer is the sum of the diffusely reflected fraction
Sframpvers and the specularly reflected fraction fooor—7orrance - Both the diffuse
and specular parts need to be multiplied with additional factors k; and kg
respectively, to ensure that the energy principle is not violated. As light
that gets refracted can not (surface) reflect, it follows that kg + ks = 1. The
manner in which we decide which values to use for k; and k; is discussed in

CHAPTER 2. THEORETICAL BACKGROUND 36

the section on the Fresnel effect. Moving forward, fremper is defined simply
as:

C
fLambert = - (28)
T

where c¢ is the diffuse albedo characteristic to a material and the % is

a normalizing coefficient [21]. It ensures that values given by the frompert
cannot result in cases where the amount of outgoing (diffusely) reflected
light is greater than that of the incoming light. As with other BRDFs, the
Lambertian BRDF naturally outputs RGB values. The specular portion of
the reflectance function f, is defined as follows:

D(h)F(v,h)G(1,v,h)
4n-N(n-v)

This a very complex function so it is best understood by examining its
components in isolation. More spefically, we have the new terms D, F' and
GG, which represent functions for modelling different aspects contributing to
specular reflection. Put another way, the values given by these functions can
be thought of as each scaling downwards the specular reflection amount. We
will now describe each of these function.

To understand the normal distribution function D, one has to first be
aware of microfacet theory. Microfacet theory is a model which describes
object surfaces as consisting of microscopic mirrors (or facets) with each of
them having their own individual orientation. In computer graphics we would
say that these microfacets have individual normal vectors associated with
them. From the previously described law of reflection in 2.2.2 we know that
this normal along with an incoming light ray’s incident direction determines
the reflected light’s direction. This reflection direction has to be the same
as the to-viewer direction for the viewer to be able see it. These two facts
are combined into the half vector which is the h seen in equation 2.9. The
half vector represents the orientation with which a surface’s normal (n in the
equation) has to be aligned with to produce a reflection visible to the viewer.
The situation is illustrated in figure 2.15.

The half vector can be computed simply by taking the sum of the vectors
v and 1 and normalizing the resulting vector:

(2.9)

fCook—Torrance (17 V) =

1+v

_ v_ (2.10)
[IL+v]]

Another detail we also need to know is that microfacets model those
physical structures of a material that are of such a miniscule scale that they
would not cover anything close to the area of a single screen pixel cell in

CHAPTER 2. THEORETICAL BACKGROUND 37

Figure 2.15: The half vector describes the orientation a surface would need
to have in order for light from light source direction 1 to be reflected towards
the virtual camera direction v.

any practical scene. This leads to the pixel’s color to be affected by a large
number of mircrofacets.

To reconcile this with the law of reflection, a statistical view of the mi-
crofacets is taken with the variance in orientations being parametrized as the
material attribute roughness (or glossiness depending on the workflow, these
are just the inverses of each other). Using roughness, the macroscale surfce
normal n (e.g., the normal retrieved from a normal map) and the half vector
h, the normal distribution function D estimates the percentage fraction of
microfacets aligned with h. Like the name suggest, these fraction values are
normalized to the range of [0, 1].

As was the case with the overall BRDFs, there also exist various alterna-
tives available for the selection of the normal distribution function. The one
chosen for this thesis is the Trowbridge-Reitz GGX, which is defined as
follows:

&2

m(n-h)2x(a?—1)+1)2

where the vectors n and h have the same definitions as we have previously
given them. The o denotes the roughness parameter. As the roughness
increases, the values given by the Dggx function decrease. Physically this
makes sense as the greater variance in surface orientation should result in
smaller fraction of mirror-like reflection to any one direction. Similarly, the

Dgex(h) = (2.11)

CHAPTER 2. THEORETICAL BACKGROUND 38

greater the difference in orientation between n and h, the less statistical
chance there is for mirror-like reflections.

The next part of Cook-Torrance BRDF (equation 2.9) is the F', or Fresnel
function. Earlier in section 2.2.2 we noted that a light ray hitting a surface
can be modelled as being divided into a reflected and refracted part, but we
did not yet explain how we would know the fraction amounts for each these
parts.

From the real world we can be observe that the amount of light reflected
by for example the surface of a lake increases as the elevation angle between
the to-viewer direction and the lake surface’s normal increases. Conversely,
the lake surface appers more transparent the closer the to-viewer and normal
directions are aligned together. When the elevation angle reaches 0°, the
material reflects light the least and refracts (i.e., transmits) it the most.
The Fresnel equations developed by Augustin-Jean Fresnel captures exactly
this phenomenon, but their original formulation containing the division of
light into polarized components would be computationally very expensive to
perform for real-time rendering.

For this reason, a simplified approximation formula called Schlick’s ap-
proximation [45] is used instead. In this formula we start by acknowledging
that the minimum fraction of light being reflected for a given material occurs
at the incident angle of 0°. This fraction value is commonly denoted as FO,
the base refletivity. The FO value can be calculated providing we know the
indices of refraction (IOR) for both of the participating mediums, and which
one of these mediums is the one being entered and which one we are exiting
from.

However, the FOs of common mediums (e.g., air, water, wood) are readily
available for use from various sources both offline and online so this calcula-
tion can usually be avoided. Understanding that we can take the FO value
as a base reflectivity for a medium and that the reflectivity decreases as
the incident angle of a light ray increases, Schlick was able to formulate his
approximation as follows:

Fsenice(h,v) = Fy + (1 — Fy)(1 — (h - v))® (2.12)

where the h and v are again the half-vector and the to-viewer vector
respectively, with Fy being the base reflectivity for the material we are in-
terested in. The original formulation used the surface normal vector n in-
stead of the half-vector h we use here, but this is just a modification to aid
the usability of the formula without changing its meaning. The aim of the
Cook-Torrance BRDF (which the Fseper function is a part of) is to model
mirror-like reflections, and as those reach the viewer only when n = h, the

CHAPTER 2. THEORETICAL BACKGROUND 39

change is justified.

The Fresnel effect changes depending on the wavelength of light ray’s
so Iy and the reflectance values given by Foenicr are both represented as
RGB vectors. The values for each component is in the range [0,1] with
the meaning being that 1 is the case where all incident light for a given
component is reflected, while 0 means that all of the light for that component
is transmitted. This is how we arrive at the values to use for the coefficients
ks and kp in equation 2.7, with kp = 1 — kg for each component.

The final part of the foook—Torrance BRDF (equation 2.9) is the geometry
function G modeling the geometric occlusion caused by the roughness of a
surface — a form of microscale self-shadowing. Again many alternatives exist
for the geometry function, but the one selected for examination here is the
one known as Schlick-GGX using Smith’s method. The Shlick-GGX is
defined as:

(n- X)(l.— k)+k

where n is the surface (macro) normal, x is the direction in relation to
which we want to know the occlusion and k is a remapping of the roughness
value « seen earlier. According to Karis [25] this is intended to correct an
error in the original formulation of Ggepiicr- The remapping is defined as:

G Schlick (X) =

(2.13)

o)
E=— 2.14

Returning to equation 2.13, the intention is to calculate the geometric
occlusion based on the direction x. When using Smith’s method, geometric
occlusion is modeled as comprising of two different factors. The first one is the
amount of incident light occluded (or shadowed) due to the surface roughness,
decreasing the illumination to a particular surface point. In this case the
direction x would take the value of the to-light vector 1. The second one
is the occlusion amount for the reflected light caused by surface roughness.
Here we think of the obstruction depending on the to-viewer direction v. In
practice we simply compute the normalized fraction values from Ggpier using
v and 1 as the arguments for the function and multiply the results together:

G(v,1) = Gsenickaax (V) * Gsentieraax (1) (2.15)

The results given by G(v,l) are normalized values in the range [0, 1],
so they can also be thought of as the percentage of being able to escape
any geometric obstruction by surface roughness. Indeed, given an amount
of incident light to a surface point the three functions D, F' and G can
be seen as giving the percentage values of light being reflected due to on

CHAPTER 2. THEORETICAL BACKGROUND 40

the distribution on microfacet orientations, the amount of reflection versus
transmission when interfacing between particular medium or the surface’s
self-shadowing. Putting everything together and to sum up the discussion,
we can now present the completed form of the reflectance equation 2.7 we
introduced earlier:

DFG)
4(n-1x)(n-v)

N
Lo<p7V) = Z(kd * % + ks *

k=1

® Li(p)(n - 1) (2.16)

We have implemented this equation for use in the shading part of our
object-space lighting algorithm. In practice, it is wise to augment the 4(n -
li)(n - v) term in equation 2.16 with a small € constant to avoid division by
zero. Another practical consideration is the fact that the normal n in the
equation is the normal sampled from a normal map, and thus can lead to
cases where backfacing surfaces (from the light source’s point of view) can be
lit even though this does not make sense geometrically. To prevent this, we
perform a test to see whether a surface is backfacing by mandating that the
dot product of the geometric (primitive) normal of a surface and the light
direction vector 1 has to be non-zero.

Chapter 3

Practical 3D Rendering

Up to this point we have put the majority of our focus on explaining the theo-
retical basis for the computer graphics pipeline. While it certainly is possible
to implement the theory covered by building everything from the ground up
using the basic libraries languages like Java, C4++ and many other similar
programming languages provide, this is rarely done. The reason for this is
that any practical implementation of the graphics pipeline using the rasteri-
zation method for visibility determination is bound to perform better when
executed on a GPU (Graphics Processing Unit). The GPU is a computer
hardware component designed for efficient rendering operations, including
fast matrix multiplication, texture sampling and triangle rasterization.

To utilize the GPU’s power, rendering applications have to be programmed
through the use of a graphics programming API (Application Programming
Interface), of which several alternatives may exist depending which platform
we are using (e.g., a Windows PC, a videogame console, a mobile device etc.).
Rather than giving completely free reigns to the programmer, the graph-
ics APIs typically expose only a carefully structured subset of the graphics
pipeline. When the first major APIs (such as Microsoft’s Direct3D [36]
and the Khronos Group’s OpenGL [47]) were originally released during the
1990s, programmers were restricted to such a degree that they could not
explicitly control the surface shading algorithms used in their 3D applica-
tions [5, p. 33].

As years have progressed, the primitive transformation and the fragment
shading portions of the pipeline have progressively been made more pro-
grammable, yet there several areas have still remained off-limits. The most
glaring of them in our opinion has to have been the inability to implement a
fully hardware-accelerated (in effect disregarding the compute shader caba-
bilites discussed in the following section) visibility determination based on
ray-tracing, but this has likely to be due to the scarcity of hardware sup-

41

CHAPTER 3. PRACTICAL 3D RENDERING 42

port for it rather than strictly an API omission. Recent developments and
the announcement of DirectX Raytracing [35] indicate, however, that this
limitation may soon be a thing of the past.

3.1 The Programmable Graphics Pipeline

To gain an improved appreciation for how the theoretical graphics pipeline
maps to the one present in a modern graphics API, we will give a high-
level walkthrough of the Direct3D 12 rendering pipeline [38]. The render-
ing pipeline can be conceptualized as the functional chain of stages that is
commenced by a draw call being passed to the GPU. A draw call is an
instruction which will at the least include information on which vertices to
render as well which rasterization and general rendering settings to use. The
following diagram serves as an abstracted overview of the pipeline:

)

Input Assembler

}

Vertex Shader

i

Hull Shader,
Tessellator,
Domain Shader

'

Geometry Shader

Shader
Resources

i

(Textures and
Buffers)

Rasterizer

'

Pixel Shader

Output Merger

Figure 3.1: The Direct3D 12 rendering pipeline.

The stages containing the term shader in their name, are stages the
graphics programmer can control by writing small programs called shader

CHAPTER 3. PRACTICAL 3D RENDERING 43

programs. These are written in a C-like programming language, which
in Direct3D 12’s case is the HLSL (High-level Shading Language) [37]. In
the diagram it is also illustrated how all the different stages comprising the
pipeline link together in sequence, with the arrows between them signifying
data being passed from one stage as the output to another stage as the input.
Do note also the use of additional resources such as texture maps and cam-
era and light source information which are passed to the pipeline as uniform
or constant values. This simply means that they do not vary depending on
individual vertices being processed by the pipeline, but are instead uniformly
defined for all of the vertices of a given draw call.

The reason graphics APIs use a sequential pipeline such as the one in
the diagram owes to the fact that the rendering pipeline itself can be paral-
lelized. APIs like Direct3D utilize the stream processing paradigm [32]
to do exactly this with the input data being streamed through both pro-
grammable and non-programmable stages. In stream processing terms these
stages would be called kernel functions [18]. The benefit gained from this is
that the rendering performance can be increased by increasing the number
of computational units and moving a part of the workload to the new units
— providing that we are not limited by memory resources or other ancillary
hardware in size or throughput. In the case of normal graphics pipeline
programming the developer needs to only be mindful of providing sequen-
tial stream input data (i.e., vertices and uniform resources) and the pro-
grammable kernel functions (i.e., shader programs) for the GPU. The GPU
drivers will perform the mapping of the streams to the available streaming
processors [26].

3.1.1 The Input Assembler and the Vertex Shader

We now move on to descibing the pipeline stages. Starting from the top
of figure 3.1 we have the input assembler stage in which the vertices we
wish to use for rendering are assembled into primitives, e.g., triangles for
use in other stages. The vertices are provided in a contiguous block of data
named the vertex buffer. The vertex data is declared on the CPU side by
the application (which can be written in e.g., C++) and then copied from
system memory into GPU memory from where it can be used by the HLSL
shader programs.

A special index buffer is also used in this stage, if available, to map
the vertices to be used for each triangle. The justification for using an index
buffer is that commonly the polygons we render share vertices with adjacent
polygons, meaning that we would have to duplicate some of the same vertex
data for each individual polygon. With an index buffer we can store each

CHAPTER 3. PRACTICAL 3D RENDERING 44

vertex only once and then reference it through the indices, leading to memory
storage and bandwidth benefits. [31]

The next stage is the vertex shader, which is a fully programmable one.
This stage has the responsibility of transforming the positions of the input
vertices, originally declared in object local space, into clip space coordinates
as described in section 2.1.1. This is done so that the GPU can properly
rasterize the polygons. The rasterization process itself is not exposed as
programmable in the Direct3D 12 pipeline but is instead a fixed function
stage.

Additionally, in the vertex shader we can pass texture coordinates and
perform other per-vertex transformations, for example on vertex normal and
tangent vectors, for use in the later stages. Do note that these transfor-
mations need not result in clip space coordinates, but can be in defined in
relation to an arbitrary coordinate system as is purposeful. A typical exam-
ple of this is to pass the world-space position coordinates as output from the
vertex shader in addition to the clip space equivalents, to perform lighting
computations in world space.

The vertex shader stage is followed by the geometry and tessellation
shader stages. These aim to enable primitive-level manipulation of geom-
etry and the runtime derivation of higher-detail meshes using control-point
based subdivision, respectively. The geometry and tessellation stages are
not relevant for the practical work part of this thesis, so they will not be
discussed further.

3.1.2 The Pixel Shader

Following the vertex shader, the next programmable stage that is of interest
to us is the pixel shader. The pixel shader is executed for each individual
back buffer pixel covered by a primitive, enabling per-pixel computations.
Another way to look at this is to say that we perform computations per
primitive fragment, which is where the OpenGL equivalent’s name, fragment
shader, comes from.

The inputs for this stage depend on values output from the vertex shader,
with the difference between them being that the pixel shader inputs have
undergone interpolation to be correct for each fragment. This means we
can have pixel-precise texture coordinates, normal and tangent vectors and
various other useful information. The texture coordinates can be used to
retrieve texture map values through HLSL provided texture samplers, with
the numerous addressing and filtering options described in section 2.2.4 being
available. In line with the stream processing paradigm, any texture maps
used will need to have been copied from system memory into GPU memory

CHAPTER 3. PRACTICAL 3D RENDERING 45

before the stream processing has started.

The level of precision afforded by the pixel shader makes it suitable for
operations demanding high-frequency sampling such as the BRDF shading
calculations discussed in section 2.2.6. This is why the bulk of lighting com-
putations are typically performed in the pixel shader as opposed to the vertex
shader. It is still useful to remember that moving computation to the vertex
shader can be beneficial in cases where the added precision is either unneces-
sary or less important compared to the performance benefits gained through
it.

3.1.3 Forming the Final Image

The final stage of the Direct3D 12 pipeline is the output-merger stage
where the final pixel color values are decided. It is a fixed function stage
over which the programmer has control only through specifying state settings.
These states include the blend, depth and stencil states.

The blend state controls how a new pixel color value fresh from the pixel
shader should be blended with a potentially already present pixel color value
in the back buffer. This is useful if a programmer would be interested in
implementing a transparency effect, as an example.

