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Abstract
The prime numbers can be considered as the building blocks of natural numbers,
having innumerable applications in number theory and cryptography. There exist
multiple different sieving algorithms for the generation of prime numbers.

In this thesis, an elementary modular result is utilized to construct an analytically
useful generator function and its inverse function. The functions are used to generate
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“The problem of distinguishing prime numbers from composite numbers and of
resolving the latter into their prime factors is known to be one of the most important
and useful in arithmetic. It has engaged the industry and wisdom of ancient and
modern geometers to such an extent that it would be superfluous to discuss the prob-
lem at length... Further, the dignity of the science itself seems to require that every
possible means be explored for the solution of a problem so elegant and so celebrated.”

C.F. Gauss, Disquisitiones Arithmeticae, article 329 (1801)
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Table of notations
N : The set of natural numbers, {1,2,3,...}.

P : The set of prime numbers, {2,3,5,7,11,...}.

G : The set of numbers of the form 6m ± 1 (m ∈ N). i.e. all natural numbers greater
than 1 which do not have a factor of 2 or 3.

G∗ : Composite numbers in G. The set of numbers which are expressible as a
product of two (or more) elements from G.

pn : The n:th prime number.

gcd(n, m) : Greatest common divisor:

n = ∏
pi∈P

pi
αi , m = ∏

pi∈P
pi

βi , gcd(n, m) = ∏
pi∈P

pi
min{αi,βi}(αi, βi ≥ 0).

φ(n) : Euler’s totient function. The number of integers m such that 1 ≤m ≤ n for
which gcd(n, m) = 1.

a ≡ n mod m : Modular congruence: m divides a with a remainder of n.

G(n) : The generator function, producing all numbers of the form 6m± 1 (m ∈ N) in
ascending order.

G−1(g) : The inverse of the generator function, producing the index of g ∈ G.



1 Introduction
This thesis starts by introducing and defining the elementary definitions and necessary
concepts for the presented prime generating algorithm. We start by discussing the
basic concepts and terminology related to the prime numbers. We then explore
and discuss certain important known results relating to the prime numbers. The
applications of the prime numbers are also discussed briefly.

In chapter 2 we take a look at important results of prime generating algorithms.
We introduce the oldest and probably the best known prime generating algorithm,
the sieve of Eratosthenes, and analyze its behaviour. The sieve of Eratosthenes
can be seen as the basis for improved and more advanced variations which are also
discussed. The name sieve comes from the fact that these types of algorithms are
sifting composite numbers (non prime numbers) out of an interval, in such a way
that in the end only prime numbers remain in the sieve. The analogy comes from
the process of sifting gold from less precious ores.

We also introduce various linear time complexity variations and introduce the
concept of a factor wheel, which decreases the asymptotic time complexity to be
sublinear. Probabilistic sieves are discussed briefly along with other probabilistic
primality testing methods. These primality tests could also be used to generate
prime numbers but the sieving methods are usually more appropriate for intervals as
opposed to testing whether a given number is prime or not.

In chapter 3 we introduce the geometrical pattern observed in the squares of
prime numbers, which was the original inspiration for the development of our prime
sieve. This geometrical pattern gives rise to the ideas of a prime generator function
G(n), its range G and an indexing function I(x, y) which allows one to determine all
composite numbers in G. These concepts are then used to construct a (log)log-linear
prime sieve, similar to the sieve of Eratosthenes. This sieve is then optimized to be
of linear time complexity. The pseudocode algorithms for these sieves are presented.

Chapter 4 is devoted to visualizing and analyzing the operation of the linear
sieve. We also implement the linear sieve in JavaScript, Python and C++11 and
measure the execution times of the implementations comparing them to other sieves.
Lastly we discuss some potential further optimizations and improvements ending
with conclusions. The implemented JavaScript and C++11 sieves can be found in
the appendices or in GitHub (https://github.com/JuhaniSipila/MyriadPrimes).
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1.1 Divisibility
The natural numbers form the primary subject matter of arithmetic. The process
of dividing a natural number N into M equally sized parts has many simple but
fascinating properties. For some integers N there is no way to divide it by M (without
remainder) into smaller equally sized parts. For other N there are multiple distinct
M such that the division is possible.

Definition 1.1 (Divisibility [2]). An integer a is said to be divisible by another
integer b if there is a third integer c such that a = b ⋅ c.

The integers b and c are called divisors or factors of a. For example the number
12 can be expressed as 12 = 1 ⋅ 12 = 2 ⋅ 6 = 3 ⋅ 4 and thus 12 is divisible by 1,2,3,4,6 and
12. The number 13 on the other hand doesn’t divide into smaller equal integersized
portions and is only trivially divisible by 1 and 13 itself. Divisibility is closely related
to primality and next we shall see why numbers which are only divisible by 1 and
themselves are considered so fundamental in mathematics.

1.2 Prime numbers and factoring
Definition 1.2 (Prime numbers [2]). A prime number (or simply a prime) is a
natural number greater than 1, which has no positive divisors other than 1 and itself.

A natural number greater than 1 that is not a prime is called a composite number
or simply composite. For example since 5 is only divisible by 1 and itself, it is prime.
6 on the other hand has two divisors, 2 and 3, thus 6 is composite.

Note that according to the modern definition, 1 is considered neither prime nor
composite. During the history of number theory some have considered 1 as a prime
while others considered it composite. Some have also disregarded 2 as a prime due
to its eveness. After the modern definition of primality 2 is considered the smallest
and only even prime. The modern definition of primality stems from one of the
most important theorems in elementary number theory, the fundamental theorem of
arithmetic.

Theorem 1.1 (Fundamental Theorem of Arithmetic [3]). Every integer larger than
1 can be written as a product of one or more primes in a way that is unique except
for the order of the prime factors.

Primes can thus be considered as the basic building blocks of natural numbers.
One way of determining whether or not a given number greater than 1 is prime or
composite (i.e. checking for primality) is to determine all of its prime factors. Primes
have only one prime factor, itself. Composites by their definition are comprised
of multiple prime factors. Unfortunately this kind of method isn’t very fast for
sufficiently large numbers since the fastest known methods for factoring a number n
take time exponential in the number of bits of n [1].
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Primes have enumerous applications in mathematics, especially in number theory,
but they also form the basis of modern methods of cryptography. In 1977 RSA
public-key cryptosystem was published which revolutionized electronic commerce
and allowed the exchange of encrypted messages through untrusted networks. More
recently primes have been used in cryptocurrencies e.g. Primecoin. Next we will
take a look at more involved results relating to primes.

1.3 Modular results related to this work
The initial idea for the prime sieve presented in this work originated from a geometri-
cal pattern observed in the squares of primes, witnessed in a dream. The elementary
modular congruence of p2

n ≡ 1 mod 24 is of ancient origin and not attributed to
anyone. The corresponding geometrical pattern is presented in Figure 4 of chapter 3
along with related formulas.

Theorem 1.2. pn
2 ≡ 1 mod 24 ∀pn > 3.

Proof. For all n ∈ N:

n

∑
k=1

k2 =
n(n + 1)(2n + 1)

6 =
n(n + 1

2)(n + 1)
3 .

Now if p > 3 is an odd prime, then p−1
2 is an integer and thus

p−1
2

∑
k=1

k2 ∈ N. Also
p−1

2

∑
k=1

k2 =
(p − 1)p(p + 1)

24 =
(p2 − 1)p

24
is an integer since 24 = 23 ⋅ 3 and gcd(p, 24) = 1, p > 3. Now since p is a prime and
gcd(p,24)=1 for all p>3, it follows that 24 has to divide p2 − 1. i.e. p2 ≡ 1 mod 24.

An elementary yet fundamental property of primes is that all primes greater than
3 can be expressed as 6n±1. This is also the core property which is utilized in this
work to generate a system to produce all composites of the same form, allowing one
to determine the primes that are left over. The first known publication of this result
is by Bungus in his book Numerorum Mysteria in 1599.

Theorem 1.3. All primes pn > 3 can be expressed in form pn = 6m ± 1.

Proof. All natural numbers with remainders 0, 2, or 4 modulo 6 are divisible by 2
and numbers with remainders 0 or 3 modulo 6 are divisible by 3. Thus all primes
greater than 3 must have a remainder of 1 or 5 modulo 6 i.e. they are of form 6n±1.



12

1.4 Important results and history relating to primes
The Greeks are usually considered to have been the first to seriously study the nature
of primes, although it is argued that Egyptian and Babylonian mathematicians had
some degree of understanding of primes. Euclid’s famous work Elements contains
the first known definition for prime numbers and offers a proof for the infinitude of
primes using a counterexample. He supposed that there is a largest prime p and
constructed a number q = (∏p≥pi∈P pi) + 1 which clearly isn’t divisible by any prime
≤ p, thus producing a contradiction.

After Pythagoras and Euclid had made the study of the properties of numbers a
subject worthy of the attention of Greek philosophers, an algorithmic method for the
generation of primes was discovered by Eratosthenes. This algorithm forms the basis
of modern prime sieves and is further discussed in chapter 4. Islamic mathemati-
cians were the heirs of Greek wisdom throughout the Middle Ages, preserving and
developing prime number theory slightly further. Prime related results were scarce
in Europe until around 17th and 18th century when Fermat, Goldbach and others
achieved groundbreaking results paving the way for further development. Goldbach
conjectured that every even integer ≥ 2 can be expressed as the sum of two primes.
Goldbach’s conjecture remains still as one of the oldest unsolved problems in number
theory. In 2013 Harald Helfgott proved the Goldbach’s weak conjecture which states
that every prime greater than 5 can be expressed as the sum of three primes.

One of Fermat’s most influential achievements was his little theorem stated in
1640 that if p is a prime, then for any integer x, xp − x is a multiple of p i.e. xp ≡ x
mod p. This is one of the fundamental theorems of number theory. The case x = 2
was known to the Chinese as early as 500 BCE. The first published proof was given
by Euler in 1736.

