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This thesis studies on-line multiple object tracking (MOT) problem which has
been developed in numerous real-world applications, such as emerging self-driving
car agents or estimating a target’s trajectory over time to identify its movement
pattern. The challenges that an on-line MOT tracker always faces are: (1) being
able to consistently and smoothly track the same target over time with the pres-
ence of occlusions, (2) being able to recover from fragmented tracks, (3) handling
identity switches of the same target, and (4) being able to operate in real-time.
This work aims to provide an efficient detect-and-track framework to address
these challenges. To narrow down the classes of objects to be studied, but with-
out losing the tracker’s extendibility to a generic object, we pick pedestrians as
the primary objects of interest.

The proposed framework consists of four building blocks, i.e. object detection,
object tracking, data association, and object re-identification. While most of the
MOT frameworks make the assumption of the availability of the detector in every
frame, the proposed MO'T tracker operates with the detector being triggered only
periodically, e.g. in every three frames, leading to improved efficiency. As for
each building block, the detection is performed by Single Shot Detector (SSD),
which has proven efficiency and efficacy on generic object classes. When the
detector is triggered and active tracks exist, data association module identifies the
correspondence of the objects detected by the detector and tracked by the tracker.
In cases where newly detected objects cannot be identified as any of current tracks,
the re-identification module then attempts to find the correspondence for them
in the history track.

The experiments show that the proposed framework is outperformed by the re-
cently published on-line MOT trackers which are based on different object detec-
tors. However, the results suggest that the proposed framework’s performance
does not degrade when the detector is partially unavailable and improves in cer-
tain conditions due to better temporal consistency. Based on these experiments,
we are able to identify major shortcomings of the current framework, providing
possible ways to improve it and directions for the future work.
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Region Proposal Network
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Chapter 1

Introduction

This work is initiated by the Video Analytics (VA) team in Affecto Finland!
and the Content-Based Image Retrieval (CBIR) Group in the Computer
Science Department at Aalto University. The VA team is specialized in de-
livering analytics regarding the information presented in images and videos.
The primary driving force of this work is from the urgent requests and needs
from the industry, especially the corporates who would like to analyze every
possible aspect in multimedia. To consolidate the foundation of video analyt-
ics capability within the VA team, we pilot in developing an object detection
and tracking framework as generic and efficient as possible. In addition, to
be more specific on the topic, we select pedestrians as our primary objects of
interest in multimedia files as several requests from other collaborators are
interested in analyzing people flow in an open public space. As a result, the
problem boils down to object detection and multiple object tracking prob-
lems, which have been studied in the academia. The following sections will
present the readers the motivation, scope and the structure of the thesis.
The main contributions of the thesis will be presented briefly.

1.1 Motivation

We study the multiple object tracking (MOT) problem which lies in the
domains of computer vision and machine learning. MOT has been a popular
problem in the academia and industry given its practicality and usefulness
in the real world. One such useful MOT case is the development of self-
driving cars. A robot driver needs to be constantly tracking the surrounding
objects, such as pedestrians, cyclists, and vehicles to avoid collision of any
kind. Another application is the surveillance case where the system should be

I Affecto Finland was acquired by CGI in 2018, it is now part of CGI Finland.
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tracking people or objects so as to detect anything suspicious and abnormal.
As for the business cases, the VA team receives myriad of requests in which
stakeholders are interested in understanding how people are moving in the
city, what is their reaction towards advertisements, do they move in groups,
etc.

Despite numerous interesting MOT applications and published works on
it, MOT is still worth research efforts due to several difficulties. First, the
system should be running in real-time, i.e. beyond 15 frames per second
(fps), to be capable of responding to the real world and making analytics ac-
cordingly and spontaneously. Second, severe occlusions of objects are often
the case in the context of MOT, e.g. pedestrians blocking each other from
the camera’s perspective. Third, following the second problem, a tracker can
easily be confused by two visually similar objects, suffering from either start-
ing to track the same object or mistaking the object’s identity for another
object’s. Last but not least, some of MOT trackers are operated partially on-
line or off-line, requiring efforts in post-inference and post-processing. This
can cause some difficulties in carrying out the real-time analytics in the cases
where the video feeds are streaming 24/7. Thereby, in this thesis, we aim
to design an efficient on-line MOT algorithm focusing on pedestrians while
taking into account the addressed problems.

1.2 Scope of the Thesis

The focus of the thesis is to design and implement an efficient on-line MOT
algorithm, i.e. the algorithm can not peep into the future frames and the
efforts in post-processing the video frames should be minimized. The on-line
setting is more tailored to applications where the video frames are constantly
streaming in and the analytics should be made in real-time. However, it could
make a MOT tracker more difficult to consistently track a single object, lead-
ing to a number of fragmented tracks of the same object. In the case of a
tracker starting drifting away from an object, it should be able to re-identify
it and recover from the tracking failure. In addition, MOT algorithms re-
quire an object detector, which always has to be triggered in every frame, to
initialize the tracker with the target’s location. However, performing object
detection in every frame can drag down the running speed as it is often more
computationally demanding than the tracking part, even though it can possi-
bly reduce the localization errors of the targets. We address the issue and do
not assume the availability of the object detector triggered in every frame,
but, triggered periodically. We further examine the tradeoff between the
number of frames where the detector is triggered and the tracking accuracy
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to reason how frequently the system should incorporate the detector.

The development is mostly based on the Python programming language
and open-source frameworks that can easily be deployed across the platforms
with or without GPU support, e.g. Amazon Web Service, mini PC like Intel
Next Unit of Computing (NUC) [1], etc. In particular, Tensorflow [4] and
Dlib [23] come as the primary choice due to their great support in Python
and ease of deployment. Besides, alternative detector models, in terms of
different levels of inference speeds and accuracies, are provided within the
Tensorflow framework [3], allowing us for easy replacement of the models if
needed.

In a nutshell, the main contributions of this work are summarized as
follows:

e Provide detailed reviews on modern techniques for object detection and
tracking

e Design and implement a detect-and-track framework which can be ex-
tended to generic object classes

e Study the efficacy of the proposed framework on the MOT’16 challenge
dataset

e Provide suggestions of possible improvements and future research di-
rections based on the results from the evaluation

1.3 Structure of The Thesis

The following chapters are organized as follows:

Chapter 2 introduces necessary background knowledege, which covers the
state-of-the-art object detectors (i.e. Faster R-CNN [28] and SSD detector
[26]), the on-line single object tracker [9, 12], and the on-line multiple object
tracker (e.g. Deep SORT [36]).

Chapter 3 describes the proposed MOT framework, including the archi-
tecture and the detailed description of each constituent in the framework.

Chapter 4 starts with the benchmark datasets and the evaluation met-
rics. Next, it provides ablation studies of the parameters in the proposed
framework, a comparison with other on-line trackers and discussions on the
experimental results. Finally, it discusses the possible improvements based
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on the experiment results.

Chapter 5 concludes the work and discusses the future work.

10



Chapter 2

Background

2.1 Object Detection

Despite its long history of development since 90’s [29, 35], object detection
has experienced major breakthrough since 2012 after AlexNet [24] was pop-
ularized. Several pivotal works, such as Overfeat [30], SPPNet [18], Fast
R-CNN [15], more recently Faster R-CNN [28] and Single Shot Detector
(SSD) [26] have advanced the object detection approaches in terms of both
speed and accuracy. In the following sections, the latter two works are in-
troduced due to the fact that their designs well preserve the advantages but
also compensate the shortcomings of the previous object detectors.

2.1.1 Faster R-CNN

Faster R-CNN is an object detector comprising of an object proposal gener-
ator and a detection network serving as classifiers classifying the generated
object proposals as shown in Figure 2.1. Unlike Fast R-CNN [15] relying on
an external object proposal generator, e.g. Selective Search [34], Faster R-
CNN introduces Region Proposal Network (RPN) which learns to generate
the object proposals during the network training phase. The major contribu-
tion of this architecture is that it shares the convolutional features not only
among the object proposals (as Fast R-CNN does) but also among the object
proposals and detection networks, contributing to less wasted computation
and faster inference and, in addition, higher mean Average Precision (mAP)
than Fast R-CNN on PASCAL VOC 2007 and 2012 benchmark datasets. In
Section 2.1.1.1 and 2.1.1.2 we introduce the RPN architecture and the loss
functions deviced to train RPN, respectively.

11
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Figure 2.1: Faster R-CNN network structure [28].

2.1.1.1 Region Proposal Networks

Figure 2.2 illustrates the architecture of RPN. The inputs of RPN are the
feature maps produced by the last shared convolutional layer as shown in
Figure 2.2b. To generate the proposals of different sizes and aspect ratios
and to be traslation-invariant, sliding windows of size n x n are applied over
the feature maps. In addition, at the center of each window, RPN looks
at the fixed set of multi-scale k anchors, which are of different sizes and
aspect ratios. If the width and height of a feature map are of W and H,
respectively, the total amount of anchors that RPN produces is W x H X k.
Staring from sampling &£ anchor boxes with pre-defined scales and aspect
ratios, each anchor box is pooled within a Rol pooling layer, resulting in
the pooled feature maps of fixed size, e.g.,3 x 3. Rol pooling layers enable
Faster R-CNN to take the images of arbitrary size as inputs. The pooled
feature maps of k£ anchor boxes are later on fed into a fully-connected layer
of 256k neurons as shown in Figure 2.2b. The final layers of RPN consists of
the classifiers and box regressors which produce 2k values indicating objects
versus non-objects and 4k encoded objects’ coordinates, respectively. It is
noted that RPN learns k£ sub-networks specifically on & anchors across all
locations of the sliding windows.