The depth state determines when or if back buffer color values should be
overwritten depending on the depth value for the fresh pixel compared to the
extant pixel in the back buffer. The extant pixel depth values are held in the
depth buffer, a buffer with the same dimensions as those of the back buffer.

Finally, the stencil state controls how the stencil buffer is used and how
back buffer writes depend on it. The stencil buffer is again a buffer with
equal dimensions to the back buffer and is probably best described as a
scratch pad for keeping track of occurences a developer might be interested
in. For example, during development it can be useful to track the number
of pixel shader invocations by setting the values in the stencil buffer to be
incremented after a pixel shader has completed. [31]

3.1.4 The Compute Shader

A separate but powerful stage outside of the sequential graphics pipeline
is the compute shader. The compute shader is intended to be used for
the more general computational tasks which do not lend themselves well
for graphics processing pipeline covered so far, but can still make use of
the stream processing paradigm. This form of computation on the GPU
is commonly referred to GPGPU (General-purpose computing on graphics
processing units).

CHAPTER 3. PRACTICAL 3D RENDERING 46

As GPUs are designed to operate on contiguous blocks of data, the input
resources for GPGPU tasks are buffers and textures. The distinction between
buffers and textures is made here, as the texture resources can sampled using
the hardware texture units of a GPU for texture filtering. This is a useful
feature particularly for image-processing related workloads. The compute
shader API also provides different buffer types to choose from based on the
type of read or write access (or a combination of them) the developer desires
to use. [31]

While the graphics pipeline operated on primitive vertices which are fur-
ther down the stream transformed into the polygon fragments covering a
pixel, compute shader programs operate on threads. A thread can be re-
garded as the smallest part a work task can both logically and practically be
divided into. If, for example, we desired to write a compute shader to alter
a digital photograph, we would have a thread correspond to one texel of the
texture map representing the photograph.

As the compute shaders themselves are kernel functions that have to be
generically applied to the threads, the GPU automatically generates various
system ID values for use as input in the shaders. Through these ID values
we are then able control execution down to a specific thread’s level. [1§]

The results of a compute shader can be written to a write-enabled buffer
provided the developer has declared it. As this buffer resides in the GPU
memory, it has to copied to the CPU memory if further processing on the
CPU side is desired or the results need to be stored on a storage device such
as an SSD. There is a performance penalty associated with moving data
between the different memory pools so it is to be avoided if possible. An
example opportunity for this would be when we utilize the computer shader
to compliment the graphics pipeline by performing texture map alterations.
The resulting altered texture map would then be sampled in the pixel shader
when calculating a back buffer pixel color. As the pixel shader operates on
resources in the GPU memory, there would be no need for a copy back to
CPU memory in this use case. [31]

3.2 Rendering Methods

3.2.1 Forward Shading

The described stream processing method of taking geometrical primitives
through the graphics pipeline by transforming them in the vertex shader and
finally performing lighting operations on the primitive fragments in the pixel
shader is called forward shading [28]. While this method has the benefit of

CHAPTER 3. PRACTICAL 3D RENDERING 47

simplicity of implementation for scenes with highly homogeneous light source
and surface material types, it begins to reveal its flaws as the heterogeneity
increases [7].

In section 2.2.6 we described a version of the Cook-Torrance BRDF,
which while popular in modern applications, is only one of various possi-
ble light-material interraction models one could use. To model light’s in-
teraction on human skin for example, one would be well advised to explore
BSSRDF (Bidirectional scattering-surface reflectance distribution function)
techniques [11]. These provide ways to more accurately describe body reflec-
tions compared to the simplified Lambertian diffuse reflectance model, but
also require a different set of material parameters compared to the Cook-
Torrance BRDF.

Let us imagine a scene where we had a human model with exposed skin
and a model with a surface exhibiting very limited diffuse reflection, such as
a metal sword, we would desire to have different shading routines for both
of these surface material types. This would mean authoring separate vertex
shader (to preparing shading parameters for interpolation during rasteri-
zation) and pixel shader (to implement the BRDF or BSSRDF) programs
for each case. The number of different vertex and pixel shaders naturally
increase as the scene’s complexity for shading types increases. This incon-
venience turns into a problem when we consider that for reflectance compu-
tations we also need to be able to compute the irradiance contribution from
potentially numerous different types of light sources (e.g, directional light,
point light, spot light, etc.) as each of them requires a type specific method.
Using programming constructs such as loops and branches is possible but is
associated with a performance penalty (although [7] argues ”it is no longer
prohibitive”), while authoring different shader programs for each case might
be impractical even if it could be automated. [5]

Another issue with forward shading is that during the rendering of a single
frame fragments from many different primitives may be rasterized onto the
same back buffer pixel. Due to to how the depth buffer works (with fragments
further away from the virtual camera being overwritten), this can lead to the
pixel shader being executed for a given pixel only for its result (the pixel
color) to be overdrawn later by another invocation of a pixel shader. This
clearly leads to a waste of compute and memory throughput resources.

It is possible to mitigate the problem to an extent by ensuring through
a depth-sorting algorithm that the primitives closest to the camera are ren-
dered first, and then utilizing the hardware and API provided early Z pass
method to avoid the execution of the pixel shader for non-visible fragments.
In practice, depth sorting algorithms cost additional performance and for the
general scene are not entirely robust, while the early Z pass technique may

CHAPTER 3. PRACTICAL 3D RENDERING 48

not be compatible with the specific shading methods a developer wishes to
use as it needs the depth information for a fragment to be unchanged through
the pixel shader. [5]

3.2.2 Deferred Shading

A presently popular solution to the problems posed by forward shading is to
use a method called deferred shading. In deferred shading, as the naming
suggests, the shading or lighting computations are postponed to be executed
only after the visible fragments and their related material properties have
been decided. Essentially we decouple the material property evaluation from
the irradiance contribution and surface reflectance evaluation. [5]

In practice this is achieved by initially passing the scene geometry through
the graphics pipeline, but instead of writing the results to a back buffer
with the (almost) final colors to be displayed on a screen, we write material
properties to an intermediary geometry buffer, commonly referred to as the
G-buffer. The G-buffer can be implemented either as separate buffers for
each material property or as one aggregate buffer. [5]

Whichever solution we choose, the relevant detail to remember is that
just as was the case with the depth and stencil buffers, the G-buffer is also
to have the same dimensions as the back buffer. This is because in effect we
are rasterizing the material properties to be used later on in the shading of
each back buffer pixel. Similarly, as the material properties are to be used as
parameters for the BRDF or BSSRDF shading implementations, we need to
ensure that we store all of the needed properties such as the diffuse albedo,
the surface normal vector and the roughness value. An example visualization
of a possible G-buffer’s contents is given in figure 3.2.

The final computation of reflected light values for each back buffer pixel is
achieved through performing rendering passes using light volumes. The light
volumes in this context mean simple geometric shapes such as spheres or
cones representing the area of effect for point or spot lights, as an example.
The light volumes provide an elegant way to avoid lighting computations
for cases where the distance-based attenuation on surface irradiance would
have caused the effective contribution to be close to zero — be it actually or
only perceptually. [5] In practice, using meshes such as cones or spheres may
performance-wise be a sub-optimal solution, so simple axis-aligned bounding
boxes are also used. [28]

As the light volumes are rasterized we not only gain their coordinates on
the back buffer, but also the coordinates for indexing into the G-buffer. This
is how we can use the material values in conjunction with the light source
properties to compute the irradiance to a surface fragment and finally the

CHAPTER 3. PRACTICAL 3D RENDERING 49

amount of reflected outgoing radiance to the virtual camera. Contributions
from multiple light sources can be computed by using additive blending (in
the output-merger stage) to sum up the total reflected radiance.

On the shader management side, the decoupling of material evaluation
and light computations from each other means that we are no longer faced
with a potentially impractical number of material and light source type com-
binations. With regards to performance, an evident benefit compared to
forward shading is that with deferred shading we now only compute reflected
radiance values for visible fragments.

At the same time this also presents a drawback from sampling perspective
as we only have information from one fragment to base our computations on.
This means that traditional hardware supported MSAA can not be used (as
we have no sub-pixel information for fragment coverage), meaning that post-
process methods are at present the only practical anti-aliasing solution for
most applications using deferred shading. [7]

Deferred shading introduces also some negative performance impacts of its
own. Due to having to store a possibly large number of material parameters,
the G-buffer can reserve a considerable amount of GPU memory as well as
cause a major increase in GPU memory bandwidth consumption during its
construction phase in the geometry pass. As was the case with forward
shading, the early Z pass can be utilized in the geometry pass to minimize
overdraw and thus save on memory bandwith costs. [5]

When discussing deferred shading, it is important to realize that it is not
a method that is exclusively useful for shading directly to screen pixels (as is
done in screen-space shading). Indeed, during our thesis work we found the
decoupling of surface material evaluation from the shading computations to
be very useful in our implementation of object-space lighting. In the imple-
mentation, the G-buffer is an object-specific buffer into which we evaluate
material properties such as diffuse albedo, surface normal and the roughness
parameter right at the 3D scene initialization phase. This can be done, as the
G-buffer contents do not change during runtime (in contrast to screen-space
shading, where contents vary based on visible surfaces) and therefore removes
the need for any further material computations after program start-up.

CHAPTER 3. PRACTICAL 3D RENDERING 20

Figure 3.2: A visualization of the contents of a G-buffer and the final shading
result (top left). The material parameters visualized here are the diffuse
albedo (top right), the surface normal (bottom left) and the surface roughness
values (bottom right).

Chapter 4

Object-Space Lighting

4.1 Motivation for New Rendering Techniques

In the field of computer graphics a great emphasis is often placed on achiev-
ing an optimal balance between the quality of visual presentation and the
rendering performance. In practice this means that programmers will gen-
erally pursue the development and implementation of rendering techniques
that lead to a decrease in the system resource usage — whether it falls on
the CPU or GPU side, or on the memory subsystems, while aiming to keep
presentation quality at a level similar to the original.

This work is often necessitated by competitive market pressures. An
example case of this has been the recent drive towards Virtual Reality
(VR) enabled applications and computer games [15], where an assortment
of additional burden is placed on resource usage. Compared to traditional
desktop monitors and television and mobile screens, virtual reality headsets
present the user with a seperate screen for each eye, enabling the applications
to make use of the human visual system’s (HVSS) stereo vision properties for
an improved sense of presence [29].

The two screens and thus two views necessitate modifications to the por-
tion in rendering pipeline we termed as visibility determination in section 2.1.
As the views need to be represented by two slightly offset virtual cameras
(to simulate two human eyes) we need to store and perform separate view
transformations per camera. Further along the pipeline this can lead to the
geometric primitives being rasterized onto slightly different positions on the
screen (or possibly even being culled or occluded) with different evaluated
surface properties for each camera.

The differing properties then lead to different view and light directions
and also different sampled material parameters, meaning that separate shad-

o1

CHAPTER 4. OBJECT-SPACE LIGHTING 52

ing executions are needed for both of the stereoscopic views. The end result
is that, for a straightforward implementation of stereo rendering, we would
need to double the number of draw calls and graphics pipeline passes in addi-
tion to needing extra memory space for storing the separate transformation
matrices and frame, depth and stencil buffers. On the GPU side the pixel
shader with its lighting computations is commonly the most expensive on re-
sources, so the doubling of resource usage in stereo rendering has the highest
computational latency cost here.

Another requirement for VR is that of the applications operating on a
relatively high framerate. While traditionally many 3D applications and
computer games have targeted a frame buffer update rate of 60 Hz, for VR
the recommended rate is notably higher. This is in part because modern
VR headsets incorporate a form of headtracking, where the user’s physical
position and orientation directly affect the positions and orientations of the
virtual cameras, and thus the final rendered images. Another factor is the
desire to minimize screen flickering, as VR headsets commonly use displays
with low pixel persistence. [1]

A low frame buffer update rate (measured as frequency, % = 1 Hz) means
higher computational latency (measured in time, 1ms) between the com-
mencing of rendering and the output of the final images to the screens. If
no optimization counter-measures are taken, this high latency can be sensed
by the user as a mismatch between her own position/orientation and that
suggested by the displayed images. This can lead to motion sickness, which
is why the frame buffer update rate should be kept consistently high. [1]

Current guidelines from major VR headset manufacturers recommend
update rates of up to 90 Hz (in the case of Oculus VR, HTC and Valve
Corporation) or 120 Hz (from Sony Corporation), although they also propose
the possibility to use update rates as low as 60 Hz or 90 Hz provided that a
motion interpolation technique such as that described by van Waveren [52]
is used.

The contrasting pressures to both target high frame buffer update rates,
while having to face the increased resource usage load posed by VR rendering
form a challenge in their own right. However, it truly actualizes when we
simultaneously need to strive towards providing the end users with a level of
visual fidelity similar to which they have been accustomed to with previous
non-VR applications. This then forms a clear motivation for devising novel
techniques which not only are able to offer performance benefits but ideally
also allow us to retain a visual quality close to that of the more expensive
previous techniques.

CHAPTER 4. OBJECT-SPACE LIGHTING 23

4.2 Shading in Object-Space

As noted, the shading part of the rendering pipeline is the one incurring the
highest cost from stereo rendering needed for VR. This is due to shading being
performed in the pixel shader once for each geometric primitive fragment
that has been rasterized onto the frame buffer. This is the same for both
forward and deferred shading as they both perform their lighting calculations
in screen space on a per-screen pixel basis. Lowering the rendering resolution
is certainly a possible mitigation measure, but it can lead to unacceptable
losses in fidelity and increases in aliasing artefacts. A perhaps more intriguing
path to explore would be to attempt to decouple the shading performance
from frame buffer resolution. This way the shading costs of stereo rendering
could be lessened while still maintaining a high frame buffer resolution for
the rasterization of scene geometry.

One category of such alternative shading techniques is traditionally called
texture space shading or object-space lighting [7]. We hold the view
that both of these terms have their place, as they each highlight different im-
portant aspects of the category. On a base level we indeed desire to perform
the lighting on a per-object basis, where we can separately define the sample
rate both spatially — as well as temporally if needed. While decoupling shad-
ing from the uniform frame buffer resolution can be beneficial, object-space
lighting allows us to change the shading update rates separate from the frame
buffer update rate [19].

A potential usage scenario would be to update the shading for far away
objects (possibly covering a small number of frame buffer pixels) at half the
frame buffer update rate as this would free up rendering resources and the
difference in visual quality might not be impactful for the user. Remem-
bering that high frame buffer update rates are heavily recommended in VR
rendering, this can be significant avenue for performance improvements.

While the term object-space lighting harkens more to the high-level con-
cept of the category, the term texture space shading illuminates the practical
implementation side. To achieve per-object shading results we can use an
additional texture map in which we store the reflected radiance for each texel.
This texture map covers the object’s entire surface area, so through texture
filtering we will be able store and reconstruct the reflected radiance for the
given object. We will use the term light map for this additional texture
map henceforth in this thesis. The use of the light map as a shading space
means that in addition to the back buffer properties such as resolution and
refresh rate, shading can also be decoupled from the final geometry pass of
the scene geometry. As Hillesland [20] points out, a further pursue of this

CHAPTER 4. OBJECT-SPACE LIGHTING o4

avenue can lead to novel anti-aliasing methods.

The light map texels need to have a correspondence to a 3D mesh’s surface
through normalized UV texture coordinates as described in section 2.2.4.
Once each light map texel has its approriate radiance value, we can sample
the light map on a subsequent render pass to gain the correct reflected light
values for the screen-visible parts of an object’s surface. Put in simpler terms,
the technique described here can be thought of as painting the reflected light
on to the light map. The key distinction to other common texture maps
such as the diffuse albedo maps is that the light map contains the final
radiance values as output by e.g., a BRDF, rather than being a map used
in providing input values for a reflectance function. This enables us to avoid
the problems arising from the mipmapping of normal maps in particular
(discussed in section 2.2.5), allowing for more realistic rendering,.

It is important to note that even though it is not presently popular in
modern rendering systems, object-space lighting in itself is not a new concept.
As an example, it was used in the Reyes rendering algorithm most famous
from its inclusion in Pixar Animation Studio’s Renderman rendering software
until 2015 [20].

4.3 Practical Implementation of Object-Space
Lighting

We set out to implement an object-space lighting technique utilizing texture
maps as the storage for the reflected light values. An implementation of a
traditional forward shading (in screen-space) pipeline was also created for
verification and qualitative comparison purposes. This was to serve both
as a form of ground truth for assessing the correctness of the object-space
lighting implementation, but also due to the thesis work including a user
study portion. Through the user study we had the goal of evaluating the
users’ ability to perceive differences between the ground truth version and
the object-space implementation (to provide further verification) and to un-
cover possible preferences between scenes rendered using the different lighting
techniques.