Euler also proved an important result relating to primes in his thesis Variae
Observationes Circa Series Infinitas in 1737, namely the product formula for, what
later became known as the Riemann zeta function. He also proved that the sum of
the reciprocals of primes diverges. The Riemann zeta function is considered one of
the most important results in analytical number theory and the related unsolved
hypothesis has perplexed mathematicians ever since it was introduced. Riemann
introduced his influential ideas on the number of primes less than a given magnitude
in 1859 by showing the connection between the distribution of the primes and the
zeros of the analytically extended Riemann zeta function of a complex variable. The
product formula for the zeta function gives insight to the relation of primes and the
zeta function

ζ(s) =
∞
∑
n=1

1
ns
= ∏

pi∈P

1
1 − pi

−s
.

For centuries mathematicians have been fascinated by the seemingly erratic
distribution of primes. There doesn’t seem to be an easy formula for the enumeration
of primes. Considerable effort has been put forth to come up with approximative
bounds and asymptotical formulas to shed light on the distribution of primes. One of
the most important function in prime number theory is the prime counting function
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π(x), which counts the number of primes less than a given x. It is defined as
π(x) = ∑

x≥pi∈P
1. The π symbol of the function, as well as the big O notation, are due

to Landau.
Gauss and Legendre conjectured in the 18th century that π(n) ∼ n

log(n) , which
became known as the prime number theorem (PNT). Dirichlet communicated his
slightly improved approximating function, the logarithmic integral Li(x) in a slightly
different form compared to its modern definition, to Gauss. The PNT was proven
independently by Hadamard and Vallée-Poussin in 1896 by extending the ideas
presented by Riemann. Chebyshev tried to prove the PNT but managed to prove
only a slightly weaker form, which was still strong enough to prove Bertrand’s
postulate, which states that there exists a prime between n and 2n for any integer
n ≥ 2. More formally π(2n) − π(n) ≥ 1,∀n ≥ 2. The estimate for π(n) ≈ ∫

n

2
dt

log t is
suprisingly accurate. Staple calculated π(1026) = 1 699 246 750 872 437 141 327 603.
The estimate gives ∫

1026

2
dt

log t ≈ 1 699 246 750 872 592 073 361 408. The error in the
estimate is smaller than the square root of the actual prime count.

The frequent need of factors of numbers and the excessive labour required for
their direct determination has inspired mathematicians off all ages to construct factor
tables with continually increasing limit prior to the era of digital computers, e.g.
Lehmer’s Factor Table for the First Ten Millions and his list of prime numbers from
1 to 10 006 721. The reader interested in the history of (prime) number theory should
refer to [4], which is an excellent book on the topic. In chapter XIII Dickson presents
various papers enumerating primes of different forms in various intervals.

After Riemann’s results and proof of the PNT mathematicians started looking at
primes more in a probabilistic view rather than the old statistical view. The results
of Hardy-Littlewood, Turán-Kubilius, Erdős-Wintner and Erdős-Kac among others
are considered by some as the beginning of the era of probabilistic number theory
around 1930s and 1940s. An interested reader may refer to [5] for some highlights on
the history of probabilistic number theory.
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2 Background on sieves
In this chapter we take a look at methods for generating prime numbers using sieving
algorithms. A prime sieve is an algorithm for finding prime numbers by creating
a list of all integers up to a desired limit and then progressively removing all the
composite numbers in the interval until one is left with only prime numbers. The
most well known prime number generating algorithm is the sieve of Eratosthenes,
conceived in ancient Greek. It took almost two millennia until variations and faster
extensions were crafted and published.

In 1934 Indian mathematician Sundaram published a simple deterministic sieve for
prime number generation. After various breakthroughs in analytic number theory and
the advent of computers and computational number theory, significant improvements
have been achieved in reducing the time complexity and space complexity of prime
sieves. The modern methods began to develop around 1970s and are still actively
researched since many interesting problems in number theory and mathematics in
general are directly related to the properties of prime numbers. Even after centuries
of research, the prime numbers still mystify us and there are still many open questions
related to them.

First we take a look at the classical sieve of Eratosthenes and analyze the algorithm,
since it can be considered as the most fundamental algorithm in prime number
generation and the basis for all efficient modern variations. Then we proceed to study
how a sieve can be made linear in time complexity and further improve the results
by introducing the theoretically important concept of wheel factorization. Wheels
allow us to transform linear time sieves into sub-linear time complexity algorithms.
For practical applications the concept of segmentation is also presented. Lastly we
discuss modern developments such as the sieve of Atkin, probabilistic sieving and
primality testing.

2.1 Sieve of Eratosthenes
The sieve of Eratosthenes is a simple algorithm for finding all prime numbers up to
a given limit. It is still widely used today for finding relatively small primes, due
the simplicity in its implementation. The algorithm is popularly used as a way to
benchmark computer performance.

The sieve’s conception is usually dated around 250 BCE and attributed to
the Eratosthenes of Cyrene, a Greek mathematician and chief librarian at the
library of Alexandria. He is also attributed to have invented the discipline of
geography (including terminology used today) and being the first person to calculate
accurately the circumference of Earth and the tilt of the Earth’s axis. The earliest
known reference to the algorithm is in Nicomachus of Gerasa’s book Introduction to
Arithmetic, dated around 100 AD.
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The slightly improved “by hand” sieve of Eratosthenes [6] starts with a table of
numbers from 2 to n and progressively crosses off numbers in the table until only
prime numbers remain. Begin with the first number p in the table (i.e. p = 2) and

1. Declare p to be prime. Cross off all multiples of that number in the table
starting from p2.

2. Find the next uncrossed number in the table and set p to be that number.
Repeat from step 1 until the end of the finite table is reached.

The starting point of p2 is a minor optimization which can be made since the
lower multiples are crossed off in earlier iterations. For finite tables of size n, once
we have reached the

√
n:th index in the table, we can stop and declare the uncrossed

values as prime numbers.
The algorithm can be expressed more formally by defining an array of bits of

length n, presenting Boolean values indicating whether or not index i is prime or not.
When the algorithm terminates, we have an array where the primality of i ∈ [2, n]
can be determined.

Algorithm 1 Sieve of Eratosthenes
1: function SieveOfEratosthenes(n) ▷ n is the limit up to which primes are

generated
2: S[1]← false ▷ 1 is neither prime nor composite, assign false
3: i← 2
4:
5: while i ≤ n do ▷ Initialize array with true values
6: S[i]← true
7: i← i + 1
8: end while
9:

10: p← 2
11: while p2 ≤ n do ▷ Main loop
12: f ← p
13: while f ≤ ⌊np ⌋ do ▷ Remove multiples of p starting from p2

14: S[pf]← false
15: f ← f + 1
16: end while
17:
18: p← p + 1
19: while S[p] == false do ▷ Find the next prime
20: p← p + 1
21:
22: end while
23: end while
24: end function
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Sorenson [7] describes the algorithm in more abstract form and states that the
more efficient variations of the algorithm differ from the sieve of Eratosthenes mainly
in their implementations of the set S and in the way in which the removing of the
composites happens. This is also the case for our linear algorithm presented in
chapter 3.

By analyzing the algorithm for the sieve of Eratosthenes, we can see that it
uses O(n) bits of space for the array S. The initialization of the array takes O(n)
operations. The time spent removing the multiples is at most

∑
p≤√n

n

p
= O(n log log n).

This bound can be achieved by using the formula (cf. [2])

∑
(p∈P)≤n

1
p
= log log n +O(1).

Note that the sum is taken over primes only. Finally, the time spent finding the
next prime is the number of times we add one to p, which is at most O(

√
n).

The time spent removing the multiples clearly dominates in complexity and thus
we can conclude that the asymptotic time complexity for the sieve of Eratosthenes
is of order O(n log log n). Note that some of the multiples may be crossed off more
than once. This becomes a problem especially when n increases and we hit more
and more composite numbers with multiple divisors. This problem can be remedied
by finding ways in which each composite number is crossed off exactly once, thus
producing a linear time complexity algorithm as we shall see next.

2.2 Linear sieve
In 1977 Mairson published theoretically significant improvements [8] to the sieve
of Eratosthenes. He developed a linear time algorithm and used a wheel (using a
different name for it) to improve the algorithm’s time complexity to be sublinear
O( n

log log n). Unfortunately he had to bring in multiplications to achieve these bounds,
raising the space complexity to be O( n log n

log log n) bits, instead of O(n) bits required by
the original sieve of Eratosthenes. The linear sieve algorithm presented by Mairson
deletes all composite numbers whose lowest prime factor is p from a list S, which
will contain only primes after the algorithm terminates. The algorithm first uses this
set to compile a list of these composites, then proceeds to delete them from S using
an auxiliary array.

Euler’s proof of the product formula for the Riemann zeta function contains a
version of the sieve of Eratosthenes in which each composite number is removed
exactly once. This linear sieve was rediscovered by Gries and Misra in 1978 [9]. Since
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then many researchers have crafted linear time algorithms and other improvements,
including Pritchard in the early 1980s and Bengelloun in 1986. The latest one being
the sieve of Atkin published in 2004.

Bengelloun designed an incremental algorithm using a data structure to store
sufficient information so that, if the primes up to n are known, the primality of
n + 1 can be determined in constant time O(1), requiring a total of O(n log n) bits
of space. Such an algorithm is useful in applications where an upper bound on the
primes needed is unknown beforehand.

The problem in the sieve of Eratosthenes is that a composite number c may be
crossed off more than once, especially if c has multiple divisors. Ideally we would
like to remove each composite number from the array exactly once. If each removal
takes constant time O(1), we can improve the asymptotical time complexity of the
sieve of Eratosthenes to be O(n).

Gries and Misra achieved this by assuming multiplications of integers not larger
than n to be performable in constant time. The algorithm is similar to Mairson’s
but according to them “perhaps simpler and more elegant”. Their version is also
extendable to find the prime factorizations of all integers between 2 and n in O(n)
time complexity. Their paper demonstrates the elegant algorithm and shows its
correctness and linearity.

