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Abstract 

Bronchial biopsies obtained at baseline, 24 hours and 7 days after allergen challenge 
from mild atopic asthmatics were evaluated to follow the initiation and resolution of 

allergen-induced inflammation and remodelling in relation to AER. Further, the 

expression patterns of the TGF-P Superfamily ligands (TGF-01-3, activin-A, BMP-2, 

BMP-4 and BMP-7) and their respective signalling pathway Type H receptors, Type I 

receptors and signalling Smad proteins were defined in baseline asthma and after 

allergen provocation in comparision with normal volunteers. In the dual asthmatic 

response (DAR) group AHR was markedly increased 24 hours and 7 days after 

allergen challenge. Reticular basement membrane (RBM) tenascin expression was 

elevated at 24 hours and returned to baseline levels at 7 days. RBM procollagen III, 

cellular procollagen I, fibroblast HSP-47 and a-smooth muscle actin expression were 

all higher at 7 days when compared to baseline. At 24 hours eosinophils, 

macrophages, neutrophils and CD3+ T cells were all significantly increased but 

returned to baseline levels by 7 days. The asthmatic airway demonstrated increased 

TGF-P3 and activin-A expression. In asthma, allergen challenge was associated with 

sustained up-regulation of BMP-7 in inflammatory cells at 24 hours and 7 days and in 

epithelium at 7 days. Eosinophils were identified as a major source of BMP-7. 

Epithelial expression of BMPRII, ActRIIA and ActRIIB was significantly less in 

asthma than in normal volunteers. ActRIIA epithelial expression was significantly 
increased at 24 hours and 7 days after allergen challenge. Epithelial expression of 
ALK-1, ALK-2, ALK-5 and ALK-6 expression in asthma was significantly less when 

compared to the normal airway. Receptor down-regulation was demonstrated for 

ALK-5 24 hours post-allergen whilst up-regulation was seen for ALK-1, ALK-2 and 
ALK-6 at 24 hours and at 7 days post-allergen. Inflammatory-like cells expressing 
ALK-1 and ALK-4 were less in the asthmatic airway whilst ALK-3 expressing cells 

were increased in comparison to the normal airway. ALK-I (24 hours and 7 days), 

ALK-3 (24 hours) and ALK-4 (24 hours) expressing submucosal inflammatory-like 

cells were increased post-allergen. The baseline asthmatic airway demonstrated 

decreased expression of Smad7. Increased expression of Smad7 was evident 24 hours 

post-allergen. Increased expression of pSmad2 at 24 hours and pSmadl/5 expression 

at 24 hours and 7 days was evident. Increased airway remodelling remains associated 

with A-HR at a time point when cellular inflammation returns to baseline. In asthma 

there is markedly altered expression of the TGF-P Superfamily signalling pathways 

components compared to normal airways. 
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1.1 Introduction to the thesis 

Asthma is increasing in world-wide prevalence with the chronicity of the disease 

representing a considerable economic burden. At present the therapeutic focus is 

predominantly with anti-inflammatory strategies but less than 50% of asthmatics 

report adequate control with current therapy developed to target specific components 

of inflammation. Asthma frequently shows progression of airway obstruction and the 

role of structural change of the airway wall, termed remodelling, is rapidly gaining 

importance. The exact components of airway remodelling that contribute to the 

symptoms and chronicity of disease is not identified. The relationship between the 

inflammatory response, remodelling events and airway physiological changes remain 

to be defined. 

There are increasing reports of the safety of bronchoscopic airway sampling in asthma 

and it is therefore possible to develop more longitudinal studies in human asthma 

whereby the disease is followed in a time-course dependent fashion, where 

inflammatory and remodelling changes are examined in relation to symptoms, lung 

function and airway hyperresponsiveness (AHR). Only by differentiating changes 

contributing to disease pathogenesis from those that are an appropriate healing 

response in an injured airway can remodelling become a therapeutic target. 

Aberrant signalling by the Transforming Growth Factor (TGF)-P Superfamily is now 

increasingly recognised as driving the remodelling process, but the exact expression 

pattern and the functional consequences of TGF-P Superfamily signalling in asthma 

remains undefined. There is an urgent need to explore molecular and cellular 

pathways of remodelling as exploring such mechanisms may offer the prospect of 

developing alternative therapeutic strategies aiming to regulate or even reverse 

abnormal airway structural change. 

in this thesis a time course bronchoscopic study of allergen-induced asthma is 

presented. The airway physiological response to allergen challenge and its 

relationship to inflammation and remodelling are examined. The pattern of expression 

and signalling via TGF-P Superfamily ligands in asthma is compared to normal 

volunteers. Modulation of TGF-P Superfamily signalling in response to allergen- 

induced airway injury is then examined. Finally, the safety and tolerability data of 

three consecutive bronchoscopies is presented with view to planning future 

longitudinal studies in asthma. 
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1.2 Asthma 

1.2.1 Introduction and clinical sigrifficance 

Asthma is defined as a chronic inflammatory disease of the airways characterised by 

variable airflow obstruction and associated airway symptoms (VY'HO/NHLBI 

Workshop Report, 1995). Airway hyperresponsiveness (AHR) is the term used to 

desribe this abnormal and exaggerated tendency of an airway to narrow (Cockcroft et 
A 1977). AHR is a ubiquitous feature of asthma and can serve as an indicator of 

severity. In general the diurnal variability of airflow obstruction and symptoms of 

chest tightness, cough and wheeze on exposure to irritants such as cold air, smoke and 

perfinnes are a result of AHR. 

Currently eight million people in the United Kingdom (an estimated 13 % of the 

population) have a diagnosis of asthma and around 5.1 million are treatment 

dependent (Hallsworth et aL 2003). The prevalence of asthma has increased four-fold 

in the last two decades (Toelle et aL 2004) and is consistent with an epidemic. 
Despite the estimated therapeutic cost of E850 million a year to the National Health 

Service, 74% of these asthmatics still experience symptoms. Approximately 5-10% of 

these patients remain treatment refractory and experience severe debilitating disease 

accounting for a 30% of the therapeutic cost. In addition nearly 1300 asthma deaths a 

year still occur (Sidebotharn & Roche 2003). Control of severe asthma is often not 

possible with the current treatments available as stated in the Global Initiative for 

Asthma (GINA) guidelines (2004, NIH publication no. 02-3659). There is therefore 

an urgent unmet clinical need in asthma. 

1.2.2 Epidemiology of asthma 

Asthma prevalence has increased in areas where its prevalence has previously been 

low whilst overall the prevalence has stabilised or even slightly decreased in areas 

where prevalence has been high as shown by the recent International Study of Asthma 

and Allergies in Childhood (ISAAC) report (Asher et aL 2006). Whilst it is 

appreciated that genetic susceptibility is an important disease determinant of asthma 

the marked increase in the prevalence of the disease in such a short time period cannot 

be explained on the basis of newly acquired genetic changes. It is more likely that 

new environmental influences have unmasked pre-existing individual genetic 

susceptibility in populations. Asthma prevalence rates are highest in affluent societies 

with a temperate climate whilst lowest rates are seen in rural, economically 

22 



underdeveloped states. Adoption of a more affluent lifestyle is associated with 

increased asthma prevalence and the current increasing worldwide trend of allergic 

sensitisation may be a reflection of such lifestyle changes (Weinberg 2000). 

Epidemiological studies provide evidence of the major role of environmental factors 

in asthma, although familial clustering of asthma confirms the importance of genetic 

predisposition. Indeed if one considers that the exposure of affluent communities to 

environmental determinants of asthma is broadly similar and widespread it is probable 

that it is the genetic factors that determine individual disease risk. 

1.2.3 Asthma phenotypes 

There are several asthma phenotypes that present with these characteristic disease 

features. Although exact disease pathogenic mechanisms may differ between such 

phenotypes, the airway pathology is nevertheless characteristic Th2-mcdiated airway 

inflammation (Bentley et aL 1992b; Bentley et aL 1992a). This inflammatory process 

is mostly confined to conducting airways and is multi-cellular involving 

predominantly CD4+ T cells, eosinophils and mast cells. 

The temi (atopy' was first proposed by Coca and Cooke in the early 1920s as a new 

classification of hypersensitivity (Coca & Cook 1923). Atopy is defined as the 

hereditary predisposition to produce IgE specific for proteins (allergens) encountered 

at mucosal surfaces. This can be associated with elevated generalised, total IgE 

synthesis. In atopic or extrinsic asthma sensitisation is associated with airway 

recognition of allergen and the generation of a specific Th2 cytokine mediated 

inflammatory response. The majority of patients with asthma are atopic (Platts-Mills 

2001). 

The term intrinsic asthma is used to describe individuals who often present with late- 

onset asthma where no sensitisation to environmental allergens can be demonstrated 

and who have normal total serum IgE (Corrigan 2004). Some forms of late-onset 

asthma may have an occupational cause, secondary to work-place non-IgE 

sensitisation (Malo 2005). Asthma here often reverts if the offending exposure is 

abolished but prolonged exposure can lead to the establishment of a severe and 

unremitting disease phenotype even in the absence of any further occupational 

exposure. Whilst the IgE dependence of occupational asthma is not always shown, 

there is evidence that local airway IgE synthesis, possibly to self-antigen, may drive 
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the disease in intrinsic asthma (Ying et A 2001). Importantly the immunopathlogy of 

both typcs of asthma arc vcry similar to atopic asthma. 

1.2.4 Airway hyperresponsiveness (AHR) 

An individual with AHR demonstrates increased sensitivity of the airway, with 

narrowing occuring with low concentrations of stimulants when compared to normal 

individuals. The airway in asthma will narrow more than the normal airway can be 

induced to narrow even at the highest amounts of the stimulus. This tendency for 

excessive airway contraction is termed maximal airway narrowing. Whilst the 

increased airway sensitivity leads to troublesome everyday symptoms such as cough 

and chest tightness to what may be sometimes trivial stimuli such as tobacco smoke 

and perfumes, it is the tendency to excessive airway narrowing that will lead to severe 

life threatening deterioration and sometimes asthma death 

The exact mechanisms that lead to AHR remain undefined (Cockcroft & Davis 2006). 

Most asthmatics demonstrate baseline AHR that is relatively constant. Superimposed 

on this is a more variable or episodic component of AER, that can be induced in 

response to triggers such as allergen or infection that is associated with an influx of 

inflammatory cells. It is therefore possible that there are probably two separate AHR 

components, each with different mechanisms of development, which summate for the 

development of the asthma phenotype. Currently, much of the evidence relating to the 

pathogenesis of AHR remains circumstantial. It is suggested that the episodic and 

variable component of AHR is related to acute airway inflammatory events in 

response to disease triggers. It is likely that the symptoms in patients with mild and 

episodic asthma are a result of this variable component of AHR. More severe disease 

is associated with more persistent AHR that is increasingly refractory to anti- 

inflammatory therapy, suggesting non-inflammatory pathways may be implicated, 

possibly pathways related to airway remodelling. Such a line of thinking may explain 

why corticosteroid therapy is effective in reducing inflammation and controlling 

symptoms in the majority of mild to moderate asthmatics, yet AHR is not completely 

abolished despite reductions in cellular inflammation (Lundgren et A 1988; 

Duddridge et A 1993; Adelroth et aL 1990). 
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1.2.5 Airway obstruction (FEV, ) 

Variation in the forced expiratory volume in I second (FEVI) is routinely used in the 

clinical setting to diagnose and monitor asthma, and to subsequently follow asthma 

control. Measurement is made by taking a deep breath to maximally fill the lungs 

(total lung capacity or TLC) and exhaling as forcefully as possible into a spirometer. 

The total volume of air expired in the I" second of expiration is taken as measure of 

FEV, and is an important measure of any airway obstruction. Reversibility in FEV, in 

response to short-acting P2 agonists is often used in the diagnosis of the asthma 

phenotype. 

1.3 Model of provoked asthma 

1.3.1 Introduction 
Allergen exposure in atopic asthma is associated with an inflammatory cell influx 

alongside an increase in AHR and bronchial obstruction (Cockcroft et aL 1977). The 

ability to provoke the disease with allergen inhalation in a controlled setting has been 

used as a model of the disease and as a result the IgE-mediated allergic asthma 

phenotype is the most frequently studied. Inhaled allergen challenge of sensitized 

atopic asthmatics can mimic the exacerbation of natural disease with its associated 

and sustained increases in AHR. This model is a valuable means by which 

inflammation and repair processes associated with AHR at baseline and further 

increases in AHR that can occur with disease provocation can be studied. 

1.3.2 Principles of smooth muscle contraction 

From first principles, the load that the muscle can overcome will determine the degree 

of shortening it can undergo. Tissue components account for the loads that limit 

airway smooth muscle (ASM) shortening. The contractile elements of the muscle cell 

must pull against the tethering loads (termed series elastic components or SECs) at the 

end of the muscle in order for it to shorten. The SEC can be depicted as a spring. If 

the spring is stiff (i. e tissue with high elasticity), then the degree of shortening in the 

ASM cell is limited. If the elasticity is low then the muscle will easily shorten to an 

exaggerated degree. In the airways the SECs is primarily the cartilage and in small 

airways the parenchymal tissue interaction. Importantly there is evidence for 

increased elastin degradation in asthma (Bousquet et aL 1992). However the 

contractile elements of the muscle cell are prevented from contraction by the presence 

of ECM elements that run parallel to the smooth muscle cells (termed parallel elastic 
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components or PECs) and prevent excessive ASM shortening. Alterations in PECs 

may allow excessive ASM shortening in asthma. 

1.3.3 Quantirication of AHR 

The principle involved in measuring AHR is to administer a stimulus at precisely 

determined successive doses measuring the response at each step. Thus a dose- 

response relationship is obtained and the response can be quantified. A wide range of 

both pharmacological and physical stimuli are available and can be divided into direct 

and indirectly acting agents. Direct acting agents (i. e methacholine and histamine) 

induce bronchoconstriction by affecting the smooth muscle cells in contrast to indirect 

agents such as adenosine affect inflammatory mediator release and neural pathways 

which then act on smooth muscle secondarily inducing bronchoconstriction. Exercise 

is a useful physical stimulus but here only a single stimulus can be administered on 

one occasion. Hyperventilation, cold air and osmotic hypertonic saline are other 

examples of physical stimulants. Given that 'naturally occurring' asthma is associated 

with indirectly acting triggers measuring AHR via indirect agent challenges may be 

more reflective of inflammatory cell induced AHR (van den et aL 2001). 

Measurement of AHR by direct acting agents such as methacholine or histamine may 

better relate to AHR generated as a result of ASM abnormalities, suggesting direct 

measures of AER reflect components of AHR related to airway structural change 

(Cockcroft & Davis 2006). 
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Figure 1.1 Ilustration of factors that influence airway smooth muscle contraction 
(adapted from Schellenberg R, Asthma and Rhinitis, Eds. Busse-Holgate) 

The figure illustrates a mechanical model of the factors that effect airway smooth muscle 
contraction. The contractile element (CE) will shorten only when it overcomes the different 

elastic loads conferred by the series elastic component (SECI) located outside the smooth 
muscle fibre. The parallel elastic elements (PECs) lie within the muscle tissue. PECs include 
both intracellular smooth muscle elements and extracellular matrix components. 
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1.3.4 Measurement of response 

Any measurement of the airway calibre such as the forced expiratory volume in one 

second (FEVO, peak expiratory flow (PEF), airway resistance (Raw) or specific 

airway conductance (sGaw) may be used. Change in FEV, to an inhaled substance is 

the most reproducible measurement of AHR and is thus the most commonly used. It is 

not as sensitive for example as measuring the sGaw (specific airways conductance) 

and in studies where a weak stimulus is used measurements of AHR using more 

sensitive parameters may be used. 

1.3.5 Quantirication of results 
The degree of AHR can be expressed in a number of ways. With agents where dose- 

response curves can be constructed AHR is quantified according to different 

properties of the curve: threshold, slope at one point or overall slope. The amount 

(dose or concentration) of the stimulus that causes a pre-set change in the airway 

parameter is most commonly used. This is most frequently expressed as the 

provocative concentration (PC) which produces a fall in the FEV, of 20% from the 

baseline FEVI value (known as the PC20). The PC20 represents a measure of airway 

responsiveness. PC20 should be repeatable within one doubling concentration of the 

bronchoconstriction inducing agent. 

1.3.6 Specific airway allergen challenges 

Histamine and methacholine are the archetypal direct agents and are the two most 

common constrictor stimuli that have been studied on a population basis. Although 

the responses to equivalent concentrations of drugs are similar, methacholine has the 

advantage in that it can be increased to higher concentrations (256 mg/ml) without 

encountering such marked systemic side-effects. The methacholine challenge is 

probably the method of choice for population studies, though there are practical 

problems obtaining the pure agent for human administration. Methacholine is a 

synthetic cholinergic agonist and bronchoconstriction occurs as a direct result of 

agonist activity on the M3 receptors of airway smooth muscle (Roffel et A 1990). 

1.3.7 Safety of allergen challenge and methacholine sensitivity testing 

Before any commencement the subject must be adequately informed and the testing 

conducted in suitable quiet surroundings with trained personal, medical supervision 

and resuscitation facilities available. Adequate facilities for treatment of acute severe 
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asthma should be available and the subject should be physically and mentally capable 

of co-operating 

1.3.8 Inhaled allergen challenge 

Whole allergen challenge in sensitized asthmatics leads to the immediate or early 

asthmatic response (EAR) which is maximal within 30 minutes and resolves between 

1 and 3 hours. Up to 50% of these individuals will experience a second delayed phase 

of bronchoconstriction termed the late asthmatic reaction (LAR) (Cockcroft et aL 

1977). This response is defined as a fall in the FEVI of 15% from the baseline value 

and is maximal 6-12 hours after allergen challenge (Dorman et aL 2004) The 

development of a either a single early response (SER) alone or both SER and a LAR 

(dual asthmatic response or DAR) is generally consistent although it is believed that 

the development of the LAR is related to the dose of allergen given (1hre et al. 1988) 

and possibly baseline AJHR in an individual. Traditionally the LAR has been 

considered an all or nothing response using an arbitrarily defined definition of a fall in 

FEVI by 15% from the baseline value 3-6 hours post-allergen. In the DAR group, 

allergen-induced increased AHR is sustained for days and weeks (Cockcroft et al. 

1977). 

The EAR is thought be IgE and mast cell (MC) dependent, with allergen cross-linking 

IgE antibodies bound to the MC leading to MC degranulation with the release of 

histamine and cysteinyl leukotrienes that have direct stimulatory effect on airway 

smooth muscle. Leukotriencs are derived from arachidonic acid as a result of the 

action of phospholipase A2 (PLA2) on membrane phospholipids. Arachidonic acid is 

metabolised either via the cyclooxygenase pathway to produce prostaglandins, 

prostacyclin (PGI2) and thromboxane A2 (TxA2) or via the lipooxygenase pathway to 

produce leukotriene LTB4 or the cysteinyl leukotrienes LTC4. LTD4 and LTE4 

(Dahlen et aL 1980). LTC4 and LTD4 are potent constrictors of airway smooth muscle 

and lead to increased microvascular permeability. At a mucosal level, the fall in 

FEVi is associated with vascular dilatation and leakage, with activation of cough 

neural pathways and smooth muscle constriction. In the skin the early reaction is seen 

as the classical wheal and flare reaction. The cause and significance of the LAR and 

associated increased AHR is less certain but is associated with an influx of 

inflammatory cells, particularly eosinophils and Th2 T cells (Robinson et aL 1993). 

The IgE-mast cell axis may still have a role in that the skin late phase response (LPR) 
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can be induced by the injection of either IgE or anti-IgE (Dolovich et aL 1973; Solley 

et aL 1976) and more recent clinical studies with therapeutic doses of anti-IgE was 

associated with decreased LPR (Ong et A 2005). 

1.3.9 A general model of allergic inflammation 

A schematic representation of the immunological events that underlie the allergen- 

challenge model of atopic asthma is illustrated in Figure 1.2. In this model of disease 

allergen specific IgE binds to cells expressing both the high affinity (mast cells, 

basophils) and low affinity IgE receptor (B cells, monocytes and T cells). With such 

IgE-receptor association these cells are now sensitised for activation on encountering 

specific allergen. Inflammation can be viewed as the response of tissue to injury. The 

aim of this inflammatory response is to repair the injury. Acute inflammatory 

reactions are characterised by an influx of leukocytes and changes in the calibre and 

permeability of the vasculature leading to tissue oedema. Allergic inflammation is 

initiated by allergen binding to the IgE on the surface of mast cells or basophils (and 

possibly other cell types) as well as allergen trapping and focussing by antigen 

presenting cells leading to CD4+ T cell activation generating a Th2 pattern of 

cytokines (IL-4, IL-5, IL-9 and IL-13). A complex inflammatory cascade leading to 

eosinophilic and other inflammatory cell infiltration, elevated serum IgE levels and 

mucus hypersecretion now occurs. 
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Figure 1.2: Illustration of the immunological events that underly the allergen 
challenge model of allergic inflammation. 

Allergen impaction of the mucosal surface leads to its solubilisation and diffusion to 
sites of mast cell (MC) residence where cross-linking of two or more high affinity 
(FcE; Rl) IgE receptors lead to MC activation, subsequent degranulation and release of 
mediators such as histamine and leukotrienes that induce bronchocon strict ion that 
characterises the immediate early asthmatic response. 

2. Antigen presenting cells (APQ also take up allergen and present processed allergen 
peptide in the context of MHC Class 11 to naYve T cells which undergo activation 
leading to the release of Th2 cytokines. IL-5 in particular is essential Ior the 
maturation, release and trafficking of eosinophils from the bone marrow. 

3. intense cellular infiltration characterises the late asthmatic response where 
inflammatory mediator release is associated with mucus hypersecretion (IL-13), 

vascular oedema and leakage and airway smooth muscle constriction. 
4. Airway obstruction (as defined by a fall in the FEVI) and increased AHR are 

considered a physiological consequence of this cellular recruitment and activation. 
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1.4 Inflammation and airway hyperresponsiveness 

1.4.1 Introduction 
Atopy is one of the strongest risk factors for the development of asthma. Nearly 50% 

of the population are atopic as shown by positive skin prick tests (SPT) to common 

environmental allergens. Only 10% of these will develop asthma as evidenced by the 

development of AHR (Lau et al. 2000). The inheritance of AHR is independent of 

atopy (Townley et al. 1986) and intrinsic asthmatics are by definition non-atopic. The 

development of the asthma phenotype appears to require a genetic susceptibility to 

AHR and an inappropriate response to environmental allergens. 

Much of the relationship between AHR and inflammation has arisen out of 

observations in allergen-induced IgE-mediated asthma. Initial research was focused 

on the measurement of AHR with immunological studies restricted to cells obtained 

from blood or post-mortem. specimens. Allergen challenge was shown to be 

associated with the observation of increased AER (Cockcroft et aL 1977), supporting 

the earlier observations of natural disease exacerbations by environmental triggers 

(ALTOUNYAN 1964). The first report of fibreoptic bronchoscopy (FOB) with 
bronchoalveolar lavage (BAL) in human volunteers was in 1974 (Reynolds & 

Newball 1974) and the first study of volunteers with asthma involving bronchial 

biopsy (BB) was in 1977 (Molina et aL 1977) The establishment of bronchoscopy 

thus brought about the capacity to sample directly the airways of patients with asthma 

and therefore the systematic investigation of the pathological basis of asthma. Several 

subsequent studies have demonstrated the coexistence of allergen-induced AHR with 
increases in cellular inflammation (De Monchy et aL 1985; Metzger et aL 1986; 

Gauvreau et aL 1999). The focus of much of asthma research has been to explain in 

causal terms how the presence and functional activation of inflammatory cells lead to 

AHR that manifests as sensitivity to non-specific irritants and variable airflow 

obstruction leading to episodic breathlessness. Causality can be implied from the co- 

existence of AHR alongside inflammation. Theoretically at least inflammation 

induced swelling of the airway wall internal to the ASM, as a result of vascular 
distension from increased blood flow and inflammatory oedema, will amplify the 

effect of a given amount of ASM contraction. Also any peri-airway inflammation may 
increase the external airway diameter leading leading to less tension in the 

surrounding airway attachements. This will impair the parenchymal tissue with 
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attachments to the small airways in particular from restraining excessive airway 

contraction. 

Many studies have failed to show a close correlation between indices of inflammation 

such as cell counts and AHR (Crimi et A 1998). This maybe a reflection of the 

phenotypic complexity of patients in terms of clinical and physiological features 

reflecting a need to relate specific phenotypes to specific inflammatory patterns. Most 

studies have been cross-sectional and there is a need for longitudinal studies where 
inflammatory events can be related to symptoms, lung function and AHR over time. 

At present, despite detailed insight into cellular recruitment, the precise mechanisms 
by which cellular inflammation leads to allergen-induced AHR is not known. 

1.4.2 Mast celIs 
Mast cells (MC) are critical effector cells that underlie the immediate hypersensitivity 

reaction in allergic inflammation. The mast cell surface is sensitised with allergen 

specific IgE via the high affinity FccRI receptor. Cross-linking of IgE, bound to mast 

cells via FccRI, leads to non-cytotoxic energy-dependent degranulation. This leads to 

release of preformed granule mediators such as histamine as well as membrane- 

derived lipid mediators. Cytokines, chernokines and growth factors are also secreted. 

Mast cells are classified into two principal subgroups on the basis of distinct protease 

expression patterns. The MCTc group express both tryptase and chymase (as well as 

carboxypeptidase and cathepsin G-like protease); the MCT group express only 

tryptase. Although MCT group predominate in the lung, mast cells that specifically 

infiltrate ASM are of the connective tissue MCTC type (Brightling et aL 2002). 

Tryptase is an important ASM mitogen and may contribute to the increased ASM 

mass via both hypertrophy and hyperplasia. MCs are a significant source of Th2 

cytokines and growth factors with important contributions to tissue eosinophilia (IL- 

5), fibrosis (selected TGF-P superfamily ligands) and B cell IgE synthesis via IL-4 

and IL-13 (Levi-Schaffer & Wcg 1997; Smith & Levi-Schaffer 2000). Whilst normal 

MCTc do not express IL-5, they are an important source of IL-4 and IL-13 (Brightling 

et aL 2003b). 

The contribution of MCs to AER is suggested by the ability of either IgE or anti-IgE 
injection to induce the skin LPR (Dolovich et aL 1973; Solley et aL 1976) and inhaled 

polyclonal IgE, a non-specific MC activator, to induce the LAR (Kirby et aL 1986). 
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Recent studies targeting a neutralising anti-IgE antibody in atopic asthma demonstrate 

a reduction in AHR as measured by the indirect agent adenosine-5-monophosphate 

which leads to bronchoconstriction via A2B receptor activation on MCs. This 

reduction in AHR was in association with reduction of cellular airway inflammation. 

No reduction in AHR measured in terms of methacholine direct challenge testing was 

seen supporting the concept that basal AHR may be unrelated to cellular inflammation 

(Djukanovic et aL 2004). The most convincing support for MCs in the genereation of 
AHR is provided by the finding of MC infiltration of ASM in asthmatic airways as 
the only distinguishing feature from eosinophilic bronchitis (Brightling et aL 2002). 

1.4.3 Dendritic celIs 
The microenvironment of the lung is ideally adapted to deal with the high quantities 

of exogenous material that is deposited on the mucosal surface during respiration. In 

normal airways the epithelium is a tightly sealed layer. The mucosal dendritic cell 
(DC), a key cell for antigen uptake, is located immediately beneath the basement 

membrane. The DCs have long arm-like processes that can reach across the tight 
junctions and into the airway lumen to reach antigen. These DCs now traffic into the 
draining lymph nodes where na1ve and memory T cell populations are located. 

Activated antigen-specific T cells leave the lymph node to re-circulate in the 

periphery or remain in the lymph node to interact with antigen-specific B cclls, 
thereby regulating antibody production (Lambrecht & Hammad 2003). Inhaled 

allergen challenge in asthma is associated with a rapid fall in circulating myeloid DCs 

(Upham et aL 2002) suggesting tissue recruitment. In a murine model of allergen 
induced AHR, depletion of CD II C+ DCs resulted in failure of CD4+ Th2 production 

of IL-4, IL-5 and IL-13 alongside diminished eosinophilic inflammation, goblet cell 
hypertrophy and AHR (van Rijt et al. 2005). 

1.4.4 Macrophages 

In both stable and clinically active asthma macrophages (Mo) are the most abundant 

cells in both the distal alveolar spaces and the conducting airways. Allergen challenge 
is associated with an increased number of Mo suggesting that there is increased 

recruitment of Mo into the airway during the late asthmatic response (Chanez et A 

1991). Mo here demonstrate an activated phenotype (Gosset et aL 1991). Mo display 

surface low affinity ISE receptors (FccRII or CD23) which can bind antigen via ISE 

and become activated for pro-inflammatory function (Melewicz et aL 1982). The 
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expression of the low affinity IgE receptor is around 80% on Mo from asthmatics 

versus 8-20% in normals (Melewicz et A 198 1). Expression is further enhanced after 

allergen challenge (Carroll el A 1985). In response to activation Mo are known to 

secrete a wide variety of mediators such as LTC4 (Rankin et aL 1982) and LTB4 

(Damon et A 1989), growth factors such as transforming growth factor-beta (TGF-0) 

(Vignola et A 1996) and the important cytokines IL-1 (lymphocyte activation) 

(Borish et aL 1992), IL-4 (Pouliot et A 2005), GM-CSF (Howell et aL 1989) as well 

as IL-6 and TNF-a (Gosset et aL 1991). In particular IL-4 and GM-CSF will 

contribute to IgE production and eosinophilia whilst growth factors will play an 

essential role in Mo driven tissue repair and fibrosis. 

1.4.5 T cells 

The T cell hypothesis in asthma, particularly chronic asthma, arises from the concept 

that the disease is both sustained and propagated by the persistence of a specialised 

subset of chronically activated T memory cells sensistised against an array of antigens 

(allergens, microbes, occupational agents) which traffic into the lung in response 

appropriate antigen exposure. Immunohistochemical evaluation of bronchial biopsy 

studies from asthmatics have shown increased numbers of activated (CD25+) T cells 

in the mucosa (Azzawi et al. 1990) that correlate with the numbers of activated 

eosinophils and AER (Bradley et A 1991). Interestingly allergen-peptide challenge 

studies confirm that T cell responses can orchestrate both the initiation and 

propagation of the LPR in asthma (Larche et A 2003). Such responses are in the 

absence of IgE mediated MC activation and degranulation (Ali et A 2004). 

originating in the thymus, T cells migrate into lymphoid tissue before returning into 

the blood steam, unless encountering antigen. Specific antigen recognition is via the 

surface T cell receptor (TCR). An antigen must first be processed by an antigen 

presenting cell and presented in the context of a major histocompatibility molecule 
(MHC). T cells fall into two classes with different functional characteristics on the 

basis of expression of co-receptors that interact with MHC molecules. CD8+ cells 

recognise MHC Class I molecules whilst CD4 cells bind MHC Class II molecules. 

CD4+ cells are key cells that drive the inflammatory component of asthma. CD4+ cells 

can be further subdivided according to their cytokine profiles and chemokine 

receptors into Thl and Th2 subsets. Thl cells are characterised by y-interferon (IFN) 

expression whilst Th2 cells express IL-4, IL-5, IL-9 and IL-13 (Larche et al. 2003). 
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Asthmatics have increased Th2 cytokine profiles compared to normal individuals and 

approximately 90% of the inflammatory cells expressing the Th2 cytokines IL-4 and 
IL-5 mRNA were activated T cells (Robinson et aL 1992). AHR correlated with the 

numbers of BAL cells expressing IL-4 and IL-5 but not y-IFN. Allergen challenge in 

asthma is associated with activated T cell recruitment with induction of IL-5 

expression (Bentley et aL 1993). 

The working hypothesis of how T cells contribute to at least acute increases in AHR, 

for example during exacerbations, has been based on T cell regulated (via IL-4) IgE 

synthesis and the recruitment and activation of inflammatory cells. The contribution 

of T cells to more persistent or basal AHR may be through direct interaction with 

structural cells. Although direct T cell-airway smooth muscle interaction has not been 

demonstrated (Brightling et aL 2002) the Th2 cytokines IL-5 and IL-13 can enhance 
ASM contractility (Hakonarson et aL 1999; Laporte et al. 2001). 

1.4.6 Th2 cytokines 

Th2 cytokine dominated inflammation is a consistent finding of the asthma phenotype 

and there is continued debate on the role of Th2-mediated inflammation, particularly 

eosinophil infiltration, in relation to the pathogenesis of AHR. A single dose of a 

chimeric monoclonal anti-CD4 antibody showed significant clinical efficacy in severe 

chronic steroid-dependent asthma, supporting a role for T cell mediated pathways in 

asthma (Kon et aL 1998). Knocking out Th. 2 mediated inflammation via either 

blocking antibodies or knockout mice to Th2 cytokines followed by allergen 

challenge effectively abrogates inflammation and AHR (Gavett et A 1994), whereas 

transfer of Th2 cells directly induces airway inflammation in nsfve mice after allergen 

challenge (Cohn et A 1997). The contribution of Th2 cytokines to AHR remain an 

important focus of research. 

IL-4 is important in the polarisation of nalfve T cells into a Th2 phenotype and is a key 

cytokine responsible for B cell immunoglobulin switching for IgE synthesis. Clinical 

studies using inhaled rhIL-4 have been associated with increased sputum eosinophilia 

alongside increases in AHR at both 24 hours and 48 hours after inhalation (Shi et al. 
1998a). Furthermore IL-4 knockout mice demonstrate reduced IgE, IL-5 production 

and cellular inflammation (Coyle et aL 1995). However IL-4 is not apparently 

obligatory for the development of the asthma phenotype. Absence of IL-4 in murine 
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models of allergen challenge confirmed the induction and persistence of AHR in the 

absence of increased airway inflammation (Hogan et aL 1998; Cohn et A 1998). The 

finding that the IL-4 receptor IL-4R (Gavett et aL 1997) and its signalling 

transcription factor STAT-6 (signal transducer and activator of transcription 6) 

(Kuperman et aL 1998) were essential for the development of the asthma phenotype 

suggested that another ligand that can signal through the same receptor and signalling 

cascade must exist. The structural similarity of IL-13 to IL-4 suggested that IL-13 

may be important in asthma pathogenesis. The blockade of IL- 13 by administration of 

a soluble form of the IL- I 3R chain that binds only IL- 13 was able to reverse AHR and 

mucus production (Wills-Karp et aL 1998; Grunig et aL 1998) whilst IL-13 

administration recapitulates AHR, eosinophilic inflammation, mucus cell hyperplasia 

and mucus secretion (Zhu et aL 1999). IL-13 deficient mice do not develop AHR 

despite sustained cellular inflammation 

inhibited the development of AHR 

(Walter et aL 2001). IL-13 blockade also 

without any effect on inflammatory cell 

recruitment (Wills-Karp et aL 1998). 

The exact mechanism by which IL-13 induces AHR is not certain. IL-13 can induce 

an array of chemokines related to T cell and eosinophil recruitment. Chemokines are 

chemoattractant cytokines selectively produced at sites of inflammation and are 

subdivided into families based on the position of cysteine residues such as C-C, C-X- 

C and CX3C. where X is any amino-acid. Eotaxin (a C-C chemokine) and the 

homologues eotaxin 2 and 3 display very high selectivity for eosinophils exclusively 

through the chemokine receptor CCR3 (Jose et A 1994). Chemokines are produced 

by a range of cells in response to inflammatory stimuli and they primarily serve as 

chemoattractants. IL-13 induces eotaxin production from airway epithelial cells and 

smooth muscle (Lilly et al. 1997; Wenzel et aL 2002). Such structural cell activation 

may be relevant to the mechanism of sustained AHR in asthma and may provide an 

explanation as to how IL-13 can induce AHR in the absence of traditional effector 

cells such as B cells, mast cells and eosinophils (Yang et aL 2001). The role of IL-13 

in relation to airway remodelling and AHR is discussed in detail below. 

IL-5 is an essential cytokine for the terminal differentiation of committed eosinophil 

bone marrow precursors. In conjunction with eotaxin IL-5 supports eosinophil 

chernotaxis and together with IL-3 and GM-CSF supports eosinophil survival 

(Kariyawasam & Robinson 2006). IL-5 knock out mice (Kopf et al. 1996) fail to 
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develop eosinophilia in response to allergen and helminth infection (Takamoto et aL 

1997) whilst IL-5 over expression is associated with marked eosinophilia (Dent et aL 

1990). Airway allergen challenge is associated with increased production of IL-5 by T 

cells and eosinophils (Bentley et aL 2003). Time-course studies on the kinetics of IL- 

5 secreting T cells and mobilisation of eosinophils demonstrate a convincing 

relationship to increases in AHR (Gibson et A 1991). Inhaled IL-5 in a small study of 

eight asthmatics was associated with concomitant increases in sputum eosinophilia 

and AHR (Shi et al. 1998b). In animal studies anti-IL-5 administration was associated 

with attenuation of airway eosinophilia alongside A1HR (Foster et aL 1996). 

IL-9 can directly induce airway inflammation and AHR as evidenced by IL-9 over- 

expression in the lung, leading to eosinophilic infiltration together with the induction 

of AHR and collagen. production (Temann et al. 1998) whereas IL-9 blockade leads to 

attenuation of eosinophilia and AHR (Kung, et aL 2001). IL-25, a more recently 

discovered cytokine, is believed to augment Th2 responses through the amplification 

of Th2 cytokine production (Fort et A 2001). 

1.4.7 CD8 T cells 

Most cytotoxic T cells (Tc) express CD8 and destroy virus-infected cells. CD8 cells 

are also present in increased numbers in asthmatics (Robinson et aL 1992). CD8 cells 

are an important source of IL-5 and CD8 depletion is associated with the absence of 

cosinophilia and AHR in sensitised mice undergoing allergen challenge (Hamelmann 

et aL 1996). However, CD8 depletion prior to the sensitisation phase lead to enhanced 

Th2 responses suggesting that CD8 cells may actually have a protective role during 

allergen sensitisation (Stock et A 2004). 

1.4.8 Regulatory T cells 

There two major categories of T regulatory cells (T Regs). CD4+CD25+ are naturally 

occurring cells that are hypo-responsive to in-vitro activation and can suppress 

proliferation and cytokine production from CD25- T cells. Suppression is probably 

through cell-cell contact with CD25- cells but may also involve IL-10 and TGF-01 

secretion. The other set are IL-10 producing T cells, which must be induced, rather 

than occurring naturally. The exact role in asthma is uncertain but recent evidence 

suggest that their function maybe impaired in allergic disease (Ling et aL 2004). 
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1.4.9 Eosinophils 

The precise role of the eosinophil in asthma pathogenesis remains uncertain. 
Eosinophils circulate in an activated or primed state in asthma compared to 

eosinophils derived from healthy normal individuals (Hakansson et aL 1990). It has 

been shown in animal studies that the products released by eosinophils can promote 

some of the pathophysiological hallmarks of asthma such as AHR. Major basic 

protein (MBP) comprises 50% of the granule protein content of the cell and is 

localised to the electron dense core. Cytotoxicity is a characteristic of MBP (Gleich et 

aL 1979). Several pathophysiological features of asthma can be evaluated in the 

context of MBP. The in-vitro effects of MBP include epithelial detachment and ciliary 
dysfunction. The cytostimulatory properties of MBP on basophils, mast cells and 

neutrophils (O'Donnell et aL 1983; Moy et aL 1990), result in the propagation of the 

inflammatory response. MBP may also be associated with the development of AHR 

(Uchida et A 1993; Coyle et A 1994). Post mortern analysis of asthma death patients 

consistently show eosinophils and extracellular MBP associated with nerve fibres in 

the airway smooth muscle. Eosinophils undergo activation and degranulation in 

response to endogenous tachykinins released from sensory nerves. MBP binds to the 

M2 inhibitory muscarinic receptor on parasympathetic nerves leading to increased 

acetylcholine release with subsequent M3 receptor activation and hence 

bronchoconstriction (Fryer et A 1997). 

Primed eosinophils are a major source of cysteinyl leukotrienes (Cys LTs) and have 

been identified as the predominant cellular source of LTC4 in bronchial biopsies from 

asthmatic airway as shown by the co-localisation of LTC4 and eosinophil cell markers 

(Cowburn et aL 1998). LTC4 undergoes extracellular sequential enzymatic cleavage 

of glutamic acid and glycine from its sulphide chains to form the metabolites LTD4 

and LTE4 respectively. These products can elicit paracrine effects that result in mucus 

hypersecretion (Marom et aL 1982), AHR, oedema (Joris et aL 1987) and potent 

bronchoconstriction (Adelroth et aL 1986). Collectively these findings suggest that 

eosinophils may be the major pro-inflammatory effector cells in the pathogensesis of 

asthma. 

1.4.10 Neutrophils 

Neutrophils account for 50-70% of the total white blood cell population. Thcy 

originate from bone marrow myeloid precursor cells with a primary role in defence 
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against bacterial infection. They are one of the first cells recruited to the site of 
injured tissue, often in response to IL-8, tumour necrosis factor (TNF)-a and IL-1. 

The finding that markedly increased numbers of BAL ncutrophils were present in 

individuals with nocturnal asthma (Martin et aL 1991) and the observation of high 

numbers of neutrophils in rapidly fatal asthma (Sur et A 1993) suggested an 

important role for the cell in this disease. There is often airway neutrophil recruitment 

following allergen challenge (Metzger et A 1986). The mechanism by which 

neutrophilic inflammation may contribute to AHR is not currently known. Activated 

neutrophils have the capacity to release an array of inflammatory mediators (platelet 

activating factor, LTB4 and IL-8), free oxygen radicals and proteases that contribute 

to propagating and sustaining inflammation (Bousquet et al. 2000). 

1.4.11 Heterogeneity of cellular inflammation in asthma 

All cellular components of the airway contribute to the complex inflammatory profile 

in asthma. At present the contribution of different cell types to the clinical asthma 

phenotype remains an important area of research but there is increasing recognition of 

at least four distinct inflammatory phenotypes that is either predominantly 

eosinophilic, neutrophilic, mixed cellular or paucigranulocytic (Wenzel 2006; Green 

et al. 2007). 

Eosinophilic inflammation is the most characteristic cellular finding in the less severe 

forms of asthma. Although tissue eosinophilia correlates with the degree of AHR and 

is related to the late asthmatic response the relationship to asthma severity is weak 

(Wardlaw et aL 1988) (Green et aL 2002). It may be that it is the level of eosinophil 

activation that is important and this has not often been measured. However, studies so 

far with anti-IL-5 therapy in asthma have failed to demonstrate any reductions in 

AHR (Leckie et aL 2000; Flood-Page et al. 2003b) and are therefore further support 

for the apparent dissociation between AHR and eosinophlic inflammation. For 

example, treatment with anti-IL-5 monoclonal antibody failed to demonstrate any 

effect on AHR in asthmatic volunteers despite 55 % reduction in bronchial 

cosinophils (Flood-Page et al. 2003b). Until studies that can completely abolish 

airway eosinophilia are performed, the exact contribution of the eosinophil to AHR 

remains in doubt. Moreover cosinophils may be of importance in asthma exacerbation 

since asthmatics treated with glucocorticoids on the basis of airway eosinophilia 
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rather than lung function demonstrated reduced numbers of asthma exacerbations over 

the course of 12 months (Green et aL 2002). 

Several mouse models of allergen induced airway inflanu-nation demonstrate 

dissociation of AHR from inflammatory cells. For example in a chronic airway 

challenge model eosinophilic inflammation and airway remodelling persisted despite 

a fall in AHR to baseline values, whereas AHR was unaffected by eosinophil lineage 

ablation of eosinophils using GATA-1 knockout animals (McMillan & Lloyd 2004; 

Humbles et al. 2004). 

Approximately 10-20% of asthmatics demonstrate increased airway neutrophils in the 

absence of increased eosinophils. Several studies confirmed that in more severe 

asthma, importantly steroid dependent asthma (Green et aL 2003), high numbers of 

neutrophils are present in sputum, BAL and bronchial tissue (Wenzel et aL 1997). In 

general terms neutrophilic asthma is considered to demonstrate a more severe asthma 

phenotype that is often steroid refractory (Holgate & Polosa 2006). It is not certain to 

what extent steroid therapy may have contributed to the airway neutrophilia and until 

recently it was argued that the neutrophil may be more of a bystander cell. However 

findings from a recent study using an anti-TNF-cc antibody (etanercept) in 15 subjects 

with severe neutrophlic asthma showed reduction in neutrophils alongside statistically 

significant improvements in AHR (Howarth et al. 2005) suggesting that neutrophils 

may have important contributions to this more severe asthma phenotype. 

The asthma phenotype characterised by absence of both eosinophils and neutrophils is 

termed paucigranulocytic (Simpson et al. 2006) and these patients can have marked 

AHR. Studies in this particular group are lacking but would be important to evaluate 

the contribution of airway structural change to this phenotype. 

1.5 Airway remodelling 

1.5.1 introduction 

Asthma is also characterised by airway remodelling or structural changes. These 

include marked goblet cell, smooth muscle and fibroblast hyperplasia together with 

the recruitment and activation of myofibroblasts (Brewster et al. 1990). Increased 

deposition of collagens and other extracellular matrix proteins occur both in the 

lamina reticularis of the basement membrane (RBM) and throughout the bronchial 
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mucosa together with prominent airway angiogenesis. Major goals of research are the 

determination of not only the mechanisms that drive structural change but also the 

relationship of such change to altered airway function in asthma, particularly in 

relation to severe steroid-refractory asthma phenotypes. Whilst it is accepted that 

abnormal structure will contribute by the way of altered geometric effects and 

changes in tissue biomechanics to airway physiology, the exact clinical consequences 

of remodelling remain uncertain. There is heterogeneity of disease such that in a 

proportion of individuals remodelling processes contribute to excessive ECM 

deposition leading to airway stiffness that can counteract ASM contractility and 

support a more fixed obstruction phenotype. In another proportion ASM hypertrophy 

and hyperplasia will dominate contributing to marked increases in AHR. Fibroblast 

accumulation and airway smooth muscle hypertrophy have been identified as the only 

changes associated with asthma severity in humans (Benayoun et A 2003). 

1.5.2 Epithelium 

Probably the most important structural cell of the airway is the epithelial cell. The 

epithelium acts as a physical barrier between the external environment and the lung. 

The lung epithelium is continuously exposed to outside pollutants, allergen and 

microbes. It is able to sense envirom-nental signals and respond directly by modulating 
both the innate and adaptive immune system to recruit further defence mechanisms. 

