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Abstract

Provided stimuli are highly distinct, the detection of changes between two briefly

separated arrays appears to be achieved by an all-or-none process where either the

relevant information is in working memory or observers guess. This observation suggests

that it is possible to estimate the average number of items an observer was able to

retain across a series of trials, a potentially highly informative cognitive characteristic.

For each version of the change detection paradigm, for this estimate to be accurate, it is

important to specify how observers use the information available to them. For some

instantiations of this task it is possible that observers use knowledge of the contents of

working memory even when they are in a guessing state, rather than selecting between

the response alternatives at random. Here we test the suggestion that observers may be

able to use their knowledge of the number of items in memory to guide guessing in two

versions of the change detection task. The four experiments reported here suggest that

participants are, in fact, able to use the parameters of the task to update their base

expectation of a change occurring to arrive at more informed guessing. (194 words)

Keywords: Change Detection, Working Memory, Guessing
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Informed Guessing in Change Detection

The change detection paradigm is a simple task in which participants study an

array of items (e.g. colored squares) and, following a brief delay, indicate whether a

change has occurred or not in a probe array. It has become a very popular task in

cognitive psychology due to this simplicity and, in no small part, the availability of

simple processing models that allow researchers to estimate the number of items an

individual could hold in mind over a series of trials (Cowan, 2001; Pashler, 1988;

Rouder, Morey, Morey, & Cowan, 2011). These easily obtained estimates are found to

correlate highly with important outcomes, such as scholastic aptitude (Cowan et al.,

2005) or fluid reasoning ability (Johnson et al., 2013), suggesting that this is an

important cognitive characteristic.

The assumption underlying these models is that the observer has k of the N items

in memory with sufficient precision to detect a change. On a certain proportion of trials

the relevant information, needed to make the discrimination, is in memory and the

observer chooses the correct response option (a ‘high-threshold’ assumption). For

example, for the task depicted in Figure 1A, the probability of this occurring is given

by, d = min(k/N, 1). On the remaining proportion of trials (1 − d), however, the

participant must guess between ‘change’ and ‘same’. This all-or-none assumption

appears to be justified for highly distinct simultaneously presented stimuli (e.g.

categorically distinct colors) as indicated by linear receiver operating characteristics

(Rouder et al., 2008; Donkin, Tran, & Nosofsky, 2014) and the analysis of response time

distributions (Donkin, Nosofsky, Gold, & Shiffrin, 2013). Thus, while the way in which

visual working memory capacity is conceived is still very much evolving (Donkin, Kary,

Tahir, & Taylor, 2016; Luck & Vogel, 2013; Ma, Husain, & Bays, 2014), this observation

appears to justify talking about number of item metrics for the canonical change

detection task.

However, the way in which this metric is derived depends on the exact change

detection task given and the logical constraints it places on how information can be

used to perform the discrimination (Rouder et al., 2011). Take the standard single
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probe task, for example (see Figure 1A). In this case a single test item occupies a

location previously filled in the study array. According to the high-threshold

assumption, where the relevant information is either in mind or not, on 1 − d proportion

of trials the observer does not have the requisite information in memory and must guess.

In this case it is assumed that participants go with their base expectation of a change

occurring, which we will call u, for uninformed guessing rate (cf. Rouder et al., 2011).

For the whole display paradigm, the possible constraints on information use are

different (see Figure 1B). Here the observer is assumed to match the k items in memory

to the corresponding items in the probe array and if a mismatch is found (on d

proportion of trials) the response change is given (Pashler, 1988). If a mismatch is not

found, however, and the array size exceeds the number of items they could retain

(k < N) the observer is in a state of uncertainty; it may be that an item outside of

memory changed or it could be that the array is an exact repetition of the study set. In

this case the observer may respond change in line with their uninformed guessing rate.

According to this basic model, first outlined by Pashler (1988), the probability of

making a hit (h) for the whole display task is, h = d+ (1 − d)u, whereas the probability

of making a false-alarm (f) is, f = u, provided that the observer was unable to encode

and retain all memory array items (k < N).

Alternatively, it is possible for the observer to use knowledge of the number of

items they have in memory to guide their response. Rouder et al. (2011) outline one

plausible way in which guessing might be informed in the whole display change

detection task. They note that the observer’s base expectation of a change can be

updated by their knowledge of the probability that, had an item changed, they would

have missed it given the number of items they had in memory (which, in terms of the

parameters above, is 1 − d). In an application of Bayes’ theorem the prediction for this

informed guessing is,

g(WD) = (1 − d)u
(1 − d)u+ (1 − u)

where WD stands for whole display. This equation reflects the assumption that

informed guessing updates the prior expectation of a change (given by the uninformed
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guessing rate, u) via knowledge of k and, consequently, the probability of missing a

change (given by 1 − d). The equation can be read more simply as the probability that

all items in memory match items in the test array given that a change occurred divided

by the probability that all items match regardless of whether this is a same or change

trial.1 Note that, unlike the uninformed guessing rate, this informed guessing depends

on d, which in turn depends on set size (N) and the number of items in working

memory (k). A consequence of this is that, for a given uninformed guessing rate and set

size, observers with more items in memory should be less likely to guess change. Or

alternatively, for an observer with fixed k, as the number of to-be-remembered items

increases, the probability that they guess change should also increase. This is because

increasing N relative to k increases the chances of a true change being missed.