2.1.1.2 The Loss Function for Training RPN

Among all of the anchor boxes, those having Intersection over Union (IoU)
overlap with ground-truth bounding boxes larger than 0.7 are treated as the
positives. In case that there is no single anchor whose IoU is larger than 0.7,
the anchor with the highest IoU value is also treated as a positive. The anchor
whose IoU is lower than 0.3 is treated as a negative. Those boxes which do
not meet any of the previously mentioned conditions are not included in the
training. The loss function of RPN evaluated on the anchors (can be positive
and negative) indexed by ¢ in a mini-batch is defined as
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Figure 2.2: Tllustration of Region Proposal Network (RPN) architecture and
its "anchor boxes” concept.

L({p;,t;}) = classification loss +box regression loss
2.1
- ZLcls pzapz sz reg 17 7, ( )

cls
The first loss term is for measuring classifiation loss while the second is for
anchor box regression loss. The two losses are balanced by A and normalized
by Nus and N,.q, respectively. N is the size of a mini-batch of images while
Nieg is the number of the anchor locations. L.(-) is the negative log loss
defined over predicted probabilities p, and true probabilities p; of the box
being an object or a non-object, where

reg

ObJ* non- objx*

logpobj ‘1o ogp non- Ob] (22)

Lcls(pia p;k) =

and

(p;)bj 7 p?on ObJ) pz

where pOb and pOb denote the probability of the corresponding anchors

being an ObJGCt and pP"°" and p’°"* denote that not being an object.

pobix puon-obix 1,0) if the corresponding i** anchor box is positive and
(2 k2 g

(0,1) if it is negative.

( obj* non—obj*)
9

2 ) 17

p; =

J J*
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In the second term of (2.1), the regression loss Li.,(t;, t}) is defined over
t; and t;, where t, and t] are the predicted and ground-truth ”encoded”
bounding box coordinates, respectively, and parameterized by

ti fnd (tx,ty,tw’th)7 t;k — (t* t* t* t;:)’

x? y7 w?
ty = (2 — 4) /Wa, ty = (Y — Ya)/Pa,
tw = log(w/w,), t, = log(h/h,), (2.3)

t:; = (l’* - l‘a)/waa Z = (y* - ya)/hm
tr = log(w*/w,), t; = log(h*/ha),

where x, y, w, h denote the predicted anchor box’s center coordinates and its
width and height. z,,y,, w., he are the anchor box’s center oordinates and
its width and height. Likewise, =7,y w, h% are for the ground-truth anchor
box. t, and ¢, are parametrized to be scale-invariant to (w, h) and (we, hq),
respectively. The losses contributed by t,, and ¢, are measured by the shift of
w versus w, and h versus h,, respectively, and likewise for ¢; and t;. Then,
Lyeq(ts,t]) is defined as

g *

Lyeg(ti, t]) = ) smoothy, (t; — t3), (2.4)

JE{I7y7w7h}

where smoothy, (+) is a smooth L; loss function,

0.522 if |z] < 1,

|z| — 0.5, otherwise.

smoothy, (x) = {

2.1.1.3 Combining RPN and Fast R-CNN

To classify the object proposals generated by RPN, Faster R-CNN simply
incorporates Fast R-CNN as the detection network while sharing the convo-
lutional layers with RPN. The combining scheme of RPN and fast R-CNN
is illustrated in Figure 2.3. As shown, the feature maps of each proposal
generated by RPN are extracted from the projected Rol on the feature maps
produced by the last shared convolutional layer. Afterwards, each proposal’s
feature maps are processed by a Rol pooling layer to produce feature maps
of fixed size. The pooled feature maps are processed by sequence of fully-
connected layers and branched to the K-way softmax layer to estimate the
class probability and the box regressor to predict the coordinates of the
bounding box, where K is the number of the classes. Combining RPN and
Fast R-CNN in this manner allows sharing the features not only among the
proposals, but among the proposals and the detection network. This could
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enforce the whole network to learn more generalized feature extractors that
extract the features estimating both the objectness and distinctiveness of
each object.

AN

proposals
generated—=}

\

original shared i multi-task
mage feature maps fully-connected layers outputs
with RPN

Figure 2.3: Hlustration of the combining scheme of RPN and Fast R-CNN.

2.1.2 Single Shot Detector

Single Shot Detector (SSD) attempts to cope with object detection problem
using a single neural network. As opposed to Faster R-CNN, SSD skips
generating the object proposals (with one network) which are then classified
(with another network), and predicts the presence of each object category
straight from the pre-defined default boxes, similiar to the anchor boxes in
Faster R-CNN, on the feature maps. Furthermore, instead of relying on
feature maps the single scale to make the predictions (such as e.g. Fast R-
CNN and Faster R-CNN), SSD aggregates the predictions made at multiple
scales to produce the final detections, outperforming Faster R-CNN in mAP
on VOC2007 test by 1.1% and inference speed by 8 times.

SSD architecture is illustrated in Figure 2.4. It comprises of a base net-
work, e.g. VGG-16 net [26], followed by several extra feature layers which
are fully convolutional. Each of these six feature layers, i.e. Conv4_3, Conv?7,
Conv8_2, Conv9_2, Conv10_2, and Conv1l_2, has an auxiliary network con-
sisting of a convolutional layer serving as the classifiers at the corresponding
scale. We discuss SSD in details as follows.

2.1.2.1 Default Boxes with Different Aspect Ratios

Default boxes are tiled in the feature layers which are branched to an auxiliary
classification network. For a feature layer of size m x n (e.g. Conv4_3 is of
38 x 38), k default boxes with different aspect ratios are anchored at each of
m X n locations across the feature layers. This allows the predictions to cover
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Figure 2.4: Single Shot Detector Architecture [26]. The figure is duplicated
from [26].

a wide set of objects’ locations, aspect ratios, and scales by exploiting the
features at multiple scales. (We recommend the reader to read Section 2.2 in
[26], especially how the set of scales and aspect ratios of those default boxes
imposed in each layer are designed.) Specifically, one can obtain k predicted
bounding boxes per object class at each location on the feature maps. The
total number of predicted bounding boxes N,;1 one can gather from all the
feature layers is calculated as

Na = Z feature map_width X feature map_height X k;,
i€{feature layers}

(2.6)
where k; is the number of different default boxes at i*! feature layer. For
instance, in Figure 2.4, N, can be carried out by summing 38 x 38 x 4
(Conv4_3), 19 x 19 x 6 (Conv7), 10 x 10 X 6 (Conv8_2), 5 x 5 x 6 (Conv9_2),
3 x 3 x4 Convi0_2, 1 x 1 x 4 (Conv4_3), amounting to 8732 default boxes
per object class.

2.1.2.2 Convolutional Predictors at the Default Boxes

For k; default boxes at ' feature layer, each of them makes (4 + P) predic-
tions including the offsets A(c,, ¢, w, h) of the center’s coordinates (c,, ¢,),
width w and height h relative to the default box, and the classification scores
of P object classes, (c1,Co,...,cp). To be more specific on how the predic-
tions are made in each feature layer, for feature maps of size m x n and
depth [, the predictions are made through applying k - (4 + P) filters at each
location in the feature maps, yielding another feature maps of size m x n
and depth k- (4 + P). Hence, each location of this resulting feature map
contains (4 + P) predictions (i.e.the class scores and the shape offsets) per
default box. It is worth noting that although looked similarly, RPN in Faster
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R-CNN and the auxiliary network in SSD play different roles. The former
devices anchor boxes to generate generic object proposals, while the latter
detects the objects within the default boxes. This can be seen by comparing
the loss functions deviced in RPN; i.e.(2.2) and SSD, i.e.later in (2.8). As
a result, SSD does not require a seperate object proposal network such as
RPN in Faster R-CNN.

2.1.2.3 Training SSD

When training SSD, each default box is matched to a ground-truth box and
considered to be positive if their IoU is higher than 0.5, otherwise, it is
considered negative. SSD’s loss function is defined over all default boxes as

1
L(x,c,l.g) = —(confidence loss + localization loss
8=N

1
— N(Lconf(}g C) -+ )\Lloc(xa 17 g))

(2.7)

The confidence loss is defined over the matching indicators x and confidences
of the predictions for all object classes c. x = {7;} that each z}; = {1,0}
is an indicator for i*" default box being matched to j* grount-truth box
of p object class. ¢ = {cl'}, where ¢ is the confidence score of i*® default
box being predicted as p object class. The localization loss is defined over
the predicted bounding boxes, 1 = {II"|m € {c,, ¢y, w,h}}, and the ground-
truth bounding boxes, g = {¢"|m € {c,¢,, w,h}}, where (¢, ¢,) is the
coordinates of the center of the given bounding box, and w, h are the width
and height, respectively. X is for balancing the two losses. The confidence
loss is defined as the softmax loss over (P + 1) classes including the negative
class (p = 0), i.e.

P N
. 0y exp(;)
Leong(x,€) = — Z Z xfj log(¢&7)— Z log(&), & = m,
p ti€positives i€negatives P g
(2.8)

and the localization loss is defined similarly to the box regression loss in
Faster R-CNN as,

N
Lioe(x,1,8) = Z Z acfj smoothy, (I — g7"), (2.9)

i€positives me{cy,cy,w,h}
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where

95 = (g5 —di=)/dy, g5 = (g5 — di*)/d,
w h
. gv. q"

9y = log(d%u), 9= 10g(d—2)-

1

(dS*, d;¥, d¥, d?) are the shape parameters of a default bounding box.

