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1 Introduction

1.1 Motivation
The Inertial Measurement Unit (IMU) are these days frequently used in robotics,
in vehicles and, of course, in mobile phones. An IMU is often composed of an
accelerometer, a gyrometer and a magnetometer. The latter two sensors are typical
navigation instruments that are used in boats or planes. The compass is roughly a
special case of magnetometer. The compass only shows the direction of the local
magnetic field while a magnetometer measures also its strength. These bulky and
very expensive equipment are nowadays replace by MEMS (Micro-Electro-Mechanical
Systems) version because of their size and their low cost. Their price goes from
2 $ to over 2000 $ while an high end gyrometer could cost over 100000 $. There
are a large number of MEMS IMU manufacturer, such as Xsens, Analog devices,
Honeywell or MEMSIC which provide high end (also called tactical grade) IMU
and STMicroelectronics, mCube, Bosch and TDK InvenSense which provides cheap
IMU that are used, for instance, in mobile phone. In this work, the manufacturer of
the IMU is TDK Invensense and the board manufacturer is CJMCU. The price of
the board was about 9 $. A tactical grade IMU are sold fully calibrated while the
low cost ones are sold with some factory calibrations which are stored in the IMU
registers. The calibration only covers the scaling factors of each axes.

The motivation behind this thesis resides in obtaining the position of the sen-
sor without tracking system nor expensive calibration equipment. The position
estimation using an IMU has been obviously studied in numerous papers but there is
in most cases a tracking system that corrects any deviation of the position estimated
by the IMU. The tracking device is usually a GPS [1] if outdoor and indoor it can
be WiFi network [2] or RFID (Radio Frequency Identification) [3] or a camera [4].
The reason of this thesis is too see if it is possible to estimate the position without
heavy correction of the position by an external sensor. The word "heavy" was used
in the previous sentence because in many papers it feels that the tracking system
alone would give the same results because the position estimated by the IMU does
drift and is at least every second corrected by the tracking system.

1.2 Structure
In the first part, a global view of the sensors available on the electronic board will
be given. It covers briefly the theory of the physical phenomenas that make the
sensors operate. In the following chapter, the mathematical theory on rotation
matrix needed to understand the work. The theory on rotation matrices is long and
tedious but, in this paper, it will be only briefly described. The theory is followed
by the theoretical presentation of the algorithms present in the work. Afterward, in
the fifth chapter, a simulation accompanies and test the theory. The simulation is
realized using synthetic signals that simulate the data signals of the sensors. In the
sixth chapter, a brief description of the electronic equipment used in this work is
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given. The functioning and programming of the I2C bus will only be briefly examined.
In the same chapter, the experiments on the data obtained by the sensor will be
discussed. In the final chapter, there will be a discussion on the results with some
possible future improvements that could help to improve this work.
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2 Sensors
In this part, the general knowledge on the sensors present in this work will be
examined.

2.1 Accelerometer
An accelerometer is a device that measures the acceleration of a movement [5].
The MEMS sensor senses the magnitude of the change caused by the acceleration
and converts it into a electrical value using capacitive, piezoeletric or piezoresistive
technique. In any case, the sensor senses the acceleration due to the Earth’s gravity
but the deviation from free fall. In other words, when an accelerometer is in free fall
situation, it will measure a magnitude of 0m.s−2.
An accelerometer can be described by a mechanical combination of a proof mass,

Figure 2.1: Mechanical model of an one-axis accelerometer

a spring and a damping system. This is more or less a seismometer (fig.2.1). The
damping system is necessary to avoid oscillations. The system is in equilibrium
state when there is no acceleration present on the sensor. This means that only the
acceleration acting on the proof mass is the Earth’s gravitational acceleration g⃗. In a
static state, the accelerometer in figure 2.1 will give a value of −g. When the sensor
moves, the system moves from the equilibrium state to enter into a non-static state.
The difference in values of those two states is the actual acceleration applied to the
sensor. In theory, the acceleration a(t) on the sensor can be written as

a(t) = am(t) − g (2.1)

where am(t) is the value measured by the accelerometer.
In this work, a MEMS-version of the accelerometer is utilized. It operates the same
way as the mechanical description above. The sensor are usually constructed from
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a silicon wafer (Si). The silicon is a good structural material which has a small
expansion coefficient and a Young’s modulus suitable and no mechanical hysteresis.
The sensor is often realized with a proof mass held with four support beams. The
beams, or cantilevers, work as spring but also as a damping system. For the capacitive-
type, the silicon wafer is sealed between two glass wafers with aluminum sheets
on the inner sides. This forms a capacitor with a capacitance that varies with the
movement of the proof mass. Three degree of freedom requires three accelerometer,
one for each of the three axes.
Accelerometers are used in numerous applications such as monitoring motor fault
situation[6], flow rate in a given pipe [7] using the changes in vibrations. The
accelerometer data is the main part of this work because the position is determined
by integrating the deviation of the acceleration two times with respect to time. It will
be explained later that the accelerometer data for the purpose of this work cannot
be employed alone.

2.2 Gyrometer
The gyrometer is a device that measures the angular speed of the sensor. The
basic form of the gyroscope is made of a spinning wheel whom axis is free to take
any position. When the wheel is rotated, its axis positions itself according to the
conservation of the angular momentum. This type is also called spinning-mass
gyroscope. The gyrometer has several designs such as ring laser or the interferometric
fiber-optic, quantum or vibratory. In this work, only the latter will be discussed.
Other gyrometers are meant for great precision in laboratories.
The vibratory gyroscope is the technology used in the MEMS-technology. The sensor
is composed of a vibrating part which can be a string, a beam, a ring or two proof
masses which undergo a simple harmonic motion. The two proof masses construction
is, in most case, used in MEMS. The MEMS gyrometer is, like the accelerometer,
realized from a silicon wafer. Silicon is used for the same reason as it is discussed
in the accelerometer section 2.1, i.e. excellent Young’s modulus and no mechanical
hysteresis. The silicon wafer is then sealed between two glass wafers covered with
aluminum foil.
The two proof masses are on the same plane and aligned on the same axis. They
vibrate in the direction of their axis at the exact same frequency but anti-phased.
When the sensor is rotated, a force is created at the proof masses. This force is called
the Corialis force and is given by

F⃗ = −2mv⃗ × Ω⃗ (2.2)

where m is the mass of the proof mass, v⃗ the velocity of the proof mass and Ω⃗ is
the rotation rate of the system. Because the masses are vibrating in an anti-phase
movement, the force on themselves will always be in opposite direction compared
to the other one. These forces incline the proof masses whose tilt is sensed by a
capacitor. The capacitor plates are above and under the proof masses which form
the capacitor.
The three dimensional MEMS-gyrometer works the same way. It is composed of four



5

proof masses where two masses on the same axis measure the pitch while the two
others measure the roll and the yaw. The pitch and the roll have the capacitor plates
placed under and over the masses while the yaw has its capacitor plates on the axes
of the proof masses.
The gyrometer are used in many applications but in most of these applications it is
never used alone. The gyrometer is most of the time used to determine the attitude
of an object [8].

2.3 Magnetometer
The magnetometer measures the direction and the magnitude of the Earth’s local
magnetic field. In other words, it is a compass which measures also the magnitude
of the field.
Generally, MEMS magnetometers work using the Hall effect. The Hall effect is a
phenomena which consists of the variation of voltage across an electrified conductor
when plunged in a magnetic field.
When a piece of conductor is connected to a constant voltage source, the charges
within the conductor are uniformly arranged across that conductor. It results to a
zero voltage between the extremities of the conductor. When the conductor is placed
in a magnetic field, a force is created and its equation is

F⃗L = q
(
E⃗ + (v⃗ × B⃗)

)
(2.3)

where q is the electron charge, E⃗ the electric field, B⃗ the magnetic field and v⃗ the
velocity of the electron. This force is also know as Lorentz force. This force will
change the course of the electron. This change will modify the distribution of the
charges across the conductor which will change the voltage across the conductor.
Without entering into too much detail, the Hall voltage VH is given by

VH = I∥B⃗∥
qNd

(2.4)

where I is the current going through the conductor, N the carrier density across
the conductor and d the depth of the conductor. For more details, the document [9]
explained the Hall effects in sensors.
The voltage will be proportional to the magnitude of the magnetic field B⃗ and can
be determined, assuming that I, N and d are known and constant.
The three axes magnetometer is composed of three Hall effect MEMS sensor placed
in the direction of each axes x⃗, y⃗, z⃗ which are orthogonal to each others. A magnetic
flux concentrator is placed in the top of the three sensors to increase the sensitivity
of the magnetometer. The magnetometer is subject to data corruption when an
other source of magnetic field is near. it can be a piece of iron which is magnetized,
a speakers or most electronic devices around the house. The magnetometer works
best outside while inside it should be used with care.
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2.4 Barometric pressure sensor
The barometric pressure sensor will not be used in this work due to its lack of
sensitivity. But because it is present on the sensor module, a few words about it
with be given.
The barometric pressure sensor measures the atmospheric pressure. As we go higher
away from the Earth’s surface, the pressure drops. It is on this principle that the
pressure sensor can be used also for height estimation. The MEMS pressure sensor
can be designed with a Hall effect sensor like for the magnetometer but also it
can be designed with a piezoelectric crystal. The latter is used in most low-cost
MEMS. This type of sensor works with the piezoelectric effect. This effect refers
to the production of electricity when a piezoelectric material is subject to volume
changes. In the pressure sensor, the piezoelectric crystal is tied to a membrane that
is subject to atmospheric pressure. And according to the pressure, the voltage will
vary. Unfortunately, this sensor has in theory one meter error which empirically
becomes about three meters. The sensor is better for measuring large distance to
compensate the GPS-measurement error [10]. The GPS is not precise in altitude
measurement.

2.5 Sensor fusion
Sensor fusion is a method which uses several sensors to retrieve data that would be
otherwise difficult or impossible to obtain [11].
Sensor fusion is also referred as data fusion, information fusion, multi-sensor data
fusion. In this work, the fusion of the data is realized from the accelerometer and
the gyrometer. This fusion is done to obtain the position which would be hardly
possible by just using the accelerometer.
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3 Mathematical basics
In this section, the theory which is used in this work, is briefly described. Theses
theories are useful for a better understanding of what was done to complete this
work.

3.1 Orthonormal basis
The concept of orthonormal basis is important to understand as it is used all along
this work. All the basis of the utilized sensors data must be orthonormal to achieve
correct calculation when the data fusion is used. First the concept of basis must be
described.

3.1.1 Basis

A vector basis of a vector space E of dimension n is defined as a subset of vectors
{e⃗1, e⃗2, e⃗3, ..e⃗n} ∈ E which are linearly independent and span all other vectors in E .
In mathematical form,

∀v ∈ E ,∃{a1, a2, a3, .., an} ∈ Rn, v⃗ = a1e⃗1 + a2e⃗2 + a3e⃗3 + ...+ ene⃗n (3.1)

In this thesis, the dimension of the vector bases will always be three, i.e. n = 3.