It is also possible for guessing to be informed in single probe versions of the

change detection task. When the single probe is presented in a neutral location that

was not occupied by items in the memory array (usually the center of the screen, see

Figure 1C) it is not possible for observers to evaluate the status of only a single item, as

can be done in the standard single probe task (Gilchrist & Cowan, 2014). Rather if the

observer does not identify a match between the probe and an item in memory, and

capacity was exceeded by the number of to-be-remembered items, they must guess

whether or not a change has actually occurred. Note that in this case the uncertain

state begins with failure to match, whereas for a whole display uncertainty arises when

all items in memory match those in the probe (a failure to detect change). Cowan,

Blume, and Saults (2013) outline the basic uninformed model for this task, where the

probability of making a false-alarm is, f = (1 − d)u, and the probability of making a hit

for arrays exceeding capacity is, h = u.2

Note that in this case guessing can be informed by knowledge of k too. Here if a
1Note that the prior expectation of a same trial is given by 1 − u and the probability that all items in

memory match those in the test array on a same trial is necessarily 1 (as no items change), which gives

the right side of the denominator
2We have slightly changed the way in which this model is presented here relative the the original

presentation in Cowan et al. (2013) but the model remains the same.
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match is not detected the informed guesser can deduce that this could have happened

on a same trial if the relevant item was not retained in memory. This occurs with the

probability, 1 − d. In this case the same logic used by Rouder et al. (2011) leads to the

following prediction for informed guessing in this single probe task;

g(SP) = u

u+ (1 − d)u,

where SP stands for single probe. This may be interpreted more simply as the

probability that a match between the probe and an item in memory was not detected

given that a change occurred (which for this task is given by the uninformed guessing

rate) divided by the probability of no match being detected for both same and change

trials.3

The prediction arising from this is that for a given uninformed guessing rate and

set size, observers with more items in working memory are predicted to be more likely

to guess change. Alternatively, for a fixed k, increasing the number of

to-be-remembered items should decrease the probability of guessing change. This is

because increasing N relative to k increases the probability that the probe was not

retained in memory and consequently that a true match would be missed. Note that

this is the opposite to the prediction informed guessing makes for the whole display

task, due to the different constraints imposed on information use (i.e., the possibility to

detect a match as opposed to the possibility to detect a change).

The clear assumption in these informed guessing accounts is that participants

know the number of items they have in working memory and use this information to

guide responding, even when they are in an uncertain state. The extant literature

provides some reason to believe that observers have insight into the contents of working

memory and that they can use this to guide responses. Cowan et al. (2016) used a

modified change detection task, in which participants had to indicate how many

changes had occurred between study and test, rather than whether or not a change had
3The numerator and left side of the denominator are u in this case because the probability that no

match occurs on a change trial is necessarily 1. Multiplied by the prior (or base) expectation of a change

gives u.
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+ 1000 ms

500 ms

500 ms

500 ms

Same Change

A. Single Probe (in location)

Same Change

B. Whole Display

Same Change

C. Single Probe (not in location)

Figure 1 . The general change detection procedure with a study array followed by a

pattern mask then a test array. Examples of arrays requiring same and change

responses are given for the standard single probe task in location (A), the whole display

task (B), and the single probe task where the probe appears in a previously unoccupied

location (C). Note participants see only one probe array per trial.

occurred. Occasionally, in the retention interval of their trial procedure, Cowan et al.

(2016) would probe their participants to report the number of items they felt they had

in memory. This introspective judgement corresponded quite well to model based

estimates of capacity, with a slight tendency for participants to overestimate the

number of items in memory. This meta-cognitive insight is also present in recall tasks

requiring the precise reconstruction of a studied item (e.g. selecting a color from a

continuous set). Rademaker, Tredway, and Tong (2012) found that ratings of the

quality of memory for a given probed item tracked the precision with which that item

was recalled. Further, using a mixture model to separate guesses from memory

responses, they found that these meta-cognitive judgements also related to the

probability of the probed item being in memory (although see Van den Berg, Yoo, &

Ma, 2017, for an alternative analysis).
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In recent years the simple models outlined above have been extended to better

account for extant data. For instance, it is common practice to include an attention

lapse parameter to account for occasional errors at small set sizes that are presumably

smaller than capacity (e.g. Donkin et al., 2014; Rouder et al., 2008; Hardman & Cowan,

2016). With this additional parameter, closed form solutions for k are not available and

model fitting techniques must be used instead. This requires precise specification of the

model, as guessing is no longer subtracted out like it is for closed form estimators

(Pashler, 1988; Cowan et al., 2013). Failure to accurately account for how observers use

information will lead to biased estimates of parameters and possibly dubious

experimental effects (see Rouder et al., 2011). Thus, the difference between informed

and uninformed guessing is not a trivial one. To accurately measure the quantity of

interest to many researchers, namely the number of items a participant could accurately

maintain in mind across a series of trials, a more precise specification of guessing

behavior is required. Four experiments aimed to help move towards this more precise

specification with two versions of the change detection task.

The present experiments

The informed guessing described above depends on two factors; the participants’

prior expectation of a change, u, and the probability that the relevant information is in

memory when the probe appears, d. The precise way in which this information is used

depends on the parameters of the task (i.e. whether a single probe or whole display is

used). Therefore, one way to disambiguate this from uninformed guessing is to

systematically manipulate each of these factors. Figure 2 depicts hypothetical ROC

curves for the whole display and single probe tasks according to uninformed and

informed guessing. Each line depicts a different base expectation of a change, or u

value, whereas each of the three points along the lines represents a probability, d, of the

relevant information being in memory when probed. The former may be manipulated

by informing participants that change trials will be more or less frequent and the latter

may be manipulated by increasing the number of to-be-remembered items.
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Figure 2 . Hypothetical ROC curves for the uninformed and informed guessing models

for the whole display (A) and single probe (B) change detection tasks. These ROCs

depict the situation where uninformed guessing rate is manipulated along three levels

(the three lines in different colors) and the probability of having relevant information in

memory is manipulated by increasing set size (the points along each line). Note that

the underlying model parameters are the same and depict a hypothetical participant

with k = 3, a (attention lapse parameter) = 0.9, and one uninformed guessing rate for

each bias condition (see Method for more detail), u = [0.3, 0.5, 0.7].

In Experiment 1 we use these two manipulations with the whole display change

detection task. To preview the results of this experiment, the resulting ROC curves

appear to be better reconciled with an informed guessing account. In Experiment 2 we

seek converging evidence with the whole display task by this time varying the number

of possible changes on a given trial, rather than the probability of a change occurring.
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Finally, in Experiments 3 and 4 we use the bias and set size manipulations from

Experiment 1, this time with the single probe version of the change detection task (see

Figure 1C). In all four experiments the data support an informed guessing account over

a uninformed account.