The user study will be described in detail in chapter 5, while in this
chapter we will focus on giving a walkthrough of the different parts of the
object-space lighting implementation.

CHAPTER 4. OBJECT-SPACE LIGHTING 25

4.3.1 The Software Used for Implementation

A vital consideration at the beginning of any software implementation is the
decision on which programming technology platforms to use. For our render-
ing purposes the possible alternatives were narrowed down to technologies in
three categories:

e Low-level rendering APIs (such as Direct3D and OpenGL)
e Mid-level frameworks (e.g., NVIDIA’s Falcor [40])

e Production-ready game engines (e.g., Unreal Engine j [12] and
Unity [51])

All of these alternatives utilize the GPU for accelerated rendering tasks,
which is what we desired. This desire also meant that CPU-based software
rendering was never a real option for the final implementation, although it
was used in early stages for proof of concept work.

The low-level APIs generally provide the developer with the greatest de-
gree of control over the entire graphics pipeline, while higher level frameworks
and engines hide some functionality behind abstraction layers. This can lead
to complications in specific cases where precise control is needed but not eas-
ily accessible to the developer. The major benefit from using the frameworks
and game engines is the increase in productivity they offer in the general use
case. These considerations were taken into account and because of them the
idea of using low-level rendering APIs was quickly abandoned.

Work initially commenced on the Falcor platform but we quickly found
that the unfinished nature of the framework (this is only in our own esti-
mation, and we do want to note that Falcor was at the time only at a beta
stage) coupled with the scarcity of documentation posed serious challenges
for productivity.

A decision was taken to move the work to Unity, a game engine tested
through years of both commercial as well as hobbyist 3D software production.
The wealth of readily available documentation and support online was also a
key factor behind the decision. While the workflow and main programming
language used differed between Falcor and Unity, the porting of existing code
was relatively swift so as not to pose a problem.

In Unity the workflow’s main areas of interest for a programmer are the
C# (or alternatively Javascript) script files and the shader and compute
files. The shader files correspond to programmable stages of the graphics
pipeline described in section 3.1, whereas the compute files contain compute
shader programs (section 3.1.4). The authoring of both of them is done in a

CHAPTER 4. OBJECT-SPACE LIGHTING 26

variation of Direct3D’s and DirectCompute’s HLSL. The script and shader
files are assigned to their appropriate objects in a particular 3D scene through
Unity’s editor interface, while the compute files can be assigned as properties
for the script files. This is how the compute shader programs can executed
from the scripts. The execution of assigned scripts, shader and compute files
is by default performed automatically during each frame update by Unity.

The screen-space shading implementation was done by authoring shader
files containing vertex and pixel shader programs, while the object-space
lighting implementation called for the utilization of shader, compute and
script files. We will now proceed by giving an examination of the latter
technique’s implementation.

4.3.2 Object-Space Lighting Algorithm Overview

Before moving on to detailed explanations of the object-space lighting algo-
rithm steps in the following sections, we present a general overview for the
rendering of a single 3D model in a scene:

Pre-program:

— Uniquely parameterize the 3D model’s surface, so that its triangles
can be mapped into a helper texture (the G-buffer).

e On 3D scene initialization:

— Fill the G-buffer with surface information.

* Includes the surface normal, diffuse albedo, roughness etc.
e For every lighting update for this model:

— Perform shading using information in the G-buffer and store ra-
diance values into the Light Map.

— We use the same reflectance functions as with our Screen-
Space Shading implementation.

e For every screen-update:

— As with Screen-Space Shading, project the 3D model to 2D, but
instead of doing lighting calculations just sample the Light Map
to retrieve correct radiance values.

CHAPTER 4. OBJECT-SPACE LIGHTING o7

4.3.3 Mesh Parameterization

The first problem that arises when designing a shading method that operates
on texels is the question on how to map these texels to a 3D mesh’s surface.
The naive solution would be to simply use the mesh vertices” UV texture
coordinates, but this does not work well in the general case. The artists
creating meshes and texture maps often use authoring methods, such as
the mirroring of UV coordinates around a reflection plane so that — as an
example, both the left and the right hand side of a human face’s mesh are
textured by a shared area of a texture map. In other words, the texels are
not uniquely mapped for the mesh’s surface.

As the light map is to store the correct reflected light values for the entire
mesh surface, we need to have unique UV coordinates. In 3D modelling and
rendering these are called unwrapped UV coordinates, and the process
of generating them is known as mesh unwrapping, a particular form of mesh
parameterization [5, p. 153]. The creation of an mesh unwrapping algorithm
or even the implementation of an existing one was outside of the scope for this
thesis, so the remaining two alternatives were to either procure meshes with
artist-made, ready unwrapped UV coordinates or to utilize existing unwrap
software.

Unity includes such functionality for its own light baking functionalities,
but our own tests revealed it to produce discontinuities in the generated UVs
leading to the apperance of "cracks” in final render results. We hypothesize
this to be related to the conservative rasterization algorithm we implemented
(described in section 4.3.6), but this realization came too late in the project to
be properly tested for validity. Irregardless of the exact cause, the artefacting
meant that the only viable option left was to utilize meshes with pre-made
unwrapped UVs, which coupled with budget limitations for the thesis greatly
limited the number of available and suitable meshes.

4.3.4 Rasterization

As we now have a way parameterize the mesh, the next step is to devise
a method for rasterizing the mesh polygons into a texture — such as the
light map. For the thesis work we support only meshes which consist of
triangle primitives. The rasterization is needed so that we are able to fill
the texels covered by a mesh triangle with shading related information. This
information in the case of the light map is the collection of reflected light
values, but there are other useful pieces of information that we would like to
store also.

Although rendering performance is not a key consideration of the thesis

CHAPTER 4. OBJECT-SPACE LIGHTING 28

work implementation, we decided to take a conceptually simple optimization
step. In a basic light map implementation one could perform the mesh trian-
gle rasterization and for each filled texel calculate through vertex attribute
interpolation the approriate position coordinates, vertex normals and other
similar properties. The mesh’s associated normal and diffuse albedo maps
would be sampled via interpolated UV coordinates and all of the gained
material properties could be passed in conjunction with uniform attributes
(including virtual camera and light source position values) as inputs to a
BRDF, which would then calculate the reflected radiance. This value would
then be stored in the lightmap per each texel.

If we are to assume that the models have a rigid surface structure —
in the sense that the UV coordinates of the mesh triangles’ vertices do not
change after program initialization, it is clear that there is no need to perform
the surface material evaluation more than once. This give us the option to
either precompute and store the material values, sacrificing memory space
but saving on computation and memory bandwidth costs, or to perform the
material evaluations (and thus waste computation resources) each time we
want to update the reflected radiance values. With the latter option we
would of course avoid incurring the memory space cost, which in itself can
be high depending on the number of stored properties and scene complexity.

As memory space was no issue in the thesis work’s context, we chose
to take the first option. Due to its apparent similarity in concept to the
deferred shading description given in section 3.2.2, we also chose to call
the intermediate buffer in which we store the material properties the G-
Buffer. This is the naming we will use for that buffer from now on. The
G-Buffer in our implementation consists of a singular buffer with the same
texel dimensions (width and height) to that of the light map.

CHAPTER 4. OBJECT-SPACE LIGHTING 29

At this point we are ready to summarize the overall structure of the
object-space lighting algorithm in the following pseudocode:

Rasterization :
foreach triangle T € Mesh
foreach texel G e G—Buffer
decide if texel G is covered by T
if G is covered:
store material properties to G

Shading :
foreach texel L € LightMap
if corresponding texel G € G—Buffer is filled
perform shading for L using G

As a practical consideration, a given mesh’s associated vertex and index
data need to be stored into separate vertex and index buffers in a Unity script.
This is because Unity is primarily set up towards screen space rasterization-
based 3D rendering using the graphics pipeline. Thus, alternative rendering
methods need to implement some of the basic rendering utilities including
mesh geometry handling by themselves. A pseudocode version of the Unity
script handling the execution of the different compute shader programs is
given in Appendix A.

After the mesh data has been declared and any utilized texture maps
(e.g., diffuse and normal maps) have been assigned for the script, the G-
Buffer is created as a read-writeable buffer with the desired resolution for a
rasterization compute shader program. As previously noted the resolution
has to be the same as the one used for the lightmap.

When deciding on the suitable resolution it has to be kept in mind that
after shading in texture-space to a light map we have the opportunity to use
the hardware supported anti-aliasing functionality intended for texture
sampling covered in 2.2.4. This means that we get the benefit of bilinear
filtering for magnification, and anisotropic (and linear) filtering of mipmaps
to handle minification. The resolution choice thus does not so much affect
the visibility of aliasing artefacts (especially temporal aliasing based ones as
those are minimized to a large extent by the texture filtering), but rather the
sharpness at which we can represent fine surface detail.

On the performance side increased resolution leads to increases in memory
and computation costs. In this thesis’ context these were not significant
limitations (the user study was to be done using pre-rendered videos), so

CHAPTER 4. OBJECT-SPACE LIGHTING 60

the G-Buffer and light map resolutions could be set to the 4096*4096 texel
limit, which Unity can still reliably handle.

After the material properties have been rasterized in to the G-Buffer,
another read-writeable buffer is created for the light map. This is used by
the compute shader program for shading. The shading program has to be
executed every time we desire to have updated reflected radiance values for
an object. In the thesis’ implementation the update is performed for every
frame buffer update (60 Hz for the user study videos), but in the general
case it could be set to rates much lower than that. It could also be set to be
dynamically based on scene properties such as the object-to-camera distance
or the rate of change in lighting conditions or camera position. A simple
passthrough shader program incorporating a vertex and a pixel shader was
written to perform the basic object-to-clip space transformation for the mesh
vertices and the sampling of the lightmap for the mesh surface, respectively.

The rasterization part of the algorithm is of notable complexity so it will
be delved into in more detail in the next section.

4.3.5 The Edge Function

In order to fill the G-buffer texels with their approrpriate material data, we
need a way to identifiy the triangle a given texel is overlapped by. Addition-
ally, as we desire to use material parameters that vary over the surface of a
triangle, we also a need a method to determine the exact location a texel’s
center lies on the triangle. Both of these goals can be achieved through the
use of a rasterization algorithm, of which there exist a variety of.

For the thesis work we have chosen to implement the edge function
method. As performance is not a key consideration, the choice was made
based on the expected ease of implementation. The edge function method
was originally presented by Pineda [44] and it is based on deciding on which
of the two half-spaces formed by a triangle edge a test point (the texel center
in this case) lies in. The properties of the vector cross product are used in
the method as follows.

Let us have a triangle defined by the three 2D vertices a, b and c. Let
us also name the edges defined by these vertices as A =b—a, B=c—Db
and C = a — c. The texel center point that we want to test is named as the
2D point p. Auxillary edges from the triangle vertices to p are denoted as
P,=p—a, P, =p—b and P. = p — c. Using the definition of the cross
product for 2D vectors on the vectors P, and A we have:

P.x A= (px—ax)by—ay) — (py—ay)(br—ax) (4.1)

CHAPTER 4. OBJECT-SPACE LIGHTING 61

If we only examine the magnitude of the cross product, we can express it
in another useful form:

|Pa X A| = |Pal||A|sinf, where 6 € [0, 7] (4.2)

where 6 is the angle between vectors P, and A. The result of equation 4.2
is the same as the area for a parallelogram formed by P, and A. Thus we can
interpret equation 4.1 as giving us the signed area of the same parallelogram.

Knowing that the lengths of the sides of must always be non-negative,
the only way we could retrieve negative values from the right side of 4.2 is
by relaxing the angle 6 to take on any real value.

If we additionally define 6 to be a rotation angle defined by the right-
hand rule (where positive rotation angles are counter-clockwise), by looking
at the sign of the result from 4.1 we now have an idea on how to decide which
side of the edge A point p is situated in. In the cross product the angle is
interpreted as starting from the first operand vector to the second one, so
with the right-hand rule the sine values for angles in the range [0, 7] result in
positive values, while angles in the range [, 27| result in negative values. By
computing the signs for the cross product for P, x A, P, x B and P, x B,
we can decide on whether the point p lies inside the triangle.

The order of the cross product operands is important from a geometric
perspective, as is also reflected by the fact that cross product in an anti-
commutative operation. This means that both an interpretation for the sign
of its result as well as the operand order has to be decided and then strictly
adhered to. For the thesis work the first operand has been decided to be the
auxillary vector from the edge vector starting vertex to the sample point p,
with the current triangle edge vector being the second operand. Positive
signs from equation 4.1 are taken to mean that the sample point
lies on the ”inside” half-space defined by a edge, while negative
sign tells us that the point is in the ”outside” half-space.

An additional, practical consideration for the operand ordering is that
the order can be reversed due to the triangle’s winding order. The wind-
ing order denotes the order in which the triangle vertices are defined, with
the options being either clockwise or counter-clockwise ordering. In our
implementation we expect the vertices to be defined in clockwise
winding order.

We can now present the final edge test function. Let us have an edge
defined by its end points a and b, and let us set Dy =b.y —a.y, and
D, = b.x —a.x. Then we can express the edge function for a sample point

(x,y) as:

CHAPTER 4. OBJECT-SPACE LIGHTING 62

EdgeTest(z,y) = (x —a.x)D, — (y — a.y) D, (4.3)

Changing the end points approriately allows us to test the sample point
against all of the triangle edges.

We now have a method to test if a sample point (i.e., the texel center)
is inside a triangle. In the common case the any given triangle defined in
the UV space will only cover a small portion of a texture map such as the
G-buffer, so it would be wasteful to perform the test for against each and
every texel center. We perform the simple optimization of determining the
AABB (Auzis Aligned Bounding Box) of a given triangle first by computing
the minimum and maximum texel coordinates in both the width and height
dimensions. Thus we arrive at a rectangle which tends only a portion of
the entire texture map, leading to a decreased number of texels needing
to be tested. The AABB as well as the edge function are illustrated in
figure 4.1. An example of a triangle rasterized by testing texel centers within
its AABB against the edge function for each of the triangle’s edges is depicted
in figure 4.2.

As mentioned before, the cross product’s (and thus also the edge test
funtion’s) result can be interpreted as the signed area of the parallelogram
defined by the operands. When this value is divided by two, we get the area
of the corresponding triangle. This means that if we use the triangle vertices
a, b and ¢ we have the following equation:

EdgeTest(c.xz,c.y)
2

Note that in our implementation we only use this function when EdgeTest
returns a non-negative value, so this relation holds. The triangle areas for the
sub-triangles defined by the texel sample point and the two triangle edge ver-
tices (that we use in EdgeTest to test against) can also be calculated. These
sub-areas when divided by the complete triangle’s area result in
values which represent for a given sample point the ”closeness” or
weighting towards a corresponding triangle vertex. This correspond-
ing triangle vertex is always the vertex which was not part of the EdgeTest.
As an example we give the calculation for a sample point p’s weight towards
the triangle vertex c:

TriangleArea(a, b, c) = (4.4)

_ TriangleArea(a,b,p)

w(p) (4.5)

~ TriangleArea(a, b, c)

CHAPTER 4. OBJECT-SPACE LIGHTING 63

-
P>

/I
~

/i

Figure 4.1: The edge function return positive values only when p is located
in the positive half-space formed by the edge we are testing against. By
performing this test for each of the triangle edges, we can decide if p lies
inside the triangle. Using the AABB (drawn in red) we can greatly reduce
the number of texels we perform this test for.

We can gain sample point p’s weights towards the triangle vertices a and
b in the similar way. In mathematics these weights are commonly referred
to as barycentric coordinates. These weights are important for gaining
interpolated vertex attribute values for points inside the triangle. These can
be any of the vertex attribute values including vertex normal or position.
By using the weights we in effect know how much an inner triangle point’s
attribute should be effected by the corresponding attribute values in each of
the triangle’s vertices. The interpolation for a sample point p is performed
by the following function:

Xinterpolated(p) = waXa + WbXb + WcXc (46)

where the weights have been calculated for p according to equation 4.5. All

CHAPTER 4. OBJECT-SPACE LIGHTING 64

Figure 4.2: An example triangle rasterized into a texel grid by testing the
texel center positions against the edge function.

of these weights sum up to 1, accordingly to the triangle area definition:
We +wp +we =1 (4.7)

An example of the results from the rasterization method described here
can be seen in figure 4.3. A more thorough pseudocode version of the raster-
ization implementation is given in Appendix B.

4.3.6 Conservative Rasterization

Unfortunately, the way in which we test whether a triangle covers a texel
by only testing against the texel center is susceptible to underestimation, as
could be seen in figure 4.2. This means that the method fails to detect cases
where other parts of a texel might be covered but the texel center itself is not.
For our texture space shading purposes this leads to the end result exhibiting
notable dark "cracks” or "seams” in places where the mesh’s triangles have
not been properly rasterized into the G-buffer.