3.1.2 Orthonormality

A basis is orthonormal if its vectors are of unit norm and orthogonal to each others.
In a vector space E , if the vectors subset {e⃗1, e⃗2, e⃗3, ..., e⃗n} composes the orthonormal
basis B, then

∀i, j ∈ {1, 2, 3, ..., n}(i ̸= j ⇒ e⃗i ⊥ e⃗j), (∥e⃗i∥ = ∥e⃗j∥ = 1) (3.2)

where the operator ∥.∥ is the norm of a vector.

NOTE: In this work, the orthonormal basis is always of dimension three. The
vectors composing this basis will be named e⃗x, e⃗y and e⃗z, which are respectively the
unit vectors of the axis x, y and z, and following the right hand rule.
The right hand rule can be described mathematically as follows:
assuming that the following vectors e⃗x, e⃗z and e⃗z form an orthonormal basis B, it
can then be written that

e⃗x × e⃗y = e⃗z, e⃗y × e⃗z = e⃗x, e⃗x × e⃗z = −e⃗y

where the operator × represents the cross product. The right hand rule is the most
common rule used to organize a vector basis in engineering.
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3.2 Rotation matrix
The rotation matrix is one of the tools used to represent the rotations in an Euclidean
space. When it comes to IMU, the most common tool is nevertheless the quaternion
transformation. The quaternion is a representation of the attitude angles into a
three-dimensional complex space. The quaternion has some advantages over the
representation of a rotation, as it only needs four scalars while the rotation matrix
requires nine scalars. It is also less subject to numerical inaccuracies in floating point
calculation [12]. The main disadvantage, besides the non-intuitive calculation, is the
computation of rotation which requires more calculation than with matrices.
In this work, only the matrix representation is utilized. This is mostly because it is
more intuitive and the work has no limitation in computation memory.
It can be noticed that the data of an ideal sensor is given in three dimensional
orthonormal Cartesian coordinate system, which follows the right-hand rule.

3.2.1 Properties

In an Euclidean space spanned by an orthonormal basis, a rotation matrix R is an
orthogonal matrix which satisfies the equation

RTR = I with det(R) = 1 (3.3)

where I represents the identity matrix in the respective basis.
In an orthonormal basis B spanned by the vectors e⃗x, e⃗z and e⃗z, a counterclockwise
rotation of angle ϕ around the axis x can be represented by

Rx(ϕ) =

⎡⎢⎣1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

⎤⎥⎦ (3.4)

A counterclockwise rotation of angle θ around the axis y can be represented by the
following matrix

Ry(θ) =

⎡⎢⎣cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

⎤⎥⎦ (3.5)

A counterclockwise rotation of angle ψ around the axis z can be represented by

Rz(ψ) =

⎡⎢⎣cos(ψ) sin(ψ) 0
− sinψ cos(ψ) 0

0 0 1

⎤⎥⎦ (3.6)

with
det(Rx) = det(Ry) = det(Rz) = 1 (3.7)

The angles ϕ, θ and ψ are also named Euler angles and are respectively called, the
roll, the pitch and the yaw. These terms are widely used in navigation to describe
the attitude of an object.
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3.2.2 Rotation of a vector

A rotation of a vector u⃗ in an orthonormal basis B is calculated with the following
formula

v⃗ = Ru⃗, (u⃗, v⃗) ∈ B2 (3.8)
where R is a rotation matrix and v⃗ the new vector.
A rotation not around the axes of the basis B is defined as a series of rotation around
the axes. In mathematical terms, a rotation of a vector u⃗ can be described as six
possible combinations of the rotation matrices Rx(ϕ), Ry(θ) and Rz(ψ). For instance,
considering the following three of the six rotations possible

v⃗1 = Rx(ϕ)Ry(θ)Rz(ψ)u⃗, (u⃗, v⃗) ∈ B2, (3.9)

v⃗2 = Ry(θ)Rx(ϕ)Rz(ψ)u⃗, (u⃗, v⃗) ∈ B2 (3.10)
and

v⃗3 = Rz(ψ)Ry(θ)Rx(ϕ)u⃗, (u⃗, v⃗) ∈ B2 (3.11)
Since the matrix product is generally not commutative,

v⃗1 ̸= v⃗2 ̸= v⃗3

Thus, the order of multiplication in this case is critical and must be known to
complete the inverse rotation. This property leads to complications because the
order of rotation of a sensor moving randomly is not obvious to determinate.
A way to overcome this problem is to consider each rotation angle to be relatively
small. This assumption is solid if the sensor is not prone to rapid rotational movements.
The MEMS-sensor has a sampling frequency of about 230 samples per second which
is enough to obtain small angles. Considering the rotation matrices 3.4, 3.5 and 3.6,
and the Euler angles being small, it can be written that,

Rx(ϕ) =

⎡⎢⎣1 0 0
0 cos(ϕ) sin(ϕ)
0 − sin(ϕ) cos(ϕ)

⎤⎥⎦ ≈

⎡⎢⎣1 0 0
0 1 ϕ
0 −ϕ 1

⎤⎥⎦ (3.12)

and

Rx(ϕ) =

⎡⎢⎣cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

⎤⎥⎦ ≈

⎡⎢⎣1 0 −θ
0 1 0
θ 0 1

⎤⎥⎦ (3.13)

and

Rx(ϕ) =

⎡⎢⎣cos(ψ) sin(ψ) 0
− sinψ cos(ψ) 0

0 0 1

⎤⎥⎦ ≈

⎡⎢⎣ 1 ψ 0
−ψ 1 0
0 0 1

⎤⎥⎦ (3.14)

because the cosine of a small angle is approximately one and the sinus of a small
angle is the angle itself. Now introducing the matrices 3.12, 3.13 and 3.14 in the
equations 3.9, 3.10 and 3.11.

v⃗1 = Rx(ϕ)Ry(θ)Rz(ψ)u⃗ ≈

⎡⎢⎣1 0 0
0 1 ϕ
0 −ϕ 1

⎤⎥⎦
⎡⎢⎣1 0 −θ
0 1 0
θ 0 1

⎤⎥⎦
⎡⎢⎣ 1 ψ 0
−ψ 1 0
0 0 1

⎤⎥⎦ ,
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v⃗2 = Ry(θ)Rx(ϕ)Rz(ψ)u⃗ ≈

⎡⎢⎣1 0 −θ
0 1 0
θ 0 1

⎤⎥⎦
⎡⎢⎣1 0 0
0 1 ϕ
0 −ϕ 1

⎤⎥⎦
⎡⎢⎣ 1 ψ 0
−ψ 1 0
0 0 1

⎤⎥⎦
and

v⃗3 = Rz(ψ)Ry(θ)Rx(ϕ)u⃗ ≈

⎡⎢⎣ 1 ψ 0
−ψ 1 0
0 0 1

⎤⎥⎦
⎡⎢⎣1 0 −θ
0 1 0
θ 0 1

⎤⎥⎦
⎡⎢⎣1 0 0
0 1 ϕ
0 −ϕ 1

⎤⎥⎦
After calculation they become

v⃗1 ≈

⎡⎢⎣ 1 ψ −θ
ϕθ − ψ ϕθψ + 1 ϕ
θ + ϕψ θψ − ϕ 1

⎤⎥⎦ u⃗, (3.15)

v⃗2 ≈

⎡⎢⎣1 − ϕθψ ψ + ϕθ −θ
−ψ 1 ϕ

θ + ϕψ θψ − ϕ 1

⎤⎥⎦ u⃗ (3.16)

and

v⃗3 ≈

⎡⎢⎣ 1 ψ + ϕθ ϕψ − θ
−ψ 1 − ϕθψ ϕ+ θϕ
θ −ϕ 1

⎤⎥⎦ u⃗ (3.17)

Because the angles ϕ,θ and ψ are considered small, their multiplications with each
other is approximately zero. In other words,

v⃗1 ≈ v⃗2 ≈ v⃗3 (3.18)
The result will be the same with the other three remaining rotations.
The roll, pitch and yaw will now be sums of these small angles. The small angles
are calculated from the variation of the Euler angles at instant t to t− 1. Then, the
rotation can be approximated as
v⃗(t) ≈ Rx(ϕ(t) − ϕ(t− 1))Ry(θ(t) − θ(t− 1))Rz(ψ(t) − ψ(t− 1))u⃗(t), (u⃗, v⃗) ∈ B2

(3.19)
The variation of the Euler angles can be obtained from the angular speed measurement
as

ϕ(t) − ϕ(t− 1) = ωx(t)∆t
θ(t) − θ(t− 1) = ωy(t)∆t
ψ(t) − ψ(t− 1) = ωz(t)∆t

(3.20)

where ωi is the angular velocity around the axis i and ∆t, the time between two
samples.
Using the equation 3.20, the equation 3.19 becomes
v⃗(t) ≈ Rx(ωx(t)∆t)Ry(ωy(t)∆t)Rz(ωz(t)∆t)u⃗(t) = R(t)u⃗(t), (u⃗, v⃗) ∈ B2 (3.21)

This approximation also implies that the rotation inverse to retrieve the vector u⃗(t)
from v⃗(t) knowing the matrices Rx,Ry and Rz can be done in any order. Without
that approximation it would very difficult to obtain the attitude of the sensor. This
approximation will obviously increase the calculation errors.
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3.3 Attitude and Gimbal Lock
The attitude is characterized by the Euler angles, roll ϕ, pitch θ and yaw ψ which
describe respectively the rotations angles around the axis x, y and z. The rotation
itself is done by using a rotation matrix which uses the Euler Angles. It is explained
in section 3.2.
Since matrix multiplication order is critical, there are two convention groups which
define the rotation matrix order (or sequence) of multiplication. The groups with
their sequences are

- Proper Euler angles: xyx, xzx, yxy, yzy, zxz and zyz

- Tait-Bryan angles: xyz, xzy, yxz, yzx, zxy and zyx

The Tait-Bryan angles are also called classic Euler angles.
In this work, only the Tait-Bryan angles sequence xyz, also called 1 − 2 − 3 sequence,
will be used. All the sequences above are valid and equivalent in their results. The
Tait-Brian angles sequences are more intuitive to use but have the same result as the
Proper Euler angles. The Euler angles are obtained straight from the gyrometer’s
value of the angular speed integrated over time. The Euler angles will be associated
with the vector Ω⃗ with

Ω⃗(t) =

⎡⎢⎣ϕ(t)
θ(t)
ψ(t)

⎤⎥⎦ =
∫
ω⃗(t)dt (3.22)

where ω⃗(t) is the angular speed given by the gyrometer.
With the three Euler angles, the attitude of a rigid object can be described in three
dimensional space.
The rotation matrix representation normally presents a problem that is the gimbal
lock. The gimbal lock appears at certain singularity angles which makes the system
lose one degree of freedom.
It can be verified the following way: assuming the following rotation

R(ϕ, θ, ψ) = Rx(ϕ)Rx(θ)Rx(ψ) (3.23)

and using equations 3.12, 3.13 and 3.14 of Section 3.2, we obtain

R(ϕ, θ, ψ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

cos(θ) cos(ψ) cos(θ) sin(ψ) − sin(θ)
− cos(ϕ) sin(ψ)

+ sin(ϕ) sin(θ) cos(ψ)
cos(ϕ) cos(ψ)

+ sin(ϕ) sin(θ) sin(ψ)
sin(ϕ) cos(θ)

sin(ϕ) sin(ψ)
+ cos(ϕ) sin(θ) cos(ψ)

− sin(ϕ) cos(ψ)
+ cos(ϕ) sin(θ) sin(ψ)

cos(ϕ) cos(θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (3.24)

If the pitch θ = π
2 , the matrix becomes after simplifications

R(ϕ, θ = π

2
, ψ) =

⎡⎢⎣ 0 0 1
sin(ϕ+ ψ) cos(ϕ+ ψ) 0

− cos(ϕ+ ψ) sin(ϕ+ ψ) 0

⎤⎥⎦ (3.25)
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It can noticed that whatever the value of the roll and yaw, the rotation will remain
around the axis z. In other words, one degree of freedom is lost. The same phenomena
happens if θ = −π

2 . But as explained in Section 3.2, the rotation matrices are
approximated from small angles which keeps the gimbal lock from happening.