Experiment 1

As noted above, according to the informed guessing model the propensity of an

observer to guess change depends on the number of to-be-remembered items (set size)

and their base expectation of a change. Thus in Experiment 1 we followed the general

procedure of Rouder et al. (2008) to trace out ROC curves for the whole display task.

Participants studied arrays of 2, 5, or 8 colored squares and were told, prior to each

block of trials, the probability that a change would occur between study and test. It

was emphasized to participants that a change would only occur to a single color and

that this would introduce a color that was not in the studied set. The base rates used

were 0.3, 0.5, and 0.7.

Uninformed guessing predicts that, for array sizes exceeding capacity, the

false-alarm rate should only depend on the uninformed guessing rate. As an example,

for an individual with k = 3 their propensity to say a change occurred when it did not

should remain constant between set sizes 5 and 8 (see Figure 2A). Informed guessing,

on the other hand, predicts that the false-alarm rate depends both on set size (N) and

base expectation of a change (u). This is because informed guessing predicts that

observers are less likely to guess change at smaller set sizes (as there is less chance that

a change was missed).4

Method

Participants. Thirty-one students (25 female) from the University of

Edinburgh, aged between 18 and 33 (mean = 22.3), took part in this experiment in
4The two models also predict different hit rates but in the description above we focus on false-alarm

rate for illustrative purposes as these differences are most pronounced.
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return for £7 for the 45 minute session. One participant was excluded for failing to

achieve greater than 60% accuracy averaged across all experimental blocks.

Stimuli, Design, and Procedure. Stimuli were colored squares presented on a

grey background. Colors on each trial were selected without replacement from a set of

10 taken from Rouder et al. (2008); black, white, red, blue, green, yellow, orange, cyan,

purple, and teal. Each square measured 0.75◦ × 0.75◦ of visual angle at an approximate

viewing distance of 50 cm. Stimuli were randomly positioned on each trial within a

9.8◦ × 7.3◦ area with the constraint that each item could not be within 2◦ of the center

of the screen or the center of another item. Pattern masks presented following the

memoranda also subtended 0.75◦ × 0.75◦ and were made up of a 4 × 4 grid with each

cell filled with a color from the study set.

The general trial procedure is depicted in Figure 1B. Participants saw a fixation

cross for 1000 ms which was then replaced with the study array for 500 ms. Following

this there was a blank interval of 500 ms before a 500 ms pattern mask to ensure any

sensory trace was eliminated. Immediately following the mask the probe array was

presented (Figure 1B) and remained visible until participants made their response by

pressing either the ‘z’ or ‘m’ key for ‘same’ or ‘change’ (the mapping of keys was varied

between participants).

The experimental session was split into 9 blocks. Prior to each block the

participant was informed of the probability that a given trial in that block would

involve a change to a single square between study and test. Pie charts were used to

depict the relative probabilities (in percentages) of same and change trials prior to each

block and the probability of a change was reiterated on screen prior to each trial.

Participants progressed through the 3 base rate conditions (30%, 50%, and 70%) in a

random order 3 times. Each block contained 60 trials (for a total of 540) with the

number of change and same trials determined by the base rate manipulation (as the

base rates were genuinely informative). The different set sizes (2, 5, and 8) were

randomly distributed throughout each block with equal probability. All experiments

were programmed using PsychoPy (Peirce, 2007).
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Modeling approach. Hierarchical Bayesian versions of the informed and

uninformed guessing models (similar to those outlined by Morey, 2011) were fit to the

data. Each of these models has five parameters estimated for each participant; the

number of items in working memory, k, the probability that attention is paid on a given

trial, a, to account for the presence of errors at low set sizes (Rouder et al., 2008), and

an uninformed guessing rate, u, for each of the base rate conditions. Individual

participant parameters were assumed to be drawn from population-level distributions

with weakly-informative priors placed on the mean and standard deviation of these

distributions (see Appendix for more information). To quantify model fit, whilst

penalizing for the effective number of parameters, we use the widely applicable

information criterion (WAIC; Watanabe, 2010), calculated from the posterior chains as

described by Vehtari, Gelman, and Gabry (2017). WAIC is a fully Bayesian measure

(that is, it uses the full posterior distribution) of out of sample predictive accuracy (see

Gelman et al., 2014, for further detail). We also report the more frequently used

deviance information criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der Linde,

2002; as calculated by Plummer, 2008) alongside parameter estimates in Table 1.

In addition to the guessing models, we also estimated hit and false-alarm rates

from the raw data with a hierarchical model (see Donkin et al., 2016, for a similar

approach). Rates for each individual in each condition were assumed to be drawn from

normal distributions on the log odds scale with separately estimated means and a

common estimated standard deviation. This model, used to estimate the rates with no

theoretical assumptions, provides a basis for comparison with the theoretical models,

producing shrinkage of estimated rates by using group means to constrain individual

estimates. It also gives appropriate interval estimates (confidence intervals) that are

bounded between 0 and 1. More detail on the modelling approach is given in the

Appendix.
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Results and Discussion

Estimated hit and false-alarm rates are plotted in Figure 3 with their 95% highest

density intervals (HDI; see Kruschke, 2015, for detailed discussion) along with posterior

predictive samples from the population mean parameters of the uninformed (left) and

informed (right) models. In these figures points progressing along the negative diagonal

reflect the different set sizes (2, 5, 8) and points following the positive diagonal reflect

the different base-rates (0.3, 0.5, 0.7). Visually the informed model appears to provide a

better account of the data relative to the uninformed model, which predicts that

increasing the number of to-be-remembered items from 5 to 8 has no effect on

false-alarm rate. These predictions of the uninformed model were not borne out, as the

false-alarm rate does indeed increase with set size. In the 0.3 base rate condition the

estimated false-alarm rate was 0.058 [0.011, 0.109] (median and 95% HDI) larger at set

size 8 than 5, with similar results in the 0.5 (0.067 [0.004, 0.132]) and 0.7 (0.094 [0.017,

0.174]) conditions (0.073 [0.036, 0.111] collapsed across conditions). This increase in

false-alarm rate is as predicted by the informed guessing model (parameter estimates for

each model are given in Table 1). This impression was backed up by the WAIC which

was smaller for the informed model (∆WAIC = 206.18).