The structural implementation of the array S varies between methods but the
real differences are in the methods in which composites are removed. Mairson’s
method makes a pass through S to find all composite numbers and copies them in
to an auxiliary array. Then it makes a pass through this array to generate values of
f to remove all the composites f ⋅ p from S.

The solution proposed by Gries and Misra removes composites of the form f ⋅ pk,
k ∈ N until f ⋅ pk is larger than n, instead of just removing composites f ⋅ p from S.
Pritchard’s method finds the largest composite number first and works downwards.

These algorithms are based on a theorem which states that a composite number
c can be uniquely written as c = q ⋅ pk, where

1. p is a prime and p = lp(c)

2. k ∈ N

3. p = q or p ≤ lp(q).

Here lp(i) denotes the lowest prime number that divides i. The proof can be
found in their original paper. A similar idea is used in our linear algorithm.

Sorenson divides extensions and improvements to the sieve of Eratosthenes in to
two broad categories:

1. Algorithms which disregard each composite number exactly once, thus using
O(n) arithmetic operations, and

2. Algorithms which use only O(
√

n) bits of memory.
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Category 1 linear algorithms can be transformed in to sublinear time-complexity
using wheels as we shall see next. It is an open problem whether or not one can create
an algorithm with sub-linear time complexity using only O(

√
n) bits of memory,

such an algorithm would belong to both categories [7].

2.3 Sub-linear sieve with wheels
Improvements to the sieve of Eratosthenes made by Mairson contained a method
which allows one to transform linear time prime sieves into sub-linear time complexity
using method which later conjured the concept of a wheel. The idea can be also
used in other applications than prime number sieves. The formal definition and the
naming is due to Pritchard in 1981, who introduced it [11].

Let us define

Mk =
k

∏
i=1

pi

Wk = {x∣0 ≤ x <Mk ∧ gcd(x, Mk) = 1}

Wk(n) = {x ≤ n∣gcd(x, Mk) = 1} .

Here Wk denotes the k:th wheel and contains the integers between 0 and Mk − 1
which are relatively prime to the first k primes. Wk(n) is the k:th wheel extended to
n.

The data structure for wheels k allows one to determine in constant time whether
or not an integer is in the extended wheel (i.e. relatively prime to Mk) and what
the next largest element in the extended wheel is. Sorenson explains the process to
compute the data structure:

1. Use trial division to find the first k primes. Compute Mk.

2. Sieve the wheel array W [⋅] so that W [x] = 0 or 1 depending on whether or not
gcd(x, Mk) = 1. The entries of 1s will be changed in the next step.

3. Set W [Mk − 1] = 2, and make a pass over the array starting from Mk − 1 going
down. Save the previous x such that W [x] was nonzero. When the next
smallest nonzero element is found, store the difference. As a check, the value
of W [1] should be pk+1 − 1.

If one wants the previous element in the extended wheel, wheel symmetry can be
used. The element previous to x is x −W [Mk − (x modMk)]. Using the data struc-
ture defined above, one can convert linear prime sieving algorithms into sub-linear
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algorithms using the following steps, as explained by Sorenson

1. Choose k as large as possible such that Mk ≤
√

n. Find the first k primes and
compute W [x] for all x <Mk.

2. Initialize S to the kth wheel extended to n, Wk(n). S can be implemented as
a doubly linked list using arrays.

d ∶= 1
do

S ∶= S ∪ {d}
d ∶= d +W [d mod Mk]

while(d > n)

3. Run the linear algorithm starting from p ∶= pk+1.

4. Output S ∖ {1} and the first k primes.

The sublinear time complexity of this algorithm follows from the fact that S
is initialized to contain only O( n

log log n) elements. Thus the linear sieving phase of
the algorithm uses only O( n

log log n) arithmetic operations. Note that the constants
in these asymptotical complexities are so large that these algorithms are mainly
of theoretical interest for all practical values of n. For practical ranges of primes,
the actual run-time of the sieve of Eratosthenes in a modern computer usually
outperforms these methods due to significantly lower asymptotic constants and the
simpler Boolean array used.

Pritchard also describes improvements to efficiency at a bit complexity level, how
to reduce the operations to only additions and how to reduce the storage requirements.
The space reductions however are mainly theoretical. He also presented the segmented
wheel sieve in 1983. An interested reader can refer to his comprehensive paper [10]
for various pseudocodes for linear sieves along with great analysis as well as a
comprehensive family tree describing how each algorithm descends from the sieve of
Eratosthenes and relates to one another.

2.4 Segmented sieve
According to Sorenson, the most practical improvement to the Sieve of Eratosthenes
for large values of n is the idea of segmentation. This is largely due to the fact
that RAM access typically becomes the speed bottleneck more than computational
speed once the array size starts to grow beyond the size of the processor caches.
The segmented sieve of Eratosthenes requires O(

√
n) space and has the same time

complexity as the original algorithm. The time complexity can be improved to be
linear (at the expense of space). Page segmented wheel sieves require significantly
more space to store the required wheel presentations. For a detailed description on
segmentation see Bays and Hudson [12].
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The underlying idea of the segmented sieves is quite simple. Instead of sieving the
desired interval from 2 to n at once, one can break the interval into segments of length
∆. After n

∆ intervals have been sieved, all primes up to n have been found. The
space complexity is O(

√
n +∆) suggesting ∆ =

√
n. Thus we get space complexity

of order O(
√

n).
Unfortunately there is no apparent way to segment the linear and sub-linear

sieving algorithms due to the fact that S uses a linked list presentation. However
Pritchard’s segmented wheel sieve runs in O(n). In practice the fastest run-times for
sufficiently large n are achieved using segmented wheels. For parallel implementations,
Sorenson suggests to assign each processor intervals of length ∆.

2.5 Modern sieves
Legendre studied π(x) using the sieve of Eratosthenes to find upper or lower bounds
on the number of primes within a given set of integers. His extension to the sieve of
Eratosthenes, named the Legendre sieve, is seen as the backbone to modern sieve
theory which is considered to have begun around 1920s when Brun pioneered the
field. Some noteworthy sieves in sieve theory are Brun’s pure sieve, Selberg’s sieve,
the Large sieve and the Asymptotic sieve. Sieve theory is a rich and complex topic
deemed to be outside the scope of this thesis. An interested reader may refer to e.g.
[21] for further insight.

As the processing power of computers has increased, many alternative ways
for the generation of primes have been suggested. These include the probabilistic
Monte-Carlo variation of the sieve of Eratosthenes, also known as the Hawkin’s
random sieve [13] and probabilistic primality tests which are examined more in depth
in the next section. In 2003 Atkin and Bernstein published a deterministic sieve of
Atkin [14] which is of linear time complexity. After some preliminary work the sieve
of Atkin crosses off the squares of primes.

With the increased computational power and the advent of internet, distributed
computing came in to the picture. In 1996 the Great Internet Mersenne Prime
Search GIMPS (www.mersenne.org) was founded to harness the spare computer
cycles to search for the new Mersenne primes of form 2n − 1 using the Lucas-Lehmer
test. In December 2017 the project found the 50th known Mersenne prime, which
is 277232917 − 1. In recent years GPUs (Graphics Processing Units) have been used
for scientific computing as well due to available parallel processing which speed up
calculations considerably. CUDASieve (www.github.com/curtisseizert/CUDASieve)
for example uses segmented sieve of Eratosthenes and seems to run significantly
faster than the highly optimized parallel CPU version (www.primesieve.org). The
CUDASieve reports that on a modern high-end GPU it can determine primes between
0 and 1012 in 12.5 seconds while the CPU version takes about 1 minute on a modern
highend CPU running in 4 threads.

According to the prime number theorem π(n) ∼ n
log(n) , where π(n) is the prime-

counting function. From this theorem we can see that for sufficiently large n, the
probability of a random integer m ≤ n being prime is close to 1

log(n) . The use of
randomness can be thus leveraged to create a Monte Carlo variation of the sieve of
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Eratosthenes, although this is more of a theoretical curiosity rather than a practical
implementation.

2.6 Primality testing
In this subsection we present methods for testing primality. We start by introducing
simple and slow methods and proceed to more complex and fast procedures. We
start from deterministic methods by introducing the elementary trial division method
and application of the Wilson’s theorem. We then proceed to probabilistic primality
tests, namely the Fermat’s primality test and the probabilistic Miller-Rabin test.
Lastly we discuss Miller-Rabin test’s deterministic variant and the AKS primality
test. The deterministic tests are guaranteed to prove or disprove primality whereas
the probabilistic methods (in some intervals) can pass composites as primes. Usually
the probabilistic methods are faster.

A naive way of checking for primality of n is to try to divide it with all integers
from 2 to n. This is called the trial division method and it is very inefficient for large
enough n, considered more as a baseline for faster methods. An obvious optimization
is to limit the division up to

√
n thus taking O(

√
n(log n log log n)) operations,

where the logarithmic part comes from the time complexity of the divisions (using
Newton-Raphson division algorithm).

Wilson’s theorem states that n > 1 is prime iff (n − 1)! ≡ −1 mod n [2]. Thus one
can compute (n− 1)! mod n and determine wether n is prime or not. While being an
interesting result, the computation of the factorial is infeasible for sufficiently large
n and the method is even slower than the optimized trial divison.

Fermat’s little theorem states that when p ∈ P and gcd(p, x) = 1, xp−1 ≡ 1 mod
p [2]. Based on this congruence a probabilistic primality test can be crafted by
randomly picking 1 < x < p− 1 not divisible by p and checking wether the congruence
holds. The method is based on the fact that it is unlikely that the congruence holds
for random x if p is composite. For higher confidence the test is repeated multiple
times with different x.

Carmichael showed in 1910 that there are infinitely many (composite) Carmichael
numbers for which any x satisfies Fermat’s little theorem [15], the smallest one being
561. This means that there are infinitely many composites which the Fermat’s primal-
ity test passes erroneously as prime. Carmichael numbers are however somewhat rare
and despite its shortcomings the Fermat’s primality test is fast (polylogarithmic).

