
Aalto University

School of Science

Degree Programme of Computer, Communication, and Information Sciences

Tzu-Jui Wang

Multiple Object Tracking with Correlation Fil-

ters and Deep Features

Master’s Thesis
Espoo, June 4th, 2018

Supervisors: Professor Samuel Kaski, Aalto University
Instructor: Jorma Laaksonen D.Sc. (Tech.), Aalto University

Aalto University
School of Science
Degree Programme of Computer, Communication, and Infor-
mation Sciences

ABSTRACT OF
MASTER’S THESIS

Author: Tzu-Jui Wang

Title:
Multiple Object Tracking with Correlation Filters and Deep Features

Date: June 4th, 2018 Pages: 73

Supervisors: Professor Samuel Kaski, Aalto University

Instructor: Jorma Laaksonen D.Sc. (Tech.), Aalto University

This thesis studies on-line multiple object tracking (MOT) problem which has
been developed in numerous real-world applications, such as emerging self-driving
car agents or estimating a target’s trajectory over time to identify its movement
pattern. The challenges that an on-line MOT tracker always faces are: (1) being
able to consistently and smoothly track the same target over time with the pres-
ence of occlusions, (2) being able to recover from fragmented tracks, (3) handling
identity switches of the same target, and (4) being able to operate in real-time.
This work aims to provide an efficient detect-and-track framework to address
these challenges. To narrow down the classes of objects to be studied, but with-
out losing the tracker’s extendibility to a generic object, we pick pedestrians as
the primary objects of interest.

The proposed framework consists of four building blocks, i.e. object detection,
object tracking, data association, and object re-identification. While most of the
MOT frameworks make the assumption of the availability of the detector in every
frame, the proposed MOT tracker operates with the detector being triggered only
periodically, e.g. in every three frames, leading to improved efficiency. As for
each building block, the detection is performed by Single Shot Detector (SSD),
which has proven efficiency and efficacy on generic object classes. When the
detector is triggered and active tracks exist, data association module identifies the
correspondence of the objects detected by the detector and tracked by the tracker.
In cases where newly detected objects cannot be identified as any of current tracks,
the re-identification module then attempts to find the correspondence for them
in the history track.

The experiments show that the proposed framework is outperformed by the re-
cently published on-line MOT trackers which are based on different object detec-
tors. However, the results suggest that the proposed framework’s performance
does not degrade when the detector is partially unavailable and improves in cer-
tain conditions due to better temporal consistency. Based on these experiments,
we are able to identify major shortcomings of the current framework, providing
possible ways to improve it and directions for the future work.

Keywords: correlation filters, multiple object tracking, object detector

Language: English

2

Acknowledgements

The thesis was completed within the CBIR group in Computer Science De-
partment at Aalto University and the Video Analytics team at CGI Finland
under the supervision of Professor Samuel Kaski, Dr. Jorma Laaksonen, and
M.Sc. Vesa Kuoppala. The work was financially supported by CGI Finland.

I would like to firstly thank Professor Samuel Kaski for your support to
this work. Next, I would like to thank Jorma for being my principal advisor,
and for the informative and knowledgeable feedbacks you have given to my
academic writing, and how rigorous research is conducted. Also, thank you
for being the bridge between the academic and industry world, so we can
be always thinking how to apply latest research results to business cases. In
addition, I would like to thank Dr. Hamed Rezazadegan Tavakoli for your
instructions in my critical thinking and academic writing. Although we did
not cooperate in this work, your advice in our collaborative research had
been helpful for me conducting this project.

Numerous people to thank for in CGI Finland (previously Affecto Finland
before it was acquired by CGI), but I would especially like to thank Vesa for
your constant support for any technical difficulties I have encountered. I also
thank the VA team as a whole because it allows me to study and work at
the same time so that I could grow as fast as I can. Lastly, I would like to
thank CGI Finland for financially supporting this thesis project. I have been
delightful on my way from initiating to finishing the project.

The completion of the thesis marks the end of my journey as a Master’s
student in Aalto University, an employee in CGI Finland, and a normal
person who enjoys the Finnish culture. Thank you who have been always
with me there, it is my hearty pleasure to work with you and have you
around.

Espoo, June 4th, 2018

Tzujui (Julius) Wang

3

Abbreviations and Acronyms

CNN Convolutional Neural Network
Conv. Convolutional layer
DSST Discriminative Scale Space Tracker
FM Fragmentation
fps frames per second
GT Number of Ground-Truth Tracks
HoG Histogram of Oriented Gradients
IDFT Inverse Discrete Fourier Transform
IDs Identity Switch
KCF Kernelized Correlation Filtering Tracker
mAP mean Average Precision
MARS Motion Analysis and Re-identification Set
ML Mostly Lost
MOSSE Minimum Output Sum of Squared Error
MOT Multiple Object Tracking
MOTA Multiple Object Tracking Accuracy
MOTP Multiple Object Tracking Precision
MT Mostly Tracked
NUC Next Unit of Computing
PT Partly Tracked
R-CNN Region-based Convolutional Neural Networks
RPN Region Proposal Network
RoI Region of Interest
SORT Simple Online and Realtime Tracking
SSD Single Shot Detector
VOC Visual Object Classes

4

Contents

Abbreviations and Acronyms 4

1 Introduction 7
1.1 Motivation . 7
1.2 Scope of the Thesis . 8
1.3 Structure of The Thesis . 9

2 Background 11
2.1 Object Detection . 11

2.1.1 Faster R-CNN . 11
2.1.1.1 Region Proposal Networks 12
2.1.1.2 The Loss Function for Training RPN 12
2.1.1.3 Combining RPN and Fast R-CNN 14

2.1.2 Single Shot Detector 15
2.1.2.1 Default Boxes with Different Aspect Ratios . 15
2.1.2.2 Convolutional Predictors at the Default Boxes 16
2.1.2.3 Training SSD 17

2.2 Online Single Object Tracking 18
2.2.1 Minimum Output Sum of Squared Error Tracker 18
2.2.2 Discriminative Scale Space Tracker 20

2.2.2.1 Discriminative Correlation Filters for Multi-
channel Templates 20

2.2.2.2 Scale Estimation 22
2.2.2.3 Tracking with Translation and Scale Filters . 22

2.3 Online Multiple Object Tracker 23
2.3.1 MOT with Kalman Filter and Deep Assoication Matrix 23

3 The Proposed Detect-and-Track Framework 27
3.1 Detect-and-Track Flow . 28
3.2 Multiple Object Tracking with Correlation Tracker and Deep

Features . 28

5

3.2.1 Object Detector . 29
3.2.2 Update of Trackers . 30

3.2.2.1 Extraction of Auxiliary Templates and Simi-
larity Measurement 31

3.2.2.2 Adaptive Update of Auxiliary Templates . . . 32
3.2.3 Data Association . 35
3.2.4 Re-Identification or Removal of Tracks 36

3.3 Implementation of The Framework 36

4 Experiments 43
4.1 Evaluation Dataset and Protocols 43
4.2 Parameter Selections and Ablation Studies 46

4.2.1 Experiment A: Varing Detector Thresholds τ det 47
4.2.2 Experiment B: Varying T thres and pthres 49
4.2.3 Experiment C: Varying µx and sthres 49
4.2.4 Experiment D: Varying TM 52
4.2.5 Experiment E: Varying Td 54
4.2.6 Detection Frequency 54

4.2.6.1 Results on MOT’16 Training Set 57
4.2.6.2 Results on MOT’16 Test Set 58

4.3 Comparison with Other On-line Trackers 59
4.4 Discussion . 62

4.4.1 On Ablation Studies 62
4.4.2 On Comparison with Other Online Trackers 63
4.4.3 On Possible Improvements 64

5 Conclusions and Future Work 67
5.1 Conclusions . 67
5.2 Future Work . 68

6

Chapter 1

Introduction

This work is initiated by the Video Analytics (VA) team in Affecto Finland1

and the Content-Based Image Retrieval (CBIR) Group in the Computer
Science Department at Aalto University. The VA team is specialized in de-
livering analytics regarding the information presented in images and videos.
The primary driving force of this work is from the urgent requests and needs
from the industry, especially the corporates who would like to analyze every
possible aspect in multimedia. To consolidate the foundation of video analyt-
ics capability within the VA team, we pilot in developing an object detection
and tracking framework as generic and efficient as possible. In addition, to
be more specific on the topic, we select pedestrians as our primary objects of
interest in multimedia files as several requests from other collaborators are
interested in analyzing people flow in an open public space. As a result, the
problem boils down to object detection and multiple object tracking prob-
lems, which have been studied in the academia. The following sections will
present the readers the motivation, scope and the structure of the thesis.
The main contributions of the thesis will be presented briefly.

1.1 Motivation

We study the multiple object tracking (MOT) problem which lies in the
domains of computer vision and machine learning. MOT has been a popular
problem in the academia and industry given its practicality and usefulness
in the real world. One such useful MOT case is the development of self-
driving cars. A robot driver needs to be constantly tracking the surrounding
objects, such as pedestrians, cyclists, and vehicles to avoid collision of any
kind. Another application is the surveillance case where the system should be

1Affecto Finland was acquired by CGI in 2018, it is now part of CGI Finland.

7

CHAPTER 1. INTRODUCTION 8

tracking people or objects so as to detect anything suspicious and abnormal.
As for the business cases, the VA team receives myriad of requests in which
stakeholders are interested in understanding how people are moving in the
city, what is their reaction towards advertisements, do they move in groups,
etc.

Despite numerous interesting MOT applications and published works on
it, MOT is still worth research efforts due to several difficulties. First, the
system should be running in real-time, i.e. beyond 15 frames per second
(fps), to be capable of responding to the real world and making analytics ac-
cordingly and spontaneously. Second, severe occlusions of objects are often
the case in the context of MOT, e.g. pedestrians blocking each other from
the camera’s perspective. Third, following the second problem, a tracker can
easily be confused by two visually similar objects, suffering from either start-
ing to track the same object or mistaking the object’s identity for another
object’s. Last but not least, some of MOT trackers are operated partially on-
line or off-line, requiring efforts in post-inference and post-processing. This
can cause some difficulties in carrying out the real-time analytics in the cases
where the video feeds are streaming 24/7. Thereby, in this thesis, we aim
to design an efficient on-line MOT algorithm focusing on pedestrians while
taking into account the addressed problems.

1.2 Scope of the Thesis

The focus of the thesis is to design and implement an efficient on-line MOT
algorithm, i.e. the algorithm can not peep into the future frames and the
efforts in post-processing the video frames should be minimized. The on-line
setting is more tailored to applications where the video frames are constantly
streaming in and the analytics should be made in real-time. However, it could
make a MOT tracker more difficult to consistently track a single object, lead-
ing to a number of fragmented tracks of the same object. In the case of a
tracker starting drifting away from an object, it should be able to re-identify
it and recover from the tracking failure. In addition, MOT algorithms re-
quire an object detector, which always has to be triggered in every frame, to
initialize the tracker with the target’s location. However, performing object
detection in every frame can drag down the running speed as it is often more
computationally demanding than the tracking part, even though it can possi-
bly reduce the localization errors of the targets. We address the issue and do
not assume the availability of the object detector triggered in every frame,
but, triggered periodically. We further examine the tradeoff between the
number of frames where the detector is triggered and the tracking accuracy

CHAPTER 1. INTRODUCTION 9

to reason how frequently the system should incorporate the detector.
The development is mostly based on the Python programming language

and open-source frameworks that can easily be deployed across the platforms
with or without GPU support, e.g. Amazon Web Service, mini PC like Intel
Next Unit of Computing (NUC) [1], etc. In particular, Tensorflow [4] and
Dlib [23] come as the primary choice due to their great support in Python
and ease of deployment. Besides, alternative detector models, in terms of
different levels of inference speeds and accuracies, are provided within the
Tensorflow framework [3], allowing us for easy replacement of the models if
needed.

In a nutshell, the main contributions of this work are summarized as
follows:

• Provide detailed reviews on modern techniques for object detection and
tracking

• Design and implement a detect-and-track framework which can be ex-
tended to generic object classes

• Study the efficacy of the proposed framework on the MOT’16 challenge
dataset

• Provide suggestions of possible improvements and future research di-
rections based on the results from the evaluation

1.3 Structure of The Thesis

The following chapters are organized as follows:

Chapter 2 introduces necessary background knowledege, which covers the
state-of-the-art object detectors (i.e. Faster R-CNN [28] and SSD detector
[26]), the on-line single object tracker [9, 12], and the on-line multiple object
tracker (e.g. Deep SORT [36]).