Some deviation can be seen between the aggregate data and informed model fit

(Figure 3 right panel). For example, the model appears to predict shallower isobias

functions at set sizes 5 and 8 than are present in the estimated rates. Nevertheless a

comparison to the saturated model, used to estimate hit and false-alarm rates, via

WAIC favored the informed guessing model, suggesting that the misfit is not too

extreme (∆WAIC = 113.56).

In summary, the data from Experiment 1 are better reconciled with the

assumption that observers use knowledge of the number of items in memory to inform

guessing behavior. We sought to obtain converging evidence for informed guessing in

whole display change detection in a second experiment.
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Figure 3 . Estimated false-alarm and hit rates (posterior medians and 95% highest

density intervals) from Experiment 1 shown in black over posterior predictive samples

from the uninformed (left panel) and informed (right panel) guessing models (red =

samples from the 0.3 base-rate condition, yellow = 0.5, green = 0.7). Points progressing

along the negative diagonal denote the set size 2, 5, and 8 conditions, respectively.

Posterior median predictions are also given joined by lines.

Experiment 2

In Experiment 1, for the most part, participants’ whole display change detection

performance was in line with the expectations of informed guessing. In Experiment 2

we sought to obtain converging evidence from a different experimental manipulation. In

this case, rather than vary participants’ base expectation of a change, we varied the

number of changes (C) that would occur on a given change trial. Before starting a

block participants were informed that when a change occurred (which would happen on

50% of trials) it would occur to 1, 2, 3, or 4 of the items. Wilken and Ma (2004) report

a similar manipulation, however, in their case the different numbers of changes were

mixed with non-changed probe arrays within the same trial blocks, thus there was no

separate false-alarm rate for the different possible number of changes (see also, Gibson,
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Wasserman, & Luck, 2011). Separating these trials out results in clear differential

predictions for uninformed and informed guessers. Uninformed guessing predicts that,

as long as k < N − C, there will be no dependence of false-alarm rate on the number of

possible changes. Therefore, for example, at set size 5 we may predict a discontinuity

where, for an observer with k = 3, false-alarm rate is close to zero for 3 and 4 possible

changes but raises to u when only 1 or 2 changes can occur. This is because the

observer cannot be sure that an item outside of memory has not changed, and therefore

must guess. Informed guessing, on the other hand, predicts a more graceful dependence

of false-alarm rate on C, as knowledge of the number of items is used to update the

base expectation of a change. Further, given that only a single base-rate (0.5) was used

in this experiment, the number of parameters needed to fit the informed and

uninformed models is reduced from 5 to 3.

Method

Participants. A new sample of 28 students from the University of Edinburgh,

aged between 18 and 41 (mean = 24.8), were recruited for Experiment 2. Each

participant received £ 7 for the 45 minute session. All participants achieved greater

than 60% accuracy averaged across blocks.

Stimuli, Design, and Procedure. As Experiment 2 included trials on which a

large number of changes could occur, the following colors were added to the set used in

Experiment 1; fuchsia, lime, and maroon, so we could sample without replacement.

These colors were also included in the pattern mask for this experiment. Other aspects

of the stimuli were identical to those used in Experiment 1.

The general trial procedure was identical to Experiment 1 (see Figure 1B) with

the exception that change trials could consist of 1–4 squares changing to brand new

colors, not present in the memory array. The experiment session was split into 8 blocks

of 68 trials (for a total of 544). The two set sizes (5 and 8) were randomly intermixed

within each block. Prior to each block participants were informed that a change trial

would involve 1, 2, 3, or 4 squares changing to new colors, whereas the probability of a
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change trial occurring was 50%. The number of possible changes remained constant

within a block and was reiterated on screen prior to each trial.

Results and Discussion

Once again hierarchical versions of uninformed and informed models were

estimated. In this case each model had three parameters estimated for each participant

drawn from population distributions with weakly-informative priors. These free

parameters were k, a, and a single uninformed guessing rate, u, as the probability of

change was fixed at 50%. More details are given in the Appendix.

Posterior samples from the mean population-level parameters of the two models

are presented in Figure 4 with estimated hit and false-alarm rates superimposed. Once

again the informed model provides a visibly better fit to the data than the uninformed

model. Uninformed guessing predicts a discontinuous relationship between the number

of changes and false-alarm rate at set size 5. When the number of possible changes is

small, and thus the observer cannot be certain that an item outside of working memory

did not change, false-alarm rate should match the guessing rate, whereas the false-alarm

rate should drop dramatically when the number of changes becomes large, as at least

one item in memory will have changed between study and test (as the mean capacity

estimate was approximately 3; see Table 1). This pattern is not present in the

estimated false-alarm rates, although this is aggregated across individual participants

with different capacities which may lead to a smoother change of false-alarm rate with

C. The clearer discrepancy between the data and the uninformed model is at set size 8.

Given the estimated number of items in memory the uninformed model predicts no

change of false-alarm rate with number of possible changes. This is clearly not the case,

estimated false-alarm rates do change significantly between 1 and 4 possible changes

(-0.143 [-0.207, -0.08]). For the informed model the mean prediction lines match up

nicely with the estimated hit and false-alarm rates, generally falling withing the 95%

HDIs (see bottom of Figure 4).

Once again this visual inspection was supported by the WAIC comparison
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Figure 4 . Estimated false-alarm (lower points) and hit (upper points) rates (posterior

medians and 95% highest density intervals) from Experiment 2 shown in black over

posterior predictive samples from the uninformed (top panel) and informed (bottom

panel) guessing models (green = false-alarms, blue = hits). Posterior median

predictions are also given joined by lines.