To combat the problem of Carmichael numbers, variants of the Fermat’s test
were crafted. Solovay-Strassen primality test [16] uses a generalization of Fermat’s
theorem, namely Euler-Jacobi pseudoprimes. It is historically important as it showed
the practical feasibility of the RSA cryptographic system.

Miller added a condition to an advanced variant of Fermat’s test and presented
a deterministic primality test [17] based on the validity of the extended Riemann
Hypothesis. Rabin modified Miller’s test [18] and made the test probabilistic, allowing
to drop the assumption of the extended Riemann’s Hypothesis. There still exists a
small chance of erroneuosly classifying composites as prime. However it has been
verified that the primality of p < 341 550 071 728 321 is guaranteed if the test is run
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with x = 2, 3, 5, 7, 11, 13, 17.
Another probabilistic primality test worth mentioning is the Bailie-PSW primality

test [19] which utilizes the strong Fermat probable primality test and the Lucas
probable prime test. It has been verified not to pass any composite under 264 as a
prime.

In 2002 Indian computer scientist published the AKS primality test [20] named
after the creators Agrawal, Kayal and Saxena. Miller’s deterministic test runs in
polynomial time but it is conditioned on the validity of the extended Riemann’s
Hypothesis. Adleman, Pomerance and Rumely improved the time complexity of
deterministic primality tests out of exponential time and probabilistic Elliptic Curve
methods could bring the expected time to be polynomial but the AKS primality test
was the first deterministic test to unconditionally prove that primality can be solved
in polynomial time. However the test is not practical on computers and currently
the probabilistic tests are seen as best for practical primality testing purposes.
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3 The Myriad sieving algorithm
This chapter presents the proposed system for the generation of primes. We start
with the geometrical pattern observed in the squares of primes which ultimately led
to the construction of our prime sieve variation. The geometrical pattern gives rise
to the concept of a generator function and its inverse which can be used to generate
a composite index generating function. This composite index generating function is
the backbone of the presented algorithm. Then we take a look at the initial version
of the prime sieving algorithm and its similarities to the sieve of Eratosthenes. Lastly
the algorithm is optimized to be of linear time complexity.

3.1 The geometrical pattern
By considering the integer valued terms of the sequence fp(n) =

pn
2−1
8 we can observe

that there seems to exist an arithmetic progression in the sequence in the form of a
cumulative sum. This is indeed true, since

fp(n) =

pn−1
2

∑
k=1

k = (
1
2)(

pn − 1
2 )(

pn + 1
2 ) =

pn
2 − 1
8 . (1)

We can visualize the more general cumulative sum
n

∑
k=1

k = n(n+1)
2 with unit squares

as shape which we will refer to as a stepshape, starting with 1 unit square and keep
growing the number of units to produce a shape of steps stopping when the height of
the steps is n. Let us consider a stepshape which has an area mimicing the sequence
fp(n). Firstly we notice that for all pn > 3 the members of the sequence are divisible
by 3 which indicates that stepshapes with sidelength of form 1+ 3k, k ∈ N∪ {0}, need
to be skipped. In order to achieve this we can consider three types of elemental
shapes which produce the interesting set of stepshapes as illustrated in Figure 1.

Figure 1: The three elementary shapes which make up the stepshapes.
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Each elemental shape has an area of 3 and the diagonal part has a sidelength
of 3 whereas the other have a sidelength of 2. The parts fit together in periods as
indicated by the Figures 2 and 3 to grow the stepshape along the diagonal. Note that
the possible areas of stepshapes of this form go through numbers which don’t belong
to the sequence pn

2−1
8 , n > 3 but this “problem” will turn out to reveal important

properties of composites in the mimicking sequence. The skipping of certain indices
results in a sidelength, as a function of n, of the form 3⌊n2 ⌋ + 2(n mod 2). Thus the

area of the stepshape is A(n) =
3⌊n

2 ⌋+2(n mod 2)
∑
k=1

k. Two such stepshapes are illustrated
below with n = 3 in Figure 2 and n = 8 in Figure 3.

Figure 2: The stepshape corresponging to n = 3.

Figure 3: The stepshape corresponging to n = 8.
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By considering the number of each elemental shape in the n:th stepshape we get
Table 1 for the first such shapes. The sum of the count of each element is multiplied
by 3 to get the total area as each elemental shape is of area 3. Notice that the last
index n = 8 doesn’t produce a value of the sequence fp(n).

Table 1: Amounts of elemental shapes in various stepshapes
n 1 2 3 4 5 6 7 8
⌞ 1 1 3 3 6 6 10 10 f0(n)
⋱ 0 1 1 3 3 6 6 10 f0(n − 1)
⌝ 0 0 1 1 3 3 6 6 f0(n − 2)
Σ 1 2 5 7 12 15 22 26
3Σ 3 6 15 21 36 45 66 78

Notice how the number of each element grows as the cumulative sum
n

∑
k=1

k but
each value is repeated twice due to phases in the periodicity in which they have been
placed to the stepshape. We can present this by defining

f0(n) =
⌊n+1

2 ⌋
∑
k=1

k =
1
2(⌊

n + 1
2 ⌋2 + ⌊

n + 1
2 ⌋).

Thus we can present the area of the stepshape with f0 as

A(n) = 3(f0(n) + f0(n − 1) + f0(n − 2)).

By solving for pn in fp we get pn =
√

1 + 8fp(n). If we now consider A(n) and our
original sequence fp(n), we can notice that A(n) = fp(n) iff n = ⌊pk+2

3 ⌋, k ∈ N and
thus one can divide the set of natural numbers to two types of indices, ones which
produces primes and another which does not. This forms the basis for the indexing
system for the prime generating function which are discussed in more detail in later
sections.

By solving for p2
n in fp and using fp = 3(f0(n)+f0(n−1)+f0(n−2)) (when n is of

form ⌊pk+2
3 ⌋), one can obtain an interesting form for the squares of primes. This form

of equation (2) can be used alternatively to prove the modular congruence p2
n ≡ 1 mod

24 and provides a way to graphically present this congruence. Figure 4 illustrates how
8 stepshapes wrapped around a central unit produce a prime square with stepshapes
where n = ⌊pi

3 ⌋ for some i. Here n = 7 producing a square of sidelength 23. Note
that when n = ⌊pi

3 ⌋, the sidelength of a single stepshape is pi−1
2 and thus the squares

sidelength is 1 + 2pi−1
2 = pi.

p2
n = 1 + 24(

⌊ pn+3
6 ⌋
∑
k=1

k +
⌊ pn

6 ⌋
∑
k=1

k +
⌊ pn−3

6 ⌋
∑
k=1

k). (2)
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Figure 4: 8 stepshapes corresponging to n = 7 wrapped around a central unit produces a
prime square.

3.2 The generator function
If we take the squareroot in equation (2) and open the sums, we are left with an
expression

pn =

√

1 + 12(⌊pn + 3
6 ⌋2 + ⌊

pn + 3
6 ⌋ + ⌊

pn

6 ⌋
2 + ⌊

pn

6 ⌋ + ⌊
pn − 3

6 ⌋2 + ⌊
pn − 3

6 ⌋). (3)

By allowing the cumulative sums in equation (2) to take also composite values as
opposed to only primes, we can define a function G(n) ∶ N→ G which goes through
all the numbers greater than 1 which are 1 or 5 modulo 6, i.e. of form 6n ± 1. We
will call this function the generator function. The generator function has a simpler
form as shown in the following lemma. Based on the equation (3) we can extend it
beyond the primes and obtain

G(n) =

√

1 + 12(⌊n + 1
2 ⌋2 + ⌊

n + 1
2 ⌋ + ⌊

n

2 ⌋
2 + ⌊

n

2 ⌋ + ⌊
n − 1

2 ⌋2 + ⌊
n − 1

2 ⌋). (4)
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Lemma 3.1. G(n) can be expressed as G(n) = 6⌊n+1
2 ⌋ + (−1)n = 3n + 3−(−1)n

2 .

Proof. Consider n to be even i.e. n = 2k. Then G(n) =
√

1 + 12(k(3k + 1)) and
G(n) = 6k+1. Considering that both functions are positive and squaring them yields
a tautology.

Similarily when n is odd i.e. n = 2k − 1. Then G(n) =
√

1 + 12(k(3k − 1)) and
G(n) = 6k−1. Considering that both functions are positive and squaring them yields
a tautology.

Obviously there are infinitude of forms expressing the same sequence but the
form of G in Lemma 3.1 nicely illustrates the relation to numbers without factors
of 2 or 3, as opposed to the form (4). Since G goes through all natural numbers
greater than 1 without factors of 2 or 3, the function will generate all primes greater
than 3 with certain set of indices but also all the composites, which are not multiples
of 2 or 3, with another set of indices. From the perspective of sieving, this is nice
because we don’t have to worry about multiples of 2s or 3s and can concentrate on
multiples of higher primes. There is a certain kind of similarity to the idea of wheel
factorization although arguably these are different types of methods.

Based on the form 3n + 3−(−1)n
2 it can be seen that G has an inverse function

defined as G−1(n) = ⌊n3 ⌋. This results in the fact that G(⌊pn

3 ⌋) = pn.

Lemma 3.2. G(⌊g3⌋) = g, where g ∈ G. Thus G−1(n) = ⌊n3 ⌋.

Proof. Suppose g = 6k−1. Then G−1(g) = ⌊6k−1
3 ⌋ = 2k−1 and G(2k−1) = 3(2k−1)+2 =

6k − 1 = g. Suppose g = 6k + 1. Then G−1(g) = ⌊6k+1
3 ⌋ = 2k and G(2k) = 3(2k) + 1 =

6k + 1 = g.

The first 25 values of G(n) are evaluated in the Table 2 and the values from 26
to 50 are evaluated in the Table 3 to illustrate the density of primes when n is small.
As n grows, G(n) starts to hit more and more composites.

Table 2: Values of G(n), for n ∈[1,25].

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

G(n) 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47 49 53 55 59 61 65 67 71 73 77
Factorization - - - - - - - 5 ⋅ 5 - - 5 ⋅ 7 - - - - 7 ⋅ 7 - 5 ⋅ 11 - - 5 ⋅ 13 - - - 7 ⋅ 11
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The relation of G(n) to primes, or more precisely its range’s (G) relation to
primes, can be seen from the following Theorem 3.3.