Chapter 3 describes the proposed MOT framework, including the archi-
tecture and the detailed description of each constituent in the framework.

Chapter 4 starts with the benchmark datasets and the evaluation met-
rics. Next, it provides ablation studies of the parameters in the proposed
framework, a comparison with other on-line trackers and discussions on the
experimental results. Finally, it discusses the possible improvements based

CHAPTER 1. INTRODUCTION 10

on the experiment results.

Chapter 5 concludes the work and discusses the future work.

Chapter 2

Background

2.1 Object Detection

Despite its long history of development since 90’s [29, 35], object detection
has experienced major breakthrough since 2012 after AlexNet [24] was pop-
ularized. Several pivotal works, such as Overfeat [30], SPPNet [18], Fast
R-CNN [15], more recently Faster R-CNN [28] and Single Shot Detector
(SSD) [26] have advanced the object detection approaches in terms of both
speed and accuracy. In the following sections, the latter two works are in-
troduced due to the fact that their designs well preserve the advantages but
also compensate the shortcomings of the previous object detectors.

2.1.1 Faster R-CNN

Faster R-CNN is an object detector comprising of an object proposal gener-
ator and a detection network serving as classifiers classifying the generated
object proposals as shown in Figure 2.1. Unlike Fast R-CNN [15] relying on
an external object proposal generator, e.g. Selective Search [34], Faster R-
CNN introduces Region Proposal Network (RPN) which learns to generate
the object proposals during the network training phase. The major contribu-
tion of this architecture is that it shares the convolutional features not only
among the object proposals (as Fast R-CNN does) but also among the object
proposals and detection networks, contributing to less wasted computation
and faster inference and, in addition, higher mean Average Precision (mAP)
than Fast R-CNN on PASCAL VOC 2007 and 2012 benchmark datasets. In
Section 2.1.1.1 and 2.1.1.2 we introduce the RPN architecture and the loss
functions deviced to train RPN, respectively.

11

CHAPTER 2. BACKGROUND 14

In the second term of (2.1), the regression loss Lreg(ti, t
∗
i) is defined over

ti and t∗i , where ti and t∗i are the predicted and ground-truth ”encoded”
bounding box coordinates, respectively, and parameterized by

ti = (tx, ty, tw, th), t
∗
i = (t∗x, t

∗
y, t

∗
w, t

∗
h),

tx = (x− xa)/wa, ty = (y − ya)/ha,

tw = log(w/wa), th = log(h/ha),

t∗x = (x∗ − xa)/wa, t
∗
y = (y∗ − ya)/ha,

t∗w = log(w∗/wa), t
∗
h = log(h∗/ha),

(2.3)

where x, y, w, h denote the predicted anchor box’s center coordinates and its
width and height. xa, ya, wa, ha are the anchor box’s center oordinates and
its width and height. Likewise, x∗

a, y
∗
a, w

∗
a, h

∗
a are for the ground-truth anchor

box. tx and ty are parametrized to be scale-invariant to (w, h) and (wa, ha),
respectively. The losses contributed by tw and th are measured by the shift of
w versus wa and h versus ha, respectively, and likewise for t∗w and t∗h. Then,
Lreg(ti, t

∗
i) is defined as

Lreg(ti, t
∗
i) =

∑

j∈{x,y,w,h}

smoothL1
(tj − t∗j), (2.4)

where smoothL1
(·) is a smooth L1 loss function,

smoothL1
(x) =

{

0.5x2, if |x| < 1,

|x| − 0.5, otherwise.
(2.5)

2.1.1.3 Combining RPN and Fast R-CNN

To classify the object proposals generated by RPN, Faster R-CNN simply
incorporates Fast R-CNN as the detection network while sharing the convo-
lutional layers with RPN. The combining scheme of RPN and fast R-CNN
is illustrated in Figure 2.3. As shown, the feature maps of each proposal
generated by RPN are extracted from the projected RoI on the feature maps
produced by the last shared convolutional layer. Afterwards, each proposal’s
feature maps are processed by a RoI pooling layer to produce feature maps
of fixed size. The pooled feature maps are processed by sequence of fully-
connected layers and branched to the K-way softmax layer to estimate the
class probability and the box regressor to predict the coordinates of the
bounding box, where K is the number of the classes. Combining RPN and
Fast R-CNN in this manner allows sharing the features not only among the
proposals, but among the proposals and the detection network. This could

CHAPTER 2. BACKGROUND 17

R-CNN and the auxiliary network in SSD play different roles. The former
devices anchor boxes to generate generic object proposals, while the latter
detects the objects within the default boxes. This can be seen by comparing
the loss functions deviced in RPN, i.e. (2.2) and SSD, i.e. later in (2.8). As
a result, SSD does not require a seperate object proposal network such as
RPN in Faster R-CNN.

2.1.2.3 Training SSD

When training SSD, each default box is matched to a ground-truth box and
considered to be positive if their IoU is higher than 0.5, otherwise, it is
considered negative. SSD’s loss function is defined over all default boxes as

L(x, c, l,g) =
1

N
(confidence loss+ localization loss)

=
1

N
(Lconf (x, c) + λLloc(x, l,g)).

(2.7)

The confidence loss is defined over the matching indicators x and confidences
of the predictions for all object classes c. x = {xp

ij} that each xp
ij = {1, 0}

is an indicator for ith default box being matched to jth grount-truth box
of p object class. c = {cpi }, where cpi is the confidence score of ith default
box being predicted as p object class. The localization loss is defined over
the predicted bounding boxes, l = {lmi |m ∈ {cx, cy, w, h}}, and the ground-
truth bounding boxes, g = {gmi |m ∈ {cx, cy, w, h}}, where (cx, cy) is the
coordinates of the center of the given bounding box, and w, h are the width
and height, respectively. λ is for balancing the two losses. The confidence
loss is defined as the softmax loss over (P +1) classes including the negative
class (p = 0), i.e.

Lconf (x, c) = −

P
∑

p

N
∑

i∈positives

xp
ij log(ĉ

p
i)−

∑

i∈negatives

log(ĉ0i), ĉpi =
exp(cpi)

∑

p exp(c
p
i)
,

(2.8)
and the localization loss is defined similarly to the box regression loss in
Faster R-CNN as,

Lloc(x, l,g) =
N
∑

i∈positives

∑

m∈{cx,cy ,w,h}

xk
ij smoothL1

(lmi − ĝmj), (2.9)

CHAPTER 2. BACKGROUND 18

where

ĝcxj = (gcxj − dcxi)/dwi , ĝ
cy
j = (g

cy
j − d

cy
i)/dhi ,

ĝwj = log(
gwj
dwi

), ĝhj = log(
ghj
dhi

).

(dcxi , d
cy
i , dwi , d

h
i) are the shape parameters of a default bounding box.

2.2 Online Single Object Tracking

On-line single object tracking addresses the problem in which given the cur-
rent frame and the initial state of an object, the tracker predicts the object’s
state in the next frame. The object’s state in the context of this thesis
project is the bounding box that well wraps around the object. Tracking-
by-detection is an approach that started gaining its popularity since 2006.
The works that applauds tracking-by-detection methodology include on-line
boosting trackers [5, 16, 17], tracking-learning-detection (TLD) tracker [22],
and later on the correlation filtering tracker, such as MOSSE tracker [9],
DSST [12], kernelized correlation filtering tracker (KCF) [19], etc.

Due to their computational efficiency and effectiveness on modeling an ob-
ject’s appearance, correlation filtering based trackers have become the state-
of-the-art where their results are always ranked top on different benchmark
datasets. Hence, in the later sections, we introduce Minimum Output Sum
of Squared Error (MOSSE) tracker, which is one of the very first approaches
that apply correlation filters for the tracking problem, and Discriminative
Scale Space Tracker (DSST), which had won the Multiple Object Tracking’14
Challenge and still is able to operate in real-time on CPU.

2.2.1 Minimum Output Sum of Squared Error Tracker

Minimum Output Sum of Squared Error (MOSSE) Tracker [9] tracks an
object by first learning a filter h such that the mean square error of the desired
outputs g and the correlation of h and object templates f is minimized. Once
the learning is finished, the learned filter h is applied on the current frame to
identify the location with maximal response as the predicted location of an
object. Mathematically, assuming we have the target’s templates f1, f2, ..., fN
and the respective desired outputs g1, g2, ..., gN , the learning objective is

h∗ = argmin
h

N
∑

i=1

||fi ? h− gi||
2
2, h, fi, gi ∈ RM×K , (2.10)

CHAPTER 2. BACKGROUND 19

whereM andK is the width and height of the object templates. ? denotes the
correlation operator. By the correlation theorem, the correlation between two
signals becomes element-wise matrix multiplication in the Fourier domain,
specifically

fi ? h = Fi �H,

where Fi and H denote fi and h in the Fourier domain, respectively. This
helps evaluate the objective in (2.10) faster by re-formulating it with

H∗ = argmin
H

N
∑

i=1

||Fi � H̄ −Gi||
2
2, and h∗ = F−1(H̄), (2.11)

where F−1(·) is the inverse discrete Fourier transform (IDFT) by which the
optimal h∗ is obtained from H∗. The symbols with the bar over them denote
the complex conjugates, e.g. H̄.

To train a MOSSE tracker on-line, the object template fi is built by taking
the grayscale image patches around the object. The desired outputs gi are
generated by a Gaussian distribution whose mean is aligned with the center
of the object. fi and gi are then transformed into the Fourier domain and
followed by solving the objective in (2.11). (2.11) can be solved by equating
its partial derivatives with respect to H̄ to zero. The solution turns to be in
closed-form, i.e.

H0 =

∑N
i=1 Gi � F̄i

∑N
i=1 Fi � F̄i

. (2.12)

The superscript zero in H0 simply means that H0 is the filter learned ini-
tially, (2.12) can be interpreted as the mean correlation between the inputs
fi and the desired outputs gi in the Fourier domain normalized by the self-
correlation of the inputs. A regularization term can be also added in (2.12)
as

H0 =
A0

B0
=

∑N
i=1 Gi � F̄i

∑N
i=1 Fi � F̄i + ε

, (2.13)

which is simply adding an ε in the denominator. To predict the target’s
location at frame t, the response map over a rectangle area Y is first computed
as

R = F−1

{

FY �H t−1

}

, (2.14)

where FY is the template of the rectangle area Y . Then, the predicted target’s
location can be obtained by identifying the coordinates on Y that yields the

CHAPTER 2. BACKGROUND 20

maximal response value. As the tracking process continues with the coming
new frames, in theory, one can learn the new filter on the target’s previ-
ous templates and the templates from the coming frame. However, solving
(2.13) grows in O(N2) when number of templates N increases. Alternatively,
MOSSE updates the filter H t after receiving the target’s template F t and
the desired output Gt at frame t as:

H t =
At

Bt
,

At = ηGt � F̄ t + (1− η)At−1,

Bt = ηF t � F̄ t + (1− η)Bt−1,

(2.15)

where η is the learning rate. Although the whole tracking process can be run
at rather high speed (e.g. a hundred of frame per second), MOSSE does not
address the case when the ground-truth bounding box of the target changes
in size. A remedy for that is to construct a scale-space pyramid of search
windows centered at the previous target’s location. This strategy is adopted
in DSST [12], which is introduced in the next section.

2.2.2 Discriminative Scale Space Tracker

Similar to MOSSE, which exploits the correlation filter to predict the target’s
location, Discriminative Scale Space Tracker (DSST) comes with two major
improvements. Firstly, DSST estimates target’s translation by learning a
translation filter on multiple feature channels while MOSSE tracker can only
be operated on a single channel. Second, it learns a scale filter that estimates
the target’s scale explicitly, which is not directly tackled by MOSSE tracker.
In the following sections, we first in 2.2.2.1 describe how to incorporate multi-
channel features into translation filter, and in 2.2.2.2 describe how to learn
a scale filter. Finally, in 2.2.2.3 we put them all together and describe how
those filters are involved in the tracking process.