(∆WAIC = 264.15). Whilst the informed model outperformed the uninformed model,

there appears to be room for improvement as the WAIC for the saturated model, which

more freely estimated hits and false-alarms, was slightly lower (∆WAIC = -32.54). We

discuss potential extensions to the informed guessing model prior to the General

Discussion.
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Experiment 3

Experiments 1 and 2 provide converging evidence that observers make more use of

information afforded to them in whole display change detection than uninformed

guessing would predict. Experiments 3 and 4 asked if this is also the case for single

probe change detection. The whole display change detection task includes much more

contextual information at test which appears to benefit performance relative to a single

probe (Jiang, Olson, & Chun, 2000). Indeed, informed guessing assumes that

participants have some notion of the number of items that were presented or the

proportion of the array that they encoded. A whole display makes the number of

presented items explicit, whereas a single probe does not provide this information at

test. Further, with a whole display, it is possible that participants make a gist based

comparison of the study and probe arrays on the basis of their higher order properties

(e.g. average hue or luminence Brady & Alvarez, 2011). If this is the case, the evidence

for informed guessing, particularly in Experiment 2, may reflect participant’s adjusting

their responding in accordance with the expected magnitude of change between study

and test (i.e. in the 4 possible change condition, a minimal change in ensemble

properties between study and test is unlikely to have happened given a change). This

version of the single probe task has been increasingly used recently, particularly in

studies assessing the binding of features in working memory, where it is desirable to

detach the probe features from their initially studied locations (e.g. Wheeler &

Treisman, 2002). Finding evidence of similar information use with a single probe would

strengthen the argument that guessing is informed in change detection.

Method

Participants. Thirty students (21 female) from the University of Edinburgh,

who had not taken part in Experiments 1 or 2, were recruited for Experiment 3. They

were aged between 19 and 31 (mean = 22.8) and received £ 7 for the 45 minute session.

All participants obtained greater than 60% accuracy averaged across blocks.
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Stimuli, Design, and Procedure. For this experiment we reverted back to

the stimulus set used in Experiment 1, consisting of 10 distinct colors. The general trial

procedure was also the same as Experiments 1 and 2 with the exception that the test

array would only contain a single item presented at the center of the screen, which was

never occupied by memory array items (see Figure 1C). On same trials this probe item

was taken from the presented set, whereas on change trials this was a color taken from

the remaining items not presented during study.

Like Experiment 1, in this experiment the participants’ expectation of a change

occurring on a given trial was manipulated across 9 blocks. At the beginning of each

block participants were informed that either 30%, 50%, or 70% of trials in that block

would be change trials. Participants cycled through these base rates in a random order

3 times with the different set sizes (2, 5, 8) mixed together.

Results and Discussion

Hit and false-alarm rates for Experiment 3 are plotted in Figure 5 along with

posterior predictive samples from the uninformed and informed guessing models. As in

Experiments 1 and 2 comparison of the penalized fit statistic, WAIC, preferred the

informed model over the uninformed one (∆WAIC = 226.03). The informed model was

also preferred over the hierarchical model used to estimate hit and false-alarm rates

(∆WAIC = 79.69).

Despite the good overall fit of the informed model, it is clear from Figure 5 that

there is considerable overlap between the three base-rate conditions, which may limit

our ability to provide a fair comparison of the two accounts. Further the estimates of

uninformed guessing parameters (u) in this experiment (Table 1) suggest a strong

overall bias towards responding change (all estimates > 0.6) and no great difference

between the three base-rate conditions. It is possible that our base-rate manipulation

was ineffective in modifying the observer’s expectation of change. However, it is not

clear why this manipulation would be less effective with a single probe than a whole

display. Alternatively, the bias towards responding change may have, unintentionally,
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Figure 5 . Estimated false-alarm and hit rates (posterior medians and 95% highest

density intervals) from Experiment 3 shown in black over posterior predictive samples

from the uninformed (left panel) and informed (right panel) guessing models (red =

samples from the 0.3 base-rate condition, yellow = 0.5, green = 0.7). Points progressing

along the negative diagonal denote the set size 2, 5, and 8 conditions, respectively.

Posterior median predictions are also given joined by lines.

been caused by the nature of probe. The placement of the probe item in the center of

the screen immediately following the pattern mask had the effect of producing apparent

motion where the mask items all collapsed to a single point. This effect may have

contributed to the impression that a change had occurred between study and test.

Alternatively, in spite of being instructed that the probe item would always appear at

the center where no memory items would appear, participants may have been biased

towards saying change due to the mismatch of color and location. Experiment 4

attempted to eliminate these potential biasing factors.

Experiment 4

In this experiment, rather than presenting a single square as the probe item, we

used an annulus that surrounded the area in which memory items were presented. This
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annulus was present throughout the trial and changed to the color that served as the

probe feature at the offset of the pattern mask, thereby avoiding the apparent

movement effect in the previous experiment and emphasizing the irrelevance of location

in the judgement. Figure 6 depicts an example trial.

Method

Participants. For Experiment 4, 32 students (12 female) from the University of

Missouri, aged between 18 and 21 (mean = 18.7), took part in return for course credit

for the 45 minute session. One participant did not complete the full session and two

participants were excluded for failing to achieve greater than 60% accuracy averaged

across all experimental blocks, leaving 29 for analysis.

Stimuli, Design, and Procedure. The stimuli, design, and general procedure

was almost identical to those used in Experiments 1 and 3. The major difference was

that an annulus with radius of 7◦ and thickness of approximately 0.5◦ appeared

throughout the trial in a darker grey than the background (see Figure 6). This annulus

surrounded the memory array and immediately following the offset of the pattern mask

was filled with a single color, which participants had to judge as either being selected

from the initial study array or being a color from outside this set.

Results and Discussion

Estimated hit and false-alarm rates for this fourth experiment are presented in

Figure 7 superimposed on posterior predictive samples for the two guessing models.

