
React Native Performance
Evaluation

Rasmus Eskola

School of Science

Thesis submitted for examination for the degree of Master of
Science in Technology.
Espoo 29.05.2018

Supervisor

Prof. Antti Ylä-Jääski

Advisor

MSc Tuomas Paasonen

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/159158537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright © 2018 Rasmus Eskola

Aalto University, P.O. BOX 11000, 00076 AALTO
www.aalto.fi

Abstract of the master’s thesis

Author Rasmus Eskola

Title React Native Performance Evaluation

Degree programme Computer, Communication and Information Sciences

Major Security and Cloud Computing Code of major SCI3084

Supervisor Prof. Antti Ylä-Jääski

Advisor MSc Tuomas Paasonen

Date 29.05.2018 Number of pages 54+1 Language English

Abstract
Smartphones have become an ubiquitous device for people, and there are multiple
mobile platforms to choose from. For mobile developers this means more work, as
they will need to learn the tools and technologies unique to each platform, and
develop their application separately for each platform. Cross platform tools such
as React Native promise a solution where developers can use the same tools and
technologies across different platforms.
A React Native application is essentially a JavaScript application that controls
native user interface components. As such, a React Native application has to
perform more background work compared to an equivalent native mobile application.
This thesis studies whether React Native carries any meaningful performance
penalties with it on the Android platform, and whether it is possible to work
around these problems. It aims to provide some insight into the performance figures
of React Native for both developers considering the technology and researchers
wanting to do further research. Methods for measuring application launch times,
render latency of components, navigation latency and list scrolling are presented.
In all but the last case, the measurements can be directly compared between a
React Native and an Android application to find out the exact overhead of React
Native in each situation.
The findings indicate that React Native does incur meaningful performance penalties
compared to native code. In many cases the performance hit is not significant
enough to cause user frustration, but especially on older devices common operations
such as application launch and component rendering are noticeably slower and
may have up to 10 times longer latency than the native equivalent. On modern
devices the overhead of React Native is less noticeable, making React Native a
better fit when targeting newer hardware.

Keywords React Native, Mobile, JavaScript, Cross-platform, Performance,
Benchmark

Aalto-universitetet, PB 11000, 00076 AALTO
www.aalto.fi

sammandrag av diplomarbetet

Författare Rasmus Eskola

Titel React Native Performance Evaluation

Utbildningsprogram Data-, informations- och kommunikations teknik

Huvudämne Security and Cloud Computing Huvudämnets kod SCI3084

Övervakare Prof. Antti Ylä-Jääski

Handledare DI Tuomas Paasonen

Datum 29.05.2018 Sidantal 54+1 Språk Engelska

Sammandrag
Smarttelefoner har blivit allestädes närvarande bland folk, och det finns flera
olika plattformer att välja mellan. För mobilutvecklare innebär detta mera arbete,
eftersom de måste behärska diverse plattformers unika verktyg samt teknologier, och
dessutom utveckla sina applikationer för varje platform skilt. Plattformsoberoende
teknologier som t.ex. React Native erbjuder en lösning som möjliggör användningen
av samma verktyg och teknologier för flera olika plattformer.
En React Native applikation är i grund och botten en JavaScript applikation som
kan rita upp nativa användargränssnittskomponenter. Detta betyder att en React
Native applikation är tvungen att göra mera arbete jämfört med en nativapplikation.
Detta diplomarbete undersöker om huruvida React Native har några betydelsefulla
prestandaproblem på Android plattformen, och om det är möjligt att kringgå
sådana problem. Arbetets syfte är att ge en insikt i React Natives prestanda åt
utvecklare som överväger att använda teknologin, samt åt forskare som vill göra
vidare forskning inom ämnet. Metoder presenteras för att mäta applikationers
starttid, komponenters ritningstid, latens i hantering av navigation, samt rullandet
av en lista. I alla utom det sista fallet kan resultaten jämföras direkt mellan
React Native och Android, vilket ger oss exakt information över hur mycket extra
beräkningstid React Native behöver i respektive situation.
Undersökningen påvisar att React Native är betydligt långsammare än nativkod
i vissa fall. Ofta är skillnaden inte tillräckligt stor för att orsaka frustration hos
användaren, men speciellt på äldre telefoner kan vanliga händelser som applika-
tionens starttid eller komponenters rittid vara till och med 10 ggr. långsammare i
en React Native applikation jämfört med en ekvivalent Android applikation. På
moderna telefoner är skillnaden mellan React Native och nativkod inte lika stor,
vilket gör att React Native passar bättre in ifall applikationens målgrupp använder
nyare hårdvara.

Nyckelord React Native, Mobil, JavaScript, Plattformsoberoende, Prestanda

5

Contents
Abstract 3

Abstract (in Swedish) 4

Contents 5

Abbreviations 7

1 Introduction 8
1.1 Problem statement . 9
1.2 Research questions . 9
1.3 Structure of the Thesis . 10

2 Background 11
2.1 Latency in user interfaces . 11
2.2 Native applications . 12

2.2.1 Android . 12
2.2.2 iOS . 13

2.3 Related popular cross-platform frameworks 13
2.3.1 Apache Cordova / PhoneGap 14
2.3.2 Xamarin . 15

2.4 React and React Native . 16
2.4.1 React Components . 16
2.4.2 React Native . 17
2.4.3 React Native bridge . 18
2.4.4 React Native component abstractions 19

2.5 Related work . 20
2.5.1 Evaluations of hybrid app frameworks 20
2.5.2 Evaluations of React Native 21
2.5.3 Similar performance evaluations 21

2.6 Scope . 21

3 Methods 23
3.1 Measuring application launch . 23
3.2 Benchmarking React Native components 24

3.2.1 Problems with console logging 24
3.2.2 Collecting timestamps from JavaScript 25
3.2.3 Comparing React Native components 26

3.3 Native Android vs React Native components 26
3.4 Visual inspection . 27

6

4 Implementation 28
4.1 Application launch . 28
4.2 React Native components . 28

4.2.1 Measuring bridge traffic . 28
4.3 Native Android vs React Native . 29

4.3.1 Fundamental components . 29
4.3.2 Navigation . 33

5 Results 35
5.1 Application launch . 35
5.2 React Native components . 37

5.2.1 List components . 37
5.3 Native Android vs React Native . 40

5.3.1 Fundamental components . 40
5.3.2 Navigation . 44

6 Discussion 45
6.1 Application launch . 45
6.2 React Native components . 46

6.2.1 List components . 46
6.3 Native Android vs React Native . 46

6.3.1 Fundamental components . 46
6.3.2 Navigation . 47

6.4 Summary . 48

7 Conclusions 50

References 51

A App launch measurement automation script 55

7

Abbreviations

Abbreviations
UI user interface
GPU graphics processing unit
FPS frames per second
JS JavaScript
API Application Programming Interface
CLI Command-line Interface

8

1 Introduction
Smartphones have become an ubiquitous device with an important place in people’s
everyday lives. Wherever we go, we carry our smartphones around, and they are
always ready to perform day-to-day actions such as messaging, entertainment, pay-
ments and so on. Largely what sets modern smartphones apart from older feature
phones is the easy ability to run third party applications or “apps”, expanding the
possibilities of what can be done with the device.

From the user’s standpoint this is great, as there are plenty of apps available
for the user’s platform, and they can be sure to find an app for almost any need.
However, with multiple mobile platforms to target, each with their own set of tools and
programming languages, this presents a problem to the app developers. Developers
need to essentially write the same app multiple times, once for each platform. With
Microsoft phasing out Windows Phone [46], there are now two big smartphone
platforms remaining: Android by Google and iOS by Apple [7]. This means that
third party developers writing apps have to support two separate platforms if they
want to reach the vast majority of smartphone users.

There have been several solutions attempting to remedy this situation, with
frameworks such as Cordova and PhoneGap being driving forces behind the hybrid
apps concept. They work by embedding a web browser into an app, allowing app
developers to write their apps using HTML elements, CSS and JavaScript. These
solutions allow a large amount of code sharing between platforms, but the downsides
are poor performance and a lack of native feel in the apps [32] [49].

A more recent development provides a middle ground between hybrid apps and
native apps. Instead of writing the entire application in a web browser environment
using JavaScript, HTML and CSS, developers can write the application code in
JavaScript and let it control native UI components instead of browser elements. React
Native by Facebook is a framework that works in this manner. It allows writing
application code in JavaScript, and rendering the user interface (UI) from JavaScript
using native UI components of the mobile platform. The advantage compared to
hybrid apps is that React Native uses true native components instead of HTML
elements, and as such React Native apps will be more responsive and feel more like
a native app rather than a web page [36].

React Native is based on React, which in turn is a library for rendering user inter-
faces in web browsers. A core idea of React is to abstract away the Document Object
Model (DOM) of the web platform. Instead, React developers deal with functional
units called React components. React automatically computes and performs only
the necessary changes to the DOM tree based on the output of these components.
[47] React Native builds on this concept, but instead of rendering HTML elements
to the web browser’s DOM, React Native will render native user interfaces using the
same fundamental UI components as native mobile apps do.

A major advantage of applying React’s component model to mobile apps is the
ability to use common tools and technologies across mobile platforms, while still
maintaining the native look and feel of the apps. Developers can share a majority of
their codebase across platforms supported by React Native [27], and they are able to

9

use JavaScript and React to build their cross-platform application.

1.1 Problem statement
While React Native promises performant applications, there is still some overhead
involved compared to truly native applications. The application’s code runs inside of
a JavaScript virtual machine which handles all the app logic, orchestrates the UI,
makes simple computations, etc. After all of this has been done, the results need to
be sent over to the native thread, where the UI can finally be rendered with new
results. Time spent doing this work adds up, and could potentially have been done
faster in native code.

Most mobile phones today run their display at a refresh rate of 60 Hz [38] , which
also sets a target for how often applications should render a new frame in order to
appear responsive and smooth. Even though a React Native application may be less
performant than a truly native application, it won’t matter appearance-wise as long
as it manages to hit 60 frames per second (FPS).

Another important factor is latency, or the time it takes from user input until
the device has responded in some way. In the history of the computer science field,
many studies have been conducted on the impact of latency in user interfaces. It is
important that latency stays as low as possible, or the user will be distracted from
their task at hand and may get frustrated [42]. For React Native this means that
there is not much room for additional latency as compared to the native platform, and
ideally a React Native application should respond as quickly as a native application.

Naturally there are other factors to performance than the framerate and latency
of an application. Other problems include battery life drain, cpu usage, memory
usage and disk space requirements. In this study we will be focusing on latency,
framerate and tasks that cause the framerate to drop below 60 FPS. Dropping below
60 FPS causes extra latency, which means that the user will experience a slowdown
and the app will appear unresponsive [34].

Not much research exists on React Native’s performance specifically yet. This
study aims to shed some light on the subject by testing and comparing common
UI components in mobile apps between truly native apps and React Native apps.
We measure how long these components take to render as well as how long they
take to react to user input both in native and React Native apps. We also compare
various React Native components to see which is most suitable for a certain situation.
Common components to be tested include basic text views, lists of data, interaction
with basic mobile UI components such as buttons and scrollable views.

1.2 Research questions
This thesis will attempt to clarify the performance impacts behind React Native
compared to native code. The aim is to provide insight into performance aspects
of React Native so that developers can make more informed decisions about the
framework, and to work as an aid for further React Native research.

The research questions can be summed up as follows:

10

• Is there a meaningful hit to performance when using React Native?