(2N At A A )

2.2  Online Single Object Tracking

On-line single object tracking addresses the problem in which given the cur-
rent frame and the initial state of an object, the tracker predicts the object’s
state in the next frame. The object’s state in the context of this thesis
project is the bounding box that well wraps around the object. Tracking-
by-detection is an approach that started gaining its popularity since 2006.
The works that applauds tracking-by-detection methodology include on-line
boosting trackers [5, 16, 17], tracking-learning-detection (TLD) tracker [22],
and later on the correlation filtering tracker, such as MOSSE tracker [9],
DSST [12], kernelized correlation filtering tracker (KCF) [19], etc.

Due to their computational efficiency and effectiveness on modeling an ob-
ject’s appearance, correlation filtering based trackers have become the state-
of-the-art where their results are always ranked top on different benchmark
datasets. Hence, in the later sections, we introduce Minimum Output Sum
of Squared Error (MOSSE) tracker, which is one of the very first approaches
that apply correlation filters for the tracking problem, and Discriminative
Scale Space Tracker (DSST), which had won the Multiple Object Tracking’14
Challenge and still is able to operate in real-time on CPU.

2.2.1 Minimum Output Sum of Squared Error Tracker

Minimum Output Sum of Squared Error (MOSSE) Tracker [9] tracks an
object by first learning a filter i such that the mean square error of the desired
outputs g and the correlation of A and object templates f is minimized. Once
the learning is finished, the learned filter A is applied on the current frame to
identify the location with maximal response as the predicted location of an
object. Mathematically, assuming we have the target’s templates fi, fo, ..., fn
and the respective desired outputs g1, go, ..., gn, the learning objective is

N
h* =argmin Y || fix h— gill3, b, fi, i € RMK, (2.10)
h =1
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where M and K is the width and height of the object templates. x denotes the
correlation operator. By the correlation theorem, the correlation between two
signals becomes element-wise matrix multiplication in the Fourier domain,
specifically

fixh=F,® H,

where F; and H denote f; and h in the Fourier domain, respectively. This
helps evaluate the objective in (2.10) faster by re-formulating it with

N
H* =argmin » _||F;® H — G,|[3, and h* = F~'(H), (2.11)
L

where F~1(+) is the inverse discrete Fourier transform (IDFT) by which the
optimal h* is obtained from H*. The symbols with the bar over them denote
the complex conjugates, e.g. H.

To train a MOSSE tracker on-line, the object template f; is built by taking
the grayscale image patches around the object. The desired outputs g; are
generated by a Gaussian distribution whose mean is aligned with the center
of the object. f; and ¢; are then transformed into the Fourier domain and
followed by solving the objective in (2.11). (2.11) can be solved by equating
its partial derivatives with respect to H to zero. The solution turns to be in
closed-form, i.e.

N _
HO — Zi:l GiOF

~ —.

Zi:l E @ Fz

The superscript zero in H® simply means that H° is the filter learned ini-
tially, (2.12) can be interpreted as the mean correlation between the inputs
fi and the desired outputs g; in the Fourier domain normalized by the self-

correlation of the inputs. A regularization term can be also added in (2.12)
as

(2.12)

o A YN GOF (2.13)

B YL FoF+e |
which is simply adding an € in the denominator. To predict the target’s
location at frame ¢, the response map over a rectangle area ) is first computed

as

R:]-"‘l{FyQHt‘l}, (2.14)

where FYy is the template of the rectangle area ). Then, the predicted target’s
location can be obtained by identifying the coordinates on ) that yields the
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maximal response value. As the tracking process continues with the coming
new frames, in theory, one can learn the new filter on the target’s previ-
ous templates and the templates from the coming frame. However, solving
(2.13) grows in O(N?) when number of templates N increases. Alternatively,
MOSSE updates the filter H? after receiving the target’s template F* and
the desired output G* at frame ¢ as:

At
B’

At =nG' e Ft+ (1 —n)A™,

B'=nF'oO Ft+ (1 —n)B" 1,

Ht
(2.15)

where 7 is the learning rate. Although the whole tracking process can be run
at rather high speed (e.g. a hundred of frame per second), MOSSE does not
address the case when the ground-truth bounding box of the target changes
in size. A remedy for that is to construct a scale-space pyramid of search
windows centered at the previous target’s location. This strategy is adopted
in DSST [12], which is introduced in the next section.

2.2.2 Discriminative Scale Space Tracker

Similar to MOSSE, which exploits the correlation filter to predict the target’s
location, Discriminative Scale Space Tracker (DSST) comes with two major
improvements. Firstly, DSST estimates target’s translation by learning a
translation filter on multiple feature channels while MOSSE tracker can only
be operated on a single channel. Second, it learns a scale filter that estimates
the target’s scale explicitly, which is not directly tackled by MOSSE tracker.
In the following sections, we first in 2.2.2.1 describe how to incorporate multi-
channel features into translation filter, and in 2.2.2.2 describe how to learn
a scale filter. Finally, in 2.2.2.3 we put them all together and describe how
those filters are involved in the tracking process.

2.2.2.1 Discriminative Correlation Filters for Multi-channel Tem-
plates

For incorporating a multi-channel target’s template (i.e. multidimensional
features), the objective that learns a single-channel filter in (2.10) is adapted
to
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D N N D
{0 = argmin Y Y | fxht =gl BN DD [RGB, b, £ g € RMK
{hhhPY g =1 i=1 d=1

(2.16)

where A here denotes the regularization parameter, M and K denote the
width and height of k¢, ¢, and g. d is the subscript that indicates the d'!
feature channel of template f and filter h. With the objective in (2.16),
D filters h*', ..., h*” are learned and they regress f1, f2, ..., f? to the same
output g; for all « = 1,..., N. Likewise, filters can be learned in Fourier
domain with the correlation theorem in (2.16), and their closed-form solutions

are:

N _
d_A_g_ Zz‘:lGi@Fid

0 — - - ’

By Y L B O F 4

The subscript 0 and superscript d in H¢ mean that H{ is the initial filter

learned for the feature at d'" dimension. In frame ¢, the target’s location

can be estimated within an rectangle area ) through identifying the max-

imal value in the average response map R across the channels, where R is
calcalated as

=1,..,D. (2.17)

(D Al o FY
R:]-"l{ dBI;i,ltiA 1 (2.18)

where F§ denotes the d* channel of the template Fy from Y. Once the
target’s location has been estimated, we extract the D-dimensional tem-

plate centered around at its location in the Fourier domain, ie. F, =
{F} F?, ..., FP|F? € RM*K Yd = 1,..., D}, and generate the desired out-
put Gy € RM*K to update the filters learned in frame (¢ — 1) through (2.19).

_Al

Bg’
A;l =Gy © Ftd +(1- U)Aip
Bl=nFleo Fl+(1—n)BL, d=1,..D,

Hy
(2.19)

where 7 is the filter’'s update rate. The new target’s state can be estimated
within an rectangle area ) through identifying the maximal value in the
average response map, I, across the channels, where

D

Al o Fd

R:f—l{ngdjrf 3’}. (2.20)
t
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So far, MOSSE has been extended to handle multi-channel features which
allow DSST to fuse different features such as Histogram of Oriented Gradients
(HoG) and grayscale pixel values to learn the filters which model the target
patches. These filters are termed in [12] as the translation filters as they only
estimates the translation of the target, but not scale. In the next section, we
discuss how DSST estimates the change in the target’s scale.

2.2.2.2 Scale Estimation

DSST constructs another correlation filter, i.e. the scale filter, to estimate
the target’s scale in the current frame. To achieve this, it constructs a scale-
space pyramid of patches around the target on a fixed set of scaling ratios
r1,T9,...,7s. Each patch (of different sizes) is converted to a fixed-length
D-dimensional vector built on HoG features, where s = 1, ..., .S represents S
scales. To construct the training samples for learning a scale filter, DSST
forms a matrix U € R**? where each row comes from one D-dimensional
HoG features it just calculated. Afterwards, it constructs D training samples
vl v2 ..., vP for learning D scale filters where each sample v¢ € R d =
1,...,D, is one column extracted from U. The desired output, g € R,
is generated by a one-dimensional Gaussian peaked at the central position.
Given the training samples and the desired output, D scale filters can be
learned with (2.21), where G and V¢ are the counterparts of g and v? in the
Fourier domain, respectively. Similar to (2.20) and (2.19), the filter response
can be calculated via (2.22) and the scale filters can be updated with (2.23):

AT Gove

Hi =20 = —
"B Y2 vioviya

Vd=1,..,D, H € R®. (2.21)

D 4d d
i AL OF S
— . 2.22
R=F { Bf_l ) ,ReR ( )
AS
H — 2t
t Big
(2.23)

A =GOV + (1—n)AL,
B =nVyoVi+(1—n)B;_,Vs=1,..,S.