Theorem 3.3. G ∖G∗ = P ∖ {2, 3}.

Proof. The numbers of form 6k ± 1 (i.e. G) minus the composites in G (i.e. G∗)
is the set of prime numbers in G i.e. P ∖ {2, 3}. More formally, by the funda-
mental theorem of arithmetic each natural number can be (uniquely) expressed as
a product of its prime factors. Using this theorem, we can present the sets G and G∗ as

G = {
∞
∏

3<pk∈P
psk

k ∣sk ∈ N ∪ {0},∑ sk ≥ 1}.

G∗ = {
∞
∏

3<pk∈P
psk

k ∣sk ∈ N ∪ {0},∑ sk ≥ 2}.

From these presentations it can be seen that the difference of these sets is

G ∖G∗ = {
∞
∏

3<pk∈P
psk

k ∣sk ∈ N ∪ {0},∑ sk = 1}.

Since the set of numbers with exactly one prime factor is the set of primes and
we have excluded the primes 2 and 3, we have

G ∖G∗ = P ∖ {2, 3}.

Benoit Cloitre in OEIS (www.oeis.org/A007310) notes a property which allows
one to present the set using the Euler’s totient function, G = {n > 1 | φ(4n) = φ(3n)}.

3.3 Composite generating indices
A nice property of G(n) is the simplicity of its inverse function G−1(g) ∶ G → N
defined as G−1(g) = ⌊g3⌋. This inverse function can be used to extract the indices
for which G(n) generates primes, but it can also be used to get a formula for the
indices which generate all composites without factors 2 or 3 (if one is interested in
these composites, they can be trivially calculated by 2n and 3n, n ∈ N). Consider
the indices I for which G(I) is a multiple of 5,7,11,13,...,G(k).
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For 5, we find indices (1) +7(=8) +3(=11) +7(=18) +3(=21) +...

For 7, we find indices (2) +9(=11) +5(=16) +9(=25) +5(=30) +...

For 11, we find indices (3) +15(=18) +7(=25) +15(=40) +7(=47) +...

For 13, we find indices (4) +17(=21) +9(=30) +17(=47) +9(=56) +...

The obvious pattern can now be exploited to obtain few generalizations of alter-
native forms, which are provable trough induction. Consider an indexing function
I(n, m) ∶ N2 → N of the form:

I(n, m) = I(m, n) =

G(n + 1) ⋅m + ⌊G(n + 1)
2 ⌋ + (−1)m⌊n + 1

2 ⌋ =

n + (4n + 2 + (−1)n+1)⌊
m + 1

2 ⌋ + (2n + 1)⌊m2 ⌋ =

n + (3(2n + 1) + (−1)n+1)⌊
m

2 ⌋ + (2(2n + 1) + (−1)n+1)(
1 + (−1)m+1

2 ).

It might be more obvious to see the symmetry and to obtain a simpler formula
by simply using the fact that elements in G∗ are of form G(k) = G(n)G(m). Using
the inverse function G−1 on these elements to obtain

I(n, m) = ⌊
G(n)G(m)

3 ⌋ =

12⌊n + 1
2 ⌋⌊

m + 1
2 ⌋ + (−1)n2⌊m + 1

2 ⌋ + (−1)m2⌊n + 1
2 ⌋ −

1 + (−1)n+m+1

2 .

Note also that G(I(n, n)) = G(n)2. The form of the indexing function can be
further simplified if we consider the even and odd indices separately.

Iodd = 12pq ± 2p ∓ 2q − 1.

Ieven = 12pq ± 2p ± 2q.

Computationally the simples form might be to use G(n) = 3n + 3−(−1)n
2 which

leads to

I(n, m) = ⌊
G(n)G(m)

3 ⌋ = 3nm + ng +mk + s, (5)
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where

k =

⎧⎪⎪
⎨
⎪⎪⎩

2 n odd
1 n even

g =

⎧⎪⎪
⎨
⎪⎪⎩

2 m odd
1 m even

s =

⎧⎪⎪
⎨
⎪⎪⎩

1 n odd ∧ m odd
0 otherwise.

These are easily calculated by checking the last bits of n and m. Next we will
present our initial sieving algorithm based on this idea of composite indices.

3.4 The initial sieving algorithm
Consider the 2-dimensional multiplication table 4 of elements from G, i.e. multi-
plying G(n) by G(m). Because multiplication is commutative, one needs to only
consider the upper triangle of the multiplication matrix, illustrated in the below table.

Table 4: Values of G(n)G(m). Elements of G∗.
G n 1 2 3 4 5 6 7 8 9 10 11 12 13
m Gn,m 5 7 11 13 17 19 23 25 29 31 35 37 41
1 5 25 35 55 65 85 95 115 125 145 155 175 185 205
2 7 49 77 91 119 133 161 175 203 217 245 259 287
3 11 121 143 187 209 253 275 319 341 385 407 451
4 13 169 221 247 299 325 377 403 455 481 533
5 17 289 323 391 425 493 527 595 629 697
6 19 361 437 475 551 589 665 703 779
7 23 529 575 667 713 805 851 943
8 25 625 725 775 875 925 1025
9 29 841 899 1015 1073 1189

10 31 961 1085 1147 1271
11 35 1225 1295 1435
12 37 1369 1517
13 41 1681
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By considering only the non duplicate entries when the table is extended to infinity
(the duplicates and corresponding indices have been underlined), one can construct
the Table 5 of composite generating indices. The indices generating duplicate
composites have been left out from the table below.

Table 5: Values of I(n, m).
In,m n 1 2 3 4 5 6 7 8 9 10 11 12 13
m Gn,m 5 7 11 13 17 19 23 25 29 31 35 37 41
1 5 8 11 18 21 28 31 38 41 48 51 58 61 68
2 7 16 25 30 39 44 53 67 72 86 95
3 11 40 47 62 69 84 106 113 135 150
4 13 56 73 82 99 125 134 160 177
5 17 96 107 130 164 175 209 232
6 19 120 145 183 196 234 259
7 23 176 222 237 283 314
8 25
9 29 280 299 357 396

10 31 320 382 423
11 35
12 37 456 505
13 41 560

Naively one could go through all n and m (n ≥ m) such that G(n)G(m) ≤ Gmax,
where Gmax indicates the limit to which we want to sieve. Note that this limit can
be any natural number and not of form G(Imax) as the G−1 will round the limiting
index accordingly i.e. Imax = ⌊

Gmax

3 ⌋. However there are multiple optimizations to be
made by skipping elements in the matrix which have already been determined to be
composite.

In the naive method start by setting x = y = 1, calculating G(k) = G(x)G(y) and
determine it to be composite by crossing it off from our list of primes (setting a
Boolean value false to the corresponding index). Keep increasing x and calculate
the composites indices until we hit Imax. Increment y by 1, and initialize x = y
to the beginning of the diagonal and scan through the row, crossing off composite
indices until we hit Imax, again. Once y reaches ⌊

√
Gmax

3 ⌋, we can scan the row for
the last time and we have gone through the composites in the interval. The limit
for y is simply obtained from the fact G(I(n, n)) = G(n)2. This method allows one
to determine all the composites of form 6n ± 1 in the sieving interval and leaves the
primes of this form untouched.

An obvious optimization is to calculate only the rows with prime-producing
indices by skipping all rows y which have been determined to be composite indices,
since all the composites in this row have been crossed off at the level of the smallest
prime factor of the corresponding composite. Instead of crossing off the composites
themselves we can simply cross off the corresponding indices, since they are slightly
smaller. The untouched prime indices can then be passed through the prime
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generator function G to get all primes (greater than 3) in the interval. This gives us
an algorithm quite similar to the sieve of Eratosthenes, at least in time complexity.
Consider the pseudocode of algorithm 2.

Algorithm 2 Initial MyriadPrime
1: function InitialMyriadPrimeSieve(n) ▷ n is the limit up to which primes

are generated
2: Imax ← ⌊

n
3 ⌋

3: i← 1
4:
5: while i ≤ Imax do ▷ Initialize array with Boolean values
6: primeIndices[i]← true
7: i← i + 1
8: end while
9:

10: y ← 0
11:
12: while y + 1 ≤ ⌊

√
n

3 ⌋ do ▷ Main loop
13: y ← y + 1
14: x← y
15: if primeIndices[y] = true then
16: I ← I(x, y)
17: while I ≤ Imax do
18: primeIndices[I]← false
19: x← x + 1
20: I ← I(x, y)
21: end while
22: end if
23: end while
24:
25: i← 1
26: while i ≤ Imax do ▷ Generate the primes based on the indices
27: if lowestPrimeIndice[i] > 0 then
28: G(i) ∈ P ▷ Print or save the prime G(i)
29: end if
30: i← i + 1
31: end while
32: end function

Note that e.g. 175 can be expressed as G(8)G(2) or G(11)G(1) (this is
the smallest composite appearing more than once) and the original algorithm
will calculate and cross it off twice. This problem stems from the number of
distinct divisors in a composite number. The asymptotic time complexity of this
algorithm can be deduced from the fact that the number of composites crossed off is
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proportional to the sum of the distinct divisors of these composites. One can use, as
an upperbound, the summation formula of the distinct divisors function (cf. [2])

n

∑
Gmax≥g∈G∗

ω(g) <
n

∑
k=2

ω(k) = n log log n +M ⋅ n +O(
n

log n
),

where M is Merten’s constant. This gives us a similar asymptotic time complexity
of O(n log log n) as with the sieve of Eratosthenes. Since we are usign a Boolean
array for the determination of prime indices, the space complexity is similar to the
sieve of Eratosthenes, i.e. O(n) bits. We can improve the algorithm by introducing a
way in which each composite in the interval gets crossed off exactly once. A method
for obtaining a linear sieving algorithm based on this framework is presented next.