3.4 Change of basis
The transition matrix is an important tool to represent the change of basis. It is
also called a transformation matrix. The change of basis is required due to the
construction of the sensor. The accelerometer, gyrometer and magnetometer do not
have the same basis as they are physically in different locations. So to use a sensor
fusion approach, all the values should be given in the same basis. Ideally, their data
should be given in the exact same orthonormal basis.
Given two bases A and B, a vector u⃗ in the basis A can be written in the basis B as

u⃗|B = TB
Au⃗|A (3.26)

where TB
A is the transition matrix from A to B. The inverse change of basis is simply

u⃗|A = TB
A

−1
u⃗|B (3.27)

where the superscript −1 represent the inverse operation of the matrix. It can be
noted that

TB
A

−1TB
A = I (3.28)

where I represents the identity matrix in the respective basis.

3.5 Numerical integration
The integration is a required part of this work. As a fact, to obtain the position, the
acceleration needs to be integrated two times with respect to time.
In theory, the integration of a continuous function f with respect to time between
the instant a and b is given by

I =
∫ b

a
f(t)dt = F (b) − F (a) (3.29)

where F is the antiderivative of the function f .
When the data is sampled, the theoretical integration is no longer possible. It is
approximated by the numerical integration methods. The numerical integration can
be calculated with different methods. Their efficiency to approximate the integration
depends mostly on the function representing the signal.
In the following part, only four methods (or quadrature rules) will be examined. The
performance of divers integration algorithms, included the four which were chosen,
are described in [13, 14]
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3.5.1 Rectangle rule

The rectangle rule is the most basic rule of the three.
Assuming that the distance [a, b] can be divided in N points, t1, t2, t3, ...tN , with
t1 = a and tN = b. Using the rectangle rule, the equation 3.29 can be rewritten as

I =
∫ b

a
f(t)dt ≈

N−1∑
i=1

f(ti)(ti+1 − ti) (3.30)

The rectangle rule can be slightly upgraded to become the midpoint rule.

3.5.2 The midpoint rule

The mid point rule approximates the integration of equation 3.29 as

I =
∫ b

a
f(t)dt ≈

N−1∑
i=1

f
(
ti+1 − ti

2

)
(ti+1 − ti) (3.31)

This rule and the previous one are preferred when calculation resources are limited
and when the great precision is not required.

3.5.3 Trapezoidal rule

The trapezoidal rule is generally efficient and required small computation resources.
The approximation becomes then

I =
∫ b

a
f(t)dt ≈

N−1∑
i=1

(
f(ti+1) − f(ti)

2

)
(ti+1 − ti) (3.32)

3.5.4 Simpson’s rule

The rule consists of introducing middle point between the points already existing.
The extra point is equidistant from the two others. Then, an interpolation of
1st or 2nd order is done between the three given points. The calculation of the
interpolating polynomial can be done by different algorithms (Lagrange, Spline
or Newton). Using the Lagrange polynomial interpolation, it can be written that
between three points,ti, ti+1+ti

2 , ti+1, it exists a polynomial

p(t) = f(ti)
(t−m)(t− ti+1)

(ti −m)(ti − ti+1)
+ f(m) (t− ti)(t− ti+1)

(m− ti)(m− ti+1)
+

f(ti+1)
(t−m)(t− ti)

(ti+1 −m)(ti+1 − ti)
,∀t ∈ [ti, ti+1]

(3.33)

where m = ti+ti+1
2 .

Using this polynomial interpolation to approximate the equation 3.29,

I =
∫ b

a
f(t)dt ≈

N−1∑
i=1

ti+1 − ti
6

[
f(ti) + f(ti+1]) + 4f

(
ti + ti+1

2

)]
(3.34)
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The complexity of the Simpson’s rule depends on the interpolation algorithms.
The Simpson’s rule can be ported further by adding more points in between the
already existing points. The points are added in a adaptive way which will depends
on the function to be integrated and the error criterion that the user desires. If the
error is larger that the criterion, the section [ti,m, ti+1] will be divided into [ti, r,m]
and [m, s, ti+1] with r and s the new middle points. The Simpson rule is efficient for
this work because the acceleration, speed and angular speed are continuous without
any "jump" which can be described with a polynomial fitting.
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4 Mathematical models of the sensors and the
noise

The following models are simple and robust models describing the sensor data. These
models are common models used in most scientific papers which examine IMU
solutions. The noise model, present in every model of this work, is examined first.
Afterward, a full description of the models of sensors is given.

4.1 Noise model
In all sensors, the data is corrupted by noise. The origin of the noise is not always
obvious to determine. The most common noise, present in sensors using digitalization,
is the one coming from the analog-to-digital converter (ADC). This type of noise,
also called quantization noise, appears when converting analog values, which are
theoretically infinite, into a finite number of values. It is a rounding error. The
quantization noise can be, in most cases, approximated with additive white Gaussian
noise (or white noise).
The probability density function (PDF) of the white Gaussian noise is the normal
density. The Gaussian PDF is given by

f(x) = 1√
2πσ2

exp

(
−(x− µ)2

2σ2

)
, x ∈ R (4.1)

where σ is the standard deviation and µ the mean value. And the white Gaussian
noise PDF is the Gaussian density with an average value of zero and of unit variance,
i.e. µ = 0 and σ = 1. With those conditions, the equation of the Gaussian PDF
becomes

f(x) = 1√
2π
exp

(
−x2

2

)
, x ∈ R (4.2)

The noise is assumed to be additive which means that, any signal y(t) which is
corrupted by white noise can be written as

y(t) = z(t) + n(t) (4.3)

where z(t) is the original signal and n(t) the Gaussian white noise. The expected
value of the signal from equation 4.3 is

E[y(t)] = E[z(t)] + E[n(t)] = E[z(t)] (4.4)

because the noise n(t) is considered white Gaussian.

NOTE: The noise for the accelerometer will be referred as ⃗na(t), for the gyrometer
n⃗g(t) and for the magnetometer n⃗c(t) (c like compass).
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4.2 Accelerometer model
The accelerometer measures the difference between the free fall state and the current
state. In free fall, the acceleration measured is

a⃗m(t) = n⃗a(t) (4.5)

where n⃗a(t) is the noise present in the reading. The acceleration is represented by a
vector to point out that the values from the sensor are given in a three dimensional
Cartesian coordinate system. If the sensor is static, the measured acceleration vector
become

a⃗m(t) = −g⃗(t) + n⃗a(t) (4.6)

Where g⃗(t) is the instantaneous value of gravitation vector. When the accelerometer
rotates, the gravitation vector changes direction.
When the sensor is moving, the equation 4.6 becomes

a⃗m(t) = a⃗(t) − g⃗(t) + n⃗a(t) (4.7)

where a⃗(t) is the acceleration sensed by the sensor and also the value needed to
compute the position.
This model would be enough in a perfectly calibrated sensor, but like it will be shown
in chapter 6, it is far from being the case. The accelerometer has a bias which slowly
changes over time due to temperature fluctuation. The bias will be considered as
constant, as it can be assumed that the measurements are done within a short period
of time in which the temperature does not evolve. The equation 4.7 becomes

a⃗m(t) = a⃗(t) − g⃗(t) + ⃗biasa + n⃗a(t) (4.8)

The next step is to model the errors due to the scaling of the axes. The scaling or
sensitivity is a factor that amplifies or reduces the measured value to obtain the real
value. The equation 4.7 becomes

a⃗m(t) = Sa(⃗a(t) − g⃗(t)) + ⃗biasa + n⃗a(t) (4.9)

where the sensitivity of the axes are represented by Sa, a diagonal square matrix
3×3.

Sa =

⎡⎢⎣Sa,x 0 0
0 Sa,y 0
0 0 Sa,z

⎤⎥⎦ (4.10)

In the case of an ideal accelerometer, the axes would form an orthonormal basis. In
practice, each axis has its own module which are mounted next to each other to keep
the size of the MEMS-sensor to a bare minimum. For this reason, the measurement
axes cannot be viewed as orthogonal. This is known as the misalignment error.
Adding this error to the equation 4.9, it becomes

a⃗m(t) = SaEa(⃗a(t) − g⃗(t)) + ⃗biasa + n⃗a(t) (4.11)
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where Ea is a matrix representing the misalignment of the axes and can be written
as

Ea =

⎡⎢⎣ 1 Ea,xy Ea,xz

Ea,yx 1 Ea,yz

Ea,zx Ea,zy 1

⎤⎥⎦ (4.12)

Changing SaEa to Ta, the equation 4.11 becomes

a⃗m(t) = Ta(⃗a(t) − g⃗(t)) + ⃗biasa + n⃗a(t) (4.13)

with the error matrix to

Ta =

⎡⎢⎣ Ta,x Ta,xy Ta,xz

Ta,yx Ta,y Ta,yz

Ta,zx Ta,zy Ta,z

⎤⎥⎦ (4.14)

The diagonal terms are the scaling of the axes while the other terms are called
cross-coupling error.
When the sensor is not subject to movement, i.e. a⃗(t) = 0, the equation becomes

a⃗m(t) = −Tag⃗(t) + ⃗biasa + n⃗a(t) (4.15)

This equation is needed for the calibration.

