

Microservices:
Considerations before implementation

Bachelor’s Thesis
Heini Könönen
xx.xx.20xx
Program

Approved in the Department of Information and Service Economy xx.xx.20xx
and awarded the grade

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aaltodoc Publication Archive

https://core.ac.uk/display/159158293?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 1

Author Heini Könönen

Title of thesis Title of thesis

Degree Bachelor’s
Degree programme Information and Service Management

Thesis advisor(s) Bragge

Year of approval yyyy Number of pages 20 Language English

Abstract:

Microservices is a relatively recent pattern in software architecture, but it is in wide use

already and is used to develop the flagship products of some of the world’s most popular

services, such as Netflix and Spotify. The pattern is evolving organically from the

development practices so there is relatively little formal academic research on it. This thesis

explains the benefits and potential risks of moving from a monolithic software architecture

to a microservices architecture, in a manner understandable to non-developers.

In a nutshell, microservices architecture breaks up large, monolithic software projects into

small, discrete and modular ‘services’. The services can be developed separately, sometimes

by different teams, and can be deployed independently of each other. Some key benefits are

the possibility of using specialized tech stacks for different services, smaller and easier to

understand codebases, improved productivity and collaboration between development

teams and more robust and flexible systems. Microservices based software is also better

suited to cloud computing, which can reduce infrastructure costs.

However, this does not mean that all software projects should be microservices. There are

situations in which a monolithic pattern has advantages. First and foremost, applying

microservices effectively needs a certain degree of expertise, and since the trend is recent,

qualified developers can be hard to find. It is also arguably easier to manage a monolithic

architecture with a small team, at least in the beginning. Secondly, microservices

architecture is said to move the complexity from the code base to the infrastructure.

Microservices can be needlessly complex and expensive if the project isn’t meant to scale for

many users or is a prototype or proof-of-concept

 2

Table of Contents

1. Introduction ... 3

1.1 Research objectives and research questions .. 4

1.2 Scope of research... 5

1.3 Structure of the research ... 5

2. Key Concepts Related to Microservices .. 6

2.1 Modularity ... 6

2.2 Service-Oriented Architecture (SOA) .. 7

2.3 Cloud Services and SaaS ... 10

3. Microservices in Detail ... 11

3.1 History of the term “microservices” ... 11

3.2 Monolithic systems .. 12

3.3 Microservices definition ... 13

4. Pros and Cons of Microservices.. 16

4.1 Positives of microservices .. 17

4.2 Negatives of microservices ... 18

5. Summary and conclusions.. 22

Limitations and future research ... 25

References... 26

 3

1. Introduction

Microservices is a style of software architecture that breaks down large software into smaller,

independent and discrete ‘services’ that are loosely coupled. The services have low or no

interdependence, and they communicate with each other, usually through application

programming interfaces, APIs. It is different from the monolithic architecture, which is an

older way of structuring software. In monolithic systems, the parts of the system are not

separated, and the system uses only one or a few servers and databases. Decision makers

often have to choose if they want to build their system with monolithic or microservices

architecture or if they want to change their system from one to the other.

The pace of development and implementation of new concepts in the IT industry is very fast.

Microservices as a term and architectural pattern are relatively new, having emerged within

the past decade, but trends evolve quickly and are also adopted quickly in the IT world. Many

giant corporations have adopted microservices architecture, and indeed, their efforts are

defining the term. For example, Netflix, IBM, Amazon, Google, Spotify, Twitter and many

others claim to have had success in implementing microservices architecture and tout its

benefits (SaM Solutions, 2017).

There are several case studies and other works touting its benefits but there are not many

scientific case studies or articles on the subject. However, there are still some big companies,

such as Etsy, that have remained in monolithic architecture and they claim that it’s still

working for them (SaM Solutions, 2017).

Microservices was not ‘invented’ in the traditional sense. It is an evolving collection of

patterns, principles and rules of thumb that several companies use for software development,

especially in solutions meant to eventually scale for very large user bases. As such there is no

definitive book of knowledge or methodology (Newman, 2015). As I will elaborate on in later

sections, it is also not a binary choice, i.e. adopting all microservices techniques or none.

Different problems and types of software projects can expect vastly different results from the

microservices architecture. In later sections, I explore perspectives from experts on how to

decide whether the microservices approach is wise for a project and try to debunk the notion

 4

that the monolithic architecture is always bad, and wrong for projects. Now is a good time to

start to research the medium and longer-term effects of adopting this technology, and what

types of risks to prepare for.

1.1 Research objectives and research questions

Modularity and microservices architecture is currently one of the biggest trends in modern

software architecture. Many big companies, including Netflix and Spotify have switched to

using microservices and the number of studies has grown exponentially in the past few years

(Scopus 2018, SaM Solutions, 2017). However, there is still relatively little scientific research

and literature on the topic, especially on its impact in the long term. Thus, managerial and

non-technical professionals often find it hard to understand whether it makes sense for their

software project to be refactored from a monolithic architecture into a microservices

architecture. This is also a problem when planning new software projects.