2.2.2.3 Tracking with Translation and Scale Filters

Here we describe how DSST utilizes the translation filter (desrcibed in 2.2.2.1)
and the scale filter (described in 2.2.2.2) to perform tracking. Given p,_;, the
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previous target location, and s, 1, the previous estimated scale of the target,
we would like to estimate p, and s;. Firstly, training samples f; trans at P;_;
and at scale s;_; are extracted for training the translation filter /i tyans. The
response [ trans € RM>*E can be calculated through (2.20) and p, can be set
to the location with maximal response on Ry trans. Secondly, training samples
fr.sca1e at P, and at scale s, are extracted for training the scale filter h; scate.
Likewise in estimating the translation filter, the response Ry sca1e € RS can
be calculated through (2.22) and s; can be estimated by seeking the location
with maximal response on R; sca1. Finally, both filters are updated with the
templates at location p, and scale s; through (2.19) and (2.23), respectively.

2.3 Online Multiple Object Tracker

A multiple object tracker (MOT) typically has to handle a number of diffi-
culties. Firstly, the identity switches, i.e. the situation in which the tracker
mistakes another target for the one it is supposed to track, may happen due
to the presence of other objects similar in their appearances. This situation
happens frequently when the test videos are taken from the street view and
other public spaces where the pedestrians wearing clothes with similar colors
and styles and /or are highly occluded by each other. Secondly, because of the
constraint of online methodology which cannot peek into future frames, the
tracklet, i.e. the tracking trajectory on the same target, may be fragmented
due to some tracking errors such as identity switches. Thirdly, if an object
has been occluded for quite some time and re-appears, the tracker should
be able to recognize and start tracking it again. To address these difficul-
ties, Nicolai Wojke et al. [36] proposed an online multiple object tracking
framework which incorporates an object detector, Kalman filter as the base
tracker, and a data association method which is based on the features learned
from a deep neural net to associate the results from detectors and trackers.
We describe their algorithm in further details in the following section.

2.3.1 MOT with Kalman Filter and Deep Assoication
Matrix

As the tracking-by-detection methodology has been shown promising in track-
ing single object over the past decade, the framework proposed in [36] ap-
plies a similar methodology, but adapts it for multiple object tracking. Their
detection-tracking flow is illustrated in Figure 2.5. A data association method
is required for associating the detection and tracking results. To better un-
derstand why and how data association is required, we take Figure 2.6 as an
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illustration. At each frame, the method runs the object detector to gather
the bounding boxes of the objects, and the tracker to estimate the state of
currently tracked objects. (Note: the tracker used in [36] is Kalman filter [8],
which will not be introduced because we do not use it in this thesis.) The
association comes in to find the correspondence of the detected and tracked
objects as shown in Figure 2.6a.

Specifically to associate the detected and tracked objects, a popular ap-
proach has been suggested among recent MOT works [36]. Firstly, an asso-
ciation matrix C' = ¢;; € R'*’, where each entry, ¢; ; defines the association
cost of object ¢ (from the tracker) and object j (from the detector), is firstly
constructed. [ and J denote the numbers of detected and tracked objects,
respectively. Secondly, the set of pairs of objects Z = {(k,n)|xy, = 1; Vk =
1,....,I,n=1,...,J} which minimizes the total association cost, i.e.

I J
association cost = Z ch-d:ri?j? (2.24)

i=1 j=1

such that

J
owyy=1, (i=1,..1
j=1

1 (2.25)
Zmid:l’ (]ZL,J)
i=1

Li,j € {07 1}7 Vi7j7

can be found by the Hungarian algorithm [10]. It is worth noting that an
association matrix can be designed based on different similarity measure-
ments on heterogeneous information such as the motion and appearance of
the objects. In [36], ¢; ; is calculated via

ciy = AW (i, j) + (1= N)dP(i, 5), (2.26)

where ¢; ; is controlled by two terms, dV(i, 5), d®(i,7), and X is used to
balance the two terms. The first term d" (4, §) is to measure the discrepancy
between the predictions made by detector and the tracker (i.e. the Kalman
filter). Assuming that the bounding box’s state obtained from detector is d;
and the bounding box’s state and corresponding covariance estimated by the
tracker are y; and S;, dV(4, j) is defined as

d(l)(z’,j) = (dj - Yi)TSi_1<dj - yi)‘ (2-27)
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Figure 2.5: The detection-tracking flow proposed in [36]. ”D” in the figure
indicates that the detector is triggered at the time frame, and ”T” indicates
the tracker is triggered.

(2.27) is actually the squared Mahalanobis distance between the Kalman
state of the i-th object and the state of the j-th object predicted by the
detector. The term d® (i, j) is to measure the dissimilarity in appearance
between the j-th detection and the history of the i-th track, i.e.

d? (i, 5) = min{1 — rTr|r) € R}, (2.28)
where R; = {r,(j)}’,izl is the set of the past L (e.g., 100) visual descriptors r,(f)
associated with track i along the frames, where ||r,(;)|| = 1. Proven to be a
rich and informative feature descriptor, descriptor r is built with extracting
the output values of a fully-connected layer in a convolutional neural network
(CNN) [36].

One major assumption of the MOT described above is that it assumes
the detector is always available in every frame. The framework proposed in
this thesis and to be described in the next section does not strictly follow this
assumption. We aim to propose a framework which utilizes the detector’s
output periodically, not assuming the availability of the object detector in
every frame for accelerating the detect-and-track process.
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(b) The data association matrix.

Figure 2.6: lustration of data association in action.



Chapter 3

The Proposed Detect-and-Track
Framework

In this chapter, we describe the proposed framework for multiple object track-
ing in detail. Our primary object of interest in this work is pedestrian, and
we do not impose any assumptions on the target object’s size, aspect ratio,
or appearance. Thereby, it is possible that the proposed framework can be
extended to different object classes. In general, we follow the framework pro-
posed in [36] but with few major adaptions. First, we replace the Kalman
tracker in [36] with DSST tracker [12]. The rationale behind this is that
when updating the Kalman state, one has to provide the measurement made
in the current frame, which is, in their case, the measurement from object
detector. Without the measurement from the object detector, the Kalman
tracker would update the state merely with the pre-modeled linear motion
[8]. As in our case, we do not assume the availability of the object detector
in every frame, hence updating the Kalman tracker with only motion pre-
diction may result in unsatisfatory result. Second, we do not train an object
detector specifically as in [36], but we employ the object detector from [3]
trained on MS COCO dataset [25] where it provides multiple detectors of
different base networks (i.e. MobileNet V1 [20], InceptionV2 [33], RFCN
[11], Faster RCNN [28]) that tradeoff the speed and accuracy [21]. Third, in
order to monitor if a tracker starts to drift or has drifted, we measure the
similarity between the patches of the tracked target in any two consecutive
frames. Fourth, to enable the tracker recover from tracking failure, we em-
ploy a simple person re-identification method that is as well based on the
same deep features. In the pursuit of a more efficient implementation, the
similarity is measured based on the deep features extracted from the network
that has been served as the base network in the object detector in use. These
modifications enable the proposed framework to detect and track the object

27
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Figure 3.1: The proposed detection-tracking flow. ”D” in the figure indicates
that the detector is triggered at the time frame, and ”"'T” indicates the tracker
is triggered.

without triggering the object detector in every frame but only periodically.

3.1 Detect-and-Track Flow

Figure 3.1 provides a high-level detection-tracking flow of the proposed MOT
framework. On the one hand, we would like to trigger the detector as in-
frequently as possible as running the detector and the tracker at the same
time induces computational burden for the system. On the another hand,
the detector should be triggered for enough times to provide sufficient mea-
surement for calibrating the tracker. This also implies that it is critical to
design a framework not sensitive to the change in the number of times that
the detector is triggered within a certain number of frames.

3.2 Multiple Object Tracking with Correla-
tion Tracker and Deep Features

In this section, we introduce the proposed detect-and-track framework by
breaking it down into several constituents. Figure 3.2 provides a high-level
description of the framework. The system maintains two types of tracks, the
active tracks and the history tracks. To begin with, each DSST tracker is
responsible for tracking a single target. In each frame, each DSST tracker
updates its target’s location while the object detector detects the presence of
the target if the detector should be triggered according to the user configura-
tion. Next, the association process takes as input the results returned from
the DSST trackers and the object detector to associate the objects. The ob-
jects that are not associated can be considered as new objects if they are not
re-identified as one of the historic objects. Finally, the poorly tracked tracks
are removed and moved to the history tracks while the associated objects



CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK?29

still remain in the active tracks. In the frames in which the detector is not
triggered, the DSST trackers are updated alone and there is no association
process. The procedures are detailed in the pseudocode provided in Algo-
rithm 1. In the following sections, we introduce the key components of the
framework.

update DSST

trackers identi
associate re-iden .'fy remove poorly tracked
- not-associated . ;
objects ) tracked objects objects
objects

periodically
detect objects

il

Figure 3.2: High-level block diagram of the proposed framework.

3.2.1 Object Detector

Recently there have been releases of varing combinations of object detectors
(i.e. Faster R-CNN [28], RFCN [11], SSD [26]) and the base networks im-
posed (i.e. MobileNetV1, InceptionV2, ResNet101, Inception-ResNet) [3, 21].
As we are pursuing the (near) real-time performance of the whole system, we
select the SSD object detector with InceptionV2 as our base object detector.
We extract person class from the detector and omit the rest of the classes.
The network structure described in Table 3.1 replaces the VGG network in
SSD. Later on, when it comes to updating the tracker, the framework re-uses
InceptionV2 as the base network to extract the features from the targets as
their auziliary templates, which is introduced in Section 3.2.2.2. From the
implementation point of view, repeatedly using the same base network avert
us from reallocating the resources (i.e. CPU / GPU memories and the time
spent on constructing symbolic graph in the deep learning framework such
as Tensorflow) that have been allocated. Thereby, even though in principle,
the choices of the base network for object detector and the generic feature
extraction can be different, we opt to have a shared base network among the
tasks to allow a more efficient implementation.