Epithelial damage is a consistent feature of asthma and is present even in mild disease 

(Laitinen et aL 1985). Injury is visible as the selective loss of the columnar pseudo- 

stratified layer and clusters of such shed epithelium (termed creola bodies) is often 

observed in BAL fluid from asthmatics (Beasley et aL 1989). Airways biopsies may 

show denuded areas with only basal cells attached to the basement membrane. These 

changes can be related to the severity of asthma (Jeffery et aL 1989) and are not 

observed in chronic obstructive pulmonary disease (COPD). There are arguments that 

the injury is artefactual and maybe induced as a result of bronchoscopic sampling 

methods (Ordonez et aL 2000). The adhesion molecule CD44 (3v isoform) (Lackie et 

aL 1997) and epidermal growth factor receptor (EGFR) c-erh BI (Puddicombe et aL 

2000) is over-expressed in asthmatic epithelium. CD44 participates in epithelial repair 

by allowing epidermal growth factor (EGF) to be more effectively presented to its 

receptor. Tissue sampling injury would not induce the expression of CD44 and EGFR 
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suggesting that the epithelial injury process may have occurred in-vivo (Lackie et aL 

1997). The consensus is that the airway epithelium in asthma exists in a fragile state 

with easy detachment of columnar cells from their basal attachments. Loss of 

epithelial integrity has obvious airway functional consequences such as loss of the 

mucociliary escalator clearance of inhaled debris and disruption of the barrier 

function allowing environmental agents to penetrate the luminal surface. 

Equally and possibly more importantly, the epithelial phenotype changes to an 

immunologically active state that can actively participate and even direct 

inflammatory and remodelling events in the airway. In asthma the epithelium shows 

widespread evidence of continuous activation and epithelial stress as evidenced by 

markedly increased expression of transcription factors such as NFKP and heat shock 

protein-27 (a marker of oxidant stress) (Merendino et A 2002). The elevated 

expression of the cyclin dependent kinasc p2l 'f (an inhibitor of the cell cycle), 

(Puddicombe et A 2003) suggests that the epithlium. is attempting to repair itself 

A damaged epithelium may lead to heightened AHR as suggested by correlation with 

histamine PC20 (Jeffery et A 1989). The mechanism is possibly related to the release 

of bronchoactive mediators such as products of the cyclooxygenase and 

lipooxygenase pathway (Knight et aL 1995), the proinflammatory cytokines IL-6, IL- 

8, GM-CSF, and RANTES (regulated upon activation, normal T-cell expressed and 

secreted) (Cromwell et al. 1992; Davies et al. 1995) and the chemokine eotaxin (Lilly 

et al. 1997) leading to neutrophil, T cell and eosinophil recruitment. Epithelium is 

also an important source of growth factors (Zhang et al. 1999). Thus epithelial 

activation can lead to amplification of the inflammatory and remodelling processes 

that may contribute to the generation and maintenance of AHR. 

Increased expression of the EGFR with subsequent pro-fibrotic growth factor release 

typically occurs in response to injury and is a marker of active epithelial repair 

(Davies et aL 1999). In normal epithelium elevated EGFR expression is only observed 

in areas of structural damage. In asthma the expression is disease related and is seen 

in both damaged and morphologically undamaged epithelium and is indicative of 

diffuse epithelial injury. Under normal circumstances the epithelium is able to repair 

itself quickly but in asthma there is increasing evidence that this process is defective 

with prolonged activation and therefore signalling to the underlying mesenchymal 
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cells leading to myofibroblast transformation and activation. Evidence for defective 

epithelial repair exists in that markers of epithelial proliferation such as Ki67 and 
PCNA are markedly reduced from an early age (Demoly et aL 1994) whilst over- 

expression of p2l'f occurs (Puddicombe et aL 2003). Defective apoptosis has been 

shown by the increased expression of the anti-apoptotic proteins Bcl-2 and HSP-27 

(Druilhe et aL 1998). 

1.5.3 Mucus 

Electron micrographs demonstrate distinct electron-lucent acidic-mucin rich confluent 

granules that characterise goblet (mucus) cells in the epithelium. In the normal human 

trachea it is estimated that the mean density of surface mucus cells is between 6000- 

7000 cel, S/MM2. In response to environmental assault, infections and in disease states, 

including asthma, the mucus cells can undergo both hyperplasia and hypertrophy. 

Mucosal gland hypertrophy is an important feature of the remodelled airway 

(Ordonez et aL 2001). Mucus hypersecretion is an important characteristic of the 

asthma phe notype and contributes to the excessive mucus production associated with 

asthma death (Rubin et aL 200 1). 

1.5.4 Basement membrane 

Basement membrane thickening is a consistent finding in the asthmatic airway 

(Dunnill et aL 1969). The basement membrane (BM) is composed of an upper layer 

called the basal lamina (true basement membrane) consisting of predominantly Type 

IV collagen and Type V laminin (Paulsson 1992). These components are 

predominantly epithelial derived. The epithelium is attached to the lamina densa. 

Extending internally from the lamina densa is the lamina reticularis or reticular 

basement membrane (RBM), and it is predominantly derived from the layer of 

fibroblasts immediately below termed the attenuated fibroblast sheath (Paulsson 

1992). Thickening of the RBM is a characteristic early feature of asthma and has been 

demonstrated in children with difficult asthma between 6-16 years of age (Payne et aL 

2003). The lamina densa in asthma does not differ from that in normal airways. The 

lamina reticularis, however, is increased two to three fold in asthmatics from the 3-4 

pm thickness reported in normals (Roche et aL 1989). RBM thickening correlates 

with the number of subepithelial fibroblasts (Brewster et aL 1990), AHR (Boulet et al. 

1997) and may reflect the degree of airway thickening below the RBM (Kasahara et 

al. 2002). 
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The major composition of the RBM is Type III and Type V collagen together with 

fibronectin and tenascin (Roche et A 1989). The width of the lamina densa 

(approximately 80nm) is below the resolution of the light microscope and cannot be 

visualised by light microscopy (LM) without immunohistochemical staining. In 

contrast, the thicker RBM (approximately 4gm in normal adults) is visualised by LM. 

In addition to its role as anchorage for the epithelium, the BM provides an essential 

platform to allow epithclial and inflammatory cell migration via interaction of ECM 

components such as fibronectin and tenascin with cell surface integrins. The BM also 

provides an essential barrier that compartmentalises the epithelium from the 

underlying mesenchymal components. However, inflammatory cells can traffic via 

the BM into epithelium due to presence of pores that traverse the course of the BM. 

The pores are estimated to have a mean diameter of 1.76g, large enough for 

inflammatory cell traffic, and is represented with an average density of 737-863 min 2 

density (Howat et aL 200 1). 

1.5.5 Fibroblasts 

Fibroblasts are ubiquitous stromal cells with an important role in providing 

mechanical support for tissues via ECM production. Increased airway fibroblast 

numbers is a distinguishing feature of severe asthma (Benayoun et A 2003) and the 

biology of recruitment, survival and activation into the myofibroblast phenotype are 

important areas of focus. 

In the adult lung fibroblasts comprise one third of the total cell population and upon 

activation is a predominant source of ECM production. Fibroblasts are one of the 

largest cells in the body with individual cells estimated to be up to 10011m in length. 

The cells are morphologically distinct with an elongated spindle-like (stellate) shape 

with distinct cytoplasmic protrusions and invaginations that allow interaction with the 

surrounding ECK vasculature and neural structures. The most important activator of 

fibroblasts is the transforming growth factor (TGF)-superfamily (Zhang et aL 1999; 

Zhang & Phan 1999) although insulin-like growth factor 11, IL-4 and IL-13 also 

dernonstrate potent stimulation. Platelet derived growth factor (PDGF), connective 

tissue growth factor (CTGF, a member of the PDGF family) and TNF-cc all stimulate 

fibroblast activation and proliferation (Sasaki et aL 2000). 
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Fibroblasts display phenotypic plasticity and functional versatility depending on the 

anatomical region of residence (Schmitt-Graff et aL 1994). In the lung, the 

parenchymal population of fibroblasts reside predominantly in the interstitial space 

whilst the airway fibroblasts are seen beneath the basement membrane. The latter 

population is collectively termed the attenuated fibroblast sheath (see below) and is 

present in all animal species that have been examined (Brewster et aL 1990) 

Detailed review of the biology of myofibroblasts is provided by Desmouliere et aL 

2003. The myofibroblast cell phenotype is best characterised by the expression of the 

contractile protein typically found on vascular smooth muscle cells, alpha smooth 

muscle actin isoforrn (a-SMA). The transformation of fibroblasts to the active 

myofibroblast phenotype is an acute event in response to allergen in asthma and is 

characterised by expression of the isoforrn typical of smooth muscle in fibroblasts 

(Darby et aL 1990). Thus a-SMA expression is a valuable marker of remodelling 

events. 

Myofibroblasts were first identified by electron microscopy on the basis of 

morphology in wound granulation tissue (Gabbiani el al. 1971) and continue to be 

observed in tissue undergoing repair and remodelling, as well as normal tissues where 

mechanical force development is required. The elongated cells are considered as 

intermediate between the fibroblast and smooth muscle cell phenotype, as it retains 

the capacity to express smooth muscle contractile proteins such as desmin. TGF-01 is 

a potent inducer of myofibroblastic differentiation (Desmouliere et aL 1993) in the 

presence of the fibronectin ED-A splice variant (Serini et al. 1998). TGF-PI is also a 

potent stimulus for myofibroblast collagen production (McAnulty et aL 1991). Actin 

is one of the most conserved eukaryotic proteins in cells and expressed as six specific 

isoforms. Although the exact function of the different isoforms remain uncertain their 

expression can change within the same population of smooth muscle cells during 

embryogenesis, injury and disease states. In the process of myofibroblast 

differentiation fibroblasts initially adapt the proto-myofibroblast phenotype that only 

expresses the O-and y-cytoplasmic actins. Further differentiation is associated with ct- 

SMA expression and is considered the most reliable marker of the myoribroblast 

phenotype (Darby et aL 1990). 
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Mechanical stress can also induce cc-SMA expression (Hinz et A 2001). cc-SMA 

isoforin expression in the myofibroblast phenotype is associated with upregulation of 

the cells synthetic capacity and migratory potential (Hinz et aL 2001). The expression 

of a-SM actin is associated with increased contractile activity of cultured fibroblasts. 

cc-SMA is fundamental for force generation within the myofibroblast and subsequent 

transmission of this force to the ECM leading to tissue remodelling (Hinz et aL 2001). 

Mechanical tissue stress can lead to conformational changes in fibronectin. 

Fibroblasts can attach to fibronectin via the integrin 041 and syndecan-4 in a 

synergistic manner leading to actin stess fibre assembly and cell spreading (Midwood 

et aL 2006). The ends of actin stress fibres bind to actin-binding proteins such as 

vinculin and clustered integrins. Such focal adhesion domains are termed fibronexus 

junctions. The fibronexus is a distinctive feature for identifying myofibroblasts. In 

wound healing models wound closure is associated with the removal of 

myofibroblasts by apoptosis (Desmouliere et aL 1995). Reversal of myofibroblast 

phenotype in fibrotic disease states offers an important therapeutic target. 

1.5.6 The attenuated flbroblast sheath 

In 1990 a population of fibroblasts and myofibroblasts in the airways of normal and 

asthmatic individuals were described that resided in a subcpithelial distribution below 

the basement membrane (Brewster et aL 1990). This fibroblast sheath is found 

approximately 2gm below the basal lamina closely opposed to the lamina reticularis 

of the basement membrane (RBM). The cells are flat and stellate in shape with a thick 

nuclear region rich in endoplasmic reticulurn (ER). The fibroblast population in the 

lamina propria differ mainly in that they are fusiform in shape. The cells are seen to 

form a mesh-like network with multiple protrusions that interact with the lamina 

densa of the basement membrane. In the inactivated state the cells do not appear to 

display actin microfilaments. This attenuated fibroblast sheath extends from the larger 

divisions of the airway to the terminal divisions into the alveolar regional wall as the 

interstitial fibroblast population. 

1.5.7 Airway smooth muscle in asthma 

Airway smooth muscle (ASM) mass is increased in asthma and correlates with asthma 

severity (Benayoun et aL 2003). When the width or area of ASM is measured in 

transverse section of airways from post-mortem cases of fatal asthma, an average 

increase ranging from 50-100% is seen whilst in non-fatal cases the increase is 25- 
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55% compared with normal controls (Carroll et aL 1993). Whilst the exact pathways 

and mechanisms that lead to AHR remain uncertain the end result is the direct or 
indirect stimulation of ASM contraction. 

In biological systems smooth muscle (SM) lines hollow organs such as blood vessels 

and the airway. Morphologically smooth muscle cells appear as spindle-shaped cells 

2-5gm wide and 50-200pim in length. ASM is found at all levels of the bronchial tree 

from the trachea to the terminal bronchioles, arranged circumferentially around the 

airway to give the appearance of a descending spiral. The filament structure, in 

contrast to striated muscle, is less organised with no obvious sarcomeric structure 
(hence the name smooth). The contractile apparatus is composed of actin-containing 

thin filaments that project out and interact with myosin-containing thick filaments. 

Dense bodies contain the protein actinin and are functionally analogous to z-lines in 

striated muscle. They serve as anchors for the thin-filament actin. Intermediate 

filaments such as desmin and vimentin are cytoskeletal elements which provide a 

structural backbone against which contraction occurs. The sarcoplasmic reticulum is 

poorly developed in SM making SM more dependent on intra-cellular sources of 

calcium (in contrast to cardiac and skeletal muscle). Signalling cascades are initiated 

leading to force generation and cell shortening due to actin and myosin cross-bridge 

cycling. During contraction the smooth muscle cell shortens in length. Muscle force is 

generated by the interaction between thick and thin filaments which are free to 

interdigitate and slide past each other. The isometric force generated is proportional to 

the extent of overlap between the filaments. 

Many of the symptoms and disability in asthma can be explained on the basis of ASM 

shortening. Increased amounts of ASM will encroach upon luminal space with 

alteration of mucosal folding. The increased area of ASM seen in transverse section is 

probably a result of more smooth muscle cells (hyperplasia) that are increased in size 

(hypertrophy) which are pushed further apart as a result of the accumulation of 

excessive ECM. At present the mechanisms of excessive smooth muscle 

accumulation in asthma remains unknown although the commonly held theory at 

present is that cytokines and growth factors released as part of inflammatory 

processes will drive ASM accumulation and growth. In-vivo experiments confirm that 

ASM from patients with severe asthma demonstrate altered responses to contractile 
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and relaxant agents compared to normal ASM suggesting an intrinsic propensity to 

exaggerated AHR is present (An et aL 2006). 

Although there is some controversy as to the degree of ASM hypertrophy in asthma 
(Woodruff et aL 2004; Benayoun et aL 2003) it is agreed that hyperplasia accounts for 

the 50-83% increase in ASM in mild to moderate asthma. It has been demonstrated 

that asthmatic ASM has an increased propensity for proliferation in vitro versus ASM 

from normals. Again in-vitro studies have shown that altered proportions of ECM 

components can lead to an enhanced capacity of ASM to proliferate via an autocrine 

mechanism (Johnson et aL 2004) and ASM may have enhanced sensitivity to growth 

factors (Burgess et aL 2003). TGF-P Superfamily of ligands in particular have an 

important role in ASM proliferation and synthetic capacity (Black et aL 1996). In- 

vitro work suggests that inflammatory and ECM components can lead to marked 

functional plasticity of ASM in asthma leading to modulation of the cell into a 

contractile phenotype that can evolve further into supercontractile (Ma et aL 2002) 

and synthetic forms (Moir et aL 2003; Hirst et aL 2000). ASM cells have the synthetic 

capacity to contribute a significant proportion of pro-inflammatory cytokines and 

remodelling growth factors (Howarth et aL 2004). ASM cell adhesion receptor and 

costimulatory molecule expression allows the cell to directly response to the 

surrounding inflammatory milieu; the release of multiple cytokines, chemokines and 

growth factors, reviewed in detail in (Hirst 2003), in turn allow the cell to participate 

and maybe even direct several inflammatory and remodelling processes. Such 

contribution will be particularly relevant in asthma where the ASM mass is markedly 

increased to that of a normal airway (Carroll et aL 1993). ASM derived factors will 

act in both an autocrine and paracrine manner. Such findings have changed the 

impression of ASM as a passive bystander in asthma to an active immunomodulatory 

tissue that can both propagate and regulate mucosal inflammatory processes. 

1.5.8 Angiogenesis 

The airway vasculature, derived from the aorta, is a dense plexus of interconnecting 

vessels with branches that penetrate further into the deeper submucosa forming a 

secondary vascular complex with frequent anastomoses to the pulmonary circulation. 

In asthma, changes to the airway vasculature include increased numbers of vessels per 

unit area with increased vessel size, and associated vasodilation and leakage leading 

to mucosal oedema. Increased vascularity is present even in mild asymptomatic 
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asthma (Li & Wilson 1997). Capillary engorgement and oedema in animal models 
have shown to double the microvascular volume fraction of tissue leading to narrowed 

airway lumen and subsequent airflow resistance. The model by Moreno ct al of 

airway wall remodelling (Moreno et al. 1986) suggests that even small increases in 

airway thickness as a result of vascular engorgement and leakage will significantly 

contribute to the airway obstruction observed afler allergen challenge in asthma. 

Inflammatory cell infiltration, particularly eosinophils, is associated with increased 

vascularity (Salvato 2001). Vascularity correlates with asthma severity (Vrugt el al. 

2000) whilst inversely correlating with the degree of airway obstruction and AHR 

(Hoshino et al. 2001). Increased vascularity is a marked observation in airways of 

people who died from asthma (Dunnill 1960). The most important inducer of airway 

angiogenesis is vascular endothelial growth factor (VEGF) (Lee et al. 2004a) 

(discussed further under growth factors). 

1.5.9 Extracellular matrix 

The extracellular matrix (ECM) is a gel-like substance composed of a variety of 

polysaccharides, collagens and water that confer tensile strength yet with elasticity 

and compressibility. It is the relative proportions of these components that contribute 

to the physical properties of the airway. Further, the ECM has a pivotal role in 

regulating cellular function by acting as a substrate for cellular adhesion, migration, 
differentiation, proliferation and survival (Ingber et aL 1994) as well as a scaffold or 

structural support for cells. The ECM contributes to approximately one quarter of the 

dry weight of the lung. Both the quantity and composition of the airway wall ECM is 

altered in asthma. There is an excessive deposition of ECM components such as 

collagens and proteoglycans not only in the RBM and throughout the airway wall but 

also between the smooth muscle cells (Huang et aL 1999). 

Collagens 

The collagens are the most abundant proteins in the lung and their specific expression 

and location critically determine structure and function in the respiratory tract and any 

abnormal or dysregulated expression may contribute to abnormal biomcchanics and 

function of the airway. 

Collagen biology is reviewed in detail by Gelse et aL 2003. The characteristic 

structural feature of the collagen molecule is the right handed triple helix composed of 
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three a-chains. Transcription of the gene in the nucleus is followed by translation into 

pre-pro-a-chains which protrude into the lumen of the rough endoplasmic reticulurn 

(RER). The procollagen a-chains now undergo several post-translational modification 

stages that include hydroxylation of specific proline and lysine residues and 

glycosylation of hydroxylysine residues. The a-chains can now associate through the 

short non-helical regions of the collagen monomer (C-telopetides) which is rich in 

sulphydryl groups and allow covalent cross-linking and association into the triple 

helix which is propagated from the C-terminus to the N-terminus in a zipper-like 

fashion. 

The post-translational modifications allow intra-molecular hydrogen bond formation 

between the polypeptide chains that is essential for maintaining the stability of the 

triple helix structure. These procollagen molecules are now packaged within the Golgi 

apparatus into secretory vesicles and secreted out into the extracellular space. Here 

the procollagen is converted into collagen by removing the N- and C-propeptides by 

C_ and N-proteinases respectively. The triple-helical collagen molecule demonstrates 

a tendency to self-assemble into cross-bandcd fibrils. 

HSP-47 is a collagen-specific chaperone that binds to the procollagen, a-chain. IISP. 

47 is essential for the translocation of the procollagen into the RER and importantly 

directs the correct folding of the a-chains into triple helices (Satoh ct aL 1996; Nagata 

1998). HSP-47 is heat-inducible and resident in the cridoplasmic rcticulurn (ER). 

HSP-47 is rapidly up-rcgulatcd in response to TGF-P, (Yamamura & aL 1998). Both 

collagen and HSP-47 are always co-expressed and there is a marked up-rcgulation of 

HSP-47 in pulmonary, renal and liver fibrotic diseases. Cells that fail to express 

collagen do not express HSP-47. The association of HSP-47 to nascent Pro al(l) 

collagen occurs in the ER and dissociation in the cis-Golgi compartment. IISP-47 

serves as a molecular chaperone for collagen in order to prevent nascent collagen 

chains from fanning aggregates in the ER and undergoing intracellular degradation 

(Gelse et aL 2003). 

Fibril-forming collagens (FFCs) represent 90% of the total collagen. Type I collagen 

is the predominant collagen in tissue ECM and accounts for around 85% of the 

collagen produced by fibroblasts although epithelial, endothelial and smooth muscle 

cells and alveolar type II pneumocytes also contribute to collagen synthesis (Gelse et 
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aL 2003). Type I collagen is the major collagen of skin, tendons, interstitial 

connective tissue of viscera excluding the brain, hyaline cartilage and the vitreous 

body. 90% of bone mass is accounted for by Type I collagen. In the lung Type I 

collagen contributes to 60-70% of the collagen content and is the predominant 

collagen of airway walls, blood vessels, lung interstitium and alveolar septa. The 

structure of Type I collagen is considered unusual in that it is an asymmetric 

heterotrimer of two ccl(l) chains and a single cc2(l) chain that following secretion 

aggregate into large rod-like, semi-rigid fibrils that confer high tensile strength or 

rigidity to the airway. As with other fibrillar collagens, in its mature form Type I 

collagen consists of three domains: a short amino-terminal non-triple helical domain 

(N-telopeptide), the central triple helical collagenous domain, and the short carboxy- 

terminal non-triple helical domain (C-telopeptide). Type III collagen accounts for 

30% of the lung collagen and the relative proportion of Type III is relatively constant 

(Kirk et aL 1984; Kirk et aL 1984). Type III collagen is a more flexible molecule 

compared to Type I collagen. 

The precise location and proportions of different collagen types in tissues implies cell 

specific regulated gene expression. Regulation occurs at the both the level of 

transcription and translation. Given that Type I collagen has been the most 

extensively studied collagen the mechanisms of collagcn synthesis have focussed on 

its synthesis. The principles of processing, triple helix formation and secretion will 

most likely apply to other known collagens. 

Early studies confirmed that the thickened RBM in asthma is partially a result of 

excessive Type III and Type V collagen deposition with lesser amounts of Type I 

collagen (Wison & Li 1997). Thickening of the RBM is present in children with 

difficult asthma to the same extent as adults (Payne et al. 2003) and there is increasing 

evidence that remodelling occurs early in childhood and that it may even predate the 

onset of symptoms in some cases (Baldwin & Roche 2002). The clinical significance 

of this thickening remains controversial. Firstly, similar thickening is seen in EB 

suggesting no significant role for RBM thickening in AIIR (Brightling et aL 2003a). 

It has been argued also that a thickened stiff RBM will counteract excessive airway 

bronchoconstriction (Wiggs et aL 1997). It may be argued that the exact proportions 

of ECM may differ between the two leading to AIM in one and not the other. RBM 

thickness has been correlated overall airway thickness (Kasahara et al. 2002) as well 
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as to the amount of ASM in central airways (James et aL 2002). Several studies have 

however correlated the degree of thickening in the RBM to reduced airway 
distensibilty and increased airflow obstruction and thus asthma severity (Bento, & 

Hershenson 1998). 

Proteoglycans 

Proteoglycans (PGs) such as decorin, perlecan, dermatan sulphate, heparin sulphate 

and hyaluronan, are a diverse population of molecules which are present in abundance 

and their biology is reviewed in the stated review (Kresse & Schonherr 2001). They 

are large molecules consisting of multiple glycosaminoglycan (GAG) chains 
branching out from a linear protein core. PGs have the capacity to bind with water and 

thus contribute a gel-like viscosity to the ECM that has a cushion-like effect for cells. 
They also in participate in regulation of cell signalling through their ability to bind 

growth factors as well as chemokincs. Growth factors typically bind to the GAG chain 

of proteoglycans. Decorin especially binds to TGF-P, preventing TGF ligand 

activation (Redington et aL 1998). 

Both small proteoglycans such as lurnican and biglycan as well as large proteoglycans 

such as versican have been demonstrated to have increased deposition in asthma with 

significant correlation to AHR (Huang et aL 1999). Biglycan, versican, decorin and 
hyaluronan have all been shown to be prominent around ASM in lungs from post- 

mortem asthma deaths (Roberts 1995). Both hyaluronan and versican are localised 

around and between ASM cells (Roberts 1995) whilst decorin (important for binding 

and 'trapping' TGF) is found in abundance in areas with Type I collagen (Roberts 

1995). The osmotic properties of proteoglycans may alter airway fluid mechanics and 
by binding water lead to increased tissue swelling and hence increased airway and 

may also effect tissue compressibility as has been demonstrated in the mechanics of 

hyaline cartilage in joints. 

Tenascin 

Tenascins are a family of modular ECM proteins with complex interactions with cells 
leading to modulation of cell adhesion, migration and growth. Tenascin-C is the most 
important member of this group and its expression is highly regulated. Transient 

expression of tenascin during organogenesis is seen but little expression is seen in 

fully developed organs. However in pathological states such as inflammation, 
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infection and carcinogenesis rapid induction of expression occurs (Chiquet-Ehrismann 

& Chiquet 2003). Asthmatics at baseline express significantly more tenascin in the 

RBM of the airway compared to the normal airway where there is minimal or no 

expression of tenascin. Expression is associated with acute cellular inflammatory 

events (Kadalainen et aL 2003). Allergen-induced airway injury is associated with 

further up-regulation (Phipps et aL 2004a). Thus tenascin expression is an excellent 

ECM marker to study the relationship to inflammatory events. 

1.5.10 Matrix homeostasis 

A balance between production and degradation achieves the regulation of ECM 

turnover. ECM degradation is dependent on the family of proteinases termed matrix 

mctalloproteinases (MMPs). These zinc-dependent proteinases were initially 

identified in the involuting tails of tadpoles by their ability to degrade collagen 

(GROSS & LAPIERE 1962; GROSS 2004). On the basis of substrate specificity 

MMPs are broadly classified as collagenases (MMP-1, MMP-8 and MMP-13) which 
digest collagen, gelatinases (MMP-2 and MMP-9) which digest partially denatured 

collagen (gelatin), stromelysins (MMP-3, MMP- 10 and MMP- 11) which can degrade 

multiple ECM protein substrates and the elastases (MMP-7 and MMP-12). Other 

MMPs such as MMP-8 (neutrophil collagenase) and MMP-14 (membrane surface 

anchored) also exist. The potential of MMPs to cause significant host pathology 

necessitates their strict regulation. Rather than storing MMPs in cells and the ECM, 

active synthesis is undertaken in response to tissue injury (as after allergen challenge 
in asthma) and secreted as pro-enzymes that undergo proteolytic cleavage. The tissue 

inhibitors of metalloproteinases (TIMPs) serve to inhibit MMP activity by binding to 

MMPs in a 1: 1 manner, this exact balance being critical in determining the normal 

matrix turnover. An imbalance can lead to either excess degradation or accumulation 

of ECM. In asthma, both an excess of MMPS to TIMPs (Tanaka et aL 2000) and vice 

versa (Mautino et aL 1999) has been reported and such imbalance will contribute to 

dysregulated ECM turnover. 

An altered ECM has several functional implications for cellular inflammation such as 

alterations in cell-matrix binding affinity with subsequent effects on cell migration in 

addition to modulation of cytokine and growth factor storage and activation. It is 

therefore possible that ECM remodelling can contribute to the sustenance of the 

chronic inflammatory state that so far has defined the asthmatic phenotype. 
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Understanding the synthesis and regulation of ECM production in normal lung 

homeostasis and its alteration in disease states may allow more effective therapeutic 

intervention for fibrotic diseases 

1.6 Airway remodelling and clinical consequences 

1.6.1 Introduction 
The realisation that a purely inflammatory model does not explain all the features of 

asthma and steroid ineffectiveness in the severe end of the disease lead to 

consideration that airway remodelling may contribute significantly to symptoms and 
disease severity. Despite the change in research focus towards airway remodelling, 

currently there are several questions that remain unanswered. One of the most 

pressing questions is the clinical consequence of airway remodelling for the patients, 

particularly the effects on AHR and airway obstruction. In mild asthma, AER and 

reversible lung function are usually highly responsive to inhaled corticosteroids. In 

contrast, severity and chronicity of asthma is associated with a considerable spectrum 

of the disease phenotype. Here some patients demonstrate marked airway 
inflanu-nation whilst in others inflammation is less prominent but there are increases 

in airway smooth muscle associated with increased severity of AHR. Another 

proportion of patients demonstrate progressive and irreversible airway obstruction. 

1.6.2 Airway hyperresponsiveness (AHR) 

it is possible that airway structural change can contribute to AHR associated with 

asthma chronicity and severity. All three layers of the airway wall (adventitia, the 

inner wall comprising the lamina propria including the basement membrane and the 

smooth muscle layer) are thickened in asthma. In fatal asthma there is loss of elastin 
in the airway wall and adjacent parenchyma leading to a loss of airway alveolar 

attachments (Mauad et aL 2004). It can be predicted that adventitial thickening and 

loss of airway-alveolar attachments can potentially uncouple the ASM from the 

surrounding lung parenchyma so that the parenchymal tethering that prevents the 

ASM from excessive shortening is lost and the airway is more liable to collapse. An 

increase in the airway wall thickness internal to the smooth muscle layer will amplify 

the airway narrowing at the time of ASM contraction. Mathematical modelling 

predicts that airways with increased smooth muscle narrow to a much greater extent 

than airways with less smooth muscle volume for a given degree of circumferential 

smooth muscle shortening (Moreno et aL 1986). This would be in keeping with 
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clinical findings that ASM mass is the only structural feature that distinguishes severe 

asthma from moderate disease (Benayoun et A 2003). Greater airway smooth muscle 

mass will not only lead to an excessive degree of muscle shortening but also greater 
force generation leading to a disproportionate reduction in airway patency for a given 
degree of ASM contraction. ASM has been found to encroach onto the RBM and 

epithelium in severe asthma (Madison 2003), so that even minor contraction will 

affect airway narrowing. Such findings may explain the persistent AHR seen in 

asthma under basal conditions. It is predicted on basis of in-vitro studies that in-vivo 

dynamic changes in ECM will also affect basal AHR in asthma through alterations in 

ASM phenotype and contractility (Black et A 2003; Black et aL 2001). The acute 
increases in AHR seen in response to allergen accompanied by eosinophil, T cell, 

macrophage and neutrophil infiltration together with the up-regulation of Th2 

cytokines thereby implies that AHR in this setting is at least partially dependant on 
inflammatory events. It is probable therefore that there are two different components 

to AHR each with a distinctly different mechanism of activation and sustenance. It is 

possible that each component of ATIR will require a separate therapeutic strategy. 

1.6.3 Airway obstruction 
By definition one of the clinical features of asthma is reversible airway obstruction. 
Unlike COPD, asthma is not usually associated with a rapid decline in FEVI. 

However, a significant proportion of asthmatics demonstrate rapid rate of decline in 

lung function and can proceed to fixed airway obstruction (Ulrik & Backer 1999; 

Vonk et aL 2003; Bumbacea et aL 2004; Lange et aL 1998) which may result from 

progressive airway remodelling. Traditionally airway remodelling has been 

considered to represent a chronic repair process initiated in response to inflammatory 

processes with clinical consequences related to the time course of the disease. With 

the establishment of longitudinal studies of asthma much of these views are now 

changing. 

In an Australian cohort, AHR in newborn asymptomatic children was an independent 

risk-factor for the development of asthma and this was not related to atopic status 
(Palmer el aL 2001). In a proportion of this group AHR was fully established by the 

age of 6 months. The presence of this early AHR identified a subgroup with increased 

risk of asthma and lower FEVI at 6 years. Such studies suggest an inherited trait for 

airway dysfunction and susceptibility to tissue injury and abnormal tissue repair. This 
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concept of tissue susceptibility and abnormal repair may explain the association of 

early AHR with abnormal lung function and airway structural change. RBM 

thickening is present in childhood asthma to the same degree in adult asthma (Payne 

et aL 2003), and there no convincing relationship of asthma duration to disease 

severity or lung function loss (Jenkins et al. 2003). The finding of RBM thickening in 

children before disease manifestation maybe an indication that tissue remodelling is 

present in the deeper submucosa and may suggest that structural change contributes 

even at this early stage to AHR. Tissue repair will occur in response tissue injury, as 

in response to environmental insults such as pollution and infection. 

it appears that much of the loss of lung function occurs early on in the disease. In the 

Tuscon study, it was the children who were persistent wheezers during the first 3 

years of life that demonstrated the lowest levels of lung function in subsequent years 

suggesting that structural change is established early on in the disease (Taussig el aL 

2003). In a landmark longitudinal study of self-declared asthmatics, the rate of decline 

in FEVi were two-fold greater in the asthma cohort (even more so in the group that 

smoked) compared to the normal group (Lange el aL 1998). Data from the first five 

years of the study confirmed that the decline in FEVI was more marked in people who 

acquired asthma in that period rather than in individuals with long-term asthma (Ulrik 

& Lange 1994). If the loss in pulmonary capacity seen in adult asthmatics with long- 

term asthma is established in childhood then it is important to establish what factors 

initiate and perpetuate the remodelling process. In particular the relationship of 

inflammation to remodelling needs to be defined and the exact clinical consequences 

determined. 

Progressive and accelerated decline in lung function over time in asthmatics can be 

explained in terms of excessive and altered airway ECM deposition, leading to altered 

mechanical properties of the airway. Whilst this is detrimental in terms of increasing 

airflow obstruction with increasing air-trapping and airways resistance, what effect 

such changes contribute to basal AHR in the chronic setting remain controversial. 

What is not clear is to what degree excessive smooth muscle contraction is a 

manifestation of fundamental changes in the structure and function of the smooth 

muscle cell itself and what effect alterations in the non-contractile ECM components 

contribute towards counteracting any such exaggerated airway contraction. As 

discussed earlier, interstitial fibrillar Type I collagen with inherent high tensile 
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strength deposited around and between ASM as well proteoglycans which by binding 

water increase tissue turgor will contribute to increased resistance of the airway wall 

to deformation by opposing ASM shortening under loading. Airway conductance 

studies in stable asthmatics at baseline (Colebatch et aL 1973) and after methacholine 
(Fish et aL 1981) have shown that asthmatic airways with increasing AHR dilate less 

than normal airways during lung inflation. This indicates that increased stiffness (or 

decreased compliance) in astfunatic airways associated with AHR may lead to a 
functional effect of non-contractile ECM effects on ASM phenotype and function. 

This concept would be in keeping with Ihe observation of altered ECM production 

and deposition throughout the bronchial wall in asthma and the correlation of 
fibroblast proteoglycan production with AHR (Westergren-Thorsson et aL 2002) and 

the in-vitro observations of ECM components differentially modulating ASM 

phenotype and contractility (Johnson et A 2004b). 

Increased airway stiffness can however be considered as a regulatory process initiated 

by the airway as a mechanism by which to counteract the airway narrowing induced 

by excessive and abnormal ASM contraction (Niimi et aL 2003). ECM restriction of 

exaggerated ASM contraction maybe beneficial at first, but overtime, excessive ECM 

deposition around ASM may explain the progression to fixed airway obstruction. 
Asthmatics with a greater tendency to activate this ECM pathway may then be the 

group that shows progressive loss of airway patency and eventually fixed obstruction. 

1.7 Mechanisms of airway remodelling 

1.7.1 Introduction 
At present our understanding of the mechanisms of airway remodelling are limited. 

There is clearly a need to appreciate the exact relationship of airway inflammation to 

airway remodelling. In particular it is important to understand what components of 

AHR are related to inflammation and remodelling respectively. At present there are 

no non-invasive methods of assessing airway remodelling and furthermore human 

airway research is limited mainly to morphological and in-vitro experimental work 

which is constrained further by ethical implications. Therefore animal models of 

airway remodelling have been instrumental in defining the dynamic and complex 

mechanisms involved. 
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1.7.2 Human models of airway remodelling 

Time course studies with intradermal allergen challenge in skin thus confirmed that 

myofibroblasts (identified on the basis of morphology and expressing a-smooth 

muscle actin) were increased at 24 hours and further increased at 48 hours (Phipps et 
A 2002). HSP-47 and procollagen I positive fibroblast-like cells were similarly 

prominent at 48 hours. Tenascin expression, a highly regulated member of the ECM 

family that is expressed during development and in response to injury, was evident as 

early on as 6 hours after allergen injection with a peak of expression at 24 hours and 

persistence even at 72 hours. Such remodelling changes may have been due to the 

availability of eosinophil-derived TGF-pi. After only a single airway allergen 

challenge in asthmatics upregulation of tenascin in the RBM was also evident. Active 

collagen synthesis (HSP-47 expression) and TGF-P signalling (pSmad2) was co- 

localised to both epithelium and fibroblasts 24 hours following allergen (Phipps et aL 

2004). Others have confirmed myofibroblast accumulation in the airway within 24 

hours of allergen challenge as reported by Gizycki (Gizycki et aL 1997). The 

suggestion is that allergen provocation of asthma leads to acute activation of the 

epithelium and fibroblasts (the epithelial mesenchymal trophic unit or EMTU) 

together with up-regulation of markers of remodelling and activation of TGF-P 

signalling. It would important to know whether the activation of airway remodelling 

remains associated with inflammation and the relationship to AHR. 

The lack of non-invasive methods of assessing remodelling in human asthma has 

meant that most of our current knowledge into human airway remodelling is on the 

basis of morphological and in-vitro experimental work. However, the airway 

represents a unique opportunity to understand the dynamic process of airway 

remodelling in that it can be easily and safely sampled by experienced operators 

through bronchoscopy. By using allergen challenge, one can provoke the disease and 

sample the airway in a time-course manner to in order to study the dynamic process of 

events in airway remodelling and the association of these events with changes in 

airway physiology. 

1.7.3 Animal models of airway remodelling 

Much of our identification and improved understanding of basic immunological 

mechanisms in allergic asthma has arisen in the last decade using animal models, 

predominantly mice. The popularity of murine models has mainly arisen because 
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many hypotheses involving molecular and one-gene mediated diseases can be 

effectively studied in whole animals. By performing chronic airway inhalational 

allergen challenge using appropriately selected strains that have been systemically 

sensitised to allergen it is possible to induce certain inflammatory and remodelling 
features in murine airways that mimic changes associated with human asthma (Blyth 

et A 1996). The phenotypic expression of asthma is highly dependent on the genetic 

constitution of the murine strain (Brewer et aL 1999). Strains can be classified as to 

whether they are high or low responders in terms of specific IgE and inflammatory 

airway changes in response to repeated airway allergen challenges. In particular A/J 

and BALB/c respond to allergen with a high specific IgE production and an 
inflammatory response comparable to some aspects of the human airway response. It 

appears that the manifestation of AHR is strain dependent (Takeda, et aL 2001) with 
A/i strain mice displaying the greatest degree of AHR and remodelling changes 
(Shinagawa & Kojima, 2003). Strain heterogeneity effects cellular localisation, in 

particular of eosinophils (Takeda. et aL 2001), and the propensity for angiogenesis 
(Rohan et aL 2000). Thus the protocol used to sensitise and subsequently challenge 
the animal must be bome in mind when developing animal models. The most 

successful results are obtained using a combination of systemic sensitisation with 

either subcutaneous or intraperitoneal injection of allergen adsorbed onto adjuvants 

such as aluminium. hydroxide. There is a strong induction of Th2 responses. Most 

protocols now deliver multiple airway challenges with allergen through either aerosol 
delivery or intranasal or intratracheal. installation. The route of allergen challenge may 
determine the longevity of the model as the induction of tolerance can occur with 

aerosol challenges (Sakai et A 2001). The best models in terms of longevity have 

been established using either low mass concentrations of aerolised antigen 
(Temelkovski et aL 1998) or intranasal challenges (Shinagawa & Kojima, 2003). 

Indeed the variability in strains and protocols used in murine models of airway 

remodelling may explain the sometimes conflicting results that have been obtained 
(Humbles et aL 2004; Lee et aL 2004b). 

The mechanisms of airway remodelling have also been studied using transgenic mice 

that could be made to over or under express specific cytokines in the lung. For 

example over-expression of IL-5 (Lee et al. 1997), IL-1 I (Tang et al. 1996) and IL-13 

(Zhu et al. 1999) mimics some aspects of airway remodelling seen in asthma. Such 

transgenic models clearly provide valuable insights into dissecting the inflammatory 
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cascades that propagate remodelling. It must be remembered, however, that transgenic 

models mimic isolated aspects of a complex process clearly representing an artificial 
disease environment and process. Inducing the remodelling process in a situation that 

more closely mimics the induction and propagation in humans will provide a more 

relevant insight into the disease process that can be directly transferred into 

therapeutic outcomes. Models of disease in large animals such as sheep and monkeys, 

on the presumption that such models may provide greater homology to human 

disease, have also been developed. 

The salient features of selected studies using animal models of airway remodelling are 

summarised in Table 1.1 in order to appreciate the different allergen sensitisation 

routes and protocols used by groups (Hogaboarn et aL 2000; Blyth et aL 2000; Leigh 

et aL 2002; McMillan & Lloyd 2004; Kumar et aL 2004; Cho et aL 2004; Johnson et 

aL 2004a; Snibson et A 2005; Tran et aL 2004). These have provided us with 

essential information on inflammatory and remodelling processes but there is 

considerable controversy as to the exact relevance to human disease (Gelfand 2002; 

Persson 2002). For cellular and molecular findings in an animal model to be 

translated into effective therapeutic outcomes in human disease the model must 

display similar physiological and immunological characteristics to humans and 
disease events must have a temporal relationship from initiation and disease 

progression to end stage. Whilst murine models essentially induce airway 
inflammation and repair response using the similar principle of allergen exposure, 

such models provide insight into mechanisms that are induced in response to airway 
injury rather than chronic asthma. Such models do not display background chronic 

inflammation or baseline AHR in the airway as in the human disease. Such 

fundamental differences between animal models and human disease may explain to 

some extent why in animal models of airway injury several aspects of remodelling 

can be prevented by corticosteroids. However the studies in human asthma are also 
fundamentally different in that many have addressed only the reversal of remodelling 

using corticosteroids rather than preventative strategies by obtaining baseline 

bronchial biopsies and following remodelling changes when on steroid therapy 

(Beckett & Howarth 2003). It is therefore important to develop preventative studies of 

remodelling in human asthma if possible. 
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Also there is convincing evidence that TGF-01-3, activin and BMP (Le TGF- 

Superfamily ligand) signalling is activated after airway allergen challenge in a mouse 

model of allergen induced airway injury (Rosendahl et aL 2001)(Rosendahl et al. 
2002) and administration of an anti-TGF-PI antibody abrogates several aspects of 

remodelling (McMillan et A 2005). These models are discussed later under the relevant 

sections. 

Table 1.1: Summary of animal models of airway remodelling (overleaf). 

OVA=Ovalbumin 
Alum= aluminium hydroxide (a Th2-promoting adjuvant used in most mouse models 
of allergic airway inflammation) 
HDM=House Dust Mite 
IP=Intraperitoneal 
IN= Intranasal 
IT=Intratracheal 
AW=Airway 
FOB=Fibreoptic bronchoscopy 
N/A=Not Available 
SC=Subcutaneous 
IM=Intramuscular 
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1.8 The pathogenesis of airway remodelling 

1.8.1 Introduction 
Much of the research so far has focused on defining complex changes of airway 

remodelling that occur in asthma. An urgent research priority that remains is to define 

the precise biological mechanisms that lead to such structural change; to what extent 
different remodelling aspects must interact to define the various asthma phenotypes 

seen in clinical practice and what aspects contribute to disease severity. Increasing 

severity and chronicity is associated with different disease characteristics that may be 

associated with various degrees of either fixed airway obstruction, increasing AHR 

with or without a degree of corticosteroid refractoriness. Individual genetic 

susceptibility factors predisposing to airway injury, the inflammatory response to 

tissue injury, the ability to regulate this inflammatory response and the degree of 

structural cell activation leading to tissue repair all contribute to different aspects of 

disease pathology and functional consequences. 

1.8.2 Early origins of asthma and genetic susceptibility 

A linear model of disease that is currently established is that environmental 

senSitisation leads to establishment of Th2 allergic inflammation subsequently leading 

to airway remodelling over time. The predominant focus of asthma research into the 

mechanisms of airway inflammation and how this may causally relate to AHR and the 

asthma phenotype lead to the basic concept that airway remodelling is a result of 

airway inflammation and must therefore be a chronic slow process developing over 

time and contributes to the disease phenotype late on in the disease process. This 

concept has now being challenged by bronchoscopic studies in paediatric asthma. 

Bronchial biopsies from children with asthma show that marked remodelling is 

present very early on in the disease suggesting remodelling may be an early disease 

event. (Cutz et A 1978) (Payne et A 2003) and may even predate the onset of 

symptoms by up to four years (Pohunek et aL 2005). In established childhood asthma 

collagen deposition and fibroblast proliferation have greater diagnostic significance 

than eosinophilic inflammation (Cokugras et aL 2001). Other studies have gone onto 

confirm that airway remodelling markers such as RBM thickening and abnormal 

structural cell activation is consistently present in childhood asthma 9d may occur 

even in the absence of increased eosinophilic inflammation (Fedorov et A 2005). 

Whilst R13M thickening is considered to reflect remodelling events deeper in the 

submucosa (James et aL 2002), there is little or no correlation of RBM thickness with 
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the duration of asthma (Payne et aL 2003) or cellular inflammation (Cokugras et aL 
2001; Payne et aL 2003; Payne et aL 2004), suggesting that RBM thickening, at least, 

may be independent of inflammation. It is therefore possible that airway remodelling 

may precede inflammation, suggesting the airway in asthma may have an intrinsic 

propensity for injury and abnormal repair. 

Genetic susceptibility is a significant disease risk factor and such susceptibility is a 

result of several genes which interact at different stages of disease pathogenesis that 

can result and may explain the complex disease phenotypes with variable therapeutic 

responses observed in clinical practice. The discovery of ADAM33 (a disintegrin and 

metalloprotease33), an asthma susceptibility gene that shows strong linkage to AHR, 

maybe relevant and supports the concept of tissue susceptibility and impaired repair in 

asthma AHR (Van Eerdewegh et A 2002). ADAM33 is selectively expressed in 

fibroblasts and ASM. The exact role is uncertain but ADAM33 is able to release 

growth factors, modulate the expression of cell-surface receptors and may therefore 

play an important role in differentiation and proliferation of airway mesenchymal 

cells (Holgate et A 2006). This is important in that fibroblast accumulation and ASM 

hypertrophy, not airway inflammation, are the only selective determinants of severe 

persistent symptoms (Benayoun et aL 2003). Polymorphisms in ADAM33 are 

associated with a more rapid annual decline in post-bronchodilator FEV, (Jongepier et 

aL 2004). Such genetic associations may explain why outcomes in adult asthma can to 

a certain extent be predicted in childhood (Simpson et aL 2005). 