2.2.2.1 Discriminative Correlation Filters for Multi-channel Tem-
plates

For incorporating a multi-channel target’s template (i.e. multidimensional
features), the objective that learns a single-channel filter in (2.10) is adapted
to

CHAPTER 2. BACKGROUND 21

{h∗1 , ..., h∗D} = argmin
{h1,...,hD}

D
∑

d=1

N
∑

i=1

||fd
i ?h

d−gi||
2
2+λ

N
∑

i=1

D
∑

d=1

||hd
i ||

2
2, h

d, fd, g ∈ RM×K ,

(2.16)
where λ here denotes the regularization parameter, M and K denote the
width and height of hd

i , f
d, and g. d is the subscript that indicates the dth

feature channel of template fd
i and filter hd. With the objective in (2.16),

D filters h∗1 , ..., h∗D are learned and they regress f 1
i , f

2
i , ..., f

D
i to the same

output gi for all i = 1, ..., N . Likewise, filters can be learned in Fourier
domain with the correlation theorem in (2.16), and their closed-form solutions
are:

Hd
0 =

Ad
0

Bd
0

=

∑N
i=1 Gi � F̄ d

i
∑D

d=1

∑N
i=1 F

d
i � F̄ d

i + λ
, ∀d = 1, ..., D. (2.17)

The subscript 0 and superscript d in Hd
0 mean that Hd

0 is the initial filter
learned for the feature at dth dimension. In frame t, the target’s location
can be estimated within an rectangle area Y through identifying the max-
imal value in the average response map R across the channels, where R is
calcalated as

R = F−1

{
∑D

d=1 A
d
t−1 � F d

Y

Bd
t−1 + λ

}

, (2.18)

where F d
Y denotes the dth channel of the template FY from Y . Once the

target’s location has been estimated, we extract the D-dimensional tem-
plate centered around at its location in the Fourier domain, i.e. Ft =
{F 1

t , F
2
t , ..., F

D
t |F d

t ∈ RM×K , ∀d = 1, ..., D}, and generate the desired out-
put Gt ∈ RM×K to update the filters learned in frame (t−1) through (2.19).

Hd
t =

Ad
t

Bd
t

,

Ad
t = ηGt � F̄ d

t + (1− η)Ad
t−1,

Bd
t = ηF d

t � F̄ d
t + (1− η)Bd

t−1, d = 1, ..., D,

(2.19)

where η is the filter’s update rate. The new target’s state can be estimated
within an rectangle area Y through identifying the maximal value in the
average response map, R, across the channels, where

R = F−1

{
∑D

d=1 A
d
t � F d

Y

Bd
t + λ

}

. (2.20)

CHAPTER 2. BACKGROUND 22

So far, MOSSE has been extended to handle multi-channel features which
allow DSST to fuse different features such as Histogram of Oriented Gradients
(HoG) and grayscale pixel values to learn the filters which model the target
patches. These filters are termed in [12] as the translation filters as they only
estimates the translation of the target, but not scale. In the next section, we
discuss how DSST estimates the change in the target’s scale.

2.2.2.2 Scale Estimation

DSST constructs another correlation filter, i.e. the scale filter, to estimate
the target’s scale in the current frame. To achieve this, it constructs a scale-
space pyramid of patches around the target on a fixed set of scaling ratios
r1, r2, ..., rS. Each patch (of different sizes) is converted to a fixed-length
D-dimensional vector built on HoG features, where s = 1, ..., S represents S
scales. To construct the training samples for learning a scale filter, DSST
forms a matrix U ∈ RS×D where each row comes from one D-dimensional
HoG features it just calculated. Afterwards, it constructs D training samples
v1,v2, ...,vD for learning D scale filters where each sample vd ∈ RS, d =
1, ..., D, is one column extracted from U . The desired output, g ∈ RS,
is generated by a one-dimensional Gaussian peaked at the central position.
Given the training samples and the desired output, D scale filters can be
learned with (2.21), where G and V d are the counterparts of g and vd in the
Fourier domain, respectively. Similar to (2.20) and (2.19), the filter response
can be calculated via (2.22) and the scale filters can be updated with (2.23):

Hd
0 =

Ad
0

Bd
0

=
G� V̄ d

∑D
d=1 V

d � V̄ d + λ
, ∀d = 1, ..., D, Hd

0 ∈ RS. (2.21)

R = F−1

{
∑D

d=1 A
d
t−1 � F d

Y

Bd
t−1 + λ

}

, R ∈ RS. (2.22)

Hs
t =

As
t

Bs
t

,

As
t = ηGs � V̄ s

t + (1− η)As
t−1,

Bs
t = ηV s

t � V̄ s
t + (1− η)Bs

t−1, ∀s = 1, ..., S.

(2.23)

2.2.2.3 Tracking with Translation and Scale Filters

Here we describe how DSST utilizes the translation filter (desrcibed in 2.2.2.1)
and the scale filter (described in 2.2.2.2) to perform tracking. Given pt−1, the

CHAPTER 2. BACKGROUND 23

previous target location, and st−1, the previous estimated scale of the target,
we would like to estimate pt and st. Firstly, training samples ft,trans at pt−1

and at scale st−1 are extracted for training the translation filter ht,trans. The
response Rt,trans ∈ RM×K can be calculated through (2.20) and pt can be set
to the location with maximal response on Rt,trans. Secondly, training samples
ft,scale at pt and at scale st−1 are extracted for training the scale filter ht,scale.
Likewise in estimating the translation filter, the response Rt,scale ∈ RS can
be calculated through (2.22) and st can be estimated by seeking the location
with maximal response on Rt,scale. Finally, both filters are updated with the
templates at location pt and scale st through (2.19) and (2.23), respectively.

2.3 Online Multiple Object Tracker

A multiple object tracker (MOT) typically has to handle a number of diffi-
culties. Firstly, the identity switches, i.e. the situation in which the tracker
mistakes another target for the one it is supposed to track, may happen due
to the presence of other objects similar in their appearances. This situation
happens frequently when the test videos are taken from the street view and
other public spaces where the pedestrians wearing clothes with similar colors
and styles and/or are highly occluded by each other. Secondly, because of the
constraint of online methodology which cannot peek into future frames, the
tracklet, i.e. the tracking trajectory on the same target, may be fragmented
due to some tracking errors such as identity switches. Thirdly, if an object
has been occluded for quite some time and re-appears, the tracker should
be able to recognize and start tracking it again. To address these difficul-
ties, Nicolai Wojke et al. [36] proposed an online multiple object tracking
framework which incorporates an object detector, Kalman filter as the base
tracker, and a data association method which is based on the features learned
from a deep neural net to associate the results from detectors and trackers.
We describe their algorithm in further details in the following section.

2.3.1 MOT with Kalman Filter and Deep Assoication
Matrix

As the tracking-by-detection methodology has been shown promising in track-
ing single object over the past decade, the framework proposed in [36] ap-
plies a similar methodology, but adapts it for multiple object tracking. Their
detection-tracking flow is illustrated in Figure 2.5. A data association method
is required for associating the detection and tracking results. To better un-
derstand why and how data association is required, we take Figure 2.6 as an

CHAPTER 2. BACKGROUND 24

illustration. At each frame, the method runs the object detector to gather
the bounding boxes of the objects, and the tracker to estimate the state of
currently tracked objects. (Note: the tracker used in [36] is Kalman filter [8],
which will not be introduced because we do not use it in this thesis.) The
association comes in to find the correspondence of the detected and tracked
objects as shown in Figure 2.6a.

Specifically to associate the detected and tracked objects, a popular ap-
proach has been suggested among recent MOT works [36]. Firstly, an asso-
ciation matrix C = ci,j ∈ RI×J , where each entry, ci,j defines the association
cost of object i (from the tracker) and object j (from the detector), is firstly
constructed. I and J denote the numbers of detected and tracked objects,
respectively. Secondly, the set of pairs of objects I = {(k, n)|xk,n = 1; ∀k =
1, ..., I, n = 1, ..., J} which minimizes the total association cost, i.e.

association cost =
I

∑

i=1

J
∑

j=1

ci,jxi,j, (2.24)

such that

J
∑

j=1

xi,j = 1, (i = 1, ..., I)

I
∑

i=1

xi,j = 1, (j = 1, ..., J)

xi,j ∈ {0, 1}, ∀i, j,

(2.25)

can be found by the Hungarian algorithm [10]. It is worth noting that an
association matrix can be designed based on different similarity measure-
ments on heterogeneous information such as the motion and appearance of
the objects. In [36], ci,j is calculated via

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j), (2.26)

where ci,j is controlled by two terms, d(1)(i, j), d(2)(i, j), and λ is used to
balance the two terms. The first term d(1)(i, j) is to measure the discrepancy
between the predictions made by detector and the tracker (i.e. the Kalman
filter). Assuming that the bounding box’s state obtained from detector is dj

and the bounding box’s state and corresponding covariance estimated by the
tracker are yi and Si, d

(1)(i, j) is defined as

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi). (2.27)

Chapter 3

The Proposed Detect-and-Track
Framework

In this chapter, we describe the proposed framework for multiple object track-
ing in detail. Our primary object of interest in this work is pedestrian, and
we do not impose any assumptions on the target object’s size, aspect ratio,
or appearance. Thereby, it is possible that the proposed framework can be
extended to different object classes. In general, we follow the framework pro-
posed in [36] but with few major adaptions. First, we replace the Kalman
tracker in [36] with DSST tracker [12]. The rationale behind this is that
when updating the Kalman state, one has to provide the measurement made
in the current frame, which is, in their case, the measurement from object
detector. Without the measurement from the object detector, the Kalman
tracker would update the state merely with the pre-modeled linear motion
[8]. As in our case, we do not assume the availability of the object detector
in every frame, hence updating the Kalman tracker with only motion pre-
diction may result in unsatisfatory result. Second, we do not train an object
detector specifically as in [36], but we employ the object detector from [3]
trained on MS COCO dataset [25] where it provides multiple detectors of
different base networks (i.e. MobileNet V1 [20], InceptionV2 [33], RFCN
[11], Faster RCNN [28]) that tradeoff the speed and accuracy [21]. Third, in
order to monitor if a tracker starts to drift or has drifted, we measure the
similarity between the patches of the tracked target in any two consecutive
frames. Fourth, to enable the tracker recover from tracking failure, we em-
ploy a simple person re-identification method that is as well based on the
same deep features. In the pursuit of a more efficient implementation, the
similarity is measured based on the deep features extracted from the network
that has been served as the base network in the object detector in use. These
modifications enable the proposed framework to detect and track the object

27

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK30

the next chapter.

Table 3.1: Base network structure of InceptionV2 [2]. The classification
layers have been removed as we adopt the network as a generic feature ex-
traction, hence the classification layers are not needed. Please note that the
input size and the structure are different from what is described in [33]. Our
implementation follows the one provided in [2]. Figure 3.3a to 3.3j can be
seen on page 38 to 39.

name layer filter size / stride input size
conv2d 1a 7x7 conv 7× 7 / 2 224× 224× 3
maxPool 2a 3x3 max-pool 3× 3 / 1 112× 112× 64
conv2d 2b 1x1 conv 1× 1 / 1 56× 56× 64
conv2d 2c 3x3 conv 3× 3 / 1 56× 56× 64
maxpool 3a 3x3 max-pool 3× 3 / 1 56× 56× 192
mixed 3b (Fig. 3.3a) Incep. - 28× 28× 192
mixed 3c (Fig. 3.3b) Incep. - 28× 28× 256
mixed 4a (Fig. 3.3c) Incep. - 28× 28× 320
mixed 4b (Fig. 3.3d) Incep. - 28× 28× 576
mixed 4c (Fig. 3.3e) Incep. - 14× 14× 576
mixed 4d (Fig. 3.3f) Incep. - 14× 14× 576
mixed 4e (Fig. 3.3g) Incep. - 14× 14× 576
mixed 5a (Fig. 3.3h) Incep. - 14× 14× 576
mixed 5b (Fig. 3.3i) Incep. - 7× 7× 1024
mixed 5c (Fig. 3.3j) Incep. - 7× 7× 1024

3.2.2 Update of Trackers

Three major steps are involved in updating the trackers, (1) update the DSST
tracker, (2) update the auxiliary templates of the targets to track, and (3)
update the auxiliary templates with adaptive learning rate. As described in
2.2.2.1, DSST seeks the location with maximal response as the final predic-
tion of the target location. The maximal response (or regression score) can,
in the one hand, be interpreted as how confident the tracker is, but in the
other hand, the scores are positive numbers which are not strictly bounded
within a range, e.g. [0, 100] or [0, 1]. This makes the response difficult to be
interpreted and served as a reliable measurement.