• Are there any ways to work around common performance problems in React
Native?

1.3 Structure of the Thesis
This thesis contains seven chapters. The first and second chapters introduce the
subject, as well as discuss existing related work. Chapter three explains the methods
used for collecting data. Chapter four goes into the implementation details of the
used methods. Chapters five and six evaluate and discuss the results, and chapter
seven concludes the work.

11

2 Background

2.1 Latency in user interfaces
Latency can be measured as the time it takes for a system to respond to a given
input. There are many components contributing to the overall latency of a device.
Consider a simplified example of the many steps involved when a user navigates to
another view in a smartphone application:

1. User taps on a navigation button

2. Touch is registered by the touchscreen

3. Event traverses operating system drivers

4. Event traverses windowing and UI toolkits

5. Event reaches application which acts upon event, loads another view

6. View eventually loads, graphics subsystem draws new frame

7. Finished frame is flipped to the display

8. Display driver sends new signal to pixels, pixels start updating

9. User sees updated image

Every step in this example introduces latency. For example, the operating system
might have other tasks to perform, and thus may not process the touch events
instantly. The display has a set refresh rate of usually 60 Hz and can only receive
new frames every 1/60th of a second, meaning that flipping the newly drawn frame
might have to wait for a short period of time until the next vertical synchronization
of the display. The display pixels have a physical response time which means that
they will not update instantaneously. All of these example steps add up to form the
overall latency of the device.

Fundamental studies on computer systems and response times have been done
by Robert B. Miller in 1968. The work cites estimated response times of up to two
seconds being acceptable for various tasks where the user expects an acknowledgement
from the computer. However certain tasks such as typing requires that the letters
show up on the display within 200 ms [42]. In a 1984 study by Shneiderman, sub-
second response times are cited as having a positive impact on user productivity
[45].

As computing experiences become more and more interactive, our expectations
for latency seem to go lower and lower. While the fundamental studies cite seconds
as acceptable response times even in interactive scenarios, a more recent study by Ng
et al. concludes with an interesting fact they noted in their user tests. After using a
custom touch screen with extremely low latency, some subjects reported that the
tests “broke” their ability to use everyday touch screen devices, as they now found

12

the consumer devices’ latency completely unacceptable [43]. This indicates that our
perception of latency is controlled to some extent by our expectations as well as the
latencies we are used to seeing from the devices we use.

A 2011 study by Anderson et al. attempts to find out how much latency in a
tablet touch screen is tolerable by the user. Their findings indicate that a significant
amount of subjects found latency figures of 580 ms too high for gestures like page
turning, web browsing and photo viewing/selecting, however they also note that
tablets were new at the time and that this might have skewed the users’ perception
slightly [24]. Another study by Ng et al. shows that response times of down to 20
ms are needed for the user to perceive the response as instantaneous [37].

2.2 Native applications
Writing applications using each platform’s native environment is expected to perform
the best and display the lowest response times. Apple and Google have concentrated
on optimizing their developer tooling and environments to have applications perform
as well as possible on their platform.

2.2.1 Android

The Android ecosystem is vast, and supports various different processor architectures.
The latest version of the Android Native Development Kit (NDK r16b at the time of
writing) officially supports the following Application Binary Interfaces [1]:

• armeabi (ARMv5, ARMv6 architectures. Deprecated)

• armeabi-v7a (ARMv7-a architecture)

• arm64-v8a (AArch-64 architecture)

• x86 (IA-32 architecture)

• x86_64 (x86-64 architecture)

• mips (MIPS32r1 and later architectures. Deprecated)

• mips64 (MIPS64r6 architecture. Deprecated)

The large amount of supported compilation targets makes it infeasible to develop
and ship native code for each third party application. Instead, Android uses Java
with its own Dex bytecode format [30]. As of Android 5.0, the Android Runtime
(ART) has replaced the Dalvik virtual machine. ART uses ahead-of-time (AOT)
compilation at application installation time, in order to compile Dex bytecode into
the target platform’s native code for improved performance [48]. It is possible for
Android applications to ship native code for parts of the application where needed.

13

2.2.2 iOS

Apple has fewer architectures to target than Google’s Android, and so iOS applications
consist of binaries with native code instead of bytecode. The main programming
languages for iOS applications are Objective-C and Swift [41], both of which are
compiled to native code.

According to StatCounter GlobalStats, in April 2018 the iOS operating system
had a global market share of 19.23% while the same number for Android was at
75.66%. StatCounter GlobalStats collects this data via web analytics on more than
2 million web sites [10]. IDC has done a similar analysis for 2017Q1, with iOS at
14.7% and Android at 85.0% [7].

2.3 Related popular cross-platform frameworks
It is difficult to find reliable and non-biased data on the popularity of programming
languages and frameworks. The TIOBE index attempts to identify the popularity of
Turing complete programming languages. They do this by collecting the number of
search hits to a query like “+ programming” on popular search engine sites [14]. In
the TIOBE index for April 2018, JavaScript placed 8th on the index with a rating of
3.492% and a change of +0.64% from the last TIOBE results [21].

In January 2018 the Stack Overflow developer community website conducted a
survey on over 100,000 of its developers. The survey asked about which technologies
the participants’ are using, as well as which technologies they like most or would like
to use [20].

While web frameworks like Node.js, Angular and React were at the top of the
most popular frameworks list, it is interesting to note that cross-platform frameworks
such as Cordova and Xamarin were popular enough to be included. React places
third on the list, but it is unclear whether this includes React Native. Later in this
chapter we will see that React and React Native are conceptually very similar, and
we can thus assume that a React developer could easily pick up React Native or
vice-versa.

Another interesting fact to note from the most popular languages and frameworks
is that the majority of them are web technologies. On Stack Overflow, JavaScript has
been the most commonly used programming language for six years according to the
survey, with over 70% of respondents saying that they use the JavaScript language
in their professional work [20]. This is in contrast to the TIOBE index results, where
Java, C and C++ have the biggest ratings [21]. Assuming that the TIOBE index
has a better view of the global perspective as their methods reach a significantly
larger number of programmers, this shows some of Stack Overflow’s bias.

In any case though, JavaScript seems to be on the rise both in the TIOBE index
results and in the Stack Overflow survey. This data brings an advantage to cross-
platform frameworks using JavaScript, as these frameworks will likely be easy to pick
up for the increasing amount of existing web developers. The Stack Overflow survey
data on most loved, dreaded and wanted frameworks provides another indicator to
us on how things might look in the future. Out of the relevant frameworks, React is

14

ranked at the top of the most loved and wanted technologies. This indicates that it
has been received well by many developers, and that it still has a good reputation
being a technology that developers want to try out and keep using. In contrast,
Cordova and Xamarin are among the most dreaded frameworks that were included
in the survey. This means that developers have used the frameworks, but do not
wish to continue using them in the future [20].

2.3.1 Apache Cordova / PhoneGap

Cordova is a Hybrid app framework by the Apache Software Foundation. PhoneGap
is a distribution of Apache Cordova by Adobe, and for the context of performance
benchmarking, these names can be used interchangeably. Hybrid apps enable devel-
opers to write mobile applications using the standard web technologies JavaScript,
HTML5 and CSS3. The Cordova framework essentially functions by rendering the
application as a web site in a WebView component. Through Cordova plugins, the
framework exposes JavaScript APIs for access to native features of the platform
such as camera or file access [44]. Figure 1 illustrates the high-level architecture of a
Cordova application.

Figure 1: Diagram of a Cordova application’s architecture (By The Apache Software
Foundation [4])

By being able to use web technologies in mobile development, Cordova developers
have the advantage of being able to leverage the enormous HTML/CSS/JavaScript
ecosystem of the web platform. Module Counts [11] is a website that collects statis-
tics over various package manager repositories for popular programming languages.
According to this website, npm is the most popular JavaScript package manager. As
of April 2018, at over 600 000 packages, npm also has the largest number of packages
of any platform by over a factor of two. Cordova users can use a large chunk of these
packages when writing their applications.

15

Cordova’s downsides include additional overhead of a full-blown web browser, as
well as performance issues concerning animations, transitions, responsiveness. As
Cordova applications are basically web apps, they will suffer from not having the
user experience of a native application. Bosnic et al. [28] and Willocx’ et al. [49]
benchmarks reveal that Cordova applications use more CPU and memory compared
to a native application. Corral et al. [32] have conducted benchmarks testing access
times to various device API:s. Their findings indicate that in some cases, access
times are up to several orders of magnitude worse in Cordova apps compared to
native apps.

Another user experience related downside is that Cordova’s UI components have
the appearance of web components. There are additional libraries such as the Ionic
framework attempting to alleviate this lack of native looking UI components in
Cordova. Ionic provides web components, styled with CSS and JavaScript, which aim
to replicate the look and feel of native iOS, Android and Windows Phone components
[28].

While Ionic improves the situation significantly for Cordova developers, the
entire Hybrid app concept is still stuck with the fact that rendering takes place in
a web browser. Due to JavaScript’s single thread of execution, Ionic’s UI code is
forced to share computing time with the rest of the application, which will impact
UI performance under heavy workloads. Developers have to take special care to
implement their animations using CSS3 transformations that support 3D hardware
acceleration, which can be limiting and/or difficult for certain types of animations.
Regardless if 3D hardware acceleration can be leveraged, animations will still be
controlled from JavaScript, which if blocked by other work will cause visible slowdowns
and stuttering [3].

2.3.2 Xamarin

Xamarin allows developers to write applications in C#, which can then be compiled
into Android, iOS and Windows Phone native code. Xamarin applications are split
into two components: one containing the business logic which is shared between
platforms and a separate component which renders the UI and has to be written
separately for each platform. [29]

Xamarin can be extended with libraries such as Xamarin.Forms which allows for
simple UI:s to be built in an XML-based markup language, thus improving code
sharing between platforms. Čarapina et al. [31] have developed an application for
mobile learning using Xamarin.Forms. They mention that they were able to use
readily available Xamarin.Forms components for a large amount of the user interface
components, and it was possible to build a specialized drawing component with
native implementations for each platform.

Willocx et al. [49] also benchmarked Xamarin in their testing, and compared it
to PhoneGap/Cordova and native. Their results reveal that across the test suite
used, Xamarin CPU and memory consumption was more in line with the native
implementation than the Cordova equivalent. They conclude that Xamarin can be
selected over Cordova if the application has a lot of performance intensive code.

16

2.4 React and React Native
Traditionally in single page web application development it has been the web de-
veloper’s responsibility to update their application’s user interface (UI) to reflect
changes in application state. This is done by manipulating the web browser’s Doc-
ument Object Model (DOM) via JavaScript, which results in changes to the web
application’s UI.

React is a web technology that provides an alternative paradigm to web de-
velopment by abstracting away the DOM. Instead of manually updating the UI
each time application state changes, developers provide React with a mapping from
application state to a DOM subtree. In other words, the developer tells React what
the application should look like based on the current state. Now to trigger UI updates,
developers only need to notify React that the state has changed. React will take
care of re-rendering the UI by making the necessary DOM changes.

React manages to handle re-rendering in an efficient manner. Using a feature
called Virtual DOM, React can calculate only the needed updates to the DOM for
some given state changes [47]. As such, the web browser isn’t overloaded with lots of
modifications to the DOM each time only some small part of the UI needs to change.

2.4.1 React Components

React encourages developers to split their application into smaller parts called React
components. Components are composable, so the developer can build their application
from several smaller components which can then be combined together.