4.3 Gyrometer model
The gyrometer is used to obtain the attitude of the sensor and also the direction
of the Earth gravity vector knowing its original position. The gyrometer can be
modeled the same way as the accelerometer.
When the sensor is ideal and stationary, the measured values are

ω⃗m(t) = 0⃗ (4.16)

and for a non-static sensor, the measured angular speed at an instant t is

ω⃗m(t) = ω⃗(t) (4.17)

where ω(t) is the value describing the angular velocity of the sensor. The model
would be perfect for an ideal gyrometer. As ideal sensor does not exist, noise ,n⃗g,
and bias, ⃗biasg, have to be added to the model. The bias would be including the
Earth’s angular velocity but is likely to be too low to be sensed by a low-grade
MEMS gyroscope.
The sensor being static gives the equation

ω⃗m(t) = ⃗biasg + n⃗g(t) (4.18)

and when the sensor is in motion,

ω⃗m(t) = ω⃗(t) + ⃗biasg + n⃗g(t) (4.19)
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The gyrometer suffers from the same problems as the accelerometer. The sensitivity
of each axes is different which leads to non-normality of the basis of the measured
values and the misalignment errors are also present. The mathematical model from
equation 4.19 becomes

ω⃗m(t) = Tgω⃗(t) + ⃗biasg + n⃗g(t) (4.20)

where

Tg =

⎡⎢⎣ Tg,x Tg,xy Tg,xz

Tg,yx Tg,y Tg,yz

Tg,zx Tg,zy Tg,z

⎤⎥⎦ (4.21)

The construction of the gyrometer is different from the accelerometer as it is a single
piece for the three axes. It means that the misalignment errors should be very close
to zero.

4.4 Magnetometer
The magnetometer measures the local Earth’s magnetic field which means that every
magnetic objects will interact with the good functioning of the device.
When the magnetometer is ideally calibrated, the three dimensional vector m⃗m(t)
will follow a sphere with a radius equal to the magnitude of the local magnetic field.
In this case, the measured values are

m⃗m(t) = m⃗(t) + n⃗c(t) (4.22)

where mm(t) is the measured value from the magnetometer, nc(t) the noise and m(t)
the real value. Like the other sensors, the magnetometer has a bias, ⃗biasc. The
bias is caused by the permanent magnetization of the magnetic elements around the
sensor. The bias of the magnetometer is also called hard iron effect [15]. Thus, the
equation 4.22 can be rewritten to

m⃗m(t) = m⃗(t) + ⃗biasc + n⃗c(t) (4.23)

The magnetometer is mounted on a printed circuit board which has components
that are magnetized by an external field. The sphere, that would normally describe
the magnitude of the measured vector, will become an ellipsoid. The equation 4.23
becomes

m⃗m(t) = Scm⃗(t) + ⃗biasc + n⃗c(t) (4.24)
The matrix Sc characterizes the soft iron effect [15]. The sensor is composed of three
separate Hall effect sensors, which induces misalignment errors. The equation 4.24
becomes

m⃗m(t) = EcScm⃗(t) + ⃗biasc + n⃗c(t) (4.25)
Because it is not important to know separately the matrices Ec and Sc, their product
can be replaced by the matrix Tc. The equation becomes

m⃗m(t) = Tcm⃗(t) + ⃗biasc + n⃗c(t) (4.26)
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and more precisely

m⃗m(t) =

⎡⎢⎣mm,x

mm,y

mm,z

⎤⎥⎦ =

⎡⎢⎣ Tc,x Tc,xy Tc,xz

Tc,yx Tc,y Tc,yz

Tc,zx Tc,zy Tc,z

⎤⎥⎦
⎡⎢⎣mx

my

mz

⎤⎥⎦+

⎡⎢⎣bc,x

bc,y

bc,z

⎤⎥⎦+

⎡⎢⎣nc,x

nc,y

nc,z

⎤⎥⎦ (4.27)

where the diagonal elements represent the sensitivity of the axes which leads to
non-normality of the basis.
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5 Algorithms
In this section will be described the algorithms present in this work. The complete
algorithm is described in the figure 5.1. It is important to notice that the algorithms

Figure 5.1: Block diagram representing the order of the algorithms

are not chosen to be computationally efficient and that the Gram-Schmidt process is
included in the rotation matrix.

5.1 Calibration
The calibration is an important step to obtain the right values from the sensors.
The manufacturer is usually providing factory values which represent the corrected
scaling values. For low-cost products, these calibration values are rough because it
would be too expensive to calibrate well a sensor that only cost few dollars.
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The calibration has to be done every time the sensor is switched on because the biases
of the axes change. It is especially true for the accelerometer, while the other sensor
are not significantly affected. The sensors are also sensitive to temperature changes
[16]. In article [17], the authors propose a temperature compensation model using
neural network. However, estimating a temperature model requires very expensive
equipment to obtain stabilized temperature. Thus, in this work, it is assumed that the
temperature remains constant during the measurements. That is, the temperature
compensation will fall into the calibration model.

5.1.1 Accelerometer

The calibration of the accelerometer is usually done by setting the sensor in exactly
known positions and correcting the values of g⃗ measured by the sensor accordingly.
The accelerometer is said to be calibrated when the norm of the measured acceleration
vector a⃗m is always equal to one g in static state and the sphere it described is centered
at the origin. This refers to the equation 4.6 of Section 4.2. To obtain this equation
from the model of equation 4.15, the transformation matrix Ta needs to be determined.
The gravity vector can be written from equation 4.15 as

Tg⃗(t) = ⃗biasa(t) − a⃗m(t) + n⃗a(t) (5.1)

and using the expectation value

E[Tg⃗(t)] = E[ ⃗biasa(t)] − E[⃗am(t)] + E[n⃗a(t)] (5.2)

Because T is composed of constants, the equation becomes

TE[g⃗(t)] = E[ ⃗biasa] − E[⃗am] (5.3)

Knowing the magnitude of the gravity vector g⃗(t), it can be written

∥E[g⃗(t)]∥ = g = ∥T−1(E[ ⃗biasa] − E[⃗am])∥ (5.4)

where g is the magnitude of the local Earth gravity vector and equal approximatively
to 9, 81m.s−2.
Expanding the equation 5.4, it becomes

⎡⎢⎣ Ta,x Ta,xy Ta,xz

Ta,yx Ta,y Ta,yz

Ta,zx Ta,zy Ta,z

⎤⎥⎦
−1⎛⎜⎝

⎡⎢⎣ba,x

ba,y

ba,z

⎤⎥⎦−

⎡⎢⎣E[am,x]
E[am,y]
E[am,z]

⎤⎥⎦
⎞⎟⎠
 = g (5.5)

The equation 5.5 becomes

∥T(E[ ⃗biasa] − E[⃗am])∥ = g (5.6)

The equation 5.6 has twelve unknown variables

Θ = [Ta,x, Ta,y, Ta,z, Ta,xy, Ta,xz, Ta,yx, Ta,yz, Ta,zx, Ta,zy, ba,x, ba,y, ba,z] (5.7)
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That means that at least four values of E[⃗am] (the vector contains 3 values am,x, am,y

and am,z) are needed. The values are taken when the sensor is not in motion and
placing it in four different position i. This equation will be solved using swarm
particle optimization [18] where the cost function is

min
Θ

(
N∑

i=1
∥T(E[ ⃗biasa] − E[⃗am[i]])∥2 − g2

)
, i ∈ 1, 2, .., N (5.8)

where E[⃗am[i]] is the average value of the measured acceleration over a few thousand
samples taken at a position i.

5.1.2 Magnetometer

The calibration of a magnetometer is usually done with Helmholtz coil which creates
a nearly uniform magnetic field. Setting the magnetometer in different positions
within the coils field, the magnetometer values can be corrected accordingly.
The magnetometer is said to be calibrated when the measured vector, representing
the magnitude and the direction of the local magnetic field, has a magnitude equal
to the one of the local magnetic field and describing a sphere centered in the origin.
The calibration of the magnetometer will be done with the Extended Kalman filter
(EKF) and mostly according to the article [19]. The difference resides in the calcula-
tion which lead to different results.
To use the EKF, the state variable x⃗(t) and the observation z⃗(t) must be defined.
The state variable will be defined as the inverse solution of the calibration by setting
T−1

c = K, i.e.

x⃗(t) = [Kc,x, Kc,y, Kc,z, Kc,xy, Kc,xz, Kc,yx, Kc,yz, Kc,zx, Kc,zy, bc,x, bc,y, bc,z]T (5.9)

The reason for this replacement is for displaying the result of the Jacobian which
would take more that a page to display.
The time derivative of the state variable will be

˙⃗x(t) = dx⃗(t)
dt

= n⃗p(t− 1) (5.10)

with n⃗p the process noise.
The observation will be defined as the strength of the local magnetic vector, i.e.

z⃗(t) = ∥m⃗m(t)∥2 = m⃗m(t)Tm⃗m(t) (5.11)

Assuming that the bias does not change during the calibration, i.e. ⃗biasc(t) = ⃗biasc =
constant and using the equation 4.26 to extract the true magnetic field m⃗,

m⃗(t) = (Tc)−1 (m⃗m(t) − ⃗biasc) + n⃗c(t) = K(m⃗m(t) − ⃗biasc) + n⃗c(t)

As a reminder, T−1
c = K with

K =

⎡⎢⎣Kc,x Kc,xy Kc,xz

Kc,yx Kc,y Kc,yz

Kc,zx Kc,zy Kc,z

⎤⎥⎦ (5.12)
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m⃗(t) is unknown but the product m⃗(t)Tm⃗(t) corresponds to the squared Earth’s
local magnetic field. In Helsinki, it is equal to 52, 0854µT according to the website
Magnetic-deviation [20]. This value is calculated based on the Earth’s magnetic field
model defined in [21].

m⃗(t)Tm⃗(t) =
(
K(m⃗m(t) − ⃗biasc) + n⃗c(t)

)T (
K(m⃗m(t) − ⃗biasc) + n⃗c(t)

)
(5.13)

Expending and reorganizing the equation, it becomes

m⃗(t)Tm⃗(t) = m⃗m(t)TKTKm⃗m(t)T − 2biasT
c KTKm⃗m(t) + biasT

c KTKbiasc+
2n⃗c(t)TKTKm⃗m(t) − 2biasTKTKn⃗c(t) + n⃗c(t)TKTKn⃗c(t)

and rewritten as

m⃗(t)Tm⃗(t) = m⃗m(t)TKTKm⃗m(t)T − 2biasT
c KTKm⃗m(t) + biasT

c KTKbiasc + n⃗o(t)
(5.14)

where n⃗o(t) = 2n⃗c(t)TKTKm⃗m(t) − 2biasTKTKn⃗c(t) + n⃗c(t)TKTKn⃗c(t) is the obser-
vation noise and is assumed to be close enough to Gaussian noise.
After introduction of m⃗m(t)Tm⃗m(t) in the equation 5.14, the observation is

z⃗(t) = m⃗m(t)Tm⃗m(t) = m⃗(t)Tm⃗(t) − m⃗m(t)T
(
KTK − I

)
m⃗m(t)T+

2biasT
c KTKm⃗m(t) − biasT

c KTKbiasc + n⃗o(t)
(5.15)