1.8.3 Inflammation 

Most fibrotic diseases share a common paradigm of a persistent inflammatory 

stimulus with lymphocyte-monocyte interactions that generate fibrogenic cytokines 

that can initiate and even propagate fibrotic processes. Inflammatory cells are a 

significant source of growth factors such as TGF-PI (Minshall et aL 1997) and other 

TGF-Superfamily ligands, lipid mediators (Wenzel 2003) and the important cytokine 

IL-13 that can directly activate structural cells of the airway. It is therefore not 

unexpected that some aspects of airway structural cell activation and remodelling will 

be related to inflammatory consequences. 
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T cells 
There is increasing recognition of the contribution of CD4+ Th2 released cytokines in 

fibrotic diseases, particularly IL-13. In contrast Thl dominated reactions are 

associated with the attenuation of the fibrotic process, related to the dominant anti- 
fibrotic effect of y-interferon (11N. Whilst some of the pro-fibrotic effects of Th2 

cytokines will be related to the up-regulation of pro-fibrotic genes includings the 

collagens and MMPs (Sandler et al. 2003), the recruitment and activation of 
inflammatory cells, particularly IL-5-dependent recruitment of eosinophils, that are 

subsequently an important source of fibrogenic factors such as TGF-01 will also drive 

fibrosis. Anti-IL-5 therapy was associated with decreased expression of several 

remodelling components (Flood-Page et al. 2003a). 

The mechanisms of airway remodelling were initially studied using transgenic mice 

that could be made to over-express specific cytokines in the lung. IL-4, IL-5 and IL-9 

over-expression was associated with marked mucus metaplasia whilst IL-9 and IL-5 

over-expression lead to thickening of the BM and AHR (Temann et aL 1998; Lee et 
A 1997). IL- II over expression was associated with ASM hyperplasia (Tang et al. 
1996). IL-4 and IL-13 induced fibroblast differentiation into myofibroblasts and 

induction of Type III collagen even in the absence of cellular inflammation. The 

blockade of IL-13 by administration of a soluble form of the IL-13R chain that binds 

IL-13 was able to reverse AHR and mucus production (Wills-Karp et aL 1998) whilst 

IL-13 administration leads to AHR, eosinophilic inflammation, mucus cell 
hyperplasia and secretion. Importantly IL-13 over-expression lead to a dramatic 

fibrotic response in the lung with subepthelial fibrosis (Zhu et al. 1999). Given that 

both IL-4 and IL-13 signal via the same receptor and the STAT-6 signalling pathway, 

it is surprising that it is only IL-13 that demonstrates marked fibrogenic properties. 

This maybe related to the ability of IL-13 to induce the production of TGF-P, and also 

activate stored latent TGF-Pi (Lee et aL 2001). 

IL-13 induction of TGF-01 and other profibrotic molecules in the lung may be 

predominantly through activation of epithelium (Wen et A 2002). In addition IL-13 

demonstrates the ability to activate the fibrotic process independent of TGF-01 

(Kaviratne et A 2004) by stimulating myofibroblast proliferation via platelet derived 

growth factor AA (PDGF-AA) (Ingram et A 2003). 
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CD8+ T cells may also contribute to airway remodelling. In a prospective study of 

asthmatics over 7.5 years the loss of post-bronchodilator FEV, correlated to the 

increasing number of CD8+ T cells rather than the degree of eosinophilic 
inflammation (van Rensen et aL 2005). 

Lipid mediators 

The lipoxygenase pathway is particularly active in eosinophils, mast cells and 

neutrophils. The cysteinyl-leukotrienes (CysLTs) act at their cell-surface receptors 
CysLTlR and CysLT2R on target cells to contract bronchial smooth muscle and to 

increase penneability of small blood vessels. Several lines of evidence suggest a role 
for CysLTs in airway remodelling. In-vitro studies confirm increased structural cell 

activation with marked proliferation of airway epithelium and as well fibroblasts in 

response to LTC4 (Leikauf et al. 1990) whilst LTD4 participates with growth facotors 

in induction of ASM proliferation (Panettieri et aL 1998). The clinical consequences 

of such findings remain to be determined. 

Eosinophils 

Recent studies in animal models and humans have firmly established the role of 

eosinophils in lung fibrosis. IL-5 deficient mice displayed markedly less total lung 

collagen, peribronchial collagen Type III and IV deposition, and a-smooth muscle 

actin expression compared to wild type mice in response to chronic ova challenge 

(Cho et aL 2004). Importantly the reduction in cells that stained positively for MBP 

paralleled the reduction in the total number of cells that expressed TGF-pi together 

with the expression of integrin avP6, an activator of latent TGF-PI. This was in contrast 

to wild type mice. In a more recent study, mice with targeted eosinophil depletion 

were protected from peribronchial collagen deposition and increased airway smooth 

muscle mass in response to chronic allergen exposure (Humbles et aL 2004). AHR 

and mucus production did not decrease in this model. This maybe a reflection of the 

fact that IL-13, a key cytokine implicated in the pathogenesis of AHR and mucus 

production, was not affected. Significantly, studies in humans have been in agreement 

with animal models. The use of a monoclonal antibody against IL-5 in humans has 

demonstrated a reduction in airway eosinophils associated with decreased BAL TGF- 

p, levels and expression of the ECM components tenascin, lumican and procollagen 

III (Flood-Page et aL 2003a). Eosinophils are an important source of several 
fibrogenic cytokines and modulators of remodelling such as the fibroblast and smooth 
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muscle cell mitogen heparin-binding epiden-nal growth factor-fike growth factor (HB- 

EGF) (Powell et A 1993), TGF-a (Wong et A 1990), nerve growth factor (NGF) 

(Solomon et A 1998), TGF-01 (Wong et aL 1991) and TGF-02 (Balzar et aL 2005). 

IL-4 and IL-13 are also produced by eosinophils (Moqbel et aL 1995; Schmid- 

Grendelmeier et aL 2002). 

Macrophages 

Investigation of the exact role of macrophages (Mo) in airway remodelling has been 

neglected. This is despite Mo being important cells in the process of wound repair 

and as a cellular source of TGF-P, (Rappolee et A 1988; Wahl et aL 1990). In the 

bleomycin model of pulmonary fibrosis Mo derived TGF-P, drives the fibrotic 

process (Khalil et A 1996). Mo produce IL-13 (Hancock et aL 1998) and given the 

high numbers of airway macrophages present, will represent a significant 
inflammatory cell source of IL-13. 

Mast cells 
There is increasing recognition that mast cells (MC) play an important contribution to 

the fibrotic process. MC derived mediators can modulate both fibroblasts and ASM 

function and are listed below. Of particular interest is tryptase which signals through 

the G-protein coupled protease activated receptor type-2 (PAR-2) present on 
inflammatory cells as well as epithelium, fibroblasts and ASM (Hallgren & Pejler 

2006) activation of which can lead to structural cell activation and proliferation 
(Akers et aL 2000) (Berger et aL 2001). Tryptase can lead to activation (Cairns & 

Walls 1996) and proliferation of epithelium (Cairns & Walls 1997). Tryptase also 
induces fibroblast proliferation and ECM production (Cairns & Walls 1997). 

Mast cells are the only cells that are known to lie in the ASM layer in asthma 

(Brightling et aL 2002) and given the close relationship of ASM mass to asthma 

severity and AHR, it is possible that mast-cell induced ASM remodelling represents 

an important though not yet defined mechanism of airway remodelling. Mast cells 

secrete the chemokine, CCL19 (Kaur et aL 2006) which can lead to ASM migration 

and hence contribute to the increases in ASM mass and hence possibly AHR in 

asthma. Tryptase can stimulate ASM proliferation (Berger et A 2001). Mast cell 
derived growth factors also have significant potential to contribute to remodelling by 

mesenchymal cell activation and proliferation (Cho et aL 2003) leading to increased 
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ECM production. Both tryptase and chymase have the potential to activate MMPs 

leading to ECM degradation (Johnson et A 1998) (Tchougounova et A 2001). In fact 

mast cells can secrete MMP-9 (Baram et aL 2001). Mast cells are also sources of 
LTC4 (Gulliksson et aL 2006). Mast cell derived IL-4 and IL-13 may also modulate 

remodelling (Brightling et A 2003). 

Neutrophils 

The neutrophil mediators LTB4, elastase and proteinase are potent inducers of airway 

glandular mucus production (Cardell et aL 1999; Witko-Sarsat et aL 1999). 

Neutrophil elastase and cathepsin G, both major neutrophil proteases, can degrade 

ECM components such as elastin, collagen and proteoglycans. Neutrophils also 

secrete MMP-9 (Wenzel et aL 2003). 

In asthma the inflammatory process can extend into the smaller airways and alveolar 

compartments (Kraft et aL 1999). It is therefore possible the neutrophil derived 

elastase contributes to the elastin degradation documented in asthma (Bousquet et A 

1992). In severe asthma remodelling of cartilage in airways only 1-5mm, in diameter 

has also been reported (Roberts 1995). Remodelling as a result of degradation of 

cartilage and elastin may contribute to AHR and airway obstruction by decreasing 

ASM load and thus the force required for the ASM to constrict the airway (Bramley et 

aL 1995). Neutrophils may also be an important source of TGF-Pi (Chu et aL 2000) in 

asthma further implicating a role for these cells airway remodelling. In the bleomycin 

model of pulmonary fibrosis a lack of neutrophil elastase is associated with marked 

attenuation of fibrosis. Neutrophil elastase is demonstrated to be a potent activator of 

TGF-Pi (Chua et aL 2007). 

1.8.4 Epithelial-mesenchymal trophic unit (EMTU) activation 

Airway injury is associated with release of cytotoxic mediators, free oxygen radicals 

and collagenases from both inflammatory cells and epithelium. Epithelial and RBM 

integrity will be impaired in consequence. The resultant activation of the epithelium 

allows participation in the immune system through the expression of adhesion and 

signalling receptors, the secretion of cytokines and growth factors (Kelly et aL 2005) 

with the aim of tissue repair and restoration. The vast surface area of the airway 

epithelium suggests that the epithelium is a significant source of growth factors. 

Epithelial and RBM restitution must occur rapidly and in a co-ordinated way. An 
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important group of factors involved in this process is the epidermal growth factor 

(EGF) family and the EGF (R) receptors, the expression of which are markedly up- 

regulated in the asthmatic airway epithelium in response to injury (Puddicombe et aL 
2000). The airway repair process begins with the deposition of ECM proteins over the 

surface of the denuded epithelium. This provisional matrix acts as a substrate over 

which the basal epithelial cells at the 'wound edge' can attach to, proliferate, flatten 

out and subsequently migrate over. The provisional ECM is composed of the remnant 

components of the basement membrane such as Type IV collagen and laminin as well 

as blood derived factors such as fibrin and fibronectin. Epithelial cells serve too as a 

source of fibronectin and collagens, in particular Type I and Type III collagen. 
Activation of the attenuated fibroblast sheath now occurs, particularly in response to 

secretion of TGF-P Superfamily of growth factors. The marked increase in the 

myofibroblast cell numbers is associated with an increased capacity for synthesis of 

collagen as well as other ECM components. Myofibroblast migration can now occur 
in response to chemotactic gradients into the submucosa along ECM fibrils. Using cell 

surface integrins attachments to collagen and fibronectin occurs. While one end of the 

fibroblast remains attached to the ECM, the cell can extend a cytoplasmic projection 

and attach to another ECM area. The site of original attachment is broken via 

proteases such as MMPs secreted by the fibroblasts. The cytoskeletal network of actin 
fibres now contract causing the cell to move itself forward. 

The repair process in asthmatic epithelium may be impaired. The normal response to 

EGFR signalling is epithelial proliferation with view to tissue repair. In asthma there 

is impaired proliferation as evidenced by low expression of PCNA (Fedorov et A 

2005; Demoly et aL 1994) and evidence of ongoing injury (as evidenced by high 

expression of the caspase cleavage product p85). This impaired repair phenotype can 

be likened to a chronic wound scenario with continuous activated and dysregulated 

epithelium that drives inflammation and remodelling (Boxall et A 2006). An 

important and possibly fundamental pathway is the epithelium interacting with the 

underlying attenuated fibroblast sheath through which communication and translation 

of environmental signals into the deeper submucosal compartment where the major 

remodelling changes associated with asthma occurs (Holgate et aL 2000). 

The human lung is an outgrowth of the embryonic endodermal foregut called the 

laryngotracheal groove, seen as a diverticulum of the primitive pharynx ventral wall 
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around 4-5 weeks of gestation (Warburton & Lee 1999). The proximal portion gives 

rise to the larynx and trachea whilst the distal portion now undergoes a process of 
dichotomous branching onto the surrounding splanchnic mesenchyrne with 
determined precision of repeated bud outgrowth and division of the terminal units. 
This process is termed branching morphogenesis and is complete by 25 weeks 

gestation (Warburton & Lee 1999). The stcreotypic nature of this process implies that 

a 'hard-wired' genetic process must exist. Most organ systems, including the lung, are 

composed of the two primary tissue layers of epithelium and mesenchyme, termed the 

epithelial mesenchymal trophic unit (EMTU). During organogenesis, epithelium and 

mesenchyrnal interaction must occur for morphogenesis and cell differentiation 

(Warburton & Lee 1999). There is increasing evidence that such co-operation together 

with signalling programmes and growth factors that are fundamental to organogenesis 
is reactivated in the process of tissue repair in disease. Therefore in asthma activation 

of epithelium and fibroblast signalling is reminiscent of the process of epithelial- 

mesenchymal signalling in the process of branching morphogenesis in the embryonic 
lung. In the developing lung it is the mesoderm surrounding the endoderrn (termed the 

splanchnic mesoderm) that controls the extent of branching in the respiratory tract. 

Budding endoderm exerts a high rate of epithelial cell proliferation but such 

proliferation is inhibited at points of branching. Growth factors, particularly of the 

fibroblast growth factor (FGF) and TGF-P Superfamily (including TGF-PI, activins 

and bone morphogenic proteins or BMPs) are important. FGF-10 produced by the 

mesodcrern primarily stimulates initial bud growth (i. e epithelial cell proliferation). 
Tips of the epithelial buds produce BMP-4 which serves to repress FGF-10. The 

proto-oncogene n-myc acts to stimulate branching but the expression of n-myc is 

inhibited by TGF-Pj that is itself expressed at high concentrations along the formed 

airway walls (Warburton et aL 2005). Deposition of Type I and III collagen, 
fibronectin and proteoglycans serve to stabilise the branch point. In the distal 

branching points the basal lamina underlying the lung epithelial layer is porous and 

therefore allows direct communication between epithelial and mcsenchyrnal cell 

processes. Whilst in embryogenesis the coordinated activity of epithelium and 

mesenchyrnal tissue leads to the regulated and organised process of organogenesis, 

any prolonged activation or dysregulation of this process in disease settings may lead 

to excessive and abnormal tissue deposition (Warburton & Bellusci 2004). 
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In asthma the continuous activated state of the airway epithelium is evident even in 

children taking inhaled steroids and where there was no significant eosinophilic 
inflammation (Fedorov et aL 2005). Activated epithelium will synthesise and secrete 

growth factors, particularly of the TGF-P Superfamily and IL-13, angiogenic factors 

such as vascular endothelial growth factor (VEGF) and other Th2 cytokines all of 

which leads to constant signalling to the underlying mesenchyrnal cellular pathway 
(Zhang et A 1999). Such a chronic wound model will not only further establish and 

propagate inflammation but lead to chronic structural cell activation associated with 

progressive structural changes associated with severity of disease. The role of IL-13, 

in particular, is of importance to EMTU signalling (Richter et aL 2001). It has been 

shown that STAT6 signalling alone in airway epithelium leads to leads to AHR 

(Kuperman et aL 1998; Kuperman et aL 2002). 

Thus it is possible that the development of Th2 inflammation and tissue repair in 

response to airway injury may occur in parallel rather than sequential events, the 

interaction of which may lead to chronic epithelial activation and fibroblast and ASM 

signalling that can drive the disease process. 
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Figure 1.3: Summary of some current concepts in the pathogenesis of airway 
remodelling in allergen-induced asthma. 

Figure 13A demonstrates an early asthmatic airway with intact airway epithelium, and 
increased thickening of the reticular basement membrane (RBM). Exposure to environmental 
insults may lead to airway damage and individuals with a genetic predisposition to atopy 
and/or dysregulated or impaired airway repair may subsequently develop sustained 
inflammation and tissue repair. 

Figure 13B demonstrates increased and sustained activation of epithelium leading to 
signalling to inflammatory cells and also the underlying mesenchymal cells (activated 
EMTU). Both structural and inflammatory cell sources of growth factors such as those of the 
TGF-P Superfamily as well as VEGF and IL-13 are important. 

Figure 13C illustrates progressive structural changes with increased numbers and size of 
fibroblasts and airway smooth muscle, vascular remodelling together with excessive and 
dysregulated ECM deposition, the balance of which may lead to a phenotype that is 
characterised by increases in AHR or airway obstruction. In turn the pro-inflammatory 
environment generated by chronic structural cell activation will sustain and propagate the 
inflammatory response to ongoing environmental insults. 
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1.9 Growth Factors 
Introduction 

Growth factors are a heterogeneous group of signalling factors which share a common 

feature of regulating cell proliferation. Although there is a large list of growth factor 

molecules with diverse ranging biochemical properties described, it is possible to 

identify subgroups of growth factors within this group on the basis of amino acid 

sequences and structural conformation or shared biological activation or function. 

Once the three-dimensional structures of these molecules were defined it became 

apparent that specific tertiary levels of structural organisation existed and was a 

shared feature amongst certain growth factors. It was this realisation that introduced 

the concept of growth factor 'superfamily' as a means of classifying these factors. 

However such shared structural features do not necessarily predict shared biological 

functions within such superfamilies but indicate that these signalling factors will have 

evolved from a more restricted precursor in parallel to diversification in cellular 

function and maybe a means that allows nature to achieve target cell specificity. An 

important characteristic of growth factors is that they act locally within the tissue 

compartment produced with both autocrine and paracrine effects. 

Given the complexity of cellular tissue, it is obvious that cellular response to a 

specific growth factor has the potential to be modulated by the prior or concurrent 

action of other growth factors in the cellular microenvironment. Such a conceptual 
framework allows us to understand how the effect of a growth factor will be altered 
depending on the tissue and cellular setting present. 

1.10 Vascular endothelial growth factor (VEGF) 

Angiogenesis is a prominent feature of chronic inflammatory conditions and tumours 

(McDonald 2001). It is driven by the overproduction of multiple growth factors that 

include vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF) 

and angiogenin. VEGF is a potent multifunctional cytokine which can drive not only 
inflammation and vascular and tissue remodelling but also enhance antigen 

presentation and Th2 inflammation in asthma (Lee et al. 2004). 

The mechanisms that lead to altered vasculature in asthma are not fully understood. 
Whist several inducers of angiogencsis can be identified in asthma such as FGF 
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family, TGF-a and PDGF, it is VEGF that is the most potent inducer of angiogenesis 

and the expression in asthma is markedly elevated compared to normals (Hoshino et 

aL 2001). VEGF was originally identified on the basis of its ability to induce tissue 

oedema. VEGF exists as six different isoforms generated as a result of alternate 

splicing. The major isoforms differ in terms of their bioavailability which is 

determined to a significant extent by ability to bind to heparin and heparin sulphate of 

the ECM. The ECM can therefore form a VEGF reservoir that is mobilised by 

proteolysis. 

The lung is an organ with one of the highest levels of VEGF expression. Much of the 

work on VEGF has been in relation to its essential role in angiogenesis and 

endothelial cell survival (Gerber et aL 1998). Transgenic animal model of VEGF 

overexpression, as expected, generated neo-angiogenesis and vascular leakage with 

mucosal oedema. Interestingly airway inflammation with an exaggerated immune 

response to allergen challenge and remodelling induction was observed. VEGF 

directly contributes to the entire asthma phenotype (Lee et al. 2004). 

1.11 Transforming growth factor (TGF)-P superfamily 
1.11.1 Introduction 

In mammals the transforming growth factor (TGF)-p superfamily is comprised of 

more than 35 members. They include the TGF-PI-3 isoforms, activins, inhibins and 

bone morphogenetic proteins (BMPs) as well as the growth differentiation factors 

(GDFs), mUllerian inhibiting substance (MIF), nodal and leftys (Piek et A 1999). 

These factors demonstrate a remarkable diversity of biological function, from key 

roles in embryogenesis to regulation of cell growth, differentiation and apoptosis. The 

ligands are translated as pre-propeptide precursors with an N-terminal signal peptide 

followed by a prodomain and the mature domain. The typical structural features of 

this family of proteins are two separate anti-parallel 0 sheets that are perpendicular to 

a four-turn a-helix. The structural hallmark of the TGF-P Superfamily is the 

conserved six to nine cysteine residues in the mature domain, termed the cysteine knot 

(Sun & Davies 1995). The rigid cysteine knot scaffold serves to stabilise the entire 

structure and is the region required for dimerisation of the ligands via intermolecular 

disulphide bond formation. Such striking structural conservation of the family 

members leads to their characteristic physiochernical properties. The diverse functions 
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of individual ligands are cell and tissue specific and must always be considered in the 

context of what other cellular and environmental signals are present. 

1.11.2 TGF-P isoforms 

There are three different isoforms in mammals termed TGF-PI, TGF-P2 and TGF-P3 

which are the product of three separate genes located on chromosomes 19,1 (de 

Martin et aL 1987) and 14 (ten Dijke et aL 1988) (Lander et aL 2001) respectively. It 

is TGF-P I that was first discovered as a 'factor' with ability to 'transform' function of 

cells (Assoian et aL 1983) and much research has focused on this prototypic isoform. 

There is very high sequence homology across the isoforms with 74% homology 

between TGF-P, and TGF-P2,78% between TGF-P, and TGF-P3 and 82% between 

TGF-P2 and TGF-P3- 
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(Adapted from Schetýfler C et al, 1999) 

Figure 1.4: Structural homology of TGF-P Superfamily members 

, protein mem I The superposition of TGF-Superfamilv bers illustrates the conformational 
structural homology present. Typically there arc two separated anti-parallel P-shects and a 
four-turn a-helix that runs approximately perpendicular to the strands. The overall folding 
topology can be viewed as a hand with the a-helix representing the wrist, the cystcine knot the 
wrist and the P-sheets the fingers. BMP-2 is represented in blue, BMP-7 in red, TGF-P2 in 
orange and TGF-03 in yellow. For clarity only monomers of each protein are presented. 

78 



The biologically active mature 112 amino acid C-terminal domains of the TGF-P 

isoforms are conserved more than 97% across species. The C-terminal region encodes 
the mature 25. kDa active portion. Such sequence homology explains the similar 
biological activities of these isoforms observed in-vitro. Valuable insight into isoform 

function has been gleaned from knock-out (KO) murine models. TGF-P, KO mice 

succumb to overwhelming widespread systemic inflammation in the perinatal period 

at 3-4 weeks (Kulkarni et A 1995) confirming the essential anti-inflammatory role of 

TGF-P I. The KO mouse for TGF-P2 (perinatal mortaility) and TGF-P3 (death within 
20 hours of birth) are not viable as a result of gross embryonic malformation (Sanford 

et aL 1997; Kaartinen et A 1995) and may therefore suggest that these isoforms 

maybe more functional during the process of epithelial-mesenchymal interaction and 
tissue repair. Whilst the exact roles (overlapping and non-overlapping) remain to be 

defined all three isoforms are potent inhibitors of epithelial cell proliferation but can 

stimulate cells of mescnchymal origin (Fynan & Reiss 1993). 

1.11.3 TGF-P isoform expression in mild asthma 

TGF-P proteins are regulated by synthesis but are also bound to ECM proteins as 
inactive forms. The early studies with asthma reported similar distribution and 

expression levels of TGF-P, protein or mRNA in airway biopsies obtained from 

asthmatics compared to normal volunteers (Aubert et A 1994) and studies since have 

confirmed that there is no difference in the expression of the TGF-P, isoform in the 

airway between normal and mild asthmatic airway (Hoshino et aL 1998). One study 

reported even weaker staining of airway asthmatic epithelium for TGF-PI-3 compared 

to normals (Magnan et A 1997). Inflammatory sources, particularly eosinophils 
(Vignola et aL 1997) and macrophages (Aubert et aL 1994; Vignola et A 1996), 

together with fibroblasts (Vignola et A 1997) have been identified as important 

sources of TGF-P in asthma with further increased recruitment and TGF-Pi 

expression in response to allergen provocation. Such cell types are present in 

increased numbers in asthma and together with increased ECM components that 

function as an important reservoir of TGF (Redington et aL 1998) may explain the 

findings of increased TGF-01 levels in BAL between normal and asthmatic airways at 

baseline with further increases in asthma in response to allergen challenge (Redington 

et aL 1997). Given that TGF-P, KO mice display non-nal embryological development 

unlike the TGF-P2 and TGF-P3 KO mice, it is probable that the latter isoforms have 

significant roles in epithelial-mesenchymal signalling. At least in models of skin 

79 



injury the speed of healing and the degree of scar tissue is related to the amount of 

wound TGF-P1, TGF-P2 and TGF-P3. with paucity correlated with scar-free healing 

with reduced expression of collagen I and collagen III (Shah et A 1995). Exogenous 

TGF-P, and TGF-P2 addition was associated with marked scarring whilst the converse 

was found with the addition of TGF-P3 (Shah et A 1995). Further detailed studies to 

determine the differential expression and functional significance of the TGF-PI-3 

isoforms in asthma are urgently required. 

1.11.4 Synthesis and activation 

There is very little sequence conservation between the promoter regions of the TGF-P 

isoforms indicating that isoform. gene transcription is differentially regulated. The 

exact transcriptional programmes involved are probably context dependent and 

remain to be fully identified. Additionally all three TGF isofonns can up regulate their 

own expression (Obberghen-Schilling et aL 1988). 

Each TGF-P isoform is encoded as a 390-442 amino acid precursor protein that 

contains a signal sequence, essential for the proper folding and secretion of the 

isoform. The most critical post-translational modification is the proteolytic cleavage 

of this signal sequence by an endoprotease furin with the release of the 112 amino 

acid mature TGF-P ligand (C-terminal domain). The translational protein product 

common to the TGF-P Superfamily is a 29 amino-acid signal sequence, a pro-peptide 

region termed the latency associated peptide (LAP) which now non-covalently 

associates with the C-terminal domain. The TGF-LAP product now dimerises by the 

formation of intermolecular disulphide bonds with the LAP region and another TGF-P 

mature region. For TGF-P and activin (presumably in other TGF-P Superfamily 

members also) the LAP region is essential for this folding and dimerisation process. 

Without dimer formation the TGF-P cannot be exported out of the cell. The dimeric 

molecule covalently bonds with a 135 kDa latent TGF-O binding protein (LTBP) 

which serves to anchor the latent TGF-P ligand to the ECM. The latency conferred to 

TGF-P by the LTBP prevents binding of secreted TGF-P to ubiquitously expressed 

receptors and assures a readily accessible extracellular reservoir of TGF-P that can be 

activated on demand. 

80 



Thrombospondin (TSP-1) can activate latent TGF-P by binding to a specific site on 
LAP leading to a conformational change in the latent complex leading to an active 

state (Schultz-Cherry et A 1995). The epithelial integrins a5P6 and a4P8. up-regulated 
in response to lung injury, are important activators of TGF-P ligands (Araya et A 

2006). The CEA knock out mouse fails to develop pulmonary fibrosis in response to 

bleomycin confirming the critical role of the epithelium and the TGF-P Superfamily 

in initiating and regulating mesenchyrnal cell activation and function (Munger et aL 

1999). 

1.11.5 TGF-PI and inflammation 

The inflammatory response to tissue injury is the initiation of a complex cascade of 

events leading to recruitment, migration and activation of inflammatory cells to the 

site of injury or antigen deposition. Resolution of the response is characterised by 

regulated apoptosis and matrix deposition. The ultimate goal of this repair response is 

the elimination of the inciting agent, resolution of inflammation and the restoration of 

normal tissue architecture. TGF-01 has an essential role in all these processes. 

TGF-PI was initially viewed as an anti-inflammatory cytokine because TGF-PI KO 

mice died of an overwhelming MHC Class II mediated autoimmune-type 
inflammatory response (Kulkami et aL 1995; Lctterio et aL 1996) characterised by 

circulating autoantibodies, marked tissue leukocyte infiltration and increased IFN-y 

expression (McCartney-Francis et al. 1996). Since then important roles for TGF-PI in 

both innate and adaptive immunity have been defined. 

TGF-Pi is released from the a-granules of activated platelets, structural cells, 

inflammatory cells and ECM stores. Activated TGF-P1 is involved early on in the 

inflammatory response as it is a chernotactic factor for monocytes (Wahl et aL 1987, 

lymphocytes (Adams et aL 1991), mast cells (Gruber et aL 1994) and neutrophils 

(Postlethwaite & Seyer 1995; Allen et aL 1990). TGF-Pi may also influence 

eosinophil chemotaxis as suggested by in-vitro experiments (Luttmann et aL 1998). 

Cells can transmigrate out of the vessel wall at inter-endothelial cell junctions into 

tissues along a concentration dependent TGF-Pi gradient (Wahl et aL 1987). By 

promoting integrin expression such as a5p, (the functional receptor for fibronectin) 

and a3P1 (the ligand for laminin and Type IV collagen), TGF-01 also enables cell 

adhesion which is critical for regulated and selective cell trafficking to inflammatory 
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sites (Wahl et aL 1993). TGF-01 mediated induction of gelatinases (MMP-2 and 
MMP-9) which then degrade ECM in the path of the cell allows cell migration via 

tissues to occur (Wahl et aL 1993). 

TGF-P, initially potentiates the inflammatory cascade by the up-regulation of 
interleukin- I P, TNF-a and IL-6 from activated monocytes and macrophages which act 
downstream on other inflammatory cells (McCartney-Francis & Wahl 1994). For 

example IL-1 is an important lymphocyte proliferation cytokine. TGF-P, primes T 

lymphocytes such that the cells are more readily activated with an increased rate of 

proliferation and IL-2 production in response to subsequent stimulation (Cerwenka et 
A 1994). TGF-P, may also contribute to T cell survival via delayed apoptosis 
(Cerwenka et A 1996). It may have a critical role in shaping the T cell functional 

repertoire. TGF-Pj modulates the differentiation and activation of DCs (Strobl & 

Knapp 1999) that may subsequently determine the polarisation direction of naYve T 

cells into either the Thl or Th2 type (Foucras et aL 2000) (Van Weyenbergh et aL 
2001). In the thymus of the TGF-P, KO mouse thymocytes are markedly sensitive to 

TCR-enforced lethality such that both positive and negative thymocyte selection is 

disrupted. This leads to escape of self-reactive T cells into the periphery that can 

initiate autoimmune responses. Neutrophils can also be activated to undergo 
degranulation by TGF-01 (Balazovich et aL 1996) which will contribute to the 

inflammatory process. 

TGF-P, recruited Mo have an essential role in phagocytosis of apoptotic cells, a key 

step towards the resolution of inflammation. By up-regulating CD16 (FcyRIII), the 

low affinity IgG Fc receptor with its important role in the capture and clearance of 

particles on monocytes and Mo, TGF-P, can regulate early innate responses (Welch et 

aL 1990). TGF-01 enhances Mo recognition of phosphatidylserine, expressed on the 

outer membrane of apoptotic cells (Rose et aL 1995). Enhanced phagocytic capacity 
is associated with increased respiratory burst activity and superoxide generation in 

response to TGF-01 by Mo (Welch et aL 1990). This is then followed by inhibition of 

inflammatory cytokine and mediator production such as IL-1p, IL-8, TNF-a, GM- 

CSF and LTC4 (Fadok et aL 1998). 

Eosinophil clearance is crucial to the resolution of inflammation (Woolley et aL 1996) 

and is predominantly dependent on apoptosis. Apoptotic cell products are 

phagocytosed by Mo (Woolley et aL 1996). TGF-01 has been demonstrated in-vitro to 
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enhance the rate of eosinophil apoptosis. This may be through TGF-01 mediated 
inhibition of GM-CSF and IL-5 production (Alam et al. 1994). Local tissue IL-3, 

GM-CSF and IL-5 in particular effectively prolong tissue eosinophil survival and the 

absence of such factors leads to rapid apoptosis (Yamaguchi et al. 1991). In addition 

TGF-P, can inhibit eosinophil release of mediators (Alam et al. 1994). 

Importantly, Mo activation is followed by down-regulation of the macrophage TGF- 

P, receptor leading to decreased sensitivity to TGF-P, mediated signalling 

(McCartney-Francis & Wahl 1994). This is part of the resolution phase of 

inflammation. In-vitro studies indicate high concentrations of TGF-01 lead to 

deactivation of Mo function such as suppression of the respiratory burst (Oswald et 
A 1992) and cytokine production (TNF-a as one example) (Tsunawaki et aL 1988) 

(Nelson et A 1991). TGF-P, mediated attenuation of MHC class II expression and 

costimulatory molecules on myeloid DCs (Strobl & Knapp 1999) lead to loss of 

further T cell activation. TGF-P, inhibits proliferation and cytokine production by 

neve T cells as well as Thl and Th2 clones with post-activated T cells undergoing 

rapid apoptosis in response to TGF-P, (Sillett et aL 2001). 

Thus initially TGF-01 initially propagates inflammation but later in the cascade 

becomes a potent anti-inflammatory agent. Thus consideration of the context of TGF- 

p, signalling is important and is very much dependent on the state of cellular 

differentiation and the cytokine milieu in which the cell is present. It is therefore 

likely that the functional outcome of TGF-O signalling in asthma will be influenced by 

the disease microenvironment and suggests non-human asthma models of TGF-P 

signalling need to be interpreted with caution. 

1.11.6 TGF-P, and remodelling 

Rapid restoration of tissue structure following injury is essential for the maintenance 

of organ integrity and function. TGF-P, is one of the most fibrogenic factors known 

and therefore much research has focussed on its role in fibrosis. 

Airway epithelium is a very significant source of TGF ligands (Zhang a aL 1999). 

Autocrine effects of such ligands will have important disease implications. TOF-P, 

inhibits epithelial cell proliferation (Fjellbirkeland et aL 2003) although the 

mechanisms of such inhibition have not been fully elucidated. One mechanism by 
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which TGF-Pi can inhibit cell proliferation is by induction of the cyclin dependent 

kinase inhibitor p2lw'f that leads to arrest of the cell cycle in the G1 phase (Reddy et 

aL 1994). In the TGF KO mice expression of PCNA in inflamed tissues is elevated, 
indicative of uncontrolled cellular proliferation (McCartney-Francis et aL 1996). The 

finding of markedly increased p2lw'f expression (Puddicombe et aL 2003) in the 

absence of PCNA expression may then be a result of TGF-P, mediated epithelial 

effects which leads to inhibition of epithelial cell proliferation and therefore repair. 

TGF-P, mediated signalling thus contributes to aberrant epithelial repair. 

TGF-01 is an important fibroblast chemotactic factor (Postlethwaite & Seyer 1995) 

and fibroblast numbers have been shown to correlate with TGF-P, expression 
(Vignola et aL 1997). The TGF-PI-3 isoforms are all potent inducers of fibroblast 

proliferation with TGF-03 demonstrated the most potent (McAnulty et aL 1997). The 

isoforms induce the differentiation of fibroblasts to a-SMAý myofibroblasts 
(Thannickal et aL 2003) and promote the deposition of ECM components, particularly 

collagen (Coker et aL 1997). All three isoforms can rapidly induce collagen I and III 

mRNA transcription (Ignotz et aL 1987) whilst at the same time limiting intracellular 

collagen degradation as demonstrated in foetal lung fibroblast in-vitro experiments 

(McAnulty et aL 1995). TGF-P, leads to rapid synthesis of tenascin (Phipps et aL 
2002), biglycan (Romaris et aL 1991), fibronectin (Ignotz et aL 1987) and hyaluronan 

(Westergren-Thorsson et aL 1990). By reducing the synthesis of MMPs, particularly 

collagenases and stromelysins and by increasing the expression of molecules that 

inhibit them such as the TIMPs (Zeng et aL 1996), as well as plasminogen activator 
inhibitor (PAI) (Lund et aL 1987), ECM degradation is prohibited. TGF-P, is one of 

several mediators with effects on ASM including modulation of proliferation (Cohen 

et aL 1997) and collagen synthesis (Coutts et aL 2001). From this background it 

becomes apparent that it is essential to strictly regulate TGF-P ligand activation and 

signalling. Any dysregulated function therefore has the potential to lead to impaired 

inflammatory homeostasis and tissue remodelling. 

1.12 Activin 

1.12.1 Introduction 

Activin, originally identified as a factor that regulates gonadal function by regulation 

of follicle hormone production (FSH) in the anterior pituitary gland (Ying 1988), has 

important functions as both a cytokine (Munz et al. 1999) and growth and 
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differentiation factor (Chen et aL 2002). Whilst much research thus far has focused on 

the role of activin in tissue developmental programmes and reproduction, there is 

increasing interest in activin's role in acute inflammation and the response to tissue 

repair and injury. 

The subunits of activin are called P-subunits which are similar in overall structure to 

the TGF-P subunits. An activin molecule is comprised of two P-subunits of which 

four isoforms have been identified in mammals: -PA, PB, PC and PE. The most widely 

expressed isoforms are PA and OB which dimerise to from homodimeric activin-A 

(PAPA), homodimeric activin-B (PB: PB) and heteromeric activin-AB (PA: PB). The 

focus of this study is on activin-A, the most widely expressed of the activin ligands. 

The critical role of activin in embryogenesis is reflected by its extensive expression in 

nearly all organ systems. In the developed lung bronchial epithelium, monocytes, 

macrophages, mast cell, CD4 T cells, airway smooth muscle and vascular 

endothelium. all sources of activin-A (Michel et aL 2003). Like the TGF-P isoforms, 

activin-A is secreted as a prepro-ligand that undergoes enzymatic cleavage to an 

activated form. Similarly, the ECM provides an important store of activin-A that can 

be rapidly released in response to injury (Jones et aL 2004b). 

1.12.2 Physiological inhibitors of activin signalling 
A naturally occurring inhibitor of activin-A, inhibin, shares the same P subunit and 

antagonises activin-A signalling via effects on ligand synthesis, as well as receptor 

binding and signal transduction (Ying 1988). 

Follistatin, a protein monomer unrelated to activins and inhibins, is the most potent 

physiological inhibitor of all activins. Follistatin has a high affinity for activin and 

once bound with it activin undergoes rapid endocytic internalisation and subsequent 

proteolytic degradation (Hashimoto et aL 1997). Recent studies also suggest that 

follistatin may also bind to the BMPs and inhibit their activity (Iemura et A 1998). 

1.12.3 Activin-A and inflammation 

It was the observation that activin-A inhibited thymocyte proliferation that first 

suggested a role for activin-A in immune responses as an inflammatory cytokine 

(Hedger et aL 1989). Activin-A expression is up-regulated in response to IL-Icc and 
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TNF-oc (Shao et aL 1992) and is released as early as one hour in response to 

lipopolysaccharide (LPS) in a sheep model of acute inflammation (Jones et aL 2004a). 

Activin-A can inhibit IL-6 (Brosh et al. 1995) and therefore inhibit IL-6-dependent B 

cell proliferation and acute phase protein synthesis. Activin-A also stimulates 

apoptosis of B and T cells (Hashimoto et al. 1997). Activin inhibits IL-10 synthesis 
(Ohguchi et al. 1998). Whether the induction of activin-A in response to inflammation 

serves to propagate or attenuate inflammatory responses, particularly in a disease 

setting, remains uncertain. 

1.12.4 Activin-A and remodelling 
Both inflammatory arthritis and inflammatory bowel disease demonstrate marked 

activin-A expression. In Crohn's disease, activin-A mRNA expression in both the 

epithelium and submucosa is correlated with that of IL-la, a marker of disease 

severity. It was confirmed by in-situ hybridisation (ISH) of activin-A mRNA 

expression that fibroblasts and inflammatory cells are an important submucosal source 
(Hubner et aL 1997). Hepatic fibroblasts (stellate cells) in animal models of liver 

fibrosis are immunoreactive for activin-A (De Bleser et aL 1997). The functional 

response in cultured hepatic stellate cells to exogenous activin-A is ECM production, 

and it maybe that there is a synergistic effect of activin-A with TGF-01 to increase 

ECM synthesis in fibroblasts (Sugiyarna et aL 1998; Date et aL 2000). Human lung 

fibroblasts can actively synthesise activin-A under basal conditions but up to 3 fold 

induction by TGF-P I can occur (Karagiannidis et aL 2006). 

There is growing evidence to suggest a role for aberrant activin-A expression in lung 

disease. Murine models of bleomycin-induced lung fibrosis demonstrate prominent 

immunoreactive activin-A (Matsuse et aL 1995) and this is also the case in human 

interstitial fibrotic lung disease (Matsuse et al. 1996). The administration of follistatin 

in the same model was Associated with a marked attenuation in the number of 
inflammatory cells and lung fibrosis, suggesting that activin-A plays a critical role in 

inflammation and repair. Activin-A is a potent inducer of lung fibroblast proliferation 

and myofibroblast differentiation (Ohga et aL 1996). 

Mast cells accumulate at sites of inflammation in response to TGF-PI and activin 

signalling (Olsson et aL 2000). Activin A is synthesised de novo in mast cells with 

allergen challenge and induces ASM proliferation (Cho et aL 2003). This is 
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significant given the finding that mast cell infiltration of ASM is associated with AHR 

in asthma (Brightling et aL 2002). In a mouse model of allergen induced airway 
inflammation a marked upregulation of activin-A mRNA was seen, with epithelium 

and inflammatory cells as significant sources. There was a concomitant upregulation 

of the Type I receptor (ALK-4) for activin. Serum activin-A levels were elevated in 

severe asthmatics only (Karagiannidis et aL 2006). Activin-A is unbound in the 

circulation and is bioactive (Jones et aL 2000). 

1.13 Bone morphogenetic proteins 
1.13.1 Introduction 

The bone morphogenetic proteins (BMPs) are the largest subgroup of structurally and 

functionally related proteins in the TGF-Superfamily of ligands (Hogan 1996). The 

BMP ligand system represents a major developmental signalling pathway critical for 

organ embryogenesis and tissue generation such as in the kidney and the lung 

(Vukicevic et aL 1994a). BMPs are highly conserved in nature as seen in organisms 

as diverse as the nematode Caenorhabditis elegans and humans (Estevez et aL 1993), 

with such conservation consistent with the vital role of BMPs in embryonic 

development and tissue homeostasis. 

BMPs were originally identified on the basis of their ability to induce endochondral 
bone formation (Wang et aL 1988). The BMPs are dimeric molecules linked by an 

interchain disulphide bond. Each BMP monomer demonstrates the characteristically 

conserved seven cysteine residues (cysteine knot) common to the TGF-P Superfamily. 

Each member is synthesised as a 400 amino acid precursor which undergoes post- 

translational processing to a 110 amino acid mature molecule. 

1.13.2 Bone morphogenetic proteins and remodelling 

Although first identified in bone, it is now apparent that there is widespread 

expression in other organ systems such myocardium, kidney, adrenals and smooth 

muscle, endothelium. and lung (Chang et aL 2002). The vital function of BMPs in 

organogenesis is evidenced by the knockout mice. BMP-2 KO mice exhibit severe 

heart abnormality that is embryonically lethal (Zhang & Bradley 1996) and BMP-4 

KO display failure of mesodermal induction (Winnier et aL 1995). Such findings 

suggest that BMPs may play an important role in epithelial-mesenchymal interactions 

during tissue remodelling. 
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BMP-I is unrelated to other BMPs as it does not regulate the growth or differentiation 

of cells. It serves as a protease for the cleavage of procollagen fibrils as well as the 

BMP antagonist chordin (Uzel et aL 2001). BMP-2, BMP-4 and BMP-6 are the most 

readily detectable ligands in cultures and therefore have been studied extensively. 

BMP-2 and BMP-4 share 92% amino acid sequence homology which explains their 

virtually identical functional repertoire. As essential insight into the role of BMPs as 

one of the key developmental pathways in tissue repair and organogenesis is 

beginning to be made, it is becoming apparent that many of the BMP signalling 

pathways are also fundamental for the maintenance, regeneration and repair of tissue. 

in lung branching morphogenesis BMP-4 expression is expressed predominantly in 

the distal epithelium of the bud outgrowth (branching tips) that grows into the 

mesenchymal tissue. Mesenchyme derived FGF-10 can induce this expression of 

BMP-4 (Weaver et A 2000). In the presence of this mesenchymal interaction BMP-4 

serves to stimulate branching. The context dependence of signalling is illustrated by 

the finding that BMP-4 inhibits the growth of isolated epithelium in culture systems 

(Bragg et aL 200 1; Shi et aL 200 1). BMP-4 directly increases the number of a-smooth 

muscle actin positive parabronchial cells in an in-vivo lung explant system (Mailleux 

et aL 2005). In diseases where dysregulated BMP signalling is present as primary 

pulmonary hypertension (due to vascular smooth muscle proliferation) and non-small 

cell lung cancer (Kraunz et aL 2005), the loss of BMP antiproliferative effects allows 

progrowth signalling pathways to take-over. 

BMP-7 (also known as osteogenic protein 1 or OP-1), identified originally as a potent 

osteogenic factor from bone, is rapidly gaining prominence as an antifibrotic factor by 

its ability to antagonise the effects of TGF-Pj. Much of our understanding of BMP-7 

has come from work in kidney development and disease. BMP-7 expression is seen at 

sites of epithelial-mesenchymal tissue interactions with regulatory effects on 

branching morphogenesis. During lung formation expression is most prominent along 

the basement membrane (Vukicevic et A 1994b). In kidney development BMP-7 

regulates branching morphogenesis and serves as a survival factor for epithelium 

(Vukicevic et aL 1996; Piscione et A 1997). End stage kidney disease is 

characterised by massive fibrosis driven by TGF-P, signalling associated with 

decreased BMP-7 expression (Ueda et al, 2005; Klahr 2003). Exogenous 
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administration of BMP-7 into experimental systems is able to reverse the fibrotic 

effects of TGF-01, through counteracting TGF-Pi induced epithelial-mesenchymal 

transition and is associated with decreased expression of Type I collagen by 

fibroblasts (Zeisberg et aL 2003b; Zeisberg et aL 2003a). In lung myofibroblasts 

BMP-7 inhibits TGF-01 mediated collagen expression, a-smooth muscle actin 

expression and TIMP-2 (Izumi et aL 2006). It has been demonstrated in both the 

kidney (Gould et aL 2002) and the gut (Maric et aL 2003) that BMP-7 potently 

reduces inflammation and fibrosis. A selective suppression of the expression of pro- 

inflammatory cytokines was demonstrated. It is tempting to speculate that BMP-7 

may offer similar therapeutic prospects in the lung. 

1.14 TGF-P Superfarnily signalling 

1.14.1 Introduction 
Upon activation TGF-P ligands signal via a constitutively active serine-threonine 

kinase specific Type H receptor that complexes with a Type I receptor which then 

propagates the signal downstream by phosphorylating receptor-regulated Smads (R- 

Smads) that translocate to the nucleus in association with Smad. 4 to initiate gene 

transcription (Figure 1.5). TGF-01-3 and activin signalling is via phosphorylated (p) 

pSmad2 and pSmad3 whilst pSmadl, pSmad5 and pSmad8 mediate BMP signals. 