Typically the final layer of these object detectors is a soft-max layer where
each neuron’s output is non-negative and the neurons are normalized to be
summed to 1.0. Thus, those outputs can be interpreted as the probability
distribution of each object class of the object proposals. An object proposal
is classified as one of the classes (i.e. in our case, pedestrian) if the probability
of being that class is over a threshold 7%. Note that different values of 79
lead to varying recall and precision of the detector. This is discussed later in
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the next chapter.

Table 3.1: Base network structure of InceptionV2 [2]. The classification
layers have been removed as we adopt the network as a generic feature ex-
traction, hence the classification layers are not needed. Please note that the
input size and the structure are different from what is described in [33]. Our
implementation follows the one provided in [2]. Figure 3.3a to 3.3j can be
seen on page 38 to 39.

name layer filter size / stride | input size
conv2d_la 7x7 conv TXT/2 224 x 224 x 3
maxPool_2a_3x3 max-pool | 3x3 /1 112 x 112 x 64
conv2d_2b_1x1 conv I1x1/1 56 x 56 x 64
conv2d_2c_3x3 conv 3x3/1 56 x 56 x 64
maxpool_3a_3x3 max-pool | 3x3 /1 56 x 56 x 192
mixed_3b (Fig. 3.3a) | Incep. - 28 x 28 x 192
mixed_3c (Fig. 3.3b) | Incep. - 28 x 28 x 256
mixed_4a (Fig. 3.3c) | Incep. - 28 x 28 x 320
mixed_4b (Fig. 3.3d) | Incep. - 28 x 28 x 576
mixed_4c (Fig. 3.3¢) | Incep. - 14 x 14 x 576
mixed 4d (Fig. 3.3f) | Incep. - 14 x 14 x 576
mixed 4e (Fig. 3.3g) | Incep. - 14 x 14 x 576
mixed_5a (Fig. 3.3h) | Incep. - 14 x 14 x 576
mixed_5b (Fig. 3.31) | Incep. - 7 x7x1024
mixed_5¢ (Fig. 3.3j) | Incep. - 7 X7 x1024

3.2.2 Update of Trackers

Three major steps are involved in updating the trackers, (1) update the DSST
tracker, (2) update the auxiliary templates of the targets to track, and (3)
update the auxiliary templates with adaptive learning rate. As described in
2.2.2.1, DSST seeks the location with maximal response as the final predic-
tion of the target location. The maximal response (or regression score) can,
in the one hand, be interpreted as how confident the tracker is, but in the
other hand, the scores are positive numbers which are not strictly bounded
within a range, e.g. [0,100] or [0, 1]. This makes the response difficult to be
interpreted and served as a reliable measurement.
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3.2.2.1 Extraction of Auxiliary Templates and Similarity Mea-
surement

We introduce auxiliary templates and the similarity measurement of those
templates. Auxiliary templates do not interfere the update of the DSST
tracker, but provides the observation to monitor whether the DSST tracker
does lose its target or not. This is achieved by incorporating a similarity
measurement (which ranges in [0, 1]) based on deep features extracted from a
deep neural net as the auxiliary templates of the targets. As suggested in [13],
features from lower layers, in which the resolution of corresponding feature
maps are higher, are empirically found performing better in the tracking task.

Hence, to extract features that describe well the target object, we extract
the feature maps f(I*) of size 73 x 73 x 64 from the output of the max-
pooling layer, maxpool_3a_3x3, where I' denotes t-th frame. Next, we would
like to extract the features for the i-th target that lies within the bounding
box b} = {x!, yt, wt, ht}, where zf and y! denote the normalized coordinates
(with respect to the image width and height) from the top left corner. w!
and h! denote the normalized width and height (with respect to the image
width and height) of the bounding box, respectively. As b! is represented
in the normalized coordinates, one can easily find the projected coordinates
of b! on f(I') in which the feature maps F! = {ch}fzfl for b! are obtained,
where each F}, is of size W; x Hy, Cy is the number of channels and f(-)
denotes the feature map extration function. What is worth noting here is, as
each bounding box b! can be of different size, the feature maps F} has been
normalized to a fixed spatial resolution W; x Hy, i.e. Wy = 24, Hy = 24.
Next, we define the similarity between F! and F!™' by averaging the cosine
similarity channel-wise, i.e.

1
sim(F,, Fi™1) = o ZCOS(U(F;C),U(FE;l))
f c=1
(3.1)
1 Z U(FE,C> : U(Fle)
Cr = [[o(F; )l [o(Fi ]2

c=

where v(X) denotes the flattened vector of any matrix X. (3.1) captures how
similar the two targets in the bounding boxes b} and b; are on their feature
maps.



CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK32

3.2.2.2 Adaptive Update of Auxiliary Templates

A common choice of updating the auxiliary templates is via a static update
with respect to each channel in F! with a fixed learning rate v € [0, 1], i.e.

F! = yF! 4 (1 - 7)F " (3.2)

However, the static update strategy may under or over update the target’s
template when a tracker starts to drift. For instance in Figure 3.4, the tracker
starts to drift and no longer tracks the target with a satisfactory precision.
This results in the target’s auxiliary template F! being updated with much
background information instead of pixels from the target itself. Furthermore,
if a tracker completely drifts to some static area in the background, but its
auxiliary template is still updated with fixed learning rate, sim(F?, Fi™') can
always retain a rather high value and is no longer a diagnostic to tracker’s
drifting. The described situation is illustrated in Figure 3.5, which clearly
shows that the tracker is stuck at the background object.

To alleviate the over-learning issue, we provide an adaptive approach to
update the learning rate according to the current similarity measurement as
follows. To illustrate, as shown in Figure 3.6, sim(F!, F!™!) inclines to de-
crease if a tracker starts to drift away from the target. When sim(F%, Fi 1)
is of high value, although it could be that the tracker is still accurately on
target, it could as well be that the tracker has drifted and started tracking
the static object in the background from which it consistently updates the
auxiliary templates to obtain the high similarity score. With these obser-
vations, we would like update F! to keep sim(F‘*' F!) high enough if the
tracker is still on target, but to update F! less aggressively if it is already
high to avert over updating.
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Figure 3.4: The target’s auxliary template may be updated with wrong image
content when a tracker starts to drift since much background information is
included within the tracker’s bounding box.

tracker in high precision earker ater I i chilt tracker has drifted

Figure 3.5: When a tracker starts drifting away from the target, it is likely
to be stuck at a background object but still recognizes it as the target to
track so the auxiliary template is kept updating with some learning rate.
Under that case, sim(F}, F}) will retain high value and keep increasing until
it saturates to a rather high value.
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Figure 3.6: Adjusting the strategy of updating the target’s auxliary template
according to similarity measurement between F! and F!™'.

To implement this idea, we generate an adjusting rate A € [0, 1] that
adjusts the base learning rate v according to st = sim(F}, F}) before updating
F!. Given a Gaussian function N(-) parameterized by p,, 02, X is calculated
by

A =N = silpte, 02) /N (10 = pral i, 07), (3:3)
_ —llst—pall _ e —pell
where N(ﬂ = Sﬂﬂxvag) =€ e N(:u = ﬂzmwaag) =€ 27z, and
the adaptive learning rate 7Yagapt is given by

VYadapt — A - (34)

Note that the two Gaussian functions above are not probabilistic but deter-
ministic. The update of F! can be performed channel-wise by

F! = Yadapt Fr + (1 — Yadape) Fi 1 (3.5)

Figure 3.7 illustrates the case in which, given the pre-defined parameter p, =
0.8, the adjusting rate X is peaked when s! is at p, = 0.8. This leads to the
highest value that yaqape can reach and most aggressive update of F!. When s!
is away from p, = 0.8 (e.g. 0.7 or 0.9), indicating that the tracker might have
lost the target (as the left image in Figure 3.6) or the tracker is accurately
on target (as the right image in Figure 3.6), the corresponding A is close to
zero and S0 IS Vagapt- One can observe, on one hand, the this strategy would
cause the drop in s from s, however, if the tracker is still on the target
t+1

sharply, si™' would not drop dramatically even F! was not updated at the
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previous frame since the target’s appearance would not adapt much. In the
meanwhile, when sﬁ“ drops from s, e.g. 0.9 to 0.85, the adjusting rate A
gets increased accordingly, and the update becomes aggressive again. On
the other hand, if st has been already low (e.g. 0.7), the tracker might have
lost the target, resulting in A close to zero and hence nearly no update on
F!. As a result, if a tracker has been always on target, {s'}, over time ¢ are

controlled within a range of values that would not go either too high or low.

L)
ar

Figure 3.7: The illustration of the function that generates adjusting rate A for
the adaptive learning rate vagape. Given the pre-defined parameter i, = 0.8,
the adjusting rate A is peaked when st is at p, = 0.8. When s! is away from
pe = 0.8 (e.g. 0.7 or 0.9), indicating that the tracker might have lost the
target (as the left image in Figure 3.6) or the tracker is accurately on target
(as the right image in Figure 3.6), corresponding A is close to zero and so is

’Yadapt .