The equation can be rewritten as

z⃗(t) = f(x⃗(t)) + n⃗o(t) (5.16)

with the function

f(x⃗(t)) = m⃗(t)Tm⃗(t) − m⃗m(t)T
(
KTK − I

)
m⃗m(t)T+

2biasT
c KTKm⃗m(t) − biasT

c KTKbiasc

(5.17)

Because the observation equation z⃗(t) is not linear, i.e. the function f is not linear,
the extended version of the Kalman filter (EKF) must be used. For that, the
observation equation will be linearized using the Jacobian matrix Jm.

z⃗(t) ≈ Jc(t)x⃗(t) + n⃗o(t) (5.18)

where

Jc(t) =
[
∂f(t)
∂Kc,x

∂f(t)
∂Kc,y

∂f(t)
∂Kc,z

∂f(t)
∂Kc,xy

∂f(t)
∂Kc,xz

∂f(t)
∂Kc,yx

∂f(t)
∂Kc,yz

∂f(t)
∂Kc,zx

∂f(t)
∂Kc,zy

∂f(t)
∂bc,x

∂f(t)
∂bc,y

∂f(t)
∂bc,z

]
(5.19)

Despite the change T−1
c = K, The result of the Jacobian remains too large to be

displayed here. The result can be found in Appendix A. Finally, the equations for
the discrete-time Extended Kalman filter are:⎧⎨⎩ ˙⃗x(t) = n⃗p(t− 1)

z⃗(t) ≈ Jc(t)x(t) + n⃗o(t)
⇒

⎧⎨⎩x⃗[k] = Ax⃗[k − 1] + n⃗p[k]
z⃗[k] = J [k]x⃗[k] + no[k]

(5.20)

Where A is a 1 × 12 unity matrix.
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5.1.3 Gyrometer

Ideally, the calibration of the gyrometer could be done using the Earth’s rotation
velocity. Unfortunately, the sensor in this work is not sensitive enough to sense it. The
Earth’s rotational speed is about 7, 27 × 10−5rad.s−1 [22] while the sensor’s smallest
theoretical (without noise) angular velocity measurable is 13, 3 × 10−5 rad.s−1.
The calibration is usually done with a turntable from which the angular velocity is
known. Then, the values of the sensor are corrected accordingly. In this work, the
calibration is done without additional equipment.
The gyrometer is here the most difficult sensor to calibrate among the three sensors.
The problem resides in the non-availability of a direct measured value which can
be used for the calibration. Without any external equipment, it is not a simple
task to measure the angular velocity. The angular velocity could be obtained by
using a calibrated magnetometer. Using simple geometrical tangent relationship, the
Euler angles can be extracted. The derivative of these angles would give values that
could be compared to the value measured by the gyrometer. In theory, this process
would work. In practice, the data of the magnetometer is very noisy which would
induce instability of the function tangent "tan" when the angle is close to ±π/2 (or
±π if the function "tan2" is used). This problem can be somehow solved with an
approximation of the angle which would lead to more stable values. Another problem
comes along with the numerical derivation of noisy data which requires "denoising"
algorithm such as smoothing filters or polynomial fitting. These algorithms remove
data from the signal if the signal is unknown like in this work.
One other way to do this is to use calculated values from the gyrometer to obtain
the rotation matrix. In other words, the equation 3.21 is utilized. Assuming that
the magnetometer is calibrated and the magnetic filed is not disturbed by electric
devices or magnetized material, the vector describing the magnetic field present can
be written as

m⃗m(t) = SgR(t)m⃗m(t− 1) + n⃗g(t) (5.21)

where Sg is the correction matrix which includes scaling, basis change and orthogonal
rectification

Sg =

⎡⎢⎣ Sg,x Sg,xy Sg,xz

Sg,yx Sg,y Sg,yz

Sg,zx Sg,zy Sg,z

⎤⎥⎦ , (5.22)

and R(t) the rotation matrix at the instant t and n⃗g the noise. The equation 5.21
represents the rotation of an initial vector at an instant t.
Since the calibration of magnetometer sensor is not perfect it is wise to add a bias to
the equation. It becomes

m⃗m(t) = SgR(t)(m⃗m(t− 1) + ⃗biasg) + n⃗g(t) (5.23)

The extended Kalman filter is then utilized to obtain a solution to Sg and the bias.
The state variable is defined as

x⃗(t) = [Sg,x, Sg,y, Sg,z, Sg,xy, Sg,xz, Sg,yx, Sg,yz, Sg,zx, Sg,zy, bg,x, bg,y, bg,z]T (5.24)
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It represents the solution of the calibration.
The equation 5.23 can be written as

m⃗m(t) = f(x⃗(t)) + n⃗g(t) (5.25)

with the function f being SgR(t)(m⃗m(t− 1) + ⃗biasg).
The state equations are⎧⎨⎩ ˙⃗x(t) = n⃗g(t)

z⃗(t) ≈ Jg(t)x(t) + n⃗o(t)
⇒

⎧⎨⎩x⃗[k] = Ax⃗[k − 1] + n⃗p[k]
z⃗[k] = Jg[k]x⃗[k] + no[k]

(5.26)

where Jg is the jacobian of m⃗m(t)

Jg(t) =
[
∂f(t)
∂Sg,x

∂f(t)
∂Sg,y

∂f(t)
∂Sg,z

∂f(t)
∂Sg,xy

∂f(t)
∂Sg,xz

∂f(t)
∂Sg,yx

∂f(t)
∂Sg,yz

∂f(t)
∂Sg,zx

∂f(t)
∂Sg,zy

∂f(t)
∂bg,x

∂f(t)
∂bg,y

∂f(t)
∂bc,z

]T

(5.27)
The solution of the Jacobian is given in Appendix B.

5.2 Gravity vector computation
The Earth’s gravitational vector g⃗ can be obtained by an accelerometer and the
fusion of a gyrometer with an accelerometer.
When the sensor is at rest and calibrated, using the equation 4.6 of section 4.2,

a⃗m(t) = −g⃗(t) + n⃗a(t)

The gravity vector can be obtained by just reading the average value of the ac-
celerometer at rest. The average value of white Gaussian noise is zero and when the
accelerometer is still and perfectly calibrated, it can be written that

E[a⃗m(t)] = −E[g⃗(t)] (5.28)

The gyrometer is used to compute the direction of the gravity vector g⃗(t). The
computation of the direction of g⃗(t) from the gyrometer requires an initial value of
the vector g⃗(t) obtained from the accelerometer before the sensor is in motion. It
can be then written that the gravity vector at an instant t is

g⃗g(t) = R(t)g⃗(t− 1)|g + n⃗g(t) (5.29)

This value has to be transfered to the basis of the gyrometer to be able to use the
equation 5.29. And the equation becomes

g⃗g(t) = R(t)Tg
ag⃗(t− 1)|a + n⃗g(t) (5.30)

where Tg
a is the transformation matrix representing the change of basis from ac-

celerometer to gyrometer.
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5.3 The Kalman filter
The Kalman filter is usually associated to the IMU and data fusion in many works
[24, 25, 26]. The Kalman filter is a generalization of the Wiener filter which is
restricted to stationary scalar signal and noises [23]. The filter can be seen as a
sequential minimum mean square error (MMSE) estimator of a signal in noise.

5.3.1 The Kalman Filter for linear system

For the Kalman filter, the state and observation models must be known. They must
also be Gauss-Markov models. Assuming that the signal are digital, ie. k = nT with
n ∈ N and T the sampling period. The state model is written as:

x⃗[k] = Ax⃗[k − 1] + Bu⃗[k] + n⃗p[k], ∀k > 0 (5.31)

where the matrices A and B are known matrices and respectively the state-transition
model and the control input model. The process noise is written as n⃗p and defined
as white Gaussian.
In the following part the equations of the Kalman filter will be written without much
detail. The reference book [23], is a good source of information to understand where
these equations come from.
The observation model is given by

z⃗[k] = Hx⃗[k|k] + n⃗o[k], ∀k > 0 (5.32)

The prediction:
⃗̂x[k|k − 1] = A⃗̂x[k − 1|k − 1] + Bu⃗[k] (5.33)

The minimum prediction MSE matrix or error covariance matrix:

M[k|k − 1] = AM[k − 1|k − 1]AT + Q[k − 1] (5.34)

Where Q is the system noise covariance matrix. It defines how the uncertainty
increases with time due to noise sources.
The Kalman gain is

K[k] = M[k|k − 1]H[k]T
H[k]M[k|k − 1]H[k]T + R[k] (5.35)

It defines the weight between the observation and the state model.
The correction or update:

⃗̂x[k|k] = ⃗̂x[k|k − 1] + K[k](z⃗[k] − HT[k]⃗̂x[k|k − 1]) (5.36)

Minimum MSE Matrix update:

M[k|k] = (I − K[k]⃗hT[k])M[k|k − 1] (5.37)
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Where the mean square error matrices are defined as

M[k|k] = E[(x⃗[k] − ⃗̂x[k|k])(x⃗[k] − ⃗̂x[k|k])T] (5.38)

and
M[k|k − 1] = E[(x⃗[k] − ⃗̂x[k|k − 1])(x⃗[k] − ⃗̂x[k|k − 1])T] (5.39)

The equation above are the equations required for the Kalman filter.