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK31

3.2.2.1 Extraction of Auxiliary Templates and Similarity Mea-
surement

We introduce auxiliary templates and the similarity measurement of those
templates. Auxiliary templates do not interfere the update of the DSST
tracker, but provides the observation to monitor whether the DSST tracker
does lose its target or not. This is achieved by incorporating a similarity
measurement (which ranges in [0, 1]) based on deep features extracted from a
deep neural net as the auxiliary templates of the targets. As suggested in [13],
features from lower layers, in which the resolution of corresponding feature
maps are higher, are empirically found performing better in the tracking task.

Hence, to extract features that describe well the target object, we extract
the feature maps f(I t) of size 73 × 73 × 64 from the output of the max-
pooling layer, maxpool 3a 3x3, where I t denotes t-th frame. Next, we would
like to extract the features for the i-th target that lies within the bounding
box bt

i = {xt
i, y

t
i , w

t
i , h

t
i}, where xt

i and yti denote the normalized coordinates
(with respect to the image width and height) from the top left corner. wt

i

and ht
i denote the normalized width and height (with respect to the image

width and height) of the bounding box, respectively. As bt
i is represented

in the normalized coordinates, one can easily find the projected coordinates

of bt
i on f(I t) in which the feature maps Ft

i = {F t
i,c}

Cf

c=1 for bt
i are obtained,

where each F t
i,c is of size Wf × Hf , Cf is the number of channels and f(·)

denotes the feature map extration function. What is worth noting here is, as
each bounding box bt

i can be of different size, the feature maps Ft
i has been

normalized to a fixed spatial resolution Wf × Hf , i.e. Wf = 24, Hf = 24.
Next, we define the similarity between Ft

i and Ft−1
i by averaging the cosine

similarity channel-wise, i.e.

sim(Ft
i,F

t−1
i) =

1

Cf

Cf
∑

c=1

cos(v(Ft
i,c), v(F

t−1
i,c))

=
1

Cf

Cf
∑

c=1

v(Ft
i,c) · v(F

t−1
i,c)

||v(Ft
i,c)||2||v(F

t−1
i,c)||2

,

(3.1)

where v(X) denotes the flattened vector of any matrix X. (3.1) captures how
similar the two targets in the bounding boxes bt

i and bt
j are on their feature

maps.

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK32

3.2.2.2 Adaptive Update of Auxiliary Templates

A common choice of updating the auxiliary templates is via a static update
with respect to each channel in Ft

i with a fixed learning rate γ ∈ [0, 1], i.e.

Ft
i = γFt

i + (1− γ)Ft−1
i . (3.2)

However, the static update strategy may under or over update the target’s
template when a tracker starts to drift. For instance in Figure 3.4, the tracker
starts to drift and no longer tracks the target with a satisfactory precision.
This results in the target’s auxiliary template Ft

i being updated with much
background information instead of pixels from the target itself. Furthermore,
if a tracker completely drifts to some static area in the background, but its
auxiliary template is still updated with fixed learning rate, sim(Ft

i,F
t−1
i) can

always retain a rather high value and is no longer a diagnostic to tracker’s
drifting. The described situation is illustrated in Figure 3.5, which clearly
shows that the tracker is stuck at the background object.

To alleviate the over-learning issue, we provide an adaptive approach to
update the learning rate according to the current similarity measurement as
follows. To illustrate, as shown in Figure 3.6, sim(Ft

i,F
t−1
i) inclines to de-

crease if a tracker starts to drift away from the target. When sim(Ft
i,F

t−1
i)

is of high value, although it could be that the tracker is still accurately on
target, it could as well be that the tracker has drifted and started tracking
the static object in the background from which it consistently updates the
auxiliary templates to obtain the high similarity score. With these obser-
vations, we would like update Ft

i to keep sim(Ft+1
i ,Ft

i) high enough if the
tracker is still on target, but to update Ft

i less aggressively if it is already
high to avert over updating.

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK36

where Mc[m,n] is defined based on the measurements (a) and (b), while
Mf [m,n] is based on (c). Given the coordinates of two objects’ bounding
boxes bm, bn and their centers (cxm, c

y
m), (c

x
n, c

y
n), respectively, λM controls

the weighting between two costs. Mc[m,n] is calculated via

Mc[m,n] =
1

2
(||(cxm, c

y
m)− (cxn, c

y
n)||2/ldiag) +

1

2
(1− IoU(bm,bn)), (3.7)

where ldiag denotes the diagonal length of the video frame. Next, given the
feature maps of two objects Fm and Fn, Mf [m,n] can be defined as,

Mf [m,n] = 1− sim(Fm,Fn), (3.8)

where sim(·) is defined in (3.1). Likewise in [36], we define a threshold
TM to say the association between m-th and n-th objects is admissible if
M[m,n] < TM . The association of two objects is not considered valid if
not admissible even if they are assigned to each other by solving the linear
assignment problem.

3.2.4 Re-Identification or Removal of Tracks

Once the object detector detects an object, we check in the following order
whether the object should be (1) associated with a tracked object (described
in Section 3.2.3), (2) associated with an object in the history tracks, or (3)
treated as a new object in the active tracks. To check if the newly detected
can be associated with any object in the history tracks and re-identify the
corresponding track, we run the data asssociation process between the newly
detected object and all the objects in the history tracks with a different data
association matrix Md, where Md = Mf . That is, for the re-identification
purpose, we simply consider the dissimilarity between the feature maps of
the objects since the displacements and scales of not actively tracked objects
can vary much. Since Mf is constructed on the feature maps whose sizes
are normalized to be fixed (see Section 3.2.2.1 for details), it can withstand a
change in the scale to some certain extent. Likewise in other data association
process, a threshold Td is used to define if the association is admissible. If
the newly detected object is not associated with any objects in any track, it
will be added to the active track as a new object.

3.3 Implementation of The Framework

To ensure a reproducible implementation and provide all the bells and whis-
tles in the proposed framework, we encapsule it in this section with the

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK37

pseudocodes presented in Algorithm 1. The details of the main steps in
Algorithm 1 are presented in Algorithm 2 to Algorithm 7.

The most outer loop of Algorithm 1 (line 1) loops over the video frames,
and it is followed by mainly an if-else block which executes conditionally on
whether the detector is triggered in the t-th frame. If there exists objects
in the active tracks, i.e. |Ot| > 0, and t > 1, every tracker is updated for
every object in Ot firstly prior to the actions that follow (line 2, and see
update details in Algorithm 2). If the detector is triggered (lines 4-16) and
detects any object, the objects in Ot and Ohist (i.e. the history tracks) are
checked whether they can be associated (lines 5-6, and see Algorithm 3 and
Algorithm 4 for further details on data association). Those non-associated
objects from the detector are denoted as Onew = Odet\{Odet

kj
}j, ∀j (line

7). As they are treated as the new and unseen objects so far, their pnewi

(how many times an object has been observed tracked or detected in the
observation span, T new

i) and its observation span T new
i are initialized to be 1

(line 8).
For objects in Ot, we simply increment their observation span, T t

i (line
9). For those associated active tracks (lines 10-14), their ptlj is incremented

by 1 to account for being successfully associated (line 11), and their bound-
ing boxes and feature maps can be updated with those provided by the de-
tector, i.e. bounding box, bdet

kj
, and feature maps of the object, Fdet

kj
(lines

12-13). The updating rate, λdet
conf , depends on how confident the detector is

of the object.
The objects inOnew are required to re-identify themselves from the history

tracks Ohist (line 15 and Algorithm 6). In the case where any of them is
re-identified, the corresponding track is recovered from the history and added
back to the active tracks once again (line 16).

If the detector is not triggered at this frame, we simply increment pti and
T t
i of i-th object in the active tracks (line 18). Finally, poorly tracked ob-

jects are moved into the history tracks (line 20, see details in Algorithm 7)
while the objects that stay in the history tracks for over a pre-defined thresh-
old are rooted out permanently from the history tracks (line 21).

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK40

Algorithm 1: Multiple Object Tracking with DSST and CNN Features
(Section 3.2)

Defined:
O : A data structure that stores the list of tracked objects, where

O = {Oi|i = 1, ..., |O|} and Oi = {oi,bi,Fi, si, pi, Ti}
oi : object id
λdet
conf

: detector’s confidence

bi : bounding box (xi, yi, wi, hi)
Fi : features extracted from bi

si : similarity between current Fi and that calculated in previous frame
pi : number of frames of this object being tracked successfully
Ti : number of frames of this object being observed

Given:
Ot = ∅ : active tracks in t-th frame
Ohist = ∅ : history tracks
f(·) : ConvNet feature extraction function (Refer to Section 3.2.2.1)
It : t-th frame

Parameters:
τdet : detector threshold
sthres : the similarity threshold that defines whether an object is succesfully tracked
pthres : the successful rate of an object having been tracked
T thres : the count that defines the minimal observation span of whether a track should be removed
TM : threshold for checking admissibility for associating newly detected objects

and objects in active tracks
Td : threshold for checking admissibility for re-identifying objects from the history tracks

1: for frame t = 1, ... do
2: sti,b

t
i,F

t
i = update tracker(f , It, bt−1

i , Ft−1

i), i = 1, ..., |Ot|, t > 1 (Algorithm 2)

3: if (detector is triggered) then

4: Odet = detect object(It, τdet) # detect objects

5: M = compute association cost matrix(Odet, Ot) (Algorithm 3)
6: I = data association(M, TM), where I = {(kj , lj)|kj , lj ∈ N}j . (Algorithm 4)
7: Onew = Odet\{Odet

kj
}j , ∀j

8: pnew
i = Tnew

i = 1, ∀i, where (pnew
i , Tnew

i) ∈ Onew.

9: T t
i := T t

i + 1, ∀i, where T t
i ∈ Ot.

10: for each associated pair of objects in {Odet
kj

,Ot
lj
}j do

11: pt
lj

:= pt
lj

+ 1

12: Ft
lj

:= (1− λdet
conf

)Ft
lj

+ λdet
conf

Fdet
kj

13: bt
lj

:= (1− λdet
conf

)bt
lj

+ λdet
conf

bdet
kj

14: end for

15: Onew, Ohist := re identification(Onew, Ohist, Td) (Algorithm 6)
16: Ot := Ot ∪ Onew # append new objects into Ot

17: else

18: pti := pti + 1, T t
i := T t

i + 1, if sti > sthres, ∀i = 1, ..., |Ot|

19: end if

20: Ot, Ohist := relloc bad tracks(Ot) (Algorithm 7)
21: Remove object from Ohist if it has not been re-identified for some number of frames.
22: end for

/* end tracking */

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK41

Algorithm 2: update tracker(f , I t,bt−1
i ,Ft−1

i) (Section 3.2.2.2)

1: bt
i = DSST tracker update(It, bt−1

i)

2: Ft
i = extract bbox CNN feature(f(It), bt

i)

3: sti = calculate cosine simlarity(Ft
i, F

t−1

i)

4: Ft
i := update feature(Ft

i, s
t
i) # update features with adaptive learning rate

5: return sti,b
t
i,F

t
i

Algorithm 3: compute association cost matrix(Odet, Ot)
(Section 3.2.3)

Given:
Mc = 0|Odet|×|Ot|: cost matrix accounting for centers’ and IoU misalignment

Mf = 0|Odet|×|Ot|: cost matrix accounting for features’ similarity

ldiag : diagonal length of the frame

1: for m = 1, ..., |Odet| do
2: for n = 1, ..., |Ot| do
3: cdetx , cdety , ctx, c

t
y = get centers(bdet

m , bt
n)

4: Mc[m,n] = 1

2
(||(cdetx , cdety)− (ctx, c

t
y)||2/ldiag) +

1

2
(1− IoU(bdet

m ,bt
n))

5: Mf [m,n] = 1− sim(Fdet
m ,Ft

n) (Refer to (3.1))

6: end for

7: end for

8: return M = Mc ·Mf , where M ∈ R|Odet|×|Ot|

Algorithm 4: data association(M, T) (Section 3.2.3)
1: I := Hungarian algorithm(M)
2: for each tuple (kj , lj) ∈ I do

3: I := I\(kj , lj), if M [kj , lj] > T # admissibility check

4: end for

5: return I

Algorithm 5: update feature(Ft−1
i , Ft

i, s
t
i) (Section 3.2.2.2)

Given:
γ : base feature update rate
µx : a constant mean
σx : a constant standard deviation
N (µ|µx, σ2

x) : a normal distribution PDF centered at µx and with variance σ2
x

1: λ = N (µ = sti|µx, σ2
x)/N (µ = µx|µx, σ2

x)

2: γ := λ · γ # obtain adaptive feature update rate

3: Ft
i := (1− γ)Ft−1

i + γFt
i # update features

4: return Ft
i

Algorithm 6: re identification(Onew, Ohist, Td) (Section 3.2.4)
1: M = compute association cost matrix(Onew, Ohist)
2: I := data association(M, Td), where I = {(kj , lj)|kj , lj ∈ N}j .
3: assign the same object id as Ohist

lj
to Onew

kj
, ∀j

4: remove j-th object from Ohist
lj

, ∀j

5: assign new object id to the objects in Onew which are not associated.

CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK42

Algorithm 7: relloc bad tracks(Ot, Ohist)
1: for i = 1, ..., |Ot| do
2: T t

i = min(T t
i , T

thres)

3: if T t
i = T thres and

pti
T t
i

< pthres then

4: Ot := Ot\Ot
i # remove poorly tracked object from active tracks

5: Ohist := Ohist ∪Ot
i # add it into the history tracks

6: end if

7: end for

8: return Ot, Ohist

Chapter 4

Experiments

This chapter aims to provide the empirical study on the proposed framework,
analyzing its strengths and weaknesses in order to offer insight of how to
improve it in the future. To begin with, we introduce the dataset used
and explain the evaluation protocols used throughout the experiments in
Section 4.1. Next in Section 4.2, we conduct the ablation studies on the
parameters which are the most vital ones in the framework regarding the
tracking performance. Several experiments are made in the way that one
parameter or one set of parameters is treated as a variable while the rest are
kept fixed to examine the effect of varying those parameters. This strategy
enables us to understand how each parameter affects the performance as well
as keeps the search space of the variables within reasonable size. Finally in
Section 4.4, we provide a discussion and reasoning of the results.

4.1 Evaluation Dataset and Protocols

MOT Challenge 2016 (MOT’16) offers 14 video sequences evenly divided into
seven training and seven testing sequences summarized in Table 4.1. The
target class of the evaluation focus is pedestrian. Particularly, in MOT’16
challenge the pedestrians who are static (e.g. sitting or standing without
moving), behind the glasses, in the reflection, or in the vehicles are omitted
and not considered in the evaluation. Thus, constantly moving pedestrians
are the only left. The videos are taken in unconstrained public spaces (e.g.
open streets, shopping malls, squares, etc.) that are usually crowded. Some
cameras are installed in driving vehicles, some are carried by a walking per-
son, and some are stationary. Challenges including wide variety of sizes,
orientations, walking speeds, and heavy occlusions make the dataset realistic
and to highly correspond to the real-world applications.

43

CHAPTER 4. EXPERIMENTS 44

Table 4.1: Summary of MOT’16 training and test sets.

training set test set frame rate (fps) camera
MOT16-02 MOT16-01 30 static
MOT16-04 MOT16-03 30 static
MOT16-05 MOT16-06 14 dynamic
MOT16-09 MOT16-07 30 dynamic
MOT16-10 MOT16-08 30 static
MOT16-11 MOT16-12 30 dynamic
MOT16-13 MOT16-14 25 dynamic

Noted in [27], it is difficult to quantify a MOT tracker’s performance or
capture the charateristics of the tracker with a single metric. Among all the
existing metrics that are designed for assessing MOT systems, CLEAR met-
rics [32] and the metrics introduced in [37] have been the most widely used.
Please note that even these metrics are the most trendy in the recent MOT
works and treated as the standard measures, but the research of standarizing
the metrics for MOT problem is still ongoing [27]. In MOT’16, those metrics
are used altogether to assess the overall performance while the trackers can
be ranked by their average ranking calculated from the ranks with respect
to each individual metric. In the following, we walk through the formal def-
inition of every metric included in MOT’16.

True Positive (TP), False Positive (FP), False Negative (FN): These are
the most common metrics quantifying the hypotheses made by the tracker.
TP measures whether the hypotheses are matched to the annotations while FP
measures if they are false alarms. FN measures the misses of the hypotheses
with respect to the annotations. Either metric is counted when the IoU is
less than 0.5 as suggested in [27].

Precision (Precision), Recall (Recall): Precision is defined in (4.1),
reflecting how relevant the predicted bounding boxes are to the ground-truth
bounding boxes. Recall is defined (4.2):

Precision =
TP

TP+ FP
(4.1)

Recall =
TP

number of ground-truth bounding boxes
(4.2)

CHAPTER 4. EXPERIMENTS 45

Identity Switch (IDs): IDs counts the mismatching error which happens
when an annotated target x is matched to a track y in frame t−1 but matched
to another track z, z 6= y in frame t. Note that IDs alone may not inform
the tracker’s overall performance as it usually correlates with the number of
annotated tracks. Hence, one can instead look at the ratio of IDs to the
recall when needed. Note that throughout the experiments, we still report
the raw IDs as Recall is also reported.

Fragmentation (FM): A fragmentation is counted when a track is inter-
rupted for some frames and recovered either with or without ID switches.

Multiple Object Tracking Accuracy (MOTA): MOTA considers three sources
of metrics to assess the overall accuracy of a MOT tracker across the frames.
More formally, it is defined as

MOTA = 1−

∑

t(FNt + FPt + IDst)
∑

t GTt
, (4.3)

where the subscript t denotes the frame index and GTt denotes the number
of objects in frame t. Note that it is possible that MOTA value is below zero
while its maximum is 1.

Multiple Object Tracking Precision (MOTP): MOTP measures in aver-
age across all frames how well do the tracker’s outputs overlap with the
annotations. More formally, it is defined as

MOTP =

∑

t,i dt,i
∑

t ct
, (4.4)

where ct is the number of annotations in frame t and dt,i is the IoU value of
the target i and its assigned annotation. In short, MOTP is used to measure
the localization accuracy of a system where the detecter and the tracker work
collaboratively with each other.

Number of Ground-Truth Tracks (GT), Mostly Tracked (MT), Partly
Tracked (PT), Mostly Lost (ML): A track is said to be mostly tracked if
over 80% of its annotations along the track are matched correctly to the
tracker’s outputs, while it is said to be mostly lost if under 20% of its anno-
tations along the track is matched correctly, otherwise it is classified as partly
lost. We define MT, PT, and ML as the percentage of each quantity (i.e. the
numbers of mostly tracked, partly tracked, and mostly lost) to the number
of grount-truth tracks, GT.

CHAPTER 4. EXPERIMENTS 46

Tracker Ranking (TR): TR does not reflect the overall performance of a
MOT tracker, but provides a relative figure that ranks the trackers by com-
paring the average ranking. The average ranking is calculated according to
the rank made by each individual metric (IDSW, MOTA, MOTP, etc).

In the following section, we provide ablation studies on how do the dif-
ferent parameters in the proposed framework affect each metric.

4.2 Parameter Selections and Ablation Stud-

ies

In this section, we conduct parameter selection and ablation studies on
MOT’16 training set which includes in total seven sequences. To avoid ex-
haustively searching over all possible combinations of parameters, we adopt
the following strategy to search the parameter space defined by those of the
highest impacts on the framework. The options of the parameter values are
enlisted in Table 4.2.

As suggested in the literature [27, 36], the overall tracking performance
is highly dependent on the detector’s performance. Hence, we start explor-
ing the parameter space by varying the values of the detection threshold
τ det while fixing other parameters. We select the value that results in the
best MOTA score as MOTA encapsulates more measures together than other
metrics introduced in Section 4.1, including three critical measures: false
negative rate, false positive rate, and how many times has object identity
been switched. Next, we vary the pair of values of (T thres, pthres) and keep
the rest fixed, while the value for the detector threshold is set to be the best
one picked previously. The same process continues with (µx, s

thres), TM , and
Td, respectively in turn.

The selection process finally yields one set of values for all the parameters.
During the process, one can observe the impact of each varying parameters
as the other parameters stay unchanged. This can offer the insight on how
significant each parameter is to the framework. Apart from the parameters
in Table 4.2, we would also like to examine how sensitive is our framework
to the availability of the detector, i.e. triggering the detector in every n
frames, where n = 1 and 3, in the videos. Tables 4.3 and 4.4 summarize the
experiments, parameters and the corresponding sets of values to be examined.
In the following subsections, we report how the systems with n = 1 and 3
perform under varying (1) τ det, (2) (T thres, pthres), (3) (µx, s

thres), (4) TM ,

CHAPTER 4. EXPERIMENTS 47

and (5) Td, respectively.

Table 4.2: A table of parameters to be studied.

Parameter Name Used in

τ det
Threshold on accepting detections
from the detector

Algorithm 1: line 4

T thres / pthres
sliding observation span / threshold
on the ratio of the span of an object
being tracked and observed

Algorithm 7

µx / sthres

mean of the Gaussian function used
in adaptive feature update / threshold
on the similarity that defines if two
objects are the same one

Algorithm 1: line 18

TM threshold on association cost Algorithm 1: line 6

Td threshold on re-identification cost Algorithm 6

Table 4.3: Experiment strategy for conducting parameter selections and ab-
lation studies. The dash (—) in each row means the variable(s) whose values
are chosen from Table 4.4. Each of five sets of experiments, from A to E,
finds optimal value(s) for a parameter or a set of parameters. For instance,
experiment A finds τ det∗, the optimal values for variable τ det. τ det∗ is then
brought to the experiment B and fixed along with (µx, s

thres), TM , and Td.
The same process repeats for the experiments C, D, and E.

Exp. τ det T thres, pthres µx, s
thres TM Td Output

A — (10, 0.75) (0.86, 0.8) 0.3 0.2 τ det∗

B τ det∗ — (0.86, 0.8) 0.3 0.2 (T thres, pthres)∗

C τ det∗ (T thres, pthres)∗ — 0.3 0.2 (µx, s
thres)∗

D τ det∗ (T thres, pthres)∗ (µx, s
thres)∗ — 0.2 T ∗

M

E τ det∗ (T thres, pthres)∗ (µx, s
thres)∗ T ∗

M — T ∗
d

4.2.1 Experiment A: Varing Detector Thresholds τ det

As known, SSD’s classification layers are the layers that do softmax opera-
tions which yield the probability of each object proposal for each object class.
We interpret the probability of each object class as the confidence score of the
detector on the corresponding class. As the object of interest is pedestrian,
we only extract the probability score of the pedestrian class, comparing it to

CHAPTER 4. EXPERIMENTS 48

Table 4.4: Following Table 4.3, this table provides the values for the param-
eters to be selected in each experiment from A to E.

Exp. Parameter Values to be experimented
A τ det 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8

B (T thres, pthres)
(10, 0.5), (10, 0.75), (15, 0.5), (15, 0.75),
(20, 0.5), (20, 0.75), (25, 0.5), (25, 0.75),
(30, 0.5), (30, 0.75)

C (µx, s
thres)

(0.82, 0.74), (0.82, 0.76), (0.82, 0.78),
(0.84, 0.76), (0.84, 0.78), (0.84, 0.80),
(0.86, 0.78), (0.86, 0.80), (0.86, 0.82)

D TM 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4
E Td 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

a pre-defined detector threshold, τ det, and accept it as a pedestrian only if it
is larger than the threshold. Small detector thresholds can lead to more true
positives but as well more false positives. On the contrary, large τ det can
lead to fewer true positives but more precise detection results and less false
positives. In the MOT’16 sequences, many pedestrians are rather small, i.e.
the minimum height of the pedestrians’ bounding boxes can be 19 pixels [27].
The tracking performance can be affected by either too many false positives
(e.g., non-pedestrian objects or static background) or imprecise detections
(i.e. bad localization of the object) that could get the tracker drifted easily.
Thus, to select a sensible τ det is the main focus in this subsection.

Figure 4.1 shows the results in experiment A listed in Table 4.3 and
Table 4.4. The increase of τ det leads to decrease of FP and increase of FN.
In Figure 4.1a, MOTA score increases with the increase of τ det as FP decreases
faster than FN increases. MOTA peaks at 0.6 and start to saturate or descend
when both FP and FN starts to saturate. As expected, while larger τ det

obtains larger Precision, it obtains poorer Recall as shown in Figure 4.1d,
leading to a significant ascent in ML and descent in PT and MT. What is worth
noting is that the drop of IDs and FM in Figure 4.1c with increased τ det does
not indicate that a larger τ det would result in better tracker’s performance.
The drop is simply an effect of the fact that fewer present tracks can be
correctly identified, hence resulting in a smaller number of cases when the
object identity is switched or the tracks are fragmented along the predicted
tracks.