There is a common fallacy that all monolithic software should be converted into the

microservices approach, and this can often confuse inexperienced decision makers into

wasting time and resources. When combined with the fact that there is no definitive set of

guidelines on the subject, this can cause paralysis and confusion when trying to make the

decision. As several experts point out, executing microservices architecture takes detailed

know-how and the desire to implement it is often not matched with sufficient technical

expertise on the subject to do it well. As I will elaborate on later, in certain cases, monolithic

architecture actually could be a better solution, at least to start with.

The central research question of my thesis is therefore: ‘What is microservices architecture in

software, and what should businesses consider before and during implementation?’. This

thesis is targeted towards people looking to gain a non-technical understanding of the

approach, the benefits it may bring and the risks to prepare for.

 5

1.2 Scope of research

I believe that the microservices trend is sufficiently advanced that everyone working in

software architecture and the broader IT industry should know about it and make a conscious

decision whether or not to implement it. I will present contrasting opinions on the benefits

and pitfalls of microservices and try to arrive at a consensus viewpoint.

This thesis focuses on the aspects that influence the decision to move to microservices

architecture, not on the ways how it would be executed. Thus, I will not be focusing on the

finer details of technical implementation, or techniques for implementation. Instead I will

focus on the managerial and business aspects of the implementation and the overall

consensus definition of the term.

I have also included non-academic sources in my work, because I wanted to consider the new

points of professionals who have experience with the system and how it works in reality. In

addition, the majority of business people considering the pros and cons use these sources to

make their decision, and not the academic literature. However, I have also taken into account

that these articles are often written to sell a product, especially if they’re from a company that

offers help with microsystems application, so they might exaggerate the positives and omit

the negatives.

1.3 Structure of the research

In Section 2 I will present necessary terms and concepts that are related to microservices

architecture. Section 3 contains an explanation of microservices and their differences from

the monolithic and service-oriented architectures. In Section 4 I present some positive and

negative aspects of microservices that should be considered before adopting the technique.

Section 5 concludes the thesis.

 6

2. Key Concepts Related to Microservices

In this section, I will present the key concepts that are related to the microservices

architecture. These concepts either help to understand the microservices or are closely in

contact with them.

2.1 Modularity

Key benefits of Microservices architectures come from its modular philosophy, so first I’ll

introduce the concept of modularity and common benefits. According to Bask, Lipponen,

Rajahonka & Tinnilä (2010), modularity does not have a universal definition, and there is not

much research on modularity in services overall. Traditionally, modularity has been used in

production of physical products more than services. However, research on modularity in

services is now growing (Brax, Bask, Hsuan, & Voss, 2017).

One popular definition of modularity is given by Baldwin & Clark (1997) Modularity means

breaking something into smaller pieces (modules) that bring flexibility. In modular systems,

every module is a clearly separate or discrete unit that is complete on its own. The modules

then interact, communicate and connect through an interface (Baldwin & Clark, 1997).

Modules can also be nested inside one another. Different entities, teams or companies can be

made responsible for separate modules of a larger system. In a truly modular system, this

works reliably and efficiently, with several quality checks and tests in place to ensure smooth

operation. (Sturtevant, 2018)

Benefits of modularity include flexibility, simplification, cost savings and product variety

amongst other things (Bask et al., 2010). Modularity makes supply networks simpler

(Arnheiter & Harren, 2005 in Bask et al., 2010), and makes it possible for firms to “outsource”

functions outside from the firm or make them reusable (Hyötyläinen & Möller, 2007 in Bask

et al., 2010)

According to Ernst (2005, in Bask et al., 2010), if an industry becomes too standardized, it can

get caught in a “modularity trap” where new innovations aren’t feasible because the industry

 7

has invested too much within a certain standard. An example of this is the bicycle market,

where the parts are highly standardized.

2.2 Service-Oriented Architecture (SOA)

Microservices is related to Service-Oriented Architecture (SOA), which was also an attempt to

make software more modular. In this chapter, I will explain what SOA is and what the

differences between SOA and microservices are.

SOA involves redefining applications to be comprised of services, similar to microserices.

Services can be thought to be components which can independently complete a task. There

are different types of services, such as:

• Business services that handle tasks at the business level such as calculating an

insurance risk assessment or filtering customer contact details.

• Technical or infrastructure services that are for tasks like fetching information from

databases, or user authentication and application security. They are the technical

functionalities necessary for the business services to do their job

• Application services that are called from the user interface and are limited to a specific

application scope

• Integration services that combine data from different sources and analyze it.

In SOA, the modules are hidden and only the interface is shown to the users (Janssen and

Joha, 2008). This way the elements and modules can be changed and replaced without

affecting the interface or end user experience (Bask et al., 2010). According to Newman

(2015), the goal is to make the software reusable, so applications can use the same services.