3.2.3 Data Association

Two major steps in the framework involves data association: (1) associating
the detected and tracked objects, and (2) associating the detected objects
and those in the history tracks for re-identifying the objects once in the active
tracks. As described in Section 2.3.1, it requires a data association matrix
defining the cost of two object being associated. Once a data association
matrix is calculated, the Hungarian algorithm can be utilized to solve the
linear assignment problem that minimizes the association cost.

The proposed data association matrix is based on three measurements:
(a) the dissimilarity of two objects measured on the deep features, (b) the
misalignment of the centers of the two objects, and (c) the IoU of the two
objects’ bounding boxes. We define each entry M|m,n] in the association
matrix M as

Mm,n] = (1 = Aag) - Mc[m, n] + Aag - My[m, ), (3.6)
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where M.[m,n| is defined based on the measurements (a) and (b), while
M¢m,n] is based on (c). Given the coordinates of two objects’ bounding
boxes b,,, b, and their centers (¢, c¥ ), (ct,c¥), respectively, A\y; controls

the weighting between two costs. M.[m,n] is calculated via

Mclm, ) = 311k )~ (e, )l /lug) + 51— To0(by b)), (37)

where 14,4 denotes the diagonal length of the video frame. Next, given the
feature maps of two objects F,, and F,,, M;[m,n] can be defined as,

My[m,n] =1— sim(F,,, F,), (3.8)

where sim(-) is defined in (3.1). Likewise in [36], we define a threshold
Ty to say the association between m-th and n-th objects is admissible if
M[m,n] < Ty;. The association of two objects is not considered valid if
not admissible even if they are assigned to each other by solving the linear
assignment problem.

3.2.4 Re-Identification or Removal of Tracks

Once the object detector detects an object, we check in the following order
whether the object should be (1) associated with a tracked object (described
in Section 3.2.3), (2) associated with an object in the history tracks, or (3)
treated as a new object in the active tracks. To check if the newly detected
can be associated with any object in the history tracks and re-identify the
corresponding track, we run the data asssociation process between the newly
detected object and all the objects in the history tracks with a different data
association matrix M, where My = M. That is, for the re-identification
purpose, we simply consider the dissimilarity between the feature maps of
the objects since the displacements and scales of not actively tracked objects
can vary much. Since My is constructed on the feature maps whose sizes
are normalized to be fixed (see Section 3.2.2.1 for details), it can withstand a
change in the scale to some certain extent. Likewise in other data association
process, a threshold T, is used to define if the association is admissible. If
the newly detected object is not associated with any objects in any track, it
will be added to the active track as a new object.

3.3 Implementation of The Framework

To ensure a reproducible implementation and provide all the bells and whis-
tles in the proposed framework, we encapsule it in this section with the
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pseudocodes presented in Algorithm 1. The details of the main steps in
Algorithm 1 are presented in Algorithm 2 to Algorithm 7.

The most outer loop of Algorithm 1 (1ine 1) loops over the video frames,
and it is followed by mainly an if-else block which executes conditionally on
whether the detector is triggered in the ¢-th frame. If there exists objects
in the active tracks, i.e. |Of| > 0, and t > 1, every tracker is updated for
every object in O firstly prior to the actions that follow (1ine 2, and see
update details in Algorithm 2). If the detector is triggered (1ines 4-16) and
detects any object, the objects in O! and O™t (i.e. the history tracks) are
checked whether they can be associated (1ines 5-6, and see Algorithm 3 and
Algorithm 4 for further details on data association). Those non-associated
objects from the detector are denoted as O™ = (’)dEt\{ngt}j, Vj (line

7). As they are treated as the new and unseen objects so far, their pl'*"

3
(how many times an object has been observed tracked or detected in the
observation span, 7**") and its observation span 7"*" are initialized to be 1
(line 8).

For objects in O, we simply increment their observation span, 7} (line
9). For those associated active tracks (lines 10-14), their pf], is incremented
by 1 to account for being successfully associated (1ine 11), and their bound-
ing boxes and feature maps can be updated with those provided by the de-

tector, i.e. bounding box, bﬁjt, and feature maps of the object, szt (lines

12-13). The updating rate, )\g;if, depends on how confident the detector is
of the object.

The objects in O™ are required to re-identify themselves from the history
tracks O™ (1ine 15 and Algorithm 6). In the case where any of them is
re-identified, the corresponding track is recovered from the history and added
back to the active tracks once again (1ine 16).

If the detector is not triggered at this frame, we simply increment p! and
T! of i-th object in the active tracks (1ine 18). Finally, poorly tracked ob-
jects are moved into the history tracks (1ine 20, see details in Algorithm 7)
while the objects that stay in the history tracks for over a pre-defined thresh-
old are rooted out permanently from the history tracks (1ine 21).



CHAPTER 3. THE PROPOSED DETECT-AND-TRACK FRAMEWORK38

(P concat (channel-wise)

conv_3x3_1x1_96

conv_3x3_1x1_64 conv_3x3_1x1_96

{conv_1x1_1x1_32

X X X

9 concat (channel-wise)

conv_3x3_1x1_96

( conv_1x1_1x1_64 ’

conv_3x3_1x1_96 ’ ‘ conv_3x3_1x1_96

X X X

conv_1x1_1x1_64 conv_1x1_1x1_64

[ conv_1x1_1x1_64

[avg,pcolingjxaj x1

conv_1x1_1x1_64

conv,1x1,1x1,64} ‘ conv_1x1_1x1_64 Evgjmling,3x3,1xl

t t ) f

6 input from maxpool_3a_3x3's output

(a) mixed_3b structure in Table 3.1
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(b) mixed_3c structure in Table 3.1
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(e) mixed_4c structure in Table 3.1
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Figure 3.3: Illustration of ”Inception modules” denoted as mixed_3b,
mixed_3c, mixed_4a to mixed_4e, and mixed_5a to mixed_5c in Table 3.1.
Those are defined in InceptionV2 implemented in [2]. Each module is la-
beled with the following format: [layer name] _[filter size]_[stride
size] _[number of channels output], e.g. conv_3x3_1x1_128 represents
a conolutional layer with filters of 3 x 3 in size, where the convolution makes
strides of 2 in both row and column directions, and the number of output
channels (or feature maps) is 128. max_pooling and avg_pooling are labeled
only with the size of the filters and strides as those operate channel-wise and
do not incur any change in the number of the channels from the input. A con-
catenation layer (i.e. concat) in the end of every module stacks channel-wise
the output feature maps from every branch.
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Algorithm 1: Multiple Object Tracking with DSST and CNN Features

(Section 3.2)

Defined:
: A data structure that stores the list of tracked objects, where
O ={0;li=1,...,|0|} and O; = {o;,b;,Fi, si,pi, T; }
0; : object id
)‘ggfzf : detector’s confidence
b; : bounding box (z;, ¥, ws, hy)
F; : features extracted from b;
Si : similarity between current F'; and that calculated in previous frame
Di : number of frames of this object being tracked successfully
T; : number of frames of this object being observed
Given:
Ot=g : active tracks in t-th frame
Ohist — & : history tracks
f) : ConvNet feature extraction function (Refer to Section 3.2.2.1)
It : t-th frame
Parameters:
rdet : detector threshold
sthres : the similarity threshold that defines whether an object is succesfully tracked
thres : the successful rate of an object having been tracked
Tthres . the count that defines the minimal observation span of whether a track should be removed
T : threshold for checking admissibility for associating newly detected objects
and objects in active tracks
Ty : threshold for checking admissibility for re-identifying objects from the history tracks
1: for frame t =1,... do
2: st,bt, F! = update_tracker(f, I, b:fl, Fffl), i=1,..,]0Y t>1 (Algorithm 2)
3: if (detector is triggered) then
4: 0%t = detect_object(It, Td°) # detect objects
5: M = compute_association_cost matrix(O%t, Of) (Algorithm 3)
6: z = data_association(M, Tys), where T = {(kj,1;)|k;,1; € N};. (Algorithm 4)
7 Onew — Odet\{ogjt}j, vj
8: prew = TPew =1, Vi, where (pPev, TPeW) € Onew.
9 Tit = Tf + 1, Vi, where Tf € oL

—_
9..

for each associated pair of objects in {Ozjt, ij }; do

11: pfj :=pfj +1

. — d d d
12: Fi = (1= OF] + e Fiet

. — d d d
13: bj = (1= AL )bl + Xl bt
14: end for , )
15: onew Ohist .— re_identification(O™e%, OMist T,) (Algorithm 6)
16: Ot .= 0ty Onew # append new objects into O
17: else
18: pt =pt+1,T! =T+ 1, if st > sthres vi=1, .., |0
19:  endif
20: Ot, OMst .= relloc_bad_tracks(O') (Algorithm 7)
21: Remove object from O™t if it has not been re-identified for some number of frames.
22: end for

/* end tracking */
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Algorithm 2: update_tracker(f, I*,bl™" Fi™1) (Section 3.2.2.2)

U W DN —

! b! = DSST_tracker_update(I?, bﬁfl)
! F! = extract_bbox_CNN_feature(f(I*), b})
: st = calculate_cosine simlarity(F}, Fi™1)

1
: F! := update_feature(F}, s!) # update features with adaptive learning rate
: return st bl F!