5.3.2 Extended Kalman Filter

In the previous case, the filter was designed for linear systems. When the system
is not linear, like often in practice, the extended Kalman filter can be used. The
equations remains the same but the transition A and/or the observation H must be
linearized.
For a non-linear systems, the equations 5.31 and 5.32 can be written as

x⃗[k] = f(x⃗[k − 1]) + n⃗p[k − 1] ∀k > 0 (5.40)

z⃗[k] = Hx⃗(k) + n⃗o[k], ∀k > 0 (5.41)
where f and h are functions that needs to be linearized to be able to use the Kalman
filter. The linearization introduced errors due to the approximation of the functions
around the concerned point. The filter is not optimal any longer. The approximation
is usually done at the first order but can be done also at higher order. The 1st order
linearization is realized using the Jacobian. The transition matrix becomes

A = ∂f(x⃗)
∂x⃗

(5.42)

and the observation matrix becomes

H = ∂h(x⃗)
∂x⃗

(5.43)

5.3.3 Algorithm of the Kalman filter

The Kalman filter required initial values for the state variable x⃗, the error covariance
matrix M, the covariance noise matrices R and Q, respectively x⃗[0], M[0], R[0] and
Q[0] . The initial value for the state variable, x⃗[0], is not important and can be set to
zero as it will be updated correctly afterward. The covariance matrices are important
to determine. Unfortunately, it is not an easy task and usually is realized empirically.
When the state and measurement models are known, the algorithm goes as follows [27]:

1. Obtain the transition, matrix A[k − 1]

2. Obtain the system noise covariance matrix, Q[k − 1]

3. Propagate the state vector estimate from ⃗̂x[k|k] to ⃗̂x[k|k − 1]
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4. Propagate the error covariance matrix from M[k|k] to M[k|k − 1]

5. Calculate the measurement matrix H[k]

6. Calculate the measurement noise covariance matrix, R[k]

7. Calculate the Kalman gain, K[k]

8. Formulate the measurement vector, z⃗[k]

9. Update the state vector estimate from ⃗̂x[k|k − 1] to ⃗̂x[k|k]

10. Update the covariance matrix from M[k|k − 1] to M[k|k]

5.4 Obtaining the position
To obtain the position p⃗(t), the acceleration a⃗(t) has to be integrated with respect to
time, first to become the velocity v⃗(t). The velocity at the instant t1 from an initial
instant t0 is given by

v⃗(t1) =
∫ t1

t0
a⃗(t)dt (5.44)

The position is the integration of the velocity v⃗ with respect to time. It is written as

p⃗(t1) =
∫ t1

t0
v⃗(t)dt (5.45)

These integrals are done numerically using one of the quadrature in Section 3.5. The
accelerometer does measure the combination of the gravitational acceleration with
the actual acceleration of the sensor. To obtain the actual acceleration a⃗(t), the
gravitational acceleration vector must be removed from the readings. The only way
to do it without external equipment is to use the gyrometer. Using the equation 5.6,
the actual acceleration is

a⃗(t)|g = Tg
aa⃗m|a − R(t)Tg

ag⃗(t− 1)|a + n⃗g(t) (5.46)

When the acceleration a⃗(t) is obtained, the position can be easily computed.

5.5 The modified Gram-Schmidt process
The Gram-Schmidt process is a method used for correcting orthogonality of a set
of vectors. This method is needed to correct the rotation matrix obtained from the
gyrometer. The classical Gram-Schmidt process is numerically unstable[28]. This
means that applied to digital values, the algorithm may not converge nor give the
correct values.
The rounding error or the noise modifies the actual value randomly which changes the
rotation matrix into a non-orthogonal matrix. The non-orthogonal matrix induces
errors in the Euler angles calculation.
The classical gram-Schmidt process works the following way:
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Assuming a R3 vectorial space V spanned with a non-orthogonal set of vectors v⃗1, v⃗2
and v⃗3. The orthogonal projection of a vector v⃗ on an unidimensional subspace u⃗ is
defined as

proju(v⃗) = u⃗ · v⃗
u⃗ · u⃗

(5.47)

The algorithm goes as follows,

1. Set the first vector from which the other will be corrected

u⃗1 = v⃗1

2. The second vector is obtained from the previous vector

u⃗2 = v⃗2 − proju1(v⃗2)

3. The last vector is then obtained from the the two preceding vector

u⃗3 = v⃗3 − proju1(v⃗3) − proju2(v⃗3)

And to finally obtain the orthonormal basis, e⃗1, e⃗2 and e⃗3, each vector are divided by
their norm such as,

e⃗i = u⃗i

∥u⃗i∥
, ∀i ∈ {1, 2, 3} (5.48)

The modified Gram-Schmidt is a version that handles the small errors such ADC
rounding error or noise. Only few changes appear and the algorithm becomes

1. Set the first vector from which the other will be corrected

u⃗1 = v⃗1

2. The second step also remains the same,

u⃗2 = v⃗2 − proju1(v⃗2)

3. The last is little different and refers to the same computation as before, but
indirectly

u⃗3 = v⃗3 − proju1(v⃗3) − proju2(v⃗3 − proju1(v⃗3))

and using the equation 5.48, the system is orthonormalized and numerically stable.
For matrices reorthogonalization, the process is the same assuming that the columns
of the matrix to be orthogonized are vectors. Writing a matrix A as [v⃗1, v⃗2, v⃗3], the
algorithm can be applied.
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5.6 Particle swarm optimization
The particle swarm optimization (PSO) is a population based stochastic method for
solving optimization problem. The PSO is similar to a genetic algorithm because
they are both initialized with random population of random solution. However,
unlike a genetic algorithm, the particle swarm system has a memory and randomized
velocity that simulate a flow of the swarm [29].
The aim of the algorithm is to find suitable value to minimize a defined cost function.
The solution to optimization problem is obtained by moving a swarm of particles in
a given space till the cost function is minimized. The PSO has four parameters that
are, the position, the velocity, the personal best and the global best. The personal
best corresponds to the best result obtained by a particle while the global best is the
swarm’s best, i.e. the best result obtained by all the particles. So in other words,
each particles has its own velocity, position and its position that optimizes best the
cost function. The velocity v⃗i and position p⃗i of a particle i are updated at the
instant t+ 1 the following way:⎧⎨⎩v⃗i(t+ 1) = wv⃗i(t) + c1r1(p⃗i,best − p⃗i(t)) + c2r2(g⃗i,best − p⃗i(t))

p⃗(t+ 1) = p⃗i(t) + v⃗i(t)
(5.49)

where w is the inertial weight, c1 the cognitive parameter, c2 the social parameter, r1
and r2 are two uniform random numbers in the range of [0, 1]. p⃗i,best is the particle’s
personal best position and g⃗i,best is the swarm best position. The evolution of the
speed and position of the particles in the swarm, described in equation 5.49, can be
modified [30].
The algorithm can be summarized as follow:

1. Generate the swarm population with zero velocity and random position within
defined bounds

2. Evaluate the cost function for each particles

3. Update the particles’ personal best and the swarm global best

4. Update the velocity and position of each particle, except the one who has got
the global best, using equations 5.49

5. Return to step 2 until the predefined number of iteration is fulfilled

6. The solution to the optimization problem is given by the global best

There exists several PSO algorithms which are obtained by modifying the weights,
w, c1, c2, r1, r2, as a function to improve the accuracy of the result. The basis PSO
has all the weights constant.
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6 Experiments

6.1 Simulation
The simulation is done to check the validity of the algorithms by using known
synthetic signals.

6.2 The construction of the simulation data
The signals are continuous and made from piecewise polynomial functions from degree
zero up to degree five. The polynomial function can used to describe most movements
that are applied to the sensor. The signal was constructed by first realizing the angle
signal, then from it was obtained the angular speed as

Ω⃗(k) = Θ⃗(k) − Θ⃗(k − 1) (6.1)
In this case, the derivation is simple as the signal does not contain any noise.
Afterward, from the angular speed signal, the rotation matrices characterizing the
position of the sensor can be obtained. Like explained in the theory, the rotation
matrices are obtained by multiplying small angle matrices because of the matrix
order of multiplication. Small angles are obtained directly from the derivative of the
synthetic angles signal.
For simulating the magnetometer data, the rotation matrices obtained previously
are multiplied at k = 1 by a made-up initial vector as

m⃗ag(k) = R(k)m⃗ag(k − 1) (6.2)
The acceleration synthetic data is obtained the same was as the magnetometer data.

a⃗(k) = R(k)⃗a(k − 1) (6.3)
To all the previous signals are added Gaussian white noise of SNR of at least 20 dB.

6.3 Test of the calibration algorithms
The tests of each calibration are done using the synthesis data.

6.3.1 The calibration of the magnetometer

This calibration of the magnetometer is done using only the synthetic magnetometer
data. An calibrated magnetometer has its data describing a sphere at the origin. A
calibrated magnetometer gives an ellipsoid, which can be in the worst cases scenario,
rotated away from the basis axes. The calibration makes use of the Extended Kalman
filter as described in the chapter 5.1.2. The following transformation matrix K and
bias ⃗biasm is used to simulate the misalignment, scaling error and the bias of the
magnetometer.

K =

⎡⎢⎣1, 376 0, 01 −0, 04
0, 01 0, 98 −0, 09
0, 04 −0, 03 0, 8123

⎤⎥⎦ ⃗biasm =

⎡⎢⎣−21, 5
11

−50, 3

⎤⎥⎦
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The simulation is done on 20000 samples of data that is iterated many times due
to the slow convergence of the Extended Kalman filter algorithm. To obtain a
convergence of the values, the process noise covariance matrix and the observation
noise matrix and the initial value of the state estimate must be properly set. If
not, the state values will not converge to the right values. For the simulation data,
R = 1 × 106 while the Q = 1 × 10−8I and x⃗[k = 0] = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0].
The initial state value is intuitive to determine while other were obtained empirically.

−150

−100

−50

0

50

100

150

2 4 6 8 10 12

M
ag

ni
tu

de
[µ
T

]

time [s]

deformed signal with noise
corrected signal

ideal signal

Figure 6.1: Magnetometer’s synthetic data x

In the figure 6.1, the corrected signal matches almost perfectly the ideal signal.
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In the figure 6.2, the corrected signal does not match the ideal signal as well as
in the previous case.
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Figure 6.3: Magnetometer’s synthetic data z

In the figure 6.3, the corrected signal matches the ideal data.
The results obtained in the figures 6.1, 6.2 and 6.3 were possible after 300 iterations.
The bias values converge quickly (number of iterations < 50) but the matrix values
require 300 iterations. The estimated matrix is

Kest =

⎡⎢⎣1, 389 0, 014 −0, 048
0, 015 0, 985 −0, 094
0, 041 −0, 028 0, 832

⎤⎥⎦ ⃗biasm =

⎡⎢⎣−21, 658
10, 859

−49, 891

⎤⎥⎦
It is noticeable that the bias and the scaling values are very close to the right values
while the other values corresponding to the misalignment are not so well estimated.
The misalignment values influence greatly the form of the data. The error in these
values should be relatively small.
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6.3.2 The calibration of the gyrometer

The following calibration is obtained by using the calibrated magnetometer and
comparing it with the data obtained from the gyrometer. The gyrometer calibration is
not direct as the magnetometer was. It is because the rotation matrices corresponding
to the attitude of the sensor are used to match the values of the magnetometer. This
calibration algorithm also uses the Extended Kalman filter
The following matrix and vector will simulate the error in the measurement basis
and the bias,

Sg =

⎡⎢⎣ 1, 76 0, 01 −0, 04
−0, 09 0, 98 0, 09

0, 4 0, 03 0, 7123

⎤⎥⎦ ⃗biasg =

⎡⎢⎣ 2, 5
−1, 1
−3, 1

⎤⎥⎦
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Figure 6.4: Gyro’s synthetic data x

In the figure 6.4, the results matches closely the ideal signal.
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Figure 6.5: Gyro’s synthetic data y

In the figure 6.5, the results also matches closely the ideal signal.
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Figure 6.6: Gyro’s synthetic data z

In the figure 6.6, the results does not match the ideal signal as well as in the
previous cases.
The simulation was done on 20000 samples of data that was iterated a large number
of times due to the slow convergence of the EKF. The convergence also requires good
initial value for the initial state vector and the covariance matrices. In this case, the
bias converges to its final values after 1000 iterations while the other values converge
before 30 iterations. The initial values were R = 1×108I3×3, Q = 1×10−10I12×12 and
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the initial state value x⃗[k = 0] = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]. The results estimated
by the algorithm are as follows