This would make it easier to maintain or rewrite the software.

2.2.1 Implementation problems in SOA

Saarelainen (2016) tells that SOA is not very popular solution currently, because many

companies invested a lot in the idea but did not get good results when trying to implement it.

 8

Newman (2015) believes that SOA services got a bad reputation, because they were not

practical enough and the resources did not focus on implementation.

According to Villamizar et al. (2015) SOA solutions, such as enterprise service bust (ESB) can

be expensive, time consuming and complex to use and maintain. For example, ESB was one

SOA solution created for different parts of the software to communicate with each other. The

ESB products were designed to be used by hundreds or thousands of users but are not well

suited for cloud services that can have millions of users.

Journalist Ari Saarelainen interviewed Arto Santala from Solita, an IT company. According to

Santala, SOA is an old-fashioned term that is used for solutions that are expensive and don’t

often work for companies. However, the idea of modularity and interface has influenced the

microservices approach. (Saarelainen, 2016)

2.2.2 Relationship between Microservices and SOA

Vural, Koyuncu, & Guney (2017) note that SOA is an older term than microservices and that

microservices take their best features and ideas from SOA. Savchenko et al. (2015) say that

the concept of separating services into functions has been in use for a long time and that the

microservices are a specific implementation of SOA.

Some say that microservices is just a SOA pattern or a light version of them, but at the moment

most believe that it is a completely new architectural style (Pahl & Jamshidi, 2016; Savchenko

et al., 2015; Villamizar et al., 2015). However, there are some key differences, which are

presented in the table 1.

 9

 SERVICE-ORIENTED
ARCHITECTURE

MICROSERVICES
ARCHITECTURE

Governance Common governance and
standards. More rigid guidelines
to follow.

Relaxed governance, with greater
focus on independent teams,
collaboration and freedom of choice

Data Storage SOA services share the data
storage

Each microservice can have an
independent data storage

Reusability Maximizes application service
reusability

Focused on decoupling

Systematic Change A systematic change requires
modifying the monolith

A systematic change is to create a new
service

DevOps &
Continuous Delivery

DevOps and Continuous
Delivery are becoming popular,
but are not mainstream

Strong focus on DevOps and
Continuous Delivery

Focus Focused on business
functionality reuse

More importance on the concept of
“bounded context”

Communication For communication it uses
Enterprise Service Bus (ESB)

For communication uses less
elaborate and simple messaging
systems

Message Protocols Supports multiple message
protocols

Uses lightweight protocols such as
HTTP, REST or Thrift APIs

Platform Use of a common platform for all
services deployed to it

Application Servers are not really
used, it’s common to use cloud
platforms

Containers Use of containers (such as
Docker) is less popular

Containers work very well with
microservices

Table 1: Differences between SOA and Microservices. (Adapted from: Respodovski, 2017)

 10

Microservices have the same goals as SOA. With microservices, systems are divided to

components like in SOA. However, unlike microservices, SOA uses heavier and less agile ESB

solutions, which has many implementation problems. According to Santala, microservices are

like SOA but have more agility and scalability. SOA solutions have an end goal but

microservices continue changing and adapting. ESB is also more expensive. (Saarelainen,

2016; Sill, 2016; Villamizar et al., 2015)

2.3 Cloud Services and SaaS

Cloud computing is closely connected to microservices, because microservices make cloud

and software-as-a-service (SaaS) more accessible and easier to implement. Therefore, I’ll

present shortly what these terms mean.

There is a lot of hype literature and debate surrounding cloud services. But for the purposes

of this thesis, a simple definition will serve: Cloud computing involves storing data in

centralized data centers and/or using the processing power of servers that are outside of the

companies that can used through internet. (Kandukuri, V., & Rakshit, 2009)

According to Choudhary (2007) cloud services bring a lot of concern regarding data security.

Because the data is stored outside of the business, there are more security risks. Businesses

have to trust the supplier with the security. Villamizar et al. (2015) however tells about many

possibilities cloud services bring, because they enable better scalability, efficiency and

dynamics. Computing power can be bought very flexibly according to use.

Software-as-a-Service (SaaS) means buying software to be used through internet on

subscription basis. Compared to perpetual license, where business pays for services per-use,

SaaS uses periodical payments, often monthly subscriptions. SaaS solutions are not possible

with non-modular, monolithic software architecture. However, with microservices it is easy

to incorporate SaaS solutions. (Choudhary, 2007; Singleton, 2016; Thönes, 2015)

 11

The University of Florida found in a study that SaaS can bring many advantages to businesses

including updating software as soon as the new versions are available, economies of scale,

predictable costs and ability to switch providers. Also, SaaS does not necessarily need big

upfront investments in infrastructure (Choudhary, 2007). Advantages include also the ability

to scale the services on-demand, which is especially helpful during peak periods (Villamizar et

al., 2015). Previously, before cloud services, getting more computing power meant investing

in hardware that would be unused most of the time.