3.5 Linear sieving algorithm
The original sieving algorithm can be improved to be of linear time complexity by
crossing off each composite only once. We can achieve this by scanning the columns
instead of rows and saving the number of the row y in which the corresponding
composite index I(x, y) was first discovered. Now for x which are prime indices, we
have to scan the entire column (until we hit the limiting index or y = x) skipping
only rows y which correspond to a composite indices. For x which are composite
indices, we can stop when y exceeds the level indicated by the saved values or until
we hit the limiting index.

We are saving the index of the lowest prime factor of the composite and can
safely stop there, since eventually we are going to cross off the remaining composites
at the lower level of the smallest prime factor. We can initialize the saved values
as 0 and at the end, all indices which are still zero can be determined to be prime
generating indices. Saving indice numbers instead of toggling Boolean values in an
array is not optimal and grows the required space complexity, especially when the
sieving interval grows large. The problem can be remedied by recursively crossing
off composites, similar to the method of Gries and Misra, but it’s not demonstrated
in this work due its slightly more complex pseudocode.
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Algorithm 3 Linear MyriadPrime
1: function LinearMyriadPrimeSieve(n)▷ n is the limit up to which primes

are generated
2: Imax ← ⌊

n
3 ⌋

3: i← 1
4:
5: while i ≤ Imax do ▷ Initialize array with values
6: lowestPrimeIndice[i]← 0
7: i← i + 1
8: end while
9:

10: x← 1 ▷ Initialize
11: y ← 1
12: I ← I(x, y)
13:
14: while I ≤ Imax do ▷ Main loop
15: if lowestPrimeIndice[x] > 0 then
16: ylim ← lowestPrimeIndice[x]
17: else
18: ylim ← x
19: end if
20: while y ≤ ylim do
21: if lowestPrimeIndice[y] ≠ 0 then
22: y ← y + 1
23: continue
24: end if
25: I ← I(x, y)
26: if I > Imax then
27: break
28: end if
29: lowestPrimeIndice[I]← y
30: y ← y + 1
31: end while
32: x← x + 1 ▷ Prepare for next iteration
33: y ← 1
34: I ← I(x, y)
35: end while
36:
37: i← 1
38: while i ≤ Imax do ▷ Generate the primes based on the indices
39: if lowestPrimeIndice[i] > 0 then
40: G(i) ∈ P ▷ Print or save the prime G(i)
41: end if
42: i← i + 1
43: end while
44: end function
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3.6 Remarks on the algorithms
Based on Theorem 3.3 it is sufficient to sieve only {6k ± 1} instead of the entire N in
order to find P ∖ {2, 3}. This property allows one to skip the multiples of 2 and 3 in
sieving. Furthermore the Theorem 1.3 allows one to construct the function G which
is used to generate the primes, using the prime generating indices that the algorithm
discovers. The function G−1 is used to construct the composite index generating
function I(n, m). One should also note that for every composite g ∈ G, the factors
of g are also of form 6k ± 1 and thus belong in G.

The initial algorithm calculates I(n, m) for all n, m such that I ≤ Imax. In essence
the algorithm is the sieve of Eratosthenes restricted to G. The linear version saves the
lowest prime factor of the composites G(I(n, m)) and therefore makes it possible to
skip duplicate composites. From the theoretical perspective it doesn’t matter which
form of G(k) or I(n, m) one uses. In practical testing it was however noticed that out
of the presented forms, the equational form (5) for I(n, m) worked best. Similarily
the G(n) = 3n + 3−(−1)n

2 form seemed to be the fastest when the odd-even cyclic
fractional part is presented using a ternary operator and checking the last bit of n’s
binary presentation. In C-notation G(n) can be expressed as 3n+((n&1)==1?2:1).

3.7 Other potential uses of the framework
The indexing function I(x, y) makes it possible to craft a quadratic Diophantine
equation in which the purely quadratic coefficients are zero, reducing it to the
hyperbolic special case. By solving the crafted Diophantine equation i = G−1(g) =
⌊

g
3⌋ = I(x, y) for x and y one can determine the primality of g = G(i) ∈ G. If the

equation has an integer solution (x, y) (or multiple solutions) g is composite and if
no solutions exist g is prime. Unfortunately the solution of the Diophantine equation
requires the factorization of g and is thus not feasible for practical primality testing.

The idea can however be extended to study twin primes. Primes p and p + 2 are
called twin primes if both p ∈ P and p+2 ∈ P. The 6k±1 form is ideal for twin primes
because if p and p + 2 are twin primes then p = 6k − 1 and p + 2 = 6k + 1 for some
k. The unsolved twin prime conjecture states that there are infinitely many such
primes. Since

g = G(i) ∈ P ⇐⇒ ∄(x, y) ∈ N2 ∶ i = G−1(g) = ⌊
g

3⌋ = I(x, y)

the conjecture can be stated using the framework as

∃∞k ∈ N ∶ 6k − 1 ∈ P ∧ 6k + 1 ∈ P
⇐⇒

∃∞k ∈ N ∶ (∀(a, b, c, d) ∈ N4 ∶

(2k − 1 ≠ 3ab + 2a + 2b + 1) ∧ (2k − 1 ≠ 3ab + 2a + b) ∧ (2k − 1 ≠ 3ab + a + b)

∧(2k ≠ 3cd + 2c + 2d + 1) ∧ (2k ≠ 3cd + 2c + d) ∧ (2k ≠ 3cd + c + d)).
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That is, there are infinitely many twin primes iff there are infinitely many integers
k such that for each k all natural number quadruplets (a, b, c, d) satisfy the six
nonequalities. The framework can also be extended for sums of primes as long as
only prime generating indices are used.
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4 Analysis of the linear algorithm
In this chapter we focus on the analysis of the presented linear prime sieving algorithm.
Since the linear sieve is of greater interest we present its source codes in C++11 and
JavaScript in appendices A and B respectively. For testing purposes the algorithm
was also implemented in Python.

We first visually analyze the operation of the algorithm, i.e. which numbers are
crossed off and which can be skipped to produce linear runtime. We then proceed to
analyze the actual execution times of these algorithms in modern laptop and desktop
enviroments comparing it to the sieve of Atkin, the original sieve of Eratosthenes
and the segmented wheel sieve. Lastly we present potential further optimizations
which could speed up the algorithm and discuss the pros and cons of the presented
framework.

4.1 Analysis of the search space of the linear algorithm
The name Myriad was chosen for the algorithm to reflect the infinitude of different
methods in which primes can be sieved and particularily the infinitude of ways in
which the presented framework can be used to achieve this. Consequently there are
too many different ways to enumerate all the possible sequences of operations and
thus we present only one as the linear method which was seen as the simplest. This
simplicity is also reflected in the presented source codes where the relevant elements
of the space are first looped through vertically and proceeded horizontally until every
element in the space has been operated (or skipped).

Let us start by analyzing the operations which the linear sieve carries out. Initially
we only know the limit of the sieving interval n. This allows us to calculate the
maximum index of the generator function using G−1(n) and allows us to get an idea
on the space we are about to operate on. Consider all elements G(k) = G(n)G(m) ≤
Gmax (or equivalently their indices I(n, m) ≤ Imax). By [2] we know that the amount
of elements in this space is of order O(n log log n).

The initial space, in which no composite has been crossed off or skipped, is
visualized in Figure 5. Note that the rightside tail has been cut for clarity after index
50. The following Figures 5-16 present the space of composites < 2500 needed to
crossoff. The elements in light blue will be calculated and crossed off unless they are
deemed pink (later figures). The dark blue elements are greater than our maximum
index and are skipped altogether. Red elements indicate that the corresponding
index has been processed.
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Figure 5: Initial search space.

The algorithm starts from n =m = 1, calculates the corresponding index I(1, 1) = 8
and saves in to an array at position 8 the smaller of the indices (in this step 1),
namely m since m ≤ n in this half of the space. After 8 has been deemed as (the
lowest) composite generating index we can safely in the future skip all indices I(8, k),
where k is greater than the saved index 1. By symmetry and m ≤ n, we can also skip
all I(n, 8). The first skippable elements can be seen in Figure 6 colored in pink.

Figure 6: Search space after the first composite generating index has been determined.

Since the column at n = 1 contains only one element, we are done with it.
Increment n and proceed to the column n = 2. Since I(2, 1) = 11 we save its lower
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generating index 1 to position 11. After this the space is as presented in Figure
7. Moving vertically in the column we calculate I(2, 2) = 16 and save its lower
generating index 2 to the corresponding index 16. After this the space is as presented
in Figure 8.

Figure 7: Search space after the second composite generating index has been determined.

Figure 8: Search space after the third composite generating index has been determined.

After column n = 2 we move on to column n = 3. By calculating I(3, 1) = 18 and
saving the index, the space is as presented in Figure 9. We then calculate I(3, 2) = 25
and save the index, producing a space in Figure 10. We then proceed to calculate
I(3, 3) = 40 and save the index, producing a space in Figure 11.
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Figure 9: Search space after the fourth composite generating index has been determined.

Figure 10: Search space after the fifth composite generating index has been determined.
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Figure 11: Search space after the sixth composite generating index has been determined.

Similarily we calculate the n = 4 column’s indices saving the lower generating
index. After calculating I(4, 1) = 21, I(4, 2) = 30 and I(4, 3) = 47 the corresponding
spaces are as presented in Figures 12, 13, 14 respectively. Note that the element
I(4, 4) = 56 is outside of the frame. In Figure 15 the space is shown after I(5, 1) = 28
was calculated.

Figure 12: Search space after the 7th composite generating index has been determined.



43

Figure 13: Search space after the 8th composite generating index has been determined.

Figure 14: Search space after the 9th composite generating index has been determined.
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Figure 15: Search space after the 11th composite generating index has been determined.

In Figure 16 the studied space is presented after the largest index less than 50,
I(1, 9) = 48 has been crossed off. Notice that we need to only calculate the entire
(skipping composite generating m) column n iff G(n) is prime, stopping at the
diagonal or until we hit the upper bound. For composite G(n) we have to calculate
elements only up to the saved index or until we hit the limiting index. When we
have incremented n up to ⌊Gmax

15 ⌋ we can stop as it will be the last index generating
multiples of G(1) = 5, since 5 is the lowest value of G.