Comparing the n = 1 and n = 3 case among all the metrics, the n = 1
case consistently shows improvement in MOTA, MOTP, FP, and FN although not
significantly. The n = 3 case outperforms the n = 1 case in Recall, but falls

CHAPTER 4. EXPERIMENTS 49

short in Precision. In terms of MT, PT, and ML, there is no clear indication
of which case is consistently better.

4.2.2 Experiment B: Varying T thres and pthres

Here we analyze the significance of T thres and pthres, where T thres×(1−pthres)
defines the maximal number of frames that is allowed to not to be tracked or
detected within a sliding window of T thres frames. Hence the larger the pthres

is, the more easily a track will be removed from the active tracks. Having a
reasonable amount of tolerance to noisy results from the detector and tracker
can help keep the track active and at the same time get rid of false positive
tracks. Specifically, if T thres × (1− pthres) is large, we may keep most of the
tracks active, but possibly introduce more false positives, since each track is
allowed to have more failures within a longer span.

Figure 4.2 shows the results under varying T thres and pthres. In terms of
MOTA, the n = 3 case is shown more sensitive to the varying T thres and pthres

than the n = 1 case. Shown in Figure 4.2a, MOTA in both cases declines when
(1) pthres varies from 0.75 to 0.5 given any T thres, and (2) T thres grows. In
Figure 4.2b, the n = 1 case shows stable in both FP and FN under varying
variables while the n = 3 case appears more sensitive to pthres and obtains
a lower FP with pthres being 0.75. FN in both cases appears to be insensitive
to the variables. In Figure 4.2c, both cases show declination in IDs and FM

when the sliding observation span T thres grows with fixed pthres. When T thres

is fixed, IDs and FM noticeably rise when pthres goes from 0.5 to 0.75. Next
in Figure 4.2d, Recall and Precision in n = 3 case appears to be sensitive
to pthres under fixed T thres. Finally in Figure 4.2e, the n = 3 case slightly
outperforms the n = 1 case in MT, PT, and ML. To recap the experiment results,
the n = 1 case, in which the detector is triggered every frame, appears to be
less sensitive to T thres and pthres and slightly outperforms the n = 3 case in
most of the metrics.

4.2.3 Experiment C: Varying µx and sthres

The role of µx is to prevent over-updating the auxiliary templates introduced
in Chapter 3.2.2.1. The adaptive learning rate γadapt is dependent on µx, and
the update takes most of its effect only when the similarity measure between
auxiliary target templates in the previous and current frames is close enough
to µx (Please refer to Section 3.2.2.2 for more details). sthres defines the
threshold by which a target is accepted as tracked. These two parameters
are selected together as the similarity measure between auxiliary templates
of a successfully tracked target stays within a range from µx. If a tracker

CHAPTER 4. EXPERIMENTS 52

has drifted and the auxiliary templates are updated properly, its similarity
measure can drop dramatically from µx. Hence we pick the values for sthres

which are below but close enough to µx in order to capture the drop of the
similarity measure whenever a tracker starts to drift.

Figure 4.3 shows the results under varying µx and sthres. Firstly, from
Figure 4.3a, it shows that the n = 3 case slightly outperforms the n = 1
case in MOTA and achieves nearly equal performance in MOTP. Next, from Fig-
ure 4.1b, FP and FN vary only subtly with varying µx and sthres. Figure 4.3c
shows that the n = 1 case suffers from more ID switches and fragmentations
than the n = 3 case. In addition, the n = 1 case, in most of the experiments
under the same variable values, tends to obtain higher Precision and lower
Recall. Last, shown in Figure 4.3e, the performance curves of the n = 1
and n = 3 cases appear to be much similar to each other except that at
(µx, s

thres) = (0.88, 0.84), the n = 3 case obtains slightly lower ML and higher
PT.

4.2.4 Experiment D: Varying TM

The parameter TM controls how strict it is to associate the detected objects to
the objects in the active tracks. Allowing larger TM may result in more wrong
associations, causing more identity switches and fragmentations. Smaller TM

can make the association too strict, failing to associate the detected objects
to any of the active tracks when needed, causing as well identity switches
with new object IDs being created. This theory is also suggested in the
experimental results shown in Figure 4.4. For instance, in Figure 4.4a, MOTA
from both n = 1 and n = 3 cases peaks at 0.2 and decreases as TM goes
either smaller or larger.

In Figure 4.4b, while the lowest FN and highest FP are located at where
TM = 0.1, FN starts to increase and FP starts to decrease when TM rises. This
indicates that one can find a tradeoff between FN and FP by adjusting TM .
Hence, as FP starts to saturate from TM = 0.25 onwards while the FN still
increases, the best performance in terms of FN and FP combined is suggested
to be at around TM = 0.25 in both the n = 1 and n = 3 cases.

Next, Figure 4.4c shows clearly that when TM = 0.25, which is the halfway
between 0.1 and 0.4, the tracks suffer the least ID switches. Although FM

reaches the lowest at TM = 0.35 instead of at around TM = 0.25 in both
cases, it is still suggested that in terms of FM and IDs, the best performance
is reached at around TM = 0.25 as FM’s curves appear to be less sensitive to
TM and thus makes less impact than IDs.

Next, in Figure 4.4d, while similar trends are shown in Recall in both
n = 1 and n = 3, they behave differently in Precision. The Precision

CHAPTER 4. EXPERIMENTS 54

curve of the n = 3 case stagnates around 0.2 ≤ TM ≤ 0.3 and rises ever
since. The n = 1 case’s Precision curve peaks at TM = 0.25 as expected.
Lastly, the trends of MT’s, PT’s, and ML’s curves appear similar for both n = 1
and n = 3 cases where ML’s curves climb with TM increasing while other two
curves descend accordingly.

4.2.5 Experiment E: Varying Td

Here we study the associate cost threshold for target re-identification pur-
pose. Td is used as the threshold which governs the admissibility of associa-
tion between newly detected objects and those in the history tracks. Large
Td can result in almost random association of the objects and the tracks,
preventing the true correspondence of an object and its track being associ-
ated and incurring a large number of identity swicthes. Small Td can result
in passive re-identification, where less tracks in the history can be recovered
and tracked actively again. Hence, IDs has the most noticeable change with
varying Td as shown in Figure 4.5c. The IDs’ curves in n = 1 and n = 3
case obtain the lowest number at Td = 0.25 and Td = 0.3, respectively. The
IDs’s curve in the n = 3 case starts to saturate and in the n = 1 case slightly
ascends when Td > 0.3, indicating that allowing more slack associations may
not help recover more objects in the history tracks. We leave out other fig-
ures than Figure 4.5c from the discussion because nearly no effect or changes
can be seen.

4.2.6 Detection Frequency

So far we have covered five experiments under different parameters as the
variables and chosen the set of parameters separately for the n = 1 and n = 3
cases. The empirical chosen values for those parameters are summarized in
Table 4.5.

In the following, we present the average performance and individual per-
formance of the proposed framework on each MOT’16 training set (including
seven video sequences) with different detection frequencies, i.e. n = 1 and

Table 4.5: Summary of the values chosen for the parameters used in the
framework aiming for optimizing MOTA score.

τ det (T thres, pthres) (µx, s
thres) TM Td

n = 1 0.6 (10, 0.75) (0.88, 0.84) 0.2 0.25
n = 3 0.6 (10, 0.75) (0.82, 0.74) 0.2 0.25

CHAPTER 4. EXPERIMENTS 57

n = 3, to allow in-depth analysis. The n = 1 case triggers detection in every
frame while the n = 3 case triggers detection in every three frames. Note
that the inference time of detection in each frame is nearly the same, and
hence the time spent on detection in the n = 1 case triples the computation
time compared to that of the n = 3 case. It is thus worth analyzing what
advantages the higher detection frequency can bring at the cost of additional
computation time.

4.2.6.1 Results on MOT’16 Training Set

Table 4.6 shows the average results on all training sequences. While the
n = 1 case slightly outperforms the n = 3 case in FP, MT, PT, and ML, n = 3
shows stronger in MOTA, MOTP, FN, IDs, and FM. However, the performance
discrepancy between the two cases is not that significant. Next, we break it
down to show the performance on each sequence in Tables 4.7 and 4.8. Note
that here we present the results in two categories of video sequences: (1)
the sequences captured by static cameras, and (2) the sequences captured by
moving cameras. The former category is shown in Table 4.7 and the latter
is shown in Table 4.8. The reason for the arrangement is to study if the
frameworks based on different parameter settings would favor the different
dynamics in the videos. Table 4.7 shows that the n = 3 case outperforms the
other one consistently in MOTA, MOTP, FN, IDs, FM, and Recall. On two out of
three sequences, the n = 3 case as well outperforms the another in PT and ML.
As for the sequences presented in Table 4.8, one can see that on MOT16-05,
the n = 1 case performs better in most of the metrics, i.e. MOTA, FP, FN,
IDs, FM, Recall, Precision, MT, PT, and ML. On other dynamic sequences,
the two cases perform rather similarly to each other. Later on, we study
the results on the MOT’16 test set to examine if the proposed framework
behaves similarly according to the dynamics in the videos.

Table 4.6: Comparison of average performance of the n = 1 and n = 3 cases
on seven MOT’16 training sequences. Parameter selection is done by the
strategy introduced in Section 4.2. Bold figures indicate the winner cases.

MOTA MOTP FP FN IDs FM

n = 1 8.1 70.7 4809 98067 340 752
n = 3 8.3 70.9 5344 97403 226 619

Recall Precision MT (%) PT (%) ML (%)
n = 1 12.0 74.0 1.8 27.8 70.3
n = 3 13.0 73.0 1.1 25.1 73.8

CHAPTER 4. EXPERIMENTS 58

Table 4.7: The proposed framework on MOT’16 (training) static sequences
(i.e. the camera is not moving). The bold figures indicate better performance.

MOT16-02
MOTA MOTP FP FN IDs FM

n = 1 6.6 69.1 571 16734 46 92
n = 3 7.3 69.6 602 16591 26 62

Recall Precision MT (%) PT (%) ML (%)
n = 1 9.9 76.4 1.6 17.7 80.1
n = 3 10.7 76.8 1.6 21.0 77.4
MOT16-04

MOTA MOTP FP FN IDs FM

n = 1 4.0 69.5 539 45087 39 116
n = 3 5.0 70.3 861 44288 18 78

Recall Precision MT (%) PT (%) ML (%)
n = 1 5.2 82.1 0.0 10.8 89.1
n = 3 6.9 79.2 0.0 13.3 86.7
MOT16-09

MOTA MOTP FP FN IDs FM

n = 1 25.4 72.4 303 3622 49 87
n = 3 26.3 73.5 353 3537 33 64

Recall Precision MT (%) PT (%) ML (%)
n = 1 32.0 84.9 7.7 50.0 42.3
n = 3 33.6 83.5 7.7 50.0 42.3

4.2.6.2 Results on MOT’16 Test Set

The results on the MOT’16 test set are summarized in Tables 4.9 to 4.11.
All in all, the n = 1 case slightly outperforms the n = 3 case in MOTA, MOTP,
FP, Precision, MT, PT, and ML as shown in Table 4.9. Next, Table 4.10 shows
the performance of the proposed framework on the static sequences in the
MOT’16 test set. The n = 1 case shows stronger in MOTA in two out of
three sequences, and consistently outperforms the n = 3 case in MOTP. The
n = 3 case shows slightly better consistency in keeping the tracks not being
fragmented, which reflects in higher MT on MOT16-01, higher PT on MOT16-
03, and higher (MT + PT) combined on MOT16-08. As the performance on
the dynamic sequences, the n = 1 case outperforms the another on every
sequence in MOTA. This indicates the n = 1 setting is still favored if the
dynamics in the videos is highly fluid.

CHAPTER 4. EXPERIMENTS 59

Table 4.8: The proposed framework on MOT’16 (training) dynamic se-
quences (i.e. camera is moving). The bold figures indicate better perfor-
mance.