A quote from David Strauss, CTO of Pantheon sums it up: “[Previously], you would want to

start with a monolith because you wanted to deploy one database server. The idea of having

to set up a database server for every single microservice and then scale out was a mammoth

task. Only a huge, tech-savvy organization could do that. Whereas today with services like

Google Cloud and Amazon AWS, you have many options for deploying tiny things without

needing to own the persistence layer for each one.” (Lumetta, 2018)

3. Microservices in Detail

In this section I’ll explain what microservices are and how they have developed.

3.1 History of the term “microservices”

There is no clear, established definition for the term “microservices”. The first time the term

appeared in academic papers was 2014, when Fernandez-Villamor, J.I., Iglesias, C. and Garijo,

M published an article “MICROSERVICES lightweight service descriptions for rest architectural

style”.

Newman (2015) notes that while SOA was created theoretically, microservices were born with

practice. According to Despodovski (2017), the term “microservices” was agreed upon around

2012, when some software architects recognized that they had been working on a similar style

of architecture. However, the style had already been in use for almost a decade before that.

 12

Figure 1: Search results with “microservices” without exclusion criteria (Source: Scopus 6.3.2018)

From Figure 1 we can see that the subject of microservices is very recent in academic research.

There are altogether 419 results with the word “microservices” in title, abstract, name or

keywords (6.3.2018). The research on the subject has been growing fast since 2014 and is still

growing in popularity. This might mean that there aren’t many long-term studies on the

subject yet.

3.2 Monolithic systems

Microservices are often built over monolithic systems so in this section, I will first explain what

they are. Monolithic system architecture means having the application in a single unit or code

base. (Savchenko, Radchenko, & Taipale, 2015; Villamizar et al., 2015). This includes the front

end or client-side logic, server side back end logic, hidden processes and everything else the

whole system needs.

When the needed database is small, it is a good idea to have the application in a monolithic

architecture, because it can handle all of the parts of the application. (Singleton, 2016) Also,

some people believe that when an application is new, it is best to do it first in a monolithic

way, so it does not get too complicated too fast. There are examples of big companies that

 13

have successfully stayed in monolithic architecture, so it’s not a requirement for a system to

be turned into microservices (SaM Solutions, 2017). However, this view is not shared by

everyone.

Savchenko (2015) notes that monolithic systems have many negative sides especially when

the system gets bigger and more complicated. Singleton (2016) adds that when a change

needs to be made, in monolithic system you have to test and release the whole system at

once, which takes a lot of time. This makes the process slow and not efficient. Also, systems

are usually first made in monolithic architecture but when the system grows, it becomes

complex and a lot less agile. There is a limit, how much one system can handle efficiently

(Singleton, 2016). Sturtevant (2018) writes about a study, where they compared a

complicated, monolithic style system to other, better organized systems and analyzed the cost

of complexity. The developers’ productivity was 60 percent less than in other teams and 70

percent of the time they had to fix problems in the code instead of value-creating activities.

According to their analysis, this brings significant competitive disadvantage.

Today, it’s relatively easy to scale the systems according to use with cloud computing, but it’s

not as easy with monolithic systems. In monolithic systems, having just in-house servers leads

to wasting server resources because they have to be available even when they’re not in use

(Villamizar et al., 2015). According to Newman (2015), monolithic systems could technically

have modular architecture but in practice, the modules become too integrated. To get the

benefits of modularisation, the modules should be independent and clearly separated, but in

a monolithic architecture, this rarely works.

3.3 Microservices definition

Microservices architecture is a pattern for software development. It involves splitting complex

or large software projects into small, modular services that are developed separately,

sometimes by different teams, which can be deployed independently of each other (Villamizar

et al., 2015; Vural et al., 2017; Savchenko et al., 2015). There is no concrete definition of

microservices architecture that is agreed upon by the software industry. However, there are

quite many concepts that are central to the concept and can be presented here.

 14

Firstly, individual services should be responsible for separate, focused tasks and not

concerned with completing the operations of other modules. This is the reason the term

‘loosely coupled modules’ is often associated with microservices. However, the services may

sometimes need to communicate with each other to do their tasks. For instance, a payment

focused service may need to acquire a user’s email or personal information from the user

profile module to generate receipts. On the whole, however, services are independent, work

separately and can be scaled, deployed and tested independently. Each service works by

themselves and interacts through an overarching interface. (Sill, 2016; Villamizar et al., 2015)

Figure 2: Monolithic vs. microservice system architecture. (Source: Savchenko et al., 2015)

In Figure 2, Savchenko et al. (2015) visualize how the microservice and monolithic system

architectures differ from each other. In the monolithic system, all the components are

together, but in microservices, the services are separate and work as separate entities. This is

shown even clearer in the example in the following Figures 3 and 4.