React components must declare a render() method, which decides what the
component will look like when rendered to the DOM. The render method can choose
to render HTML elements as well as other React components as child components.
React components may contain state, which is isolated from other components. This
means that component state can be directly accessed only from within the component
itself. The component’s render() method can make decisions based on the state,
and e.g. present a value from the state to the user.

Components can pass along data as well as functions to their child components
using properties or “props”. This includes passing down component state to child
components if needed. In addition, React components may declare special lifecy-
cle methods that React calls at appropriate times. For example, if a component
declares a method named componentDidMount(), React will call that method after
the component has been rendered for the first time (mounted).

In listing 1, we can see two sample React components. The <Display> component
renders a HTML <div> element containing a value supplied by a parent component
as props. The <Counter> component contains state which maintains the value of a
simple counter. This value may be incremented by calling the increment() method.
The <Counter> component renders a HTML <button> element which when pressed,
calls the increment() method. The component also renders <Display> as a child
component, and passes it the current counter value in the value prop.

17

class Counter extends React.Component {
// Initial state
state = { value: 0 };

// Method for incrementing `state.value`.
// `this.setState()` is provided by React
// for performing component state updates.
increment = () => this.setState(state => (

{ value: state.value + 1 }
));

// Render method decides what the UI looks like
render = () => (

<div>
<button onClick={this.increment} />
<Display value={this.state.value} />

</div>
);

}

class Display extends React.Component {
render = () =>

<div>{this.props.value}</div>;
}

Listing 1: Sample React Components

2.4.2 React Native

React Native builds on the same concepts as React does, but instead of rendering
HTML elements, React Native uses the fundamental UI building blocks of the native
platform. The end result is that developers can build applications with the platform’s
native components while writing the application itself in a higher level language,
utilizing the concepts and ideas from React.

React Native utilizes threads to run the application and necessary operations.
There are two threads doing the main work: The native modules (main) thread and
the JavaScript thread [34]. The JavaScript (JS) thread is responsible for running
the application’s business logic which is written in JavaScript. The JS thread can
send/receive messages to/from the main thread in order to draw views and respond
to events.

The main thread is responsible for drawing the UI based on commands received
from the JS thread. The main thread also handles any native functionality such as
making network requests, responding to touch events, accessing peripherals etc. The
main thread can send messages back to the JS thread in response to certain events.
These messages are sent over a React Native internal component called the bridge.

18

2.4.3 React Native bridge

React Native works by drawing UI elements on a native thread, with commands sent
from JavaScript code. As such there needs to be some means for communication
between the threads. This is where the React Native bridge, or BatchedBridge
comes in. BatchedBridge is the final barrier between the JS and native threads.
Any data that needs to be passed between native code and JavaScript will be sent
over the BatchedBridge. This includes drawing any UI elements, information about
touch/scrolling events, initiating network requests and receiving results from them
etc [16].

We can inspect what is sent over the bridge by enabling a special “spy” mode on
the bridge, as in listing 2:

import MessageQueue from
'react-native/Libraries/BatchedBridge/MessageQueue';

MessageQueue.spy(true);

Listing 2: Enable bridge spy mode

This will make the BatchedBridge print any messages it carries to the JS console.
Here is sample output (truncated to fit on the page, comments added for clarification)
from launching a sample React Native application which fetches a list of GitHub
repositories, then displays the results in a <FlatList> component:

// 1. App draws initial layout
JS->N : UIManager.createView([2,"RCTScrollContentView",1,{ ...

// 2. App performs network request
JS->N : Networking.addListener(["didCompleteNetworkResponse"])
JS->N : Networking.sendRequest([{"method":"GET","url":

"https://.../repositories?q=react%20native&page=1", ...

// 3. App receives data from network request
N->JS : RCTDeviceEventEmitter.emit(["didReceiveNetworkData",

[68,"<data from network request>"...

// 4. App draws list items based on received data
JS->N : UIManager.createView([7,"RCTImageView",1,{"source":

[{"uri":"https://avatars3.githubusercontent.com/...
JS->N : UIManager.createView([8,"RCTRawText",1,

{"text":"author/repo"}])
JS->N : UIManager.createView([9,"RCTText",1,

{"accessible":true,"allowFontScaling":true, ...
JS->N : UIManager.setChildren([9,[8]])

19

The first column shows which direction the message flowed, JS->N means JavaScript
to native and N->JS is vice-versa.

1. We can see that the JS thread initially requests creating a RCTScrollContentView
for the currently empty repository list.

2. Eventually the JS thread proceeds to set up network response event listeners,
followed by a command for sending the network request.

3. Later, once the network request has completed, the native thread responds by
sending the received data over to the JS thread for processing.

4. Once the JS thread has processed the received data, it will proceed by asking
the native thread to create image and text components for rendering each
GitHub repository as a separate list item.

If we then later scroll the already rendered list we will see events like:

N->JS : RCTEventEmitter.receiveTouches(["topTouchStart",
[{"target":64,"locationX":46.5,"pageY":526.5, ...

N->JS : RCTEventEmitter.receiveTouches(["topTouchMove",
[{"target":64,"locationX":46.5,"pageY":526, ...

N->JS : RCTEventEmitter.receiveTouches(["topTouchMove",
[{"target":64,"locationX":46.5,"pageY":523, ...

These events are sent from the native thread to the JavaScript thread in case JS
e.g. wants to act on scrolling past a certain Y-coordinate in the scroll view. In fact,
this test application will use the event to check if we scroll past a certain threshold in
the list. If we scroll far enough, the JS thread will eventually trigger another network
request for fetching more data (note the page=2 URL query parameter):

JS->N : Networking.sendRequest([{"method":"GET","url":
"https://.../repositories?q=react%20native&page=2", ...

This network request will again eventually complete with some data, which makes
the JS thread append the repository list with more items. Note the significant
amount of traffic on the bridge even in this fairly simple toy project application. In a
larger project, the bridge may become congested, which may result in slowdowns and
unresponsiveness. For example a congested bridge may not pass through touch events
and UI rendering commands quickly enough, which makes an app seem unresponsive.

2.4.4 React Native component abstractions

React Native components are abstractions of their native counterparts. For the most
part they provide a common ground between the functionalities of each platform’s
native components. React Native components are in some cases platform-specific
or have features which are platform-specific. These cases are clearly marked in the

20

React Native documentation along with which platforms are supported or what kind
of behavior can be expected on each platform respectively.

Consider React Native’s <View> component as an example. <View> is a fun-
damental component for UI layouts, as it supports rendering any number of child
components inside it, even other <View> components. The <View> component can
be styled, meaning we can alter its size, shape, color as well as placement of child
components within. As per React Native documentation, a <View> is an abstraction
of the native platform’s equivalent of a view component. On Android this is an
android.view, on iOS it’s UIView and the HTML equivalent is <div> [33].

If we dig deeper into the React Native View documentation, we can see that <View>
components are customized by setting various props on them. We can see that many
props are supported on both Android and iOS, for example accessibilityLabel
can be set to override what a screen reader will call the component on both Android
and iOS. However, e.g. accessibilityTraits is an iOS-only feature, as this
functionality only exists on the iOS platform [26]. Special care must be taken
when using functionalities that are not supported across all platforms. Namely, the
developer needs to ensure that the application behaves well also on platforms where
the functionality is not supported.

2.5 Related work
2.5.1 Evaluations of hybrid app frameworks

Most similar studies that we were able to find at the time of writing have been
performed on more traditional hybrid app frameworks such as PhoneGap and Cordova
and web applications. This is good for validating the methods used.

Corral et al. [32] have conducted a performance comparison between PhoneGap
and the Android native platform. By writing test applications that test various
hardware, data and network accesses, they were able to time identical operations
between the native and web apps. They conclude that the PhoneGap application is
less performant compared to the native application. However they also note that the
total impact depends a lot on the nature of the application.

Willocx et al. [49] tested response times, CPU usage, memory consumption and
disk space requirements of native, PhoneGap and Xamarin. They conclude from
their results that cross-platform tools in general do introduce performance penalties.
However they also mention that the impact is often times acceptable, especially on
high end devices.

Willocx’ et al. tests were conducted by instrumenting an open source application
called PropertyCross, which is implemented in multiple cross-platform frameworks
to aid developers in choosing which framework to use. Unfortunately the Proper-
tyCross project is no longer maintained [15], and does not contain React Native
implementations which would be useful for this study.

Some research exists on the network performance of cross-platform frameworks.
Yun Ma et al. [39] have focused on testing how native applications perform HTTP
requests compared to equivalent web applications. Their findings indicate that web

21

apps may outperform native apps in a surprising number of cases. Occasionally the
web browser is able to leverage newer protocols and underlying connections from
already requested resources where the native apps would need explicit code that
accomplishes the same feats [39].

2.5.2 Evaluations of React Native

Not much research seems to exist on React Native specifically yet.
Axelsson et al. [27] have performed an evaluation on the development process

of React Native, and additionally tested the user experience of a React Native
application as compared to a native application. They found that while users would
notice a difference when comparing the applications side-by-side, users were not able
to spot a difference when testing the applications in isolation. Axelsson et al. also
found that in many cases, the development time of a React Native application can
match, or even beat, that of one native platform’s corresponding application.

The React Native framework’s performance has been analyzed from a resource
usage perspective by Andersson et al [25]. They conclude that React Native often
requires more resources compared to a native Android application. However they
also conclude that this may be an acceptable tradeoff when considering the ease of
development of an application for both Android and iOS using React Native.

Another study examining the development cycle of a React Native application
has been done by Majchrzak et al. [40]. They compare the React Native development
cycle to a few hybrid app frameworks. The work notes that extensive study has yet
to be performed on these frameworks. The findings of the work indicate that React
Native is at least as feature-packed as its contenders, and that React Native has the
biggest community at the moment out of the evaluated frameworks.

2.5.3 Similar performance evaluations

Y. Gao et. al. [35] have implemented a system called DRAW which aims to reveal
UI performance problems in an application such as excessive overdraw and slow UI
components. DRAW is made possible by instrumenting the View component of the
Android operating system. This makes it possible to see really detailed data on
what is happening deep in the Android internals, even better than what Android’s
debugging tools can achieve.

2.6 Scope
This thesis will focus on comparing React Native vs native Android implementations,
as well as compare React Native components with each other. We chose Android due
to more personal experience and a larger market share compared to iOS. We will
thus leave out comparisons between React Native and iOS native implementations.

Ideally we would instrument the Android View component similar to what the
DRAW system by Y. Gao et. al. does [35]. However doing so requires significant
amounts of development resources as well as flashing custom firmware onto phones,
neither which were possible within the scope of this study. We will instead focus

22

on finding other, higher level ways of taking the measurements and performing the
benchmarks.

23

3 Methods
Data acquisition happens with the aid of test applications specially built for this
purpose. The test applications will benchmark various scenarios and collect analytics
data to the extent possible for later analysis. We can instrument our test applications
in various ways and make them collect data such as timestamps of various events
occurring. We then take these timestamps, compare them and compute the time it
took for all operations between the timestamps to complete.

We also collect measurements as well as validate our methods by examining system
logs, systrace captures, high-speed camera recordings, Android Studio’s profiling
tool, and using dumpsys gfxinfo to retrieve framerate information.

All tests will be performed on release/production builds of the test applications
to eliminate any extra debugging features and their potential performance impact.
Testing will be performed on a LG Nexus 5 phone, running stock firmware (Android
version 6.0.1). The phone is plugged in via USB to a PC laptop during the tests at
all times.