Relative to the ROC points in Experiment 3, which used a central probe (Figure 5), the

present points exhibit a greater spread, with larger differences between the different

conditions (see also estimates of u in Table 1). What is also clear from Figure 7 is that

the fit of the informed model to the aggregate data, while far from perfect, is much

better than that of the uninformed model. As discussed above, the uninformed model

predicts that hit rate should not change between set sizes 5 and 8, which is clearly not

the case in the estimated rates. Hit rate dropped by -0.098 [-0.148, -0.05] between set

sizes 5 and 8 collapsed across the three base rate conditions (0.3 = -0.135 [-0.241,
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Figure 6 . Illustration of the task used in Experiment 4. The figure depicts a trial on

which the correct response is ‘change’.

-0.032]; 0.5 = -0.097 [-0.177, -0.019]; 0.7 = -0.062 [-0.133, 0.003]). Once again the

sampled WAIC values favored the account provided by informed guessing (∆WAIC =

166.08). The 5 parameter informed model is also preferred over the model which freely

estimated the hit and false-alarm rates from the raw data (∆WAIC = 76.28).

Before proving an overview of our findings it is worth discussing some unexpected

results and alternative models that allow for flexibility in the extent to which

information is utilized when guessing.

Exploring Alternative Models

In the informed guessing model that we have applied here, participants are

assumed to update their base expectation of a change with knowledge of the proportion

of the array they retained (d) and then probability match; that is, choose between the

options in accordance with their probabilities. Approximate probability matching has

been observed in visual working memory tasks before (Cowan et al., 2016; Rouder et

al., 2008). However, an optimal approach would be to select the response option with

maximum likelihood all of the time (Friedman & Massaro, 1998; Shanks, Tunney, &

McCarthy, 2002) and it is possible that people vary in the extent to which they use
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Figure 7 . Estimated false-alarm and hit rates (posterior medians and 95% highest

density intervals) from Experiment 4 shown in black over posterior predictive samples

from the uninformed (left panel) and informed (right panel) guessing models (red =

samples from the 0.3 base-rate condition, yellow = 0.5, green = 0.7). Points progressing

along the negative diagonal denote the set size 2, 5, and 8 conditions, respectively.

Posterior median predictions are also given joined by lines.

information efficiently in tasks like these. Hardman and Cowan (2016) recently

addressed this very issue. They presented participants with an array of colored triangles

at different orientations and then tested memory with either a single change detection

probe, which was either a conjunction of features from the array or a new combination,

or with a feature matching task, in which participants were presented with one feature

of a studied item (e.g. orientation) and had to select the accompanying feature (e.g.

color). They then fit a mixture model in which participants could use information

minimally, ideally, or in an intermediate fashion, in-between these two extremes.

Minimal information use was analogous to our uninformed guessing model where

participants select from possibilities with no consideration for other information (see

Chen & Cowan, 2013). Their ideal guessing procedure used a process of elimination,
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where knowledge of other features in the array could be used to rule out candidates at

test (as features were sampled without replacement). Crucially, the mixture parameters

in this model allowed for participants to use a combination of these modes of

responding. Consistent with our modeling results, Hardman and Cowan (2016) found

that more often participants could be characterized as ideal information users; but there

was a great deal of variability.

One suggestion that participants in our experiments may be responding more

optimally—that is, selecting the most likely response option more often—than

accounted for by the informed guessing model comes from the estimates of u. These

estimates invariably deviated from the base-rates provided to participants (see Table 1)

and they did so in different ways depending on the probe used. In the whole display

experiments this is reflected in a bias towards expecting same and (as noted above) in

the single probe experiments, a bias towards change. As described in the Introduction,

the different constraints on information use in these two tasks lead to informed guessing

predicting an updating of u towards same for whole display and towards change for

single probe. Therefore, one account of the aberrant uninformed guessing rates may be

that observers are going with the more likely option more often than predicted by

simple probability matching.

To explore this possibility further we evaluated two additional models that allow

for variation in the extent to which guessing behavior matches that of a probability

matcher or an optimal responder. The first model included a mixture parameter, POG,

which determined the probability that the observer responds optimally. Optimal

guessing always selects change if g > 0.5 and same if g < 0.5, whereas if g = 0.5 a

random choice is made between the two options. The second model considered offers

more gradation between inefficient and ideal information use via a single parameter that

determines the ‘noise’ in the choice probabilities (see Friedman & Massaro, 1998). In

this model the probability of guessing change is determined by 1/(1 + e− logit(g)λ), where

logit(g) is the log odds transformation of the informed guessing rate and the parameter

λ controls how efficiently information is utilized. An estimate of 1 for this parameter is
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identical to the informed guessing models assessed above, whereas a λ value less than 1

is indicative of inefficient information use and large values approximate optimal

guessing (as it increasingly approaches a step function). Thus these models correct for a

potential source of mis-fit in the informed guessing model in that they allow for

variation, both within and between participants, in how efficiently information is used

to update the base expectation of a change occurring between study and test.

These models and the resulting parameter estimates are described in full in the

Supplementary Material, but it suffices to say that the two were in general agreement.

Averaged across the four experiments the estimate of the mixture parameter, POG,

suggested that participants guessed optimally approximately a quarter of the time

(0.282 [0.145, 0.408]). Estimates of λ from the second model were also consistently

greater than 1 (1.699 [1.348, 2.161]), which also points towards generally more efficient

information use than is currently captured by the informed guessing model. However,

these estimates also show that participants are far from responding wholly optimally in

this task which, along with the reasonable fit displayed in the figures, suggests that the

probability matching assumption made in the informed guessing model is not a gross

misspecification. At the individual level there was evidence of variation in the extent to

which participants used information to guide guessing behavior, in line with the findings

of Hardman and Cowan (2016) (see the Supplement). Future work examining individual

differences in change detection performance and how model parameters covary (see

Morey, 2011) may benefit from these extended models.