Figure 16: Search space after the 30th composite generating index has been determined
and all skippable elements within visible region have been mapped.

To get a better idea of the distribution of the skippable elements, we present
Figure 17 to show the composite elements that we need to calculate as well as the
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skippable elements when a sieving limit of 50 000 is used. Note that again the
rightside tail has been cut for better fit. Before we analyze the actual execution times
of the different algorithms, let us discuss briefly about the actual implementations of
these algorithms in the following section.

Figure 17: Search space when the sieving limit is 50 000. The figure has been rotated 90
degrees and the tail of the space is cut for visual convenience.
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4.2 Implementations
The algorithm was initially crafted in JavaScript (ECMA6) as a proof of concept
for the idea that one could sieve primes by using the function G(n), generating
the numbers of form 6k ± 1. Several optimization were noticed in the course of the
programming and after the validity of the results of the original sieve (running in
O(n log log n)) were confirmed the algorithm was modified to skip indices which
were already crossed off or were about to be crossed off later in the execution of
the algorithm. Thus the linear algorithm was conjured, initially written also in
JavaScript. The JavaScript implementation was seen as a fast and debug friendly
way to see if the framework could be leveraged to the purpose of sieving primes.

JavaScript allowed to work crossplatform in Linux/Windows/OSX, after all the
initial need for primes rose up in a web-based project. As the idea span out to form
the basis of this thesis, the algorithm was implemented in Python and C++11. The
implementations were tested in modern desktop and laptop enviroments and the
execution times were recorded. The desktop had a 3.7GHz i7-8700K CPU with
16Gb of DDR4 RAM running a 64-bit Ubuntu 16.04 (Linux). The laptop had
a 1.9GHz i7-3517U CPU with 10Gb of DDR3 RAM running 64-bit Windows 10.
The JavaScript and C++11 implementations were run on both machines but the
Python implementation was only run on the laptop. Next we will take a look at the
implementations, observe their execution times and compare the results to competing
algorithms.

4.2.1 JavaScript

The JavaScript implementations were run on Chrome build 65.0.3325.181 64-bit with
V8 build 6.5.254.41. The execution time of the algorithms were done by calculating
the time difference using performance.now() -function, noting that the browser needed
cache reboots between consecutive runs for reliable result in the smaller intervals. It
is noteworthy to mention that web browser Chrome’s highly optimized V8 engine
optimizes ones JavaScript code on execution and handles multiple things in the
background. This had its pros and cons. The primes were sieved relatively fast
which was a good thing but on the other hand it jammed the Chrome once the
sieving range grew to 109. However since the jamming happend similarily on the
sieve of Eratosthenes and sieve of Atkin, it was deemed merely as a bug. Apparently
if too much memory or CPU time is used, Chrome will output the "Oh snap.." error
message.

The JavaScript linear Myriad sieve was compared to the sieve of Eratosthenes
and the sieve of Atkin. For the JavaScript sieve of Atkin, an implementation by
Mohammad Shahrizal Prabowo (https://gist.github.com/rizalp/5508670) was used.
All different JavaScript sieves tested, sieved the desired interval and returned an
array of the primes within it.



47

4.2.2 Python

The Python version of the linear Myriad sieve was crafted more as a practice but it
turned out that most prime sieves had been implemented in Python 2.7 which eased
the execution time comparisons. For some unknown reason Python was only able
to use a maximum of 10% of CPU in Windows 10, which dramatically affected the
speed of all sieves and made higher sieving intervals cumbersome to work with. The
Python implementations were run in the laptop enviroment and the execution times
were recorded using Python’s -mtimeit flag.

The Python linear Myriad sieve was compared to the sieve of Eratosthenes,
sieve of Atkin and a 2/3/5 wheel sieve. The Python implementation as well as
the compared sieves, sieved the desired interval and returned an array of primes
within it. The Python implementation of the sieve of Atkin is by Steven Krenzel,
the implementation of the sieve of Eratosthenes is by M. Dickins and the 2/3/5
wheel sieve implementation is copyrighted to zerovolt.com, which unfortunately isn’t
a valid URL at the time of writing this thesis.

4.2.3 C++

Before the algorithm was written in C++, it was implemented and tested in C. In
the C implementation it was noted that around the sieving limit of 107 the array used
to store the lowest prime indices started to have memory leaks for an undetermined
reason releted to memset() function. Thus it was implemented in C++11 using a
vector to store the values. This was slightly slower compared to using arrays and
uses too much space compared to what could be achieved trough better optimization.
The C++ implementation was checked to contain no memory leaks (or other errors)
using Valgrind up to 109.

The C++ linear Myriad sieve was compared to the sieve of Eratosthenes, sieve
of Atkin and a highly optimized segmented wheel sieve (based on the sieve of
Eratosthenes). The implementation of the sieve of Atkin is by Anuj Rathore and the
segmented wheel sieve is maintained by Kim Walisch (www.github.com/kimwalisch).
The C++11 implementations were run on the Ubuntu desktop and the execution
times were recorded using the chrono library for nanosecond accuracy. The segmented
wheel sieve had its own timer reporting in milliseconds. This was deemed acceptable
as the implementation was multiple orders of magnitude faster than any other tested
implementation.

The C++ implementations (excluding the wheel sieve) output the found primes in
to stdout, which slows down the execution and isn’t feasible for large sieving intervals
past 108. Due to improper memory management the Myriad algorithm consumes
over 16Gb of RAM when the sieving interval’s upperbound was 1010 and thus 109 is
the highest limit up to which primes were sieved in testing. The implementation of
the sieve of Eratosthenes as well as the sieve of Atkin started to crash at the same
limit. The highly optimized segmented wheel sieve had no problems going past 1012

but testing was concluded at this limit.
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4.3 Results
The execution times of the JavaScript, Python and C++ implementations of the
Myriad sieve and the competing sieves were recorded using consecutive powers of
ten as an upper limit of sieving. The smallest upper limit used was 103. The testing
was concluded at 109 after which the implementations started to consume excessive
memory, with the exception of the highly optimized C++ wheel sieve. For each
sieving limit, all the implementations were run 10 times and the lowest execution
time was recorded. The Python’s timing utility ran 100 times for intervals lower
than 105. The recorded results for the execution times in milliseconds can be seen
in Table 6. The log-log figures of the results for each platform are presented in the
following subsections.

Table 6: Execution times in milliseconds with different sieving limits.

Method
Limit 103 104 105 106 107 108 109 1010 1011

Myriad (JS) 0.2 0.8 1.2 6.5 56.7 503.8 - - -
Eratosthenes (JS) 0.1 0.4 0.9 9.6 183.6 4969.4 - - -
Atkin (JS) 0.2 3.6 9.9 73.6 842.3 - - - -
Myriad (Py) 0.795 10.0 103 1000 7190 - - - -
Eratosthenes (Py) 1.2 16.2 155 1930 - - - - -
Atkin (Py) 1.1 9.5 99.7 913 9720 - - - -
Wheel (Py) 0.9 3.5 21.7 208 2250 - - - -
Myriad (C++) 0.0238 0.0989 0.6331 7.6736 63.743 625.041 6142.61 - -
Eratosthenes
(C++)

0.1644 0.4441 4.7147 55.3728 522.543 5612.05 63456.9 - -

Atkin (C++) 0.0514 0.33501 3.2857 34.4451 316.219 3206.48 42287.8 - -
Segmented Wheel
1 thread (C++)

- - - - 1 35 126 1584 20411

Segmented Wheel
12 threads (C++)

- - - - 1 24 57 300 3406
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4.3.1 JavaScript

The results for the execution times were quite interesting as can be seen from Figure
18. The first interesting observation is that the Myriad algorithm actually has a
fighting chance and is not dominated by the other methods. Secondly the algorithm
seems to run an order of magnitude faster than the competing implementation of
the sieve of Atkin. This is probably due to the Atkin’s algorithmic complexity and
especially the fact that the used implementation utilizes the modulo operator %
which can slow things down considerably when the sieving interval grows. The sieve
of Atkin started to crash Chrome before the limit 108 and the other two crashed
before 109.

The JavaScript implementation of the sieve of Eratosthenes seemed to be faster
for smaller intervals but somewhere between the limits of 105 and 106 the Myriad
sieve gains an advantage probably due to the duplicate composites that the sieve of
Eratosthenes is crossing off. It would be interesting to implement other linear sieves
or the wheel sieve in JavaScript and repeat the test. Note the behaviour around the
sieving limits of 104 and 105 where the V8 apparently changes some optimization
tactic. A similar effect was observed in the execution times on the laptop runs
which were slightly slower but fairly similar to the execution times on the desktop
enviroment.

4.3.2 Python

The recorded results can be seen in Figure 19. In Python the Myriad sieve and
the sieve of Atkin were quite evenly matched and were both faster than the sieve
of Eratosthenes. The wheel sieve implementation was an order of magnitude faster
than the other implementations after the first limit of 103. Due to the excessive time
it took to run the Python implementations, the testing was concluded at 107.

4.3.3 C++

The plotted results for the C++ implementations can be seen in Figure 20. Due
to improper memory management the sieve of Eratosthenes, sieve of Atkin and the
Myriad sieve could only sieve up to 109, after which excessive memory was used.
The highly optimized segmented wheel sieve operated without problems on all tested
intervals.

It is fairly surprising that the Myriad sieve was an order of magnitude faster
than the sieve of Eratosthenes and the sieve of Atkin. The segmented wheel sieve
was so fast that the first recorded 1ms execution time was with sieving limit 107.
The segmented wheel sieve was run with a constraint of 1 thread and relaxing this
condition, which led to the use of 12 threads. The speed increment can be seen in
the higher intervals.
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Figure 18: Execution times of various sieves in JavaScript.
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Figure 19: Execution times of various sieves in Python.
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4.4 Potential further optimizations
The biggest single problem in the current version of the C++11 implementation of
the Myriad sieve is poor management of memory which seems to become a bottleneck
at higher sieving intervals. There is also potential for parallel processing and perhaps
the entire algorithm could be made parallel if the indices could be crossed off in
monotonic order or the crossing off of duplicate composites turns out to not be
too expensive speedwise. It would also be worth investigating how to segment the
intervals or adapt wheels to make the algorithm faster.