This particular phone was selected because it runs an unmodified version of
Android, and thus does not contain any additional software that may interfere with
the phone’s performance. The LG Nexus 5 is also an older high-end device. Released
in October 2013 it is outperformed by today’s high-end devices. This will amplify
any potential performance issues with React Native, and make visual inspection
easier. Occasionally when relevant, we will test with a Huawei P20 Pro phone in
addition to the LG Nexus 5 phone. The P20 Pro is a 2018 flagship device which will
give us an insight into what the results will look like on a more modern device with
better performance.

3.1 Measuring application launch
Android ships with tools for measuring application launch times. The Android
developer guides define application launch time as the time it takes from launching
the application process until the application has been drawn for the first time
[9]. They note that the Android system, or more specifically the ActivityManager
component will by default log all application launch times to the Android system
log, logcat. This information is accompanied by a millisecond accurate timestamp,
which also applies for all other log entries in logcat. The ActivityManager timestamp
measures the time from launching an activity until the activity has finished its initial
draw pass [9].

The developer guides mention that the launch time measurements do not nec-
essarily measure all application elements, and as such the time it takes for some
resources to load may be left out. Only the time it takes to render what has been
defined in the application’s layout file, and the time it takes to render elements
created during application initialization is taken into account [9]. This is good to
keep in mind when we will be comparing a native application with a React Native
application, as React Native applications have no means of providing an initial UI
through JavaScript yet at this stage.

24

This thesis measures the time it takes for a simple app to become usable after
being launched. In the case of a native application, the ActivityManager launch
timestamp log entry will be sufficient, as this means the application has already had
the chance to draw its basic components. However in the React Native case, the
screen is still blank at this point.

We can observe the following logcat output while launching a simple Hello World
React Native example application:

05-03 09:13:18.472 791 801 I ActivityManager: START u0
{flg=0x10000000 cmp=com.launch/.MainActivity} ...

05-03 09:13:18.488 791 1305 I ActivityManager: Start proc 6659:
com.launch/u0a86 for activity com.launch/.MainActivity

05-03 09:13:18.709 791 809 I ActivityManager: Displayed
com.launch/.MainActivity: +231ms

05-03 09:13:19.112 6659 6685 I ReactNativeJS: Running application
"launch" with appParams: {"rootTag":1}. __DEV__ === false,
development-level warning are OFF, performance optimizations are ON

From the output we can see that there is a brief moment after the ActivityMan-
ager launch timestamp logs until React Native has started running the JavaScript
application which will render the application’s UI. Android does not have any idea
about the application’s components or layout until the JS code is running and has
sent commands to create these components over the bridge. Suffice to say, the
application won’t be usable until after this point in time.

Instead of only using the ActivityManager’s app launch timestamp for React
Native apps, we will factor in how long it takes for the React application to call its root
component’s componentDidMount() method. This will give us a comparison between
when a native application would become usable (ActivityManager timestamp) versus
a React Native application becoming usable (componentDidMount()). We will also
measure how long it takes from app start until our application’s JavaScript bundle
starts running.

3.2 Benchmarking React Native components
We have means of instrumenting our applications purely from the JavaScript side
to perform simple timing tests and benchmarks. These can be useful for measuring
launch times, as well as when components have finished rendering. There are some
disadvantages to logging from JavaScript though, as there are potential performance
impacts when logging large amounts of data. There are also issues with the accuracy
of timers, as well as uncertainty to when code runs due to JavaScript’s event-based
model.

3.2.1 Problems with console logging

Logging has one significant disadvantage per the React Native documentation, namely
it decreases performance [34]. We have to work around this by restricting the amount

25

of console logging we do. Also we have to take extra care and log to console only
after results have been gathered, not during test where we would otherwise skew the
results.

Another feature greatly impacting performance is React Native’s development
mode. In development mode, React Native performs a lot of extra work to make the
debugging experience better [34], thus reducing performance compared to production
mode. This means we need to run our test applications in production/release mode
whenever performing the benchmarks, or else the results won’t accurately reflect a
real application running in production mode.

Yet another complication that affects our results is that viewing the console logs
is most convenient when enabling a feature called remote JS debugging. However,
this causes the JavaScript to run in a browser or our computer, which skews the
results as the computer will likely be way more powerful compared to a mobile phone.
For our testing, this means that we have to find alternative ways of gathering the
logs.

Luckily for us there are alternatives, as React Native also writes console logs to
the phone’s system logs, we have ways of reading the logged data without incurring
significant performance penalties. On Android we can use “adb logcat” for viewing
system logs, and on iOS there is a “View Device Logs” feature in Xcode that will
show us the phone’s system log.

3.2.2 Collecting timestamps from JavaScript

Purely doing our benchmarking in JavaScript means we will suffer from timer
inaccuracy. The built in JavaScript Date object provides a Date.now() function
which unfortunately only gives us millisecond accuracy at best [13]. Modern browsers
provide window.performance.now() which when called provides timestamps of up
to microsecond resolution [13]. Node.js has process.hrtime() for getting a high-
resolution timestamp with nanosecond accuracy.

Unfortunately for us the React Native runtime has neither of these more accu-
rate timing functions. This is unfortunate because the millisecond resolution of
Date.now() is not good enough for our purposes. At 60 frames per second, rendering
one frame takes only 16.7 milliseconds. One millisecond is already a significant
portion of that time.

Upon further investigation there seems to be an undocumented global.
nativePerformanceNow() function in React Native. Digging into the source code
of React Native reveals some further details about this undocumented function.
On Android, global.nativePerformanceNow() will call the native (NDK) function
clock_gettime(), which has nanosecond resolution [5]. And on iOS the native func-
tion called is CACurrentMediaTime() from the iOS Core Animation API, which per
the documentation bases its result off of mach_absolute_time() which in turn has
nanosecond resolution. We will use the global.nativePerformanceNow() function
whenever taking timestamp measurements in JavaScript code.

26

3.2.3 Comparing React Native components

React Native contains several implementations of some components such as lists,
where each different component might have a certain use case or platform where
it works best. The following methods can be used for benchmarking React Native
components:

• Measuring render latency. We can do this by timing how long it takes from
informing React Native it should render the component to the component (or
its children) having their componentDidMount() lifecycle method called. We
can use the more accurate timer method as mentioned above for increased
timer accuracy.

• Measuring the amount of traffic across the bridge, with the rationale being
that less traffic results in a more responsive application.

• Visual inspection. For example, if a list is not able to render items fast enough,
the list items will be blank for a brief amount of time.

• Measuring the framerate of the JS thread, telling us under how much pressure
the JavaScript engine is. This can also tell us how much processing of events
gets delayed due to the JS thread being overloaded with work.

• Using performance debugging tools of the native platform to capture information
such as UI framerate, CPU usage, memory usage.

3.3 Native Android vs React Native components
React Native is often used to build standalone applications that are built up from
scratch using JavaScript and React Native components. However, it is also possible
to embed React Native into an existing native application, and write only a subset
of your application in React Native [23]. In fact when you start a new React Native
project, you end up with a native application whose only functionality is wrapping a
React Native application.

We can leverage this integration possibility for our benchmarks. By writing our
benchmarking routines in native code and embedding React Native into our native
application, we can use all tools and API:s that the native platform makes available
to us. Recall that React Native works by drawing native UI components according
to some commands sent to it by a JavaScript engine. Using native code, we should
be able to take note of when React Native performs its UI layout/draw commands,
and compare that to when a corresponding native UI implementation performs the
same commands.

We now need to find some UI rendering related event which is generic enough
that it can be hooked to both for our embedded React Native UI, but also for an
equivalent native UI implementation. We can then measure the time it takes to
render a view after commanding the application to start drawing the view. This test
will be valid on both platforms, and should give us very interesting results which we

27

can use to compare directly the performance of a React Native UI implementation
vs. a native equivalent.

Doing all of the measurements programmatically also brings the added advantage
of automating our benchmarks. This in turn makes it trivial to take a large number
of samples and thus get more accurate results by averaging these samples together.
Furthermore, recording lots of samples minimizes effects of possible background tasks,
CPU frequency scaling due to increased CPU load and/or recent interaction with
the device, and other temporary interfering factors.

It is useful to do logging to console in both our native and React Native im-
plementations, as Android provides millisecond accurate timestamps in the logcat
output. We can use this to easily capture events occurring at different stages of
drawing the UI. Without deep expertise on the respective platforms’ internals, we
can still verify these timestamps for validity through means of visual inspection.

3.4 Visual inspection
Some results will be verified for validity by recording manual interactions with the
device captured with a 240 FPS slow motion video camera. As this is four times
the target framerate of the phone’s display, this method gives us enough accuracy to
record four data points per output frame of the phone.

When measuring application launch, we validate our automated results by record-
ing a user manually starting the test application. Here we will look for the time from
when the user finishes their tap gesture on the application icon (finger is lifted from
the screen) until the time the initial user interface is fully visible on the screen. Our
test applications draw a black screen as their initial UI, so we end the measurement
when the entire display is black.

When measuring navigation times, we validate the results by recording a user
manually tapping a button that triggers the navigation action. The screen we
navigate from has a white background, and the screen we navigate to has a black
background. As soon as the entire display is black we conclude the test.

List scrolling will also be tested manually, and the behavior of the scrolling list is
an important indicator to monitor closely. If no problems can be detected during
manual scrolling of a list, even with the use of a high speed camera, then we can
conclude that the particular list implementation is fast enough.

We validate the methods used for comparing render latency between Android vs
React Native components with a high speed camera. Our setup consists of a test
application with a button, which when clicked will render a list of components and
measure the total rendering time of these. The verification consist of capturing a
user manually tapping this button, and measuring how long it takes from this point
until the list of components appear on the device’s screen.

28

4 Implementation

4.1 Application launch
Implementing a test application in this case is trivial, as the only thing the test
applications will do is to draw a view with a custom background color. A small
modification is needed to the React Native application, where we implement a
componentDidMount() method that simply logs any easily identifiable string to the
console. We do the same for measuring when our JS bundle starts running by placing
a console.log statement into the global scope (see listing 3).

console.log('JS is running');

export default class App extends React.Component {
componentDidMount() {

console.log('launch measurement completed.');
}
render() {

...

Listing 3: Sample component which will log when it has finished mounting

Since we can use the timestamps directly from logcat, we do not need to worry
about capturing timestamps from JavaScript code. The results are in the hundreds
of milliseconds, so the millisecond accuracy we get here is sufficient.

The measuring part is slightly more involved, and could require a lot of manual
work to get accurate measurements. Instead we write a shell script that will use
the Android Debugging Bridge (adb) for commanding the test phone over USB. We
can automatically launch our test application, wait until it has launched, then kill
the application so that we can be sure it is no longer running in the background.
We can repeat this as many times as we want, and when we are done simply read
the timestamps from logcat to obtain results. The shell script used can be found
in Appendix A. The shell script allows substituting the APPLICATION variable to
launch and measure any installed Android application. The results are presented in
Section 5.1.

4.2 React Native components
4.2.1 Measuring bridge traffic

We briefly touched upon monitoring the bridge traffic earlier in the background
section. There we viewed the bridge traffic by means of logging it to the console.
It is also possible to attach a callback function to the bridge, enabling us to run
custom code for each bridge event. This in turn gives us a handy way of measuring
the amount of traffic passing over the bridge.