MOT16-05
MOTA MOTP FP FN IDs FM

n = 1 30.9 71.6 743 3949 90 119
n = 3 21.4 72.3 751 4619 67 173

Recall Precision MT (%) PT (%) ML (%)
n = 1 42.9 80.0 5.3 51.1 43.6
n = 3 33.2 75.4 0.6 40.6 58.7
MOT16-10

MOTA MOTP FP FN IDs FM

n = 1 0.7 66.2 1568 11123 61 159
n = 3 2.3 66.4 1609 10884 48 133

Recall Precision MT (%) PT (%) ML (%)
n = 1 13.4 52.3 0.0 26.3 73.7
n = 3 15.2 54.9 0.0 24.6 75.4
MOT16-11

MOTA MOTP FP FN IDs FM

n = 1 24.6 75.1 371 6710 36 111
n = 3 25.3 74.2 406 6617 29 78

Recall Precision MT (%) PT (%) ML (%)
n = 1 28.9 88 0.0 30.7 69.3
n = 3 29.9 87.4 1.3 29.3 69.3
MOT16-13

MOTA MOTP FP FN IDs FM

n = 1 0.6 65.6 714 10842 19 68
n = 3 0.1 65.8 762 10867 5 31

Recall Precision MT (%) PT (%) ML (%)
n = 1 6.9 52.8 0.0 11.8 88.2
n = 3 6.7 50.4 0.9 9.1 90.0

4.3 Comparison with Other On-line Trackers

In this section, we compare the proposed framework with other on-line track-
ers, SORT [7] and Deep SORT [36]. SORT and Deep SORT both use the
Faster R-CNN object detector with VGG16 [31]. Likewise, they pass only the
probability of the person class that is over 0.5 to the output as the detection
result. The major difference between Deep SORT and SORT is that Deep

CHAPTER 4. EXPERIMENTS 60

Table 4.9: Comparison of average performance of n = 1 and n = 3 cases on
seven MOT’16 test sequences. Parameter selection is done by the strategy
introduced in Section 4.2. Bold figures indicate the winner cases.

MOTA MOTP FP FN IDs FM

n = 1 4.4 69.4 8179 165691 515 1057
n = 3 4.1 68.7 10201 164335 366 826

Recall Precision MT (%) PT (%) ML (%)
n = 1 9.1 67.0 2.1 27.4 70.5
n = 3 9.9 63.8 1.6 26.2 72.2

Table 4.10: The proposed framework on MOT’16 (test) static sequences (i.e.
the camera is not moving). The bold figures indicate better performance.

MOT16-01
MOTA MOTP FP FN IDs FM

n = 1 -11.4 64.1 1429 5661 31 61
n = 3 -16.5 63.6 1820 5593 36 57

Recall Precision MT (%) PT (%) ML (%)
n = 1 11.5 33.9 0.0 30.4 69.6
n = 3 12.5 30.6 4.3 26.1 69.6
MOT16-03

MOTA MOTP FP FN IDs FM

n = 1 1.5 67.3 1056 101930 52 122
n = 3 2.5 66.8 1480 100449 28 79

Recall Precision MT (%) PT (%) ML (%)
n = 1 2.5 71.3 0.0 3.4 96.7
n = 3 3.9 73.5 0.0 7.4 92.6
MOT16-08

MOTA MOTP FP FN IDs FM

n = 1 13.7 71.5 725 13636 77 153
n = 3 12.7 71.2 1120 13432 55 104

Recall Precision MT (%) PT (%) ML (%)
n = 1 18.5 81.1 4.8 27 68.3
n = 3 19.7 74.7 3.2 31.7 65.1

SORT devises a new association cost matrix which is jointly defined by IoU
and deep features instead of solely IoU. The deep features are extracted from
another deep neural net specifically trained on a pedestrian dataset [39] used
for person re-identification purposes. This modification increases MOTA by 1.6
and improves IDs by 45%. The comparison results are shown in Table 4.12.

CHAPTER 4. EXPERIMENTS 61

Table 4.11: The proposed framework on MOT’16 (test) dynamic sequences
(i.e. camera is moving). The bold figures indicate better performance.

MOT16-06
MOTA MOTP FP FN IDs FM

n = 1 18.4 70.2 2449 6757 213 397
n = 3 12.6 70.3 2480 7436 169 368

Recall Precision MT (%) PT (%) ML (%)
n = 1 41.4 66.1 4.5 54.8 40.7
n = 3 35.6 62.3 1.8 45.2 52.9
MOT16-07

MOTA MOTP FP FN IDs FM

n = 1 3.1 67.8 1104 14669 48 131
n = 3 1.7 67.2 1605 14402 39 94

Recall Precision MT (%) PT (%) ML (%)
n = 1 10.1 60.0 0.0 18.5 81.5
n = 3 11.8 54.5 0.0 24.1 75.9
MOT16-12

MOTA MOTP FP FN IDs FM

n = 1 24.0 73.2 404 5859 43 92
n = 3 21.7 71.5 575 5900 24 70

Recall Precision MT (%) PT (%) ML (%)
n = 1 29.4 85.8 2.3 32.6 65.1
n = 3 28.9 80.6 4.7 30.2 65.1
MOT16-14

MOTA MOTP FP FN IDs FM

n = 1 1.3 64.1 1012 17179 51 101
n = 3 1.2 64.3 1121 17123 15 54

Recall Precision MT (%) PT (%) ML (%)
n = 1 7.1 56.3 0.6 12.2 87.2
n = 3 7.4 54.8 0.6 14.0 85.4

It is clearly shown that the proposed framework is behind both SORT and
Deep SORT in most of the metrics by a large margin. The proposed frame-
work suffers from high FN across all the test sequences, thereby resulting in
low MOTA at around only 4. We discuss the cause of this in more details in
the coming section.

CHAPTER 4. EXPERIMENTS 62

Table 4.12: Comparison of the average performance of the n = 1 and n = 3
cases with SORT [7] and Deep SORT [36] on seven MOT’16 test sequences.
Bold figures indicate the winner cases.

MOTA MOTP FP FN IDs FM

Ours, n = 1 4.4 69.4 8179 165691 515 1057
Ours, n = 3 4.1 68.7 10201 164335 366 826
SORT [7] 59.8 79.6 8698 63245 1423 1835
Deep SORT [36] 61.4 79.1 12852 56668 781 2008

Recall Precision MT (%) PT (%) ML (%)
Ours, n = 1 9.1 67.0 2.1 27.4 70.5
Ours, n = 3 9.9 63.8 1.6 26.2 72.2
SORT [7] - - 25.4 51.9 22.7
Deep SORT [36] - - 32.8 49 18.2

4.4 Discussion

In this section, we first discuss the experiments conducted in the ablation
studies. The discussion continues with the comparison made between the
proposed framework and other on-line trackers. Finally, we discuss the pos-
sible improvements based on the observations made in the experiments.

4.4.1 On Ablation Studies

Firstly, we discuss the ablation studies presented from Section 4.2.1 to Sec-
tion 4.2.5. In the studies, the detector threshold τ det has shown to be most
impactful to all of the metrics. Note that in these experiments we attempt
to optimize MOTA score, and thus it is shown clearly (in Figures 4.1b and
4.1e) that their FP, FN, MT, and PT scores are not optimized along with MOTA.
Hence, it is worth mentioning that if one would like to pursue tracking results
which can cover as many as ground-truth tracks as possible, a lower detector
threshold τ det (than 0.6) should be applied for higher recall but in return of
lower precision rate.

Secondly, we analyze the results obtained from the static video sequences
in both training and test sets shown in Tables 4.7 and 4.10. It is observed
that while only in few static sequences does the n = 1 case outscore the
another case in MOTA, the n = 3 case achieves higher or equal MT and PT

scores combined. On the one hand, the results indicate that the n = 3
case, which relies more on correlation filters that localize the targets, delivers
more consistent and uninterrupted tracks. On the other hand, the n = 1

CHAPTER 4. EXPERIMENTS 63

case, which fuses the information from trackers and detectors, does not offer
significant improvements over these metrics. While it was our belief that
the detections could calibrate the predicted target locations and prevent the
tracker from drifting away, the association process could be itself noisy and
instead provide interference to the trackers. This can happen if the cost
matrix is not well-devised in the association process (refer to Section 3.2.3),
thus providing noisy estimation of the association cost.

Thirdly, to analyze the results from dynamic video sequences, two obser-
vations are worth mentioning: (1) the n = 1 case draws significant improve-
ment over the n = 3 case in almost all the metrics on the video MOT16-05
in the training set and its counterpart test video MOT16-06, e.g. 31.5% and
30.74% boosts in MOTA, respectively. By watching the contents in MOT16-05
and MOT16-06, one can observe that these are taken at 14 fps and possibly
with a hand-held camera carried by a walking person. Large movement of
the cameras is constantly presented and could create some difficulties for the
trackers to track the target. (2) The n = 1 case draws significant improve-
ment over the n = 3 case in MOTA, MT, PT, and ML on the test sequences. These
oberservations develop the thought that if the contents in the sequences are
changing rapidly due to high dynamics of the scene or low frame-rate produc-
tion, triggering detectors more frequently is much demanding for consistent
tracking results.

Fourthly, the n = 1 case performs worse in IDs and FM in almost every
sequence than the other case. The cause of the unsatisfyingly many ID
switches and fragmented tracks could be correlated with the point already
discussed that the association may not be sufficiently reliable.

4.4.2 On Comparison with Other Online Trackers

Previously we have shown in Section 4.3 that the proposed framework is out-
performed by SORT and Deep SORT by a large margin. For instance, the
proposed framework incurs nearly three times FN and similar FP compared
with that in Deep SORT. This indicates that the major difficulty is the pro-
posed framework missing a huge number of detections, especially the misses
on the pedestrians beyond some certain distances.

Figure 4.6 shows two cases where larger objects are always easier to detect
than small and clutter ones. Hence, it could be the accuracy gap between the
different detectors that leads to the performance gap between the proposed
framework and Deep SORT (or SORT). As mentioned in [7, 36], a sophisti-
cated object detector is much demanded in the tracking framework for high
accuracy, e.g. simply replacing the base network used in Faster R-CNN from
ZFNet [38] to VGG16 [31] can improve MOTA from 24 to 34.

CHAPTER 4. EXPERIMENTS 64

Despite the importance of selecting a highly accurate object detector,
we emphasize that the aim of this work is to design a tracking framework
being able to run at a reasonable speed without or with little modern GPU
support. We cannot afford relying on the state-of-the-art object detector
to boost the performance, instead we choose an object detector (introduced
in Section 3.2.1) which runs at around 2.5fps on quad-core 2.6GHz CPU
with no GPU support. In addition, we employ a more sophisticated single-
target base tracker than the Kalman tracker used in SORT and Deep SORT,
i.e. the correlation tracker that still ensures the real-time performance. By
comparing n = 1 and n = 3 cases in the proposed framework shown in
Table 4.12, the n = 3 case achieves comparable MOTP under similar FN with
n = 1 case. This shows that the correlation tracker is able to localize the
target accurately to some extent. However, the n = 3 case incurs higher FP
which can be generated from the detector but can be also from the tracks
that have been drifted to the wrong targets.

4.4.3 On Possible Improvements

We provide a generic tracking framework in this work that does not require
the availability of object detector in every frame. However, there is much
room for improvement in the major constituents. We describe two possible
improvements as follows, ordered by the suggested importance.

The pedestrian detector: It is of our knowledge that the detector’s per-
formance has the most impact on tracking performance. While we do not
want to sacrifice the inference speed too much for the detection performance,
alternatively one can train the same SSD network specifically on the large-
scale pedestrian dataset (e.g. MARS [39] and KITTI [14]) initialized by the
parameters in the SSD network used by this work. For improving the in-
ference speed, one can remove all the neurons of classes in the classification
layer except the person class. Thus, the computation will not be wasted on
inferring other classes always ignored.

The deep features: Deep features incorporated in the framework plays
an important role whenever data association takes place, e.g. data asso-
ciation for associating results from detector and trackers or for person re-
identification. As shown in the experiment results triggering the detector
more frequently does not show significant improvement over the metrics in
general, despite that the detector we employ is of low recall rate, the associ-
ation could possibly be improved by further reducing the false positive and
false negative rates. For that, the discriminative power and descriptiveness

CHAPTER 4. EXPERIMENTS 65

(a) A frame in MOT16-03. Only one detection is shown close to the right border.

(b) A frame in MOT16-08. Five detections are shown.

Figure 4.6: The top image shows when captured at far-range distance, the
detector employed in the proposed framework often misses many small de-
tections. The bottom image shows a relatively easier case for the detector as
the pedestrians are close enough to the camera.

of the deep features should be improved. In addition, recall that we calculate

CHAPTER 4. EXPERIMENTS 66

the similarity between two auxiliary templates by averaging their channel-
wise similarities where each template is of 24×24×64 dimensions. However,
empirically we observe that the features within some of the channels are
sparse, i.e. many features are of zero values. On the one hand, this could
lead to the curse of dimensionality where the distance measure becomes less
meaningful. On the other hand, it may also indicate that the features we ex-
tract may not be sufficiently condensed and informative. Hence, to improve
the deep features, it is suggested that one can train a network specifically
on pedestrian data and use it for feature extraction [36]. What is more, to
mitigate the curse of dimensionality, the features can be extracted from a
fully-connected layer near the end of the network, thus the features would
be of single channel and lower dimensionality (e.g. 128-D) [36].