CHAPTER 4. OBJECT-SPACE LIGHTING 65

Figure 4.3: A model of a statue, where the reflected radiance has been raster-
ized onto the light map — a texture covering the entire model surface. Note
the dark "seam” artefacts especially visible around the neck and armpit areas
of the model (but present throughout) due to the non-conservative rasteri-
zation approach.

In order to avoid this, we perform an additional rasterization pass after
the one described previously, but this time we use an overestimating conser-
vative rasterization approach. The algorithm we use follows the one outlined
by Hasselgren et al in [16] for use in the conservative rasterization of trian-
gles from three dimensions into the two dimensional screen coordinates, but
with very small adjustments the algorithm also works with our UV space
triangles.

The idea is to form an enlargened version of the triangle-to-be-rasterized
by moving the triangle edges a half texel amount to a given edge’s normal
direction. Note that as the triangle vertices are defined in UV coordinates (in
the range [0, 1] for both dimensions), while the texels are defined in texture
space (in the range [0, textureWidth] for width and [0, textureHeight| for

CHAPTER 4. OBJECT-SPACE LIGHTING 66

height), we need to calculate the conversion multiplier between them. This
is done simply:

_ 0.5 0.5
halfTexel.uv = (textureWidth’ textureHeight)

The moving of the triangle edges is a more complex procedure. We first
start by using a homogenous 3D representation for the triangle vertices. The
change to 3D is made so that the calculation of the edge intersection points
would be easier. Taking the UV coordinate vertices to homogenous 3D is
performed by adding a third, w-coordinate which we set to the value of 1:

ap. uvw = (ay, a,, 1)
bp.uvw = (b, by, 1)
Ch-UVW = (Cy, Cy, 1)

where a, b and c are the original triangle’s vertices. We can now represent
the triangle edges as planes in homogenous 3D by performing cross products
with the plane’s defining vectors:

plane,.uvw = (b, — ap,) X ay,
planey,.uvw = (¢, — by) X by,
plane..uvw = (a, — ¢;) X cp

With this formulation the plane variables now contain the plane nor-
mal coordinates in the u and v components while the w component holds
the plane’s distance from origin. Knowing this and additionally that the
homogenous planes correspond to the non-homogenous triangle edges, in-
creasing the w component’s value is in effect the same as enlargening the
the triangle by moving it’s edges towards the edge normal directions. The
appropriate amount to shift the planes is controlled by the halfTexel value:

plane,.w = halfTexel.uv - abs(plane,.uv)
planey,.w = halfTexel.uv - abs(planey.uv)
plane..w = halfTexel.uv - abs(plane..uv)

where the abs function return the absolute value of its argument. After
doing this, we can use the shifted planes to compute the intersection edges,
which correspond to the non-homogenous enlargened triangle’s vertices. The
intersection edges are found as follows:

CHAPTER 4. OBJECT-SPACE LIGHTING 67

intersection,.uvw = plane, x planey,
intersection,.uvw = plane,, x plane,
intersection..uvw = plane, x plane,

From which we gain the non-homogenous intersection points — or in our
case the enlargened triangle’s vertices, as follows:

Aenlargened .UV = intersection,.uv/intersection,.w
Denlargened- UV = intersectiony.uv/intersection,. w
Cenlargened -1V = intersection..uv/intersection..w

These are the coordinates we can use as previously as input for the Ed-
geTest function in equation 4.3. Rasterizing this enlargened triangle directly
can lead to false positives where some of the texels covered by the enlargened
triangle would not be overlapped at all by the original triangle. This situation
can be avoided by changing the way we compute the AABB we previously
noted to be using as a rasterization optimizing measure in section 4.3.5. As
the AABB controls which texels we even consider to be covered by a trian-
gle, we can simply limit it to a size beyond which no coverage is possible. In
practice this means computing the AABB minimum and maximum values in
the following way:

ConservA ABBymin = max(0, Ty, — halfTexel.u)
ConservA ABBy yin = max(0, Ty, — halfTexel.v)
ConservA ABBumax = min(textureWidth, Ty .. + halfTexel.u)
ConservA ABBvy ax = min(textureHeight, Ty, + halfTexel.v)

Conservative rasterization is illustrated in figure 4.4 and an example of
the results is shown in figure 4.5. A more thorough pseudocode version of
the implementation is given in Appendix C.

CHAPTER 4. OBJECT-SPACE LIGHTING 68

Figure 4.4: The previously depicted triangle rasterized using the conservative
rasterization approach. The conservatively filled texels are colored in green,
while the non-conservatively filled texels are in blue.

4.3.7 The Structure of a G-Buffer Texel

The values we store in the G-buffer texels consist of those we need for the
shading phase of the object space lighting algorithm, as well as auxillary
helper variables during the rasterization and the dilation process (discussed
in section 4.3.9). The G-buffer texel structure is presented in the following
list:

e float3 weights

e float3 localNormal

e float4 localTangent
e float3 normalSample
e float3 diffuseAlbedo
e float3 specShape

e float3 auxVal

e int triangleIndex

CHAPTER 4. OBJECT-SPACE LIGHTING 69

Figure 4.5: Here we have used conservative rasterization, with the texels
rasterized conservatively into being displayed in red. Although the result is
improved over that of figure 4.3, a very close examination reveals that there
are still very miniscule but visible ”seams” present. This is a product of the
texture filtering performed on the light map and is discussed in section 4.3.9.

e bool isFinal

e bool isDilated

The weights vector holds the barycentric weights for a given texel cen-
ter’s location on the corresponding triangle denoted by the triangleIndex
integer, which holds the triangle’s index in the index buffer. The local-
Normal and localTangent vectors are used to form a reference coordinate
system for the normalSample surface normal vector. We use these vectors
as part of the normal mapping technique in shading first mentioned in sec-
tion 2.2.3. Normal mapping will covered in more detail in the next section.
DiffuseAlbedo is the RGB vector capturing the proportion of diffusely re-
flected light for the surface point as described in section 2.2.1, while the

CHAPTER 4. OBJECT-SPACE LIGHTING 70

specShape and auxVal vectors are additional optional vector slots we can
opt to use for storing material data that may change from source model to
another. Finally, we have the isFinal and isDilated boolean flags which
we use signify whether a texel has been finished being rasterized or getting
dilated values from its neighbors, respectively.

4.3.8 Shading and Normal Mapping

After the G-buffer’s rasterization is complete, we can run a compute shader
program to perform shading for each light map texel using the material
information in the corresponding G-buffer texel. We utilize two different
reflectance functions to perform the shading: the primary one is the Cook-
Torrance BRDF we described in detail in section 2.2.6 while the secondary
one is a minor modification of the SVBRDF (Spatially-varying BRDF') imple-
mentation by Knuuttila [27] who used two-shot SVBRDF capture material
data from Aittala et al [3]. Video material based on the renderings from both
functions are utilized in the user study.

Although the SVBRDF will not be described in detail in this thesis, it
should be noted that the main differences compared to the Cook-Torrance
BRDF relate to the use of specular shape information generated from real-
world data using a method outlined by Aittala et al. [3]. This is used to pro-
vide reflectance that more closely resembles that of the real-world counterpart
material. Compared to the Cook-Torrance BRDF, the normal distribution
function is altered while the geometry function is discarded completely. The
Fresnel function remains identical to the one defined in the Cook-Torrance
BRDF.

An implementation detail that we have not yet covered, but is a vital
component to modern 3D renderers, is the normal mapping technique.
In section 2.2.3 we discussed how storing surface normal vectors in texture
maps can allow us to store higher frequency surface orientation information,
when compared to using primitive or vertex normals. In practice, however, we
have to remember that vectors are only meaningful when in relation to some
specific coordinate system. The surface normals stored in texture maps are
commonly declared relative to what is called a tangent space. The tangent
space is simply a coordinate system that captures the geometric orientation
of the surface. As it is a 3D coordinate system, it is formed by three basis
vectors: the tangent, normal and bitangent vectors. Accordingly, this
coordinate system is often called the TBIN basis.

The tangent and bitangent vectors are the vectors deciding the surface
plane, while the normal vector denotes the direction ”outwards” from the
surface plane. The normal vector in this case is the vertex normal interpo-

CHAPTER 4. OBJECT-SPACE LIGHTING 71

lated for a particular G-buffer texel using the covering triangle fragment’s
barycentric weights and the vertex normals stored in the triangle’s vertices.
It can be thought of as representing the general geometric outwards facing
direction of a surface. The normal vector along with the tangent vector is
typically stored in a given mesh’s vertex data, but functionality exists in
Unity to generate both of them programmatically when needed.

The bitangent vector can be generated in a shader program by taking the
cross product of the normal and tangent vectors, so it typically not stored in
the per vertex data. For cases where we are using screen-space shading, care
must be taken in deciding where to perform the TBN basis construction as
correct (although slower) results can only be gained in the pixel shader. As
the result vector of a cross product operation depends on the cross product
operands’ order, the developer also has to be mindful of whether a right-
handed or a left-handed coordinate system is used.

After we have constructed the TBN basis we are ready to progress to light-
ing computations. We perform our object-space lighting in the object-local
coordinate space, so in addition to transforming the virtual camera location
and light source direction/position (depending on if we are using directional
or point light sources, respectively) to the object-local space, we need to do
the same for the normal vector sampled from a normal texture map. For
the G-buffer we sample texture maps such as the diffuse albedo and normal
maps using bilinear filtering. This provides a preferrable approximation for
the correct value per texel, when compared to results we would get from
using a simple point sampling method. Mipmapping is not applicable for
use in the rasterization compute shader programs as we have no information
of the projected sizes of each texel onto screen pixels. There would be little
benefit from using anything other than the highest resolution version of a
texture anyhow, as the rasterization step is performed only during the initial
program start-up and the highest resolution version provides also the highest
data frequency to use as input for the bilinear filtering.

Returning to the particular topic of normal map sampling, Unity
changes the data type format for texture maps declared as holding normal
data into its own compressed format. This means a decompression operation
has to be performed before transforming the sampled normal to the object-
local space. Unity provides this operation readily available for screen-space
shading vertex and pixel shader programs, but for our compute shaders we
need to add that function manually:

uncompressed-XY = Ncompressed-wy *2—1

uncompressed-Z = \/1 - maX(O, mln(Nuncompressed~Xy ' Nuncompressed-XY)

N
N

CHAPTER 4. OBJECT-SPACE LIGHTING 72

After this, we are ready to perform the change of coordinate system trans-
formation on the sampled normal to take it from tangent space into the
object-local coordinate system. When using the column major matrix for-
mat, the tangent space’s TBN basis vectors (expressed relative to object-local
space) can be placed as the rows of a transformation matrix:

Tax Ty T.z
Mgy = |Bx By B.z
N.x N.y N.z

This matrix — when used to multiply a 3D column vector on its right,
is equal to transforming from object-local space into the tangent
space defined by the TBIN basis vectors T, B and N. We desire to
perform the exact inverse of this transformation, so we need to compute the
inverse matrix Mrgy'. As the basis vectors are orthogonal to each other
and of unit length, Mrpgy is thus an orthogonal matrix. For an orthogonal
matrix the inverse is simply its transpose. In Mrgy’s case this means that
the inverse is:

Tx Bx Nx
Mrpy * =My’ = [Ty By Ny
Tz Bz N.z

By using this matrix we transform the sampled normals into
object-local space — the same coordinate system as the light source direc-
tion/position and virtual camera position vectors we use for the reflectance
computation. Following this, we have all the needed material information
rasterized into the G-buffer in the correct form for the Cook-Torrance and
SVBRDF lighting calculations. Once the lighting calculations have been
performed, we have the light map texture containing reflected light values as
RGB vectors for the entire surface of a mesh.

CHAPTER 4. OBJECT-SPACE LIGHTING 73

4.3.9 Dilation

While the use of overestimating conservative rasterization (section 4.3.6 en-
sured that every even partially overlapped G-buffer texel gets filled in and
(later on) shaded, there still exists a significant problem. As the distance
of the 3D mesh’s surface to the virtual camera increases, the brightness of
the reflected light appears to decrease. This is caused by how mipmapping
works. As the lower resolution versions of a texture are computed by aver-
aging texel values over a certain rectangular area, it is possible for this area
to contain texels which have no proper mapping to the mesh triangles.

In our case this would correspond to texels to which no triangle gets
rasterized on to. As these texels contain no material data, they would be
shaded to the default value of 0 for each RGB component. In other words
they would appear black. When a mipmap’s averaging area contains these
null, black texels, the average for the whole area is weighted towards black.
The amount of this weighting is related to the number of null texels contained
by an averaging area.

The error can be corrected by performing edge padding, in which we
spread the material data of the texels with actual rasterized triangles (and
thus, material property values) to their neighboring empty texels. In im-
age processing this operation is commonly referred to as dilation. In our
implementation dilation is performed a set number of times determined to
be sufficient for filling every G-buffer texel with valid material data. The
dilation operation is performed as follows:

Let the group G of G-buffer texels be divided into two non-intersecting
groups: F for finalized texels holding their final material values, and D
for non-finalized texels waiting for the dilation operation.

foreach texel d; € D:
numNeighbors = 0
foreach neighboring texel n; € F of d;:
foreach interpolated material property of d;:
d;.matVal; += njmatVal;
foreach non—interpolated material property of d;:
d;.matVal, = nj.matValy
numNeighbors = numNeighbors + 1
if numNeighbors > 0:
foreach interpolated material property of d;:
d;.matVal; = d;matVal; / numNeighbors
remove d; from D and add it into F

CHAPTER 4. OBJECT-SPACE LIGHTING 74

We go over each of the non-finalized texels in the G-buffer and set as
their material property values the (uniformly) weighted sum of the their
neighboring texels’ corresponding material property values. The neighboring
texels are only considered if they contain finalized material values either
from the previous rasterization process, or by having gained them through
dilation. This ensures the propagation of only proper material values — we
do not want empty texels to have any influence. Note that in our G-buffer
structure (section 4.3.7) some properties, like the trianglelndex and weights
values, cannot be computed through the weighted sum as this would not
yield correct results. This is what we mean by the non-interpolated material
properties in the previous pseudocode. These values are simply set to those
of the last finalized neighboring texel’s values in the loop over neighbor texels.
An example of dilation results (along with non-conservative and conservative
rasterization results) is shown in figure 4.6.

After the dilation has been performed, Unity’s built-in mipmap generat-
ing function is used to construct a mipmap chain for our light map, after
which it is ready for use in texturing a mesh. This is done by performing
a forward rendering pass for a given mesh, where in the vertex shader we
simply perform the projection from object-local coordinates into clip space
coordinates for each of the mesh’s vertices. In the pixel shader program
we perform 16x anisotropic filtering to sample the lightmap using the pro-
jected fragment’s UV coordinates. The anisotropic filtering provides us with
a hardware-supported anti-aliasing method to smoothen the gradation be-
tween the colors of neighboring surface fragments, while also eliminating vis-
ible shimmering artefacts that would be associated with a traditional screen-
space shading method. We also avoid the problems arising from the filtering
of normal maps in screen-space shading (discussed in section 2.2.5) by only
performing the filtering on the final radiance values.

Returning briefly to the particular topic of dilation, in hindsight it would
have been more efficient to simply first perform the shading of the covered
light map texels and afterwards dilate the resulting radiance values to neigh-
boring texels, as this can result in a considerable saving in lighting compu-
tation costs with the added per-frame dilation being minor in comparison.
This should be kept in mind for any further developments.

CHAPTER 4. OBJECT-SPACE LIGHTING 75

Figure 4.6: A review of the light map texture after different forms of ras-
terization and dilation. The description for the images is as follows: non-
conservative rasterization (top left), conservative rasterization visualized us-
ing red diffuse albedo (top right), dilation visualized with green diffuse albedo
(bottom left), dilation with the actual diffuse albedos for the model being
used.

4.3.10 Screen-Space Shading Implementation

As part of the thesis work, screen-space shading versions of the Cook-Torrance
BRDF and the SVBRDF were also implemented. These versions served two
main purposes: to be utilized as comparison rendering methods in the user

CHAPTER 4. OBJECT-SPACE LIGHTING 76

study portion of the thesis work, and to additionally provide a ground truth
comparison assessing the object-space lighting implementation’s correctness
during development. Any possible errors in basic rendering tasks such as in
the transformations between different coordinate systems could in this way be
more quickly identified. The justification for using the screen-space shading
versions as ground truth equivalents is given in the following reasoning.