Sg =

⎡⎢⎣1, 1785 0.0091 −0, 0404
−0, 091 0, 9824 0, 0894
0, 3996 0, 0297 0, 7129

⎤⎥⎦ ⃗biasg =

⎡⎢⎣ 2, 4952
1, 0556

−3, 1352

⎤⎥⎦
It is again noticeable that the values representing the scaling, misalignment and bias
are close to the ideal case. A slight deformation can be noticed in the graph of axis
z (fig. 6.6)

6.3.3 The calibration of the accelerometer

This calibration is the last one and is done with the help of the gyrometer. This
calibration is also indirect as the rotation matrix obtained from the gyrometer are
utilized. The purpose of the algorithm is to minimize the cost function given in
chapter 5.1.1 that is obtained from the acceleration and rotation matrix obtained in
six different positions. In this case, the values are taken when the sensor is simulated
to be at rest, i.e. the vector remains stable for a short period of time. The equation
is solved using a swarm particles algorithm. The number of particles in the swarm is
1000. The matrices representing the error in the sensor are

T =

⎡⎢⎣ 1, 76 0, 01 −0, 04
−0, 09 0, 98 0, 09

0, 4 0, 03 0, 7123

⎤⎥⎦ ⃗biasa =

⎡⎢⎣ 2, 5
−1, 1
−3, 1

⎤⎥⎦
The synthetic signals contains 20 dB SNR white Gaussian noise.
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Figure 6.7: accelerometer’s synthetic data x

In the figure 6.7, the estimated values are closely matched.
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Figure 6.8: accelerometer’s synthetic data y

In the figure 6.8, the estimated values are also closely matched.
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Figure 6.9: accelerometer’s synthetic data z

In the figure 6.9, the estimated values are closely matched. The swarm particle
algorithm converge quickly when good initial values are given. The initial values were
x⃗[k = 0] = [1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0] with the solutions area to be for all variable
between −2 and 2. The results are

T =

⎡⎢⎣1, 1785 0.0091 −0, 0404
−0, 091 0, 9824 0, 0894
0, 3996 0, 0297 0, 7129

⎤⎥⎦ ⃗biasa =

⎡⎢⎣ 2, 4952
1, 0556

−3, 1352

⎤⎥⎦
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The results are close to the ideal case with only six different positions.

6.4 Distance
The distance is obtained by removing the gravity vector, obtained from the gyrometer,
from the calibrated accelerometer data. Afterwards, the acceleration is integrated two
times with respect to the time to obtain the position. In this case, the accelerometer
and the gyrometer are calibrated.
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Figure 6.10: distance’s synthetic data x

In the figure 6.10, the ideal distance is perfectly matched.
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In the figure 6.11, the ideal distance is perfectly matched.
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Figure 6.12: distance’s synthetic data z

In the figure 6.12, the ideal distance is perfectly matched.
It is noticeable that the integrated white Gaussian noise behaves well. It will not be
the same case in practice as the integrated noise is victim of the random walk. This
algorithm performs almost flawlessly in simulation.
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6.5 Equipment
This project was completed using a ten degree of freedom sensor, the CJMCU10DOF.
The sensor board was connected via a micro-controller, the TM4C123GH6PM [31],
connected to a computer via a serial connection USB. The received data is then
processed by Matlab r2017b. The sensor module is composed of a barometric sensor
BMP-280 and a chip MPU9250 [32] which contains an accelerometer, a gyrometer
and a magnetometer, AK8963.

6.5.1 TM4C123GH6PM

The TM4C123GXL is a Texas Instruments evaluation board from the Tiva C series
which is based on a 32-bit 80MHz ARM cortex M4F micro-controller. In this work,
the purpose of the board is to retrieve the data from the CJMCU10DOF sensor
board and transmit it to the computer.
The micro-controller was programmed in C language to obtain the data from the
registers of the module [33] via I2C connection. The I2C is a master- multi-slave
connection. In this case, only one slave is in use. The connection requires only
two wires: a clock and a data wire, which means that it is half-duplex. In other
words, the micro-controller sends a command which is writing bits in a register of
the sensor. After few clock sequences, the sensor sends the response corresponding to
the command. Each commands requires a certain number of clock cycles. The I2C
bus has a theoretical maximal speed of 400kbit/s but the transfer speed is limited
by the sensors updating rate. Here, the slower sensor is the magnetometer. All the
words written in the USB-bus are signed char 16-bit except for the magnetometer.
It sends 14 bits length words. Each update sends:

1. The delay between two updates because it is not exactly constant∗. One word

2. The accelerometer data from the three axes. Three words

3. The gyrometer data from the three axes. Three words

4. The magnetometer data from the three axes. Three words

5. The temperature data. One word
∗ The time period between two samples is variable. During a movement of the sensor,
the period can become about 100µs longer. The source of this phenomena was not
found.
The total of words sent is 8 words of 16 bits and 3 of 14 bits per update. Theoretically,
the maximum update would be 2352 updates per second. Counting all the delays
from the sensors, the USB connection and Matlab, the update rate will be limited to
about 230 updates per second.
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6.5.2 MPU9250

The MPU-9250, manufactured by InvenSense, is composed of the MPU-6500 chip
and the AK8963, manufactured by Asahi Kasei Microdevices. The AK8963 is largely
used in mobile phones and is functioning using Hall effect. The MPU-6500 includes
the accelerometer and the gyrometer. The AK8963 [34] chip is a magnetometer.
While the accelerometer and the gyrometer are constructed on the same plane, the
magnetometer AK8963, larger, is placed on top of them. This leads to each of the
sensor having their own basis.

Table 1: Characteristics of the MPU-9250 [32, 34]
Accelerometer

Parameters Min Typ Max Unit
Scale range 2 - 16 g
ADC word length - 16 - bits
Sensitivity change Vs. Temperature (−40 to 80◦C) - ±0, 026 - %/◦C
Non-linearity (regression fitting) - ±0, 5% - %
Cross-axis sensitivity - ±2 - %
Zero-G initial calibration tolerance x,y - ±60 - mg
Zero-G initial calibration tolerance z - ±80 - mg
Zero-G level change Vs. Temperature (−40 to
80◦C)

- ±1, 5 - mg/◦C

Noise power spectral density - 300 - µg/
√

Hz
Output data rate (low noise) 4 - 4000 Hz
Output delay without filter - 0,74 ms

Gyrometer
Scale range 250 - 2000 ◦C/s
ADC word length - 16 - bits
Sensitivity scale factor variation over temperature
(−40 to 80◦C)

- ±4 - %/◦C

Non-linearity (regression fitting) - ±0, 5% - %
Cross-axis sensitivity - ±2 - %
Rate noise power spectral density - 0.01 - ◦C/s/

√
Hz

Output data rate (Normal mode) 4 - 8000 Hz
Output delay without filter - 0,064 ms

Magnetometer
Scale range - ±4800 - µT
ADC word length - 14 - bits
Time for measurement - 7,2 9 ms

A major drawback of the sensor is the lack of documentation. For instance, the
sensor possesses its own temperature sensor which has incomplete documentation.
The registers of the sensors are also very shortly described and let place to time
consuming guesses. The sensor proposes also factory calibration which are available
for the gyrometer and accelerometer. The values in the register are obtained easily
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but the documentation relative to how to use these values is not available. Moreover,
the customer service of the company of the board or the chip are not interested in
replying emails. This is most likely a compensation for the low price of the sensor.

6.5.3 Pressure sensor BMP-280

The pressure sensor, BMP-280, is manufactured by BOSCH Sensortec. Like men-
tioned earlier, it is not used because its sensitivity is too low to measure short distance
in height. The datasheet [35] mentions a sensitivity of ±1m but in reality it is ±3m.
Despite this, the temperature is obtained from it.
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6.6 Experiments on real data
In this section, the algorithms are tested on the sensor MPU-9250. There are obvious
differences between the synthetic signal and the signal from the sensor:

1. The accelerometer, gyrometer (table 1) and magnetometer have different delays.
In other words, the data of a sensor will have different delay than the other
one. This will cause problem when comparing two sensor data if not properly
compensated. This compensation can be realized by delaying one signal to
match the other using the values of the datasheets. Unfortunately, there are
other varying delays appearing in the measurements of the sensors whose
sources could not be explained.

2. The programming of the micro-controller is sequential which means that the
data from the sensors will be retrieved one at a time leading to even larger
delays.

3. The noise is not purely white Gaussian. This will cause noise random walks
when the signal is integrated to obtain the position.

The calibration is done the same way as in the simulations but the results are difficult
to verify without any additional equipment. All is known is that the sensor, if well
constructed, should be close to being calibrated. In other words, the scaling factor
should be very close to one and the misalignment factors should be close to zero.

6.6.1 Calibration of magnetometer

The magnetometer is highly noisy as it can be noticed in the following figures 6.13,
6.14, 6.15 and 6.16.
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Figure 6.13: Magnetometer data

The results obtained are

S =

⎡⎢⎣0, 9926 0.0141 0.0179
0.0148 0, 8046 0, 0016
0, 0207 0, 0051 1, 1685

⎤⎥⎦ ⃗biasm =

⎡⎢⎣47.4149
46, 7079
54, 496

⎤⎥⎦
The results are roughly checked by the form of the three-dimensional graph of the
data (fig. 6.13). If it is still an ellipsoid, the calibration did not work. If it is a sphere
at the origin like in the case, the scaling factor and bias are estimated correctly.
In this case, it is a sphere. For the misalignment factors, they cannot be verified
without proper equipment. It is just known that they should be small if the chip is
well constructed.

6.6.2 Calibration of gyrometer

The calibration of the gyrometer uses the data of the calibrated magnetometer. The
results are difficult to verify without any external equipment.

K =

⎡⎢⎣ 0, 9689 −0, 028 −0.0182
−0, 0016 0, 9477 0, 011
−0, 0402 −0, 0018 1, 028

⎤⎥⎦ ⃗biasm =

⎡⎢⎣0.0003
0.0171
0, 0377

⎤⎥⎦
The same assumption as for the magnetometer can be made. The scaling value
should be close to one and the other elements should be close to zero.
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In the figure 6.14, the corrected data obtained from the gyrometer is close to the
magnetometer data.

−60

−40

−20

0

20

40

60

80

2 4 6 8M
ag

ni
tu

de
(µ

T
)

time [s]

Magnetometer data
Corrected Magnetometer data

Gyryscope data
Corrected gyroscope data

Figure 6.15: gyrometer and magnetometer data y

In the figure 6.15, the corrected data obtained from the gyrometer is close to the
magnetometer data.
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In the figure 6.16, the corrected data obtained from the gyrometer is close to the
magnetometer data.
As wanted, the magnetic field vector obtained from the gyrometer matches very
closely the vector measured by the calibrated magnetometer.