Chapter 5

Conclusions and Future Work

5.1 Conclusions

We presented in this thesis an on-line detect-and-track framework which aims
to be operated in real-time without or with minimal GPU support. Unlike
most of the multiple object tracking systems, the proposed framework does
not assume the detector’s availability in every frame as object detection is
usually the largest computational burden in such systems. Overall, the pro-
posed system works as follows. The tracker localizes the targets itself or
with the information (e.g. estimated location of a target) periodically pro-
vided by the detector. During the course of tracking, a track of a target
is constructed based on continually receiving above-the-threshold similar-
ity measure between the target’s auxiliary templates in the two consecutive
frames. In other words, a track is interrupted if the auxiliary templates are
dissimilar to some extent, and a track is removed from the active tracks if
there are too many interrupts. However, the removed tracks are moved to
history tracks in which the tracks still have chances to be recovered in the
future frames. The proposed system devises Single Shot Detector and cor-
relation filter as the object detector and tracker, respectively. All relevant
similarity measurements are based on the distance between the features in
the Euclidean space extracted from the deep neural net.

We conducted experiments on the MOT’16 challenge dataset to demon-
strate how the framework performs under full and partial availability of the
detector, i.e. the detector is triggered in every frame versus in every three
frames. The main findings in the experiments are: (1) in static sequences
(where the camera is not moving) the case with partial availability of the
detector achieves comparable or slightly better performance than the other
case, however, (2) in dynamic sequences with a moving camera or when the

67

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 68

dynamics in the video are high (i.e. when people are moving faster), the case
with full availability of the detector tends to outperform that with partial
availability of the detector, and (3) comparing the proposed framework with
two other recently published on-line trackers, SORT and Deep SORT track-
ers, the proposed framework is underperformed in the MOTA scores. These
trackers, however, leverage a more sophisticated object detector which we
cannot afford due to the excessive computational burden.

5.2 Future Work

Besides the improvements already suggested in Section 4.4.3, it is also impor-
tant to investigate how to share the features among the detector, tracker, and
data association stages. Currently, in the proposed framework, the detector
uses its own network model to do the inference while the tracker utilizes
pixel values and a histogram of oriented gradients as the features. Sharing
the features in similar tasks may bring several benefits, such as a higher level
of generalization and less wasted computations, as suggested in [26, 28].

A recent publication proposed a two-way Siamese-like networks (i.e. two
network streams fed with the frames at time t and (t + 1) as inputs re-
spectively) to allow the system learn object representation and localization
end-to-end [6]. Hence, it would be interesting to extend their work to one
that learns object representation, detection, and localization given two con-
secutive frames. In addition, while the state-of-the-art object detectors pre-
dominantly consider only spatial information from a single frame, in the
context of object tracking, temporal information can be considered and pos-
sibly used to enhance the detection accuracy and consistency over frames
if the detection and tracking are performed within a unified network. We
leave the aforementioned as some thoughts for the future development of the
project.

Bibliography

[1] https://www.intel.com/content/www/us/en/products/boards-kits/

nuc/kits.html.

[2] https://github.com/tensorflow/models/blob/master/research/slim/

nets/inception_v2.py.

[3] Tensorflow detection model zoo. https://github.com/tensorflow/

models/blob/master/research/object_detection/g3doc/detection_

model_zoo.md.

[4] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M.,

Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,

M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Leven-

berg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,

C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Tal-

war, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas,

F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M.,

Yu, Y., and Zheng, X. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[5] Babenko, B., Yang, M.-H., and Belongie, S. Visual tracking
with online multiple instance learning. In Computer Vision and Pat-
tern Recognition, 2009. CVPR 2009. IEEE Conference on (2009), IEEE,
pp. 983–990.

[6] Bertinetto, L., Valmadre, J., Henriques, J. F., Vedaldi, A.,

and Torr, P. H. Fully-convolutional siamese networks for object
tracking. In European Conference on Computer Vision (2016), Springer,
pp. 850–865.

[7] Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B.

Simple online and realtime tracking. In Image Processing (ICIP), 2016
IEEE International Conference on (2016), IEEE, pp. 3464–3468.

69

BIBLIOGRAPHY 70

[8] Bishop, G., and Welch, G. An introduction to the kalman filter.
Proc of SIGGRAPH, Course 8, 27599-23175 (2001), 41.

[9] Bolme, D. S., Beveridge, J. R., Draper, B. A., and Lui, Y. M.

Visual object tracking using adaptive correlation filters. In Computer
Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on
(2010), IEEE, pp. 2544–2550.

[10] Bruff, D. The assignment problem and the hungarian method. Notes
for Math 20 (2005), 29–47.

[11] Dai, J., Li, Y., He, K., and Sun, J. R-fcn: Object detection via
region-based fully convolutional networks. In Advances in neural infor-
mation processing systems (2016), pp. 379–387.

[12] Danelljan, M., Häger, G., Khan, F., and Felsberg, M. Ac-
curate scale estimation for robust visual tracking. In British Machine
Vision Conference, Nottingham, September 1-5, 2014 (2014), BMVA
Press.

[13] Danelljan, M., Hager, G., Shahbaz Khan, F., and Felsberg,

M. Convolutional features for correlation filter based visual tracking. In
Proceedings of the IEEE International Conference on Computer Vision
Workshops (2015), pp. 58–66.

[14] Geiger, A., Lenz, P., Stiller, C., and Urtasun, R. Vision meets
robotics: The kitti dataset. International Journal of Robotics Research
(IJRR) (2013).

[15] Girshick, R. Fast r-cnn. In Proceedings of the IEEE international
conference on computer vision (2015), pp. 1440–1448.

[16] Grabner, H., and Bischof, H. On-line boosting and vision. In
Computer Vision and Pattern Recognition, 2006 IEEE Computer Soci-
ety Conference on (2006), vol. 1, IEEE, pp. 260–267.

[17] Grabner, H., Leistner, C., and Bischof, H. Semi-supervised on-
line boosting for robust tracking. Computer Vision–ECCV 2008 (2008),
234–247.

[18] He, K., Zhang, X., Ren, S., and Sun, J. Spatial pyramid pool-
ing in deep convolutional networks for visual recognition. In European
Conference on Computer Vision (2014), Springer, pp. 346–361.

BIBLIOGRAPHY 71

[19] Henriques, J. F., Caseiro, R., Martins, P., and Batista, J.

High-speed tracking with kernelized correlation filters. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 37, 3 (2015), 583–
596.

[20] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang,

W., Weyand, T., Andreetto, M., and Adam, H. Mobilenets:
Efficient convolutional neural networks for mobile vision applications.
arXiv preprint arXiv:1704.04861 (2017).

[21] Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A.,

Fathi, A., Fischer, I., Wojna, Z., Song, Y., Guadarrama, S.,

and Murphy, K. Speed/accuracy trade-offs for modern convolutional
object detectors. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) (July 2017).

[22] Kalal, Z., Mikolajczyk, K., and Matas, J. Tracking-learning-
detection. IEEE transactions on pattern analysis and machine intelli-
gence 34, 7 (2012), 1409–1422.

[23] King, D. E. Dlib-ml: A machine learning toolkit. Journal of Machine
Learning Research 10 (2009), 1755–1758.

[24] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks. In Advances in
neural information processing systems (2012), pp. 1097–1105.

[25] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,

Ramanan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In European conference on computer vision
(2014), Springer, pp. 740–755.

[26] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,

C.-Y., and Berg, A. C. Ssd: Single shot multibox detector. In
European conference on computer vision (2016), Springer, pp. 21–37.

[27] Milan, A., Leal-Taixé, L., Reid, I., Roth, S., and Schindler,

K. Mot16: A benchmark for multi-object tracking. arXiv preprint
arXiv:1603.00831 (2016).

[28] Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn: Towards
real-time object detection with region proposal networks. In Advances
in neural information processing systems (2015), pp. 91–99.

BIBLIOGRAPHY 72

[29] Rowley, H. A., Baluja, S., and Kanade, T. Neural network-based
face detection. IEEE Transactions on pattern analysis and machine
intelligence 20, 1 (1998), 23–38.

[30] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,

R., and LeCun, Y. Overfeat: Integrated recognition, localization and
detection using convolutional networks. arXiv preprint arXiv:1312.6229
(2013).

[31] Simonyan, K., and Zisserman, A. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556
(2014).

[32] Stiefelhagen, R., Bernardin, K., Bowers, R., Garofolo, J.,

Mostefa, D., and Soundararajan, P. The clear 2006 evaluation.
In International Evaluation Workshop on Classification of Events, Ac-
tivities and Relationships (2006), Springer, pp. 1–44.

[33] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna,

Z. Rethinking the inception architecture for computer vision. CoRR
abs/1512.00567 (2015).

[34] Uijlings, J. R., Van De Sande, K. E., Gevers, T., and Smeul-

ders, A. W. Selective search for object recognition. International
journal of computer vision 104, 2 (2013), 154–171.

[35] Viola, P., and Jones, M. J. Robust real-time face detection. Inter-
national journal of computer vision 57, 2 (2004), 137–154.

[36] Wojke, N., Bewley, A., and Paulus, D. Simple online and re-
altime tracking with a deep association metric. CoRR abs/1703.07402
(2017).

[37] Wu, B., and Nevatia, R. Tracking of multiple, partially occluded hu-
mans based on static body part detection. In Computer Vision and Pat-
tern Recognition, 2006 IEEE Computer Society Conference on (2006),
vol. 1, IEEE, pp. 951–958.

[38] Zeiler, M. D., and Fergus, R. Visualizing and understanding con-
volutional networks. In European conference on computer vision (2014),
Springer, pp. 818–833.

BIBLIOGRAPHY 73

[39] Zheng, L., Bie, Z., Sun, Y., Wang, J., Su, C., Wang, S.,

and Tian, Q. Mars: A video benchmark for large-scale person re-
identification. In European Conference on Computer Vision (2016),
Springer, pp. 868–884.

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Scope of the Thesis
	1.3 Structure of The Thesis

	2 Background
	2.1 Object Detection
	2.1.1 Faster R-CNN
	2.1.1.1 Region Proposal Networks
	2.1.1.2 The Loss Function for Training RPN
	2.1.1.3 Combining RPN and Fast R-CNN

	2.1.2 Single Shot Detector
	2.1.2.1 Default Boxes with Different Aspect Ratios
	2.1.2.2 Convolutional Predictors at the Default Boxes
	2.1.2.3 Training SSD

	2.2 Online Single Object Tracking
	2.2.1 Minimum Output Sum of Squared Error Tracker
	2.2.2 Discriminative Scale Space Tracker
	2.2.2.1 Discriminative Correlation Filters for Multi-channel Templates
	2.2.2.2 Scale Estimation
	2.2.2.3 Tracking with Translation and Scale Filters

	2.3 Online Multiple Object Tracker
	2.3.1 MOT with Kalman Filter and Deep Assoication Matrix

	3 The Proposed Detect-and-Track Framework
	3.1 Detect-and-Track Flow
	3.2 Multiple Object Tracking with Correlation Tracker and Deep Features
	3.2.1 Object Detector
	3.2.2 Update of Trackers
	3.2.2.1 Extraction of Auxiliary Templates and Similarity Measurement
	3.2.2.2 Adaptive Update of Auxiliary Templates

	3.2.3 Data Association
	3.2.4 Re-Identification or Removal of Tracks

	3.3 Implementation of The Framework

	4 Experiments
	4.1 Evaluation Dataset and Protocols
	4.2 Parameter Selections and Ablation Studies
	4.2.1 Experiment A: Varing Detector Thresholds det
	4.2.2 Experiment B: Varying Tthres and pthres
	4.2.3 Experiment C: Varying x and sthres
	4.2.4 Experiment D: Varying TM
	4.2.5 Experiment E: Varying Td
	4.2.6 Detection Frequency
	4.2.6.1 Results on MOT'16 Training Set
	4.2.6.2 Results on MOT'16 Test Set

	4.3 Comparison with Other On-line Trackers
	4.4 Discussion
	4.4.1 On Ablation Studies
	4.4.2 On Comparison with Other Online Trackers
	4.4.3 On Possible Improvements

	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