Provided that the used lightmap resolution is high in relation to that
of the screen area covered by a projected mesh, the texture-shaded and
anisotropically filtered version should be visually close to the results gained
from a supersampled screen-space shaded version. This is because anisotropic
filtering uses mipmaps which themselves are (with the exception of the orig-
inal texture) versions where the texel values have been generated through
an averaging process from nearby texel values in a higher resolution version.
In other words, each texel is derived through the use of multiple
sample values.

Anisotropic filtering on the material texture maps is traditionally also
used in applications which perform their shading computations in screen-
space to minimize the most visible aliasing artefacts. However, this form
of subjecting already the shading inputs to pre-filtering can result in final
reflected radiance values that diverge more from the actual ground truth
values, when compared to what we would get if we were to perform the
filtering only on the final radiance values [42]. This means that our texture-
space shading implementation provides results that are closer to reality than
the ones gained from these more traditional, screen-space techniques. In
order to directly filter the radiance values on these techniques, one needs to
operate on the final back buffer color values to perform a similar averaging
process as that is where the radiance values are stored.

This equals to performing supersampling in the screen-space shading
method, where we render a mesh using a intermediate raster grid resolu-
tion that is higher than the final output resolution, e.g. the full screen
display resolution. In this case the final output pixel values are each formed
through a weighted sum of multiple intermediate raster grid’s pixel values.
This means that for a render of a given 3D mesh, the theoretical
expectation is for a supersampled screen-space shaded image in
which the shading inputs have only been nearest-neighbor filtered
to look very similar to a non-supersampled texture space shaded,
anisotropically filtered image. It bears noting that the mesh geometry’s
outline will look different in these cases — as in the texture-space shaded
version we only gain anti-aliasing on the inner parts of the mesh surface and
none on the primitive geometry edges. The theoretical expectation is also
one that we test for in the user study portion of this thesis.

CHAPTER 4. OBJECT-SPACE LIGHTING 77

The actual screen-space shading implementation follows the traditional
flow for the technique, as was described in chapter 3. Following a draw call
for a 3D model, we first execute its vertex shader on its triangle vertices. In
the vertex shader we transform the position, normal and tangent vectors into
world space — ready for the vertex attribute interpolation during fragment
rasterization. The transform to world space is done for these attributes as
we deemed that to be most practical space to perform the later lighting
computations.

In addition to this, we also simply pass through the texture coordinates
(we perform no texture animations) and produce a copy of the vertex position
that has been transformed into clip space. As covered in section 2.1.3, this
is the space the GPU expects the vertex position to be expressed in relation
to before applying the perspective projection.

After the vertex shader operations, triangle fragments are operated on in
the pixel shader. Here we perform three main tasks:

e Sampling of material information held in texture maps
e Construction of the tangent-to-world space matrix Mrgn

e Shading through the application of a reflectance function

It is worth noting that the transformation matrix Mrgn here is the trans-
formation from tangent-to-world space, unlike the similarly named matrix we
described in section 4.3.8. In that section the matrix was a transformation
from tangent-to-local space.

The sampling of material information from texture maps is for
the most part simple as we just use the HLSL provided sampling function,
but here we have to be mindful of what exactly we are striving to achieve. In
a typical case, to minimize the shimmering artefacts caused by the possibly
abrupt changes in values held from texel to texel, texture filtering techniques
for the minification and magnification cases are used as described in sec-
tion 2.2.4. However, for our purposes we want to use the screen-space shad-
ing implementation as a means to compare against the object space lighting
implementation. In the latter we perform the shading on individual texels
containing the precise material information for that particular surface loca-
tion of a mesh. It is only afterwards that we use the texture filtering on the
completed light map to provide anti-aliasing.

If we were to use any other texture filtering method than the point sam-
pling one in the screen-space shading implementation, it would mean that we
would be using pre-filtered material information as input for the reflectance
function. This would be in contrast to the exact values we use in object-space

CHAPTER 4. OBJECT-SPACE LIGHTING 78

lighting. For this reason we forego the use of the more advanced texture fil-
tering options in the screen-space shading implementation and instead limit
ourselves to point sampling.

The construction of the matrix Mgy also calls for some considera-
tion, as we have to be careful to perform it in the pixel shader. Although we
transform the vertex normal and tangent vectors to world space in the vertex
shader, it would be incorrect to build Mgy there. This is because most of
the values output by the vertex shader, including the TBN basis vectors, need
to be interpolated during rasterization before their use in the pixel shader.
In the general case, this interpolation will not preserve the orthogonality of
the TBN basis vectors, thus rendering the vectors to be linearly dependent
to each other.

To avoid this, we perform the TBN construction in the pixel shader, with
the application of the Gram-Schmidt process to orthonormalize the tangent
vector with regards to the vertex normal vector. The bitangent vector is
then calculated by taking the cross product of the vertex normal and tangent
vectors. Unity provides a sign variable with the tangent vectors that we use
to multiply the result of the cross product to ensure that the bitangent vector
we get is facing the correct direction according to the selected handedness.

The shading through the use of a reflectance function is performed
last in the pixel shader. Depending on the exact scene, we use one of the
reflectance function previously mentioned (the Cook-Torrance BRDF and the
SVBRDF) to compute the final shaded pixel colors, with the light sources
ranging from a singular directional light to three point lights.

(
|
|
|
|
|
|
|
\

CHAPTER 4. OBJECT-SPACE LIGHTING 79

4.3.11 Summary Diagram of Texture-Space and Screen-
Space Implementations

For ease of comparison, we present in figure 4.7 the high-level functional flows
of the screen-space and texture-shading techniques we have implemented.
Note that even though final radiance values are computed in our texture-
space shading implementation for every screen update, as we were not in-
vestigating the temporal decoupling properties, in the general case it by no

means has to be so.

Screen-Space Shading

3D Model Vertex Shader Pixel Shader Output

Input triangle _| Transform vertices to > Compute lighting »| Outout back buffer

vertices and " | clip-space and set values per pixel to ixe?s to screen

texture maps interpolation properties back buffer P

Texture-Space Shading
r’PE;g_raTn Initialization ~— ™\

""""""""""""""""""""""""""""""""" |

| 5
| | n3ﬂ ?:i:ge{e Compute Shader Compute Shader i Compute Shader ; |
| ve?tices ar?d # Rasterize triangles # Dilation to fill empty —-~ Compute lighting values to :
L texture maps to G-buffer texels G-buffer texels LM per G-buffer texel |
~

Compute Shader
Compute lighting values to
LM per G-buffer texel

3D Model
_| Input triangle
" | vertices and
texture maps

Vertex Shader — S!_lader
- . Sample LM using texture
» Transform vertices I et
. filtering for lighting values
to clip-space

]
Output
Qutput back buffer
pixels to screen /

|
|
|
and store into back buffer :
|
|
|

Figure 4.7: Diagram comparing the two shading algorithms.

4.3.12 Comparison of Texture-Space and Screen-Space
Shaded Results

A comparison between the results from the screen-space shaded and texture-
space shaded techniques can be seen in figure 4.8:

CHAPTER 4. OBJECT-SPACE LIGHTING 80

Figure 4.8: On the left-hand side we have the 1 sample per pixel (SPP)
screen-space shaded images, in the middle we have the 256 SPP screen-space
shaded images and on the right we have the texture-space shaded images.
For all of these the screen resolution was 1920*1080 pixels, while the light
map resolution for the texture-space shading was 4096*4096 texels.

CHAPTER 4. OBJECT-SPACE LIGHTING 81

From figure 4.8 it is easy to see how the 1 SPP screen-space images display
noisy specular highlights on the models, which results in a appearance sug-
gesting that the highlights could be shimmering. The supersampled 256 SPP
screen-space and the texture-space shaded counterpart images in comparison
have notably smoother highlights. These differences are caused by specular
reflections being very sensitive to the relationship between surface microscale
orientation and the view and light source directions. Small changes in these
properties’ values can lead to almost binary behaviour in specular reflections,
causing sharp brightness changes spatially from pixel to pixel. This prob-
lem is not present in the 256 SPP and texture-space shaded images as they
both benefit from taking a large number of shading samples and then low-
pass filtering these samples for the final screen pixel color values. We have
illustrated the differences and their cause in figure 4.9

A very close inspection of the 256SPP and texture-space shaded images
reveals jagged patterns on object edges in the texture-space shading versions.
This is most notable when comparing the renderings of a statue on the bot-
tom row. This difference is due to the texture-space shading implementation
not using any form of geometry anti-aliasing, meaning that we only retrieve
the shading result from the Light Map for only one triangle per screen pixel.
As the 256SPP screen-space version supersamples also the geometry, it enjoys
demonstrably cleaner end results.

CHAPTER 4. OBJECT-SPACE LIGHTING 82

@ time = (0
2 1 Sample Per Pixel: 100% brightness

3 Samples Per Pixel: 33% brightness

- time = t1
@] 1 Sample Per Pixel: 0% brightness
m | 3 Samples Per Pixel: 0% brightness
Fe———F—T v "o o]
B time = t2
@ | 1 Sample Per Pixel: 100% brightness
3 Samples Per Pixel: 33% brightness

1 o o]

Figure 4.9: Illustration of the shading result differences for specular reflec-
tions, depending on if we take 1 or 3 samples per screen pixel. The colored
rectangles in each time step case (t0, t1 or t2) indicate the surface area of
a 3D model that is covered by a particular screen pixel. Each rectangle has
its associated normal information inside it, which indicates the surfate ori-
entation. Of the rectangles, the one colored light blue (and situated in the
middle) is the only one that is used when taking 1 sample for the screen pixel,
while when we are taking 3 samples per pixel we use the surrounding light
red rectangles for our sampling. From the illustration we can see that as the
surface moves over the time steps (t0 to t2) to the right across the screen
pixel, the brightness values for the final pixel color varies less dramatically
when we take multiple samples per screen pixel and average them, compared
to when we only take a single sample.

Chapter 5

The User Study

A user study was conducted as part of the thesis work. The purpose of the
study was to investigate possible preferences users might exhibit for computer
generated images based on the shading method. The shading methods under
consideration were the texture-space shading technique we implemented for
the thesis and the more traditional screen-space shading method. The general
algorithms for both of these were described in chapter 4. For the screen-space
shading method we produced two variations: one in which we take only a
single sample per screen pixel, and another in which 256 samples are taken
per screen pixel and then averaged to form the final pixel color value. The
latter variation bears similarity to the texture-space shading implementation
as they both use several shading samples and filter the results to form the
screen pixel colors.

The increased spatial sampling frequency means that we are able to
sample high frequency patterns (such as those originating from parameter-
sensitive glossy reflections) without as much information loss, while the fil-
tering provides a way for us to take into account the possible variations in
surface color across the area subtended by a screen pixel. The end result
should thus not only display less spatial aliasing for static rendered images,
but also less temporal aliasing provided that the rendered object’s surface
moves slowly across the pixels during a video sequence.

Recent research conducted by Waldin et al. [53] suggests that flickering
in displayed images can guide the user’s gaze, and thus attention, towards
the flicker areas of a screen. They state this attention-drawing mechanism
to be variable in the sense that once the user’s vision has focused on the
flicker area, the flickering becomes less salient. This observation is connected
to previous research on human vision, where the foveal region (which is used
for discerning detail in directly gazed objects) has been found to be have a
lower critical fusion frequency (CFF) compared to that of its surrounding

83

CHAPTER 5. THE USER STUDY 84

visual periphery [50]. The CFF is a measure for the frequency at which
flickering images begin to be seen as a continuous, stable image.

Based on these attention-drawing properties, and the uncovered notion
that flickering is perceived as annoying by users [14], we are ready to present
our hypothesis. We hypothesized that users should be able to discern dif-
ferences when comparing video sequences of identical scenes rendered using
the different methods, provided that there is a significant difference in the
amount of temporal aliasing. In addition to the ability to differentiate be-
tween results derived from different rendering methods, we also expected
users to show preference for methods resulting in less temporal aliasing. The
results from the user study indicated these expectations and our hypothesis
to have been correct.

5.1 Test Material

5.1.1 Test Scenes

For the user study a total of five different 3D models were used. Two of
these were simple geometric shapes generated by Unity, while three were
more intricate creations. These three models were downloaded from the 3D
model website TurboSquid [49] and all of them are available under a royalty
free license. As the material data for the sphere and plane 3D models we
used texture maps provided by [4], while with the other models we used the
material texture maps custom made and included with each of them. A list
of all the models used is provided next:

e Plane, 4K materials

Sphere, 4K materials
e Gnome model, 12343 polygons, 1K materials
e Statue model, 25277 polygons, 4K materials

e Buddha model, 15321 polygons, 4K materials

The Gnome model was authored by TurboSquid user ” Andromeda_vfx”,
while the Statue and Buddha models were created by user ”Mellowmesher”
on the same site.

Here /K materials means that the texture maps used for containing mate-
rial information for a model have the resolution 4096*4096 texels. Similarly,
1K materials means that the texture map resolution in that case is 1024*1024

CHAPTER 5. THE USER STUDY 85

texels. From the list, one should note how the Gnome model is the only one
to not have 4K materials available. This provides an interesting opportu-
nity to test for the possible effects the use of bilinear texture filtering to
upscale the lower resolution texture assets might have on the perceived qual-
ity and the users’ ability to discriminate between the object-space lighting
and screen-space shaded results. As only nearest neighbor filtering is used
for the screen space shaded version, the comparison is not like-for-like, but
it should serve as a measure through which we can validate that the test
worked as intended and that the participants were able to discern differences
to the precision expected of them.

Figure 5.1: A comparison between the 256SPP screen-space shaded image
(left) of the Gnome model and the texture-space shaded version (right). Note
the difference in appearance caused by the differing texture filtering methods
employed.

5.1.2 Video Production

While differences between the two rendering methods we are comparing can
be visible even when judged using static rendered images (depending on the
exact 3D configuration), differences should be more pronounced during mo-
tion due to the presence of temporal aliasing artefacts. This is why the test
material for the study was decided to consist of video material. Performing
the test in real-time would have been impossible due to the amount of render-
ing time the production of even a single supersampled screen-space shaded
frame takes (resulting in decidedly non-interactive frame update rates), so

CHAPTER 5. THE USER STUDY 86

the comparison videos were pre-rendered before hand. To provide a like-
for-like comparison, all of the other versions of the scenes (including the
non-supersampled ones) used as test material were also pre-rendered.

The video creation was done using Unity’s built-in image capture func-
tionality, which also provided for a simple way of producing supersampled im-
ages. The native rendering resolution used for the non-supersampled
images was 1920*1080, while the supersampled screen-space shaded
images were rendered at a resolution of 30720*17280, which is sixteen
times the resolution per dimension and 256 times the total image resolution
— the maximum allowed by Unity’s built-in supersampling. FExplained differ-
ently, in the supersampled version we are taking 256 samples for each of the
screen pixels. The supersampled images were after capturing downscaled to
the 1920*1080 resolution using the IrfanView [22] image utility program’s
bulk resize function, with Lanczos filtering utilized for the best available
resampling quality.

A total of six 3D scenes were created for the pre-rendering work, with each
of them having their unique model-material combination, and light source
and virtual camera settings. The discrepancy between us having only five
models yet producing six different scenes is explained by us using two different
material texture map sets for the plane model during pre-rendering. The
intention of this was to provide more variety among the test samples, and to
see if the results would differ solely based on material property differences,
when the mesh itself is kept the same. Example images displaying the six
used scenes are shown if figure 5.2.

Each of the scenes was pre-rendered using three different rendering set-
tings:

e 1SPP, Non-Supersampled Screen-Space Shaded
e 256SPP, Supersampled Screen-Space Shaded

e Texture-Space Shading, Using 4096*4096 Texel Light Map

In the list, the acronym SPP means Samples Per Pizel. The three dif-
ferent rendering settings for each of the six scenes meant a total 18 videos
had to be produced. To achieve the test’s purpose we arranged these 18
videos into 12 pairs: for each scene there was pair comparison between the
1SPP screen-space shaded and the texture-space shaded version, as well as a
pair comparison between the 256SPP screen-space shaded and texture-space
shaded version.

The light sources for all of the scenes, except the one using the sphere
model, consist of a single directional light. To enable specular reflections to

CHAPTER 5. THE USER STUDY 87

Figure 5.2: On the first row, left to right, we have the Metal Plane and Fabric
Plane scenes. The Statue and Gnome scenes are displayed on the second row,
while the Buddha and Sphere scenes make up bottom row. The scene names
used here are the ones we will adhere to when discussing the survey results.

be more visible with the sphere model, a total of three point light sources
with distance-based attenuation were used with no directional light source.
One of these point lights’ position was animated to further improve the light
set up. In each of the scenes the light source colors were pure white light.