29

Listing 4 demonstrates how we can inspect the bridge traffic with a custom
callback and count the number of messages passing through it each second. The
upper half of the code snippet will gather all bridge events into the events array as
they arrive.

import MessageQueue from
'react-native/Libraries/BatchedBridge/MessageQueue';

// Gather events
let events = [];
MessageQueue.spy(info => {

events.push(info);
});

// Log time elapsed & number of events. Runs every second.
const startTime = new Date().getTime();
setInterval(() => {

const elapsedTime = (new Date().getTime() - startTime) / 1000;
console.log(elapsedTime, events.length);
events = [];

}, 1000);

Listing 4: Sample code for logging amount of bridge traffic

The lower half of the code snippet in listing 4 runs once every second using a
timer. Here we count the number of accumulated events in the events array, followed
by clearing the array. We log the amount of events we counted, as well as time
elapsed since the test started. This way we end up with data containing a timestamp
and the number of bridge events that occurred during that time.

4.3 Native Android vs React Native
4.3.1 Fundamental components

For this test, the following fundamental UI components were selected for comparison
between Native Android and React Native applications:

• TextView component

• Button component

• ImageView component showing a local image

These were selected due to being common components in mobile apps. We draw
these three components on the same row, and can vary the amount of rows for the
different tests.

30

(a) Native Android components (b) React Native components

Figure 2: Test application for benchmarking component render times

The test application can be seen in Figure 2 in both Native Android and React
Native configurations. The application always renders a Begin Pass button, which
when tapped will render a configurable amount of component rows below it. The
time it takes to render the components will be measured using a method described
hereafter, and following the measurement all test components will be hidden from
view again to prepare for the next test pass. In order to simulate user presses we
use adb in a a shell script to automatically tap the Begin Pass button at regular
intervals.

An interesting interface was found on ViewTreeObserver.OnGlobalLayoutListener.
As per the Android documentation [22], this specifies a callback which will be called
whenever the layout of the view tree changes. This means we will be able to tell
when the layout pass of the Android rendering pipeline has completed. This is very
valuable, as it applies both for native and React Native code, and happens rather
late in the pipeline as we can see from Figure 3.

31

Figure 3: Android Graphics Pipeline (M. Garbe [2])

The only step after layout computations will be drawing [6], and this should
be very similar either way both for our native / React Native examples (which we
verify using systrace, see Figures 4 and 5). Furthermore, through a combination
of logging and visual inspection we were able to determine that the timing of the
GlobalLayoutListener callback closely matches with when new content is visible on
screen. This is true even when rendering complicated views that take seconds to
calculate a new layout for. This indicates that the measure and layout pass takes up
the majority of work in the graphics pipeline, with the rest of the rendering steps
happening very fast. This discovery helps make the GlobalLayoutListener a valid
hook point to measure against.

We will attach a callback as follows on the root LinearLayout Android component
of our app:

layout.getViewTreeObserver().addOnGlobalLayoutListener(() -> {
if (testing) {

endPass();
}

});

Listing 5: Adding OnGlobalLayoutListener to a LinearLayout

The testing helper variable in Listing 5 stores our benchmark state and whether
we are currently performing a test pass or not. This is needed because the Glob-
alLayoutListener will get called outside our test as well, such as when the view is
initially rendered during app startup, or when we remove the components from the
view after our measurements.

When the Begin Pass button is pressed, we store the current system time in
nanoseconds and set the testing variable to true. Then depending on the test
configuration, we either add the native components to the layout ourselves, or send

32

an event to React Native signaling that it should draw its components into the view.
At this point we simply need to wait until the OnGlobalLayoutListener callback fires,
at which point endPass() will get called where we can compute the elapsed time.

On the JavaScript side, we have several additional hooks that are interesting
for our React Native tests. We instrument the following parts of the React Native
application (in addition to the GlobalLayoutListener hook on the native side):

• render()

• componentDidMount()

These will provide insight into any possible additional delays in the JavaScript
execution, and a more detailed overview of exactly which parts use up extra time.
These methods are instrumented by making them log an easily identifiable string
to console. We can then measure how long it takes for the component to reach
the different stages from the start of our measurement, and finally also include the
GlobalLayoutListener timestamp in the results for comparison to the Native Android
configuration.

This test simulates very closely the situation when the user presses a button
on the screen, and some views get rendered or modified as a result of that. The
observant reader might be concerned about extra overhead from the event passing
to JavaScript when comparing to the native test, however this is very much how a
normal React Native button works. Even in normal usage, the button is rendered as
a native component by React Native. React Native has set up an onClick listener
on the button, which when triggered, will forward the native click event to the
JavaScript code over the bridge. This is essentially what we are doing in this test.

Figure 4: Benchmark of a native component viewed in systrace

Figure 4 shows a sample systrace capture from running our benchmark application
on a native Android UI component. Here we can see which parts of a frame the
benchmark uses for timing, labeled with nativeBenchmark. The benchmark pass
starts as soon as the previous frame’s measure/layout step has completed, and ends
with this frame’s measure/layout step which also marks the beginning of the GPU
starting to do drawing work.

33

Figure 5: Benchmark of a React Native component viewed in systrace

Figure 5 shows a sample systrace capture for drawing a React Native component.
Here the part used for benchmark timing is labeled with rnBenchmark. We can see
that it is very similar to the native component systrace capture.

4.3.2 Navigation

React Native only contains navigation facilities for iOS using the NavigatorIOS
component which is built on top of iOS’ UINavigationController [12]. This won’t
work on Android, and is thus problematic for cross-platform applications. Alternatives
exist in the form of third party libraries, and a popular React Native navigation
library at the moment is React Navigation. Facebook recommends this library on the
official React Native documentation, and it provides easy cross-platform navigation
facilities. It is built entirely in JavaScript, and is very customizable [17].

React Navigation provides a Stack navigator, Tab navigator and Drawer navigator
cross-platform components for React Native applications. These imitate the look
and feel of the corresponding native navigators, and can be nested in each other to
accomplish the wanted navigation functionality. For example a Tab navigator might
act as the main navigator of an application, allowing the user to browse through
different screens by swiping or tapping tabs on an always visible tab bar. However by
using the tab navigator together with a stack navigator, a button on one of the tab
pages might launch another view which overlays the whole screen. On Android, stack
navigation is realized by launching different activities of an application. Swipeable
tabs can be implemented with a ViewPager widget, and there’s a DrawerLayout for
implementing a drawer navigator.

We will be testing a basic stack navigator in both scenarios. Both our test
applications will feature two screens, with the first one containing a button for
navigating to the second one. The first screen background is white, and the second
screen background is black to aid visual inspection.

In the Android application, we log to console when the user lifts their finger from
the button. Immediately after this happens, we signal the system to start the second
activity. We disabled the transition animation which by default creates a smooth
animation between the activities. This will help visual inspection in determining the
exact frame the new activity has finished drawing. Furthermore, the transition was
visually determined not to be significantly different between the platforms, so we

34

did not study the transitions further. We log to console when the second activity’s
onCreate() method was called.

The React Native application is similar, we also log when the user lifts the finger
from the button. This triggers a React Navigation navigate action, which will
cause the next screen to be rendered. The React Navigation stack navigator also
has a transition animation by default, which tries to imitate the corresponding
animation on Android. We can disable it to aid visual inspection by passing a custom
transitionConfig when creating the stack navigator. We log to console when the
second screen’s componentDidMount() method was called.

35

5 Results

5.1 Application launch
In this test we compared app launch times to find out how much overhead there is
in launch times for React Native. Figure 6 shows the timing results of starting a
simple native Android application (above), as well as a React Native application
(below). The leftmost graph shows the results from a LG Nexus 5 phone, which was
a flagship device announced in 2013. To the right we see the same tests performed
on a 2018 flagship phone, the Huawei P20 Pro.

The ActivityManager timestamp is relevant in both native and React Native
cases. The ActivityManager timestamp measures the time from activity launch
until initial render, however with React Native apps there was still some extra
work to be done before the application is in a usable state. Regardless, the results
for the ActivityManager timestamp are very similar in all test cases, interestingly
enough even between the different phones given their very different performance
characteristics.

After the ActivityManager timestamp, the Native Android application has finished
rendering and is now usable from this point. However the React Native application
remains blank, as it has not yet ran the JavaScript application and thus does not yet
know what to render. Without making changes to native code, the default initial
view is a blank white screen.

The React Native application remains in an unusable state until all of the steps
visible in Figure 6 have been completed. The first additional step compared to a
native Android application is starting the JavaScript runtime, which is represented
in the figure as “JS timestamp”. This is the time it takes to start the runtime and
parse our JS bundle, until our application’s JavaScript code starts running.

After the JS runtime is up, the JavaScript code needs to render the initial React
Native view. The render() function is called at the end of the render() timestamp,
which declares the initial view. Finally, componentDidMount() gets called as a sign
of our initial view having successfully rendered.

These results were confirmed manually by using a 240 FPS slow-motion camera.
We timed how long it takes from manually launching the app (finger leaving the
touch screen) until the application has rendered the black background. We found
the results from our manual testing to match with the automated testing.

36

0 5 10 15 200

200

400

600

800

1,000

Test run no.

T
im

es
ta

m
p

(m
s)

LG Nexus 5 (Native Android)

0 5 10 15 20
Test run no.

Huawei P20 Pro (Native Android)

0 5 10 15 200

200

400

600

800

1,000

Test run no.

T
im

es
ta

m
p

(m
s)

LG Nexus 5 (React Native)

0 5 10 15 20
Test run no.

Huawei P20 Pro (React Native)

ActivityManager timestamp
JS timestamp

‘render()‘ timestamp
‘componentDidMount()‘ timestamp

Figure 6: React Native app launch times

Android (LG) RN (LG) Android (Huawei) RN (Huawei)
x 221.8 700.3 178.3 296.3
σ2 29.6 68.8 14.5 8.6
min 193 597 150 280
max 324 798 213 316

Table 1: Total time to layout in application launch

37

5.2 React Native components
5.2.1 List components

For this test, we compare React Native components <ScrollView> and <FlatList>
against each other. Our test application inserts 1000 items into the list, each item
containing a 256x256 pixel image and a text next to the image. The items are 64 pt
tall. The test application automatically scrolls the list at a rate of 1000 pixels four
times each second, totaling a rate of 4000 pixels/s, or about 63 items each second.
In Figures 7 we plot how many events are passing through the React Native bridge
over time in each case.

10 20 30100

101

102

103

104

Time (s)

N
o.

of
ev

en
ts

<ScrollView> component

0 5 10 15 20
Time (s)

<FlatList> component

Figure 7: React Native list components, scrolled at 4000 pixels/s. (Note the loga-
rithmic y-axis)

<ScrollView> <FlatList>
x 247.1 490.1
σ2 1130.5 281.2
min 1.0 9
max 6014.0 813

Table 2: Number of events while scrolling list components at 4000 pixels/s

In the <ScrollView> test we can see a huge spike of up to 6000 events when first
running the app. This is because a ScrollView will render every single child element
regardless of whether they are visible on the screen or not. This caused React Native
to send commands for drawing all 1000 items at once, resulting in the JS thread
being completely locked up for several seconds while all the commands were being
sent to and processed by the native thread.

This meant the app remained unresponsive until the first messages were being
passed through the bridge again, which occurred around 7 seconds after app launch.
After that however, the list scrolled very smoothly and all items were rendered

38

without any problems, with around 60 messages being passed through the bridge
every second. At around 23 seconds the list had scrolled all the way to the bottom
and the test ends.