These R-Smads associate with the common Smad4. Smad6 and7 inhibit further 

signalling by interacting with the Type I receptor. In mammals only seven Type I 

receptors and five Type H receptors have been identified. Combinatorial interactions 

in the receptor complex allow differential ligand binding or differential signalling in 

response to the same ligand, this being tissue specific. Given that the TGF-P 

Superfamily are present in an inactive state bound to ECM, signalling analysis is 

required to detect activity of these factors. 

1.14.2 TGF-P Superfamily receptors 

The TGF-P ligands are dimeric molecules that signal through the assembly of a 

receptor tetrameric complex consisting of two Type I receptor molecules and two 

Type Il receptor molecules. The receptor structure is characterised by a ligand binding 

extracellular domain, a single transmembrane domain and a cytoplasmic serine- 

threonine kinase domain. The receptor sub-types are distinguished on the basis of the 

distinct sequence conservation of the kinase domain and in the Type I receptor by the 
4 

presence of the glycine-serine (GS-box) region immediately up-stream from the 
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catalytic domain in the juxta-membrane region (Wrana et aL 1994). In the receptor 

complex the Type II receptor has constitutively active kinase activity and 

phosporylates the GS-box that is critical for the activation of the Type I receptor. 
Phosphorylation leads to conformational change in the GS box leading to ATP 

binding and substrate phosphorylation of the downstream R-Smads (Wrana et aL 

1994). 

The Type I Receptor for the TGFPI-3 isoforms is (activin-like kinase) ALK-5 (TPRI) 

(Franzen et aL 1993). The activin group of ligands signal through predominantly 

ALK-4 (ten Dijke et aL 1994a). The BMP ligands signal using ALK-2, ALK-3 and 

ALK-6) (ten Dijke et al. 1994a). ALK-1 is complicated in that it is activated by TGF- 

P, but will signal through the usually BMP-restricted Smadl and Smad5 (Ota et al. 

2002). The TGF-P isoforms signal through only the Type II receptor TGFPRII (Lin et 

al. 1992). The activins can signal through either Activin RIIA (ActRIIA) or Activin 

RHB (ActRIIB) (Attisano et aL 1992). Although BMP signalling is predominantly 

through BMPRII, signalling can also occur via Activin RIIA and RIIB (Liu et aL 
1995). 

Combinatorial interactions in the receptor complex allow differential ligand binding 

or differential signalling in response to the same ligand which is tissue specific. There 

is variation in the affinity of TGF ligands for the different receptor combinations. 

ALK-5 is activated by TPRII for TGF-P signalling (Franzen et aL 1993) whilst the 

binding of activin to ActRIIA recruits ALK-4. BMP ligand signalling is even more 

complex. BMP-2 and BMP-4 are related and bind either BMPRII or ActRIIA and 

ActRIIB with preferential recruitment of ALK-3 or ALK-6 (Aoki et aL 200 1). BMP-6 

and BMP-7 bind either ActIIA or ActRIIB and can preferentially recruit ALK-2 (ten 

Dijke et aL 1994b), but also bind ALK-3 or ALK-6. TGF PI-3 iSOfOnns bind TPRII 

but can also activate ALK-1, especially so in endothelial cells (Ota et aL 2002). ALK- 

I phosphorylates Smadl and Smad5, the BMP signalling pathway Smads (Chen & 

Massague 1999). Thus the differential activation of either ALK-I or ALK-5 by the 

same ligand leads to a different functional outcome in the cell. ALK-7 is 

predominantly expressed in neuroendocrine tissue (Ryden et aL 1996) and is used by 

activins other than activin-A, and is therefore not a focus in this study. 
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1.14.3 Accessory receptors 

Betaglycan is a cell-surface TGF binding protein that promotes binding of for TGFPI 

and P2 ligands to the Type II receptor (Andres et aL 1991). In addition it acts to 

promote the interaction of inhibin with Act RIIA and Act RIIB, leading to functional 

inhibition of activin (Lewis et aL 2000). Endoglin is another membrane associated 

receptor that has a role in regulating the assembly of Type I and Type II receptor 

complexes for TGFPi, TGFP3, activin, BMP-2 and BMP-7 (Barbara et A 1999). In 

contrast to betaglycan, endoglin expression is cell-specific and serves to inhibit rather 

than enhance TGF ligand responsiveness. Other decoy receptors such as BAMBI 

(BMP and Activin Membrane Bound Inhibitor) share sequence homology to Type I 

receptors and offer an additional level of receptor regulation (Onichtchouk et aL 
1999). 
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Figure 1.5 Summary of TGF-P Superfamily signalling pathways 

TGF-P Supcrfamily of ligands signal by binding to a constitutively active scrinc-threoninc 
kmase specific Type 11 receptor that complexes with a Type I receptor which subsequently 
propagates the signal downstream by phosphor,, lating receptor th Y -regulated (R) Smads at 
translocate to the nucleus to initiate gene transcription. 

TGF-01-3 and activin signalling is via phosphorylated (p) pSmad2 and pSmad3 whilst 
pSmad 1, pSmad5 and pSmad8 mediate BMP signals. TGF-P, via the Type I receptor ALK- I 
can lead to activation of BMP signalling pathways via pSmadl and pSmad5. R-Smads 
associate with the common (Co) Smad4. Smad6 and Smad7 expression is rapidly induced in 
cells in response to TGF-PI-3, activin and BMP figand signalling. Smad6 and 7 inhibit further 
signalling by interacting with the Type I receptor. Combinatorial interactions in the receptor 
complex allow differential ligand binding or differential signalling in response to the same 
ligand and tills is tissue spccific. TGF-P figands are rcgulated by s,,, nthcsis but arc also bound 
to ECM proteins as inactive forms which must be activated for example by thrombospondin 
or aO, integrin. Thus signalling analysis is required to detect activity of the factors. 
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1.14.4 Regulation of receptor activation 

Given the critical role of TGF-P signalling pathways it is expected that the point of 

pathway activation between the Type I receptor and R-Smads will be regulated at 

several levels. 

In the resting state activation of the Type I receptor is prevented by the repressor 

protein FKBP12 binding to the unphosphorylated GS box. This capping of the Type I 

receptor phosphorylation site by FKBP 12, an FK5 06 binding immunophilin, prevents 

activation by the Type II receptor in the basal state (Wang et A 1996). Receptors are 

further regulated by accessory receptors (such as betaglycan and endoglin) and the 

substrate anchor proteins such as SARA (Smad anchor for receptor protein). SARA is 

anchored to the plasma membrane and this is an ideal position for SARA to bind both 

the receptor complex and either Smad2 or Smad3 (Wu et aL 2000). Such interaction 

serves to stabilise the receptor-Smad complex. Upon phosphorylation of the R-Smad, 

the SARA-Smad complex dissociates. BMP inactivated Smads are unable to interact 

with SARA (Tsukazaki et aL 1998). 

Receptor internalisation and endocytic trafficking of receptors can lead to either 

activation of signalling by promoting the association of activated receptors with 

signalling substrates in endosomes or lead to receptor down-regulation by degradation 

of activated receptor complexes. Both are important mechanisms of regulating 

signalling pathways in eukaryotic cells (Figure 1.7). Clathrin-dependent pathways are 

an important mechanism by which receptors are targeted to endosomes and an 

important pathway for down-regulating many receptors. Another important regulatory 

mechanism utilises caveolae. Caveolae, are formed from caveolin proteins that 

combine with lipid rafts. Lipid rafts are plasma membrane domains rich in lipids and 

cholesterol that remain in the liquid phase and recruit hydrophobic proteins linked to 

plasma proteins. Permanent engagement of a ligand by the receptor induces receptor 

translocation into the caveolae. TGF-P Superfamily receptors are regulated by both 

pathways (Di Guglielmo et A 2003). Clathrin-dependent internalisation into early 

endosomes is important for signal propagation whilst entry into the caveolin positive 

lipid-rafts leads to receptor degradation and is associated with reduced Smad 

activation. 

93 



1.14.5 Signal transduction by the TGF-P Superfamily 

Transcription factors 

Transcription factor proteins are nuclear messengers that regulate gene expression. 

The Smad proteins are a family of transcription factors with a molecular weight of 42 

to 65 KDa (Massague et aL 2005). Transcription factors initiate gene expression by 

binding to the regulatory sequences of genes found in the 5' upstream region of the 

promoter of the target gene. The TATA box (an AT-rich sequence) is found 

approximately 30 base pairs upstream of the transcription start site of most genes and 

is essential for positioning the basal transcription machinery at the initiation site of the 

gene. The promoter is defined by the region of the gene that is bracketed by the 

TATA box and site of transcriptional initiation ten-ned the Cap site. The promoter 

region can bind a variety of proteins that direct transcription as well the RNA 

polymerase II enzyme. 

Enhancers are DNA sequence elements that serve to increase the activity of 

promoters. Remarkably they can be located at great distances from the site of 

transcription and can contain multiple binding sites for transcription factors. Proteins 

can bind to the enhancer up or downstream from the promoter but still contact the 

transcriptional apparatus by looping out of intervening DNA. 

Large proteins that bind multiple transcription factors such as the co-activator 

molecule CREB-binding protein (CBP) and p300 can interact with multiple 

transcription factors bound to the enhancer and integrate the numerous signals to 

activate gene transcription. Gene transcription requires DNA unwinding around the 

histone core. Both CBP and p300 display intrinsic histone acetylation activity that is 

activated upon binding of transcription factors AM and NF-KB. Histone acetylation 

leads to DNA, that is coiled round the histone core, unwinding to open up the 

chromatin structure (Barnes et A 2005). Increased access to DNA sites leads to 

greater affinity and speed of binding by the transcription machinery and thus more 

efficient transcription. Smads can directly interact with both CBP and p300, allowing 

even a greater versatility of signalling targets as discussed below (Janknecht et aL 

1998). 
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1.14.6 Smads 

It was through studies in Drosophila (Raftery et A 1995; Sekelsky et aL 1995) and 
Caenorhabditis Elegans (Savage et aL 1996) that insight into the signalling 

mechanisms downstream from the Type I serine/threonine kinase receptors was first 

obtained. These studies showed that in Drosophila Melanogaster Mad (mothers 

against decapentaplegic) gene and in C. Elegans the Sma gene coded for a conserved 

family of TGF-P signalling pathway components with subsequent identification in 

vertebrates. The genes were thus collectively named as Smad. 

The Smads are divided into three distinct subfamilies, the receptor-activated Smads 

(R-Smads) 1,2,3,5 and 8, the common-partner Smads (Co-Smads) of which there is 

only Smad-4 in mammalian cells and finally the inhibitory (I) Smad6 and Smad7 (Shi 

& Massague 2003). Smadsl, 2,3,4,5,8 display two conserved polypeptide domains, 

termed the Mad homology (MH) I domain in the N terminal end and MH2 at the C 

terminal end which are separated by a proline rich linker region that is less conserved 
(Figure 1.6). The I-Smads Smad6 and Smad7 are structurally divergent in that they 

lack the MH I segment and function with only the MH2 domain. 

TGF-01-3 and activin signalling is via Smads2 and Smad3 whilst Smadsl, Smad5 and 

Smad8 mediate BMP signals. Smad2 and Smad3 are activated by ALK-5 (TPRI) and 

ALK-4 (ActRIB) with Smad I, Smad5 and Smad8 being activated by ALK-1, ALK-2, 

ALK-3 and ALK-6 (Shi & Massague 2003). In endothelial cells in particular TGF-P, 

can also activate Smadl and SmadS through the Type I ALK-1 receptor. Whereas 

ALK-5 is widely expressed ALK-I is expressed predominantly in endothelial cells but 

also at sites of epithelial-mesenchymal interaction (Roelen et al. 1997). 

The C-terminal of R-Smads display a characteristic -Ser-Ser-Xaa-Ser- motif of which 

the two latter serine residues are the target for phosphorylation, (p) by activated Type I 

receptors (Abdollah et A 1997). Thus the phosphorylation of the C terminal SXS 

motif leads to conformational changes in R-Smads, dissociation from the Type I 

receptor and the formation of a trimeric complex of two R-Smads with one Co- 

Smad4. Co-Smad4 displays the MH1-linker-MH2 domain structure but lacks the C 

terminal SXS motif and therefore is not phosphorylated by the Type I receptor (Figure 

1.6) (de Caestecker et A 1997). Smad4 interacts with the R-Smads directly via its 

MH2 region. The heterotrimeric complex of Smad4 with either Smad2 and Smad3 or 
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Smadl, Smad5 and SmadS allows a selection of combinatorial interactions and 

versatility to the signalling process. 

The R-Smad-Co-Smad4 complex translocates into the nucleus. At the regulatory 

sequences of specific genes the complex can participate in the transcription of specific 

genes by acting directly as a transcription factor as well as activating other 

transcription factors. Interaction of R-Smads with Smad4 is essential for the formation 

of nuclear transcription factors rather than nuclear transportation (Liu el aL 1997). 

inhibitory Smad6 and Smad7 now translocate out of the nucleus and by competing 

with R-Smads for the Type I receptor provide a negative feedback loop of inhibition 

on TGF-P Superfamily signalling (Hanyu et aL 2001). 

1.14.7 Conservation of Smad domains 

The biology of Smads as transcription factors is reviewed in detail by Massague et A 

2005. The conservation of the MH2 domain in all Smads is a reflection of the 

importance of this region in interaction with receptors and transcription factors and 
for the adoption of oligomeric conformations. The MH2 domain also demonstrates 

transcriptional activator function but this activity is repressed in the resting state by 

interaction with the MHI domain. The MHI domain and linker regions have the 

capacity to directly bind to DNA as well as other transcription factors. A nuclear 
localisation signal (NLS) is present on the MHI domain which can bind a variety of 

transcription factors (Figure 1.6). The MH2 domain does not bind DNA directly but is 

important for protein-protein interaction and also contains a nuclear export signal 

(NES) important for nucleocytoplasmic shuttling. In R-Smads consensus 

phosphorylation sites in the linker region allows cross talk with MAPK signalling 

pathways. Such cross-talk with other signalling pathways allows important cell 

specific TGF-P Superfamily signalling and will be discussed later. The Smad4 C- 

terminal end of the linker region contains a region called the Smad activation domain 

(SAD) and allows binding with other transcription factors and is thus essential for 

signal transduction. 
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Figure 1.6 Illustration of the structural domains of the 3 classes of Smads in 

mammalian cells (adapted and further modified from Flanders 2004). 

Receptor (R) Smads and Common Smad4 display two conserved domains MI II and MI 12 
separated by a Linker region. The inhibitory Smads are structurally divergent by lacking an 
MHI domain. R-Smads undergo phosphorylation at the C-terminal SSXS region of the MI-12 
domain- The conservation of tile MH2 domains in all Smads indicates the pivotal role of this 
region in Smad interaction with receptors, transcription factors and the adoption of oligomeric 
conformations. The MH1 domain and linker regions can bind DNA directly. In R-Smads 
consensus phosphorylation sitcs in the linkcr rcgion allov, cross talk with MAPK signalling 
pathways. Smad4 C-terminal end of linker region contains the Smad activation domain (SAD) 
that allows binding of transcription factors. The location of nuclear local'sation and export 
signals (NLS and NES respectively) are shown. 
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1.14.8 Smads as transcription factors 

Once Smad complexes are located to the nucleus they are able interact directly with 

the DNA. The Smad3 and Smad4 N terminal MH1 domains can directly interact with 

Smad-binding elements (SBEs) characterised by only four base pairs (5'-GTCT-3' or 

the reverse complement 5'-AGAC-3'), the interaction occurring through the 

formation of hydrogen bonds with the two G residues of the SBE (Zawel et aL 1998). 

Smadl, Smad3 and Smad4 share an identical P-hairpin sequence and can thus bind 

SBEs with similar affinity. It is estimated that there is at least one SBE for every gene 

in the genome. if Smad binding to SBE sequences alone was sufficient to initiate gene 

transcription then this could lead to non-discriminate activation of a vast number of 

genes by Smads. However such interactions are weak and do not allow sufficient 

promoter selectivity. Thus R-Smad and Co-Smad complexes require association with 

other transcription factors in order to target DNA sequences with specificity and high 

affinity. This is particularly so for Smad2 as Smad2 lacks the capacity to intrinsically 

bind DNA as a result of an extra 30 amino acid sequence in front of the P-hairpin 

region (Shi et aL 1998c). 

1.14.9 Smad interactions with DNA transcription factors 

it was in Xenopus that the role of DNA binding factors interacting with Smads was 
first described with the FAST/FoxH-1 protein, a winged-helix DNA binding factor 

(Chen et aL 1996). Studies on the mammalian homologue have identified the 

principles that govem Smad-DNA binding factor interactions. In response to activin 

signalling the Smad2-Smad4 interacts with the DNA-bound Fox-H1 at an activin 

response element. The MH2 domain of Smad2 interacts with Fox-HI whilst Smad4 

binds the DNA (Chen et aL 1996). The specificity of Fox-111 for actvin activated 

Smad2-Smad4 complex and not Smadl/5/8-Smad 4 complexes involved in BMP 

signalling is a result of few amino acid differences in the Smad2/3 MH2 domain. 

OAZ, a member of the zinc finger family of proteins, has been identified as a DNA 

binding factor in the BMP signalling pathway with binding to the Smadl-Smad4 

complex (Hata et al. 2000). Cell specific expression of such factors as FAST and 

OAz thus ensure cell specific responses to activin and BMP ligand signalling. 

Transcription factors have an essential role in the recruitment of Smads to specific 

promoters. The remarkable diversity of DNA binding factors with the capacity to 

undertake DNA transcription in their own right (unlike FAST and OAZ above) that 

are able to interact with Smad proteins introduces extensive versatility into the 
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process of gene transcription. Furthermore other important cell specific signalling 

pathways can directly influence this interaction. Such diverse regulatory interactions 

explain the complexity of TGF-P Superfamily ligand-induced transcriptional 

programs and cell specificity of expression. 

1.14.10 Smad interaction with co-activators, co-repressors and chromatin 

modelling factors 

Activated (phosphorylated) Smadl, Smad2 and Smad3 can directly interact with the 

co-activators CREB-binding protein (CBP) and p300 via their Smad C-terminal MI-12 

domain (Janknecht et aL 1998) . Such co-activators bind DNA and have the capacity 

to interact with and subsequently integrate transcriptional signals from transcriptional 

factors such as AP-1, NF-KB, c-Jun, CREB, c-Fos, STATS and nuclear hormone 

receptors such as the glucocorticoid receptor (GR) and retinoic acid. Thus the 

CBP/p300 integrators serve to bridge Smad-signalling to the basal transcriptional 

machinery. Furthermore the intrinsic histone acetylase (HAC) activity of CBP/p300 

molecules maybe responsible for the Smad-dependent alteration of chromatin 

structure, leading to altered transcriptional activity. 

Smads can also activate transcription by direct interaction and blocking of 

transcriptional repressors. For example BMP activated Smadl protein can relieve the 

repression of osteopontin (a bone ECM component) gene expression by binding to 

and subsequently dislodging the homeodomain transcription factor Hoxc-8 from its 

DNA binding elemernt (Shi et aL 1999). Smads can also recruit co-repressors to DNA 

and effectively inhibit transcription. An example of this is the homeobox protein TGT 

interacting factor (TGIF) and its associated histone deacetylase (HDAQ which when 

recruited by the pSmad2-Smad4 complex to Smad responsive DNA elements results 

in transcriptional repression of target genes (Wotton et aL 1999). Interestingly such 

repression can affect genes that are normally activated by TGF-P signalling and this 

may be because TGIF can antagonise activators such as CBP/p300. 

In summary, Smads can associate with DNA with low affinity and without strict 

sequence specificity to regulate gene transcription. However, by interacting with 

multiple transcription factors or co-activators and co-repressors, which in turn can 

interact with other multiple cellular signalling pathways, Smad proteins provide a 

versatile system by which TGF ligands can achieve multiple outcomes in a cell. At 
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present our insight into signalling by this complex pathway is still at a very basic 

stage. 

1.14.11 Regulation of Smad levels 

R-Smads 

The E3 ubiquitin ligases, Smurf-1 and Smurf-2 (Smad-ubiquitination-regulatory 

factor-1), have an important role in the regulation of cellular Smad levels (Figure 1.7). 

Ubiquitin-proteasome-mediated degradation regulates the level of R-Smads. 

Inhibition of proteasomal. degradation leads to excess nuclear accumulation of R- 

Smads. However a considerable proportion of the nuclear Smad. 2 and Smad3 levels do 

not undergo degradation but are dephosphorylated and shuttled back into the 

cytoplasm. 

1.14.12 Inhibitory Smads 

Smad6 and Smad7 inhibit TGF-01-3, activin and BMP signalling. Smad7 is a general 

and potent inhibitor of TGF-Superfamily signalling (Hayashi et aL 1997; Nakao et aL 

1997) whilst Smad6 preferentially inhibits BMP signalling (Imamura et aL 1997) 

(Hata et aL 1998). The levels of Smad6 and Smad7 expression is a determinant of 

TGF-Superfarnily responsiveness and markedly abnormal expression levels of Smad7 

in particular have been demonstrated in several inflammatory diseases such as 

inflammatory bowel disease (IBD) (Monteleone et aL 2001) and sclerodcrina, a 

disease of widespread skin, organ and vascular fibrosis due to dysregulated TGF-P, 

signalling (Dong et A 2002). Increased expression of Smad7 in IBD tissue was 

associated with increased inflammation. The use of antisense strategies to abolish 

Smad7 signalling restores TGF-01 responsiveness by the inhibition of inflammatory 

cytokine production such as TNF-cc and IFN-y (Monteleone et aL 2001). In skin 

biopsies and explanted fibroblasts from scleroderma patients, basal Smad7 expression 

and the induction of Smad7 was deficient suggesting that aberrant Smad7 expression 

contributes to the disease process. Using adenoviral constructs to induce Smad7 

expression in these fibroblasts, up-regulation of Smad7 levels lead to resultant 

suppression of TGF-P, signalling and a more regulated fibroblast-cell phenotype 

(Dong et aL 2002). 
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The regulation of Smad6 and Smad7 expression is now beginning to be deciphered. 

Smad6 and Smad7 expression is rapidly induced in cells in response to TGF-P, activin 

and BMP ligand signalling (Afrakhte et A 1998) Unlike R-Smads and Smad4, which 

are expressed in most, if not all cell types, Smad7 expression is highly regulated by 

extracellular signals and can be rapidly up-regulated in response to other non-TGF-P 

Superfamily signalling pathways. IFN-y activation of the Jak/Stat-I pathway, TNF-oc 

activated NF-KB and EGF via the MAPK signalling pathways can all influence the 

expression of Smad7 (Bitzer et A 2000; Ulloa et A 1999). Smad7 is unique in its 

role of integrating inhibitory signals to TGF-P responses from TGF-P Superfmaily 

ligands with those from other cellular signalling pathways. 

Understanding the regulation of the Smad7 gene promoter is of potential therapeutic 

importance. The proximal promoter region is the major transcriptional start site of the 

Smad7 gene and this is characterised by a high G d+ C content termed CpG islands or 

methylation free islands. These regions of DNA are a nucleosome free which allows 

easy access to transcription factors. The Smad7 gene promoter displays a R-Smad- 

Smad4 binding element (SBE) region defined by the palindromic sequence 

GTCTAGAC that is critical for TGF-P1 induction of the Smad7 promoter (Brodin et 

al. 2000). Upstream of the transcription sites are Spl binding site clusters. The 

transcription factors Spl and AP-1 are required by Smad complexes to cfficiently 

interact with the Smad7 promoter and initiate transcription (Brodin et aL 2000). 

Smad6 and Smad7 can regulate TGF-P Superfamily signalling through binding of the 

Smad-MH2 domain to the Type I Receptor thereby preventing the recruitment and 

phosphorylation of the R-Smads. Smad7 can also interact with ubiquitin ligases 

termed Smurfs leading to the degradation of the Type I receptor through proteasomal 

and lysosomal pathways (discussed later). In addition, Smad6 prevents the formation 

of BMP-activated Smadl heteromeric complexes with Smad4 by active competition 

(Hata et A 1998). Smad7 itself undergoes ubiquitination and degradation but 

transcriptional induction of Smad7 by TGF-Superfamily members ensures that a 

steady-state supply of cellular Smad7 is present. Nuclear Smad7 is protected from 

Srnurf-mcdiated degradation by acetylation of lysine residues but such protection is 

lost outside the nucleus (Gronroos et A 2002). 
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Figure 1.7 Illustration of the two distinct internalisation routes for TGF-PI-3 
Type I and Type 11 receptors 

Intcrnalisation of the receptor complex into clathnn-dcpcndent early cndosorncs leads to 
promotion of ligand signalling. Smad2/3 Is presented to the receptors in the cndosome 
complex leading to Smad2/3 phosphorylation. The receptor complex can now be recvc1cd 
back to the cell membrane surface. The Smad2/3-Smad4 complex upon nuclear translocation 
leads to Smad7 transcnption. Smad7 forms a heterotrimeric complex with Smurfl/2 in the 
nucleus before translocation back out into the cytoplasm. The Smad7-Smurf complex in the 
cavcolac target the Typc I receptor (ALK-5) for degradation through the ubiquitin-mcdiated 
Proteasomal degradation pathway. 
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1.15 TGF-P Superfamily signalling in asthma 
The role of TGF-P Superfamily signalling in asthma has until recently focussed on the 

predominant TGF-Pj isoform and expression patterns in asthma were discussed 

previously. Both inflammatory cells and structural cells are important sources of the 

ligand. In particular eosinophils are an important source of TGF-P, implicated in 

remodelling. In-vitro co-culture of fibroblasts with eosinophils led to phenotypic 

change to myofibroblasts and synthesis of ECM proteins tenascin and procollagen III: 

this was dependent on eosinophil-derived TGF-01 (Phipps et al. 2002). Anti- 

interleukin-5 antibody treatment of asthmatics led to reductions in airway eosinophils, 
TGF-P, expression and RBM staining for the ECM proteins tenascin, lumican and 

procollagen III (Flood-Page et al 2003a). 

TGF-01 and activin-A stimulate fibroblasts to undergo differentiation to 

myofibroblasts and to produce collagen, fibronectin and glycosaminoglycans (Ignotz 

et aL 1987; Zhang & Phan 1999; Desmouliere et A 1993; You & Kruse 2002). In a 

mouse model of allergen-induced airway injury an anti-TGF-01 antibody could block 

development of selected aspects of airway remodelling (McMillan et aL 2005). Mast 

cells accumulate at sites of inflammation in response to TGF-P, and activin-A 

signalling (Olsson et aL 2000). Activin-A is synthesised de novo in mast cells with 

allergen challenge and induces ASM proliferation (Cho et aL 2003). This is 

significant given the finding that mast cell infiltration of ASM is associated with AHR 

in asthma (Brightling et aL 2002). 

Bronchial biopsies obtained 24 hours after allergen challenge from mild atopic 

asthmatics showed significant up-regulation in pSmad2 signalling alongside increases 

in ECM expression (Phipps et aL 2004a). These data support the hypothesis of 

allergen-induced remodelling and TGF-P signalling, and may suggest allergen 

induced activation of the epithelial-mesenchymal trophic unit (EMTU): the 

embryological unit driving airway development which is suggested to be reactivated 

in airway remodelling. 

other groups have published evidence for activity of TGF-PI, activin and BMP 

signalling after airway allergen challenge in a mouse model (Rosendahl et aL 2001) 

(Rosendahl et al. 2002). The TGF-P Superfamily are essential in organogenesis, and 

BMPs in particular play a role in branching morphogenesis in the developing lung. 
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Airway remodelling is suggested to involve dysregulated reactivation of the 

embryological epithelial-mesenchymal trophic unit, making these factors of particular 
interest. Interestingly, although BMP-2, BMP-4 and BMP-6 were markedly up- 

regulated in the murine model of allergen exposure, BMP-5 and BMP-7 expression 

was down-regulated (Rosendahl et aL 2002). BMP-2 and BMP-6 has previously been 

shown to be induced during fibrotic responses (Kaiser et aL 1998) whilst BMP-7 is 

now recognised as regulating the resolution of inflammatory events (Gould et aL 
2002) and has been shown to counteract the effects of TGF-01 in remodelling events 
(Zeisberg et aL 2003). 

1.16 Hypothesis 

It is hypothesised that: 

1. In atopic asthmatics following allergen inhalation challenge there are increases 

in AHR in individuals with dual asthmatic responses (DARs). Airway 

infiltration with inflammatory cells as shown by increases in eosinophils, T 

cells and neutrophils will be more pronounced in these individuals compared 

to individuals with single early responses (SERs). Since in DARs allergen- 
induced increased AHR is sustained for days and weeks, there will be 

persistence of airway inflammation in these individuals. 

2. There will be rapid induction of airway remodelling at 24 hours post allergen 

which in DARs will be in association with increased AHR and cellular 

inflammation. Some components of airway remodelling will accompany 

cellular inflammation. Further, at the 7 day time point, when sustained 

increases in AHR are present, there will be comparable increases in airway 

remodelling and cellular inflammation 

3. Changes in airway remodelling will be associated with activation of TGF-B 

Superfamily (i. e TGF-81-3, activin and BMP) signalling evidenced by rapid 
increases in pSmad2, pSmadl/5 and Smad7 and altered expression of the Type 

I and Type II receptors. 
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1.17 Aims 

Based on the hypotheses the aims of the thesis will be: 

1. To compare cellular inflammation, airway remodelling and AHR in bronchial 

biopsies taken at baseline, 24 hours and 7 days after allergen challenge in mild 

atopic asthmatics. 

2. To evaluate the expression pattern of TGF-01-3, activin-A, follistatin and BMP-2, 

BMP4, BMP-7 together with that of Type I (ALK 1-6) and Type 11 receptors (TORII, 

ActRIIA, ActRUB and BMPRII) and activated phosphorylated R-smads (pSmad2 and 

pSmadl/5), Co-Smad4, inhibitory Smad6 and Smad7. Expression in bronchial tissue 

obtained at baseline, 24 hours and 7 days after challenege will be compared to 

expression in the nonnal airway. 
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Chapter 2 

Methods 
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2.1 Ethical statement 
The study received prior approval from the Ethics Committee of the Royal Brompton 

and Harefield Hospital NHS trust. Following patient recruitment written infon-ned 

consent was obtained in the presence of a witness prior to any procedure being 

undertaken at the study screening visit. In addition written infonned consent was 

obtained prior to each bronchoscopy in the presence of a witness. 

2.2 Volunteer recruitment 
Volunteers with asthma and normal healthy controls were recruited by advertisement 
from both the general public and Imperial College staff. 

2.2.1. Asthmatic volunteers 

Inclusion criteria 

1. Age 18 to 50 years, of either gender or any ethnic group. 

2. A clear clinical history of asthma, i. e. intermittent bouts of cough, wheeze and 

dyspnoea as well as reversible airways obstruction (15% or more increase in peak 

expiratory flow or FEVI to inhaled salbutamol 200 mcg) or airway hyper- 

responsiveness (methacholine PC20 of less than or equal to 8mg/ml). 

3. All subjects had positive skin prick tests (wheal size >3 mm) to at least one 

common aeroallergen, i. e. grass pollen, house dust mite, cat or have a positive blood 

RAST to these allergens with a history of bronchospasm on exposure. 

4. All subjects were able to provide written informed consent. 

6. All subjects were able to follow instructions and completed all requirements. 
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Exclusion criteria 
1. All subjects with an FEVI less than 70% of predicted normal. 

2. All subjects with symptomatic, uncontrolled/poorly controlled asthma. 

3. All subjects taking drugs which interfere with the early or late phase response. 

4. Subjects who had taken oral corticosteroids within the previous 2 months, or 

inhaled corticosteroids within the last month. If patients had mild asymptomatic 

asthma (FEVI>80% predicted), and were taking 250 mcg/day or less 

beclomethasone equivalent, inhaled corticosteroids were stopped for 4 weeks prior 

to the study (during this period patients were closely monitored with peak flow and 

symptom diary and weekly contact with the trial physician to check that their 

asthma did not become unstable [FEVI<70% or nocturnal symptoms]). Short acting 
02 agonists, were withheld for 4 hours before any visit, and long acting 02-agonists 

for 12 hours. 

5. Vaccination/inoculation within the previous 6 weeks, or vaccination scheduled 

within the study period. 

6. Allergen-immunotherapy in the past. 
7. A history of concurrent illness, e. g., autoimmune diseases and other immuno- 

pathological disease, significant cardiovascular, renal, neurological, gastrointestinal, 

respiratory (other than asthma and allergic rhinitis), sinusitis, nasal polyps, chronic 

obstructive pulmonary disease, moderate or severe atopic dermatitis, hepatic or 

systemic disease (including malignancy). 

8. Clinically significant abnormalities in routine haernatology, biochemistry or 
urinalysis. 
9. History of drug or alcohol abuse. 

10. Subjects who had taken an investigational drug within the last 6 weeks. 

11. Women who were pregnant, lactating or not using a reliable form of 

contraception. 
12. Subjects who had smoked within the previous year or more than 5 pack years 

smoking history. 

13. Subjects who had any personal relationship with the investigator 
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2.2.2. Normal volunteers 
Inclusion criteria 
1. Age 18 to 50 years, of either gender or any ethnic group. 
2. No clinical history of asthma, i. e. intermittent bouts of cough, wheeze and 
dyspnoea with no reversible airways obstruction (significant changes in peak 

expiratory flow or FEVI to inhaled salbutarnol 200 mcg) or airway hyper- 

responsiveness (methacholine PC20 of more than 16mg/ml). 

3. No positive skin prick tests (of any size) to any common aeroallergen, i. e. grass 

pollen, house dust mite or cat. Negative IgE RAST to these allergens. 
5. All subjects were able to provide written infornied consent. 
6. All subjects were able to follow instructions and likely to complete all 

requirements. 

Exclusion criteria 
1. Volunteers with an FEVI less than 80% of predicted normal. 
2. Volunteers taking any form of medication. 

3. Vaccination/inoculation within the previous 6 weeks, or vaccination scheduled 

within the study period. 

4. Allergen-immunotherapy. 

5. A history of concurrent illness, e. g., autoimmune diseases and other immuno- 

pathological disease, significant cardiovascular, renal, neurological, gastrointestinal, 

respiratory (other than asthma and allergic rhinitis), sinusitis, nasal polyps, chronic 

obstructive pulmonary disease, moderate or severe atopic dermatitis, hepatic or 

systemic disease (including malignancy). 

6. Clinically significant abnormalities in routine haematology, biochemistry or 

urinalysis. 

7. History of drug or alcohol abuse. 

8. Subjects who had taken an investigational drug within the last 6 weeks. 

9. Women who were pregnant, lactating or not using a reliable form of contraception. 

10. Subjects who had smoked within the previous year or more than 5 pack years 

smoking history. 

11. Subjects who had any personal relationship with the investigator 
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2.3. Study protocol 

2.3.1 Asthmatic volunteers 
The study protocol is summarised in Figure 2.1. All asthmatic subjects were 

controlled with as required 02 agonists only at recruitment and throughout the study 

period (i. e steroid nSfve). Following the screening visit, volunteers recorded 

symptoms, salbutamol inhaler usage and FEVI in a run in period of two weeks before 

baseline bronchoscopy with bronchoalveolar lavage (BAL) and bronchial biopsy (BB) 

(FOBI) and throughout the study period. A hand held Piko Device FEVI recorder 

(Ferraris Respiratory Europe Ltd, Hertford, UK) was used with the volunteers fully 

trained in its use. Volunteers were asked to take measurements in the morning before 

any reliever medication. Approximately 3 weeks after FOBI an incremental 

cumulative inhaled allergen challenge was performed (using allergen pre-deterinined 

on basis of skin prick test sensitivity and exposure history) until a 15% fall in FEVI 

was achieved. FEVi was recorded for up to 10 hours to document any late asthmatic 

response (LAR). Allergen challenges were performed with either mixed grass, 

Dennatophagoidespteronyssinus (Allergopharma, Reinbek, Germany) or cat dander 

(Leti, Madrid, Spain). An incremental dosing scheduled as previously described was 

used (Taylor et aL 2000). A second bronchoscopy (FOB2) with BAL and BB was 

carried out 24 hours later. A third and final bronchoscopy (FOB3) was carried out 7 

days after allergen challenge. Lung function, AHR (methacholine PC20 nig/ml) and 

symptoms were recorded at each visit. Patients with hay fever were studied out of 

season. AHR and FEVI were always measured between 7.00-8.00am on visit days. 

2.3.2 Normal volunteers 

All normal volunteers underwent only a single baseline bronchoscopy. Spirometry, 

methacholine challenge using a quadruple dosing schedule and nebulisation of 5mg of 

salbutumol 30 minutes prior to bronchoscopy with repeat spirometry was performed. 

The same standard operating protocol for bronchoscopy established for the asthmatic 

group was followed. All bronchoscopies were performed at 8.30 am. Thus any 

differences found between the normal and asthmatic airway should be a result of 

asthma 
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2.4. Clinical methods 
2.4.1. Skin prick tests 

Skin prick tests (SPTs) were perfon-ned on the volar aspect of the forearm using 

allergen extracts (ALK, Berks, UK) to grasses, trees, cats and house dust mite. 

Histamine was used as a positive control and nonnal saline diluent was used as a 

negative control. Prick test sites were observed for the presence of erythema and weal 

formation for a total of 15 minutes. Responses were recorded by encircling the weal 

using a fine fibre tip pen and transferring to a record sheet with adhesive transparent 

tape. A wheal size >3 mm was taken as a positive result. 

2.4.2. Methacholine challenge 

Methacholine challenge was used as a method of measuring AHR in order to define 

the volunteers into the clinical groups of asthma and normal and as a measure of 

clinical asthma severity. The protocol was adopted using the consensus guidelines set 

by the American Thoracic Society (Crapo et aL 2000). 

Contraindications for Methacholine Challenge Testing 

Absolute 

Severe airflow limitation (FEV, <50% predicted or < 1.0 litre) 

2. Myocardial Infarction or CerebroVascular Accident (CVA) in last 3 months 

3. Uncontrolled hypertension 

Relative 

1. Moderate airflow limitation (FEV, < 60% predicted or < 1.5L) 

2. Inability to perform acceptable -quality spirometry 

3. Pregnancy and Nursing mothers 

4. Current use of cholinesterase inhibitor medication 

Volunteers abstained from caffeine products for 12 hours prior to study visits. The 

asthmatic volunteers were only on salbutamol inhalers at the time of the study and 

abstained from usage for at least 4 hours before the study visit. 
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Five Breath Dosimeter Protocol 

The five breath dosimeter protocol, first standardised by the National Institutes if 

Health (NIH) (Chai et aL 1975) was used using doubling doses of methacholine 

according to the standards set in American Thoracic Society guidelines (Crapo et aL 

2000). 

Baseline FEVi and diluent Nebulisation 

The patient was rested for 15 minutes. The baseline FEVI was then measured three 

consecutive times and the highest value recorded. This value had to be study was 

more than or equal to 70% of the predicted value in order to proceed to methacholine 

challenge. All dosimeter inhalations and spirometry were carried out with a nose clip 

worn. The dosimeter was set to the setting of inhalation time of I second, pause time 

of 6 seconds and a total number of inhalations to 5. 

Methacholine was made up using normal saline diluent to the following 

concentrations: 0.03 0.06 0.125 0.25 0.50 1248 16 mg /ml. 

At end exhalation using tidal breathing (i. e at functional residual capacity) the patient 

was instructed to inhale deeply and slowly to maximal capacity from a hand-held 

nebuliser attached to a breath-activated dosimeter (Mefar, Italy) and then to hold their 

breath for 6 seconds. This was performed for a total of 5 breaths. FEV, measurements 

at 1 and 2 minutes after inhalation was recorded and the highest value taken. The 

initial nebulisation was performed with normal saline. If FEV, fell less than 10% from 

baseline value then the volunteer proceeded with the methacholine challenge 

procedure. If FEV, fell by 10% or more following saline inhalation the physician 

present decided whether to carry on with the procedure or to repeat another diluent 

challenge or to abort the challenge. Volunteers inhaled doubling doses of 

methacholine until a ý: 20% fall in FEV, from the post saline value was achieved. In 

order to keep the cumulative effect of methacholine relatively constant each 

rriethacholine dose was administered exactly 5 minutes apart. The PC20 Was calculated 

using the following formula: 
PC20= antilog (log Ci+ (log Cz-logC, ) (20-RI) I(R2-Rj)) 

Cj= second to last [methacholine] RI= % fall in FEV, after C, 

C2= final [methacholine] leading to 20% FEVI drop R2=% fall in FEV, after C2 
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2.4.3 Allergen inhalation challenge 

It was first established that the volunteers did not experience an asthma exacerbation 

or a respiratory tract infection in the preceding 4 weeks. Short-acting P2 agonists were 

withheld from the preceding evening. The volunteers were not taking any other 

medications that could interfere with the early or late phase response. 

An incremental allergen challenge protocol as previously published (Taylor et aL 

2000) was adapted as described below. Fresh dilutions of freeze-dried allergen extract 

were made up from the stock solution to the predetermined dilutions in the protocol 

using 0.9 % saline. The allergen solution (starting with the lowest concentration) was 

administered using a hand-held nebuliser attached to a breath-activated dosimeter 

(Mefar, Italy). The machine was set to give a delivery time of I second per breath. 

Particles with an aerodynamic mass diameter of 3.5-4.0[tm are delivered by the 

nebuliser at an output of 9pl per breath. The FEV, was measured by a dry wedge 

spirometer (Vitalograph, Buckingham, UK) using an established SOP. 

The standard challenge protocol is described. Three spirometric recordings at Iminute 

intervals were performed and the best FEVI was recorded as the baseline reference. In 

order to precede the FEV, must be 70% or more of that predicted. The volunteers now 

inhaled five breaths of 0.9% saline in a nebulised form from the dosimeter by 

inspiring slowly from functional residual capacity (FRQ to total lung capacity (TLC) 

over 3 seconds and then breath holding for 6 seconds. At 2,3 and 4 minutes a single 

measurement of FEVI is taken and the highest value taken as the post-saline 

reference. Subjects who did not demonstrate a more than 10% fall in the FEVI 

following saline inhalation now proceeded to allergen challenge using the same 

method as saline inhalation and stating with the lowest dose. The FEV, is taken at 5 

and 10 minutes afler each allergen dose and the lower of the two values is taken as the 

response. If the fall in FEV, is less than 10% then a 4-fold increment of the previous 

dose of allergen is administered. If the fall in FEV, is more than 10% then only a 

2-fold increment of the previous allergen dose is administered. The challenge is 

terminated once a fall in the FEV, of more than 15% of the post saline reference value 

is achieved (defined as an early asthmatic response (EAR). FEV, measurements are 

taken at 5,10,20,30,45 and 60 minutes and then every 30 minutes up to 10 hours. A 

late asthmatic response (LAR) is defined as a fall in the FEVI of more than 15% from 

the post-saline reference value at a single time point between 3 and 7 hours afler 

allergen inhalation. The definition was established prior to the commencement of the 

study. 
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2.4.4 Bronchoseopy 

A standard operating protocol was established in order to standardise the procedure 
between the two operators who performed the bronchoscopies. 

Subjects received 5 mg of nebulised salbutamol and spirometry performed 30 minutes 
later before bronchoscopy. Bronchoscopy was performed between 8.30-9.00am on 

each occasion. Peripheral intravenous access was obtained with a plastic cannula. 

Lignocaine 2% was sprayed into the oropharynx. All volunteers received atropine 
600 pg and midazolam 6-10 mg intravenously. Supplemental oxygen was entrained at 
4 litres a minute throughout the procedure and arterial oxygen saturation monitored 

using pulse oximetry (Nellcor, Pleasanton, CA, USA). The bronchoscope (Olympus 

IT 40, Olympus Corp., NY, USA) was always introduced through the mouth to 

minimise any discomfort for the volunteer. Vocal cords and bronchial tree were 

anaesthesised using aliquots of 2% lignocaine and the minimal amount required was 

used. The left or right lung was chosen using a randomisation procedure. BAL was 

performed from either the lingular lobe on the left side or the middle lobe on the right 

by instilling a maximum of 4 aliquots of 60 mls of warmed sterile saline which was 

aspirated by gentle suction. Six endobronchial biopsies were then taken from the same 

side starting from the distal subsegmental. carinae and finishing at the carina using 

Pentax KW-241 1S fenestrated cupped forceps (Pentax, Tokyo, Japan). At the end of 

the procedure a research nurse monitored the patient for another 20 minutes. The 

volunteers were then allowed to rest for at least 3 hours with measurement of 

respiratory rate and saturations on air only. At discharge all volunteers received a 

further 2.5-5 mg of nebulised salbutamol and after 30 minutes spirometry repeated. 

Paracetamol I ing to counteract any sore throat or post BAL fever was administered. 

The study physician reviewed all volunteers and a contact number for the physician 

was confirmed with the volunteer prior to discharge. 
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2.5 Laboratory methods 

2.5.1 Sample collection 
Biopsies for immunohistochemistry (IHQ were collected in phosphate buffered saline 

(PBS) (Sigma Aldrich, Dorset, UK) and transferred to 4% paraformaldehyde (PFA) 

(Sigma Aldrich) for 2 hours. The samples were then transferred to 15% sucrose 

(Sigma Aldrich) in PBS for I hour and again into a second vial of 15% sucrose in 

PBS for at least I further hour. The biopsies were then placed in Tissuetek OCT 

embedding media (ThennoShandon) mounted on card and snap-frozen in isopentane 

(VWR, Leicester, UK) precooled in liquid nitrogen. Caution was taken to minimise 

any artefactual damage to the biopsy or generation of air bubbles in the OCT. The 

samples were clearly labelled and placed in Bijoux containers and stored at -80'C 

until further use. Biopsies were cut using a Bright Cryostat. 5Pm sections were cut 

and adhered onto superfrost plus microscope slides (VWR). Sections were allowed to 

air-dry overnight and then wrapped with foil prior to storage at -80'C until further 

use. 

2.5.2 Processing of BAL samples 

The BAL was collected in 100ml glass bottles and placed in ice for transfer to the 

laboratory. The samples were processed within 30 minutes of collection. The BAL 

fluid was filtered through gauze to remove debris and the filtrate then centrifuged at 

800 RPM for 10 minutes at 40C. The supernatant was stored at -800C. 

The cell pellet was pooled into 20 mls of PBS and a total cell count estimated using a 

modified neubauer haemocytometer and a Trypan Blue (Sigma Aldrich) stain. The 

latter also enabled assessment of cell viability. An appropriate dilution to yield a cell 

count of 0.3 x 106 MI was then made. Cytospins were prepared by placing I 00gl into 

each Shandon2 cytospin cassettes (ThennoShandon) and spinning at 450 RPM for 3 

minutes. The slides were allowed to air dry for 15 minutes before being fixed by 

placing in 4% PFA for 15 minutes and then sucrose for a further 15 minutes. The 

latter step was repeated. The slides were then washed in PBS and allowed to air-dry 

overnight. The slides were wrapped in aluminium foil and stored in boxes containing 

silica at -800C until further use. 
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2.5.3 Differential cell counts from BAL cytopsins 

Using a standard kit from ThermoShandon (Diff-Kwik), cytospin slides were stained 

by immersing the slide in the order of methyl alcohol for 5 seconds followed by 

xanthene dye for 5 seconds and finally a thiazine dye for 5 seconds. After a quick 

rinse in distilled water the slides were left to air-dry overnight before being mounted 

in DPX medium (VWR). Cells were identified on the basis of morphology and 

staining colour. In particular lymphocytes are recognised as mononuclear cells with 

clear blue cytoplasm, eosinophils are bi-lobed cells with reddish orange cells in the 

cytoplasm. Macrophages are recognised as cells with bright blue-purple cytoplasm 

and light blue nucleoh. 