For the motion of the virtual camera, model-specific simple animations
were created for moving the camera from left-to-right and then right-to-left
back to the original position. The duration of the animations was the same
as that of the sample videos, 15 seconds, with each pass to one direction
taking 7.5 seconds. The smooth movement was to not only provide better
view of the models for the test participants, but to also highlight possible
temporal aliasing in the form of shimmering specular highlights.

After the images for all of the scenes had been rendered (and in the case
of supersampled images, downscaled) the final videos were produced using

CHAPTER 5. THE USER STUDY 38

FFmpeg [13] to encode the images into 60Hz H.264 videos with 1920*1080
resolution. To enable smooth playback with minimal image quality loss the
high profile, level 4.2 and crf=18 settings were used for encoding. The choice
of 60Hz display rate for the videos is important as while the critical flicker
fusion (CFF), mentioned at the beginning of this chapter, ranges between
”<10 Hz and ~45 Hz” [53] for foveal vision, in the case of peripheral vision
it can be between 60 and 70 Hz [50]. This means that temporal flickering
occuring at an area where the user focuses on should be perceived as a stable
image, while the flickering perceived through peripheral vision should be able
to be seen.

5.1.3 Testing methods

In addition to producing the test videos, we still needed to devise a way
to present the videos to the users as well as to gather the test data gained
from the participants. To this end we developed a web application using
the popular Python-based web framework Django [10], and the Formtools
extension available for it. Regardless of its web underpinnings, the study
was designed to be performed locally on an offline computer in a controlled
setting using the Chrome web browser. The test videos and their related
questionnaires were presented to the users as a sequence of forms, with the
test results being stored into a database for further analysis. During the
design phase of the user study, the possibility of displaying the comparison
videos side-by-side was explored but discarded due to users possibly not being
able to focus properly on the details present in each video. The drawback of
the sequental design we finally chose is naturally that it can limited by the
burden it places on a test participant’s visual memory.

On the server side, in addition to the proper storing of study results,
the main focus was on ensuring that the sequence in which the videos were
presented was randomized for every run through of the test. This is because
we used a within-groups design for the study where every participant is shown
all of the test videos, and we need to counter the possible effect the order of
the videos has on their evaluation [46]. In practice this meant that we not
only needed to randomize the order between all of the 12 video pairs, but
also the order within each of the pairs. The number of videos shown was
decided based on a previously used test duration limit [2] and confirmed to
be valid in discussion with J. Hakkinen (personal communication, March 28,
2018).

In addition to the questionnaire results, the application stored the follow-
ing three personal information details of the participants: gender, age and
experience level in playing games on computer, console or mobile devices.

CHAPTER 5. THE USER STUDY 89

The questionnaire that was presented to the participants after each of the
12 shown video pairs was as follows:

Questionnaire

1. Video A and Video B are:
— One video played twice.
— Two different videos.

2. The better looking video was (choose randomly if they were the same):
— Video A
— Video B

The participants were explained that in the first question they were ex-
pected to understand that any differences in Video A and Video B of a pair
would mean that they were two different videos, while if absolutely no dif-
ferences could be discerned they would be the same video. In the second
question, we also specify that in the case the videos were the same the par-
ticipants could choose the answer randomly:.

This comment was made for two reasons. Firstly, the answer would be
non-sensical if the participant did not see any difference between the videos
and secondly, we wanted it to appear to the participants as if perceiving the
videos as the same was a completely plausible option. If the participants were
always expected to make a preference choice, it could lead them to question
if differences were in fact always expected to be seen.

To reduce possible noise in the user study results, the participants had
to repeat the sequence of watching the 12 video pairs and answering the
questionnaire questions three times in total. The final answer for each ques-
tionnaire question was taken to be the mode (the most common value) of the
three answers. The sequences were always uniquely ordered with regard to
the order of the pairs and the videos themselves comprising them, to mini-
mize any effect the ordering might otherwise have had on the answers. After
each sequence the participants were allowed to take a short break before con-
tinuing on to the next sequence, so as to ensure that they could maintain
their focus.

A flow chart of describing a test sequence is shown in figure 5.3.

CHAPTER 5. THE USER STUDY 90

Phase 1 -

Phase 2A

Phase 2B

completed (Phase 4).

IF there still remain unshown
Phase 3 L .
e comparison pairs, go to Phase 2A
bt s ey By s and show the next remaining pair.
ELSE, the test sequence has been

Phase 4 Test sequence completed.

/

Figure 5.3: Flow chart of a test sequence. In Phase 1 the participant is given
an introduction to the survey and asked to enter their personal details. In
Phase 2A and 2B the videos for a comparison pair are shown. The videos are
preced by an alert message to attract the participant’s focus and to ensure
they are aware of the particular video shown (A or B). In Phase 3 the partic-
ipant is prompted to answer the multiple choice questions. If unshown video
pairs remain, we return to Phase 2A with the next (randomized) unshown
pair. If no unshown pairs remain, the sequence has been completed.

CHAPTER 5. THE USER STUDY 91

Once a participant had completed the video comparison part of the user
study, we interviewed them immediately afterwards to uncover further de-
tails about their choices. The interview was informal in structure and the
questions included the following:

e Generally, was it easy or difficult to see differences?
e Was there any change in difficulty from the first sequence to the last?
e Were some models more difficult to spot differences in?

e How often would you estimate you answered that the videos were the
same?

e Would you be surprised if you were told that none of the video
pairs showed the same video?

The bolded questions were asked from every participant while the other
questions were asked from many, but not from all. Additionally, some partic-
ipants provided details during the interview that were not specifically asked
for but proved to be interesting.

5.1.4 User Study Results

A total of 20 people participated in the user study, with the recruitment
taking place either on-site at the Aalto University Department of Computer
Science or through electronic advertisements to students and staff at the CS
department. All but one of the participants had normal vision, with the lone
exception case reporting to having a mild case of red-green color blindness.

The gender distribution of the participants was male dominated, with
75% being male and 25% being female. The average age of the participants
was 27.35 years. For the experience levels in playing computer games, 80%
of the participants answered to sometimes playing computer, console or mo-
bile games, with 15% answering that they played games often and only 5%
answered they never play games.

The results from the questionnaire portion of the user study are displayed
in the following table:

CHAPTER 5. THE USER STUDY

92

256SPP

Perceived
Comparison Pair as Preference Notes
different
MetilS ﬁ’lsafil; LM 100% LM (100%) SVBRDF
e I
Fabrxi;cs l;éz}?; LM 100% LM (85%) SVBRDF
Fabj;CQEéZI;fPLM 25% 256SPP (30%) SVBRDF
Sphere LM vs o5, W 05%) | P e SVBRDE
ey ™ || e | e
Statlllsef}lfl)v[Vs 100% LM (100%) Cook-Torrance
Sta;;feislél\f/f Vs 15% 256SPP (100%) Cook-Torrance
S I I
e T T i
Buddlfg}) I£>M VS 100% LM (90%) Cook-Torrance
Buddha LM vs 5% LM (100%) Cook-Torrance

CHAPTER 5. THE USER STUDY 93

The overall aggregated results are summarized in the next table:

Comparison Perceived as Preference
Pair different
MG?SJLD?j (5 100% LM (94.4%)
Fem?fqu%M vs 93% LM (93.3%)
Mgée6§]§é vs 17.7% 256SPP (70.8%)
Fen;géesgj\f vs 13.3% LM/256SPP (50%)
OverféIPIf)M vs 98.3% LM (93.2%)
Ovezr;élsgl\f vs 16.7% 256SPP (68.9%)

From these results it is apparent that a vast majority of the partici-
pants were in each case easily able to distinguish between the non-
supersampled screen-space shaded (1SPP) version and the texture-
space shaded (LM) version, with the percentages for individual
scenes ranging between 95% and full 100%. In all of the cases where
differences could be perceived, participants displayed a strong preference to-
wards the image quality provided by the LM version in comparison to the
1SPP — though there was more spread in the answers, with percentages vary-
ing in the 85% to 100% range. The choice of the particular BRDF (either
the SVBRDF or the Cook-Torrance model) did not appear to have any effect
on the results.

Both the ability to differentiate between the LM and 1SPP versions as
well as the preference towards the LM version were in line with the theoret-
ical basis. This was expected as all of the test scenes contained models with
high specular reflectivity and thus final surface appearances that were highly
sensitive to the particular virtual camera position, light source direction and
surface point orientation for a given rendered frame. This sensitivity then
lead to temporal aliasing, which we hypothesized at the beginning of this
chapter to be a major factor for differentiating between the shading tech-
niques.

The comparisons between the LM version and the supersam-
pled screen-space shaded (256SPP) version again provided results

CHAPTER 5. THE USER STUDY 94

that closely followed the expectations. The percentage amount of
participants able to perceive any differences was between 5% to
30% depending on the test scene. Theoretically, the perceived differ-
ences should arise from the lack of geometry anti-aliasing on the LM version,
as well as the shader aliasing still present even in the supersampled 256SPP
version and possible aliasing from the hardware-based texture filtering on the
LM version.

When comparing the gender specific results, it can be seen that male
participants were able to slightly more frequently differentiate between the
LM and the two screen-space versions, though it has to be kept in mind that
the sample size for female participants was very small.

The two scenes which appeared to have been the easiest for
the participants to tell differences between the LM and 256SPP
versions were the Fabric Plane and the Gnome scenes. Both of these
are interesting cases.

The Fabric Plane contains material texture maps with very high frequency
patterns, which should render it more susceptible to sampling rate sensitive
aliasing compared to the lower frequency details in the Metal Plane scene.
This is a possible explanation for the discrepancy between the Fabric Plane
and Metal Plane results, as all of the other parameters including the model
meshes, light source direction and intensity as well as the virtual camera
positions are identical for both of these test scenes.

The Gnome scene was already from an asset point of view distinctive
compared to any of the other scenes, with its 1K material texture maps
being bilinearly filtered during the G-buffer’s construction to 4K resolution.
This in conjunction with the geometry aliasing being relatively more present
with higher geometric-complexity models meant that it was not surprising
for the participants to perceive differences most easily in this case.

The results presented in the table are given more context when addition-
ally taking into account the answers from the interview portion of the
user study. When asked to freely assess the difficulty of deciding on the
choices in the questionnaire, a majority of the participants expressed (with-
out being prompted) that it was easy to differentiate in cases where there was
significant ”flickering” present, with a majority also ranking the scenes con-
taining planar models (the Metal Plane and Fabric Plane scenes) as the easi-
est for perceiving differences. The complex 3D model scenes (Statue, Gnome
and Buddha) were generally ranked as the second most difficult group, with
the Sphere scene being regarded on average as the most difficult. Several
participants specifically highlighted the Sphere scene as being "tricky” to see
the differences in, with comments being made on it being ”difficult to know
where to focus”. These participants specified this to be related to the moving

CHAPTER 5. THE USER STUDY 95

light source in that particular scene. The Gnome scene also received frequent
comments from the participants, with some describing it as ” confusing” and
as exhibiting " different kind of differences”, while others remarked it as being
"relatively easy to see differences in”.

We were also interested to learn about any possible learning effects the
participants might have experienced during the test. To this end, a majority
(75%) of the participants were specifically asked to describe whether they
had felt any change in difficulty between the first and the last sequence of
the pair comparisons. 67% answered that they felt the differentiating was
most difficult during the first sequence, while 20% said that the first sequence
was the easiest and 13% felt there was no change in difficulty

The participants who regarded the first sequence as the most difficult
remarked that it initially took some time for them to "get accustomed to
noticing the differences” or "get a hang of things” and that towards the end
they ”stopped overanalyzing” and "knew what to focus on”. Those who
felt the test to become more difficult by the third sequence commented they
believed to have been "more easily able to see differences at first” and later
on started to worry whether they had developed a ”bias in evaluation” and
that "more differences might be present” than they had initially thought and
answered during the first sequence.

The general trend of these comments suggests a learning effect, which
might partially explain why the participants were poorly able to perceive the
geometry aliasing in the LM versions of the test scenes. As the shading alias-
ing with the highly reflective test materials was so significant, it is perhaps
likely that its presence on one hand in the 1SPP version and its absence on
the other hand in the LM version resulted in such a dramatic change in vi-
sual appearance to the participants that the much more minor geometry edge
aliasing was mostly overlooked. This is only logical as the number of screen
pixels covered by a model surface (and thus subjected to shading aliasing) far
outnumbers the number of screen pixels covered by multiple geometry prim-
itives for any of the test scenes’ frames. Earlier research by Jukarainen [24]
also supports the hypothesis of geometry anti-aliased images being difficult
to differentiate from images which have not undergone such anti-aliasing.

Chapter 6

Conclusions

6.1 Summary of Results

In this thesis we implemented an object-space lighting technique where the
shading is performed in texture-space using a unique parametrization for
the 3D model surface. This implementation was verified to be correct in
evaluations against ground truth renderings produced using a supersampled
screen-space equivalent of the shading algorithm. Further verification was
gained in the user study we conducted, where the texture-space shading was
again pitted against a traditional screen-space shading technique utilizing
the same reflectance algorithms as the texture-space variant.

The results from the user study suggest that texture-space shading onto
a 4096*4096 texel resolution light map and then anisotropically filtering the
results provides visual quality that is difficult to distinguish from that af-
forded by a screen-space shaded, 256 samples per pixel technique, where the
base screen resolution is 1920*1080 pixels. This is especially significant, as
the texture-space shaded variant in the user study did not employ the use of
any geometry anti-aliasing such as MSAA due to technical difficulties. This
suggests that the aliasing artefacts born from surface shading operations are
more visible to users than geometry-based aliasing. We consider it to be
likely that the results from the shading methods would have been even more
difficult to appreciate had MSAA been used for the texture-space shading
version.

We had hypothesized for the temporal aliasing observable as flickering
to be the major distinguishing factor through which users would be able to
perceive differences in the results produces by the different shading methods
and this was indicated to be correct both in the multiple-choice questionnaire
results as well as the answers given during the informal interview portion of

96

CHAPTER 6. CONCLUSIONS 97

the user study.

In addition to the ability to distinguish images created using the differ-
ent techniques, we also tested for possible preferences users might exhibit.
The results indicated that users almost unilaterally prefer the texture-space
shaded results to screen-space shaded ones using 1 sample per pixel, while
a slight preference for the 256 samples per pixel version was seen compared
to the texture-space shaded version. The sample size for the latter prefer-
ence test was small (we only counted cases where a test participant could
distinguish that the renderings actually were different), which means that
this result should be treated carefully.

The overall results give reason to believe that texture-space shading can
give results which equal those of highly supersampled screen-space equiva-
lents, without having their performance cost linked to the used back buffer
resolution or even the back buffer update rate. This can be of notable benefit
in cases where a high screen resolution or refresh rate is mandated, as the
shading precision and frequency can be set to vary on arbitrary variables
that might change from one scene and situation to another. One must also
consider that the fact that we perform filtering in the texture-space shading
version only on the final radiance values means that we can also reduce the
error traditionally introduced by the pre-filtering of shading input values —
particularly the mip-mapping of normal maps [42], in lighting algorithms.
Texture-space shading can thus offer an option with a great degree of flexi-
bility, while theoretically being more accurate than traditional screen-space
techniques.

6.2 Avenues for Future Developments

The user study conducted for this thesis could not completely seperate the
effects of geometry and surface shading aliasing from each other. Although
the results suggest shader aliasing to be perceptually the dominant factor, a
more extensive study is needed in order to form fully satisfactory conclusions.

In order to draw the full benefits from the possible performance improve-
ments of texture-space shading, research needs to be done to uncover the
relationship between achieved image quality and factors such as the light
map resolution and update rate, material reflectivity and the rate of change
for the viewer position or the light source direction in a scene. This informa-
tion would be of vital importance to control the size of the memory footprint
requirement imposed by the light map, as well as to avoid the perceptually
wasteful shading operations. Similarly, for implementations intended for use
in commercial products, it is advisable to look for ways in which one can

CHAPTER 6. CONCLUSIONS 98

limit the shaded texels to only those visible to the viewer during a given
shading update. This and various other practical considerations for object-
space lighting were discussed by Baker in his 2016 GDC presentation [7].
Baker was involved in the development of the computer game Ashes of the
Singularity [43], which is the most prominent recent commercial release uti-
lizing object-space lighting.

Finally, as object-space lighting presents a significant departure from the
conventional screen-space lighting algorithms, thorough understanding of its
properties may lead to novel techniques beyond those of simple decouplings
from back buffer properties.

6.3 Final Thoughts

The findings of this thesis indicate that the use of object-space lighting can
result in extremely high quality shading results that have the means to be
theoretically more accurate to reality compared to conventional screen-space
lighting algorithms. This means that it is able to meet even high qual-
itative expectations, leaving performance to be main area of focus going
forward. Given further research on its optimization, object-space lighting
holds promise to be able to compliment traditional methods in the continuing
progress towards ever-higher visual realism and enhanced user experiences.