6.6.3 Calibration of accelerometer

The calibration of the acceleration is also done with the gyrometer. Only the scaling
and the bias can be verified as the magnitude of the acceleration vector should be
equal to 1g.
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In the figure 6.17, the calibrated data of the accelerometer is closer to the
calibrated data of the gyrometer.
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Figure 6.18: Accelerometer and gyrometer data y

In the figure 6.18, the calibrated data of the accelerometer is closer to the calibrated
data of the gyrometer. In the figure 6.19, the calibrated data of the accelerometer is
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Figure 6.19: Accelerometer and gyrometer data z

not any closer to the calibrated gyrometer than uncalibrated data of the gyrometer.
The calibration of the accelerometer does not work very well. This can be due to the
accumulation of error from all the calibration altogether.
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6.6.4 Results of the position estimation

The estimation of the position is done by obtaining the acceleration imposed by the
movement of the sensor. Because the accelerometer measures the acceleration of the
sensor including the gravitational acceleration, the useful data must be separated.
The simplest way is the one explained in the chapter 5.4. The gravitational vector
is estimated with the help of the gyrometer and is then subtracted from the data
measured from the accelerometer.
The following experiment is realized by moving by hand the IMU along a straight
line in the xy-plane.
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Figure 6.20: distance’s data x

In the figure 6.20, the acceleration is close to zero when it needs to be.
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Figure 6.21: Acceleration’s data y

In the figure 6.21, the acceleration is, at the end, distant from zero when it should
be exactly zero.
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Figure 6.22: Acceleration’s data z

In the figure 6.22, the acceleration is completely distinct from zero when it should
be exactly zero.
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As expected from the figures 6.20, 6.21 and 6.22, the estimation of the position,
shown in figure 6.23, will be completely off the real value. The bias on the z-axis was
poorly removed which, when integrated two times, increases improperly the distance
estimated. It can be noticed that the curve according to the axis z follows a t2-form
which point to a two-time integration of a constant. The constant is the bias which
was not properly estimated. The two other distances distinctly follow the t2-form
towards the end because the bias was more accurately estimated and its effects are
less apparent in the beginning. Even a small error in the estimation of the bias will
leads to a wrong estimation of the distance.
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7 Discussion and conclusion
The estimation of the position without algorithm that would correct the estimation
seems hardly possible. This would require a perfect calibration for the accelerometer
and the gyrometer. The gyrometer would have to perfectly match the gravity vector.
This is because any residue of bias or noise or mismatch between the accelerometer
gravitational vector and gyrometer gravitational vector will just cause the distance
estimation to be unreliable. For instance, if the error in the acceleration estimation
would be 1µg, it would only take 1414 samples or about 6 seconds to be one meter off
and one minute to be off hundred meter. One µg would not even be viable because
the noise standard deviation itself is larger that one µg.
The sensor needs first better calibration techniques. The EKF works fairly well but
it is slow to converge and requires good initial values for the covariance matrices.
An improvement could be done by using the Unscented Kalman filter which approxi-
mates non-linear functions at the distribution level using sigma point and not using
Taylor series approximation. The sensor itself seems to suffer from delays that are
difficult to estimate. It is most noticeable when comparing the magnetometer with
the gyrometer. When the direction changes abruptly, the gyrometer changes faster
that the magnetometer. This phenomena spoils the estimation of the error matrix.
The magnetometer is not used other than for the calibration because it is highly
unreliable indoor due to the local magnetic field being influenced by any electrical
equipment nearby.
Obtaining the position the same way as in this thesis could work if a correction
algorithm at the acceleration estimation was added. In most papers, a GPS-tracking
system or local position estimation (WIFI, Bluetooth, sensor) is utilized to com-
pensate the drifting of the position. But this makes the purpose of the IMU sensor
quite questionable as the position is barely influenced by the IMU measurement.
In this work, the noise was not removed because at this point, it was not the issue.
But when the precision is enough, using adaptive spline type or EEMD (ensemble
empirical mode decomposition) filtering techniques could be a good choice as the
acceleration can be easily described as a piecewise polynomials where the interval
time would be adaptive.

To conclude, in this thesis an algorithm to estimate the position of an IMU sensor
without any tracking device was proposed. The algorithm reveals that the estimation
of the position using only the IMU is difficult to achieve as the slightest error in
the estimation of the acceleration of the sensor will lead to wrong estimation of the
position. The calibration is done without any external equipment, and therefore
the results are impossible to verify precisely. The error in calibration accumulates
from calibration to calibration. Finally, the algorithm does not work properly and
requires at least a correction algorithm at the integral level for the speed and then
the distance.
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A Appendix A
Result of the Jacobian calculated in the section 5.1.2 for the EKF.

Jc(t) = 2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(mm,x(t) − bc,x)(bc,xKc,x + bc,yKc,xy + bc,zKc,xz −Kc,xmm,x(t) −Kc,xymm,y(t) −Kc,xzmm,z(t))
(mm,y(t) − bc,y)(bc,xKc,x + bc,yKc,xy + bc,zKc,xz −Kc,xmm,x(t) −Kc,xymm,y(t) −Kc,xzmm,z(t))
(mm,z(t) − bc,z)(bc,xKc,x + bc,yKc,xy + bc,zKc,xz −Kc,xmm,x(t) −Kc,xymm,y(t) −Kc,xzmm,z(t))
(mm,x(t) − bc,x)(bc,xKc,yx + bc,yKc,y + bc,zKc,yz −Kc,yxmm,x(t) −Kc,ymm,y(t) −Kc,yzmm,z(t))
(mm,y(t) − bc,y)(bc,xKc,yx + bc,yKc,y + bc,zKc,yz −Kc,yxmm,x(t) −Kc,ymm,y(t) −Kc,yzmm,z(t))
(mm,z(t) − bc,z)(bc,xKc,yx + bc,yKc,y + bc,zKc,yz −Kc,yxmm,x(t) −Kc,ymm,y(t) −Kc,yzmm,z(t))
(mm,x(t) − bc,x)(bc,xKc,zx + bc,yKc,zy + bc,zKc,z −Kc,zxmm,x(t) −Kc,zymm,y(t) −Kc,zmm,z(t))
(mm,y(t) − bc,y)(bc,xKc,zx + bc,yKc,zy + bc,zKc,z −Kc,zxmm,x(t) −Kc,zymm,y(t) −Kc,zmm,z(t))
(mm,z(t) − bc,z)(bc,xKc,zx + bc,yKc,zy + bc,zKc,z −Kc,zxmm,x(t) −Kc,zymm,y(t) −Kc,zmm,z(t))

mm,x(t)(K2
c,x +K2

c,yx +K2
c,zx) − bc,x(K2

c,x +K2
c,yx +K2

c,zx) − bc,y(Kc,xKc,xy +Kc,yxKc,y +Kc,zxKc,zy) − bc,z(Kc,xKc,xz+
Kc,yxKc,yz +Kc,zxKc,z) +mm,y(t)(Kc,xKc,xy +Kc,yxKc,y +Kc,zxKc,zy) +mm,z(t)(Kc,xKc,xz +Kc,yxKc,yz +Kc,zxKc,z)
mm,y(t)(K2

c,xy +K2
c,y +K2

c,zy) − bc,y(K2
c,xy +K2

c,y +K2
c,zy) − bc,x(Kc,xKc,xy +Kc,yxKc,y +Kc,zxKc,zy) − bc,z(Kc,xyKc,xz+

Kc,yKc,yz +Kc,zyKc,z) +mm,x(t)(Kc,xKc,xy +Kc,yxKc,y +Kc,zxKc,zy) +mm,z(t)(Kc,xyKc,xz +Kc,yKc,yz +Kc,zyKc,z)
mm,z(t)(K2

c,xz +K2
c,yz +K2

c,z) − bc,z(K2
c,xz +K2

c,yz +K2
c,z) − bc,x(Kc,xKc,xz +Kc,yxKc,yz +Kc,zxKc,z) − bc,y(Kc,xyKc,xz+

Kc,yKc,yz +Kc,zyKc,z) +mm,x(t)(Kc,xKc,xz +Kc,yxKc,yz +Kc,zxKc,z) +mm,y(t)(Kc,xyKc,xz +Kc,yKc,yz +Kc,zyKc,z)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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B Appendix B
Result of the Jacobian Jg(t) calculated in the section 5.1.3 for the EKF.⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rx(t)(mm,x(t − 1) − bg,x) + Rxy(t)(mm,y(t − 1) − bg,y)+
Rxz(t)(mm,z(t − 1) − bg,z) 0 0

Ryx(t)(mm,x(t − 1) − bg,x) + Ry(t)(mm,y(t − 1) − bg,y)+
Ryz(t)(mm,z(t − 1) − bg,z) 0 0

Rzx(t)(mm,x(t − 1) − bg,x) + Rzy(t)(mm,y(t − 1) − bg,y)+
Rz(t)(mm,z(t − 1) − bg,z) 0 0

0 Rx(t)(mm,x(t − 1) − bg,x) + Rxy(t)(mm,y(t − 1) − bg,y)+
Rxz(t)(mm,z(t − 1) − bg,z) 0

0 Ryx(t)(mm,x(t − 1) − bg,x) + Ry(t)(mm,y(t − 1) − bg,y)+
Ryz(t)(mm,z(t − 1) − bg,z) 0

0 Rzx(t)(mm,x(t − 1) − bg,x) + Rzy(t)(mm,y(t − 1) − bg,y)+
Rz(t)(mm,z(t − 1) − bg,z) 0

0 0 Rx(t)(mm,x(t − 1) − bg,x) + Rxy(t)(mm,y(t − 1) − bg,y)+
Rxz(t)(mm,z(t − 1) − bg,z)

0 0 Ryx(t)(mm,x(t − 1) − bg,x) + Ry(t)(mm,y(t − 1) − bg,y)+
Ryz(t)(mm,z(t − 1) − bg,z)

0 0 Rzx(t)(mm,x(t − 1) − bg,x) + Rzy(t)(mm,y(t − 1) − bg,y)+
Rz(t)(mm,z(t − 1) − bg,z)

Sg,xRx(t) + Sg,xyRyx(t) + Sg,xzRzx(t) Sg,yxRx(t) + Sg,yRyx(t) + Sg,yzRzx(t) Sg,zxRx(t) + Sg,zyRyx(t) + Sg,zRzx(t)
Sg,xRxy(t) + Sg,xyRy(t) + Sg,xzRzy(t) Sg,yxRxy(t) + Sg,yRy(t) + Sg,yzRzy(t) Sg,zxRxy(t) + Sg,zyRy(t) + Sg,zRzy(t)
Sg,xRxz(t) + Sg,xyRyz(t) + Sg,xzRz(t) Sg,yxRxz(t) + Sg,yRyz(t) + Sg,yzRz(t) Sg,zxRxz(t) + Sg,zyRyz(t) + Sg,zRz(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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