2.5.4 Principles of immunohistochemistry 

All incubations were carried out at room temperature. Washes were performed in PBS 

unless otherwise stated. Normal human serum 10% (NHS) was used where stated to 

reduce non-specific binding. All primary antibodies for extracellular markers were 

incubated for 30 minutes whilst those for intracellular markers were incubated 

overnight. All incubations were at room temperature unless otherwise stated. 

2.5.5Three-step indirect method 

An unconjugated antibody binds to the antigen. A secondary antibody directed against 

the primary antibody is applied. If the primary antibody is made in rabbit or mouse 

then the secondary antibody must always be directed against rabbit or mouse 

immunoglobulins, respectively. Finally a third enzyme-conjugated antibody is now 

added. The purpose of adding in the third antibody is to amplify the signal since 

several of the enzyme-conjugated antibody can now bind to the secondary and thus 

localises additional enzyme molecules at the site of tissue antigen of interest leading 

to greater colour intensity on addition of an appropriate developing substrate- 

chromogen preparation. 
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2.5.6 Soluble enzyme immune complex method 
This soluble enzyme immune complex method utilises a preformed soluble enzyme 

anti-enzyme immune complex and is one of the most sensitive immunochemical 

techniques available. The immune complex is an antibody directed against the 

enzyme as well as the secondary antibody that is linked to the primary antibody. The 

primary antibody is added first followed by the secondary antibody (a linker 

antibody). The soluble enzyme anti-enzyme complex is then added and this too binds 

to the secondary antibody. A relevant substrate and chromogen preparation is now 

added. The enzyme can now hydrolyse the substrate to break down products which 

couple to the chromogen (capture reagent) present to form insoluble coloured dyes 

enabling the antigen of interest to be localised. Both the primary antibody and enzyme 
immune complex must be raised in the same species in order for the secondary 

antibody to link them together. In addition the secondary antibody must be added in 

excess so that following binding to the primary antibody Fab sites are left free to bind 

the enzyme immune complex. The soluble enzyme immune complex method is 

further named on the basis of the particular enzyme immune complex used. The 

Alkaline Phosphatase Anti-Alkaline Phosphatase (APAAP) technique was used for 

the immunohistochemical detection of all antibodies used in this project unless 

otherwise stated. The APAAP method allows a very high degree of detection given 

that the APAAP complex is comprised of two enzyme molecules per one antibody 

against the enzyme. Alkaline phosphatase (AP) catalyses the hydrolysis of a variety of 

phosphate-containing substances in the alkaline pH range. The enzymatic activity can 

be localised by coupling a soluble product generated during the hydrolytic reaction 

with a capture reagent, producing a coloured insoluble precipitate. AP hydrolyses 

naphthol-phosphate esters (substrate) to phenolic compounds and phosphates. The 

phenols couple to colourless diazonium salts (chromogen) to produce insoluble 

coloured azo-dyes. The Fast Red substrate solution, utilised where stated, is based on 

this reaction and produces a bright red end product. AP turns NBT (nitroblue 

tertrazolium) and BCIP (5-bromo-4-chloro-3-indolyl-phosphate) into insoluble NBT 

formazan (nitroblue tetrazolium formazan). NBT formazan is dark blue and has 

reflective properties. 

2.5.7 Avidin-biotin methods 

Avidin is a 68,000 molecular weight glycoprotein with an extraordinarily high affinity 
(1015M-1) for the small molecular weight vitamin, biotin. In addition to this high 
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affinity the avidin has four binding sites for biotin of which only two will bind to 

biotin. This property was exploited where stated and is termed the avidin-biotin 

complex (ABC) method and follows the same sequence as described above where the 

secondary antibody is biotinylated and preformed avidin-biotin complex is added. 

Commercially available Vectastain ABC-AP kits (Vector Laboratories, Peterborough, 

UK. ) incorporating a secondary biotinylated secondary linker antibody and an avidin- 

biotinylated complex-alkaline phosphatase (ABC-AP) soluble enzyme immune 

complex was used where stated. 

2.5.8 Enumeration of inflammatory cells 

Detection of monoclonal antibodies 

Cellular infiltration of bronchial tissue by inflammatory cells was evaluated using the 

following mouse monoclonal antibodies: eosinophils-anti-MBP (BMK-13, in house) 

at 1130 dilution and from Dako (High Wycombe, UK), elastase (Clone NP57, 

neutrophils) at 1/250, CD3 ( Clone T3-4135, CD3+ T cells) at 1/25, CD4 ( Clone 

MT310, CD4+ T cells) at 1/20, CD8 ( Clone DK 25, CD8+ T cells) at 1/20, CD68 

(Clone EBMI I, macrophages) at 1/40 and tryptase (Clone AAI, mast cells) at 1/80 

dilution. The slides were allowed to thaw at room temperature before unwrapping and 

being placed in a humidity chamber. The primary mouse was antibody appropriately 

diluted in PBS and applied to the section The sections were left in the humidity 

chamber for 30 minutes after which they were washed twice in PBS for 5 minutes 

each. The sections were then incubated with a rabbit-anti-mouse secondary antibody 

(Dako) diluted to 1: 30 in 10% normal human serum (NES)/PBS for 30 minutes in a 

humidity chamber. The slides were then washed in PBS. A tertiary antibody layer of 

mouse antibody conjugated to the APAAP complex (Dako) diluted to 1: 30 is now 

added and the slides again incubated in a humidity chamber for 30 minutes before 

washing. The slide were developed using Fast Red (Sigma) chromogen for signal 

visualisation over 20 minutes. Washing the slides in tap water tenninated the reaction. 

Appropriate positive and negative controls were used. The sections were then counter- 

stained with haematoxylin and mounted with glycergel (Dako). Given that Fast Red 

end products are alcohol soluble, it is essential to use an aqueous mounting medium 

(Dako). 
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Congo Red stain 

In addition, infiltration of eosinophils was determined using the Congo Red stain 

(Grouls & Helpap 1981). This was to ensure that ECM deposition with MBP from 

degranulated eosinophils was not mistaken for individual eosinophils. Congo red is an 

azo-dye, derived from benzidine that turns red in the presence of alkalies and blue in 

the presence of acids. In addition, the alkaline Congo Red technique stains amyloid 

and elastin orange-red. Briefly the sections were incubated in 0.5% Congo Red 

(VWR) made up in ethanol/O. IM glycine for 5 minutes at room temperature. The 

sections are then successively rinsed in 70% v/v ethanol until the tissue background 

cleared and finally mounted in glycergel (Dako). 

2.5.9 Enumeration of remodelling markers 

Collagen markers 

HSP-47 

Mouse monoclonal anti-HSP-47 (Clone M16.10AI, Stressgen) diluted tol/100 in 

N-HS 10% saponin 0.1% buffer was incubated overnight with tissue sections. 

Following several washes in 0.1 % saponin/PBS the sections were then incubated with 

a rabbit-anti-mouse secondary antibody (Dako) diluted to 1: 30 in 10% NHS-0.1% 

saponin-PBS for 30 minutes in a humidity chamber. The slides were then washed in 

0.1% saponin-PBS. A tertiary antibody layer of mouse antibody conjugated to the 

APAAP complex (Dako) diluted to 1: 30 was added and the slides again incubated in 

for 30 minutes before washing. Fast Red (Sigma) as chromogen for signal 

visualisation was used. 

Procollagen 

Procollagen I (Chemicon, Harrow, UK) rat monoclonal antibody diluted to 1/2000 in 

NHS 10% saponin 0.1% buffer was incubated overnight with tissue sections. A rat 

Vectastain ABC kit was used according to the manufacturer's instructions with a 

biotinylated secondary antibody diluted in 0.1% saponin-PBS buffer incubated with 

tissue sections for 30 minutes. Following repeated washes in 0.1% saponin-PBS 

buffer, the sections were then incubated with the ABC-AP complex as described and 

developed with Fast-Red. 
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a-Smooth Muscle Actin 

Mouse monoclonal antibody to a-smooth muscle actin (Clone IA4, Dako) diluted at 

1/100 and mouse monoclonal antibody to vimentin (Clone V9, Dako) diluted at 1/100 

in 10% NHS -0.1% saponin-PBS was incubated with tissue sections overnight. A 

mouse Vectastain -ABC kit was used according to the manufacturer's instructions as 

detailed earlier and the reaction developed with Fast Red. 

2.5.10 Enumeration of TGF-P Superfamily and growth factor ligands 

TGFP 1-3 isoform expression was analysed by detecting mRNA and is explained in the 

in-situ hybridisation section. Tissue expression of activin-A was detected using a goat 

polyclonal antibody (R. &D Systems, Abingdon, LJK) diluted at 1/75, BMP-2 using a 

mouse monoclonal (Clone 100221, R&D Systems) at 1150 dilution, BMP-4 and 
BMP-7 using goat polyclonal antibodies (R &D Systems) at 1150 and 1/75 dilution in 

10% NHS 0.1% -saponin -PBS buffer respectively. Appropriate Vectastain-ABC kits 

were used according to the manufacturer's instructions and the reaction visualised 

using the Fast Red chromogen. Follistatin (polyclonal goat, R&D Systems) and 
VEGF (mouse monoclonal, Clone 23410, R&D Systems) were similarly detected. 

2.5.11 Double staining immunohistochemistry 

inflammatory cell expression of growth factors activin-A and BMP-7 was determined 

using a double staining technique. Essentially, sections were stained for growth 

factors as described previously except the sections were pretreated with hydrogen 

peroxide 0.33% for 20 minutes to block endogenous peroxidase activity and then 

washed in 0.1%-saponin-PBS solution. After overnight incubation detection was 

completed using a goat Vectastain-ABC kit but the reaction developed using 3,3- 

diaminobenzidine (DAB) chromogen that produces a brown end product. The reaction 

was terminated by a quick plunge in tap water followed by PBS. An avidin-biotin 

blocking step was performed using a VectaKit and the cell phenotypes identified as 

described earlier using an appropriate anti-mouse Vectastain-ABC kit with the 

reaction visualised using Fast Red chromogen that produces a red end product. 

Double stained cells were seen as brown-red in colour. 
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2.5.12 TGF-Superfamily signalling detection 

Antibody details 

The antibodies directed against the Type I and Type II receptors and Smads were a 
kind gift from Prof P. Sideras, Athens Biomedical Institute, Greece. Briefly, 

polyclonal antibodies were raised in rabbits against synthetic polpypeptides as 

previously described (Rosendahl et aL 2001; Rosendahl et aL 2002; Franzen et aL 

1993). These antibodies have been previously been validated in human tissue (Nakao 

et aL 2002). Antibodies against Type I receptors ALK-4 (ActR-IB), ALK-5(TPR-I), 

ALK-2, ALK-3, ALK-6 and Type II receptors ActRIIB and BMPRII were raised 

using peptides that corresponded to the divergent intracellular juxtamembrane 

domains. TPRII and ActRIIA Type II receptor antibodies were raised using synthetic 

peptides that corresponded to the divergent carboxy termini. Antibodies directed 

against Smad2, Smad4, Smad6 and Smad7 were raised using peptides that 

corresponded to the variable proline-rich linker region. Antibodies to pSmad2 and 

pSmadl/5 were raised by coupling peptide KKK-SSpMSp (where Sp stands for 

phosphorylated serine residue) and peptide KKK-NPISpSVpS (pS standing for 

terminally phosphorylated serine residue) respectively. The specificity of antisera was 

confirmed using immunoprecipitation and Western blot analysis on receptor and 

Smad transfected COS cells in the collaborator's laboratory. 

Staining protocol 
optimal dilutions were determined for each antibody used. Sections were incubated 

with the primary antibody made up to the appropriate concentration in NES 10% - 
0.1 % saponin- PB S buffer overnight. All subsequent washes were with 0.1% saponin- 

PBS buffer. A rabbit VectaStain ABC-AP kit was then used as described previously 

and developed using Fast Red substrate. Omission of the primary antibody was used 

as a negative control. No immunoreactivity was seen in sections stained with omission 

of the primary antibody. 

2.5-13 Immunofluorescence and confocal microscopy 

Reticular basement membrane tenascin and procollagen III 

Sections were incubated ovemight with either a mouse monoclonal antibody directed 

against tenascin (Clone T2H5, Monosan, Uden, Netherlands) at 1/20 dilution or a 

rabbit polyclonal antibody directed against procollagan III (Chemicon International, 

Harrow, LJK) diluted to 1/1000 in NHS 10% saponin 0.5% PBS. Following repeated 
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washes in PBS/0.5% saponin, the tenascin stained sections were incubated with a 

rabbit anti-mouse FITC (fluorescein isothiocyanate) conjugated antibody (Dako) at 
1/30 dilution for 30 minutes and the sections washed thoroughly with 0.5% saponin 
PBS. The procollagen III sections, after washing, were incubated with a biotinylated 

goat anti-rabbit secondary antibody at 1/30 dilution (Dako) for 30 minutes. Following 

thorough washing the sections were incubated with a streptavidin-Alexa Fluor 594 

tertiary antibody (Invitrogen) at 1/1250 dilution for 30 minutes and followed by 

stringent washing. All sections were mounted in fluorescent medium (DAKO) 

containing 4', 6-diamidino-2-phenylindole (DAPI) as a counterstain. DAPI shows 
blue fluorescence on binding to DNA (deoxyribonucleic acid) upon excitement with 

ultra-violet (UV) radiation generated by an argon-ion laser. Cell nuclei are thus 

visualised allowing orientation of the tissue section. Negative controls were 

established by omitting the primary antibody during the experiments. 

A Leica TCS SP confocal microscope (Leica, Heidelberg, Germany) was used to 

acquire images. Standardised microscope settings were used to allow comparison of 
immunoreactivity between paired tissue sections and measurements were analysed 

using Scion Image analysis software (Scion Corporation, Frederick, Maryland) as 

previously published (Flood-Page et aL 2003a; Phipps et aL 2004a) . The thickness of 
immunoreactivity at the RBM was calculated by drawing a line perpendicular to, and 

across, the band of immunoreactivity in the RBM at 201im intervals over the length of 

the biopsy. Image analysis software was used to measure the length of the line 

(thickness) and the mean density along the line (pixels per square microns). The 

values were averaged over the whole length of the RBM to give the mean thickness x 

density of immunoreactivity. The product of thickness and density (txd) was taken as 

a measure of expression of the ECM protein in the RBM. The intraobserver analysis 

error was less than 10% as previously reported (Flood-Page et aL 2003a). 

2.5.14 Myofibroblast expression of ALK4 

The phenotype of fibroblast-like cells that express the activin Type I receptor ALK-4 

was confirmed using double immunofluorescence. Sections were incubatcd 

simultaneously with a primary Cy3-conjugated goat anti-mouse antibody against a- 

smooth muscle actin (Sigma) at 11500 dilution and a primary rabbit anti-mouse ALK- 

4 polyclonal antibody (gift Prof Sideras, Athens) at 1/100 dilution in 10% NHS 0.5% 

saponin PBS buffer overnight. After extensive washing the sections are incubated 
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with a secondary swine anti-rabbit FITC-conjugated antibody (Dako) at 1/30 dilution 

for 30 minutes, washed extensively before mounting fluorescent medium with DAPI 

(Dako). To ensure non-specific binding was not present the primary antibody was 

excluded in control sections during the IHC procedure. 

2.5.15 In-situ hybridisation (ISH) immunogenic detection 

Introduction 

In-situ hybridisation (ISH) is an elegant technique by which gene expression can be 

localised to microanatomy. An immunogenic detection procedure with non- 

radioactive FITC-labelled probes ISH kit (Biognostik, G6ttingen, Germany) was used 

to evaluate TGF-P1.3 isoform expression. FITC-probes are single-stranded 

phosphodiester DNA oligonucleotides. The double-FITC-labelled probes contain a 
FITC group at the 5' and 3' ends of the nucleotides. FITC confers excellent 
immunogenic propereties equivalent to biotin and digoxigenin. Three FITC-labellcd 

probes, each designed with a sequence directed against a different region of the same 

target mRNA was used for TGF-01, TGF-P2 and TGF-P3 isoform detection. 

Simultaneous use of three different probes for each isoform target mRNA allowed 

enhanced signal intensity. 

ISM protocol 

Proteinase K Digestion 

Briefly, the tissue sections were allowed to thaw to room temperature and then placed 

on the surface of a humidity chamber warmed to 370C. Proteinase K (Promega, UK) 

20 [tg/ml diluted in TES (5OmM Tris-HCL (ph=7.4), 10 mM EDTA, 10 mM Nacl) 

was used to increase the accessibility of the mRNA. Each section was covered with 

30ýfl and the sections incubated at 370C for 15 minutes. The sections were now washed 

briefly in PBS and fixed in 1% PFA for 5 minutes. The sections are immersed in 

sterile water for 5 minutes, air-dried for a further 5 minutes before proceeding to the 

pre-hybridisation step. 

Pre-Hybridisation 

This step is essential to prevent background staining. The buffer provided in the kit 

(hybrid-buffer) is heated to 950C in a water bath to clear precipitates and then rapidly 

cooled in ice to around 400C. The hybrid-buffer is added in excess to fully cover the 

sections and then incubated at 30 OC in an air-tight humidity chamber for 3 hours. 
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Hybridisation 

The probes are added to the hybrid-buffer (prepared as before) at 60ptl per 1000gl of 
hybriprobe. It is important to briefly vortex this mixture before use. 
The hybrid-buffer is now gently removed from the sections and the sections are now 

covered with 25 pl of the probe solution. This step must be performed quickly to 

ensure that no drying of the sections takes place at this stage. The sections are 
incubated for 10-16 hours at 30 OC in an air-tight humidity chamber. 

Post-Hybridisation Washes 

This step was performed to remove any partially hybridised probe. Mismatched 

hybrids form less stable complexes compared to perfectly matched complexes. 
By manipulating the salt concentration, wash times and temperatures it is possible to 

remove mismatched probes and therefore decrease staining background. Sections are 

rinsed twice for 30 seconds each in lx SSC which removes most of the excess probe 

and then a further 5 minutes in Ix SSC at room temperature. A more stringent wash in 

0.1 x SSC at 37 OC for 15 minutes is performed twice. 

Blocking Step 

This is essential to block non-specific binding sites for the antibody. 
Following a quick plunge in PBS and removal of excess solution from around the 

section, the section is now incubated with Block Buffer (in excess) for 10-20 minutes. 

The reaction is terminated with a quick plunge in PBS. 

Anti-FITC-Alkalinc Phosphatase Antibody (Anti-FITC-AP) Incubation 

Excess PBS is removed from around the section. A separate commercial FITC- 

detection kit (DAKO) is now used. The anti-FITC-AP antibody is added in excess to 

cover the section and now incubated for 2 hours in a water containing chamber to 

ensure the slides do not dry out. The reaction is terminated by three 5 minute 

successive washes in PBS. Excess solution is again removed from around the sections 

before adding nitro blue tetrazolium (NBT)/ 5-bromo-4-chloro-3-indoxyl phosphate 

(BCIP) substrate solution (Sigrna) in excess. The sections were left for at least 20 

minutes before inspection for colour change. Once developed the reaction was 

quenched by plunging into water. Nuclear Red (Dako) was used as a counterstain. The 

slides were mounted in glycergel. 
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Positive and Negative Control 

Control sections were run simultaneously with each experiment to validate that the 

system itself is functional and to also validate the specificity of the detection signal. 
A poly d (T) probe served as a positive control whilst a random probe without target 

(supplied with kit) was used as negative kit. 

2.6 Cell counting 
The sections were counted blinded to the clinical details. The numbers of positively 

and negatively stained epithelial cells were counted along the entire basement 

membrane (BM) of each section using a squared eyepiece graticule (Olympic Corp., 

Lake Success, NY, USA). When comparing epithelial expression between normals 

versus asthma, the cell counts were expressed as % positive cells. Cell counts were 

also expressed as the number per unit length of BM (positive or negative cells/ mm. 

BM). Positive cells below the BM were determined by counting the whole section and 

expressed as cells per square millimetre of biopsy. All counts were performed using 

an Olympus BH-2 Microscope (Olympus Corp., Lake Success, NY, USA). On 

selected samples the slides were counted in duplicate and the coefficient of variation 

was < 5%. 

2.7 Statistical analysis 
The methacholine PC20 was log transformed before analysis and expressed as the 

geometric mean ± range. Cell counts are expressed as the median (inter-quartile 

range) unless otherwise stated. Changes in FEV, following allergen challenge are 

graphically illustrated using the mean (SEM). 

The Mann-Whitney U test was used to compare non-paired data. All paired within- 

subject data was analysed using the Wilcoxon signed rank test. Correlation 

coefficients were obtained using Spearman's rank-order method. Correlations were 

performed between AHR at 24 hours and AHR at 7 days against cellular counts and 

remodelling markers. Data was analysed using Graph Pad Prism (Graph Pad Software 

Inc., San Diego, CA). Significance was accepted as p<0.05. 

The data in Chapter 3 and 4 was also analysed using a mixed modelling approach to 

assess the change over time of the selected parameters. This was performed by the 

Institutional Statistician, NHLI Division, Imperial College London. In this model 
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patients were entered as a random effect, with time as a fixed effect. The change in 

each variable measured is presented together with the 95% confidence intervals (CI). 

Significance was accepted as p<0.05. 
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Chapter 3 

Dissociation of Cellular Inflammation from AHR 
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3.1 Introduction 
Allergen exposure in atopic asthma is associated with an inflammatory influx 

alongside an increase in AHR and bronchial obstruction. The clinical events in an 

allergen provocation model setting is similar to symptomatic attacks of asthma 

associated with an airway acute inflammatory response precipated by outdoor 

allergens and pollutants. 

Bronchial provocation tests involve the controlled administration of allergen by 

inhalation in order to determine the pattern and magnitude of the evoked airway 

response. Careful standardisation with attention to both technical and non-technical 
factors is essential for the interest of safety (to avoid excessive bronchoconstriction) 

and to enable accurate result interpretation. By employing a more longitudinal 

approach for airway sampling, the model of allergen-provoked asthma offers a unique 

opportunity to understand the relationship of cellular inflammation to AHR. 

Following allergen inhalation challenge of atopic asthmatics there are increases in 

AHR which are far more pronounced in individuals who experience dual (early and 
late-phase) asthmatic responses (DAR) rather than single early responses (SER) 

(Cockcroft et aL 1977). Furthermore allergen inhalation challenge produces 
infiltration of airway mucosal inflammatory cells as shown by increases in 

eosinophils, T cells and neutrophils in BAL fluid (Robinson et al. 1993; Metzger et 

al. 1986) and the lamina propria of the airway wall (Beasley et al. 1989). Some 

studies have indicated that airway inflammation is more pronounced in the DAR 

group indicating that infiltrating leukocytes, especially eosinophils, maybe related to 

the pathogenesis of both the late asthmatic reaction (LAR) and AHR (Dorman et al. 

2004a). Following allergen inhalation a decrease in the FEVI of more than 15 % of 

the post saline reference is defined as an early asthmatic reaction (EAR). A late 

asthmatic reaction (LAR) is defined as a fall in the FEVI of more than or equal to 15% 

from the post-saline reference value at a single time point between 3 and 7 hours after 

allergen inhalation (Dorman et al. 2004a). Since in the DAR group allergen-induced 

increased AHR is sustained for days and weeks (Taylor et al. 1979; Cockcroft et A 

1977) it is reasonable to speculate that in these individuals, there will be a persistence 

of airway inflammation if inflammation drives AHR. Thus by sampling the airway a 

week after allergen challenge it is possible to analyse the relationship of sustained 

AHR to inflammation. 
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Thus asthmatic individuals that demonstrate dual asthmatic responses (i. e the DAR 

group) will demonstrate pronounced airway cellular inflammation. The sustained 

allergen-induced increases in AHR will be associated with persistence of airway 

inflammation. 

In this chapter bronchial biopsies obtained at baseline and 24 hours and 7 days after 

allergen challenge, according SER and DAR status, were examined in terms of 

cellular infiltration for the numbers of bronchial mucosal MBP' eosinophils, CD68+ 

macrophages, CD3+, CD4+, CD8+ T cells, elastase+ neutrophils and tryptase+ mast 

cells. The time-course relationship of inflammatory changes to that of AHR was then 

analysed. In addition BAL cell numbers for eosinophils, neutrophils, macrophages 

and monuclear cells were also obtained. 
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3.2 Results 

3.2.1 Cellular inflammation and AHR 

Of the 15 volunteers that entered the study, 1 volunteer presented with increase in 

AHR compared to the screening visit associated with unexpected allergen exposure 

and another volunteer developed coughing post-allergen challenge such that it was not 

possible to be certain about her exact single or dual asthmatic response status. These 

two individuals were therefore excluded from this section of the study analysis. 

3.2.2 Volunteer characteristics 

Volunteer details are sunimarised in Table 3.1 for thirteen volunteers. Four volunteers 
(3 male and I female), median age (range) of 25.5 (19-26) years, median FEVI% 

predicted 97.65% (range 76.7-114.7) demonstrated single early responses (SER) and 9 

volunteers (5 males and 4 females), median age 24 (19-46) years, median FEVI% 

predicted 97% (88.70-118.2) had dual asthmatic responses (DAR). The DAR has been 

defined as a fall in the forced expiratory volume in one second (FEVI) of 15% from 

the baseline value between 3 and 7 hours. 

One volunteer in the DAR group did not complete the final bronchoscopy and the 

paired-data analysis has taken this into account. The combined changes of the SER 

and DAR groups in FEV, post allergen challenge are presented in Figure 3.1. The 

maximal median (range) decrease in FEVi 3-10 hours after allergen challenge in SER 

was -10.50 (-6 to -12) % and in DAR was -35.5 (-16 to -42) %. The individual 

volunteer responses to allergen challenge are summarised in Figure 3.2 for SER and 

Figure 3.3 for DAR. 

3.2.3 Single early responders (SER) 

Given that there were only 4 volunteers with SER it was not possible to perform 

statistical analysis on this group of volunteers. There was no observed trend in either 

the FEVI or PC20 following allergen challenge (Figure 3.4). The median change in 

FEVI % from baseline was 2.06% at 24 hours and 4.17% at 7 days post allergen. The 

methacholine PC20 (geometric mean) at baseline bronchoscopy was 3.076 mg/mI and 
4.2mg/mI and 2.31 mg/mI 24 hours and 7 days post allergen respectively. 
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3.2.4 Dual asthmatic responders (DAR) 

The airway responses to allergen at 24 hours and 7 days after allergen are summarised 

in Figure 3.5. The median fall in % FEV, from baseline in DR was - 17.31 (-21.65- -2) 
% at 24 hours (p=0.02) and -5.1 (-8.3- +7.8) % at 7 days (p=ns) (Figure 3.5A). 

Figure 3.5B illustrates that AHR was markedly increased in the DAR group at both 24 

hours and 7 days compared to baseline after allergen challenge. The methacholine 

PC20 decreased from 1.631 (0.94-2.82) mg at baseline to 0.3889 (0.1477-1.029) 

mg/ml at 24 hours (p=0.004) and 0.4050 (0.26-0.66) at 7 days (p=0.02). 
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Figure 3.1: Summary of the effect of allergen challenge on the airway response 

The changes in FEVI are expressed as the mean (SEM) in single early and dual asthmatic 
responses respectively. Following allergen challenge there was a fall in the FEV, of at least 
15% from the baseline defined as the early asthmatic reaction followed by a second fall in 
FEVI by at least 15% from the baseline 3-7 hours later defined as the late asthmatic reaction. 
After a maximal fall in the FEVI for the dual asthmatic responses (DAR) at the 7 hour time 
point a gradual improvement in the degree of airway obstruction is seen, although FEVI fails 
to return to baseline levels. 

SER=Single Early Response 
DAR=Dual Asthmatic Response 
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Figure 3.2: Summary of airway responses to allergen challenge in single early 
responders 

The allergen solution (starting with the lowest concentration) was administered using a hand- 
held nebuliser attached to a breath-activated dosimeter. The challenge was terminated once a 
fall in the FEV, of more than 15% of the post saline reference value was achieved (defined as 
an early asthmatic reaction) (EAR). FEV, measurements were taken at 5,10,20,30,45 and 60 

minutes and then every 30 minutes up to 10 hours. The FEV, returns towards baseline values 
over the course of the day in the single early responders (SER). 
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Figure 3.3: Summary of airway responses to allergen challenge in the dual 

asthmatic responders 

The allergen solution (starting with the lowest concentration) was administered using a hand- 
held nebuliser attached to a breath-activated dosimeter. Ile challenge was terminated once a 
fall in the FEV, of more than 15% of the post saline reference value is achieved. FEV, 
measurements were taken at 5,10,20,30,45 and 60 minutes and then every 30 minutes up to 
10 hours. 

The immediate fall in the FEVI of at least 15% from the baseline value was defined as the 
early asthmatic reaction (EAR), is maximal within 30 minutes and resolves between I and 3 
hours. The FEVI then returns towards baseline values before there is a sustained fall through 
the course of the day. The late asthmatic reaction (LAR) was defined as a fall in the FEVI of 
more than or equal to 15 % from the baseline value seen between 3-7 hours post-allergen. The 

volunteers demonstrate a maximal fall in the FEVI around 6-8 hours post allergen before a 
sustained improvement was seen. At this time nebilised P2 agonist was given which rapidly 
reversed the airway obstruction before the volunteer was discharged. 
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Figure 3.3 (cont. ): Summary of airway responses to allergen challenge in the 
remaining dual asthmatic responders 

The late asthmatic reaction (LAR) was defined as a single fall in the FEV, of more than or 
equal to 15 % from the baseline value 3-7 hours post-allergen challenge. The volunteers 
demonstrate a maximal fall in the FEV, around 6-8 hours post allergen before a sustained 
improvement is seen. At this time nebilisedP2 agonist was given which rapidly reversed the 
airway obstruction before the volunteer was discharged. 
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Figure 3.4: Summary of the effect of allergen challenge on the airway response in 

single early responders (SER) 

The effect of allergen inhalation on the FEVI and PC2o expressed as a percentage change from 

the baseline value at Visit 2 (Time 0) and Visit 4 (24 hours allergen challenge) and Visit 5 (7 

days after allergen challenge) in dual asthmatic response (DAR) group). There is no change in 

FEVt (A) or AUR (B) at either time point after allergen challenge. 
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Figure 3.5: Summary of the effect of allergen challenge on the airway response in 

dual asthmatic responders (DAR) 

The effect of allergen inhalation on the FEVI expressed as a percentage change from the 
baseline value at Visit 2 (Time 0) and Visit 4 (24 hours allergen challenge) and Visit 5 (7 days 

after allergen challenge) in dual asthmatic response (DAR) group. There is a significant fall in 

FEVI 24 hours after allergen (A). However, the increased AHR exhibited at 24 hours is 

sustained 7 days after allergen challenge (B). 
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3.2.5 Airway inflammation in dual asthmatic responders (DAR). 

The cellular median counts (inter-quartile range) are summarised in Table 3.2 and the 

total cell counts for each volunteer are illustrated in Figure 3.6 for DAR group. In the 

DAR group a significant increase in MBP+ eosinophils was observed at 24 hours after 

allergen challenge (p=0.02) but returned to baseline at 7 days. CD68+ macrophages 

and elastase-F neutrophils were significantly increased in DAR at 24 hours only 

(p=0.01 and p=0.03 respectively). Similarly the DAR group demonstrated a 

significant increase in CD3+ T cells from baseline at 24 hours following allergen 

challenge (p=0.004). At the 7 day post-allergen time point cellular counts returned to 

baseline levels. DAR as a group failed to demonstrate any significant increase in 

either CD4+ or CD8+ T cells at 24 hours and 7 days after allergen challenge. 

On combining the cell count data for both the SER and DAR groups (Figure 3.7) the 

increase in MBP+ eosinophils from baseline at 7.8 (3.8-31.85) (median ± interquartile 

range) to 35.50 (22.95-52.50) was highly significant at 24 hours (p=0.002) but not at 7 

days. The combined data for macrophages was also highly significant at 24 hours (p= 

0.0004). The increase in CD4+ and CD8+ T cells now reached statistical significance 

with p=0.05 and p=0.03 respectively at 24 hours following allergen, whilst the 

increase CD3+ T cells was highly significant (p=0.0002). 

Given that extracellular MBP staining may be misinterpreted as intact eosinophils 

(Figure 3.8B) the counts were repeated using Congo Red. The mucosal 

cosinophila was highly significant at 24 hours post-allergen (p=0.0078) for the 

DAR group (Figure 3.9). 

Mast cells were counted in both the whole section and in association with smooth 

muscle. Individual total cell counts are illustrated in Figure 3.10A (whole tissue) and 

3.10B (smooth muscle). No significant increases in mast cell numbers was observed 

in the DAR group. Mast cells infiltrating airway smooth muscle is illustrated in Figure 

3.11 A with confirmation of the presence of smooth muscle in the biopsy by staining 

for smooth muscle actin (Figure 3.1113). 
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3.2.6 Bronchoalveolar lavage (BAL) 

Table 3.3 surnmarises the cellular kinetics of inflammatory cells as identified in 

bronchoalveolar lavage (BAL) fluid. Individual cell counts are presented as 

percentage cell counts. In the DAR group, the eosinophils increased from 0.53 

(0.04-0.89) % at baseline to 3.15(0.8-7.7) % at 24 hours (p=0.02) and remained 

elevated at 2.0 (1.5-5.1) % at 7 days (p=0.02). There was a reciprocal decrease in 

the number of macrophages in the DAR group post-allergen (p=0.04). There was 

no significant change in mononuclear cell percentage (assumed to be T and B 

cells) or neutrophils. BAL mast cells were generally low in number and could not 

be identified on the basis of simple morphology. Given the low volunteer number 

of volunteers in the SER group no statistical analysis could be performed but an 

upward trend in eosinophils, mononuclear cells and neutrophils at both 24 hours 

and 7 days after allergen challenge was noted. 
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Figure 3.6: Summary of the changes in cellular inflammation in response to 
allergen challenge in the dual asthmatic response (DAR) group 

positive inflammatory cells are expressed as cells/mm2. Significant differences between time 
points were analysed using the Wilcoxon signed-rank test. 
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Figure 3.7: Summary of the changes in cellular inflammation in response to 
allergen challenge in all thirteen volunteers combined 

It can be seen that SER individuals also demonstrate increased cellular recruitment to the 
airway albeit less marked than the DAR group, leading to further significant p values for 
MBP+eosinophils (A) (p=0.002), CD68+ macrophages (B) (p=0.004) and CD3' T cells (D) 
(p=0.0002). This data is consistent with the view that the SER and DAR are not a 
dichotomous group but a continuum. 
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Figure 3.8: Representative photomicrographs of MBP+ eosinophils in a selected 
volunteer 

At baseline (A) eosinophils are present but low in number. At 24 hours post-allergen (B) there 
is a marked increase in MBP'eosinophils with evidence of explosive degranulation. At the 7 
day-time point (C) mucosal eosinophil numbers approach baseline levels. Sections were 
stained with a monoclonal anti-MBP antibody and developed using the APAAP system. 

MBP--Major basic protein 
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Figure 3.9: Congo Red staining determination of airway eosinophilia 

Given that extracellular MBP staining may be misinterpreted as intact eosinophils the 
counts were repeated using Congo Red. The mucosal eosinophila is highly significant at 
24 hours post-allergen in the DAR group (p=0.0078) (A). Positive inflammatory cells 
present are expressed as cells/mrný. 
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Figure 3.10: Changes in mucosal mast cell numbers 

Figure A shows total mast cell numbers (celIS/nIM2) infiltrating the mucosa and Figure B 
shows mast cell numbers infiltrating the airway smooth muscle areas in the DAR group. 
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Figure 3.11: Representative photomicrograph of tryptase' mast cells infiltrating 
airway smooth muscle in a selected asthmatic volunteer 

Mast cells were counted specifically in the smooth muscle (A). Confirmation of the presence 
of smooth muscle in the biopsy was confirmed by staining for smooth muscle actin seen as 
filamentous red bands (arrowed) in smooth muscle areas delininated as purple areas by H and 
E staining (B). 
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3.3 Discussion 
In this chapter it is shown that increases in AHR 24 hours post-allergen challenge is 

associated with cellular inflammation. By sampling the airway at the 7 day time point 
it is shown that allergen-induced increases in airway inflammation in the dual 

asthmatic response (DAR) group is virtually resolved by seven days, whereas at that 

time the increases in AHR still persist. It is therefore possible to dissociate increases 

in AHR from cellular inflammation. 

Using the LAR to separate out SER and DAR as two separate dichotomous groups 

allows researchers to focus on asthmatics with greater or lesser allergen-induced 
increases in inflammation and AHR and evaluate the mechanisms that lead to 

increased inflammation and AHR. Such a separation is based completely on an 

arbitrary definition which can vary within the same research group as an FEV, fall of 
15% or 10% from baseline (Dorman et al. 2004a) (Wood et A 2002). It is more likely 

that the SER and DAR are the ends of a continuum and the development of the LAR 

in an individual maybe dependent on the dose of allergen delivered to provoke the 

EAR (1hre et A 1988). In turn the development of the EAR is dependent on the level 

of specific allergen sensitivity and the underlying degree of AHR (Cockcroft et aL 
2005). Safety concerns limit all studies as to what level of allergen is given to provoke 

the EAR which may then determine whether or not a LAR develops. The 'continuum' 

concept may explain why the SER individuals both in this study and others (Wood et 

aL 1998; Gauvreau et aL 1999; Dorman et aL 2004b) demonstrate eosinophil and 

other inflammatory cell recruitment to the airway, although to a less significant degree 

compared to the DAR volunteers. 

Allcrgcn-injected atopic skin has also served as an important immunological model of 

allergic inflammation. It has been shown that there is a dose-dependent relationship 

between allergen-dose and continuation of the skin reaction to the formation of a skin 

late-phase response (LPR) (Frew & Kay 1988a) seen as an erythematous, indurated 

swelling that peaks between 6-24 hours and is resolved by 72 hours (Frew & Kay 

1988b; Frew & Kay 1988a). Time course studies in skin confirm granulocyte 

inflltration as early as 2 hours post-allergen (Ying et A 1999) with eosinophils and 

neutrophils peaking as early as 6 hours which remain elevated as far as 72 hours later. 

The peak of CD3+ cells (predominantly CD4+ CD45RO+ memory immunologically 

primed T cells) was seen at 24 hours (Ying et aL 1999) and elevated cells numbers 
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were still present at 48 hours. Eosinophils, T cells, neutrophils and macrophages 

remain elevated as far as 96 hours post-intradermal allergen (Tsicopoulos et A 1994). 

Confidence in the safety and tolerability of fibre-optic bronchoscopy (FOB) has 

allowed sampling from the airways after allergen challenge at different time points. 

Studies evaluating airway responses after challenge in biopsies confirm significant 

eosinophilia and T cell recruitment at 6 hours (the highest numbers of cells are found 

at this time point) which were sustained at 24 hours and 48 hours (Bentley et aL 

2003). Th2 cytokine expression can be correlated with the preceding airway 

narrowing during the LAR (Robinson et aL 1993) with increased IL-13 expression 

(Huang et aL 1995). Our volunteers demonstrated marked increases in CD3+ T cell 

numbers 24 hours following allergen challenge. This increase is consistent with 

allergen activation of T cell-mediated inflammation. Analysis in terms of CD4+ and 

CD8+ confirmed only a trend towards increases in airway CD4' cells post-allergen in 

that it did not reach statistical significance. This was somewhat surprising, particularly 

given the essential role of T cells in the LAR as confirmed by the ability of peptides to 

directly induce the LAR (Ali et aL 2004). Whilst it is not possible to directly compare 

studies of allergen with peptide, such work does nevertheless suggest a significant 

causal role for the T cell in the LAR. Other studies have also failed to achieve 

statistical significance for the paired increases in CD4+ cells after allergen challenge 

(Bentley et aL 1993). It is possible that the failure to achieve statistical significance is 

attributable to not evaluating allergen-specific CD4+ T cells that are recruited. 

The significant increase in macrophages (Mo) in response to allergen may be an 

indication of their role as antigen-presenting cells (Larche et al. 1998) . The status of 

Mo as professional phagocytes enable them to play a critical role in inflammatory 

resolution by clearance of apoptotic inflammatory cells (Gregory & Devitt 2004). 

Phagocytosis by Mo recognition of membrane phosphatidylserine on apoptotic cells is 

associated with the production and secretion of TGF-01 that subsequently serves to 

reduce airway inflammation (Huynh et al. 2002; Otsuka et aL 2004). Mo secrete 

large amounts of TGF-Pi. Given that the induction of airway remodelling in response 

to allergen induced injury is seen as early as 24 hours (Phipps et A 2004a) after 

allergen challenge, Mo infiltration seen in our model at 24 hours might also contribute 

airway repair with consequent fibrosis. 
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We did not demonstrate marked increases in airway neutrophils after allergen 

challenge. Neutrophil recruitment is related to the concentration of endotoxin in the 

allergen used for challenge (Alexis et aL 2004) (Hunt et aL 1994). We confirmed very 
low levels of endotoxin (data not given) to be present in the Fel DI (Leti, Madrid) 

preparation. The endotoxin level data in HDM and grass allergen extract 
(Allergopharma) was not available from the company. Although no measure of 
basophils was made in this study previous work has shown that, compared to 

eosinophils, there were minimal increases in bronchial mucosal basophil numbers 

after allergen challenge (Macfarlane et aL 2000). In contrast to the upper airways and 

the skin, basophils were not a prominent cell in the airways of asthmatics. 

BAL enables the sampling of cells from the luminal side of the airway barrier. In 

normal volunteers 10-20 million cells can be recovered in a lavage volume of around 
100mls. Macrophages (mo) are the predominant cell population recovered and 

comprise 80-90% of the total cell population with lymphocytes contributing 10-20%. 

The total contribution of eosinophils and neutrophils were less than 1% whilst mast 

cell populations were less than 0.5%. In airway biopsies, lymphocytes were the 

predominant cell type in the normal airway mucosa. Mo contribute to 20% of the total 

cell population whilst mast cells contribute less than 10%. Neutrophils can vary in 

number but eosinophils are rarely present in normal individuals and if present are in 

an inactivated state. Thus the information obtained from BAL provides different but 

complementary information. 

Allergen studies in the lung have confirmed significantly increased cellular 

inflammation in individuals with DARs. In an early study (De Monchy et aL 1985) 

analysis of BAL just after the EAR and during the LAR confirmed marked 

eosinophilia at both time points. BAL analysis 4 and 24 hours after whole lung 

allergen challenge (Metzger et A 1986) confirmed increases in eosinophil and 

neutrophil percentages as early as 4 hours with a reciprocal decrease in macrophages. 

Further studies confirmed early eosinophilia (Rossi et aL 1991) and that it is sustained 

at 24 hours (Metzger et aL 1986; Robinson et aL 1993). Eosinophils were of an 

activated phenotype. Diaz et al confirmed increased BAL neutrophils, eosinophils and 

also lymphocytes 6 hours post-allergen in DAR group (Diaz et al. 1989). In a separate 

time-course study by Metzger et al confirmed increased BAL neutrophils, eosinophils 

and T cells at 48 hours post allergen with sustained eosinophils and T cells at the 96 
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hour time point (Metzger et A 1987). The kinetics of cellular inflammation is 

provided in a detailed induced sputum study (Gauvreau et A 1999) showing 

significant increases in luminal eosinophils, macrophages, neutrophils and 

metachromatic cells (presumed mast cells and basophils) significantly elevated at 7 

hours. Only luminal eosinophils and macrophages remained significantly elevated at 

24 hours, 2 days, 4 days and 7 day time points. 

BAL eosinophila is the most characteristic cellular abnormality finding in asthma 

ranging from 2-11%. The cells demonstrate an activated phenotype. Whole lung 

allergen challenge is associated with moderate increases in BAL eosinophila within 4- 

6 hours after allergen that is sustained at 24 hours, particularly in DAR group 
individuals. Direct comparisons of past studies are difficult to compare to the findings 

from this study due to different types of bronchial challenge applied and variation in 

allergen stock and dosing schedules. 

In this study the increase in BAL eosinophilia was sustained at both 24 hours and 7 

days post-allergen despite the mucosal eosinophil counts returning to baseline levels. 

Luminal exit may be more effective than apoptosis as an eosinophil clearance 

mechanism (Edefalt et al. 2004; Uller et al. 2001). The continued exit at 7 days 

suggests that clearance, whilst a rapid process, is also a sustained process. The 

changes in BAL macrophage numbers can be variable. Whilst some studies have 

shown no changes (Diaz et al. 1989) others have shown increases (Dupuis et al. 

1992), but sampling was at 6 hours post inhalational allergen challenge in the former 

while segmental allergen challenge was used in the latter study. We observed a small 

but significant reciprocal decrease in the individual macrophage counts (expressed as 

a percentage), consistent with the observation by Hunt et al (Hunt et al. 2002). Given 

that macrophages undergo activation with increased adhesiveness post-allergen, it is 

possible increased adherence to the airway lumen or even the collecting vial leads to 

an underestimation of the cell numbers. 

Despite the fact that the size of the LAR and associated increase in AHR has been 

shown to correlate with the degree of airway eosinophilia (Wardlaw el al. 1988), 

whether the eosinophil is involved in the development of the LAR is controversial. A 

single infusion of anti-IL-5 (eight volunteers in each group) did not abolish the LAR 

despite marked reduction in sputum and blood eosinophilia (Leckie et al. 2000). The 
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kinetics of eosinophil recruitment in the skin model has been shown to be dissociated 

from that of the skin LPR (Phipps et aL 2002). In addition eosinophil depletion using 

an anti-IL-5 antibody did not affect either the magnitude of the cutaneous swelling 

that defines the LPR (Phipps et aL 2004b) suggesting that the eosinophil may not be 

causal for the development of the LPR. However cyclosporin-A can block the LAR 

but not the EAR (Sihra et aL 1997) suggesting an important role for activated T cells. 
Inhalation of allergen-derived T cell peptides can lead to the LAR (Haselden et aL 
1999) which again supports a role for T cells in the LAR. Activated eosinophils 
(EG2+) and macrophages (CD68+) recruited in response to allergen express the high 

affinity IgE receptor FccRI which may explain the ability of IgE to independently 

induce the LPR. 