The <FlatList> test showed how FlatList manages to spread out the bridge
messages more evenly compared to ScrollView. There is no huge initial spike like
in the previous test, and while scrolling the number of events passing through the
bridge remains fairly constant. However, FlatList suffered from some problems at
sufficiently high scrolling speeds such as in this test. Occasionally FlatList on our
Nexus 5 test device could not keep up and the items were not being rendered in time,
resulting in empty slots briefly appearing in the list as can be seen in figure 8b.

(a) FlatList rendering all items (b) FlatList with missing items

Figure 8: At high scroll speeds, FlatList was not able to render items fast enough

Third party list components: Third parties have also implemented custom list
view components which aim to bring better performance or features in certain use
cases. RecyclerListView by Flipkart is one such component [18]. RecyclerListView
works by reusing individual list elements through a process called “recycling”. This
is similar to how Android’s native RecyclerView works.

Instead of freeing and reallocating resources each time a list element is scrolled
off-screen, RecyclerListView will reuse list elements by moving them to the opposite
side of the screen, then only replacing the data contents of the list elements. Re-
rendering is faster due to not triggering expensive layout updates, and the reused
list element can be scrolled into the view faster. This type of optimization works
well for huge lists where the data is mostly the same, and the list elements do not
vary much in dimensions. Facebook has likely focused on making the ListView and
FlatList components more generic, thus no recycling is used in these [19].

An impressive feat of RecyclerListView is that it is truly cross-platform and
implemented only using JS. Flipkart claims that it even works in web browsers.

39

RecyclerListView is implemented using React Native’s ScrollView component, and
custom layout code to place the list elements into the ScrollView according to the
current scroll position [18].

0 5 10 15 20100

101

102

103

104

Time (s)

N
o.

of
ev

en
ts

<RecyclerListView>

0 5 10 15 20
Time (s)

renderAheadOffset tweak

Figure 9: Flipkart’s <RecyclerListView> component, scrolled at 4000 pixels/s. (Note
the logarithmic y-axis)

<RecyclerListView> renderAheadOffset tweak
x 144.5 156.8
σ2 82.6 100.8
min 9 9
max 301 468

Table 3: Number of events while scrolling <RecyclerListView> at 4000 pixels/s

RecyclerListView manages to drastically improve performance in this particular
benchmark compared to both the naive ScrollView implementation and FlatList.
Figure 9 shows that the bridge traffic is significantly lower than when using either of
the built in list components, but through visual inspection we could identify some
remaining problems with empty list items during scrolling and items not being ren-
dered quickly enough. This was easily solved by increasing the renderAheadOffset
prop value. The second graph in Figure 9 shows that this tweak did not cause any
other changes in bridge traffic than a slightly larger initial spike (468 events compared
to 301).

With the renderAheadOffset tweak in place, no performance problems were
visible even through manually scrolling the list as fast as we possibly could. This
meant we could not tell the list apart from a native Android RecyclerView anymore
in this test.

40

5.3 Native Android vs React Native
In these tests we compare the time from the creation of a component until the
component’s layout pass has completed. We test with image, button and text
components, which we group into a configurable amount of rows.

5.3.1 Fundamental components

1 and 10 rows of components: We begin by drawing 1 row of each component
to establish a baseline. This will show how much time each platform spends on
drawing a very simple view with just the three components from that one row. We
then proceed to testing with 10 rows of components. This is done to amplify any
potential performance issues and make these easier to detect. 10 rows of components
makes for a total of 30 components, which is a reasonable maximum number of
components we would expect to see on the screen at once.

The results in Figure 10 shows that with reasonable amounts of components,
both apps remain responsive. The results on Android are very consistent, while on
React Native there are minor fluctuations. It is worth mentioning that in the trivial
case with one row, the results on Android are very consistent around the time it
takes to draw one frame at 60 FPS, or 16.67 ms. The results never go below this
value either, which leads us to believe that the minimum value is limited by vertical
synchronization. We speculate that Android polls for input events at the same rate
as VSync, which would trigger our view drawing code when a frame has been drawn.
Since this is such a trivial case for a native application, rendering the components
themselves is very quick. Our GlobalLayoutListener callback then gets called while
rendering the next frame, resulting in a measurement just slightly above 16.67 ms.

The 10 row case on Android has more variation. We suspect this is because the
results are no longer bounded by the 16.67 ms lower limit, as rendering a screen full
of components no longer can be done within the one frame deadline on the older LG
Nexus 5 phone.

The React Native results are interesting. We see consistent fluctuation here
compared to the Android results, even within the different tasks that we were able
to measure from our JS code. It is important to remember that the bars show
the time from the previous task until the end of the task represented by the bar.
There may be extra work involved that does not belong to the presented task itself.
For example, the GlobalLayoutListener callback never gets called faster than in the
Android examples, but it occasionally takes much longer suggesting there is some
extra work going on there apart from Android working on the components’ layout.

We speculate that these inconsistencies stem from the fact that React Native has
to deal with a JS runtime complete with garbage collection, an event based nature
and other sources of timing inconsistencies. It is also possible that the JavaScript
code is more sensitive to background tasks compared to native Android UI code,
resulting in larger latency fluctuations.

41

0 5 10 15 200

100

200

Test run no.

T
im

es
ta

m
p

(m
s)

Android (1 component row)

0 5 10 15 20
Test run no.

React Native (1 component row)

0 5 10 15 200

100

200

Test run no.

T
im

es
ta

m
p

(m
s)

Android (10 component rows)

0 5 10 15 20
Test run no.

React Native (10 component rows)

Time to render call
Time to componentDidMount

Time to layout

Figure 10: Tests with 1 and 10 rows of fundamental components

Android (1 row) RN (1 row) Android (10 rows) RN (10 rows)
x 18.0 46.8 29.8 187.9
σ2 1.0 8.0 3.7 14.7
min 16.7 37.0 24.4 165.0
max 20.8 59.0 37.4 227.0

Table 4: Total time to layout for 1/10 row(s) of components

42

100 rows of components: In this second test we will compare how React Native
handles a view with lots of components compared to native Android. Our view will
contain:

• 100 TextView components

• 100 Button components

• 100 ImageView components showing a local image

This will show how each platform handles an excessive amount of components
during initial render, and whether there are any significant differences between the
platforms here. This test will be performed on a 2018 Huawei P20 Pro phone in
addition to the LG Nexus 5. This will show how latency compares between the
platforms on newer devices. This test should put enough load on the newer phone to
make results interesting, where the previous tests likely would have completed so
fast as to be limited by VSync.

The results reveal a massive difference between the phones used, especially in
the React Native case. In that particular test case, there is a four-fold decrease in
latency on the newer device. The difference is not nearly as significant between the
Native Android test configurations. This time around the results are consistent,
which we speculate is due to the large amount of work that needs to be done. Small
fluctuations affect the test results much less than before at these timescales.

43

0 5 10 15 200

500

1,000

1,500

2,000

Test run no.

T
im

es
ta

m
p

(m
s)

LG Nexus 5 (Native Android)

0 5 10 15 20
Test run no.

Huawei P20 Pro (Native Android)

0 5 10 15 200

500

1,000

1,500

2,000

Test run no.

T
im

es
ta

m
p

(m
s)

LG Nexus 5 (React Native)

0 5 10 15 20
Test run no.

Huawei P20 Pro (React Native)

Time to render call
Time to componentDidMount

Time to layout

Figure 11: 100 rows of fundamental components

Android (LG) RN (LG) Android (Huawei) RN (Huawei)
x 258.4 1538.7 130.1 331.6
σ2 19.3 101.0 23.9 28.9
min 240 1349 99 292
max 321 1723 212 414

Table 5: Total time to layout for 100 rows of components

44

5.3.2 Navigation

In the navigation test we measure how long it takes for both an Android and a React
Native application to navigate to another view. The measurement start point is a
log entry of when the user initiated the navgiation action. The target view finishing
it’s rendering pass marks the end of the measurement.

0 5 10 15 200

20

40

60

80

Test run no.

T
im

es
ta

m
p

(m
s)

Native Android

0 5 10 15 20
Test run no.

React Native

Figure 12: Navigation test measurements

Native Android React Native
x 25.6 39.1
σ2 3.3 10.4
min 20 23
max 35 57

Table 6: Navigation measurements

Figure 12 shows the results of 20 navigation test runs on the native Android and
React Native apps respectively. We can see that the native Android navigation action
time is very consistent with a mean of 25.6 and a standard deviation of only 3.3,
while the React Native navigation action time has a mean of 39.1 with a standard
deviation of 10.4 (see Table 6).

45

6 Discussion

6.1 Application launch
The application launch tests show that a React Native application does load signifi-
cantly slower than a native Android application. We see a constant time to initial
render penalty of up to three times slower with load times around 700 ms instead of
around 220 ms. Unlike a native app which only needs to load the native runtime,
a React Native app also has to start a JavaScript engine and run a JS application
within it in order to know what to initially render, and this really shows in the
results.

There are ways to alleviate a longer application launch. For instance, many
popular mobile applications show a splash screen while performing initializations.
This can give reassurance to the user that the application is working as intended,
and still loading content. With a little bit of native code a React Native application
can also show a splash screen instead of the blank screen that can be seen by default.

Keep in mind that the test application was a minimal hello world example, which
only renders a basic text view on both platforms. It only measured the overhead of
the React Native runtime, and the time to initial render. A real application would do
this followed by other initialization tasks such as fetching content from the Internet
or flash memory. Any subsequent operations are expected to take approximately the
same amount of extra time on both platforms. As such, more complex applications
will see a diminishing difference in launch times between native and React Native.
More modern devices with better performance also improve the launch times, further
reducing the impact React Native has in this category. In fact in this test, the
Huawei P20 Pro React Native launch times almost matched the Native Android app
launch times, with a mean launch time of 296.3 ms versus 178.3 ms.

Depending on the type of application, launch times may present a significant
shortcoming in the performance of React Native. A performance penalty of half
a second, possibly even worse on slower hardware or in applications with lots of
dependencies, is not something to overlook. It is up to the application developers to
decide if the extra launch time is acceptable for their particular application, and a
reasonable performance penalty to pay for the advantages React Native brings.

Improving launch times is a hard problem that is certainly not alleviated by
the addition of a JavaScript runtime. Applications may have several megabytes of
JavaScript code to parse, which further impacts launch times. React Native contains
an optional advanced feature to unbundle code, so that only the necessary code is
parsed and ran at app launch time. This should help alleviate problems is huge
applications with lots of views that are used more seldom.

In the case of JavaScript, launch times are not only a problem for React Native
apps and things are constantly improving across the ecosystem. Node.js and Electron
are enabling easy development of JavaScript programs on desktop computers, and
here launch times are equally important. For example the Atom text editor is written
using Electron and JavaScript, and its developers are constantly trying to improve
launch time performance. Atom recently managed to make use of a V8 JavaScript

46

engine feature called snapshots. Snapshots allow running parts of the application
beforehand, and storing a snapshot of the memory contents for later restoration [8].
While React Native does not use V8 currently, perhaps a similar feature will be
implemented into the JavaScriptCore engine which React Native uses, thus making
it possible to make use of a similar optimization in the future.

6.2 React Native components
Testing and comparing various React Native components revealed that it is important
to choose the right tool for the job, some components were more suited to a certain
use case than others.