Nevertheless, there are other important possibilities that should be addressed by

future work. For example, the observed bias in responding, towards same with a whole

display and towards change with a single probe, could be explained by a systematic bias

in participants’ evaluation of the number of items they have in memory. For example,

an overconfident observer may think “if there was a change I would have detected it”

with a whole display (producing a same bias), whereas with a single probe they would

think “if there was a match I would have detected it” (producing the opposite bias).

Specifically, if participants overestimate what proportion of the array they have in
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mind, their base expectations of a change occurring will undergo a more extreme

updating, given that the participant’s belief about the number of items they have in

memory is the determining factor in driving their guessing behavior. Cowan et al.

(2016) found a tendency for such overestimation when participants were probed to

report the number of items in memory, relative to model-based estimates. Including

these judgements in further work will be important in distinguishing the extent to

which observers use information optimally from the extent to which they under- or

over-estimate their capacity.

General Discussion

Estimating the number of items that an observer could retain, on average, across

a series of change detection trials requires a specification of the way in which

information can be used to perform the discrimination (Rouder et al., 2011). In some

cases the task parameters allow observers to use information in memory to guide

responses even when they are in a state of uncertainty; that is, when the relevant

information is not present in working memory. However, whether or not people actually

engage in this kind of informed guessing is unclear (although see Hardman & Cowan,

2016). Across four experiments the present work varied 1) the base-rate of a change

occurring between study and test, 2) the number of to-be-retained items, and 3) the

number of changes that could occur, to contrast the predictions of uninformed and

informed guessing models. In each case, with both whole display and single probe

versions of the task, the data suggested that the informed guessing model gives a better

account. Parameter estimates from the informed model, specifically those controlling

participants’ base expectation of a change, suggested that information use may be

somewhat more efficient than allowed for in the model. Therefore, we outlined two

additional models that allow for exploration of the efficiency of information use. Below

we discuss the implications of not adequately accounting for the way in which observers

utilize information for the interpretation of experimental effects in change detection

tasks along with some limitations of the present work.
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Our findings allow for a more precise specification of the simple processing models

used to estimate the number of items in working memory and, consequently more

principled estimation. Failure to account for this information use will bias estimation

and may well change the pattern of experimental effects. To illustrate this we fit

versions of the informed and uninformed guessing models with separate estimates of k

for each set size to the data from Experiments 1–4. If the average number of items that

can be retained is fixed, then these variable k models should not outperform the

versions with a single k parameter (Rouder et al., 2008), whereas evidence for the

variable version trumps the notion of a capacity limit. For Experiments 2 and 3 the

uninformed variable k model had a lower DIC relative to the uninformed fixed k models

used above (for Experiment 4 the difference was unconvincing, 0.57 and WAIC always

favored the fixed k version). However, for all data sets the informed fixed k model

outperformed the variable k version.5

We also applied the simpler models of Pashler (1988) and the ‘reverse-Pashler’

formula described by Cowan et al. (2013) to our whole display and single probe data,

respectively, as these easily applied estimators do not account for informed guessing.

These estimates of k yielded significant effects of set size in each of the four data sets

(see Supplementary Material). This, along with the findings from the DIC comparison

above, acts as a proof-of-concept that failure to appropriately account for information

use in the change detection task can affect experimental effects (see Rouder et al., 2011,

for a similar demonstration). If we apply the uninformed guessing model we may

conclude that participants were able to encode more information, on average, from large

arrays (8 vs. 5), whereas the better fitting informed model suggests that this is not the

case and participants are just making better use of the information available to them

(see also Hardman & Cowan, 2016).
5Readers may note that relaxing the fixed k assumption and allowing for the possibility that, on

average, more items are encoded from larger set sizes allows the uninformed model to better predict

the the shape of ROCs in Experiments 1, 3, and 4, and the dependence of false-alarm rate on possible

number of changes in Experiment 2. Nevertheless, the fixed k informed guessing model still outperforms

the uninformed variable k model for each experiment in terms of DIC and WAIC.
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Our findings are in line with the current literature on participants’ knowledge of

the contents of working memory. Previous research has suggested that confidence

ratings track the precision of subsequently recalled items (Rademaker et al., 2012) and

that participant reports of the number of items in memory accord well with model

based estimates of capacity (Cowan et al., 2016). The present work suggests that

participants are able to use this knowledge of the contents of memory to update their

base expectation of change occurring during both whole display and single probe change

detection. As currently implemented the informed guessing model assumes that the

participant has perfect knowledge of the number of items in memory. However, it may

be that participants systematically overestimate their capacity, as recently suggested by

the data of Cowan et al. (2016). As we note above the parameter estimates for

participants’ base expectation of change (u) were more extreme than expected. In the

preceding section we outlined models that allow for more flexible information use that

may be able to account for some of this. However, a tendency for participants to

overestimate their capacity could also produce a similar pattern of results. This is

because it is the participants’ belief about the proportion of the array they have in

memory that determines the extent to which prior expectation of a change is updated.

If participants overestimate the proportion of the array they have in memory, this

updating will be more pronounced than if they perfectly knew their capacity. Future

work on the meta-cognition of working memory will be needed to distinguish more

efficient use of information in memory from a general tendency to overestimate one’s

capacity.

A related question that we are unable to address with the present data is just

what estimate of the number of items in memory participants are working with when

they inform their guessing. Contrary to the notion that the number of items in working

memory is fixed on every trial, recent work has suggested that either fluctuations of

attention (Adam, Mance, Fukuda, & Vogel, 2015) or in capacity itself (Cowan et al.,

2016; van den Berg, Awh, & Ma, 2014) result in different numbers of items in memory

from trial to trial. The present models cannot capture this aspect (although fractional
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values of k may be interpreted as mixtures; so for example 3.3 could be seen as a k of 4

30% of the time and 3 the rest of the time). Participants may use the average number

of items they can keep in mind to update their guessing rate or, as the previous findings

suggest, they may use trial-to-trial knowledge to do this updating. Future work

including probes for introspection on the numbers of items in memory or using more

information rich paradigms (e.g. recall) may be able to distinguish these two.

Nevertheless, the present findings allow users of standard change detection paradigms to

obtain more reliable estimates of the key parameters of interest.