The original observation of Cockcroft and his group (Cockcroft et aL 1977) that 

allergen inhalation increases AHR in DAR individuals is sustained for at least 7 days 

is confirmed in this study. This observation is reminiscent of the sustained increase in 

airway symptoms related to AHR in asthmatic patients following allergen exposure. 
The temporal association between increased inflammatory cell infiltration and 
increased AHR at 24 hours after allergen challenge (Dorman et aL 2004b; Brusasco 

et aL 1990; Dorman et aL 2004a) may suggest a causal relationship. However, the 

current findings suggest that increases in airway inflammation do not need to be 

sustained for persistence of increased AHR. It is therefore possible that the 

mechanism underlying the acute increases in AHR at a time of intense airway 
inflammation may be different to that which sustains AHR long-term. Inflammatory 

cells are important sources of vasoactive mediators, cytokines and cysteinyl 
leukotrienes, particularly LTC4, which can induce bronchoconstriction, mucus 

hypersecretion and increased microvascular permeability that will all contribute to 

inflammation associated increases in AHR. Inflammatory cell derived products may 

also lead to structural cell activation that is sustained beyond resolution of cellular 
inflammation to baseline levels. For example a so called IL-13-cysteinyl leukotriene- 

ASM axis has been identified where IL-13 may not only influence ASM contraction 

directly via IL-13R expressed on ASM (Laporte et aL 2001), but also via release of 
leukotrienes such as LTD4 that act directly on ASM (Panetticri et aL 1998). 

The exact role of the eosinophil in relation to AHR has recently been questioned by 

the finding that anti-IL-5 (mepolizumab) given both on single occasion and in a 
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separate study on three consecutive occasions failed to have any effect on AHR 

(Leckie et aL 2000; Flood-Page et aL 2003b). However mepolizurnab only reduced 
bronchial mucosa eosinophils by only 55 % in the latter study. Until studies are 

performed where airway eosinophilia is completely abolished it is difficult to 

comment on the exact contribution cosinophils may make to AHR. Another feature of 

these two studies is that AHR was measured in response to histamine. It has been 

shown that AHR measures using indirect challenge such as with adenosine better 

reflects AHR related to cellular inflammation (Van den et aL 2001). A significant role 
for eosinophils in airway repair is now established and it is possible that eosinophil 
infiltration at 24 hours in our model is again related to airway repair responses (Kay et 

aL 2004). Recruited macrophages and T cells may also be related to their role in tissue 

repair. In idiopathic pulmonary fibrosis at least it has been suggested that CD8+ T 

cells and CD68+ macrophages in particular contribute to the severity of disease 

(Daniil et aL 2005). 

Significant insight into the role of inflammation in the mechanism of AER, 

particularly the role of the eosinophil, can be obtained by our experience of allergic 

rhinitis (AR) and eosinophilic bronchitis (EB). ARs can demonstrate marked airway 

eosinophilia similar to asthma in response to allergen challenge but with no obvious 

airway functional change (Lopuhaa et al. 2002). Inflammatory changes in EB can be 

indistinguishable from asthma despite the complete absence of AHR (Brightling et aL 

2002). These findings support the assertion that inflarnmation in itself is not 

responsible for AHR. It may be that cellular inflammation but must occur in the 

context of a specific (as yet undefined) mucosal environment for AHR to develop. 

The micro-location of the inflammatory components may also be important. For 

example airway smooth muscle (ASM) infiltration by mast cells may be an important 

determinant of AHR in asthma as it was a defining difference between baseline 

asthma and eosinophilic bronchitis (Brightling et aL 2002). The suggestion that a 

mast-cell induced smooth muscle cell myositis is a determinant of AER in asthma is 

intriguing. In our study we were unable to demonstrate any increased trafficking of 

mast cells into the smooth muscle areas. These findings do not necessarily contradict 

a role for mast cells in baseline AHR and these cells may contribute to allergen 

increases in asthma by degranulation products acting directly on ASM leading ASM 

activation and contraction. 
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Several studies have failed to demonstrate convincing correlation between 

inflammation and AHR with several studies having found no convincing association 
(Djukanovic et aL 1990; Ollerenshaw & Woolcock 1992; Iredale et aL 1994; Crimi et 

aL 1998; Brusasco et A 1998). Whilst it is likely that the factors such as asthma 

heterogeneity and AHR measures with direct acting agents may have influenced such 

results, overall the evidence from human studies does not support the view that 

cellular inflammation, particularly eosinophil infiltration, directly relates to intrinsic 

or sustained AHR. This does not exclude inflammatory events contributing to the 

initiation and propagation of AHR. 

Animal models of disease provide insight into what aspects of cellular inflammation 

and cytokines may contribute to AHR. Studies where Th2 effector cytokine activity 

has been blocked, particularly IL-4, IL-5 and IL-13 have questioned further the exact 

role airway inflammation has in the induction and maintenance of AHR. IL-4 

deficient mice still develop AHR with allergen challenge despite markedly reduced 

airway inflammation (Rankin et aL 1996). The results with IL-5 are conflicting. The 

reduction in peribronchial eosinophila in models using IL-5 deficient mice (Foster et 

aL 1996) or IL-5 blocking antibodies (Hamelmann et aL 1997) is associated with 

reduction in AHR. Similarly, epithelial transgenic over-expression of IL-5 

recapitulates many of the pathological features of asthma and demonstrate AHR to 

methacholine in the absence of allergen exposure (Lee et al. 1997). These findings 

implicate eosinophilic inflammation as contributing to AHR. Yet Humbles et al 

elegantly demonstrated using a GATA-1 knock out mouse model that, despite 

complete ablation of the eosinophil lineage, development of allergen-induced AHR is 

unaffected (Humbles et A 2004). This conflicting finding suggests that eosinophils 

are not effector cells in AHR and may offer an explanation for the somewhat 

disappointing results found in trials of anti-IL-5 in human asthma. 

There is increasing evidence that IL-13 is able to induce AHR in the absence of 
inflammatory cell infiltration. IL-13 blockade inhibits AHR despite the presence of 
inflammatory cells and continued IgE synthesis. It appears that T and 13 cells are not a 

requirement for IL-13 induced AHR (Grunig et A 1998). Pre-treatment of mice with 
the potent granulocyte inhibitor vincristine (Singer et aL 2002) did not prevent the 
induction of AHR by IL-13 whilst studies in eotaxin/IL-5 double knock-out mice 

again confirmed IL-13 induction of AHR (Yang et aL 2001) in the absence of 
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eosinophilia. over expression of only epithelial STAT6 in IL-13 transgenic mice 
induced AHR in the absence of eosinophils again suggesting eosinophils do not 

participate in the development of AHR (Kuperman et aL 2002). The interpretation of 

these studies must be that IL-13 can induce the entire pathophysiological changes of 

asthma through its combined effects on the structural cells themselves. This is 

independent of traditional inflammatory cells. Such cells may still contribute to the 

disease process by the synthesis and release of IL-13 but inflammatory cells are not 

essential for the induction or maintenance of AHR. In asthma it is possible that 

allergen induced injury activates the synthesis and release of IL-13 from resident 

airway structural cells such as epithelium, ASM and fibroblasts which can then act on 
ASM in the absence of inflammatory cell infiltration. Activation of IL- 13 signalling is 

evident as early as 24 hours after allergen challenge in human asthma (Phipps et aL 
2004a). There is convincing data that AHR may in fact be a direct effect of IL-13 on 
ASM or by regulating the production of several mediators that can regulate the 

contraction or relaxation of ASM. IL-13 has been shown to reduce P2 receptor 
induced relaxation of ASM via MAPK pathway (Laporte et al. 2001). IL-13 also 

contributes to the severity of AHR indirectly via its positive feedback interaction 

between cysteinyl leukotriene and TGF-P1 production that are known to induce ASM 

hyperplasia (Espinosa et aL 2003). 

it is believed that the development of the LAR occurs as a continuum within and 

between individuals, possibly related to the dosage of the allergen used (1hre et al. 
1988). Although SER numbers are small it still possible to see an upward trend for the 

recruitment of eosinophils, macrophages and CD3+ T cells in our population. There is 

however evidence to suggest that acute increases in AHR in response to allergen may 

to some extent be dependent on T cell recruitment and activation as has been 

demonstrated on several occasions by CD4+ and CD8+ depletion studies where the 

development of acute allergen induced transient increases in AHR was absent (Gavett 

et al. 1994). Using blocking anti-CD4+ and anti-CD8+ antibodies and an acute and 

chronic model of allergen exposure, Leigh et al were able to show that the acute 
increases in AHR, whilst T cell dependent, sustained A-HR associated with chronic 

allergen exposure did not require the presence of either CD4"' or CD8 4- (Leigh et al. 
2004b). 
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An important observation is that the fall in FEVI was significant at 24 hours in the 

DAR group but approached baseline values at 7 days. Thus it appears that although 
AHR does not follow changes in absolute cell numbers, changes in FEVI may do, as 
has been outlined before in previous studies (Bousquet el aL 1990; Walker et aL 
1991). Increased airway wall oedema and vascularity, mucus hypersecretion and 

cellular debris associated with the peak of inflammation at 24 hours post-allergen 
leads to increased airway obstruction in the DAR group. Such acute airways changes 

will diminish with inflammatory cell resolution. The clinical implication from this 

work is that measuring cellular inflammation does not allow any insight into asthma 

severity in terms of AHR. 

Thus inconclusion persistent inflammatory cell infiltration of the bronchial mucosa 
does not appear to be essential to sustain allergen-provoked increases in AHR. This 

may reflect persistence of the end effects of inflammation such as neural, vascular and 

mucosal remodelling processes which in turn have downstream effects contributing to 

AHR. It maybe that there are mechanisms for AHR in response to allergen challenge 

that are not due to airway inflammation perhaps indicating that there are different 

components to AHR. Acute increases in response to allergen maybe initiated by 

inflammation whereas sustained AHR may result from a different mechanism 

3.4 Summary of Chapter 

In this chapter it was investigated whether sustained AHR in DARs was associated 

with sustained increases in cellular inflammation. The numbers of eosinophils (MBP+ 

and Congo Red), macrophages (CD 68), neutrophils (elastase"'), mast cells 

(tryptase') and T cells (CD3+, CD4+, CD8+) were counted in bronchial biopsies from 

mild atopic asthmatics (n=14) at baseline, at 24 hours and at 7 days after allergen 
inhalational challenge. AHR (methacholine PC20) and FEVI were also measured at 

these time points. In DARs (n--9) AHR was markedly increased 7 days after allergen 

challenge. However eosinophils, macrophages, neutrophils and CD3+ and CD8+ T 

cells were significantly elevated only at 24 hours and returned to baseline values by 7 

days. Thus the data suggests that persistent infiltration of further inflammatory cells to 

the airway does not appear to be essential for the maintenance of increased AHR 

following allergen inhalation in dual asthmatic responders. 
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Chapter 4 

Airway Remodelling 
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4.1 Introduction 

In this chapter the expression of remodelling markers in asthmatic and normal 

volunteers are described as is their relationship to inflammation and AHR. Whilst it is 

now becoming accepted that airway remodelling is an acute event and is up-regulated 

at the same time as inflammation in response to allergen-induced airway injury in 

asthma, it remains uncertain as to whether remodelling is sustained, particularly the 

relationship of remodelling in the presence or absence of cellular inflammation to 

AHR. 

A previous study has shown that bronchial biopsies from mild atopic asthmatics who 

develop dual asthmatic responses (DAR) obtained 24 hours after allergen challenge 

show significant increases in RBM tenascin deposition and HSP-47 expression (a 

marker of induction of collagen synthesis) with localisation to airway fibroblasts 

(Phipps et aL 2004a). There was evidence of IL-13 and TGF-P Superfamily signalling 

in the epithelium and fibroblasts at this time point. Airway infiltration by 

myofibroblasts in the DAR group was seen as early as 24 hours after allergen 

challenge (Gizycki et aL 1997). This data supports the hypothesis of allergen-induced 

remodelling suggesting that allergen-induced activation of the epithelial mesenchymal 

trophic unit (EMTU), the embryological unit driving airway development, is rapidly 

reactivated during the process of airway remodelling. Separate studies on the effect of 

eosinophil depletion on decreasing ECM components (Flood-Page et aL 2003a), 

together with the effects of steroids on attenuating selected aspects of remodelling 

(Laitinen et aL 1997) suggests that some aspects of airway remodelling may be a 

consequence of inflammatory events. Therefore it is possible that airway remodelling 

is an acute response to allergen-induced airway injury. Some aspects of remodelling 

will be related to inflammatory cell infiltration whilst other aspects will be related to 

structural cell activation. 

For these reasons the aim of this chapter to confirm that allergen inhalation leads to 

rapid induction of remodelling markers at 24 hours but in addition determine whether 

this up-regulation is maintained or resolved at the 7 day post-allergen time point. The 

results will be compared with the degree of AHR at these time points. 
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4.2 Results 
4.2.1 Allergen-induced activation of airway remodelling 
The modulation of expression of airway remodelling markers in response to inhaled 

allergen is summarised in terms of cellular median counts (inter-quartile range) in 

Table 4.1 for all thirteen volunteers and Table 4.2 for the DAR group and SER group 

separately. Data for individual volunteers are illustrated in subsequent figures (stated 

in text below). 

The induction of tenascin in the RBM was markedly increased from baseline (Figure 

4.1A) 24 hours post allergen (p=0.0007) but returned to baseline values at the 7 day 

post allergen time point as can be seen from the confocal images (Figure 4.2A, B and 
C respectively). The increase at 24 hours significantly correlated with eosinophil 
infiltration only (r--0.6 1, p=0.03) (Figure 4.1 Q. We and others have previously shown 

that tenascin expression in non-nal airways is either minimal or absent, in contrast to 

asthma. This finding is illustrated from a normal volunteer who participated along 

side the negative control in images in Figure 4.213 and 4.2E respectively. 

A discrete layer of cells with fibroblast-like appearance were identified, on the basis 

of morphology, below and parallel to the RBM and in the deeper layers of the 

submucosa that stained for the collagen chaperone HSP-47. Expression of HSP-47 

was also evident in the epithelium. We did not detect any HSP-47 expression in 

fibroblast-like cells in the 6 normal volunteers suggesting basal transcription of HSP- 

47 (and hence collagen) is minimal under basal conditions in healthy adults. With 

allergen challenge there was significant up-regulation of both procollagen I (P=0.001) 

and HSP-47 (p=0.02) in airway cells counted in the whole biopsy at the 7 day time 

point (Figure 4.3A and 43B respectively) in the 13 asthmatic volunteers. 

There was significant up-regulation of HSP-47 in fibroblast-like cells at the 24 hour 

time point (p=0.02) (Figure 4.3C) but not airway epithelium, confirming our previous 

published findings (Phipps et aL 2004a). At 7 days following allergen exposure, a 

marked and sustained increase was evident with an almost 12-fold increase in the 

median number of HSP-47+-fibroblast numbers (p--0.0001) (Figure 4.3C and Figure 

4.7Q. 
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The morphology of fibroblast-like cells staining for HSP-47 could be readily 
identified (Figure 43D). It was not possible discriminate fibroblast-like cells on the 

basis of morphology when using procollagen I staining given that procollagen is both 

intra and extracellular, making cell morphology indistinct (Figure 4.7E) and therefore 

the counts for procollagen I may include cells other than fibroblasts. The expression 

of a-SMA in fibroblast-like cells was taken as evidence of myofibroblast 

transformation. There was no difference in the number of myofibroblast-like cells 
between normal and asthmatic volunteers (Figure 4.4A). There was a significant 
increase in myofibroblasts numbers at 24 hours (p=0.02) which was sustained at 7 

days (p=0.03) (Figure 4.4B). These spindle-like cells were independent of any 

vascular or glandular structure and therefore unlikely to represent vascular smooth 

muscle or glandular tissue that may express a-SMA. 

4.2.2 The relationship of airway remodelling to AHR 

The dual asthmatic response (DAR) group demonstrated markedly increased AHR at 

both 24 hours and 7 days as stated in Chapter 3. We further determined whether the 

DAR group alone would have significant expression of remodelling markers at these 

time points. 

The expression of RBM tenascin increased at 24 hours after allergen challenge 
(p=0.004) but approached baseline levels again by Day 7 (Figure 4.1B). The 

expression of procollagen III in the RBM did not change at the 24 hour post allergn 

point consistent with a previous study from the group (Phipps et aL 2004a). However, 

at the 7 day time point there was a significant increase in RBM procollagen III 

(p=0.01) (Figure 4.9A and Figure 4.10 Images A-C). The increase in procollagen I 

remained highly significant at the 7 day time point (p=0.0078) and HSP-47+ 

expression remained significant at both 24 hours (p=0.04) with further highly 

significant increases at 7 days (p=0.0078) (Figure 4.5 A and 4.5 B). The increase in 

AHR (PC 20) was significantly correlated with HSP-47 expression in the group as a 

whole at 24 hours (r---0.6 p=0.02) but this association was not significant at 7 days 

(r--0.5, p=0.08). The DAR group only demonstrated a marked correlation between 

PC20 and HSP-47 expression at 24 hours (r---0.8, p=0.02) but this association did not 

persist to 7 days (r---0.23, p=0.4) (Figure 4.6). 
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In the previous chapter it was demonstrated that inflammation and AHR dissociate at 

the 7 day time point. Thus inflammation and remodelling can also be dissociated at a 

time point when AHR and remodelling remain associated. 

The data for the DAR group was also analysed using a mixed modelling approach 

to see if there were significant changes over time in the ten variables that changed at 

either or both the 24 hour or 7 day post allergen time point in the study (i. e. PC20, 

FEVI, MBP+ eosinophils, CD68+ macrophages, CD3+ T cells, elastase+neutrophils, 

RBM tenascin, RBM procollagen III, procollagen I+ cells and HSP-47+ cells). Such an 

approach had added the advantage of using all the data (including the patient for 

whom there was no 7 day follow-up). It also allowed us to quantify the effect of 

time. The statistics from the mixed model approach is summarised in Table 4.3. It 

can be seen that such analysis leads to similar conclusions as that obtained from the 

paired analysis data disussed earlier. The change in PC20 remained significant but the 

overall change in FEVI was not significant. The change per day for the other variables 

was only significant for procollagen e cells, RBM procollagen III and HSP-47+ 

fibroblasts. 

4.2.3 Vascular endothelial growth factor (VEGIF) 

Infiltrating inflammatory cells were identified as an important source of VEGF 

although epithelium was also contributory. There were also cells with fibroblast-like 

morphology present staining positive for VEGF. No expression was seen in smooth 

muscle cells. Expression of VEGF was significantly more in the asthmatic group 

compared to normal volunteers (Figure 4.1 1A). No significant change in the 

expression level of VEGF following allergen challenge was detected in terms of IHC, 

with median baseline expression of 252 (102-400) cells/mm2 at baseline, 296 (184.5- 

480) cellsfmmý at 24 hours and 324 (192-424) cells/MM2 at 7 days post-allergen 

(Figure 4.1113). 
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4.2.4 Epithelial-mesenchymal transition 

There was no significant difference in the level of epithelial expression for HSP-47, 

vimentin or a-SMA between normals and asthmatics at baseline. On allergen 

challenge expression of vimentin in epithelial cells did not change significantly from 

baseline at 30.40 celIS/MM2 (15-4-44.90) to 32 cell/mm, 2 (6.3-49.9) at 24 hours and 

19.55 cell/MM2 (9-85-43.35) at 7 days (all p=ns). Whilst an up-regulation of HSP-47 

from baseline levels at 52.54 cells/mm2 (32-150) was evident at both 24 hours at 

90.50 cells mM2 (43.34-139.7) and 98 celIS/MM2 (44-149.7) at 7 days, the increases 

did not reach statistical significance. Similarly no change in the number of epithelial 

cells expressing a-SMA was seen (data not shown). 
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Marker 0 hours 24 hours Significance 7 days Significance 

Tenascin 
RBM units 

841 
(652-930) 

1330 p=0.0007 
(793.4-1989) 

942 ns 
(407-1160) 

PC 1+ 88.0 125.7 p=0.08 264.0 P=0.001 
all cells/mrn2 (26-115) (57.2-228.5) (116.8-348.8) 

PC 111 2190 2543 ns 2208 ns 
RBM units (1631-2871) (1875-3502) (15154158) 

HSP47+ 53.24 104.7 ns 166.7 p=0.02 
all celIs/mm2 (33-112) (61-173.8) (87.56-368) 

HSP47+ 2 10.67 p=0.02 51.56 P=0.001 
fibroblasts (0-8) (1-34.7) (16-173.8) 
Cel, S/MM2 

a-SMAý 
16.0 43.0 p=0.02 47.95 p=0.03 

flbroblasts (8.8548) (31.10-69) (23.35-97.35) 

Table 4.1: Expression of tenascin and procoHagen III in the RBM and cellular 
expression of procollagen 1, HSP-47 and a-SMA in asthmatic volunteers 

Positive cells were determined by counting the whole section and expressed as cells per 
square millimetre of biopsy. All counts were performed in a blinded fashion using an 
Olympus BH-2 Microscope (Olympus Corp., Lake Success, NY, USA). RBM ECM 
expression was via confocal microscopy and Scion Image Analysis software as decribed 
separately. On selected samples the slides were counted in duplicate and the coefficient of 
variation was < 5%. Cell counts are expressed as the median (inter-quartile range). Paired data 
was analysed using the Wilcoxon signed rank test. Significance was accepted as p<0.05. 
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Figure 4.1: Time course of expression of tenascin at the reticular basement 
membrane (RBM) 

The immunoreactivity of tenascin at the RBM in asthmatic volunteer group at baseline (Time 
0 hours) and in response to allergen challenge (Time 24 hours and 7 days) is presented as 
paired data. Using Scion image software, the immunoreactivity of RBM is expressed as the 
product of thickness of the RBM (measured as the distance of a line drawn perpendicular to 
the band of immunoreactivity in the RBM) and average density of this line, averaged over the 
whole thickness of the RBM. The median increase was statistically significant at 24 hours 
(p=0,0007) (A). The dual asthmatic responder group (DAR) demonstrated significant 
increases (p=0.004) (B). Significant differences between time points were analysed using the 
Wilcoxon signed-rank test. The increased expression of tenascin following allergen challenge 
at 24 hours only correlated to the increase in eosinophils (Spearman r--0.61, p=0.03) (Q. 
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Figure 4.2: Tenascin immunoreactivity of the reticular basement membrane 
(RBM) 

The expression of tenascin increased from baseline (A) at 24 hours (B) following allergen 
challenge, returning to baseline levels at 7 days (C). Tenascin expression in a normal 
volunteer (D) and the negative control (E) where the primary antibody was omitted is also 
shown. Sections were counterstained with DAPI (blue nuclei). The epithelium is labelled IT 
in order to provide orientation for the section. For measurement of immunofluorescent 
tenascin staining, the confocal microscope settings were standardized to allow comparison of 
immunoreactivity intensity between different sections (density). Measurements were analysed 
using a Scion Image Analysis software package. The thickness of immunoreactivity in the 
RBM area was calculated by taking multiple measurements over the length of the biopsy 
(more than 100 measurements) at 10 pm intervals. Briefly, at each measurement, a line was 
drawn perpendicular to, and across, the band of immunoreactivity in the RBM and image 
analysis software used to quantitate the length of the line (thickness) and its intensity 
(density). The values were averaged over the whole length of the RBM to give the mean 
product of thickness and density of immunoreactivity. 
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Figure 4.3: Time-course of collagen expression in all asthmatic subjects 

The results are expressed as the number of cells expressing procollagen I (A) and HSP-47 (B) 
as cells per mm2. The marked expression of HSP-47 in fibroblasts (C) was significant as early 
as 24 hours post allergen. 
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Figure 4.4: Analysis of expression of a-smooth muscle actin in fibroblast-like 
cells 

No difference in the expression number of fibroblast-like cells expressing ct-smooth muscle 
actin (a -SMA) was observed between normal and asthmatic volunteers (A). Significant 
increases in a-SMA positive fibroblast-like cells were observed 24 hours and 7 days after 
allergen (B). The Mann-Whitney test was used to compare non-paired data. All paired within- 
subject data was analysed using the Wilcoxon signed rank test. The results are expressed as 
the number of positive cells per mmý. Fibroblasts were identified morphologically as being 
fusiformic in shape with elongated nuclei. Immunoreactive positive cells identified as 
leukocytes within this zone were not counted 
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Figure 4.5: Analysis of procollagen I and HSP-47 expression according to dual 
asthmatic response (DAR) status 

The results are expressed as the number of positive cells per mrný. Fibroblasts were identified 
morphologically as being fusiformic in shape with elongated nuclei below the basement 
membrane. Positive cells were determined by counting the whole section and expressed as 
cells per square millimetre of biopsy. Immunoreactive positive cells identified as leukocytes 
within this zone were not counted. 
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Figure 4.6: HSP47 fibroblasts vs PC20 (AHR) 

Correlations were performed between PC20 (AHR) against cellular counts and remodelling 
markers on specific time point measures, using Spearman's correlation. There was a 
significant correlation between AHR and HSP47 expression in fibroblasts at the 24 hour time 

point (r---0.8 p=0.02) only. AHR did not correlate with either cellular inflammation or RBM 

tenascin and procollagen III expression. 
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Figure 4.7: HSP47, procollagen I and a-SMA immunoreactivity in fibroblast- 
like cells 

HSP-47 immunostaining of paired bronchial biopsies obtained at baseline (A), 24 hours (B) 
and 7 days (C) after allergen challenge in a representative volunteer is shown (x 40 
magnification). Fibroblasts were identified morphologically as being fusiformic in shape with 
elongated nuclei as shown by the cells staining for HSP-47 (x 100) (D). Cellular procollagen I 
and a-SMA immunoreactivity in submucosal fibroblast-like cells (arrowed) (E and F 
respectively) is also shown (x 100 and x4O respectively). Immmunoreactivity was detected by 
the alkaline phosphatase-anti-alkaline phosphatase (APAAP) method. The phosphatase 
substrate fast red was used to develop the reaction enabling signal visualisation. 
Immunoreactive positive cells identified as leukocytes within this zone were not counted. 
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Figure 4.8: Illustration of the expression trend of remodelling markers in SER 
volunteers 

Tenascin (A), HSP47 (B) and a-SMA expression is shown. Other than one volunteer the 
general trend is that there is very little up-regulation of remodelling markers in the SER 
group. 
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Figure 4.9: Procollagen III immunoreactivity at the RBM in the DAR group (A) 
and the SER group (B) 

Using Scion image software, the immunoreactivity of RBM is expressed as the product of 
thickness of the RBM (measured as the distance of a line drawn perpendicular to the band of 
immunoreactivity in the RBM) and average density of this line, averaged over the whole 
thickness of the RBM. There was an significantly increased RBM procollagen III expression. 
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Figure 4.10: Procollagen III immunoreactivity in the reticular basement 
membrane (RBM) 

The expression of Procollagen III in the RBM was not significantly altered from baseline (A) 
at 24 hours (B). There was a significant increase at 7 days (C) following allergen challenge as 
shown in a selected dual asthmatic volunteer. The confocal microscope settings were 
standardized to allow comparison of immunoreactivity intensity between different sections 
(density). Measurements were analysed using Scion Image Analysis software package. The 
thickness of immunoreactivity in the RBM area was calculated by taking multiple 
measurements over the length of the biopsy (more than 100 measurements) at 10 gm 
intervals. Briefly, at each measurement, a line was drawn perpendicular to, and across, the 
band of immunoreactivity in the RBM and image analysis software used to quantitate the 
length of the line (thickness) and its intensity (density). The values were averaged over the 
whole length of the RBM to give the mean product of thickness and density of 
immunoreactivity. 

Procollagen III staining is less intense at baseline (A) as evidenced by the less distinct RBM 
borders. In contrast to the RBM at the day 7 time point is distinct in outline and the staining 
intensity for procollagen III is marked. Up-regulation of procollagen is also present in the 
epithelial cells as evidenced by the loss of green fluorescence and increase in redness leading 
to a mixed yellow-orange colour (labelled EPA A negative control where the primary 
antibody was omitted is also presented (D). 
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Measure Change per 95% CI p value 
day 

PC20 
-0.15 -0.26, -0.03 0.011 

FEV, 0.37 -0.62,1.37 0.460 
MBP 1.18 -4.15,6.50 0.665 
CD68 -0.48 -5.56,4.61 0.854 
CD3 -2.64 -6.88,1.60 0.223 
Elastase 1.05 -1.15,3.24 0.351 
Tenascin 10.14 -58.59,78.86 0.772 
Procollagen 111 140.20 63.78,216.62 <0.001 
Procollagen 1 19.16 7.09,31.24 0.002 
HSP-47 28.71 14.19ý43.23 <0.001 

Table 4.3: Summary of data analysis using a mixed modelling approach 

The data was also analysed using a mixed model to assess the change over time. In this model 
patients were entered as a random effect, with time as a fixed effect. Analysis of data using a 
mixed modelling approach was used to assess whether the change per day for each of the 
above variables was significant. The observed changes in each of the parameters per day 
together with the 95% confidence intervals (CI), based on the measurements at baseline, 24 
hours and 7 days are summarised in Table 4.3 The change per day of only PC20 AHR, 
procollagen I, procollagen III and HSP-47 were significant. p<0.05 was taken as significant. 
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Figure 4.11: Summary of airway vascular endothelial growth factor (VEGF) 
expression 

The expression of VEGF is increased in asthmatics at baseline compared to normal airways 
(p=0.02) (A). Following allergen challenge there was no significant increases in VEGF 
expression in the asthmatics (B). The Mann-Whitney test was used to compare non-paired 
data. All paired within-subject data was analysed using the Wilcoxon test. The results are 
expressed as the number of positive cells per mrný. 
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4.3 Discussion 
In this chapter it is shown that airway remodelling is an acute event in response to 

allergen induced airway injury and is up-regulated alongside airway inflammatory 

changes. Whereas the allergen-induced increases in airway inflammation in dual 

asthmatic responders was virtually resolved by seven days, increases in AHR and the 

expression of collagen markers of airway remodelling persisted. It is therefore 

demonstrated that AHR can be dissociated, from cellular inflammation whilst 

remaining associated with sustained airway remodelling. 

Inflammation can be considered as a response to tissue injury. With acute injury, 

inflammation occurs aiming to carry out restoration of the tissue to its normal state. In 

tissue that is in a state of chronic injury, inflammation must adapt to repair the tissue 

still with the aim of restoring tissue architecture, but in the context of ongoing tissue 

injury and activation that may lead to exaggerated and abnormal tissue repair. It 

therefore makes biological sense that induction of airway remodelling is an acute 

event and -is in association with inflammatory cell recruitment, particularly 

eosinophils and macrophages which are both cells implicated in tissue repair. 
Interestingly, tenascin expression returned to baseline levels in parallel to 

inflammatory resolution. Some aspects of airway remodelling are therefore related to 

cellular inflammation. Several studies, including this one, have correlated the 

production of tenascin with eosinophil infiltration (Kaýalainen et aL 2003). As 

eosinophilic inflammation resolves at 7 days, similarly RBM tenascin levels return to 

baseline values. This is in contrast to collagen expression. 

The significant correlation of HSP-47 with AHR at the 24 hour time point and the 

association of procollagen I expression at day 7 is important as it suggests that 

individuals with increased AHR early on display an enhanced capacity to generate 

collagen. Increases in AHR and collagen markers do not necessarily mean a cause 

and effect relationship, with other complex variables such as the IgE response and 
degree of sensitisation being operative. Nevertheless the presence of sustained AHR 

at a time when remodelling is increased allows further hypotheses to be constructed 

and identifies remodelling markers that need further focus. The overall suggestion is 

that that selected features of airway remodelling might be related to inflammatory cell 

sources of cytokine and growth factors whilst other aspects maybe initiated by 

inflammation but can later proceed independently of inflammation, possibly through 
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structural cell activation. For example IL-13 and IL-4 can lead to epithelial release of 

TGF-P2 that will subsequently activate down-stream mesenchyrnal cells (Richter et aL 

2001). This suggests that some aspects of airway remodelling will be related to 

inflammatory cell sources of cytokine and growth factors whilst other aspects can 

proceed independently of inflammation, possibly through structural cell activation. 

The mechanisms by which remodelling may contribute to AHR remains an area of 

important discussion. Mathematical modelling predicts that any increase in airway 

wall thickness internal to the airway smooth muscle (ASM) layer will amplify the 

airway narrowing at the time of ASM contraction and that airways with increased 

ASM narrow to a much greater extent than airways with less smooth muscle volume 

for a given degree of circumferential smooth muscle shortening (Moreno et A 1986). 

Such predictions are important given that increased ASM mass is the only structural 

feature that distinguishes severe asthma from moderate disease (Benayoun et A 

2003). Greater ASM mass will not only lead to an excessive degree of muscle 

shortening (Wiggs et aL 1990) but also greater force generation leading to a 

disproportionate reduction in airway patency for a given degree of ASM contraction 

(Lambert et aL 1993). ASM has been found to encroach onto the RBM and epithelium 
in severe asthma (Madison 2003), so that even minor contraction will affect airway 

narrowing. Such findings may explain the persistent AHR seen in asthma under basal 

conditions. 

Several studies have documented that increases in AHR after allergen are associated 

with inflammatory cell infiltration in DARs (Wardlaw et aL 1988). The observation 

here that the DAR group also demonstrate both acute and sustained increases in 

airway remodelling is relevant. An obvious and important question is what component 

of the increased AHR is a result of cellular inflammation and what aspect is the 

consequence of any early remodelling process. It is possible that inflammation may 

lead to priming of neurogenic mechanisms with consequently enhanced neural 

reflexes on ASM which must have a contributory factor. Whilst such 'neurogenic' 

inflammatory mechanisms are an area of research focus at present there is little or no 

mechanistic understanding of such processes. 

Airway obstruction defines the LAR response in the DAR group as stated earlier. 

Airway obstruction can be explained to some extent as a consequence of 
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inflammatory cell infiltration with subsequent mediator and cytokine release. The late 

phase response, in response to specific allergen injection into the dermis of atopic 

subjects, is seen as an oedematous, red and indurated area which peaks at 6-9 hours 

and resolves within 24-48 hours. In the airway, similar oedema and increased 

vascularity may occur during the LAR and this may be manifested as increasing 

airway obstruction as shown by the fall in FEVI. An early study (with only n=5 

asthmatics) could not demonstrate any relationship between increases in epithelial 

permeability and increases in A-HR (OByrne et aL 1984), suggesting that increased 

permeability may not be a dominant pathway that leads to transient increases in AHR. 

Excessive mucus production will also contribute to airway obstruction and may be 

one mechanism by which IL-4 and IL- 13 can contribute to acute increases in allergen- 
induced AHR (Perkins et A 2006). Any airway narrowing will at least in geometric 

terms contribute to AHR, in that a narrowed airway will tend to narrow further in 

response to a lower dose of stimulus (a leftward shift in the bronchoconstrictor dose- 

response curve). IL-13 may also directly impair ASM relaxation (Laporte et aL 2001). 

We and others have previously shown that asthmatics at baseline express significantly 

more tenascin in the RBM of the airway which is correlated to the degree of tissue 

eosinophilia at the time (Flood-Page et aL 2003a; Laitinen et al. 1997). This is in 

contrast to the RBM in normals where there is minimal or no expression of tenascin. 

The important observation is that there is further up-regulation in response to acute 

airway injury, again correlated to airway eosinophila. In this study we have confirmed 

these observations further to demonstrate that expression is significant in the DAR 

group with marked increases in AHR. There is a strong correlation between RBM 

tenascin expression and acute inflammation (Kaijalainen et al. 2003). In asthma 

tenascin deposition in the airway correlates with both mast cell (Amin et aL 2000) and 

eosinophil, T cell and macrophage (Laitinen et aL 1997) numbers respectively. In 

both skin and asthma this deposition is rapid (Phipps et aL 2002; Phipps et aL 2004a). 

Tenascin has been demonstrated to be a permissive substrate to regulate entry or exit 

of cells (Treasurywala & Berens 1998). The tenascin KO mouse exhibits prolonged 
influx and retention of leukocytes (Koyama et aL 1998) and tenascin can suppress 
CD3+ T cell proliferation and cytokine production (Hibino et A 1998). It is therefore 

probable that the up-regulation of tenascin alongside cellular inflammation is a 
functional response to co-ordinate inflammatory cell migration (via cell-matrix 
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interactions) and inflammatory responses. The first growth factor that was found to 

up-regulate tenascin expression was TGF-01 in chick embryo fibroblasts (Pearson et 

aL 1988) The correlation of tenascin to eosinopils is probably related to eosinophils 
being the most significant cellular source of TGF-01 in asthma (Minshall et A 1997). 

It is also possible that tenascin may contribute to the acute increases in AHR at the 24 

hour post-allergen time point. Even at this stage the increased deposition of ECM 

components may contribute to increased airway narrowing and effect airway wall 

compliance, both of which may contribute to AHR. It is probable that the expression 

of other ECM components may also be modulated, not only in the RBM but in the 

deeper layers of the submucosa (Kasahara et A 2002). This is an important concept to 

consider. Despite the association of RBM thickening with asthma severity the 

presence of RBM thickening in itself does not lead to AHR as evidenced by studies in 

eosinophilic bronchitis (Brightling et aL 2003a). One can speculate that the exact 

composition of ECM components in the RBM differs between asthma and 

eosinophilic bronchitis or alternatively that RBM thickness must be in association 

with remodelling changes in the submucosa, particularly ASM changes for AHR to 

manifest. 

The expression of collagen was evaluated in this study. Procollagen I carboxyterminal 

propeptide reflects the synthesis of Type I collagen rather than the degradation 

(Risteli & Risteli 1995) and is therefore a marker of intracellular Type I collagen 

synthesis. The RBM stains strongly for Type III collagen but only weakly for Type I 

collagen (Roche et aL 1989). If increased RBM collagen deposition is present as a 

result of activation of the EMTU, then it can be hypothesised that RBM Type III 

procollagen deposition will be increased in response to allergen challenge. Collagen 

III is the predominant collagen of the RBM (Wilson & Li 1997) and more recently it 

has been demonstrated that Type III collagen is increased in the RBM of children with 

asthma (Fedorov et aL 2005). It has previously been demonstrated that there is no 

significant increase in RBM expression of procollagen III at the 24 hour time point 
(Phipps et aL 2004a) and this again was the finding in this current study. However, at 

the 7 day time point there was significantly increased procollagen III deposition in the 

RBM alongside the markedly increased HSP-47 and procollagen I synthesis in the 

submusoca. Again it is possible to hypothesise that such RBM increases may 
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contribute to AHR via enhanced luminal narrowing and compliance-dependent 

effects. 

Whilst procollaen III expression was statistically significant the increases were not as 

marked as for tenascin deposition at 24 hours. It maybe that the increased thickening 

of the RBM observed in asthma is not predominantly dependent on excess collagen 
deposition. A recent study (Saglani et A 2006) suggests that this may in fact be the 

case. Using electron microscopy (EM) the authors show that RBM structure does not 

resemble the excess fibrils that make up the interstitial submucosal collagen in the 

asthmatic airway and argue that interstitial collagens do not make any significant 

contribution to the excessive RBM thickening observed in asthma. Excessive RBM 

thickening may rather be a result of excessive other ECM component deposition. 

Increased collagen synthesis is also probably initiated in response to inflammatory 

cell release of mediators, particularly TGF-Pi. The synthesis is in fact predominantly 

dependent on TGF-Pi (King et aL 1994). However the binding of several other 

transcription factors such as SP-1, AP-I and Ets-1 influence pro-peptide synthesis and 

may account for cell-lineage specific expression of collagens (Cutroneo 2000; 

Cutroneo 2003). Airway oedema could also activate fibroblasts as shown with in-vitro 

observations of induction of ECM production in fibroblasts by mechanical stretch 

(Chiquet et aL 2003; Ludwig et aL 2004). Such induction may then be further 

amplified and sustained in structural cells as evidenced by the predominant 

immunostaining of HSP-47 in fibroblasts at the 7 day time point when inflammation 

and airway obstruction (FEVI) have returned to baseline levels. Structural cell 

activation will lead to the release of further TGF-P, and other growth factors which 

will have both autocrine and paracrine effects. Such a mechanism may explain the 

sustained expression of collagen at a time point when inflammation has returned to 

baseline values in this model. 

Structural cell activation may also contribute to the sustenance of chronic airway 

inflammation. Until recently the role of fibroblast activation in immune regulation has 

not been considered in detail with the predominant focus being on the role of Th2 

induced inflammation in asthma. The importance of the extended immune role of 

activated stromal cells is only now gaining relevance. Activated fibroblasts are a rapid 

and important source of cytokines, chemokines and growth factors (Jordana et aL 
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1994). Not only can fibroblasts contribute to the recruitment and activation of 

inflammatory cells and structural cells but also have autocrine feedback effect on the 

fibroblast itself. Moreover there is important cross talk between inflammatory cells 

and fibroblasts, with Th2 derived mediators influencing fibroblast proliferation as 

well as the secretory repertoire of the cell (Ingram et A 2003). In fact there is 

growing evidence that activated fibroblast populations may sustain chronic 

inflammation as a result of mediator production and ECM deposition. This may lead 

not only to further inflammatory cell recruitment and activation but also to their 

inappropriate retention and survival. 

Whilst this study has quantitated the number of inflammatory cells in airway biopsies 

at specific time points following allergen challenge, the state of activation or release 

of cytokines or mediators was not measured. This would be an important area to 

address. It is possible that persistent activation of recruited inflammatory cells or a 

change in the number of allergen responsive cells such as allergen specific T-cells that 

contribute to persistent changes in airway remodelling contribute to remodelling and 

AHR at the 7 day post-allergen time point and should be addressed in any future 

study. Whilst the presence of a particular cell type or increased numbers is an 

important measure of airway inflammation, cytokine production and altered cellular 

function are important inflammatory responses. Further directed focus is now required 

to help define to what extent such mechanisms contribute to the parameters of airway 

remodelling or enhanced AHR described in this study. 

The concept that airway physiological responses are a result of separate inflammatory 

cell dependent and structural cell dependent remodelling components interacting may 

explain several clinical observations in terms of therapeutic response. A therapeutic 

implication from this study is that measuring the degree of inflammation does not 

allow insight into disease severity in terms of AHR. This may explain why several 

studies with anti-inflammatory inhaled steroid therapy have failed to abolish AHR 

despite improvements in cellular inflammation (Lundgren et al. 1988; Duddridge et 

aL 1993; Adelroth et aL 1990; Juniper et aL 1990). Our observations may also explain 

several clinical observations in terms of therapeutic response. For example in the 

Childhood Asthma Management Program (CAMP) research group study (2000) the 

benefits of inhaled corticosteroid therapy on post-bronchodilator improvements are 

seen in the first three years. Similar lack of effect of inhaled steroids on the natural 
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history of asthma measured in terms of post-bronchodilator FEVI despite initial 

improvements in asthma outcome was observed in the START (inhaled Steroid 

Treatment as Regular Therapy in Early Asthma Study) (Pauwels et aL 2003). These 

findings maybe explained by the efficacy of steroids in decreasing inflammation 

related remodelling that lead to initial improvement in FEVI. The observation this 

improvement is lost in the next three years maybe explained by epithelial- 

mesenchyrnal driven remodelling events that are considered refractory to 

corticosteroids. The persistence of troublesome AHR despite high dose inhaled 

corticosteroid in moderate-severe asthmatics is an important clinical problem and is 

currently being addressed by the addition of long-acting 02 agonists which effectively 

targets airway smooth muscle, a key aspect of airway remodelling. 

Eosinophils and macrophages are important sources of TGF-P, (Aubert et A 1994; 

Minshall et A 1997; Vignola et aL 1997) in asthma and probably accounts for the 

increased amounts of BAL TGF-P, found in the asthmatic airway at baseline 

(Minshall et aL 1997; Redington et aL 1997; Vignola et aL 1997) with further 

increases in response to allergen challenge (Redington et aL 1997). These cells were 

of an activated phenotype (Minshall et aL 1997; Chanez et aL 1991) and will 

therefore more readily release their stores of TGF-PI on tissue recruitment. The early 

increases in collagen markers in the DAR group may be related to such inflammatory 

sources of TGF-PI and other growth factors. The evidence for eosinopils, in this 

regard, is particularly strong. In mouse models of disease, over-expression of IL-5 in 

the induced lung was associated with peribronchial collagen deposition (Lee et al. 

1997). Chronic allergen challenge in IL-5 knock-out mice was associated with 

decreased total lung collagen, decreased peribronchial collagen III and V, decreased 

thickness of the peribronchial smooth muscle layer and a-SMA immunostaining. This 

was all in association with a reduction in MBP+ cells with parallel reduction in cells 

staining for TGF-Pi (Cho et aL 2004). The eosinophil depleted GATA-1 knock-out 

mouse demonstrates reduction in airway remodelling (Humbles et aL 2004), although 

no reduction in TGF-01 was demonstrated here. The authors themselves could not 

explain this observation but may be related to inherent differences in the murine 

strains used. Mild atopic asthmatics treated with anti-I1,5 demonstrate reduced 

expression of tenascin, lumican and procollagen III in the RBM associated with the 

concomitant reduction in TGFPj+ eosinophils (Flood-Page et A 2003a). 

Disappointingly, no reduction in basal AHR that defines chronic asthma was found. 
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These observations suggest that eosinophils, mainly through TGF-PI, can contribute 

to the acute induction of collagen production and that this induction is then sustained 

in structural cells in the absence of any further eosinophil recruitment. 

The finding that AHR and remodelling markers remain associated at the 7 day time 

point when inflammation has resolved to baseline levels is important. It is the first 

time the persistence of allergen increased AHR and remodelling markers have been 

shown at a time point when inflammation has returned to baseline levels in human 

asthma. This finding is consistent with the findings from animal models. It has been 

shown (Leigh et A 2002) in a chronic setting of allergen-induced airway murine 

model of remodelling, that despite the resolution of inflammation early on after the 

cessation of allergen exposure, changes in AHR and remodelling remain associated 
for at least eight weeks after the final allergen exposure. Interestingly, whilst acute 

allergen exposure induced increases in AHR were associated with increased IL-13 

levels, AHR that persisted beyond the inflammatory stages was not associated with 
increased IL-13 (Leigh et aL 2004a). This led the authors to conclude that early 

cellular inflammatory events with associated Th2 cytokines contributed to the 

initiation of remodelling events, and that sustained AHR was a consequence of 
increased airway contractile tissue. Their model is therefore in keeping with the 

observations here. IL-13 induction of TGF-Pi and other growth factors predominantly 

occur in the airway epithelium rather than mesenchymal cells (Wen et aL 2002). 

Whether structural cell activation can occur in the absence of inflammation remains 

unanswered and it will be important to pursue this question may by using over- 

expression and knock-out experiments of inflammatory cytokines in murine models. 

The late asthmatic response (LAR) that defines the dual asthmatic response (DAR) 

group is manifested by increased airway obstruction. Such obstruction may be 

mediated to a significant extent by increased vascular flow and tissue oedema, if 

allergen-studies of atopic skin are considered (Phipps et al. 2002). Vascular 

endothelial growth factor (VEGF) is considered the key mediator for the induction of 

airway oedema and angiogenesis but transgenic over-expression in a mouse model 

suggests that VEGF also contributes to enhanced Th2 responses and increased 

collagen production with RBM thickening and ASM hyperplasia associated with the 

production and activation of TGF-01 as well (Lee et al. 2004). These changes were 

associated with increased AHR. Inflammatory cells are a predominant source of 
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prefonned-VEGF. However, VEGF (like other growth factors) is ECM bound and 
ECM is an important reservoir. If it is presumed that airway oedema and increased 

vascularity is associated with DAR status together with significant inflammatory cell 

infiltration, it is possible that increased VEGF in this group will also contribute to the 

sustained remodelling observed in this study. As expected, the overall expression of 
VEGF was significantly higher in asthmatics versus normal volunteers. Following 

allergen challenge, no obvious modulation of VEGF protein expression was seen, 

suggesting that it maybe local release and activation of pre-stored VEGF that 

mediates vascular events and contributes to inflammation and remodelling. The 

detection of RNA rather protein would be required to detect exact expression kinetics. 