Bibliography

1]

2]

ABRASH, M. What VR could, should, and almost certainly will be
within two years. Steam Dev Days, Seattle (2014).

AFLAKI, P., HANNUKSELA, M. M., HAkALA, J., HAKKINEN, J.,
AND GABBOUJ, M. Joint adaptation of spatial resolution and sample
value quantization for asymmetric stereoscopic video compression: A
subjective study. In 2011 7th International Symposium on Image and
Signal Processing and Analysis (ISPA) (Sept 2011), pp. 396-401.

ArrTaLA, M., WEYRICH, T., AND LEHTINEN, J. Two-shot SVBRDF
Capture for Stationary Materials. ACM Trans. Graph. 34, 4 (July 2015),
110:1-110:13.

ArrTALA, M., WEYRICH, T., AND LEHTINEN, J. Two-Shot SVBRDF
Capture for Stationary Materials, (Supplemental material archive
(ZIP)), 2015. https://mediatech.aalto.fi/publications/graphics/
TwoShotSVBRDF/. Accessed 29.4.2018.

AKENINE-MOLLER, T., HAINES, E., AND HOFFMAN, N. Real-Time
Rendering, Third Edition. A K Peters/CRC Press, 2008.

AuTODESK INC. List Of All Products — New Releases — Autodesk,
2018. https://www.autodesk.com/products. Accessed 29.4.2018.

BAKER, D. Object Space Lighting. Game Develeopers Conference 2016,
2016.

CHANG, C.-F., CHEN, K.-W., AND CHUANG, C.-C. Performance
comparison of rasterization-based graphics pipeline and ray tracing on
GPU shaders. In 2015 IEEE International Conference on Digital Signal
Processing (DSP) (2015), pp. 120-123.

99

https://mediatech.aalto.fi/publications/graphics/TwoShotSVBRDF/
https://mediatech.aalto.fi/publications/graphics/TwoShotSVBRDF/
https://www.autodesk.com/products

BIBLIOGRAPHY 100

[9] Cook, R. L., AND TORRANCE, K. E. A reflectance model for com-
puter graphics. In SIGGRAPH 81 Proceedings of the 8th annual confer-
ence on Computer graphics and interactive techniques (1981), pp. 307—
316.

[10] DJANGO SOFTWARE FOUNDATION. The Web framework for perfection-
ists with deadlines — Django, 2018. https://www.djangoproject.com/.
Accessed 11.5.2018.

[11] DoONNER, C., AND JENSEN, H. W. A Spectral BSSRDF for Shading
Human Skin. In Proceedings of the 17th Eurographics Conference on
Rendering Techniques (Aire-la-Ville, Switzerland, Switzerland, 2006),
EGSR ’06, Eurographics Association, pp. 409-417.

[12] Epic GAMES. What is Unreal Engine 4, 2018. https:
//www.unrealengine.com/en-US/what-is-unreal-engine-4. Accessed

9.5.2018.

[13] FFMPEG. A complete, cross-platform solution to record, convert and
stream audio and video., 2018. https://www.ffmpeg.org/. Accessed
11.5.2018.

[14] GLuck, J., BunT, A., AND MCGRENERE, J. Matching Attentional
Draw with Utility in Interruption. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems (New York, NY, USA,
2007), CHI '07, ACM, pp. 41-50.

[15] HARDING-RoLLs, P., KEgent, J., CARRERA, P., HAN-

cock, D., Cur, C., BALEy, S., CRryaN, D. Immer-
sive Computing - Consumer Augmented & Virtual Reality
Report - 2018, 2018. https://technology.ihs.com/591822/

immersive-computing-consumer-augmented-virtual-reality-report-2018.

Accessed 7.5.2018.

[16] HASSELGREN, J., AKENINE-MOLLER, T., AND OHLSSON, L. Conser-
vative Rasterization. GPU Gems 2. Addison-Wesley, 2005, pp. 677-690.

[17] HECKBERT, P. S. Fundamentals of Texture Mapping and Image Warp-
ing. Tech. rep., Berkeley, CA, USA, 1989.

[18] HENNESSY, J. L., AND PATTERSON, D. A. Computer Architecture,
Fifth Edition: A Quantitative Approach, 5th ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2011.

https://www.djangoproject.com/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.ffmpeg.org/
https://technology.ihs.com/591822/immersive-computing-consumer-augmented-virtual-reality-report-2018
https://technology.ihs.com/591822/immersive-computing-consumer-augmented-virtual-reality-report-2018

BIBLIOGRAPHY 101

[19]

[25]

[26]

28]

HiLLEsLAND, K. E.; AND YANG, J. C. Texel Shading. In Proceedings
of the 37th Annual Conference of the Furopean Association for Com-
puter Graphics: Short Papers (Goslar Germany, Germany, 2016), EG
"16, Eurographics Association, pp. 73-76.

HitLeEsLAND, K. Texel Shading, 2016. https://gpuopen.com/
texel-shading/. Accessed 2.5.2018.

HorrMAN, N. Background: Physics and Math of Shading, July 2013.
http://blog.selfshadow.com/publications/s2013-shading-course/
hoffman/s2013_pbs_physics_math_notes.pdf. Accessed 7.5.2018.

IRFAN SKILJAN. IrfanView - Official Homepage - One of the Most Pop-

ular Viewers Worldwide, 2018. https://www.irfanview.com/. Accessed
11.5.2018.

JIMENEZ, J., ECHEVARRIA, J. 1., SousA, T., AND GUTIERREZ, D.
SMAA: Enhanced Morphological Antialiasing. Computer Graphics Fo-

rum (Proc. EUROGRAPHICS 2012) 31, 2 (2012).

JUKARAINEN, P. Comparison of Real-Time Anti-Aliasing Methods on
a Head-Mounted Display. Master’s thesis, Department of Computer Sci-
ence, Aalto University School of Science and Technology, Espoo, Fin-
land, 2016. https://aaltodoc.aalto.fi/handle/123456789/23342.

KARIs, B. Graphic Rants: Specular BRDF Reference, 2013. http://
graphicrants.blogspot.fi/2013/08/specular-brdf-reference.html.
Accessed 10.4.2018.

KaATo, S., LAKSHMANAN, K., RAJKUMAR, R., AND [SHIKAWA, Y.
TimeGraph: GPU Scheduling for Real-time Multi-tasking Environ-
ments. In Proceedings of the 2011 USENIX Conference on USENIX An-
nual Technical Conference (Berkeley, CA, USA, 2011), USENIXATC’11,
USENIX Association, pp. 2-2.

KnuuTTILA, J. A Direct3D 11 program to render captured materials
using Oculus Rift, using materials from Two-Shot SVBRDF Capture
for Stationary Materials by Aittala et al (2015)., 2016. https://github.
com/jknuuttila/svbrdf-oculus. Accessed 29.4.2018.

LAURITZEN, A. Deferred Rendering for Current and Future Rendering
Pipelines.

https://gpuopen.com/texel-shading/
https://gpuopen.com/texel-shading/
http://blog.selfshadow.com/publications/s2013-shading-course/hoffman/s2013_pbs_physics_math_notes.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/hoffman/s2013_pbs_physics_math_notes.pdf
https://www.irfanview.com/
https://aaltodoc.aalto.fi/handle/123456789/23342
http://graphicrants.blogspot.fi/2013/08/specular-brdf-reference.html
http://graphicrants.blogspot.fi/2013/08/specular-brdf-reference.html
https://github.com/jknuuttila/svbrdf-oculus
https://github.com/jknuuttila/svbrdf-oculus

BIBLIOGRAPHY 102

[29]

LiNG, Y., BRINKMAN, W.-P., NEFs, H. T., Qu, C., AND HEYND-
ERICKX, [. Effects of Stereoscopic Viewing on Presence, Anxiety, and
Cybersickness in a Virtual Reality Environment for Public Speaking.
Presence: Teleoperators and Virtual Environments 21, 3 (2012), 254—
267.

LotTES, T. FXAA (Fast Approximate Anti-Aliasing), 2009.
http://developer.download.nvidia.com/assets/gamedev/files/sdk/
11/FXAA_WhitePaper.pdf. Accessed 29.4.2018.

LuNA, F. Introduction to 3D Game Programming with DirectX 11.
Mercury Learning & Information, 2012.

MACEDONIA, M. The GPU Enters Computing’s Mainstream. Computer
36, 10 (Oct. 2003), 106-108.

MICROSOFT. 0x/2x/4x MSAA Variants, 2016. https:
//docs.microsoft.com/en-us/visualstudio/debugger/graphics/
0x-2x-4x-msaa-variants. Accessed 2.5.2018.

MiCROSOFT. Texture addressing modes - UWP app developer, 2017.
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/
texture-addressing-modes. Accessed 10.4.2018.

MICROSOFT. Announcing Microsoft DirectX Raytracing!,
2018. https://blogs.msdn.microsoft.com/directx/2018/03/19/
announcing-microsoft-directx-raytracing/. Accessed 3.5.2018.

MICROSOFT. DirectX Graphics and Gaming, 2018. https:
//msdn.microsoft.com/en-us/library/windows/desktop/ee663274 (v=
vs.85) .aspx. Accessed 7.5.2018.

MicrosOorFT. HLSL, 2018. https://msdn.microsoft.com/en-us/
library/windows/desktop/bb509561 (v=vs.85) .aspx. Accessed 5.5.2018.

MICROSOFT. Pipelines and Shaders with Direct3D 12, 2018.
https://msdn.microsoft.com/en-us/library/windows/desktop/
dn899200 (v=vs.85) .aspx. Accessed 29.4.2018.

NEUBELT, D., AND PETTINEO, M. Crafting a Next-Gen Material
Pipeline for The Order: 1886, July 2013. http://blog.selfshadow.com/

publications/s2013-shading-course/rad/s2013_pbs_rad_slides.pdf.
Accessed 5.5.2018.

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://docs.microsoft.com/en-us/visualstudio/debugger/graphics/0x-2x-4x-msaa-variants
https://docs.microsoft.com/en-us/visualstudio/debugger/graphics/0x-2x-4x-msaa-variants
https://docs.microsoft.com/en-us/visualstudio/debugger/graphics/0x-2x-4x-msaa-variants
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/texture-addressing-modes
https://docs.microsoft.com/en-us/windows/uwp/graphics-concepts/texture-addressing-modes
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://blogs.msdn.microsoft.com/directx/2018/03/19/announcing-microsoft-directx-raytracing/
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ee663274(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/bb509561(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899200(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn899200(v=vs.85).aspx
http://blog.selfshadow.com/publications/s2013-shading-course/rad/s2013_pbs_rad_slides.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/rad/s2013_pbs_rad_slides.pdf

BIBLIOGRAPHY 103

[40]

[41]

[42]

[48]

[49]

[50]

[51]

[52]

NVIDIA. Falcor — NVIDIA Developer, 2018. https://developer.
nvidia.com/falcor. Accessed 9.5.2018.

OcurLus VR. VR Best Practices - Rendering, 2018. https:
//developer.oculus.com/design/latest/concepts/bp-rendering/. Ac-
cessed 29.4.2018.

OraNo, M., AND BAkER, D. LEAN Mapping. In Proceedings of
the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (New York, NY, USA, 2010), I3D ’10, ACM, pp. 181-188.

OXIDE GAMES. Ashes of the Singularity: Planetary Warfare on a mas-

sive scale, 2016. https://www.ashesofthesingularity.com/. Accessed
30.5.2018.

PiNEDA, J. A Parallel Algorithm for Polygon Rasterization. SIG-
GRAPH Comput. Graph. 22, 4 (June 1988), 17-20.

ScHLICK, C. An Inexpensive BRDF Model for Physically-based Ren-
dering. Computer Graphics Forum 13 (1994), 233-246.

SLATER, M., KHANNA, P., MORTENSEN, J., AND YU, I. Visual Real-

ism Enhances Realistic Response in an Immersive Virtual Environment.
IEEE Comput. Graph. Appl. 29, 3 (May 2009), 76-84.

THE KHRONOS GROUP. OpenGL Overview, 2017. https://www.
khronos.org/opengl/. Accessed 7.5.2018.

Toxksvic, M. Mipmapping Normal Maps. Journal of Graphics Tools
10, 3 (2005), 65-71.

TUrRBOSQUID. TurboSquid: 3D Models for Professionals, 2018. https:
//www . turbosquid.com/. Accessed 30.5.2018.

TYLER, C. W., AND HAMER, R. D. Eccentricity and the Ferry—Porter
law. J. Opt. Soc. Am. A 10,9 (Sep 1993), 2084-2087.

UNITY TECHNOLOGIES. Unity - Products, 2018. https://unity3d.com/
unity. Accessed 9.5.2018.

VAN WAVEREN, J. M. P. The Asynchronous Time Warp for Virtual
Reality on Consumer Hardware. In Proceedings of the 22Nd ACM Con-
ference on Virtual Reality Software and Technology (New York, NY,
USA, 2016), VRST ’16, ACM, pp. 37-46.

https://developer.nvidia.com/falcor
https://developer.nvidia.com/falcor
https://developer.oculus.com/design/latest/concepts/bp-rendering/
https://developer.oculus.com/design/latest/concepts/bp-rendering/
https://www.ashesofthesingularity.com/
https://www.khronos.org/opengl/
https://www.khronos.org/opengl/
https://www.turbosquid.com/
https://www.turbosquid.com/
https://unity3d.com/unity
https://unity3d.com/unity

BIBLIOGRAPHY 104

[53] WALDIN, N., WALDNER, M., AND VIOLA, I. Flicker Observer Effect:
Guiding Attention Through High Frequency Flicker in Images. Com-
puter Graphics Forum 36, 2, 467-476.

Appendix A

Unity Script Pseudocode

public
public
public
public
public
public

ComputeShader
ComputeShader
ComputeShader
ComputeShader
ComputeShader
RenderTexture

RasterizerCS;
LightCS;
ConservativeCS ;
DilationCS ;
DilationHelperCS;
lightmap ;

ComputeBuffer Gbuffer;

// Adjust Texture—Space Shading resolution:
public int lightMapWidth = 1024;
public int lightMapHeight = 1024;

struct LMVertex

{

public Vector3 position;
public Vector3d normal;
public Vector4 tangent;
public Vector2 texC;
public Vector2 originalUVs;

}

struct

{

public Vector3
public Vector3
public Vector4

Texel

weights;
localNormal ;
localTangent ;

105

APPENDIX A. UNITY SCRIPT PSEUDOCODE 106

public Vector2 texCoords;
public Vector3d diffuseAlbedo;
public Vector3 normalSample;
public Vector3 specVal;
public Vector3 specShape;

int trianglelndex;

bool isDilated ;

bool isFinal;

void Start ()

{
/+ Initialize Compute Buffers
x (Vertex, Index, G-Buffer and LightMap)
* and Constants */

// Non—Conservative Rasterization :
int rasterizerHandle = RasterizerCS.FindKernel (”CSMain”);

/+ Set Textures, Buffers and Constants

xfor the Rasterizer CS, such as: */

RasterizerCS. SetBuffer (rasterizerHandle ,
"gVertices”, vertexBuffer);

RasterizerCS. SetBuffer (rasterizerHandle ,
7glndices” , indexBuffer);

RasterizerCS . SetBuffer (rasterizerHandle ,
7e¢GBuffer” ; Gbuffer);

RasterizerCS . Dispatch (rasterizerHandle , indices.Count / 3, 1, 1);

// Conservative Rasterization :
int conservativeHandle = ConservativeCS.FindKernel (” CSMain”);

/+ Set Textures, Buffers and Constants

xfor the Conservative CS, such as: x/
ConservativeCS . SetBuffer (
conservativeHandle , "gVertices” , vertexBuffer);

ConservativeCS. SetBuffer (
conservativeHandle , ”glndices”, indexBuffer);

APPENDIX A. UNITY SCRIPT PSEUDOCODE 107

ConservativeCS . SetBuffer (
conservativeHandle , 7" gGBuffer” , Gbuffer);

ConservativeCS . Dispatch (conservativeHandle ,
indices.Count / 3, 1, 1);

// Dilation :
for (int i = 0; i < 40; 4++i)
{
int dilationHandle = DilationCS.FindKernel (” CSMain”);

/+ Set Textures, Buffers and Constants

xfor the Dilation CS, such as: */
DilationCS . SetBuffer (dilationHandle , ”"gGBuffer” , Gbuffer);
DilationCS . SetFloat (Shader. PropertyTolID ("kWidth”),
computeConstants [3]);
DilationCS . SetFloat (Shader.PropertyTolD (" kHeight”),
computeConstants [4]);

// Dilate tezxel wvalues to empty neigboring texels:
DilationCS . Dispatch (dilationHandle ,
lightMapWidth, lightMapHeight , 1);