6.2.1 List components

ScrollView For short lists or views where content might overflow the screen,
<ScrollView> is a suitable component providing scrolling capabilities to the view.
Its advantages are simple usage, and no pop-in artifacts during scrolling. However the
disadvantages are that it loads and renders all of it’s child components during initial
render. <ScrollViews> containing hundreds or thousands of child components will
freeze the app momentarily during the initial render phase, and the <ScrollView>
component is thus not suited for use-cases where large amounts of child components
are needed.

FlatList React Native’s built-in list component making use of virtualization,
<FlatList>, is a good pick when rendering huge lists with items of varying di-
mensions. The component loads quickly, and it was quick enough for most normal
use-cases. However, if the list scrolls fast enough there can be visible pop-in artifacting
which can be annoying to handle. <FlatList> allows for tweaking a few parameters,
and it’s base component <VirtualizedList> provides for lots of customization, but
we were unable to find any combination of props that would fix the pop-in issues
and thus decided to stick to the defaults.

Flipkart’s RecyclerListView manages to deliver impressive performance by
borrowing ideas from native Android’s RecyclerView. We found this component to
be the best pick for huge lists where list items are mostly of the same sizes to aid
the recycling process. With slight tweaks, all pop-in problems were gone and initial
load times remained short enough that they could not be noticed. The component is
permissively licensed under Apache 2.0 and available for easy installation on npm.

6.3 Native Android vs React Native
6.3.1 Fundamental components

In this test case we rendered a handful of fundamental UI components. The 1 row
results do not yet show any meaningful differences between how long React Native
takes to do the render compared to native Android. Latencies remain below 50 ms

47

on average, so even if the Native Android app is faster, so fast that it is consistently
limited by VSync, we are only talking about a few frames faster. An observant user
might not consider the action instantaneous anymore as with the required 20 ms
latency figures cited earlier, but most users shouldn’t really be bothered by such a
low latency.

The 10 row test case shows a larger difference between the platforms on the LG
Nexus 5 phone. The Native Android figures have increased enough that they are
no longer limited by VSync, but still they only occasionally go above a two frame
rendering time (33.3 ms) with a mean value of 29.8 ms. This means the Android
figures have only just gotten out of the zone where they are capped by VSync, and
are now expected to increase linearly when we increase the number of components.

The React Native case is a different story, because they were never capped by a
lower bound. Rendering 10 rows of fundamental components on React Native takes
up to 227 ms, with a mean value of 187.9 ms. This is already at a point where users
may start noticing a slight delay, but not yet nearly enough to cause an annoyance
in this use case.

These results point to React Native being able to comfortably render a screen
full of components even on the older LG Nexus 5 phone. It is certainly outperformed
by native code, but again perhaps not by enough that it will matter. This is another
case where the developers will have to weigh their options, those demanding the
best performance should use native code, but developers valuing the concept of
cross-platform development and tools may want to consider React Native.

In the excessive number of components test, with 100 lines of fundamental
components totaling a number of 300 components, we roughly see the expected
tenfold increase in rendering time as the number of components increased with the
same rate. Note that this should be an unrealistic scenario caused by lazy development
practices, a proper application should avoid rendering this many components at once
and instead use e.g. list components with virtualization. It still serves to highlight
that the rendering times roughly follow a linear relationship with respect to the
number of components to be rendered on both platforms.

In the 100 lines test, React Native causes a very annoying latency spike of around
1.5 seconds when rendering the view on a LG Nexus 5 phone. This would make the
application frustrating to use and/or unusable. Note that the native application
remains usable with a mean latency of 258.4 ms. On the more recent Huawei P20
Pro phone, we see a huge decrease in latency on both platforms. Latency is almost
halved in the native implementation, and the React Native application still renders
quickly enough for users not to be annoyed, especially if rendering this view was an
infrequent operation. Rendering took 331.6 ms on average.

6.3.2 Navigation

The React Native results are surprisingly low here considering the results of the
previous rendering latency test. In some instances React Native even beats native
Android in this simple stack navigation test. The native Android application performs
the navigation action by navigating to another activity, which may explain why

48

React Native can be faster as it simply swaps out the rendered components within
an activity without actually switching into another activity.

However it is important to note that the React Native results are much more
inconsistent, with a standard deviation of 10.4, while the Android results are com-
paratively consistent with a standard deviation of only 3.3. The mean values of both
platforms stay at reasonable values: 25.6 ms for Android, and 39.1 for React Native.
These are both fast enough to be considered instantaneous for a navigation action,
which in addition uses a 200-300 ms transition animation by default that should
mask any small latencies introduced here.

Another thing to keep in mind is that this test only measures the navigation
action itself by rendering an extremely simple view after navigating in both test
cases. The view only contained one component which draws the background in a
black color. When navigating to a more complex view, one should expect similar
behavior as in the previous test (Section 6.3.1), since the new view and all of it’s
child components will have to be drawn as part of the navigation event. As such a
nontrivial application is expected to perform considerably faster with native code
compared to React Native, but regardless a navigation action should not be the
culprit for performance problems.

6.4 Summary
Due to the performance penalties introduced by React Native compared to native
code, optimizing your application becomes important. A long list which works just
fine in a native application might cause slowdowns and latency in React Native, and
choosing the right list implementation is key to avoiding performance problems in
this use case.

Even if the developers of an application agree on the ideas behind cross-platform
tools and are comfortable with writing their application in JavaScript, it is still
important to consider whether a small performance hit can be taken in exchange
for the advantages cross-platform tools may bring to the development process. The
impact of the performance penalty is also greatly dependent on the type of application
that is to be developed, simpler applications will generally have a smaller performance
impact when using cross-platform tools compared to native code.

Another point to note when deciding which framework to use for an application
is how many generations of old phones the application should support. We saw that
on newer devices React Native performance was improved significantly and in many
cases was close enough to the native equivalent as to not be of an issue. This could
be a deciding factor, as many users do swap out their devices for newer ones at a
rather fast pace.

While performance intensive applications can often be implemented in React
Native by leveraging the possibility of calling native code from JavaScript, in the
end it might not be worth it if most code ends up written in native code. As long
as the UI is not overly complex though, React Native might be a good choice for
the project. Resource intensive computations can be performed in native code, and
then only the native part of the application has to be written individually for each

49

platform.
In the end it is up to the app developers to find a framework that they are

comfortable with, and one that suits the particular project at hand. React Native
is one possibility to consider, and this study provides some insight into what the
possible impacts are of such a decision performance-wise.

50

7 Conclusions
In this thesis the performance of the React Native cross-platform framework is
evaluated on Android through simple test applications. Performance is compared to
native Android test applications to find out whether there is a meaningful performance
impact introduced by React Native. The need for cross-platform frameworks is
discussed, and the lack of previous in-depth academic study about React Native
performance specifically is a motivation for the work.

A brief history of cross-platform frameworks and of React Native itself is presented
in the background section. The concept and importance of latency is also discussed,
together with an introduction to important concepts in React Native, followed by an
analysis of existing related performance evaluations.

We introduce methods for measuring and comparing common performance as-
pects between React Native and native Android applications. Measurements were
performed on application launch times, component render latency, navigation actions
and list scrolling. Where possible, the implementations are such that results can
be compared directly between React Native and Android test applications. This
helps find out the exact amount of overhead caused by React Native compared to
native Android code. In the list scrolling test we show how different React Native list
components perform during heavy usage, and which component is best for a certain
use-case.

Our results indicate that React Native does incur a significant performance impact
especially on older hardware. On older devices such as the LG Nexus 5 we can see
performance problems in application launch times, or when rendering large amounts
of components. On the other hand, the results show that these issues are diminished
on newer flagships such as the Huawei P20 Pro, where even an excessive amount of
components can be rendered in time so as to not cause user frustration. The results
will allow developers to make informed decisions when considering using the React
Native framework for their next projects, and the presented methods will be valuable
to studies performing further research on the subject.

51

References
[1] Abi management | android developers. https://developer.android.com/ndk/

guides/abis.html#sa. (Accessed on 04/17/2018).

[2] Android graphics pipeline: From button to framebuffer (part 1). https://www.
inovex.de/blog/android-graphics-pipeline-from-button-to-framebuffer-part-1/.
(Accessed on 03/13/2018).

[3] Animations and performance | web fundamentals | google developers.
https://developers.google.com/web/fundamentals/design-and-ux/animations/
animations-and-performance. (Accessed on 05/18/2018).

[4] Architectural overview of cordova platform - apache cordova. https://cordova.
apache.org/docs/en/latest/guide/overview/index.html#architecture. (Accessed
on 04/24/2018).

[5] clock_gettime(3): clock/time functions - linux man page. https://linux.die.net/
man/3/clock_gettime. (Accessed on 02/28/2018).

[6] How android draws views | android developers. https://developer.android.com/
guide/topics/ui/how-android-draws.html. (Accessed on 04/13/2018).

[7] Idc: Smartphone os market share. https : //www. idc . com/promo/
smartphone-market-share/os. (Accessed on 05/09/2018).

[8] Improving startup time | atom blog. https://blog.atom.io/2017/04/18/
improving-startup-time.html. (Accessed on 05/18/2018).

[9] Launch-time performance | android developers. https://developer.android.
com/topic/performance/launch-time. (Accessed on 05/03/2018).

[10] Mobile operating system market share worldwide | statcounter global stats.
http://gs.statcounter.com/os-market-share/mobile/worldwide. (Accessed on
05/09/2018).

[11] Modulecounts. http://www.modulecounts.com/. (Accessed on 04/24/2018).

[12] Navigating between screens · react native. https://facebook.github.io/
react-native/docs/navigation.html. (Accessed on 05/11/2018).

[13] performance.now() - web apis | mdn. https://developer.mozilla.org/en-US/
docs/Web/API/Performance/now. (Accessed on 02/28/2018).

[14] Programming languages definition | tiobe - the software quality company. https:
//www.tiobe.com/tiobe-index/programming-languages-definition/. (Accessed
on 05/03/2018).

[15] Propertycross. http://propertycross.com/. (Accessed on 02/21/2018).

https://developer.android.com/ndk/guides/abis.html#sa
https://developer.android.com/ndk/guides/abis.html#sa
https://www.inovex.de/blog/android-graphics-pipeline-from-button-to-framebuffer-part-1/
https://www.inovex.de/blog/android-graphics-pipeline-from-button-to-framebuffer-part-1/
https://developers.google.com/web/fundamentals/design-and-ux/animations/animations-and-performance
https://developers.google.com/web/fundamentals/design-and-ux/animations/animations-and-performance
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://cordova.apache.org/docs/en/latest/guide/overview/index.html#architecture
https://linux.die.net/man/3/clock_gettime
https://linux.die.net/man/3/clock_gettime
https://developer.android.com/guide/topics/ui/how-android-draws.html
https://developer.android.com/guide/topics/ui/how-android-draws.html
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os
https://blog.atom.io/2017/04/18/improving-startup-time.html
https://blog.atom.io/2017/04/18/improving-startup-time.html
https://developer.android.com/topic/performance/launch-time
https://developer.android.com/topic/performance/launch-time
http://gs.statcounter.com/os-market-share/mobile/worldwide
http://www.modulecounts.com/
https://facebook.github.io/react-native/docs/navigation.html
https://facebook.github.io/react-native/docs/navigation.html
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://developer.mozilla.org/en-US/docs/Web/API/Performance/now
https://www.tiobe.com/tiobe-index/programming-languages-definition/
https://www.tiobe.com/tiobe-index/programming-languages-definition/
http://propertycross.com/

52

[16] React native performance case study, how it differs from native apps:
Part 1 (messagequeue & js. . . . https : / /medium . com/@rotemmiz/
react-native-internals-a-wider-picture-part-1-messagequeue-js-thread-7894a7cba868.
(Accessed on 04/17/2018).