For example in allergic rhinitis there is induction of VEGF mRNA in response to 

allergen challenge (Benson et aL 2002). An important observation from in-vitro work 
is that the serum from asthmatics induce greater synthesis and release of ECM 

components compared to normal serum when added to ASM cells (Johnson et aL 
2000) and this not effected by corticosteroids. The exact serum factors that induce 

such synthesis remain undefined. Given that growth factors such as theTGF-P 

Superfamily including potent ASM stimulatory factor such as activin-A (Cho et aL 

2003) are found in high amounts in asthmatic serum (Karagiannidis et aL 2006), it is 

possible that the serum factors penetrate into airway tissue during the increased 

vascular leakage that is attributed to occur during late phase response and will lead to 

induction of airway remodelling processes. 

It was Brewster et al that first showed a significant association between RBM 

thickness and the number of elongated fibroblast-like cells staining positive for a- 

SMA using light microscopy. Electron microscopy was further used to confirm the 

myofibroblast morphological features of the cells. It was subsequently shown 

(Gizycki et A 1997) that this population of cells increased in number as early as 24 

hours after allergen challenge, identified on the basis of morphology as spindle-like 

cells expressing a-SMA using light microscopy with further confirmation of 

myofibroblast morphology with electron microscopy. Only DAR volunteers were 

recruited into this study. In this current study both the single early response (SER) 

and DAR group combined demonstrated increased numbers of cells expressing a- 

SMA in response to allergen provocation at 24 hours and this was sustained to a week 

later when collagen synthesis was maximal. In normal tissue, at resolution of wound 

repair, myofibroblasts either differentiate back into a quiescent form or disappear by 
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the process of apoptosis. In the asthmatic airway and other disease states associated 

with excessive tissue fibrosis such myofibroblast down regulation is absent (Mountz 

et al. 1983; Pablos et A 2004; Scaffidi et aL 2001). 

It is important to comment on the observations made in the SER group. In the four 

SER individuals there was no demonstration of increased AHR or airway obstruction 

at either 24 hours or 7 days after allergen challenge as has been previously published 
(Dorman et aL 2004a). The numbers of SER in this study are too small and therefore 

no firm assumptions can be made. However the SER individuals did demonstrate non- 

significant increases in inflammatory cell recruitment at the 24 hour time point albeit 

to a markedly less degree than that found with the DAR group. This is consistent with 

previous studies (Wood et A 1998; Gauvreau et aL 1999). Three of the four SER 

volunteers failed to demonstrate any increase in RBM tenascin and procollagen 

expression whilst all four volunteers failed to demonstrate any increased expression of 

HSP-47 or procollagen in submucosal fibroblast-like cells. Such an observation is 

important and may support the concept that inflammatory cell recruitment and 
increased airway vascularity leading to airway wall oederna and therefore cellular 

traction must occur to a greater level for marked induction of remodelling to occur. 

Myofibroblasts will contribute to airway remodelling not only by the rapid synthesis 

and secretion of ECM components but also through the production of TIMPs 

alongside down-regulation of MMP (Sasaki et aL 2000). Excessive collagen 

accumulation in asthma may then be explained by persistence of myofibroblasts 

leading to excessive collagen production together with an imbalance of collagen 

degradation. Myofibroblasts will also contribute to the chronic inflammatory state by 

the secretion of inflammatory mediators and growth factors (Evans et aL 1999). 

The skin model of allergen induced inflammation has provided some interesting 

insight into the time course of remodelling markers in another system (Phipps et al. 

2002). In this model all markers of remodelling measured (myofibroblast numbers, 

procollagen+ cells and tenascin) returned to baseline levels within 72 hours of allergen 

injection. Thus at least in atopic skin, the control mechanisms that are in place to 

regulate the repair process are functional. 

188 



Given that the excessive accumulation of ASM cells and myofibroblasts in asthma is 

fundamental to the remodelling process and severity of disease (Benayoun et A 

2003), understanding the origins and mechanisms that lead to the excessive 

accumulation of such mesenchymal cells is important. The origins of myofibroblasts 

remains controversial but they are considered to derive either from resident ASM and 
fibroblasts or from haemopoietic progenitor airway recruitment. TGF-01 and activin- 
A, from both inflammatory and epithelial sources, will potently induce the fibroblasts 

to undergo myofibroblast activation (Karagiannidis et aL 2006; Matsuse et aL 1996). 

it is also possible that myofibroblasts may be recruited into the airway from the 

bloodstream. The identification of such progenitors termed fibrocytes (CD34+ 

Collagen I' cells) in the circulation with subsequent recruitment into sites of airway 
injury is an exciting and important finding. These progenitors undergo subsequent 
differentiation into myofibroblasts in the mucosa as evidenced by down-regulation of 
CD34 and up-regulation of a-SMA. Allergen exposure is associated with 

accumulation of such fibrocytes into the airways of mild asthmatics (Schmidt et aL 

2003). It is possible that fibrocyte recruitment into the airway contributes to the 

smooth muscle mass increases in asthma. One can speculate that at a time point when 

the need for rapid and excessive collagen production ceases these cells may revert 

back to a smooth muscle phenotype and thus contribute to the increased airway 

smooth muscle mass observed in asthma. 

in this study there was evidence of epithelial cell expression of mesenchymal markers 

in both the normal and asthmatic airway at baseline. There was no significant 

difference between the normals and asthmatics at baseline in the frequency of cells 

expressing vimentin, HSP-47 and procollagen I. This must indicate that epithelial 

plasticity is of functional significance in normal airway homeostasis. This suggests 

that either the differentiated state of the airway epithelium is not fully protected and 

can change its phenotypic properties or that there are basal cells within the mature 

epithelium with progenitor-like properties. What is important is to understand whether 

the plasticity of these cells is utilised in the epithelial response to injury and repair and 

also whether these cells significantly contribute to accumulation of activated 
fibroblasts below the RBM seen in asthma that drive ECM production. 
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There was no increase in the number of epithelial cells that stained positive for either 

vimentin or a-SMA at either time point after allergen challenge. There was also no 

change in epithelial morphology or cytokeratin positivity (data not presented) which 

one might expect in any transitory epithelial cell. However there was an increase in 

epithelial cell collagen as evidenced by HSP-47 production, both 24 hours and 7 days 

after allergen challenge, although these increases were not statistically significant. 
This is consistent with the concept that local epithelial collagen production is not the 

dominant source of airway collagen. The supposition from this is that the capacity of 
the epithelium to generate collagen can be up-regulated without the requirement for 

full adaptation of the activated myofibroblast phenotype. It is also possible that the 

sampling time points are not at a time when epithelial mesenchymal transition (EMT) 

is maximal and the EMT cells migrate out earlier or later. Given that we and others 
have noted increased myofibroblast numbers at 24 hours post-allergen in the 

submucosa, it is plausible that earlier migration can occur. 

Thus in summary, in allergen-induced asthma sustained increases in AHR remain 

associated with increases in airway remodelling at a time point where cellular 
inflammation has returned to baseline levels. Activation of airway remodelling is a 

rapid and sustained event in response to allergen. This response is associated with 

acute inflammatory cell recruitment. In response to allergen, inflammation and 

remodelling are initiated as concurrent events but eventually dissociate. It is probable 

that inflammatory cell release of factors such as TGF-P, and IL-13 will initiate 

structural cell activation leading to sustained remodelling even after resolution of 

inflammatory cell recruitment. Some aspects of airway remodelling may be a 

consequence of inflammatory cell activation whilst other aspects may be related 

stractural cell activation. It is also possible that both inflammation and remodelling 

events observed contribute separately to the increases in AHR and remains to be 

investigated whether induction of remodelling can occur independent of inflammation 

by direct activation of structural cells. 
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4.4 Summary of chapter 
Allergen inhalational challenge of asthmatics with a late phase asthmatic reaction 
(dual asthmatic responders) leads to sustained increases in AER. Both cellular 
inflammation and markers of airway remodelling were increased 24 hours after 

allergen challenge. It was shown in the previous chapter that although there was a 

sustained increase in AHR at the 7 day post-allergen time point cellular inflammation 

at this time returned to baseline levels. The aim of this chapter was to evaluate 

whether persistence of increased AHR was associated with persistent activation of 

remodelling markers. 

Using bronchial biopsies obtained at baseline, at 24 hours and 7 days following 

allergen inhalational challenge in dual asthmatic response (DAR) group, expression of 
RBM tenascin, RBM procollagen 111, cellular procollagen I, HSP-47 collagen and a- 

smooth muscle actin (myofibroblasts) was evaluated as markers of activation of 

airway remodelling, 

RBM tenascin expression was significantly elevated at 24 hours but returned to 

baseline levels at 7 days. RBM procollagen III, cells expressing procollagen 1, HSP- 

47 and a-smooth muscle actin expression all increased at 7 days compared to 24 

hours. 

In DARs allergen inhalation lead to rapid induction of remodelling markers which 

was sustained at the 7 day post-allergen time point. Airway remodelling remained 

associated with AHR at a time point when when cellular inflarnmation had returned to 

baseline levels. 
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Chapter 5 

Transforming Growth Factor (TGF)-p Superfamily 
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5.1 Introduction 

This chapter examines the dynamic process of TGF-P Superfamily signalling using 

the samples from asthmatic airways obtained at baseline and 24 hours and 7 days after 

allergen challenge. The pattern of activation and signalling via the TGF-P 

Superfamily in the normal airway and that what is specific to asthma is defined. The 

relationship to the activation and resolution of inflammatory and remodelling events 

are evaluated. Whilst it is appreciated that balanced and co-ordinated signalling of 
TGF-P Superfamily members is essential to maintain cellular homeostasis in health 

and imbalance of such factors are implicated in disease states, the exact expression 

pattern in the human airway in health and asthma remain undefined. In addition, it is 

not known whether there is further modulation of expression in response to asthma 

activation. 

It has recently been shown that TGF-P signalling and airway remodelling are acute 

events in the airway in asthma following inhalaed allergen challenge (Phipps et aL 

2004). Bronchial biopsies obtained 24 hours after either allergen from mild atopic 

asthmatics showed significant increases in RBM tenascin deposition, HSP-47 

expression (a marker of induction of collagen synthesis) and pSmad2 expression. 

These data support the hypothesis of allergen-induced remodelling and TGF-P 

Superfamily signalling and is consistent with the concept of allergen-induced 

activation of the epithelial-mescnchymal trophic unit (EMTU), the embryological unit 

driving airway development. The work presented in this chapter is an extension of the 

observation that there is rapid up-regulation of TGF-P ligand signalling in response to 

allergen-induced airway injury. 

The principles of TGF-P Superfamily signalling is summarised in Figure 5.1 and 

briefly introduced again in order to orientate the reader to the contents of this chapter. 

The TGF-P Superfamily of ligands that includes TGF-01-3, activins and bone 

Morphogenetic proteins (BMPs) are pluripotent cytokines with an array of biological 

effects on a variety of cell types. These ligands, upon activation, signal via a 

constitutively active serine-threonine kinase specific Type II receptor that complexes 

with a Type I receptor which subsequently propagates the signal downstream by 

phosphorylating receptor-regulated Smads that translocate to the nucleus to initiate 

gene transcription. TGF-01 signals exclusively through the Type II receptor TPRII 

which subsequently recruits the Type I receptor ALK-5. The activins signal 
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predominanIty through ActRIIA leading to recruitment of ALK-4, although the 

activins can also signal via ActRIIB. BMP signalling is predominantly through 

BMPRII leading to recruitment of ALK2, ALK3 or ALK-6. Versatility of the 

signalling system is such that the BMPs can also signal via ActRIIA or ActRIIB. 

TGF-01-3 and activin nuclear signalling is via phosphorylated (P)Smads2 or pSmad3 

whilst pSmadsl, 5, and 8 mediate BMP signals. These R-Smads associate with the 

common Smad 4. TPRII can also interact with ALK-1 leading to phosphorylation of 

Smadl and Smad5- Smad6 and Smad7 introduce regulation of TGF-Supcrfamily 

signalling by interacting with the Type I receptor. Follistatin is a natural inhibitor of 

activin signalling. 
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Ligands TGF-P, 
TGF-P2 
TGF-P3 

Activins 
(follistatin) 

Type 11 Receptor ActRII/11B T[IRII 

Type I Receptor 
ALK-6 

ALK4 ALK-1 

BMPs 
(Inhibins) 
(GDFs) 

BMPRII 

ALK-2,3,6 

Extracellular Space 

Cell Membrane 

I Sm: dl 
Sm d2 Sm d5 
Sm: d3 Smad8 

Smad6 
Smad7 

Inhibitory 

Cytoplasm 

Figure 5.1: Summary of TGF-P Superfamily signalling pathways 

Ligands, upon activation, signal via a constitutively active serine-thrconinc kinase specific 
Type 11 receptor that complexes with a Type I receptor which subsequently propagates the 
signal downstream by phosphorylating receptor-regulated Sinads that translocate to the 
nucleus to initiate gene transcription. TGF-P, and activin signalling is via phosphorylatcd (p) 
Smad2 and Sniad3 whilst pSmadsl, 5, and 8 mediate BMII signals. These R-Smads associate 
with the common Sinad 4. Smad6 and Srnad7 inhibit Further signalling by interacting with the 
TYpe I receptor. 
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It is hypothesised that imbalance of TGF-P Superfamily signalling is present in 

asthma compared to the normal airway. Allergen challenge of asthmatics is associated 

with activation and modulation of TGF-Superfamily signalling with changes in Type I 

(ALK 1-6) and Type II receptor (TPRII, ActRIlB, ActRIIA, BMPRII) expression and 

active Smad signalling. This activation will be rapid in response to allergen-induced 

airway inflammation and remodelling events. 

Since there was no relationship in the activation of TGF-Superfamily signalling 

pathways to SER or DAR volunteer status, data is presented in all 15 volunteers that 

participated in the study. The median age was 25 (range 19-46) years, FEVI % 

predicted 97 (range 75.41-125.7) % with a mcthacholine PC20 of 2.1 (1.2-3.6) mg/ml 

(geometric mean ± 95% Q. All volunteers were steroid nalve. Data is also presented 

on 6 nonnal volunteers (4 males and 2 females) of median age 30.5 (range 27-42) 

years, FEVI % predicted of 100.4 (range 80-104.3)% with a PC20 ýý' 16mg. There was 

no history of asthma, no significant past medical history and no medication use in the 

normal volunteers. All volunteers were non-smokers. 

The chapter is subdived into specific sections that evaluate the expression of the 

different layers of the TGF-P Superfamily signalling cascade in the asthmatic airway 

compared to the normal airway and then define the modulation of expression in 

response to allergen challenge in asthma. 
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5.2 Section A: TGF-P Superfamily ligand expression 

5.2.1 Introduction 
This section presents the expression patterns of the TGF-PI-3 mRNA isoforms and 

activin-A, follistatin, BMP-2, BMP-4 and BMP-7 ligand expression. The expression 
data in the normal volunteer airway is compared to the asthmatic airway at baseline. 

The modulation of expression in response to allergen challenge in asthma is 

presented. Ligands that demonstrate modulation of expression in inflammatory cells 

are co-localised to cell types. 

The group's previous experience of using IHC for TGF-01 protein expression (Phipps 

et aL 2002) was of wide-spread ECM staining of TGF-P, reservoirs making cellular 

quantification difficult. The kinetics of TGF-01-3 isoform mRNA expression was 

therefore investigated using in-situ hybridisation (ISH). 

5.2.2 Results 

Normal vs asthmatic airway 

TGF-PI. 3 mRNA isoform expression 

There was no significant difference between baseline expression in normal volunteers 

versus asthma for either TGF-P, or TGF-P2 or TGF-P3 mRNA isoforms in airway 

epithelium (Figure 5.2). Significantly increased numbers of submucosal 

inflammatory-like cells expressing TGF-P3 mRNA (p=0.03) were present in the 

asthmatic airways. Cells with fibroblast-like morphology expressing TGF-Pi only 

were present in low numbers. No expression could be convincingly detected in airway 

smooth muscle. The predominant isoform expressed in submucosal inflammatory-like 

cells of the asthmatic airway was TGF-03 (Figure 5.2F and Figure 53C). 

Activin-A and follistatin 

JfjC confinned that activin-A is expressed in the airways of both normal volunteers 

and asthmatics. The asthmatic group demonstrated increased arnounts of activin-A 

expression, with epithelium and infiltrating inflammatory cells identified as 

significant sources (p=0.04 and p=0.005 respectively) (Figure SAA and 5.413). Images 

of activin-A expression are presented in Figure 5.5. Expression of follistatin was 

predominantly confined to the airway epithelium although there were randomly 

located inflammatory cells in the submucosa (low in number) that also expressed 
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follistatin. There was a trend only for increased expression of epithelial follistatin in 

the normals compared to asthmatics (p=0.09) (Figure 5.4C). 

BMP-2, BMP4 and BMP-7 

The expression of BMP-2, BMP-4 and BMP-7 in normal airways was equivalent to 

that of asthmatics at baseline, with airway epithelium identified as the predominant 

source. Inflammatory-like cells were identified as sources of BMP-4 and BMP-7 

(Figure 5.6,5.7 and 5.8 respectively). As with TGF-01-3 and activin-A expression, the 

BMPs also demonstrate heterogeneity of expression indicating dynamic regulatory 

mechanisms of expression are in operation. 

Post-allergen challenge in asthma 

TGF-PI-3 mRNA isoform. expression 

There was no significant up-regulation of any of the TGF-PI-3 isoform mRNAs at 

either 24 hours or 7 days after allergen challenge (Figure 5.9) in either the airway 

epithelium or inflammatory cells. 

Activin-A and follistatin 

There was no significant change in activin-A or follistatin expression in response to 

allergen challenge in eithef the airway epithelium or inflammatory cells (Figure 5.10). 

Neutrophils were identified as the most significant inflammatory cell source of 

activin-A (Figure 5.13 and Figure 5.14A), although mast cells, macrophages and 

CD4' T cells were also sources. Eosinophils did not stain. for activin-A. 

BMP-2, BMP4 and BMP-7 

No modulation of BMP-2 or BMP-4 expression in response to allergen challenge in 

asthma was seen (Figure 5.11). Increased numbers of epithelial cells stained for BMP- 

7 at the 7 day time point (p=0.0 1) (Figure 5.11 E and Figure 5.12B-D). In addition 

there were significant increases in the number of inflammatory cells expressing BMP- 

7 both 24 hours and 7 days after allergen (p=0.01 and p=0.03 respectively, Figure 

5.11F). Approximatley 50% of post-allergen inflammatory cells expressing BMP-7 

were identified as MBP+ eosinophils. CD3+' CD4+ T cells, CD68+ macrophages and 

tryptase+ mast cells also expressed BMP-7 (Figure 5.13 and Figure 5.14B). 

Neutrophils were not found to express BMP-7. 
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Figure 5.2: The expression patterns of TGF-PI-3 isoform mRNA in the normal 
airway compared to asthma 

The number of epithelial cells expressing each isoform is expressed as a percentage (%) of 
the total number of epithelial cells present. Positive submucosal cells present are expressed as 
cells/mO. Significant differences between the groups were analysed using the Mann-Whitney 
Test. p< 0.05 was taken as significant. 
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Figure 5.3: TGF-P isoform mRNA expression in asthmatic bronchial tissue 

TGF-PI (A), TGF-P2 (B) and TGF-PAQ expression is shown as dark-blue pigment-like colour 
around the nucleus counterstained with nuclear red. An immunogenic detection procedure 
using non-radioactive FITC-labelled probes was used. Three FITC-labelled probes, each 
designed with a sequence directed against a different region of the same target mRNA was 
used for TGF-01, TGF-N and TGF-03 detection. Simultaneous use of three different probes 
for each isoform target mRNA allowed enhanced signal intensity. Following incubation with 
an anti-FITC-alkaline phosphatase antibody in conjunction with NBT/BCIP substrate, mRNA 
is indicated as a dark blue insoluble product seen (arrowed). A TGF-03 positive submucosal 
cell is indicated (Figure Q by 1. A negative control where primers for TGF-01 were omitted is 
also presented (Figure D). Selected slides were also counter-stained with H and E and counted 
in order to confirm the ISH staining protocol was effective and the data consistent. Dark-blue 
pigment perinuclear staining is seen in positive cells (E) but absent in the negative control (F). 
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Figure 5.4: The expression patterns of activin-A and follistatin in the normal 
airway compared to asthma 

The number of epithelial cells expressing each isoform is expressed as a percentage (%) of the 
total number of epithelial cells present. Positive submucosal cells present are expressed as 
cells/mmý. Significant differences between the groups were analysed using the Mann-Whitney 
Test. p<0.05 was taken as significant. 
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Figure 5.5 Photomicrographs of activin-A expression in normal and asthmatic 
bronchial tissue 

Sections were stained with a goat anti-human antibody to activin-Aand developed using the 
APAAP system. Positive immunoreactivity was localised predominantly to epithelium and 
inflammatory-like cells. The normal airway (A) demonstrates considerably less activin-A 
immunoreactivity compared to the asthmatic airway (B). 
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Figure 5.6: The expression patterns of BMP-2 in the normal airway compared to 
asthma 

The number of epithelial cells expressing each isoform is expressed as a percentage (%) of the 
total number of epithelial cells present (A). Positive submucosal cells present are expressed as 
cells/mrr? (B). Significant differences between the groups were analysed using the Mann- 
Whitney Test. p<0.05 was taken as significant. 
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Figure 5.7: The expression patterns of BMP-4 in the normal airway compared to 
asthma 

The number of epithelial cells expressing each isoform is expressed as a percentage (%) of the 
total number of epithelial cells present. Positive submucosal cells present are expressed as 
cells/mný. Significant differences between the groups were analysed using the Mann-Whitney 
Test. p<0.05 was taken as significant. 
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Figure 5.8: The expression patterns of BMP-7 in the normal airway compared to 
asthma 

The number of epithelial cells expressing each isoform is expressed as a percentage (%) of the 
total number of epithelial cells present (A). Positive submucosal cells present are expressed as 
cells/mmý (B). Significant differences between the groups were analysed using the Mann- 
Whitney Test. p<0.05 was taken as significant. 
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Figure 5.9: The expression kinetics of TGFP, 
-3 (mR. NA) in the asthmatic airway 

24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isoform is expressed as the number per unit 
length of BM (cells/mm BM) (A, C and E for TGF-01, P2 and 03 respectively). Positive 
submucosal cells present are expressed as cells/mmý (13, D and E respectively). Significant 
differences between time points were analysed using the Wilcoxon signed-rank test. p<0.05 
was taken as significant. 
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Figure 5.10: The expression kinetics of activin-A and follistatin in the asthmatic 
airway 24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isoform is expressed as the number per unit 
length of BM (cells/mm BM). Positive inflammatory cells present are expressed as cclls/mM2. 
Significant differences between time points were analysed using the Wilcoxon signed-rank 
test, p<0.05 was taken as significant. 
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Figure 5.11: The expression kinetics of BMP-2, BMP4 and BMP-7 in the 
asthmatic airway 24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isoforrn is expressed as the number per unit 
length of BM (cells/nun BM). Positive inflammatory cells present are expressed as celIS/MM2 
(13, D and E respectively. BMP-7 expression was up-regulated in epithelium at 7 days post- 
allergen whilst increased numbers of inflammatory cells were seen at both 24 hours (p=0.01) 

and 7 days (p=0.03). Significant differences between time points were analysed using the 
Wilcoxon signed-rank test. p<0.05 was taken as significant. 
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Figure 5.12: Photomicropgraphs of BMP-7 immunoreactivity 

Sections were stained with a mouse anti-BMP-7 antibody and developed using the APAAP 
system. The expression in the normal airway (A) was similar to that in baseline asthma (B). 
Allergen challenge was associated with increased numbers of epithelium and inflammatory- 
like cells staining for BMP-7. 
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Figure 5.13: Summary of the cell types expressing activin-A an(] BNIP-7 

Using double staining technique immunohistochemistry activin-A (5.14A) and BN4P-7 
(5.14B) expression was localiscd to inflammatory cells phcnotvpcs in tissue sections obtained 
at the 24 post-allergen time point. Cells counts are expressed as the percentage of double 
positive cells. 
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Figure 5.14: Photomicrograph of immunohistochemical co-localisation of activin- 
A to the dominant cell type elastase+ neutrophils (A) and BMP-7 to the dominant 
cell type MBP+ eosinophils (B) 

The TGF ligand is stained brown via DAB and the cell phenotyped using chromogen Fast 
Red staining red. Co-localisation is seen as a darker red-brown colour in cells (arrowed). 
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5.2.3 Discussion 

Several studies have confirmed the differential expression of TGF-PI-3 iMfOrmS 

through immunohistochemistry (IHQ and in-situ hybridisation (ISH) in the lungs of 

normal individuals and asthmatics. Immunolocalisation of TGF-P can be difficult to 

interpret with a pure immimohistochernical approach as such given that the 

translational gene product is present in so many different forms (unprocessed, latent 

and degraded). It is impossible to differentiate between these states through IHC. 

Further it has been confirmed that mature TGF-Pi is predominantly extracellular 
(Magnan et aL 1997) with localisation to ECM components such as decorin (Aubert et 

aL 1994) (Redington et aL 1998). Thus the expression kinetics and tissue sources are 

best determined by localising mRNA through in-situ hybridisation (ISH). 

In this study the expression of TGF-01-3 isoform mRNA was predominantly localised 

to the airway epithelium although submucosal cells with inflammatory-cell like 

morphology were also present. The airway epithelium and macrophages have been 

previously identified via ISH (using digoxgenin labelled ribroprobes) as the 

predominant source of TGF-Pi. TGF-P2 and TGF-P3 (Coker et aL 1996; Coker et aL 
1998). It has also been reported that macrophages (Aubert et aL 1994) and eosinophils 
(Minshall et al. 1997) are the dominant cellular sources of TGF-P, in the asthmatic 

airway. It is confirmed here that the predominant isoform expressed by the 

submucosal cells in our population of asthmatics is TGF-03. Airway smooth muscle 
does not appear to be a significant source of any of the TGF PI-3 iSOfOrms which is 

consistent with other studies (Joubert & Hamid 2005; Balzar et aL 2005; Aubert et aL 

1994). There was no significant difference between the number of epithelial cells 

staining positive for TGF-PI-3 in asthma at baseline versus normal volunteers, 

concurring with previous studies on human airway biopsies in mild asthma (Aubert et 

al. 1994; Redington et aL 1998; Minshall et aL 1997). Given the critical role of TGF- 

01 in the regulation of airway inflammatory homeostasis it is expected that normal 

tissue will express similar levels. Inflammatory cells expressing TGF-01 and TGF-02 

MRNA did not differ between normal and asthmatic airway as previously shown 
(Balzar et aL 2005). The finding of increased numbers of TGF-P3 expressing 

submucosal cells in baseline asthma compared to the normal group in this study is 

novel and it will be important to determine the exact cellular types that express it and 

the extent to which this specific isoform is able to contribute to tissue repair. In-vitro 

studies indicate that TGF-P3 may be more potent than the other isoforms in the 
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induction of procollagen and the inhibition of subsequent procollagen degradation 

(Coker et A 1997). At present the exact roles of the individual isoforms in health and 

disease is unknown. Understanding the functional significance of such expression will 

have therapeutic implications. 

Following allergen challenge no significant increase in the number of TGF-P isoform 

positive epithelial and inflammatory cells was seen. In contrast, asthmatics with 

severe and moderate disease demonstrate increases in TGF-P, and TGF-P2 expression 

(Minshall et A 1997; Balzar et aL 2005). It is therefore possible that other disease 

modifying factors other than allergen-provocation can regulate TGF-P isoform 

expression. 

Asthmatics have significantly more TGF-Pi protein levels compared with normal 

volunteers in BAL fluid at baseline with further increases after allergen (Redington et 

aL 1997). Concentrations in BAL and tissue probably represent reservoirs of TGF-Pi 

that is present in ECM (Redington et aL 1998), epithelium and inflammatory cells. 

Allergen challenge is associated with inflammatory cell influx in an activated state 

with increased propensity for the release of TGF- P, (Vignola et aL 1997). It may be 

that the main level of control in TGF-P isoform signalling is not in the regulation of 

expression of the mRNA that encodes the TGF-P isoforms but in the activation of 

locally stored latent TGF-P that is present in excess in asthma. There is therefore a 

temporal discontinuity between TGF-P synthesis and action. In support of this view 

in-vitro experiments of epithelium and fibroblast co-culture on an amnion membrane 

(Le the matrix) suggests that basal TGF P, mRNA production does not change with 

epithelial mechanical injury but leads to decreased matrix TGF-P immunoreactivity 

associated with myofibroblast transformation (Morishima et A 2001). Thus epithelial 

injury may release TGF-P ligands from local ECM stores and this now undergoes 

aI ctivation. Epithelial integrin av06 is rapidly up-regulated in response to airway 

injury. It is critical for TGF-P, activation as shown by P6 knock-out mice in models of 

pulmonary fibrosis where the mice are essentially protected against fibrosis. 

Epithelium and inflammatory cells will continue to synthesise TGF-P but at a level 

which serves to replenish stores in ECM such as that bound to decorin. 

In mouse models of allergen-induced airway injury, TGF-P mRNA quantification in 

whole tissue blocks using real-time polymerase chain reaction (RT-PCR) showed only 
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fold induction of only 1.1 for TGF-P 1,1.2 for TGF-P2 and 2.2 for TGF-P3 (Rosendahl 

et aL 2001). Mouse models of TGF-P isofonn expression need to be interpreted with 

caution as they cannot be interpreted in the context of disease severity as with the 

human disease but again suggests that it is not rapid local synthesis but rapid local 

activation of TGF-isoform reservoirs that is important in response to allergen-induced 

airway injury (Rosendahl et A 2001). 

Increased activin-A levels have been identified in asthmatic serum and CD4+ T cells 
(3.6 fold) (Karagiannidis et aL 2006) with several mouse models also confirming 
increased activin-A mRNA expression (Rosendahl et aL 2001; Karagiannidis et aL 

2006) in response to allergen challenge. IHC in this study confirined that activin-A 

expression is present at baseline in the airways of both normal volunteers and 

asthmatics. The intensity and distribution of activin-A expression was significantly 
increased in the airways of asthmatics compared to normal airways with both 

epithelium and inflammatory cells identified as important sources. Given the potent 

fibrotic properties of activin-A this finding may indicate that asthmatic airways have 

an increased propensity for induction of fibrosis. Epithelium was a predominant 

source of activin-A with inflammatory cells also identified as significant sources as 

such. There was no significant modulation of staining in response to allergen 

challenge. This maybe because like TGF-01, activin-A is present pre-stored in cells 

with local release and activation occurring in response to injury in asthma (Jones et aL 

2004b). Quantitative mRNA by RT-PCR, if possible of individual cellular 

populations, would be needed to fully evaluate the expression kinetics of such growth 

factors. Although activin-A mRNA expression was not looked at in our study, it is 

important that activin-A rnRNA expression is rapidly induced unlike that of TGF-01 

in asthma (Karagiannidis et aL 2006). 

One of the striking observations in the asthmatic airways was the strong expression of 

activin-A in infiltrating inflammatory cells. It has been noted before that mast cells 

(Cho et aL 2003), macrophages (Abe et aL 2002) and CD4+ T cells (Karagiannidis et 

aL 2006) are important sources of activin-A and this has again been confirmed in this 

study. The important finding in this study is that neutrophils were identified as the 

predominant source of activin-A in the post-allergen tissue sections. 

Recently there has been increasing focus on what role the neutrophil may play in the 

pathogenesis in asthma. Such focus has been driven by the findings that neutrophils 

214 



are increased in number (more than eosinophils) in asthma death airway specimens 

(Sur et aL 1993), in patients ventilated for status asthmaticus (Lamblin et al. 1998) 

and in chronic severe disease as evidenced by studies in BAL and endobronchial 

biopsy (Wenzel et al. 1997). Whether neutrophils are just bystander cells or active in 

disease pathogenesis remains unknown. The mediator profile of neutrophils 

(predominantly IL-8, LTB4) does not directly suggest an important role in the 

induction of acute bronchconstriction. The identification that neutrophils are an 

important source of TGF-01 in asthmatic airways (Chu et aL 2000) have implicated a 

role for these cells in repair and remodelling. Finding that neutrophils are the 

dominant cellular source of activin-A in this study further suggests an important role 

for neutrophils in the remodelling processes. For example activin-A is a potent 

inducer of smooth muscle cell proliferation (Cho et aL 2003). In fatal asthma there is 

excessive accumulation of ASM and it is ASM hypertrophy, not airway inflammation, 

that are the only selective determinants of severe persistent symptoms (Benayoun et 

aL 2003). It is therefore possible that neutrophil derived growth factors such as 

activin-A will contribute to the ASM increases and other remodelling features present 

in the dfficult asthmatic airway. It has also been shown that neutrophil elastase is an 

activator of TGF-Pi (Chua et aL 2007). An important clinical point is that steroids, the 

mainstay of asthma anti-inflammatory therapy, prolong neutrophil survival through 

inhibition of apoptosis (Cox 1995) thus leading to augmentation of neutrophil 

function that may lead to detrimental effects in asthma. In CD4+ T cells at least 

actvin-A expression is attenuated by glucocorticoids (Karagiannidis et aL 2006) and it 

would be important to investigate whether there is such an effect on neutrophil 

activin-A expression. 

The number of intact mast cells with activin-A were low in this study. This maybe 

because the sections studied were all post-allergen provocation leading to mast cell 

degranulation and therefore low numbers of intact cells that can be double stained 

were present. The finding that CD4+ T cells are also an important inflammatory 

source of activin-A in this study is important in that asthma is a Th2 driven disease. 

Until now the expression of BMP ligands has remained mostly undefined in the 

normal and diseased lung. This is despite increasing awareness that the BMP ligand 

system represents a major developmental signalling pathway critical for organ and 

tissue generation in early development. In adult tissue and organ systems it may be 
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reactivated to promote tissue regeneration, repair and maintenance. At present there is 

no data on the expression patterns of BMP ligands in asthma. Given the diversity of 

BMP ligands that may be present in the lung, the study analysed the expression of 

BMP-2, BMP-4 and BMP-7 as they have an important role in lung branching 

morphogenesis. BMP-7 expression was particularly important to evaluate in that it has 

the therapeutic potential to modulate TGF-01 induced fibrosis. The expression levels 

of epithelial BMP-2 and BMP-4 did not change. Again this may suggest that local 

activation of stored BMP ligand may be important. The significant and sustained 

increase in BMP-7 expression in both epithelium and inflammatory cells may be 

related to the role of BMP-7 in epithelial-mesenchymal tissue interactions (Vukicevic 

et aL 1994b) required for branching morphogenesis which is reactivated in the process 

of tissue repair as well as the ability of BMP-7 to down-regulate inflammation (Maric 

et aL 2003). The important finding of BMP-7 being expressed in nearly 50% of 

infiltrating eosinophils is consistent with the evolving view that these cells are 

important tissue-repair cells (Kay et aL 2004). It is therefore possible that BMP-7 

expression may therefore be an attempt to regulate both the inflammatory and repair 

response in asthma. 

Several lines of evidence have delineated a role for eosinophil-derived TGF-P, in 

airway remodelling. In-vitro co-culture of fibroblasts with eosinophils lead to 

phenotypic change to myofibroblasts and synthesis of ECM proteins tenascin and 

procollagen III: this was dependent on eosinophil-derived TGF-pi. Allergen challenge 

in the skin was associated with eosinophil infiltration into the site of late cutaneous 

reaction, together with eosinophil TGF-pi expression, myofibroblast-like cells and 

tcnascin deposition (Phipps et aL 2002). Anti-IL-5 antibody treatment of asthmatics 

led to reductions in airway eosinophils, TGF-pi expression and RBM staining for the 

ECM proteins tenascin, lumican and procollagen III (Flood-Page et aL 2003a). Whilst 

no appreciable improvements in clinical outcomes were seen the study was not 

powered to detect changes in lung function or AHR. The results do, nevertheless, 

provide evidence that there is a relationship between eosinophils and matrix 

deposition in the ECM. The functional significance of eosinophil derived BMP-7 

remains to be determined but it may be predicted it is related to regulating repair 

through interaction with other TGF-P Superfamily signalling pathways. 
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5.2.4 Summary of ligand expression 
1. The baseline expression of TGFPI-3 mRNA isoforms in asthmatic airway 

epithelium does not differ from baseline expression in airway epithelium from 

nonnal volunteers. 

2. There are increased numbers of submucosal inflammatory-like cells staining 

positive for both TGF-P, and TFG-P3 mRNA in the asthmatic airway at 
baseline compared to normal volunteers. However, this is only significant for 

TGF-P3 (p=0.03). 

3. There are significantly increased amounts of activin-A protein expression in 

asthma, with both epithelial and submucosal inflammatory-like cells identified 

as significant sources. 

4. Allergen challenge of mild asthmatics is not associated with any modulation of 

TGF-01-3 isoform mRNA or activin-A ligand expression in either the 

epithelium or inflammatory cell population. 

Whilst the levels of BMP-2, BMP-4 and BMP-7 expression are similar in the 

normal airway and asthmatic airway, there is significant up-regulation of 
BMP-7 in epithelial and inflammatory-like cells upon allergen challenge at 

both 24 hours and 7 days in asthma. 
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5.3 Section B: Type 11 receptor expression 

5.3.1 Introduction 

This section evaluates the expression of the TGF-P Superfamily Type H receptors 
(TPRII, BMPRII, ActRIIA and ActRHB) in the normal airway and the baseline 

asthmatic airway. Modulation of expression in response allergen challenge asthma is 

then examined. 

5.3.2 Results 

Normal vs asthmatic airway 

TPRII expression was evident throughout the airway with localisation to epithelium, 

inflammatory cells, fibroblast-like cells, airway smooth muscle and vascular 

structures. There was no significant difference in TPRII expression in either the 

airway epithelium or inflammatory cells between asthmatic and normal volunteers. 

The data is presented in Figures 5.15A with representative photomicrographs in 

Figures 5.16A and 5.16B. 

BMPRII expression was significantly decreased in the asthmatic airway epithelium 

compared to normal volunteers (p=0.009) (Figure 5.15B and Figure 5.16C and 

5.16D). BMPRII expression was evident on infiltrating inflammatory cells as well as 

vascular smooth muscle of the normal airway. Few inflammatory cells stained for 

BMPRII in the asthmatic airway. 

The expression of both ActRIIA and ActRIIB in epithelium was significantly less in 

asthmatics compared to normal volunteers (p=0.0008 and p=0.04 respectively) 

(Figure 5.15C and Figure 5.15D). In fact there was also most no detection of ActRIIA 

in the asthmatic group at baseline (Figure 5.16E and 5.16F). There were inflammatory 

and fibroblast-like cells expressing ActRIIA in the normal airway. Expression of 

ActRlIB was confined mostly to the airway epithelium in both the normal and 

asthmatic airway (Figure S. I 6G and 5.16H). 
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Figure 5.15: The expression patterns of Type II receptors in the normal airway 
epithelium compared to the asthmatic airway 

The number of cells expressing each Type II receptor is expressed as a percentage of the total 
number of epithelial cells present. Significant differences between the groups were analysed 
using the Mann-Whitney Test. p<0.05 was taken as significant. 
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Figure 5.16: Representative photomicrographs of Type 11 receptor expression 

Normal airway expression is presented in the left panel and asthmatic airway expression on 
the right. The expression of the TGF-PI-3 Type 11 receptor TPRII in the normal airway (A) was 
of similar intensity and distribution to that in asthma. In contrast the expression of the BMP 
Type 11 receptor BMPRII in the normal airway (C) was markedly increased compared to that 
in the asthmatic airway (D). The expression of ActRIIA and ActRIIB (Type 11 receptors for 
activins but also BMPs) in the normal airway (E and G respectively) is strongly 
immunoreactive compared to the asthmatic airway (F and H respectively). 
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Post-allergen challenge in asthma 
On allergen challenge ActRIIA expression was rapidly up-regulated at both the 24 

hours and 7 days (p=0.02 and p=0.002 respectively). There was no modulation of 

TPRII, ActRIIB or BMPRII expression in response to allergen at either time point in 

the airway epithelium (Figure 5.17). However, ActRIIA and TPRII expression was 

modulated in submucosal inflammatory-like cells at 7 days and 24 hours respectively 
(p=0.04 and p= 0.004 respectively) (Figure 5.18A-B). 

221 



E 
E 
a, 
U 
a, 
a, 

. 

0. 
LU 

TßRI1 
1000- 
800- 

600- 

400- 

200- 

(1600) 

E 
E 

U 
LU 

6 24 ýours 7da'ys 

E 
E 
'CDs 

CL w 

ActRIIA 
1000- c 

0.002 

800- 

600- 

400- 

200- del 

0- 
Lo 

- 

6 24 [; ours 7 Ays 

P" 
IIa 0 24 hours 7 days 

6 24 ýours 7 days 

Figure 5.17: The expression kinetics of TGF Superfamily Type II receptors in 
the asthmatic airway 24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isoform is expressed as the number per unit 
length of BM (cells/mm. BM). Wilcoxon signed rank test was used to compare the change 
from baseline at the 2 subsequent time points. Predominant expression was confined to the 
airway epithelium. Significant expression of Act RIIA expression was seen at both 24 hours 
(p=0.02) and 7 days (p=0.002) after allergen challenge. No modulation of TPRII, BMPRII or 
ActRIlB was seen, consistent with concept that the Type II receptors may be constitutively 
expressed in tissues. 
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Figure 5.18: The expression kinetics of the Type 11 receptors ActRIIA and 
TPRIIA on submucosal inflammatory-like cells in asthma 

Positive inflammatory-like cells present are expressed as cells/mm2. The Wilcoxon signed 
rank test was used to compare the change from baseline at the 2 subsequent time points. 
p<0.05 was taken as significant. 
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5.3.3 Discussion 

TPRII is expressed at a similar level and intensity in both the normal and asthmatic 

airway epithelium and this is consistent with the homeostatic role of TGF-PI. 3 in 

airway biology. The ubiquitous expression of TORII on epithelium, inflammatory 

cells, fibroblasts, airway and vascular smooth muscle in both the normal airway and 

asthma is keeping with the view that TORII is constitutively expressed. Expression 

was not modulated with disease activation. These findings are consistent with other 

studies (Rosendahl et aL 2001; Khalil et A 2002)(Balzar et aL 2005). In contrast the 

expression of BMPRII levels did not reach the level of expression seen in normal 

volunteers at any stage and this may have functional consequences. In diseases such 

as primary pulmonary hypertension, where there is defective or absent BMPRII 

mediated BMP signalling in endothelium, excessive smooth muscle cell proliferation 
is found as a result of the dominance of other non-TGF-0 cellular signalling pathways. 
BMP signalling can also occur through the Type II activin receptors ActRIIA or 
ActRIIB. This may provide a partial explanation for the observation of significant up- 

regulation of ActRIIA in that BMP signalling may be through this receptor in asthma. 
There was almost no expression of ActRIIA at baseline but rapid up-regulation at 24 

hours that was sustained a week later. ActRIIA was the only Type II receptor to be 

modulated with disease activation. The functional consequences of such altered 

signalling remains unknown but will be important to determine. 

5.3.4 Summary of Type 11 receptor expression 

Epithelial TPRII expression is similar in both the normal and asthmatic airway. This 

suggests that TPRII is a constitutive receptor, the expression of which is not changed 

in the context of an active diease setting. Expression of epithelial BMPRII, ActRIIA 

and ActRIIB is significantly less in the asthmatic airway. Allergen challenge leads to 

significant up-regulation of only ActRIIA at both the 24 hour and 7 day time point. 

Allergen challenge was associated with significantly increased numbers of 

submucosal inflammatory-like cells expressing TPRII (24 hours) and ActRIIA (7 

days). 
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5.4 Section C: Type I receptor expression 

5.4.1 Introduction 
TGF-P Superfamilly Type I receptor expression in the normal and baseline asthmatic 

airway is evaluated. Modulation of receptor expression in response to allergen- 

challenge in the asthmatic airway is then presented. The data is presented in the order 

of ALK-5 (TGF-01-3 signalling), ALK-4 (activin-A signalling), ALK-1 (which binds 

TGF-01 but leads to activation of BMP regulated genes) and finally the BMP 

activated Type I receptors (ALK-2, ALK-3 and ALK-6). 

5.4.2 Results 

Normal versus Asthmatic airway 
ALK-5 expression in the asthmatic airway was significantly decreased compared to 

normal volunteers (p=0.004) (Figure 5.19A) with predominant expression confined to 

the epithelium (Figure 5.23A-B). Scattered infiltrating inflammatory cells staining 

positive for ALK-5 were identified in low numbers only and not in all volunteers. 
Expression was not demonstrated in either fibroblast-like cells or airway smooth 

muscle. 

Expression of ALK-4 was present in similar distribution in the airway epithelium with 

no difference between normal and asthmatics volunteers (Figure 5.19B). Staining 

intensity was marked in both the normal and asthmatic airway (Figure 5.24A-B). 

Significantly increased numbers of inflammatory cells expressing ALK-4 were 

present in the normal airway compared to the asthmatic group (p=0.001) (Figure 

5.20A) suggesting that in inflammatory cells alone ALK-4 is down-regulated in 

asthma. Both groups demonstrated low numbers of fibroblast-like cells expressing 

ALK-4 (median 5.35 celIS/MM2 (interquartile range 0-88) in nornials and 3.2 

cells/mm2 (0-25.6) in the asthmatic group). 

ALK-I is activated by TGF-01 but leads to activation of BMP regulated genes. ALK-I 

expression was significantly down-regulated in the asthmatic airway compared to the 

normal volunteers in both epithelium (p=0.007) and infiltrating inflammatory cells 
(p=0.003) (Figure 5.19C and Figure 5.20B). Expression was also evident in the 

scattered fibroblast-like cells in the submucosa, vascular endothelium and smooth 

muscle (Figure 5.25A and 5.25C). 
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Compared to normal volunteers the expression of ALK-2 was markedly reduced in 

asthmatic airway epithelium (p=0.001) (Figure 5.19D and Figure 5.26A and 5.26B). 

ALK-2 expression was predominantly localised to the airway epithelium with only a 

few submucosal inflammatory-like cells staining positive in selected volunteers 

(Figure 5.26A). 

ALK-3 expression was predominantly in the epithelium in both normal and asthmatic 

airways but was also observed in inflammatory cells, fibroblast-like cells and also 

airway smooth muscle (Figure 5.19E and Figure 5.27A and 5.27B). However, in the 

asthmatic airway the number of inflammatory cells expressing ALK-3 was 

significantly higher (p=0.03) (Figure 5.20C). 