Algorithm 3: compute_association cost matrix(Q%!, OY)

(Section 3.2.3)

Given:
M. = Olodct‘xlot‘i cost matrix accounting for centers’ and IoU misalignment
My = 0|Od5f\><|ot\: cost matrix accounting for features’ similarity
ldgiag: diagonal length of the frame
1: for m =1,...,|0%?| do
2: forn=1,...,|0! do
3: cdet cdet ¢t cf = get_centers(bde!, bl,)
4: Me[m,n] = 3(I[(c3", ") — (ck, ch)l2/laiag) + 3 (1 — ToU(bGe?, bY,))
5: My[m,n] =1 — sim(F2¢ F!) (Refer to (3.1))
6: end for
7: end for et .
8: return M = M, - My, where M € RIO*Ix|O"]
Algorithm 4: data_association(M, T (Section 3.2.3)
1: 7 := Hungarian_algorithm(M)
2: for each tuple (k;,l;) € Z do
3: Ti=1\(ky, 1), if Mk, 1] >T # admissibility check
4: end for
5: return T
Algorithm 5: update feature(F. ™', F, st) (Section 3.2.2.2)
Given:
o7 : base feature update rate
Mo : a constant mean
o : a constant standard deviation
N(u|pz,02)  : anormal distribution PDF centered at p, and with variance o2
Lo XN = N(p = stlpa, 02) /N (1 = palpiz, 02)
. = A # obtain adaptive feature update rate
2:y =Xy p p
: L= — . + . # update features
3: Fl:= (1—y)F,"' +F! p
4: return Fi

Algorithm 6: re_identification(O"®, O"st T,;)  (Section 3.2.4)

1:

2
3
4:
5

M = compute_association_cost matrix(O"ew, Ohist)
! T := data.association(M, Ty), where Z = {(kj,;)|k;,l; € N};.
. assign the same object id as Olh_”t to Opew, vy

J J

remove j-th object from Olhvis’f, Vi
J

. assign new object id to the objects in O™ which are not associated.
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Algorithm 7: relloc bad tracks(O!, Ost)

1: fori=1,..,]0% do

2:  T! =min(T}, Thes)
t

3: if T} = T*"res and Z& < p'hves then
i

= . # remove poorly tracked object from active tracks

4 0 := 0"\0; poorly i

5: Ohist .= Ohist u ot # add it into the history tracks

6: endif

7: end for

8: return Of, Ohist




Chapter 4

Experiments

This chapter aims to provide the empirical study on the proposed framework,
analyzing its strengths and weaknesses in order to offer insight of how to
improve it in the future. To begin with, we introduce the dataset used
and explain the evaluation protocols used throughout the experiments in
Section 4.1. Next in Section 4.2, we conduct the ablation studies on the
parameters which are the most vital ones in the framework regarding the
tracking performance. Several experiments are made in the way that one
parameter or one set of parameters is treated as a variable while the rest are
kept fixed to examine the effect of varying those parameters. This strategy
enables us to understand how each parameter affects the performance as well
as keeps the search space of the variables within reasonable size. Finally in
Section 4.4, we provide a discussion and reasoning of the results.

4.1 Evaluation Dataset and Protocols

MOT Challenge 2016 (MOT’16) offers 14 video sequences evenly divided into
seven training and seven testing sequences summarized in Table 4.1. The
target class of the evaluation focus is pedestrian. Particularly, in MOT’16
challenge the pedestrians who are static (e.g. sitting or standing without
moving), behind the glasses, in the reflection, or in the vehicles are omitted
and not considered in the evaluation. Thus, constantly moving pedestrians
are the only left. The videos are taken in unconstrained public spaces (e.g.
open streets, shopping malls, squares, etc.) that are usually crowded. Some
cameras are installed in driving vehicles, some are carried by a walking per-
son, and some are stationary. Challenges including wide variety of sizes,
orientations, walking speeds, and heavy occlusions make the dataset realistic
and to highly correspond to the real-world applications.

43



Table 4.1: Summary of MOT’16 training and test sets.
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training set test set frame rate (fps) | camera
MOT16-02 | MOT16-01 30 static
MOT16-04 | MOT16-03 30 static
MOT16-05 | MOT16-06 14 dynamic
MOT16-09 | MOT16-07 30 dynamic
MOT16-10 | MOT16-08 30 static
MOTI16-11 | MOT16-12 30 dynamic
MOT16-13 | MOT16-14 25 dynamic

Noted in [27], it is difficult to quantify a MOT tracker’s performance or
capture the charateristics of the tracker with a single metric. Among all the
existing metrics that are designed for assessing MOT systems, CLEAR met-
rics [32] and the metrics introduced in [37] have been the most widely used.
Please note that even these metrics are the most trendy in the recent MOT
works and treated as the standard measures, but the research of standarizing
the metrics for MOT problem is still ongoing [27]. In MOT’16, those metrics
are used altogether to assess the overall performance while the trackers can
be ranked by their average ranking calculated from the ranks with respect
to each individual metric. In the following, we walk through the formal def-
inition of every metric included in MOT"16.

True Positive (TP), False Positive (FP), False Negative (FN): These are
the most common metrics quantifying the hypotheses made by the tracker.
TP measures whether the hypotheses are matched to the annotations while FP
measures if they are false alarms. FN measures the misses of the hypotheses
with respect to the annotations. Either metric is counted when the IoU is
less than 0.5 as suggested in [27].

Precision (Precision), Recall (Recall): Precision is defined in (4.1),
reflecting how relevant the predicted bounding boxes are to the ground-truth
bounding boxes. Recall is defined (4.2):

TP
TP + FP

Precision =

TP

Recall =
number of ground-truth bounding boxes
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Identity Switch (IDs): IDs counts the mismatching error which happens
when an annotated target x is matched to a track y in frame t—1 but matched
to another track z,z # y in frame ¢t. Note that IDs alone may not inform
the tracker’s overall performance as it usually correlates with the number of
annotated tracks. Hence, one can instead look at the ratio of IDs to the
recall when needed. Note that throughout the experiments, we still report
the raw IDs as Recall is also reported.

Fragmentation (FM): A fragmentation is counted when a track is inter-
rupted for some frames and recovered either with or without ID switches.

Multiple Object Tracking Accuracy (MOTA): MOTA considers three sources
of metrics to assess the overall accuracy of a MOT tracker across the frames.
More formally, it is defined as

> .(FN; + FP, + IDs;)
>, GTy ’

where the subscript ¢ denotes the frame index and GT; denotes the number
of objects in frame t. Note that it is possible that MOTA value is below zero
while its maximum is 1.

MOTA =1 —

(4.3)

Multiple Object Tracking Precision (MOTP): MOTP measures in aver-
age across all frames how well do the tracker’s outputs overlap with the
annotations. More formally, it is defined as

Zt,i dtﬂ

D¢
where ¢, is the number of annotations in frame ¢t and d;; is the IoU value of
the target ¢ and its assigned annotation. In short, MOTP is used to measure

the localization accuracy of a system where the detecter and the tracker work
collaboratively with each other.

MOTP = (4.4)

Number of Ground-Truth Tracks (GT), Mostly Tracked (MT), Partly
Tracked (PT), Mostly Lost (ML): A track is said to be mostly tracked if
over 80% of its annotations along the track are matched correctly to the
tracker’s outputs, while it is said to be mostly lost if under 20% of its anno-
tations along the track is matched correctly, otherwise it is classified as partly
lost. We define MT, PT, and ML as the percentage of each quantity (i.e. the
numbers of mostly tracked, partly tracked, and mostly lost) to the number
of grount-truth tracks, GT.
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Tracker Ranking (TR): TR does not reflect the overall performance of a
MOT tracker, but provides a relative figure that ranks the trackers by com-
paring the average ranking. The average ranking is calculated according to
the rank made by each individual metric (IDSW, MOTA, MOTP, etc).

In the following section, we provide ablation studies on how do the dif-
ferent parameters in the proposed framework affect each metric.

4.2 Parameter Selections and Ablation Stud-
ies

In this section, we conduct parameter selection and ablation studies on
MOT’16 training set which includes in total seven sequences. To avoid ex-
haustively searching over all possible combinations of parameters, we adopt
the following strategy to search the parameter space defined by those of the
highest impacts on the framework. The options of the parameter values are
enlisted in Table 4.2.

As suggested in the literature [27, 36], the overall tracking performance
is highly dependent on the detector’s performance. Hence, we start explor-
ing the parameter space by varying the values of the detection threshold
79 while fixing other parameters. We select the value that results in the
best MOTA score as MOTA encapsulates more measures together than other
metrics introduced in Section 4.1, including three critical measures: false
negative rate, false positive rate, and how many times has object identity
been switched. Next, we vary the pair of values of (T p'hres) and keep
the rest fixed, while the value for the detector threshold is set to be the best
one picked previously. The same process continues with (p, s7¢%), Ty, and
T, respectively in turn.

The selection process finally yields one set of values for all the parameters.
During the process, one can observe the impact of each varying parameters
as the other parameters stay unchanged. This can offer the insight on how
significant each parameter is to the framework. Apart from the parameters
in Table 4.2, we would also like to examine how sensitive is our framework
to the availability of the detector, i.e. triggering the detector in every n
frames, where n = 1 and 3, in the videos. Tables 4.3 and 4.4 summarize the
experiments, parameters and the corresponding sets of values to be examined.
In the following subsections, we report how the systems with n = 1 and 3
perform under varying (1) 79 (2) (Tthres pthres) (3) (u,, sres), (4) Ty,
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and (5) Ty, respectively.

Table 4.2: A table of parameters to be studied.