 15

Figure 3: Example of a monolithic architecture (Source: Peck, 2018)

In the third figure, Nathan Peck has illustrated a clearer example of monolithic architecture in

a social app. Everything works in the same system and all data is in the same storage.

Figure 4: Examples of the microservices architecture. (Source: Peck, 2018)

In the fourth figure, Peck (2018) shows a specific example of how the microservices

architecture can work. Different parts of the systems are in separate, independent servers and

data is in three different storages. The figure shows how the system can be used by getting

the information from three different sources or through timelines, that combine the

information and making the system simpler to the client without making it slower.

As an example, consider an application designed for buying tickets for events. The system

could be built out of different modules like

 16

• Data Input modules for gathering details of events from vendors

• Login and authentication systems for different types of users

• Payment system module

• Modules to fetch event information from a database and display it to end users

• Search module for text strings

Figures 3 and 4 shows clearly how a system’s architecture becomes more complicated when

it is refactored into microservices architecture. However, the pieces of the system are now

easier to manage, and update as needed. Also, the internal details can be hidden from the

client or customer, which makes the system simpler for consumers (Newman, 2015).

There are many opinions on how big a microservice should be. According to Lari Hotari

(Saarelainen, 2016), the name is misleading, because the goal for microservices is not to be as

small as possible. The size of a microservice should be determined on how small a service can

be while still being self-contained. For a mental rule of thumb, consider Amazon’s informal

“two pizza rule”, which references the ideal size of a microservice team, i.e. one which can be

fed with two pizzas. (Saarelainen, 2016) Thus, more important than size or scope of the

service, is the rule that the microservices are loosely coupled, independent from each other,

and that they have high cohesion, so that the places where the code or data needs to be

updated is minimised (Newman, 2015).

4. Pros and Cons of Microservices

In this chapter, I will explore the characteristics of microservices that affect the decision of

moving to microservices. There are many examples of implementing microservices in big

corporations, e.g. Netflix and Spotify, but there are also some large firms like Etsy, that still

work with monolith architecture (SaM Solutions, 2017). This shows that it is good to explore

the positive and negative aspects of microservices instead of following a trend without

thinking about the consequences.

 17

4.1 Positives of microservices

According to Newman (2015), the benefits that microservices bring could be accomplished in

theory with any system, but in practice, microservices are the best way. The benefits come

from distribution and modularization and with microservices, the functions and systems can

be very well distributed. As Figures 2 to 4 above show, while the system architecture can

become more complicated compared to monolithic systems, the individual parts are usually

easier to understand and develop further. The services have clear boundaries that help

understand where the different services operate and what they should accomplish (Villamizar

et al., 2015).

With microservice architecture, companies are able to change and update the services

continuously and use agile methodologies and cycles (Singleton, 2016; Sturtevant, 2018;

Villamizar et al., 2015). In last years, continuous delivery and agile methods have become very

popular, especially in internet companies, startups and SaaS providers (Villamizar et al., 2015).

According to Singleton (2016), microsystems architecture is proven to work in many occasions

and they fit together like lego blocks. This is how the system can be quickly developed and

scaled. Sturtevant (2018) warns that having just agile processes without agile architecture,

because agile processes can’t alone make the system agile.

According to Julien Lemoine, CTO of Algolia, one of the key benefits is the increased freedom

in choosing the right tools and teams for different problems: “Our search API is highly

optimized at the lowest level and C++ is the perfect language for that. That said, using C++ for

everything is a waste of productivity, especially to build a dashboard! We want the best talents

and using only one technology would limit our options” (Lumetta, 2018).

Unlike monolithic systems, microservices can control the capacity of servers more easily and

flexibly (Singleton, 2016; Villamizar et al., 2015). Server capacity can be moved from a less

used to a busy server to avoid bottlenecks (Singleton, 2016). This scalability and flexible

capacity make microservices in many cases cheaper compared to monolithic systems, because

smaller pieces can be scaled instead of the whole big system (Newman, 2015).

 18

Microservice architecture also reduces redundancy, because the same data does not have to

be stored in many places. Different systems can use the same data storages so there is no

need to update multiple places. This way also mistakes, and old data can be reduced

(Singleton, 2016; Villamizar et al., 2015). Singleton (2018) also notes that microservices are

useful when a company has multiple products or services because the microservices can be

reused in more than one product. Newman (2015) notes that the whole system can be

thought as a holistic concept; for example, mobile and desktop applications do not have to be

thought as separate from each other.

4.2 Negatives of microservices

Savchenko et al. (2015) remind that microservices is not an easy solution for every problem.

Instead of one code base, there are multiple services and databases that can make the system

complicated, as was shown in Figure 4 in the previous chapter. (SaM Solutions, 2017;

Sturtevant, 2018). Essentially, this makes the system more complex by moving the complexity

to the infrastructure.