[17] React navigation (v2) · routing and navigation for your react native apps.
https://reactnavigation.org/. (Accessed on 05/11/2018).

[18] Recyclerlistview: High performance listview for react na-
tive and web. https : / / medium . com / @naqvitalha /
recyclerlistview-high-performance-listview-for-react-native-and-web-e368d6f0d7ef.
(Accessed on 05/09/2018).

[19] Recycling rows for high performance react na-
tive list views. https : / / medium . com / @talkol /
recycling-rows-for-high-performance-react-native-list-views-628fd0363861.
(Accessed on 05/09/2018).

[20] Stack overflow developer survey 2018. https://insights.stackoverflow.com/
survey/2018#overview. (Accessed on 04/24/2018).

[21] Tiobe index | tiobe - the software quality company. https://www.tiobe.com/
tiobe-index/. (Accessed on 05/03/2018).

[22] Viewtreeobserver | android developers. https://developer.android.com/
reference/android/view/ViewTreeObserver.html. (Accessed on 04/10/2018).

[23] Integration with existing apps · react native. https://facebook.github.io/
react-native/docs/integration-with-existing-apps.html, 2018. (Accessed on
03/20/2018).

[24] Anderson, G., Doherty, R., and Ganapathy, S. User perception of touch
screen latency. In Design, User Experience, and Usability. Theory, Methods,
Tools and Practice (Berlin, Heidelberg, 2011), A. Marcus, Ed., Springer Berlin
Heidelberg, pp. 195–202.

[25] Andersson, J. Using react native and aws lambda for cross-platform develop-
ment in a startup. Master’s thesis, Linköping University, Software and Systems,
2017.

[26] Apple Inc. Accessibility Traits | Apple Developer Documentation. https:
//developer .apple . com/documentation/uikit/accessibility/uiaccessibility/
accessibility_traits. (Accessed on 02/05/2018).

[27] Axelsson, O., and Carlström, F. Evaluation targeting react native in
comparison to native mobile development, 2016. Student Paper.

[28] Bosnic, S., Papp, I., and Novak, S. The development of hybrid mobile
applications with apache cordova. In 2016 24th Telecommunications Forum
(TELFOR) (Nov 2016), pp. 1–4.

https://medium.com/@rotemmiz/react-native-internals-a-wider-picture-part-1-messagequeue-js-thread-7894a7cba868
https://medium.com/@rotemmiz/react-native-internals-a-wider-picture-part-1-messagequeue-js-thread-7894a7cba868
https://reactnavigation.org/
https://medium.com/@naqvitalha/recyclerlistview-high-performance-listview-for-react-native-and-web-e368d6f0d7ef
https://medium.com/@naqvitalha/recyclerlistview-high-performance-listview-for-react-native-and-web-e368d6f0d7ef
https://medium.com/@talkol/recycling-rows-for-high-performance-react-native-list-views-628fd0363861
https://medium.com/@talkol/recycling-rows-for-high-performance-react-native-list-views-628fd0363861
https://insights.stackoverflow.com/survey/2018#overview
https://insights.stackoverflow.com/survey/2018#overview
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://developer.android.com/reference/android/view/ViewTreeObserver.html
https://developer.android.com/reference/android/view/ViewTreeObserver.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://facebook.github.io/react-native/docs/integration-with-existing-apps.html
https://developer.apple.com/documentation/uikit/accessibility/uiaccessibility/accessibility_traits
https://developer.apple.com/documentation/uikit/accessibility/uiaccessibility/accessibility_traits
https://developer.apple.com/documentation/uikit/accessibility/uiaccessibility/accessibility_traits

53

[29] Boushehrinejadmoradi, N., Ganapathy, V., Nagarakatte, S., and
Iftode, L. Testing cross-platform mobile app development frameworks (t).
In 2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (Nov 2015), pp. 441–451.

[30] Brahler, S. Analysis of the android architecture. Karlsruhe institute for
technology 7, 8 (2010).

[31] Čarapina, M., Mekterović, I., Jagušt, T., Drljević, N., Baksa, J.,
Kovačević, P., and Botički, I. Developing a multiplatform solution for
mobile learning. In International Conference on Computers in Education (23;
2015) (2015).

[32] Corral, L., Sillitti, A., and Succi, G. Mobile multiplatform development:
An experiment for performance analysis. Procedia Computer Science 10 (2012),
736–743.

[33] Facebook Inc. View, React Native 0.52 documentation. https://facebook.
github.io/react-native/docs/0.52/view.html. (Accessed on 02/05/2018).

[34] Facebook Inc. Performance. https://facebook.github.io/react-native/docs/
performance.html, 2018. [Online; accessed 18-January-2018].

[35] Gao, Y., Luo, Y., Chen, D., Huang, H., Dong, W., Xia, M., Liu,
X., and Bu, J. Every pixel counts: Fine-grained ui rendering analysis for
mobile applications. In IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications (May 2017), pp. 1–9.

[36] Hansson, N., and Vidhall, T. Effects on performance and usability for
cross-platform application development using react native. Master’s thesis,
Linköping University, Human-Centered systems, 2016.

[37] Jota, R., Ng, A., Dietz, P., and Wigdor, D. How fast is fast enough?: A
study of the effects of latency in direct-touch pointing tasks. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (New York,
NY, USA, 2013), CHI ’13, ACM, pp. 2291–2300.

[38] Kämäräinen, T., Siekkinen, M., Ylä-Jääski, A., Zhang, W., and Hui,
P. Dissecting the end-to-end latency of interactive mobile video applications. In
Proceedings of the 18th International Workshop on Mobile Computing Systems
and Applications (New York, NY, USA, 2017), HotMobile ’17, ACM, pp. 61–66.

[39] Ma, Y., Liu, X., Liu, Y., Liu, Y., and Huang, G. A tale of two fashions:
An empirical study on the performance of native apps and web apps on android.
IEEE Transactions on Mobile Computing 17, 5 (May 2018), 990–1003.

[40] Majchrzak, T., and Grønli, T.-M. Comprehensive analysis of innovative
cross-platform app development frameworks. In Proceedings of the 50th Hawaii
International Conference on System Sciences (2017).

https://facebook.github.io/react-native/docs/0.52/view.html
https://facebook.github.io/react-native/docs/0.52/view.html
https://facebook.github.io/react-native/docs/performance.html
https://facebook.github.io/react-native/docs/performance.html

54

[41] Malavolta, I. Beyond native apps: Web technologies to the rescue! (keynote).
In Proceedings of the 1st International Workshop on Mobile Development (New
York, NY, USA, 2016), Mobile! 2016, ACM, pp. 1–2.

[42] Miller, R. B. Response time in man-computer conversational transactions.
In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,
Part I (New York, NY, USA, 1968), AFIPS ’68 (Fall, part I), ACM, pp. 267–277.

[43] Ng, A., Lepinski, J., Wigdor, D., Sanders, S., and Dietz, P. Designing
for low-latency direct-touch input. In Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (New York, NY, USA,
2012), UIST ’12, ACM, pp. 453–464.

[44] Rajkumar, S. K., Hrishikesh, A. A., Vaibhav, V. G., and Omkar, S. J.
Implementation of news app based on cordova cross-platform. In 2017 2nd
International Conference for Convergence in Technology (I2CT) (April 2017),
pp. 60–62.

[45] Shneiderman, B. Response time and display rate in human performance with
computers. ACM Comput. Surv. 16, 3 (Sept. 1984), 265–285.

[46] Spence, E. Windows Phone Is Dead, Long Live Microsoft’s Smart-
phone Dream. https://www.forbes.com/sites/ewanspence/2017/07/12/
microsoft-windows-phone-windows10-mobile-strategy/, 2017. Online, accessed
18-January-2018.

[47] Staff, C. React: Facebook’s functional turn on writing javascript. Communi-
cations of the ACM 59, 12 (2016), 56–62.

[48] Sun, M., Wei, T., and Lui, J. C. Taintart: A practical multi-level
information-flow tracking system for android runtime. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security
(New York, NY, USA, 2016), CCS ’16, ACM, pp. 331–342.

[49] Willocx, M., Vossaert, J., and Naessens, V. A quantitative assessment
of performance in mobile app development tools. In Mobile Services (MS), 2015
IEEE International Conference on (2015), IEEE, pp. 454–461.

https://www.forbes.com/sites/ewanspence/2017/07/12/microsoft-windows-phone-windows10-mobile-strategy/
https://www.forbes.com/sites/ewanspence/2017/07/12/microsoft-windows-phone-windows10-mobile-strategy/

55

A App launch measurement automation script

APPLICATION=com.launch

ACTIVITY=$APPLICATION/$APPLICATION.MainActivity
ITERATIONS=20
LAUNCH_WAIT=2
KILL_WAIT=2

echo "--- killing possible existing instance of application ---"
adb shell am force-stop $APPLICATION

sleep 1

echo "--- clearing logcat ---"
adb logcat -c

echo "--- increasing logcat buffer size ---"
adb logcat -G 16M

sleep 1

echo "--- starting test ---"

for ((i=1; i<=$ITERATIONS; i++))
do

echo "--- launching application ---"
adb shell am start -n $ACTIVITY
sleep $LAUNCH_WAIT

echo "--- killing application ---"
adb shell am force-stop $APPLICATION
sleep $KILL_WAIT

done

echo "--- saving results ---"
adb logcat *:S ReactNativeJS:V ActivityManager:I |

grep "Displayed\|measurement" > results.txt

	Abstract
	Abstract (in Swedish)
	Contents
	Abbreviations
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Structure of the Thesis

	2 Background
	2.1 Latency in user interfaces
	2.2 Native applications
	2.2.1 Android
	2.2.2 iOS

	2.3 Related popular cross-platform frameworks
	2.3.1 Apache Cordova / PhoneGap
	2.3.2 Xamarin

	2.4 React and React Native
	2.4.1 React Components
	2.4.2 React Native
	2.4.3 React Native bridge
	2.4.4 React Native component abstractions

	2.5 Related work
	2.5.1 Evaluations of hybrid app frameworks
	2.5.2 Evaluations of React Native
	2.5.3 Similar performance evaluations

	2.6 Scope

	3 Methods
	3.1 Measuring application launch
	3.2 Benchmarking React Native components
	3.2.1 Problems with console logging
	3.2.2 Collecting timestamps from JavaScript
	3.2.3 Comparing React Native components

	3.3 Native Android vs React Native components
	3.4 Visual inspection

	4 Implementation
	4.1 Application launch
	4.2 React Native components
	4.2.1 Measuring bridge traffic

	4.3 Native Android vs React Native
	4.3.1 Fundamental components
	4.3.2 Navigation

	5 Results
	5.1 Application launch
	5.2 React Native components
	5.2.1 List components

	5.3 Native Android vs React Native
	5.3.1 Fundamental components
	5.3.2 Navigation

	6 Discussion
	6.1 Application launch
	6.2 React Native components
	6.2.1 List components

	6.3 Native Android vs React Native
	6.3.1 Fundamental components
	6.3.2 Navigation

	6.4 Summary

	7 Conclusions
	References
	A App launch measurement automation script