Parameter Name Used in

Threshold on accepting detections
from the detector

7_det

Algorithm 1: 1ine 4

sliding observation span / threshold
Tthres / pthres | on the ratio of the span of an object | Algorithm 7
being tracked and observed

mean of the Gaussian function used
in adaptive feature update / threshold

Ho [ 817 on the similarity that defines if two Algorithm 1: line 18
objects are the same one

Ty threshold on association cost Algorithm 1: line 6

Ty threshold on re-identification cost Algorithm 6

Table 4.3: Experiment strategy for conducting parameter selections and ab-
lation studies. The dash (—) in each row means the variable(s) whose values
are chosen from Table 4.4. Each of five sets of experiments, from A to E,
finds optimal value(s) for a parameter or a set of parameters. For instance,
experiment A finds 7% the optimal values for variable 7%, 79 is then
brought to the experiment B and fixed along with (u,, s7¢%), Ty, and Ty.
The same process repeats for the experiments C, D, and E.

EXp. Tdet Tthres’ pthres Lz Sth’/‘es Ty | Ty Output
A | — (10, 0.75) (0.86, 0.8) | 0.3 | 0.2 7t
B [ 7% — (0.86, 0.8) | 0.3 [ 0.2 | (T7"e, pFres)*
C 7_det* (Tthres’ pthres)* - 0.3 0.2 (,ux’ Sthres)*
D 7_det>s< (Tthres’ pthres)* ('ux’ Sthres)* - 0.2 Tj\k/[
E Tdet* (Tthres’ pthres)* (:u:vu Sthres)* T]T/[ - T;

4.2.1 Experiment A: Varing Detector Thresholds 79

As known, SSD’s classification layers are the layers that do softmax opera-
tions which yield the probability of each object proposal for each object class.
We interpret the probability of each object class as the confidence score of the
detector on the corresponding class. As the object of interest is pedestrian,
we only extract the probability score of the pedestrian class, comparing it to
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Table 4.4: Following Table 4.3, this table provides the values for the param-
eters to be selected in each experiment from A to E.

Exp. Parameter Values to be experimented

A et 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
(10, 0.5), (10, 0.75), (15, 0.5), (15, 0.75),
(20, 0.5), (20, 0.75), (25, 0.5), (25, 0.75),
(30, 0.5), (30, 0.75)
(0.82, 0.74), (0.82, 0.76), (0.82, 0.78),
(0.84, 0.76), (0.84, 0.78), (0.84, 0.80),

B (Tthr657 pthres)

C (Mah Sthres)

(0.86, 0.78), (0.86, 0.80), (0.86, 0.82)
D Tor 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4
E T 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4

a pre-defined detector threshold, 7€, and accept it as a pedestrian only if it
is larger than the threshold. Small detector thresholds can lead to more true
positives but as well more false positives. On the contrary, large 7% can
lead to fewer true positives but more precise detection results and less false
positives. In the MOT’16 sequences, many pedestrians are rather small, i.e.
the minimum height of the pedestrians’ bounding boxes can be 19 pixels [27].
The tracking performance can be affected by either too many false positives
(e.g., non-pedestrian objects or static background) or imprecise detections
(i.e. bad localization of the object) that could get the tracker drifted easily.
Thus, to select a sensible 7% is the main focus in this subsection.

Figure 4.1 shows the results in experiment A listed in Table 4.3 and
Table 4.4. The increase of 7% leads to decrease of FP and increase of FN.
In Figure 4.1a, MOTA score increases with the increase of 7% as FP decreases
faster than FN increases. MOTA peaks at 0.6 and start to saturate or descend
when both FP and FN starts to saturate. As expected, while larger 7%
obtains larger Precision, it obtains poorer Recall as shown in Figure 4.1d,
leading to a significant ascent in ML and descent in PT and MT. What is worth
noting is that the drop of IDs and FM in Figure 4.1c with increased 7% does
not indicate that a larger 7% would result in better tracker’s performance.
The drop is simply an effect of the fact that fewer present tracks can be
correctly identified, hence resulting in a smaller number of cases when the
object identity is switched or the tracks are fragmented along the predicted
tracks.

Comparing the n = 1 and n = 3 case among all the metrics, the n = 1
case consistently shows improvement in MOTA, MOTP, FP, and FN although not
significantly. The n = 3 case outperforms the n = 1 case in Recall, but falls



CHAPTER 4. EXPERIMENTS 49

short in Precision. In terms of MT, PT, and ML, there is no clear indication
of which case is consistently better.

Tthres thres

4.2.2 Experiment B: Varying and p

Here we analyze the significance of T and pth"s | where T7es x (1 —pthres)
defines the maximal number of frames that is allowed to not to be tracked or
detected within a sliding window of T frames. Hence the larger the p*""
is, the more easily a track will be removed from the active tracks. Having a
reasonable amount of tolerance to noisy results from the detector and tracker
can help keep the track active and at the same time get rid of false positive
tracks. Specifically, if Tt x (1 — pt'es) is large, we may keep most of the
tracks active, but possibly introduce more false positives, since each track is
allowed to have more failures within a longer span.

Figure 4.2 shows the results under varying 7%"¢* and p
MOTA, the n = 3 case is shown more sensitive to the varying T%"¢* and p
than the n = 1 case. Shown in Figure 4.2a, MOTA in both cases declines when
(1) phres varies from 0.75 to 0.5 given any T and (2) T grows. In
Figure 4.2b, the n = 1 case shows stable in both FP and FN under varying
variables while the n = 3 case appears more sensitive to p** and obtains
a lower FP with p'"¢ being 0.75. FN in both cases appears to be insensitive
to the variables. In Figure 4.2c, both cases show declination in IDs and FM
when the sliding observation span T grows with fixed p*¢. When T*"¢s
is fixed, IDs and FM noticeably rise when p'"* goes from 0.5 to 0.75. Next
in Figure 4.2d, Recall and Precision in n = 3 case appears to be sensitive
to p'"res under fixed T, Finally in Figure 4.2e, the n = 3 case slightly
outperforms the n = 1 case in MT, PT, and ML. To recap the experiment results,
the n = 1 case, in which the detector is triggered every frame, appears to be
less sensitive to 7% and p*"m** and slightly outperforms the n = 3 case in
most of the metrics.

thres T terms of

thres

4.2.3 Experiment C: Varying s, and s/

The role of pu, is to prevent over-updating the auxiliary templates introduced
in Chapter 3.2.2.1. The adaptive learning rate Yagapt is dependent on fi,, and
the update takes most of its effect only when the similarity measure between
auxiliary target templates in the previous and current frames is close enough
to p, (Please refer to Section 3.2.2.2 for more details). s defines the
threshold by which a target is accepted as tracked. These two parameters
are selected together as the similarity measure between auxiliary templates
of a successfully tracked target stays within a range from pu,. If a tracker
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Figure 4.1: Experiment A: The proposed framework’s performance under

varying 7%
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has drifted and the auxiliary templates are updated properly, its similarity
measure can drop dramatically from p,. Hence we pick the values for st
which are below but close enough to p, in order to capture the drop of the
similarity measure whenever a tracker starts to drift.

Figure 4.3 shows the results under varying p, and s . Firstly, from
Figure 4.3a, it shows that the n = 3 case slightly outperforms the n = 1
case in MOTA and achieves nearly equal performance in MOTP. Next, from Fig-
ure 4.1b, FP and FN vary only subtly with varying ju, and s, Figure 4.3c
shows that the n = 1 case suffers from more ID switches and fragmentations
than the n = 3 case. In addition, the n = 1 case, in most of the experiments
under the same variable values, tends to obtain higher Precision and lower
Recall. Last, shown in Figure 4.3e, the performance curves of the n = 1
and n = 3 cases appear to be much similar to each other except that at
(fta, 8"e%) = (0.88,0.84), the n = 3 case obtains slightly lower ML and higher
PT.

thres

4.2.4 Experiment D: Varying Ty,

The parameter T}, controls how strict it is to associate the detected objects to
the objects in the active tracks. Allowing larger T); may result in more wrong
associations, causing more identity switches and fragmentations. Smaller T},
can make the association too strict, failing to associate the detected objects
to any of the active tracks when needed, causing as well identity switches
with new object IDs being created. This theory is also suggested in the
experimental results shown in Figure 4.4. For instance, in Figure 4.4a, MOTA
from both n = 1 and n = 3 cases peaks at 0.2 and decreases as T); goes
either smaller or larger.

In Figure 4.4b, while the lowest FN and highest FP are located at where
Ty = 0.1, FN starts to increase and FP starts to decrease when T); rises. This
indicates that one can find a tradeoff between FN and FP by adjusting T,.
Hence, as FP starts to saturate from T); = 0.25 onwards while the FN still
increases, the best performance in terms of FN and FP combined is suggested
to be at around T; = 0.25 in both the n = 1 and n = 3 cases.

Next, Figure 4.4c shows clearly that when T}, = 0.25, which is the halfway
between 0.1 and 0.4, the tracks suffer the least ID switches. Although FM
reaches the lowest at T); = 0.35 instead of at around T, = 0.25 in both
cases, it is still suggested that in terms of FM and IDs, the best performance
is reached at around T); = 0.25 as FM’s curves appear to be less sensitive to
Tys and thus makes less impact than IDs.

Next, in Figure 4.4d, while similar trends are shown in Recall in both
n = 1 and n = 3, they behave differently in Precision. The Precision
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