Singleton (2016) warns that microservices are not suitable for small systems. If there’s not a

lot of data, it can take more time to build the system than is necessary and time and resources

get wasted. According to Sturtevant (2018), microservices are the most beneficial for big,

complex systems. In the words of Steven Czerwinski, Head of Engineering at Scaylr and former

Google employee, “Even though we had had these positive experiences of using microservices

at Google, we [at Scaylr] went [for a monolith] route because having one monolithic server

means less work for us as two engineers.” (Lumetta, 2018)

Microservices architecture also means that team management is different. The way of

thinking is very different from a monolithic one, so employees have to unlearn some things

and learn new (Newman, 2015). The teams are more independent and responsible for one

clear part of the system. This brings challenges in the transition period but in the long run can

be beneficial. (Villamizar et al., 2015) This is where the management of change is very

 19

important, and the lack of proper management can make the transition difficult and costly.

There is also need for more management because the system is in smaller pieces that need

more overview (SaM Solutions, 2017).

Moving to microservices may bring more costs especially in the beginning. Singleton (2016)

notes that the move needs extra machinery, which can increase the costs significantly.

Microservices also need skilled employees that have high level of expertise and they take

more time to develop (SaM Solutions, 2017). This can increase for example the wage costs.

Also, even though the costs of build and maintenance are reduced, the operational costs may

rise because of increased complexity. (Singleton, 2016)

Overall, there are in most cases more positive than negative aspects in microservices, at least

for smaller systems. Singleton (2016) reminds that especially for small systems, moving to

microservices is not necessarily the right choice. Microservices can add unnecessary

complexity and slow the development down too much in the beginning (SaM Solutions, 2017).

To conclude, here are the pros and cons of first monolithic and then the microservices

architecture in two tables.

 20

Monolith Pros and Cons

Positives

Good for systems with small databases

Easier to find qualified experts

More out of the box solutions available for most

industries

System architecture is less complicated

Testing can be easier

Easier to manage with a small team

Negatives
If something fails, the whole system might go down

because everything is connected

New trend and pattern, so finding qualified architects and

developers can be hard

In practice, cannot be modular, so e.g. using cloud

services is more difficult, lowers productivity

Not easy to scale

Making changes is difficult as everything is dependent of

each other

Table 2: Pros and cons of monolithic systems

 21

Microservices Pros and Cons
Positives

Well suited to Agile methodology and teams – service teams can work

independently

Easier to understand and develop each service module separately

Continuous development/ deployment much easier

Ability to use different tech stacks for different modules

Proven to work for large scale needs e.g. Netflix

Reduces redundancy in code

Flexibility - switch modules out at will as needs evolve

Failure in one module doesn’t compromise whole system and critical errors

can often be traced more easily

Cloud services can be cheaper and easier than buying and maintaining

infrastructure

Negatives

New ways of thinking and operation in company needed

Complex infrastructure requirements, relative to simpler monolithic

systems

Costly in the beginning

Needs specialized experience in developers

Not recommended for small systems and proofs-of-concept prototypes

Testing/deploying is harder than with monolith

Reliance on cloud services if own infrastructure is too costly or difficult. Can

defy security policies

Table 3: Pros and cons of microservices

 22

5. Summary and conclusions

My research question that I presented in the beginning has two parts: ‘What is microservices

architecture in software’ and ‘what businesses should consider before and during

implementation?’

In short, microservices architecture is a way to organize system architecture so that it’s divided

into small, modular services that are developed separately and can be deployed

independently of each other. The services have low or no interdependence, and they

communicate with each other, usually through application programming interfaces, APIs. In

monolithic systems, the parts of the system are not separated, and the system uses only one

or a few servers and databases.

The second part of the question focuses on weather business should choose monolith or

microservices architecture for their system or should they change from monolith to

microservices. In short, monolithic architecture can still have certain advantages. Most often,

these boil down to lower overheads when starting, ease of finding competent developers and

technical advisors and feasibility for small teams, especially those with no knowledge of cloud

development or microservices architecture.

If a key requirement is quick delivery of an independent service or module for a large service,

then it makes sense to use microservices. For example, when Reaktor was implementing YLE

Areena and Uutisvahti, they built the systems in small pieces that they could test and deploy

immediately. The previous model was not suitable for growing number of users, so they

created a new system based on microservices. To avoid complexity, they built the smallest

possible pieces that worked (minimum viable product). This made the installation easy,

because they didn’t have to implement it all at once. This also means that if some part was

built wrong, it could be changed easily, and it didn’t take a lot of resources to start over.

Although in the beginning microservices architecture demands some high investments and

planning, the maintenance costs have been lower because the pieces of the system are

simpler and independent (Karemo, 2017).