Summary and Conclusions

Estimates of the number of items that observers can retain over brief intervals are

of great interest to cognitive psychologists and the change detection paradigm is often

used to obtain such estimates. To estimate this quantity in a principled manner a

model of the way in which information is used to perform the discrimination is needed.

For some versions of this task fairly simple assumptions can be made regarding what

observers do when they are in an uncertain state. For other versions there is more

information available to observers that may guide their guessing behavior. The four

experiments reported here suggest that patterns of hits and false-alarms in whole

display and single probe (not in location) change detection are better reconciled with

the assumption that observers use knowledge of the number of items in memory to

inform guessing. Exploratory modeling suggests that there is variability between

individuals in the extent to which information is utilized, but other potential

explanations remain to be ruled out.
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Appendix

Model Details

Whole Display. For whole display change detection, if a change has occurred

between study and test, the probability that an item in memory has changed, and thus

the change is detected, for the ith participant, jth set size (N), and mth possible number

of changes (C) is given by:

dijm = 1 −

(
Nj−ki

Cm

)
(
Nj

Cm

) ,

provided ki < Nj − Cm + 1 otherwise d = 1. This reduces to d = min(k/N, 1) for C = 1.

Thus the probability of correctly detecting a change in the lth base rate condition is:

hijlm = ai(dijm + (1 − dijm)ψ) + (1 − ai)uil,

whereas, for trials on which there was no-change the probability of incorrectly

indicating that a change has occurred is given by:

fijlm =


(1 − ai)uil, if dijm = 1

aiψ + (1 − ai)uil, otherwise

In this formulation, ψ controls the model of guessing under consideration. For an

uninformed guesser ψ = uil, whereas assuming an informed (probability matching)

observer,

ψ = gijlm = (1 − dijm)uil
(1 − dijm)uil + (1 − uil)

.

Single Central Probe. With a single probe, the probability that a match is

correctly identified for the ith participant and jth set size is:

dij = min(ki/Nj, 1).

Consequently, the probability of incorrectly indicating that a change occurred when in

fact the probe matches an item from the study set in the lth base rate condition is:

fijl = ai(1 − dij)ψ + (1 − ai)uil,
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whereas, when the single item probe truly was not one of the original studied set the

probability of correctly identifying this was:

hijl =


1 − (1 − ai)(1 − uil), if dij = 1

aiψ + (1 − ai)uil, otherwise

Once again, ψ determines the type of guesser under consideration. For the uninformed

model ψ = uil, whereas, for the informed model:

ψ = gijl = uil
uil + (1 − dij)uil

.

Priors. In fitting the models to each data set, each trial was assumed to be

distributed as a Bernoulli with probability of success determined different parameters

(appropriate to the task at hand) depending on whether the trial was a same or change

trial.

In both the uninformed and informed models the free parameters were ki, ai, and

uil and hierarchical priors were placed on transformations of these parameters; for a and

u, as these parameters are constrained to fall within [0, 1], the logit transformation was

used. For k we used the mass-at-chance transformation, ki = max(κi, 0), where the

prior is placed on κ (Morey, 2011).

Participant level parameters were sampled from a normal distributions,

κi ∼ Normal(µ(κ), σ2
(κ))

logit(ai) ∼ Normal(µ(a), σ2
(a))

logit(uil) ∼ Normal(µ(u)
l , σ2

(u)),

and weakly-informative priors were placed on both the µ and σ parameters. For µ

parameters Normal priors were used with a mean that depended on the parameter in

question and a standard deviation of 10 (broad on the k and logit scales). The mean of

the µ(u) priors was set to zero and µ(a) was set to 3 to reflect the expectation that

participants would attend on the majority (around 95%) of trials. For k, µ(κ) mean was

set to 1 for technical reasons associated with the generation of initial values and the

implementation of choose functions in JAGS for the whole display models. Setting the
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prior mean to 3 for the data from Experiment 1 (which is more in accordance with our

prior expectation) did not change anything, owing to the broad standard deviations

used. For σ parameters the same generic prior was used for each of the parameters;

σ ∼ Gamma(1.01005, 0.1005012).

This broad gamma prior better controls shrinkage relative to other typically used priors

on variance parameters (Kruschke, 2015).6

Hit/ False-alarm Rate Model

To estimate the hit and false-alarm rates depicted in the Figures we applied a

hierarchical Bayesian model which freely estimated each participant’s rates as draws

from different population distributions for each condition (cf. Donkin et al., 2016).

More concretely, for the ith participant, jth set size, lth base rate, and mth possible

number of changes the probability of responding change for the nth trial type, which

was either change or same (no-change), was assumed to be distributed as a Bernoulli

with probability of success;

logit(Pijlmn) ∼ Normal(µ(P )
jlmn, σ

2
(P )).

Thus the hit and false-alarm rates for each condition were sampled from independent

normals with different means but a shared standard deviation, providing an important

shrinkage constraint on our estimation. Priors on the µ(P ) components were all normals

with a mean of 0 and SD of 10 and the same gamma prior, described above, was placed

on σ(P ).

Model Estimation

Samples from the joint posterior distribution of parameters for each of the

guessing models and the hit/ false-alarm rate model were obtained using JAGS

(Plummer, 2003) and the R package R2jags (R Core Team, 2015; Su & Yajima, 2015).
6see also http://doingbayesiandataanalysis.blogspot.com/2012/04/improved-programs-for

-hierarchical.html
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We ran 4 chains of 5000 samples each following a burn-in period of 5000 samples.

Convergence of the hierarchical parameters was identified when all values of the

Brooks-Gelman-Rubin potential scale reduction factor fell below 1.1 (Brooks & Gelman,

1998; Gelman & Rubin, 1992). Where possible we did not thin chains and retained the

full set of 20000 samples (Link & Eaton, 2012), however occasionally it was necessary to

thin and retain every 5th or 10th sample to obtain convergence (20000 samples were still

retained). The code written to fit the models is provided here

https://github.com/stephenrho/Guessing.
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