/* Set Textures, Buffers and Constants

xfor the Dilation Helper CS, such as: */

int helperHandle = DilationHelperCS.FindKernel (” CSMain”);
DilationHelperCS. SetBuffer (helperHandle , ”gGBuffer” , Gbuffer);
DilationHelperCS . SetFloat (

Shader . PropertyTolD ("kWidth”), computeConstants[3]);
DilationHelperCS. SetFloat (

Shader . PropertyTolD (”"kHeight”), computeConstants [4]);

// Finalize the texels we just dilated:

DilationHelperCS . Dispatch (

dilationHandle , lightMapWidth, lightMapHeight, 1);
}

// Texture—Space Shading:
int lightingHandle = LightCS.FindKernel (” CSMain”);

LightCS. SetBuffer (lightingHandle , ”"gGBuffer” , Gbuffer);

APPENDIX A. UNITY SCRIPT PSEUDOCODE 108

LightCS. SetBuffer (lightingHandle , "gVertices” , vertexBuffer);
LightCS. SetBuffer (lightingHandle , ”glndices”, indexBuffer);
LightCS.SetTexture (lightingHandle , ”"gBackBuffer” , lightmap);
LightCS. SetFloat (

Shader . PropertyTolD ("kF0”), computeConstants [0]);
LightCS. SetVector (

Shader . PropertyTolD (”gCamLocalPos”), 1Constants[2]);

LightCS. Dispatch (lightingHandle ,
lightMapWidth / 32, lightMapHeight / 32, 1);

RenderTexture.active = lightmap;

lightmap . GenerateMips () ;

gameObject . GetComponent<Renderer > (). material . mainTexture
= lightmap;

// Update is called once per frame
void Update ()

{

int lightingHandle = LightCS.FindKernel (”CSMain”);

LightCS. SetBuffer (lightingHandle , ”gGBuffer”, Gbuffer);

LightCS. SetBuffer (lightingHandle , "gVertices” , vertexBuffer);

LightCS. SetBuffer (lightingHandle , ”glndices”, indexBuffer);

LightCS.SetTexture (lightingHandle , ”"gBackBuffer” , lightmap);

LightCS. SetFloat (Shader.PropertyTolD ("kF0”),
computeConstants [0]);

LightCS. SetFloat (Shader.PropertyTolD (” kDiffuse”),
computeConstants [1]);

LightCS. SetFloat (Shader. PropertyTolID (”kAlphaVal”),

computeConstants [2]);

LightCS. SetFloat (Shader.PropertyTolD (”kWidth”),
computeConstants [3]);

LightCS. SetFloat (Shader.PropertyTolD (”kHeight”),
computeConstants [4]);

/+ Update Light Source and Camera Data */

APPENDIX A. UNITY SCRIPT PSEUDOCODE 109

// Update Light Map:
LightCS. Dispatch (lightingHandle ,
lightMapWidth / 32, lightMapHeight / 32, 1);

lightmap . GenerateMips () ;

lightmap . anisoLevel = 16;

gameObject . GetComponent<Renderer > (). material . mainTexture
= lightmap;

Appendix B

Rasterization Pseudocode

struct Texel

{
float3 weights;
float3 localNormal;
float4 localTangent;
float2 texCoords;
float3 diffuseAlbedo;
float3 normalSample;
float3 specVal;
float3 specShape;
int trianglelndex;
bool isDilated;
bool isFinal;

}s

struct Vertex

{
float3 positionL;
float3 normall;
float4 tangent;
float2 texC;
float2 originalUVs;

b

struct Index

{

110

APPENDIX B. RASTERIZATION PSEUDOCODE

int num;

b

SamplerState MyPointClampSampler ;
Texture2D gDiffuseMap ;

Texture2D gNormalMap ;

Texture2D gSpecMap;

Texture2D gSpecShapeMap ;
RWStructuredBuffer<Texel> gGBuffer;

StructuredBuffer<Vertex> gVertices;
StructuredBuffer <Index> glndices;
float kWidth;

float kHeight;

float edgeTest(float2 a, float2 b, float2 p)

{

111

return (p.x — a.x) % (b.y —a.y) — (p.y — a.y) * (b.x — a.x);

}

[numthreads(1, 1, 1)]

void CSMain(uint3 DTid : SV_DispatchThreadID
uint3 GrouplID : SV_GrouplD)

{

int lightmapWidth = (int)kWidth;
int lightmapHeight = (int)kHeight;

Texel texelData;
/+* texelData initialization */

)

Vertex v0 = gVertices[glndices [GroupID.x % 3].num];
Vertex vl = gVertices[glndices [GroupID.x % 3 + 1].num];
Vertex v2 = gVertices[glndices [GrouplD.x % 3 + 2].num]|;

// calculate bounding box for the current triangle:

float minX = min(v0.texC.x, min(vl.texC.
float minY = min(v0.texC.y, min(vl.texC.
float maxX = max(v0.texC.x, max(vl.texC.
float maxY = max(v0.texC.y, max(vl.texC.

// traversal is done in texel coordinate

X,

Y
X,

Y

S,

v2.
v2.

v2
v2

texC.x)) * kWidth;
texC.y)) * kHeight;
.texC.x)) x kWidth;
.texC.y)) x kHeight;
perform conversion:

APPENDIX B. RASTERIZATION PSEUDOCODE 112

int XMIN = max(int (
int XMAX = mln(lnt(
int YMIN = max(int (
int YMAX = mln(lnt(

0), int(minX));
kWidth) — 1, int (maxX));
0), int(minY));
kHeight) — 1, int (maxY));

// calculate the triangle area:
float triangleArea = edgeTest(v0.texC, vl.texC, v2.texC);

float3 w; // barycentric coordinates, "weights”
float4 packedNormal;
float3 unpackedNormal;

for (int y = YMIN; y <= YMAX; ++v)
{
for (int x = XMIN; x <= XMAX; ++x)
{
// we only want to rasterize to empty texels:
if (gGBuffer [yxkWidth 4+ x].hasOwner)
continue;

// sample texel center:
float2 lightMapCoord = float2 ((float(x) + 0.5f) / kWidth,
(float(y) + 0.5f) / kHeight);

w.x = edgeTest(vl.texC, v2.texC, lightMapCoord);
w.y = edgeTest(v2.texC, v0.texC, lightMapCoord);
w.z = edgeTest (v0.texC, vl.texC, lightMapCoord);

// non—negative results mean point is inside the triangle:
if (wx>=08&&w.y>=0&& w.z >= 0)
{
// calculate interpolation weights:
w.x /= triangleArea;
w.y /= triangleArea;
w.z /= triangleArea;

texelData.weights = float3 (w.x, w.y, w.z);

texelData.localNormal = normalize ((w.x) * v0.normall,
+ (w.y) % vl.normall + (w.z) % v2.normalL);
texelData.localTangent.xyz = normalize ((

(w.x) * v0.tangent + (w.y) % vl.tangent

APPENDIX B. RASTERIZATION PSEUDOCODE 113

+ (w.z) * v2.tangent).xyz);
texelData.localTangent .xyz =

normalize (texelData.localTangent .xyz —
dot (texelData.localTangent .xyz,

texelData.localNormal)xtexelData.localNormal);
texelData.localTangent.w = v0.tangent .w;
texelData.texCoords = (w.x) * v0.texC

+ (w.y) = vl.texC + (w.z) % v2.texC;

float2 origUVs = (w.x) % v0.originalUVs
+ (w.y) * vl.originalUVs 4+ (w.z) % v2.originalUVs;
texelData . diffuseAlbedo = gDiffuseMap.SampleLevel(
MyPointClampSampler , origUVs, 0).xyz;

// unpack the sampled tangent space normal:
packedNormal = gNormalMap.SampleLevel (
MyPointClampSampler, origUVs, 0);
unpackedNormal .xy = packedNormal.wy *x 2 — 1;
unpackedNormal.z = sqrt (1 — saturate(
dot (unpackedNormal .xy, unpackedNormal.xy)));

texelData.normalSample = normalize (unpackedNormal);

texelData.specVal = gSpecMap.SampleLevel (
MyPointClampSampler, origUVs, 0).xyz;

texelData.specShape = gSpecShapeMap.SampleLevel (
MyPointClampSampler, origUVs, 0).xyz;

texelData . trianglelndex = GrouplD.x;

texelData .isDilated = false;

texelData .isFinal = true;

gGBuffer [yxkWidth + x] = texelData;

Appendix C

Conservative Rasterization Pseu-
docode

// The buffers , wvariables and the edgeTest function used here
// are the ezxact same as those in the Rasterization Pseudocode

[numthreads(1, 1, 1)]

void CSMain(uint3 DTid : SV_DispatchThreadID ,
uint3 GroupID : SV_GrouplD)

{

int lightmapWidth = (int)kWidth;
int lightmapHeight = (int)kHeight;

Vertex v0 = gVertices[glndices [GroupID.x % 3].num];
Vertex vl = gVertices[glndices [GroupID.x % 3 + 1].num];
Vertex v2 = gVertices[glndices [GroupID.x % 3 + 2].num];

// dimensions of half—texel cell
float2 hPixel = float2 (0.5f / kWidth, 0.5f / kHeight);

// calculate bounding boxr using original vertices:
float minX = max((min(v0.texC.x,

min(vl.texC.x, v2.texC.x)) — hPixel.x) % kWidth, 0.0f);
float minY = max((min(v0.texC.y,

min(vl.texC.y, v2.texC.y)) — hPixel.y) % kHeight, 0.0f);
float maxX = min ((max(v0.texC.x,

max(vl.texC.x, v2.texC.x)) + hPixel.x) % kWidth, kWidth);

114

APPENDIX C. CONSERVATIVE RASTERIZATION PSEUDOCODE115

float maxY = min((max(v0.texC.y,
max(vl.texC.y, v2.texC.y)) + hPixel.y) * kHeight, kHeight);

// take wertices to homogenous S3D:
float3 vh0 = float3 (v0.texC, 1.0f);
float3 vhl = float3 (vl.texC, 1.0f);
float3 vh2 = float3 (v2.texC, 1.0f);

// compute equations for the planes through the triangle edges:
float3 plane [3];

plane [0] = cross(vhl — vhO, vhO0);

plane [1] = cross(vh2 — vhl, vhl);

plane [2] = cross(vh0 — vh2, vh2);

// move the planes by the appropriate semidiagonal:
plane [0].z += dot(hPixel.xy, abs(plane[0].xy));
plane [1].z 4= dot(hPixel.xy, abs(plane[l].xy));
plane [2].z += dot(hPixel.xy, abs(plane[2].xy));;

// compute the intersection points of the planes:
float3 intersectO0 = cross(plane[0], plane[1l]);
float3 intersectl = cross(plane[l], plane[2]);
float3 intersect2 = cross(plane[2], plane[0]);

float2 posO = intersect0.xy / intersect0.z;
float2 posl = intersectl.xy / intersectl.z;
float2 pos2 = intersect2.xy / intersect2.z;

Texel texelData;
/* initialize texelData +/

// calculate the triangle area:
float triangleArea = edgeTest(posO.xy, posl.xy, pos2.xy);
float origTriArea = edgeTest(vhO.xy, vhl.xy, vh2.xy);

float3 w; // barycentric coordinates, "weights”
float4 packedNormal;

float3 unpackedNormal;

float3 origTriWeights = float3 (0.0f, 0.0f, 0.0f);

int XMIN = max(int(0), int(minX));

APPENDIX C. CONSERVATIVE RASTERIZATION PSEUDOCODE116

int XMAX = min(int (kWidth) — 1, int(maxX));
= max(int (0), int(minY));
int YMAX =

int YMIN

for (int

{

min(int (kHeight) — 1, int(maxY));

y = YMIN; y <= YMAX; ++y)

for (int x = XMIN; x <= XMAX; ++x)

{

if

(gGBuffer [yxkWidth + x].hasOwner)

continue;

float2 lightMapCoord =

if

float2 ((float (x) + 0.5f) / kWidth,
(float(y) + 0.5f) / kHeight);

= edgeTest(posl.xy, pos2.xy, lightMapCoord);
= edgeTest (pos2.xy, pos0O.xy, lightMapCoord);
= edgeTest (pos0.xy, posl.xy, lightMapCoord);

(w.x >= 0&& w.y >= 0 & w.z >= 0)

//interpolate wvalues:
w.X /= triangleArea;
w.y /= triangleArea;
w.z /= triangleArea;

origTriWeights .x =
edgeTest (vhl.xy, vh2.xy, lightMapCoord)
/ origTriArea;

origTriWeights.y =
edgeTest (vh2.xy, vhO0.xy, lightMapCoord)
/ origTriArea;

origTriWeights.z =
edgeTest (vh0.xy, vhl.xy,lightMapCoord)
/ origTriArea;

texelData.weights = origTriWeights;
texelData.localNormal

= normalize ((w.x) x v0.normalL

+ (w.y) * vl.normallL + (w.z) % v2.normallL);
texelData.localTangent .xyz

APPENDIX C. CONSERVATIVE RASTERIZATION PSEUDOCODE117

= normalize (((w.x) % v0.tangent

+ (w.y) * vl.tangent + (w.z) * v2.tangent).xyz);
texelData.localTangent .xyz =

normalize (texelData.localTangent .xyz

— dot(texelData.localTangent .xyz,

texelData.localNormal) % texelData.localNormal);
texelData.localTangent.w = v0.tangent .w;
texelData.texCoords = (w.x) * v0.texC

+ (w.y) * vl.texC + (w.z) * v2.texC;

float2 origUVs = (w.x) x pos0.xy
+ (w.y) * posl.xy + (w.z) % pos2.xy;
texelData . diffuseAlbedo = gDiffuseMap.SampleLevel(
MyPointClampSampler , origUVs, 0).xyz;

// unpack the sampled tangent space normal:
packedNormal = gNormalMap.SampleLevel (
MyPointClampSampler, origUVs, 0);
unpackedNormal .xy = packedNormal.wy * 2 — 1;
unpackedNormal.z = sqrt (1 — saturate (
dot (unpackedNormal . xy, unpackedNormal.xy)));

texelData.normalSample = normalize (unpackedNormal);

texelData.specVal = gSpecMap.SampleLevel (
MyPointClampSampler , origUVs, 0).xyz;

texelData.specShape = gSpecShapeMap.SampleLevel (
MyPointClampSampler, origUVs, 0).xyz;

texelData.triangleIndex = GrouplD.x;

texelData .isDilated = true;

texelData.isFinal = true;

gGBuffer [yxkWidth + x] = texelData;

	Cover page
	Contents
	1 Introduction
	1.1 Background and Motivation
	1.2 Thesis Scope
	1.3 Structure of the Thesis

	2 Theoretical Background
	2.1 Visibility Determination
	2.1.1 Object Geometry Representation
	2.1.2 Transforming from Object-Local to View Space
	2.1.3 Perspective Projection
	2.1.4 Sampling

	2.2 Shading
	2.2.1 The RGB Model and Radiometric Units
	2.2.2 Physically-Based Rendering
	2.2.3 Materials
	2.2.4 Texture Maps
	2.2.5 Filtering Normal Maps
	2.2.6 The Cook-Torrance BRDF

	3 Practical 3D Rendering
	3.1 The Programmable Graphics Pipeline
	3.1.1 The Input Assembler and the Vertex Shader
	3.1.2 The Pixel Shader
	3.1.3 Forming the Final Image
	3.1.4 The Compute Shader

	3.2 Rendering Methods
	3.2.1 Forward Shading
	3.2.2 Deferred Shading

	4 Object-Space Lighting
	4.1 Motivation for New Rendering Techniques
	4.2 Shading in Object-Space
	4.3 Practical Implementation of Object-Space Lighting
	4.3.1 The Software Used for Implementation
	4.3.2 Object-Space Lighting Algorithm Overview
	4.3.3 Mesh Parameterization
	4.3.4 Rasterization
	4.3.5 The Edge Function
	4.3.6 Conservative Rasterization
	4.3.7 The Structure of a G-Buffer Texel
	4.3.8 Shading and Normal Mapping
	4.3.9 Dilation
	4.3.10 Screen-Space Shading Implementation
	4.3.11 Summary Diagram of Texture-Space and Screen-Space Implementations
	4.3.12 Comparison of Texture-Space and Screen-Space Shaded Results

	5 The User Study
	5.1 Test Material
	5.1.1 Test Scenes
	5.1.2 Video Production
	5.1.3 Testing methods
	5.1.4 User Study Results

	6 Conclusions
	6.1 Summary of Results
	6.2 Avenues for Future Developments
	6.3 Final Thoughts

	A Unity Script Pseudocode
	B Rasterization Pseudocode
	C Conservative Rasterization Pseudocode