 23

Another situation where microservices are indispensable is if certain parts of the platform

need to be very optimized or need specialized technology or tooling that would not benefit

other parts of the system or would actively harm their development. For instance, if large

volumes of data need to be processed quickly such as in a financial backend system, a

specialized language may be necessary while the user interface can be put together with more

common tools like JavaScript. (Lumetta, 2018)

A third case is when the development team is distributed far geographically or split into many

different teams. Microservices architecture is built for these situations, especially for rapidly

growing teams. Teams get to use the tooling they’re comfortable with and deploy highly

optimized, independent solutions without worrying how they affect the rest of the codebase,

with communication between modules done over simple lightweight protocols and simple

messaging systems. (Lumetta, 2018)

In the table 4 below, I have compared the different pros and cons of microservices and

monolith architectures. This concludes that monolithic architecture is still a good choice for

some systems, but microservices can, when well implemented, bring significant benefits.

 24

Microservices Positives Monolith Negatives

Easier to understand each service module

separately

Lowers productivity because of complexity

in large code bases

Continuous development/ deployment much

easier

Changes have to be done periodically all at

once

Ability to use different tech stacks for different

modules

Have to use the same tech stack for the

whole system

Reduces redundancy in code Making changes is difficult as everything is

dependent of each other

Failure in one doesn’t compromise whole system If something fails, the whole system might

go down because everything is connected

Flexibility - switch modules out at will Not easy to scale

Cloud services can be cheaper and easier than

buying and maintaining infrastructure

In practice, cannot be modular, so e.g.

using cloud services is more difficult

Well suited to Agile methodology and teams–

service teams can work independently

Proven to work for very large scale needs e.g.

Netflix

Microservices Negatives Monolith Positives

Complex infrastructure System architecture is less complicated

Not for small systems Good for systems with small databases

Costly in the beginning More out of the box solutions available for

most industries

Needs specialized experience in developers Has been around for longer so there’s more

knowledge about it

Testing/deploying is harder than with

monolith

Easier to manage with a small team

New ways of thinking and operation in

company needed

Easier to find qualified experts

Table 4: Combined table: Comparing microservices and monolithic architecture

 25

Limitations and future research

One limitation that I encountered was that there is surprisingly little scientific literature on

the subject considering how widely microservices are used. This is why I used also sources that

are not peer-reviewed even though their scientific aspect can be questionable. However,

people who work with microservices are able to provide valuable practical knowledge on the

subject.

This thesis is not meant to go into the technical side of microservices so interested readers

should find some other sources to find more about the different ways of implementing

microservices. There are many ready-made solutions for adopting microservices and it’s

possible to do that in different methods, but they are left out of the scope of this thesis. The

differences can affect the costs and other parts significantly, so before making decisions about

microservices, it is good to look into them.

In the future research, the long-term implications and especially the negative effects could be

researched more. It is also interesting to see how modularity and maybe even microservices

could be used in services and user experience management.

 26

References

Balalaie, A., Heydarnoori, A., & Jamshidi, P. (2016). Microservices Architecture Enables
DevOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3), 42–52.
https://doi.org/10.1109/MS.2016.64

Baldwin, C. Y., & Clark, K. B. (1997). MANAGING IN AN AGE OF MODULARITY.
Harvard Business Review, 75(5), 84–93. Retrieved from
http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=9709112720&site=eh
ost-live&authtype=sso&custid=ns192260

Bask, A., Lipponen, M., Rajahonka, M., & Tinnilä, M. (2010). The concept of modularity:
diffusion from manufacturing to service production. Journal of Manufacturing
Technology Management, 21(3), 355–375. https://doi.org/10.1108/17410381011024331

Brax, S. A., Bask, A., Hsuan, J., & Voss, C. (2017). Service modularity and architecture – an
overview and research agenda. International Journal of Operations and Production
Management, 37(6), 686–702. https://doi.org/10.1108/IJOPM-03-2017-0191

Chen, L. (2015). Continuous Delivery: Huge Benefits, but Challenges Too. IEEE Software,
32(2), 50–54. https://doi.org/10.1109/MS.2015.27

Chen, L. (2015). Towards Architecting for Continuous Delivery. In 2015 12th Working
IEEE/IFIP Conference on Software Architecture (pp. 131–134).
https://doi.org/10.1109/WICSA.2015.23

Choudhary, V. (2007). Software as a Service: Implications for Investment in Software
Development. In System Sciences, 2007. HICSS 2007. 40th Annual Hawaii International
Conference on (p. 209a–209a). https://doi.org/10.1109/HICSS.2007.493

Despodovski, R. (2017). Microservices vs. SOA – Is There Any Difference at All? Retrieved
April 29, 2018, from https://dzone.com/articles/microservices-vs-soa-is-there-any-
difference-at-al

Dittrich, K., Duysters, G., & de Man, A.-P. (2007). Strategic repositioning by means of alliance
networks: The case of IBM. Research Policy, 36(10), 1496–1511.
https://doi.org/https://doi.org/10.1016/j.respol.2007.07.002