Reasonable optimizations could be made by fine tuning the path of the algorithm
in which indices are generated and crossed off as the search space can be crawled in
many different fashions. Recursion could be used to loop through the lowest prime
indices which should optimize the space complexity to be linear since then we can
only crossoff indices in a Boolean array as opposed to saving the integer values of
the lowest prime indices. This might help to increase the sieving interval as well.

Using more clever datastructures, such as heaps or buckets, one might scan the
necessary indices in a monotonically increasing fashion and just save the primes (or
the indices which generate them). A method in which the logarithmic part of the
search space would be scanned horizontally would probably be worth investigating
as it would reduce significantly the number of calculations of I(n, m) which turn out
to be greater than Imax.

The idea of having a secondary boolean array where composites
would be also crossed off instead of just saving the lowest prime in-
dices was tried out and seemed to make execution order(s) of magnitude
slower. Multiple different variations for the calculations of the functions
G(n) and I(n, m) were tried. The forms G(n)=3*n+((n&1)==1?2:1) and
I(n,m)=3*n*m+n*((m&1)==1?2:1)+m*((n&1)==1?2:1)+((((n&1)==1)&&((m&1)==
1))?1:0) seemed to be the fastest.

The summation methods for the calculation of indices were not tried as it was
thought to be slower, as the cumulative sums would need to be adjusted on many
skippable indices, but the results might be different. Another idea might be op-
erate 2x2 or nxn blocks instead of singular elements as the block shares similar
multiplications but makes the skipping somewhat more complex.
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5 Conclusions
The entire project started from a geometric pattern observed in the squares of primes.
It was fairly surprising how far the framework could be extended and that it revealed
a prime sieve which turned in to a linear time complexity sieve. Furthermore it was
surprising that the execution times in various programming languages were decent
and competitive to moderately implemented sieves made by others.

Based on the empirical evidence as well as the literature it would seem that the
idea of segmentation is crucial for the higher intervals as memory access will become
a bottleneck faster than the computational speed. The use of a wheel seems to be
useful in practice as well. The fact that there exists faster sieves was expected but it
would be nice to see how fast the Myriad sieve could potentially be made. It would
also be interesting to find faster competing JavaScript sieves.

The source codes of the Myriad sieve in JavaScript and C++ can be found in
the appendices A and B but one can also find them online in the authors Github
page https://github.com/JuhaniSipila/MyriadPrimes .
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A C++ implementation of the linear Myriad
sieve

1 /∗
2 Linear Myriad prime s i e v e v1 . 1 19 . 5 . 2018
3 Author : Juhani S i p i l ä
4 Aalto Un ive r s i ty − Systems Ana lys i s Laboratory
5 ∗/
6 #inc lude <iostream>
7 #inc lude <vector>
8 #inc lude <chrono>
9 us ing namespace std ;

10

11 long long G( long long n) {
12 // Al l primes >5 can be expres sed as 6a+−1 − Bungus 1599 , Wells 1986
13 re turn 3∗n+((n&1)==1?2:1) ; // opt imized 6∗ f l o o r ( ( n+1)/2) +(−1)^n
14 }
15

16 long long I ( long long x , long long y ) {
17 // opt imized I=f l o o r (G( x ) ∗G( y ) /3)
18 re turn 3∗x∗y+x ∗ ( ( y&1)==1?2:1)+y ∗ ( ( x&1)==1?2:1) +(((( x&1)==1)&&((y&1)

==1)) ? 1 : 0 ) ;
19 }
20

21 void MyriadSieveLinear ( long long l i m i t ) {
22 // i n i t s i e v i n g range
23 long long Imax = l i m i t /3 ; //NOTE: f l o o r ( l i m i t /3)
24

25 vector<long long> l p i (1+Imax ) ; // Lowest Prime I n d i c e s
26 f i l l ( l p i . begin ( ) , l p i . end ( ) , 0) ; // Set a l l e lements to 0 . >0

i n d i c a t e s composite !
27

28 // i n i t v a r i a b l e s f o r l oop ing
29 long long x = 1 ; // s t a r t from x=y=1 i . e . composite 25
30 long long y = 1 ;
31 long long Icur = 8 ; // i n i t cur r ent index . f l o o r (25/3)=8
32 long long yLim = 1 ; // i n i t yLim( x ) ! l p i [ x ] , x or I_x <=Imax
33

34 whi le ( Icur<=Imax ) { // h o r i z o n t a l loop
35 // 5 ’ s mu l t i p l e s are always c r o s s a b l e as i t i s the lowest prime in G

! f l o o r (5/3)=1
36 l p i [ I cur ] = 1 ; // c ro s s ed o f f xth 5 ’ s mu l t ip l e ( y=1)
37 y = 2 ; // increment y ==> y=2
38 yLim = ( l p i [ x ] !=0? l p i [ x ] : x ) ;
39 whi le (y<=yLim) { // v e r t i c a l loop
40 i f ( l p i [ y ] !=0) {y++; cont inue ; } // sk ip composite rows
41 I cur = I (x , y ) ; // c a l c u l a t e next cur rent index
42 i f ( Icur>Imax ) { break ; } // i s the index out o f search space ?
43 l p i [ I cu r ] = y ; // c ro s s ed o f f I cur and saved i t s lowest prime

index
44 y++;
45 } // columns r e l e v a n t e lements c ro s s ed o f f
46 x++; //move h o r i z o n t a l l y
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47 I cur = I (x , 1 ) ; // prepare f o r next i t e r a t i o n
48 } // a l l compos i tes <=G_max=G( Imax ) c ro s s ed o f f
49

50 long long i = 1 ; // i n i t output i t e r a t o r
51 long long g = 5 ; // i n i t output to s m a l l e s t prime in G
52 long long p i = 2 ;
53 cout << 2 << endl ; // manually output 2 & 3 s i n c e they aren ’ t in

space G
54 cout << 3 << endl ; // assuming l im i t >3
55 whi le ( i<=Imax ) {
56 i f ( l p i [ i ]==0){ // l p i =0 ==> G( i ) i s prime
57 g = G( i ) ;
58 i f ( g>l i m i t ) { break ; } // stop output
59 cout << g << endl ;
60 pi++;
61 }
62 i ++;
63 }
64 cout << " PI (N) : " << pi << endl ;
65 }
66

67 i n t main ( ) {
68 auto t0 = chrono : : steady_clock : : now ( ) ;
69 long long l im = 1000000000;
70 MyriadSieveLinear ( l im ) ;
71 auto t1 = chrono : : steady_clock : : now ( ) ;
72 auto dt = t1−t0 ;
73 cout << " Runtime " << chrono : : durat ion <double , m i l l i > ( dt ) . count ( )

<< " ms" << endl ;
74 re turn 0 ;
75 }
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B JavaScript implementation of the linear Myr-
iad sieve

1 /∗
2 Linear Myriad prime s i e v e v1 . 1 19 . 5 . 2018
3 Author : Juhani S i p i l ä
4 Aalto Un ive r s i ty − Systems Ana lys i s Laboratory
5 ∗/
6 f unc t i on G(n) {
7 // a l l P>5 can be expres sed as 6a+−1 − Bungus 1599 , Wells 1986
8 re turn 3∗n+(n&1==1?2:1) ;
9 }

10

11 f unc t i on I (n ,m) {
12 re turn 3∗n∗m+n∗(m&1==1?2:1)+m∗(n&1==1?2:1)+((n&1==1)&&(m&1==1)? 1 : 0 ) ;
13 }
14

15 f unc t i on MyriadSieveLinear ( l i m i t ) {
16 //maximum index o f the i n t e r v a l
17 var Imax = Math . f l o o r ( l i m i t /3) ;
18 var l p i = Array(1+Imax ) . f i l l ( 0 ) ; // lowest prime i n d i c e s
19 // i n t e r v a l = Array(1+ l i m i t ) ;
20 var x = 1 ;
21 var y = 1 ;
22 var I cur = 8 ;
23 var yLim ;
24

25 whi le ( Icur<=Imax ) { // h o r i z o n t a l loop
26 // 5 ’ s mu l t i p l e s are always c r o s s a b l e as i t i s the lowest prime in G

! f l o o r (5/3)=1
27 l p i [ I cur ] = 1 ; // c ro s s ed o f f xth 5 ’ s mu l t ip l e ( y=1)
28 y = 2 ; // increment y ==> y=2
29 yLim = ( l p i [ x ] !=0? l p i [ x ] : x ) ;
30 whi le (y<=yLim) { // v e r t i c a l loop
31 i f ( l p i [ y ] !=0) {y++; cont inue ; } // sk ip composite rows
32 I cur = I (x , y ) ; // c a l c u l a t e next cur rent index
33 i f ( Icur>Imax ) { break ; } // i s the index out o f search space ?
34 l p i [ I cu r ] = y ; // c ro s s ed o f f I cur and saved i t s lowest prime

index
35 y++;
36 } // columns r e l e v a n t e lements c ro s s ed o f f
37 x++; //move h o r i z o n t a l l y
38 I cur = I (x , 1 ) ; // prepare f o r next i t e r a t i o n
39 } // a l l compos i tes <=G_max=G( Imax ) c ro s s ed o f f
40

41 primes = [ ] ; //push primes to an array
42 primes . push (2 ) ;
43 primes . push (3 ) ;
44 var i =1;
45 whi le ( i<Imax ) {
46 i f ( l p i [ i ]==0){
47 primes . push (G( i ) ) ;
48 }
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49 i ++;
50 }
51 g=G( i ) ; // account f o r ’ non−G’ l i m i t s
52 i f ( g<=l i m i t && l p i [ i ]==0){ primes . push ( g ) }
53

54 re turn primes ;
55 }
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