Kandukuri, B. R., V., R. P., & Rakshit, A. (2009). Cloud Security Issues. In 2009 IEEE
International Conference on Services Computing (pp. 517–520).
https://doi.org/10.1109/SCC.2009.84

Haapaniemi, T., Karemo, J., Valkonen, P. (2017). A Story of a Microservice: Lessons from the
Trenches. Retrieved April 22, 2018, from https://www.reaktor.com/blog/a-story-of-a-
microservice/?ads_cmpid=736961476&ads_adid=46928756148&ads_matchtype=b&ads
_network=g&ads_creative=198322395068&utm_term=microservice&ads_targetid=kwd
-388427564&utm_campaign=&utm_source=adwords&utm_medium=ppc&ttv=2

 27

Kratzke, N. (2017). About microservices, containers and their underestimated impact on
network performance. arXiv Preprint arXiv:1710.04049.

Larman, C., & Basili, V. R. (2003). Iterative and incremental development: A brief history.
Computer, 36(6), 47–56. https://doi.org/10.1109/MC.2003.1204375

Lumetta, J. (2018). Microservices for Startups: An Interview with Julien Lemoine of Algolia.
Retrieved April 29, 2018, from https://buttercms.com/blog/microservices-for-startups-an-
interview-with-julien-lemoine-of-algolia

Lumetta, J. (2018). Should You Start With A Monolith or Microservices? Retrieved April 29,
2018, from https://nordicapis.com/should-you-start-with-a-monolith-or-microservices/

Miller, G. G. (2001). The characteristics of agile software processes. In tools (p. 385). IEEE.

Newman, S. (2015). Building microservices: designing fine-grained systems. “ O’Reilly Media,
Inc.”

Ouertani, S. (2015). „From Microservices to SOA “. Von T. Erl. Issue XCI. Arcitura Education
Inc, 4–9.

Pahl, C., & Jamshidi, P. (2016). Microservices: A Systematic Mapping Study. In CLOSER (1)
(pp. 137–146).

Peck, Nathan. (2018). Microservice Principles: Decentralized Data Management. Retrieved
29.4.2018, from https://medium.com/@nathankpeck/microservice-principles-
decentralized-data-management-4adaceea173f

Saarelainen, A. (2016). Mikropalvelut korvaavat it-möhkäleet. Retrieved April 22, 2018, from
https://www.tivi.fi/Kaikki_uutiset/mikropalvelut-korvaavat-it-mohkaleet-6588283

SaM Solutions. (2017). Microservices vs. Monolithic: Real Business Examples. Retrieved
April 22, 2018, from https://www.sam-solutions.com/blog/microservices-v

Savchenko, D. I., Radchenko, G. I., & Taipale, O. (2015). Microservices validation: Mjolnirr
platform case study. In Information and Communication Technology, Electronics and
Microelectronics (MIPRO), 2015 38th International Convention on (pp. 235–240). IEEE.

Sill, A. (2016). The Design and Architecture of Microservices. IEEE Cloud Computing, 3(5),
76–80. https://doi.org/10.1109/MCC.2016.111

Singh, M., Chandhoke, K., Verma, A., & Singh, J. (2017). Microservices Design &
Development explained (Case Study). Retrieved from
https://www.sourcefuse.com/microservices-design-development-explained-case-study/

Singleton, A. (2016). The Economics of Microservices. IEEE Cloud Computing, 3(5), 16–20.
https://doi.org/10.1109/MCC.2016.109

Sturtevant, D. (2018). Modular Architectures Make You Agile in the Long Run. IEEE Software,
35(1), 104–108. https://doi.org/10.1109/MS.2017.4541034

 28

Thönes, J. (2015). Microservices. IEEE Software, 32(1), 116.
https://doi.org/10.1109/MS.2015.11

Villamizar, M., Garcés, O., Castro, H., Verano, M., Salamanca, L., Casallas, R., & Gil, S.
(2015). Evaluating the monolithic and the microservice architecture pattern to deploy web
applications in the cloud. In 2015 10th Computing Colombian Conference (10CCC) (pp.
583–590). https://doi.org/10.1109/ColumbianCC.2015.7333476

Vural, H., Koyuncu, M., & Guney, S. (2017). A Systematic Literature Review on Microservices
BT - Computational Science and Its Applications – ICCSA 2017. In O. Gervasi, B.
Murgante, S. Misra, G. Borruso, C. M. Torre, A. M. A. C. Rocha, … A. Cuzzocrea (Eds.)
(pp. 203–217). Cham: Springer International Publishing.

Watts, S. (2017). Microservices vs SOA: What’s the Difference? Retrieved April 28, 2018,
from https://www.bmc.com/blogs/microservices-vs-soa-whats-difference/