ALK-6 expression was confined to the airway epithelium. Expression was markedly 
decreased in asthma when compared to the normal airway (p=0.0009) (Figure 5.19F 

and Figure 5.28A and 5.28B) 
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Figure 5.19: The expression patterns of Type I Receptors in the normal airway 
epithelium compared to asthma 

The number of cells expressing each isoform is expressed as a percentage (%) of the total 
number of epithelial cells present. Significant differences between the groups were analysed 
using the Mann-Whitney Test. p<0.05 was taken as significant. 
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Figure 5.20: The expression patterns of Type I Receptors on inflammatory-like 

cells in the normal airway mucosa compared to asthma 

The results are expressed as the number of positive cells/per mrný. Significant differences 

between time points were analysed by the Mann Whitney U test. p<0.05 was taken as 

Significant. 

228 



Post-allergen challenge in asthma 
On allergen challenge there was marked down-regulation of ALK-5 epithelial 

expression at the 24-hour time point afler allergen in the asthmatic volunteers 
(p=0.02) (Figure 5.21A and Figure 5.23C), retuming to baseline levels at 7 days. 

ALK-4 epithelial. expression remained elevated in response to allergen challenge with 

no modulation of expression (Figure 5.21B and Figure 5.24) There was a small but 

noticeable upward trend in the number of the fibroblast-like cells staining for ALK-4 

in response to allergen challenge with 3.2 (0-25.6) cells/mm 2 at baseline, 11.40 (4-88) 

celIS/MM2 at 24 hours and 19.5 (4-61.35) celIS/MM2 at 7 days (Figure 5.24C). 

Confirmation that ALK-4 expression was in fibroblasts transformed into the 

myofibroblast phenotype was evidenced by double immunofluorescence staining 

(Figure 5.24D-F). 

With ALK-1, allergen challenge was associated with a trend towards increased 

expression at 24 hours with (p=0.23) with further significant increases in expression 

at 7 days with (p=0.04) (Figure 5.21 C and Figure 5.25). 

In terms of BMP signalling, allergen challenge was associated with marked and 

sustained increases in the expression of ALK-2 at both 24 hours (p=0.0006) and 7 

days (p=0.001) (Figure 5.21D and Figure 5.26). Similarly the expression of ALK-6 

was markedly up-regulated in response to allergen at 24 hours (p=0.004) with further 

increases at the 7 day time point (p=0.001) (Figure 5.21F and Figure 5.28). In contrast 

the level of ALK-3 expression was not modulated in response to allergen (Figure 

5.2 1E and Figure 5.27). Inflammtory-like cells expressing ALK-4, ALK-3 and ALK- 1 

only were found to be significantly increased post allergen (Figure 5.22). 
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Figure 5.21: The expression kinetics of the TGF-P Superfamily Type I receptors 
in the asthmatic airway 24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isofonn is expressed as the number per unit 
length of BM (cells/ mm BM). Wilcoxon signed rank test was used to compare the change 
from baseline at the 2 subsequent time points. No modulation of either ALK-4 or ALK-3 
expression was seen in response to allergen challenge. In contrast there was rapid down- 
regulation of ALK-5 expression whilst the Type I receptors that activate Smadl, Smad5 and 
Smad8 (ALK-1, ALK-2 and ALK-6) were rapidly up-regulated with sustained expression still 
at 7 days post allergen. 
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Figure 5.22: The expression kinetics of Type I receptors on inflammatory-like 
cells 24 hours and 7 days post allergen challenge 

Positive inflammatory-like cells present are expressed as celWmrný. p<0.05 was taken as 
significant. The data is consistent with activin, TGF-PI-3 and BMP ligand signalling in 
inflammatory cells. No ALK-5 staining (the predominant Type I receptor for TGF-01-3)was 
evident which may be a result of down-rcgulation of ALK-5 on inflammatory cells as seen 
with the airway epithelium. 
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Figure 5.23: Representative photomicrographs of ALK-5 immunoreactivity 

Normal volunteers demonstrate marked expression in epithelium and cells below the 
basement membrane (A). Asthmatics demonstrate down-regulation of ALK-5 expression at 
baseline (B) with further down-regulation 24 hours post-allergen (C). Expression levels return 
to baseline levels 7 days post-allergen (D). 
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Figure 5.24: Representative photomicrographs of ALK-4 immunoreactivity 

The expression of ALK-4 was similar in intensity and distribution both in the normal (A) and 
asthmatic (B) airway. Although no significant modulation of ALK-4 expression in epithelium 
was seen post-allergen, increased ALK-4 immunoreactivity in fibroblast-like cells was 
evident at Day 7 post-allergen (C) (arrowed). Confirmation of myofibroblast phenotype was 
confirmed using confocal microcrocopy. ALK-4 expression (D) is shown as green using a 
FITC-labelled secondary antibody and a-smooth muscle actin (SMA) identified as red using 
an anti-a-SMA-Cy3 primary antibody. The merged confocal image demonstrates fibroblasts 
staining yellow-orange indicating double positive cells (F). 
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Figure 5.25: Representative photomicrographs of ALK-1 hnmunoreactivity 

Normal volunteers demonstrate strong ALK-I expression in epithelium and vascular 
structures (arrowed as V) (A). Asthmatics demonstrate weaker expression at baseline (B) but 
increased expression is demonstrated 7 days post-allergen (C) in epithelium as well as 
submucosal inflammatory-like and fibroblast-like cells (arrowed). 
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Figure 5.26: Representative photomicrographs of ALK-2 immunoreactivity 

Normal volunteers demonstrate marked ALK-2 expression in epithelium, as well in some 
inflammatory-like cells below the basement membrane (A). Asthmatics demonstrate minimal 
ALK-2 expression at baseline (B) but marked up-regulation of expression is in the epithelium 
and infiltrating inflammatory-like as demonstrated 7 days post-allergen (C). 
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Figure 5.27: Representative photomicrographs of ALK-3 immunoreactivity in 
the airway 

No difference in ALK-3 expression was detected between the normal (A) and asthmatic 
airway (B), with strong expression in both the airway epithelium and vascular structures 
demonstrated. Inflammatory-like cells demonstrated ALK-3 expression (arrowed) in the 
asthmatic airway consistent with BMP signalling in these cells. 
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Figure 5.28: Representative photomicrographs of AILK-6 immunoreactivity 

Normal volunteers demonstrate ALK-6 expression in epithelium and inflammatory cells (A). 
Asthmatics demonstrate no visible ALK-6 expression at baseline (B). Allergen challenge is 
associated with increased expression as demonstrated at the 7 day time point although 
expression intensity still remains less than that in normal volunteers. 
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5.4.3 Discussion 

Modulation of receptor expression is an important mechanism in the regulation of the 

TGF-P Superfamily signalling pathway and changes in expression of receptors in a 

rapid fashion in response to activation of signalling would be expected. By confirming 

the modulation of Type I and Type 11 receptors in response to allergen challenge, it is 

possible to begin to provide a mechanistic explanation for our visualisation of active 

TGF signalling. Our data confirms that TGF-P Superfamily receptor distribution on 

the cell is very flexible and dynamic in response to activation of signalling. 

TGF-P receptors are complex structures that are regulated at a number of different 

levels. It is the Type I receptor that directly activates the canonical Smad signalling 

pathway and it is therefore expected that Type I receptor modulation will serve as a 

point of pathway regulation. One of the interesting findings in this study is the marked 
difference in the levels of receptor expression in normal and asthmatic volunteers. 
Other than for ALK-3 and ALK-4, overall there is a marked down-regulation of Type 

I receptor expression in the asthmatic airway compared to normal airways. The down- 

regulation of the TGF-P Type I receptor ALK-5 in asthma compared to the normal 

airway has been previously detected (Balzar et al. 2005) but this is the first time it has 

been shown for ALK-1, ALK-2 and ALK-6 in airway epithelium alongside ALK-1 

and ALK-4 in inflammatory-like cells. This suggests that there is a fundamental 

difference in the regulation of TGF-P signalling pathways in the asthmatic airway. 

Several mechanisms may explain these observations. It is possible such TGF-P 

Superfamily signalling imbalance is a fundamental property of the asthmatic airway 

and reflects an intrinsic defect in the way an asthmatic airway can respond to injury. 

Asthma is the most common co-morbidity associated with inflammatory bowel 

disease (IBD) (Bernstein et aL 2005). The prevalence of asthma is in the range of 7.1- 

7.8 % in the IBD cohort of over 8000 patients, a prevalence that is higher than any of 

the other classic extraintestinal manifestations of IBD (Bernstein et aL 2005). Given 

the common embryological origins of the bronchial tree and gut, and the 

demonstration of dysregulated TGF-P signalling in IBD also, it is tempting to 

speculate that aberrant TGF-P signalling may be an intrinsic defect of the tissue itself. 

It may also be that such receptor modulation is a reflection of ligand-induced down- 

regulation that occurs as a receptor regulatory response, as has been observed in other 
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signalling systems such as the IL-5 receptor on eosinophils (Gregory et A 2003). 

Signal potency and duration is dependent on the rate of receptor internalisation. If the 

receptor-ligand dissociation is decelerated then there is enhanced and prolonged 

signalling. Receptor internalisation and degradation is a process that serves to reduce 

the number of functional receptors at the plasma membrane and attenuate the strength 

of the signal generated. Clathrin-dependent internalisation into early endosomes is 

important for signal propagation whilst entry into the caveolin positive lipid-rafts 

leads to receptor degradation and is associated with reduced Smad activation (Di 

Guglielmo et aL 2003). Of course it may be possible that the mechanisms of receptor 

processing are different in the asthmatic airway. 

This study did not detect any obvious differences in the levels of ligand expression 
between the asthmatic and normal airways other than for activin-A and TGF-P3. 

Despite the excess in activin-A expression in asthma ALK-4 and pSmad2 epithelial 

expression was not different between the two groups, indicating ubiquitous activin-A 

signalling in the airway and may suggest a homeostatic role for the activins in the 

airway. Consistent levels of ALK-4 expression, particularly so in myofibroblasts, 
indicates that the activin signalling pathway may remain active and suggests a 
dominant role for activins in airway inflammation and the repair response in asthma. 

The rapid and consistent down-regulation in the expression pattern of ALK-5 at 24 

hours after allergen exposure suggests that there may be a regulatory response in place 

to attenuate the cellular response to TGF-PI-3 ligands. Such down-regulation was not 

observed for other Type I receptors post-allergen. Whilst this study is the first to 

demonstrate this modulation in response to allergen-induced injury in asthma, this 

observation has however been shown in a rat model of bleomycin-induced lung 

fibrosis (Khalil et aL 2002). Using both IHC and ISH it was demonstrated that the 

expression of ALK-5 on Type I alveolar epithelial cells was reduced whereas there 

was no change in the expression of the Type II receptor TORIL This observation has 

also been made in our collaborator's allergen-induced mouse model of airway injury 

(Rosendahl et A 2001). It may be that ALK-5 down-regulation is a response specific 

to tissue injury rather than a disease specific phenomenon. Interestingly, ALK-5 

expression levels returned to baseline levels 7 days in this study, coinciding with 

return of pSmad2 signalling to baseline levels. The mechanism of ALK-5 expression 
down-regulation may be explained by the observations by Ebisawa et al (Ebisawa et 
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aL 2001). Smad7 is able to associate with Smurf 1 in the nucleus. Whilst Smurf I 

allows Smad7 to be exported out into the cytoplasm it through this interaction with 

Smad7 that Smurf 1 can be recruited to the site of activated ALK-5. Smurf I now 

induces the degradation of ALK-5 together with Smad7. The sensitivity of the cell to 

the effects of TGF-PI-3 is thus altered. 

Given that the in-vitro effect of TGF-01 on epithelium is the inhibition of cellular 

proliferation, the specific down-expression of ALK-5 in epithelial cells in response to 

allergen may be an attempt by the airway to regenerate and repair itself by the loss of 

the TGF-P antiproliferative signal sensitivity. In asthma there is a lack of epithelial 

repair despite proliferation signals by factors such as EGFR ligands leading to a 

chronic wound scenario. Interestingly in the bleomycin injury model ALK-5 down 

expression coincided with a time point known to be associated with the peak of 

epithelial cell proliferation (Khalil et aL 1994) whilst the time point at which a return 
in expression of ALK-5 to baseline levels was seen coincided with cessation of 

epithelial proliferation (Khalil et A 1994). 

It was not possible to demonstrate a consistent expression of ALK-5 on inflammatory 

cells which is surprising as these cells are considered to be TGF-Pi responsive. This 

observation has, however, been documented in the bleomycin model of lung injury 

discussed above where the inflammatory cells recruited in response to injury did not 

immunostain for ALK-5 despite the demonstration via ISH of ALK-5 expression in 

these cells. Immunostaining for ALK-5 was weak or absent also for fibroblast-like 

cells in the current study. These findings may be an indication that the expression of 

ALK-5 is even more down-regulated on inflammatory and mesenchymal cells that the 

immunohistochemical protocol used was not sensitive enough for the detection of 

ALK-5 in these cell types. 

The functional consequences of TGF-P, on immune responses is partly dependent on 

the state of cellular differentiation and this in turn is related to the degree of cell TGF- 

P receptor expression, which in large part can determine the functional outcome in 

response to TGF-P ligands. For example, inactive monocytes express a relatively high 

proportion of ALK-5 but cell activation was associated with down-regulation of ALK- 

5 with concomitant loss of functional responses to TGF-P ligand (Brandes et al. 

1991). Such receptor down-regulation did not occur in neutrophils (Brandes et al. 
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1991). In this in-vitro system there was however induction of TNF-a, an important 

observation given that in more severe asthma TNF-a may be implicated in 

pathogenesis (Howarth et A 2005). 

There was obvious staining for ALK-1 in our fibroblast populations. This identical 

observation in a mouse model of allergen induced airway injury with weak or absent 
ALK-5 inimunostaining and an increase in ALK-1 is again consistent with findings 

here (Rosendahl et al. 2001). It would be important to understand the functional 

consequences of such ALK-1 expression on fibroblasts. 

BMP Type I receptor ALK-2 and ALK-6 cpithelial expression was rapidly increased 

following allergen challenge, and this increased expression was sustained at the 7 day 

time point when tissue repair was still evident. Epithelial ALK-3 expression was not 

modulated in response to allergen provocation. In the mouse model of allergen 

challenge a 2-fold increase in ALK-2 and a 6-fold increase in ALK-6 protein 

expression as detected using Western-blotting of whole tissue has been documented 

with no change in the level of ALK-3 expression. RT-PCR confirmed 5-fold induction 

of ALK-2 however but the ALK-3 mRNA level remained unchanged (Rosendahl et 

aL 2002). Further evidence that BMP signalling is down-regulated in asthma is 

suggested by the decreased expression of BMPRII, ActRIIA and ActRIEB at baseline 

compared to the normal airway. 

5.4.4 Summary of Type I receptor expression 

Epithelial ALK-5, ALK-1, ALK-2 and ALK-6 expression is significantly less in the 

asthmatic airway. ALK-5 expression decreases further 24 hours post-allergen. There 

is significantly increased expression of epithelial ALK-I (7 days), ALK-2 (24 hours 

and 7 days) and ALK-6 (24 and 7 days) in response to allergen-induced activation of 

disease. 

The asthmatic airway submucosal inflammatory-like cells express significantly less 

ALK-4 and ALK-I compared to nonnal volunteers. Expression of ALK-3 is 

significantly increased in submucosal inflammatory-like cells in asthma. Allergen 

challenge leads to significant increased numbers of inflammatory-like cells expressing 

ALK-4 (24 hours), ALK- 1 (24 hours and 7 days) and ALK-3 (24 hours). 
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5.5 Section D: Expression of TGF-P Superfamily signalling Smads 

5.5.1 Introduction 
TGF-P Superfamily ligands are regulated by synthesis but are also bound to ECM 

proteins as inactive forms which must be activated before functional signalling can 

occur. Thus signalling analysis is required to detect activity of these factors. In this 

section the expression of pSmad2, pSmadl/5, Smad6 and Smad7 in the baseline 

asthmatic airway, at 24 hours and 7 days post-allergen are evaluated. Expression is 

compared to that of the normal airway. The expression of Co-Smad4, Smadl and 

Smad2 is also analysed. 

5.5.2 Results 

The overall expression of pSmad2 in the airway epithelium in the asthmatic airway 

did not differ from that in normal airway (Figure 5.29A and Figure 5.33A and B). 

pSmad2 expression was also evident, although weaker, in cells of the submucosal 

compartment in the asthmatic airway at the baseline time point. Given the weaker 

staining of pSmad2 in these cells (although some cells were easily identifiable as 

inflammatory cells or fibroblast-like cells), it was difficult to classify all cells 

precisely. There were almost no identifiable inflammatory or fibroblast-like cells 

staining for pSmad2 in the normal airway. 

There was no significant difference in the level of pSmadl/5 in the baseline asthmatic 

airway compared to normal volunteers (Figure 5.29B), although there was a trend 

towards down-regulation of pSmadl/5 expression in asthma (Figure 5.34A and 

5.34B). 

The distribution and intensity of expression of inhibitory Smad7 was significantly less 

in the baseline asthmatic group compared to normal volunteers (P=0.01) (Figure 

5.30A and Figure 3.35A and 5.35B). Whilst predominant staining was in the 

epithelium there were also scattered inflammatory-like cells, fibroblasts and smooth 

muscle cells expressing Smad7. The level of Smad6 expression did not differ between 

the normal and asthmatic airway (Figure 5.30B). 

There was no difference in the level of Smadl, Smad2 or Smad4 expression between 

normal and asthmatic volunteers (Figure 5.31 A, B and C respectively). 
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Figure 5.29: The expression of pSmad2 and pSmadl/5 in the normal airway 
epithelium compared to asthma 

The number of cells expressing each isoform is expressed as a percentage (%) of the total 
number of epithelial cells present. Significant differences between the groups were analysed 
using the Mann-Whitney Test. p<0.05 was taken as significant. 
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Figure 5.30: The expression patterns of inhibitory Smad7 and Smad6 in the 
normal airway epithelium compared to asthma 

The number of cells expressing each isoforin is expressed as a percentage (%) of the total 
number of epithelial cells present. Significant differences between the groups were analysed 
using the Mann-Whitney Test. p<0.05 was taken as significant. 
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Figure 5.31: The expression patterns of Smadl, Smad2 and Smad4 in the normal 
airway epithelium compared to asthma 

The number of cells expressing each isoform is expressed as a percentage (%) of the total 
number of epithelial cells present. Significant differences between the groups were analysed 
using the Mann-Whitney Test. p<0.05 was taken as significant. 
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Post allergen challenge in asthma 
Evidence for activation of TGF-P 1-3 and activin downstream signalling was obtained 
by counting the number of pSmad2 positive cells. Allergen challenge was associated 

with significant increases in the total number of positive pSmad2 epithelial cells at 24 

hours (p=0.03) with expression levels returning to baseline by 7 days (Figure 5.32A 

and Figure 5.33C). There were only scattered inflammatory-like cells and fibroblast- 

like cells staining for pSmad2. There was a pattern towards increased numbers of cells 

staining for pSmad2 below the basement membrane consistent with activation of 
TGF-PI-3 and activin signalling in inflammatory-like cells and fibroblast-like cells 
(median 2 (IQR 0-54) cells/mm2 at baseline increasing to 17.60 (2.3-103) cel, S/MM2 at 
24 hours and 4.6 (0-128) celIS/MM2 7 days in fibroblast-like cells) following allergen 

challenge. 

Activation of BMP signalling was evident with detection of significant increases in 

pSmadl/5 signalling in epithelial cells at 24 hours (p=0.04) and at 7 days (p=0.04) 

(Figure 5.32B and Figure 5.34C). Signalling was also evident in infiltrating 

inflammatory-like cells but no fibroblast-like cells could be convincingly identified. 

There was increased expression of Smad7 in response to allergen challenge at 24 

hours (p=0.003), with a trend towards sustained expression at 7 days (p=0.09) (Figure 

5.32C and Figure 5.35C). There was no change in Smad6 expression in response to 

allergen challenge (Figure 5.32D). 

There was no modulation of expression of Smadl, Smad2 or Smad4 in response to 

allergen challenge (Figure 5.36). 
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Figure 5.32: The expression kinetics of activated Smads in the asthmatic airway 
epithelium 24 hours and 7 days after allergen challenge 

The number of epithelial cells expressing each isoform is expressed as the number per unit 
length of BM (cells/ mm. BM). Wilcoxon signed rank test was used to compare the change 
from baseline at the 2 subsequent time points. p<0.05 was taken as significant. 

Activation of both TGF-P isoform and activin (5.32A) and BMP (5.32B) signalling was seen 
predominantly in the airway epithelium, with active BMP signalling sustained even 7 days 
after allergen challenge(p=0.04). Increased numbers of cells staining positive for Smad7 post- 
allergen (p=0.003) is consistent with the view of pSmad2 and pSmadl. induced up-regulation 
of Smad7 as part of the negative feedback loop that is known to regulate TGF-P signalling 
pathways. 
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Figure 533: Photomicrograph of pSmad2 expression 

The expression of pSmad2 at in a normal airway (A) alongside a baseline asthmatic airway 
(B) and 24 hours post-allergen (C) is presented. Weak or absent expression is seen at baseline. 
Allergen provocation is associated with increased intensity and numbers of epithelial cells and 
submucosal inflammatory-like cells staining positive for pSmad2. Immunohistochemistry did 
not detect many fibroblast-like cells staining for pSmad2. H+E background staining was 
omitted given the low level of staining intensity of pSmad2 at baseline. In contrast to pSmad2 
staining, fibroblast-like cells staining positive for Smad2 (arrowed) were readily detectable 
(D). 
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Figure 5.34: Representative photomicrographs of pSmad 1/5 inimunoreactivity 

Normal volunteers demonstrate expression of pSmadl/5 in epithelium and inflammatory cells 
(A). Asthmatics demonstrate less epithelial expression of pSmadl/5 (B) suggesting active 
BMP signalling maybe down-regulated in the asthmatic airway. However submucosal 
inflammatory cells of the normal airway still express pSmadl/5. Allergen challenge is 
associated with increased expression at 24 hours (C) and this was sustained at the 7 day time 
point (D) although the intensity of staining was still less than that in seen in the healthy adult 
volunteers. 
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Figure 5.35: Representative photomicrographs of Smad7 immunoreactivity 

Normal volunteers demonstrate marked expression of Smad7 in nearly all of the epithelium 
and also some inflammatory-like cells (A). Asthmatics demonstrate weak (arrowed) or absent 
expression of Smad7 at baseline (B) suggesting dyregulated TGF-P signalling in the asthmatic 
airway. Allergen challenge is associated with increased expression of Smad7 at 24 hours (C) 
with expression levels returning to baseline levels at the 7 day time point (D) when airway 
remodelling marker expression was maximal. 
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Figure 5.36: The expression of Smadl, Smad2 and Smad4 in the asthmatic 
airway 

Immunohistochernical. detection of Smadl, Smad2 and Smad4 expression did not reveal any 
modulation. The regulation of Smad levels in the cell is complex and the findings of similar 
levels of Smad protein expression probably reflect the fine balance between Smad synthesis, 
nucleus-cytoplasm shuttling and Smad degradation. 
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5.5.3 Discussion 

Overall there was no significant difference between the levels of pSmad2 or 

pSmadl/5 epithelial cell expression between normal and asthmatic individuals, 

consistent with the view that TGF-P Superfamily ligand co-ordinated signalling is 

constitutively active in the maintenance of tissue homeostasis. There was however a 

tendency towards down-regulation of active BMP signalling in the asthmatics. Having 

confirmed the presence of TGF-P Superfamily ligands in the airway the study then 

evaluated whether allergen-induced airway injury would lead to increases in the level 

of activation of ligand signalling. Active TGF-01-3 and activin signalling was evident 
by the detection of significantly increased immunostaining of pSmad2. Activation was 

rapid with predominant localisation to the airway epithelium consistent with the 

increasingly recognised role of epithelium in the airway injury response. Whilst there 

was evidence of signalling in infiltrating inflammatory-like cells, there were only few 

cells with fibroblast-like morphology that inimunostained for pSmad2 suggesting that 

Smad2 may not be the predominant signalling Smad in fibroblasts. This observation is 

in line with studies that suggest it is rather Smad3 that is the predominant signalling 

Smad in fibroblasts (Roberts et aL 2001). a-SMA and Type I collagen expression in 

dermal fibroblasts is only Smad3 induced (Verrecchia et aL 2001). Attenuation of 
fibrosis is seen in the Smad3 KO mouse despite adenoviral over-expression of TGF-Pi 

in fibroblasts (Flanders 2004) and is seen in the bleomycin-induced lung fibrosis 

model again using the Smad3 KO mouse (Zhao et aL 2002). No commercial or 

collaborator-produced pSmad3 antibody was available at the time of this study to 

define pSmad3 expression in the tissue sections. 

Rapid and sustained activation of BMP signalling was evidenced by the up-regulation 

of pSmadl/5 expression. This finding is not surprising given the essential role of 

BMPs in tissue repair and function. This confirms that TGF-P Superfamily signalling 

in response to airway injury is a complex and co-ordinated response. Activation of 

BMP signalling was again predominantly confined to the airway epithelium. There 

were however inflammatory and fibroblast-like cells immunostaining for pSmadl/5 

suggesting that BMPs may have a role in the functional modulation of these cells. 

Whilst both Smad7 and Smad6 can inhibit of BMP signalling, Smad6 with greater 

potency, Smad7 is considerably more potent than Smad6 inhibiting TGF-PI-3 

mediated signalling responses (Hanyu et aL 2001). Expression of such inhibitory 
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Smads (I-Smads) is a major determinant of the TGF-P Superfamily signalling 

response. Consistent with previous observations (Nakao et A 2002) the study was 

able to demonstrate that in asthma the expression of Smad7, as determined by 

immunostaining, is dramatically less in baseline asthmatics compared to normal 

volunteers. Dysregulated, TGF-P signalling as a result of aberrant Smad7 expression 

has been demonstrated in the fibrotic disease systemic sclerosis (Dong et A 2002), 

inflammatory bowel disease (Monteleone et A 2001) and in models of pulmonary 

fibrosis (Venkatesan et aL 2004). 

With allergen challenge a rapid induction of Smad7 at 24 hours was evident. This 

observation is in keeping with in-vitro studies that have demonstrated rapid induction 

of Smad7 and Smad6 gene transcription by TGF-PI, activin-A and BMP-7 in several 

cell types (Afrakhte et A 1998; Nakao et aL 1997). What may be important in terms 

of therapeutic implications is our observation that in asthma, despite Smad7 up- 

regulation, the degree of expression was still only half of that seen in the normal 

bronchial tissue indicating that in asthma there is a failure to adequately regulate 

TGF-P Superfamily signalling and hence the repair response. This may again indicate 

an intrinsic abnormality of TGF-P regulation in asthma or a reflection of the effect of 

other inflammatory signalling pathways operational in asthma that can effect Smad7 

gene transcription. The finding that Smad7 over-expression in a transgenic model 

leads to enhanced inflammation and AHR may suggest the down-regualation of 

Smad7 in asthma is an attempt also to regulate inflammation. 

The mechanism by which the Smad7 promoter is down-regulated is currently 

unknown. However, marked induction of Smad7 transcription occurs in response to 

TGF-B, (Nakao et aL 1997) and the Smad7 promoter is also responsive to MAPK 

signalling such as JNK1, signal transducers such as IFN-y (via JAK/STATI 

signalling) and activators of transcription such as NFKB in response to stimulation by 

TNF-a (Ulloa et aL 1999; Bitzer et aL 2000). Binding of Smads and other 

transcription factors to unmethylated CpG islands of the Smad7 promoter stimulate 

basal promoter activity and induction of gene transcription. TGF-P signalling is the 

most important regulator of Smad7 expression as shown by point mutations in the 

palindromic GTCTAGAC sequence of the Smad3-4 binding clement (SBE) 

completely abolishing TGF-P induction whilst deletion of binding sites for AP-I or 

Sp-I only attenuates the basal transcriptional activity of the promoter (Brodin et A 
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2000). TGF-P mediated Smad7 induction is also attenuated in this instance (Brodin et 

aL 2000). By the ability of Smad7 transcription to respond to multiple factors, Smad7 

not only serves as a TGF-P antagonist but also fine tunes the cellular response to 

TGF-P ligands by the integration of these different signalling pathways. Restoration 

of Smad7 expression in asthma may offer a therapeutic target whereby a specific 

component of the signalling pathway is manipulated with the aim of restoring 

regulation to TGF-P signalling responses. 

Regulation of the TGF-P signalling is also dependent on the continuous 

nucleocytoplasmic shuttling of the Smad proteins (Xu et A 2002)(Inman et A 2002). 

Ligand-receptor binding leads to receptor mediated phosphorylation of R-Smads 

leading to activation for a few hours and residence in the nucleus of R-Smads before 

dephosphorylation and shuttling out of the nucleus to go back and detect the 

activation status of the receptor. Nucleocytoplarnic shuttling of Smad-4 is independent 

of TFG-P sign1ling (Watanabe et A 2000). Smads eventually undergo degradation via 

the ubiquitin-proteasome pathway (Lo & Massague 1999). In this study 
immunohistochernical detection of R-Smadl, R-Smad2 and Co-Smad4 expression did 

not reveal any overall modulation. It may be that exact nuclear versus cytoplasmic 
Smad localisation is required. It was not possible to be certain of such distribution 

using just basic IHC. The regulation of Smad levels in the cell is complex and our 
findings of similar levels of Smad protein expression probably reflect the fine balance 

between Smad synthesis, nucleocytoplasmic shuttling and Smad degradation. 

5.5.4 Summary of Smad signalling 

Allergen challenge in asthma is associated with activation of TGF-Superfamily ligand 

signalling with significant increases in epithelial pSmad2 and pSmadl/5 expression. 

The baseline asthmatic airway demonstrates significantly less Smad7 expression but 

there is rapid up-rcgulation of expression following allergen provocation. 
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5.6 General discussion of chapter 
TGF-P Superfamily ligand expression and the functional activation of signalling 

pathways in response to allergen-provocation specific to asthma are defined in this 

chapter. It is demonstrated that the airways of mild to moderate atopic asthmatics 
have markedly altered expression of TGF-P Superfamily signalling pathway 

components compared to the normal airway. Allergen-induced airway injury is 

associated with the swift functional activation of TGF-P ligand signalling together 

with rapid modulation of selected Type I and Type II receptor expression that is 

sustained for at least 7 days after airway injury. It is confirmed therefore that there is 

an imbalance of TGF-P Superfamily signalling in asthma. 

The baseline expression of TGF01-3 mRNA isoforms in asthmatic airway epithelium 
did not differ from baseline expression in airway epithelium from normal volunteers. 
Increased numbers of submucosal inflammatory-like cells staining positive for TGF- 

P, and TFG-P3 mRNA in the asthmatic airway at baseline compared to normal 

volunteers was found, with statistical significance demonstrated for only TFG-P3. If it 

is presumed that the majority of these cells are inflammatory cells, then this finding 

supports the concept that inflammatory cells may be important sources of growth 
factors. Allergen challenge was not associated with modulation of any TGF-P isoforin 

mRNA expression in either the epithelium or submucosal cell population. In contrast, 

significantly increased amounts of activin-A protein expression, with both epithelial 

and inflammatory-like cells identified as significant sources, were found in the 

asthmatic airway at baseline. Whilst the levels of BMP-2, BMP-4 and BMP-7 

expression were similar between the normal airway and asthmatic airway, there was 

significant up-regulation of BMP-7 in inflammatory-like cells after allergen challenge 

at 24 hours and sustained to 7 days. Eosinophils were the predominant inflammatory 

cell source of BMP-7. There were marked differences in the degree of Type I and 
Type II receptor expression in the asthmatic airway compared to normal volunteers. 

Interestingly there was strong and widespread ALK-4 staining throughout the airway 
in both the normal airways and that of asthmatics, indicating that activin signalling 

may have an important homeostatic role in the airway. Overall there was no 
difference in the level of pSmad2 or pSmadl/5 expression in asthma compared to 

normals although there was a trend towards down-rcgulation of BMP signalling in 

asthma. There was decreased expression of Smad7 in the asthmatic airway but not 

Smad6. 
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Allergen challenge was associated with activation of TGF-PI-3, activin and BMP 

signalling pathways identified as rapid modulation of selected Type I receptors and 

pSmad2 and pSmadl/5 expression, together with the induction also of regualatory 
Smad7 signalling, confirming that these pathways act in a fast but co-ordinated 

manner. 

Growth factor imbalance and inappropriate signalling is implicated in several 

pathological fibrotic processes including asthma, although it remains to be determined 

whether such imbalance is a cause or a consequence of the disease. Such imbalance 

will lead to a situation in which the activity of a growth factor predominates over 

another often opposing factor with functional consequences. An excellent example of 

such imbalance is the over-expression of EGF family signalling in the asthmatic 

airway (Kretzschmar et A 1997). Despite such over-expression there is absent 

epithelial proliferation in response to EGFR signalling (Puddicombe et aL 2003). In 

the context of asthma it appears that TGF-P, can override the proliferative effects of 
EGF. The functional outcome is therefore is a determinant of summation of such 

opposing signals in the context of a specific disease environment. 

The diversity of TGF-P ligands that utilise these receptors is extensive, the corollary 

to which is that other regulatory receptor mechanisms operate. In fact, given the 

remarkable diversity of responses that can be mediated by what is a limited number of 

receptor-ligand combinations, it is not surprising that the TGF-P Superfamily ligands 

can interact with several alternative cell-signalling pathways. Several non-TGF-P 

signalling pathways can also converge on the Smad pathway (Derynck & Zhang 

2003) (Kretzschmar et aL 1997). The mitogen-activated protein (MAP) kinases are an 

enzyme cascade system comprised of at least 3 different enzymes. Activation (by 

phosphorylation) of the first enzyme leads to the sequential activation of the other 

enzymes in the system. One end result is the activation of the enzyme extracellular 

receptor-activated kinase (Erk), the prototypic member of the MAP kinase family. 

Activated ERK can now phosphorylate the protein Elk that in turn leads to the 

transcription of Fos component of the transcription factor activator protein-I (AP-1). 

Erk MAPK can effect R-Smad signalling by phosphorylation of the Smad2 MHI 

domain and Smadl, Smad2 and Smad. 3 linker domains (Kretzschmar et aL 1997) 

(Funaba et aL 2002). JNK phosphorylation of Smad3 enhaces TGF-P responsiveness 
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via increased nuclear translocation and transcription (Engel et aL 1999). Smad6 and 
Smad7 can also be regulated by phosphorylation independent TGF-P ligand induced 

stimulation. It is only Smad4 that is not regulated in this manner. 

The demonstration of TGF-P signalling with either Smad4 knock out cells or cells 

with dominant negative Smad transfection has confirmed that TGF-P ligands can 

signal independent of the Smad system. Although the exact mechanism by which the 

JNK, ERK and p38 MAPK activated signalling cascades can interact with TGF-P 

pathways are still unclear what is apparent is the cellular convergence of these 

alternative signalling pathways can lead to not only cooperation but also 

counteraction, leading to cell specific responses to TGF-P signalling, which can be 

further defined in response to the alteration of these signalling processes in disease 

states. 

it is likely therefore that other complex signalling cascades operative in asthma will 

have influenced the marked modulation of TGF-P Superfamily signalling observed in 

this study. In asthmatic epithelium it is shown that there is extensive up-regulation of 

EGFR expression leading to continuous activation of ERK, JNK and p38 MAPK 

signalling (Puddicombe et A 2000; Duan & Wong 2006). Such pathways can interact 

with the TGF-P signalling components. For example ERK signalling activation in- 

vitro experiments leads to phosphorylation of Smadl at the linker region that leads to 

inhibition of the BMP signalling pathway (Kretzschmar et aL 1997). It is interesting 

to speculate that our observed down regulation of pSmadl/5, the Type I receptors 

ALK-2 and ALK-6 as well as the Type Il receptor BMPRII is a reflection of other 

cellular pathways down-regulating BMP signalling in the asthmatic airway. 

Imbalance of growth factor signalling is a reoccurring theme in asthma. 

The modulation of Type I receptors suggest that the regulation of signalling at the 

receptor level occurs by modulation of ALK-5 for TGF-01-3 and through 

predominantly ALK-2 and ALK-6 for BMPs. 

It is therefore concluded that the airways of mild-moderate atopic asthmatics have 

markedly altered expression of TGF-P Superfamily signalling pathway components 

compared to the normal airway. There is an imbalance in TGF-P Superfamily 

signalling in asthma. Allergen-induced airway injury is associated with the swift 
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activation of TGF-P Superfamily signalling. This activation is associated with rapid 

modulation of receptor expression and induction of inhibitory Smad7 signalling 

pathways. Co-ordinated activation of several TGF-P Superfamily signalling pathways 

occur in response to allergen predicting that therapeutic targeting of just a single 

pathway ligand or receptor is unlikely to effective. It therefore remains to be 

identified if the process of airway remodelling can be antagonised for therapeutic 

benefit in asthma by modulating the TGF-P signalling system. The elucidation of such 

novel targets in TGF-P Superfamily signalling will hopefully lead to valuable 

therapeutic intervention in airway remodelling. 
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5.7 Overall summary of chapter 
The aim of this chapter was to determine TGF-PI-3, activin-A, BMP-2, BMP-4 and 
BMP-7 ligand expression together with the respective Type II receptors, Type I 

receptors and activated Smads in the normal and asthmatic airway. In addition the 

modulation of expression was evaluated at 24 hours and 7 days after allergen 

challenge. 

It was shown that TGF-03 (inflammatory-like cells) and activin-A (epithelium and 
inflammatory-like cells) expression were increased in the asthinatic airway with no 
further increase after allergen challenge. BMP-2, BMP-4 and BMP-7 were 

predominantly expressed in airway epithelium with no significant difference between 

normals and asthma at baseline. Allergen challenge was associated with marked and 

sustained up-regulation of only BMP-7 in infiltrating inflammatory-like cells at 24 

hours and at 7 days and the epithelium at 7 days. Eosinophils, CD4+ T cells, mast cells 

and macrophages were sources of BMP-7 

Epithelial ActRIIA, ActRIJIB and BMPRII expression was significantly less in 

asthma. Only ActRlIA up-regulation was significant at 24 hours and 7 days post- 
allergen challenge. 

Epithelial ALK-5 and ALK- I expression was significantly less in asthma with further 

down-regulation of ALK-5 at 24 hours. There was significant down-regulation of 
ALK-2 and ALK-6 in asthma compared to the normal airway. Receptor up-regulation 

was seen for ALK-2 and ALK-6 at 24 hours and at 7 days post-allergen. 

Overall there was no difference in the level of epithelial pSmad2 or pSmadl/5 

expression in asthma compared to the normal airway although there was a trend 

towards down-regulation of BMP signalling in asthma. There was decreased 

expression of only Smad7 in asthma. pSmad2 and Smad7 expression increased at 24 

hours after allergen and Smad7 expression was still raised at 7 days. pSmadl/5 

expression increased at 24 hours and 7 days suggesting active BMP signalling. Thus 

allergen challenge is associated with activation of TGF-01-3, activin and BMP 

signalling as evidenced by increased pSmad2, pSmadl/5, and Smad7 expression. 
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Chapter 6 

Safety and tolerability of three consecutive bronchoscopies in 

asthma 
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6.1 Introduction 
In this chapter the safety and tolerability of the model involving three consecutive 
bronchoscopies with broncho-alveolar lavage (BAL) and bronchial biopsy (BB) 

before and following inhaled allergen challenge is presented. 

Fibreoptic bronchoscopy (FOB) with BAL in human volunteers was first reported in 

1972 (Reynolds & Newball 1974) and the first study of volunteers with asthma 
involving BB was in 1977 (Molina et aL 1977). Concerns over the potential for BAL 

to exacerbate airway obstruction prevented the development of studies with BAL in 

asthma until 1982 (Godard et A 1982). Currently there are over 200 reports of 

research utilising FOB and has lead to the publication of several reports in safety and 

volunteer tolerability (Djukanovic et aL 1991; Humbert et A 1996; Van Vyve et A 

1992) leading to the development of consensus guidelines (Busse et aL 2005). The 

continued collection and collation of safety and tolerability data in a standardised 
form in defined volunteer groups is essential to develop protocols that ensure 

volunteer safety. 
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6.2 Results 
6.2.1 Bronchoscopy volunteer characteristics 

Data is presented on the fifteen individuals with mild to moderate asthma who each 

underwent three bronchoscopies (except one volunteer who only undertook two 

bronchoscopies with no BAL on the second occasion), a total of 44 bronchoscopies. 

The volunteers (9 male and 6 female) were of median age 25 (range 19-46) years, 

FEVI % predicted of 97 (range 75.41-125.7) % with a baseline methacholine PC20 Of 

2.1 (1.2-3.6) mg/ml (geometric mean ± 95% CI) at study entry. 

None of the volunteers developed any significant complication from bronchoscopy. 

The only discomfort reported was of a mild sore throat which had resolved the next 

day. There was only one incidence of haemoptysis post-procedure but was mild and 

clinically insignificant. One volunteer declined the final procedure because she found 

bronchoscopy intolerable despite sedation 

6.2.2 Baseline bronchoscopy 

At baseline bronchoscopy, the median FEV, was 93.97 (range 80-120.1) % predicted 
before bronchoscopy and 92.81 (73.59-119.0) % predicted at discharge (P=0.08). The 

median prebronchoscopy oxygen saturation on room air was 99 (range 95-100) % 

with no significant change at discharge at 97 (96-100) % (p=0.25). During the course 

of bronchoscopy the median maximum oxygen saturation recorded was 99 (range 98- 

100) % whilst the minimum was 96 (92-100) % (p=0.005). End procedure median 

saturation was 98 (range 91-100) % on supplemental oxygen. Oxygen saturation on 

room air 10 minutes post procedure was maintained at median 98 (range 95-99) %. 

6.2.3 Bronchoscopy 24 hours after inhaled allergen challenge 

On attendance for the second bronchoscopy 24 hours after allergen challenge the 

median FEV, was 94.94 (range 75.1 -111.1) % predicted before bronchoscopy (no 

difference from FOBI) but dropped to 85.48 (62.40-119) % (p=0.05) at discharge. 

The median oxygen saturation prebronchoscopy on room air was 99 (range 96-100) % 

and 97 (94-100) % on discharge (p=0.02). During the course of the procedure the 

peak median oxygen saturation recorded was 99 (range 98-100) % and the lowest 

level recorded was 96 (94-100) % (p=0.0002). End of procedure median saturation 

was 97 (93-100) % on 2-4 litres of entrained oxygen whilst the saturation on room air 

10 minutes post-procedure was 98 (94-100) %. 
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6.2.4 Bronchoscopy 7 days post-allergen 
Although the median FEVI % predicted had fully recovered with a pre-bronchoscopy 

value at 100.1 (range 70.56-119) % predicted there was still a significantly marked 

reduction in the FEVI at discharge after bronchoscopy at 90.15 (66.13-119) % 

(p=0.009). The prebronchoscopy oxygen saturation was 98.5 (96-100) % and 97.5 

(96-100) % on discharge (p=0.05). The difference between the highest recorded 

median oxygen saturation at 99.5 (range 98.5-100) % and lowest at 96 (92-98) % was 

again statistically significant at p=0.0002. There was, however, no clinical 

consequence as a result of desaturation seen during the course of bronchoscopy. 

The % BAL volume recovered did not significantly differ between the groups at each 

bronchscopy. The median volume recovered as the percentage of that instilled for 

Group A was 61.9 (range 50-72.22) % at FOBI vs 61.11(52.38-74) % at FOB2 vs 
62.50 (57.17-77.78) % at FOB3. The median volume percentage recovered for Group 

B was 56.95(range 37.03-72) % at FOBI vs 57.14% (30.55-83.33) at FOB2 vs 58.3 

(41.67-72) % at FOB3. There was however a significant correlation between the % 

BAL volume recovered and change in FEVI on discharge (r--0.3 1, p=0.04). Overall, 

there was no significant correlation between the change in oxygen saturation and the 

percentage volume of BAL recovered. 

6.2.5 Bronchoscopy and asthma control 
The effects of FOB on asthma control the day after bronchoscopy are summarised in 

Table 6.1. FOB was associated with increased symptoms on all occasions. Significant 

fall in FEV, was only seen following FOB that was preceded by allergen challenge 

(p=0.002) and was associated with the most significant increases in symptoms 

(p=0.001) and corresponding medication usage (p=0.004). None of these changes 

required treatment other than inhaled short-acting P2 agonists and all had resolved by 

the second day after bronchoscopy. 
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FOB1 Day-Before 
FOB 

Day-After 
FOB 

Significance 

FEVI% 84.80 87.98 
(68.06-120) (63.71-113) p=ns 

Symptom Score 0 4.5 
(04) (0-10) p=0.002 

Medication 0 1 
(0-2) (0-8) p=0.02 

FOB2 

FEVI% 90.17 82.18 
(67.10-120.4) (56.25-111.9) p=0.002 

Symptom Score 0 3 
(04) (0-9) P=0.001 

Medication 0 2 
(04) (0-16) p=0.004 

FOB3 

FEVI% 86.78 86.43 
(69.06-125.0) (68.71-120) p=ns 

Symptom Score 0 2 
(0-10) (0-7) p=0.05 

Medication 0 1 
(0-10) (0-7) p==ns 

Table 6.1: Summary the effect of bronchoscopy on asthma control in terms of 
FEV1% (median ± range), symptom scores and frequency of reliever medication 
recorded the day before and day after FOB 
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Data was analysed further according to volunteer groups with no increased AHR 

following allergen challenge (n--5, termed Group A) and with increased AHR (n--10, 

termed Group B). The methacholine PC20 (geometric mean) was 3.1 mg/ml at 
baseline with no significant change at either 24 hours (4.2 mg/ml) or 7 days (2.22 

mg/ml) in Group A. Group B demonstrated a baseline PC20 of 1.56 mg/mI with 

significantly increased AHR at both 24 hours (0.39 mg/ml) and 7 days (0.44 mg/ml) 
(p=0.002 and p=0.0078 respectively). 

I Although both groups demonstrated reduction in FEVI post bronchoscopy, it was 

Group B with marked AHR at the second bronchoscopy that demonstrated the most 

significant decrease in FEV, at discharge. The data is summarised in Table 6.2. None 

of the volunteers required any medication other than short acting P2 agonists for 

asthma symptoms. 

Table 6.3 surnmarises the FEVI % data from the day before and the day after 
bronchoscopy. Reduction in FEV, was seen in both Group A (no increased AHR 

following allergen challenge) and Group B (increased AHR after allergen challenge) 

only after the bronchoscopy that followed allergen challenge (FOB2), although only 
in Group B was this statistically significant (p=0.01). Only Group B reported 

significant increases in reliever medication usage (p=0.02) in response to increased 

symptoms (p=0.03) (Table 6.4 and 6.5 respectively). The diary data is illustrated in 

Figure 6.1. 
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Group A Group B 

Bronchoscopy Pre-FOB Discharge p Pre-FOB Discharge p 
FEVI% FEVI% FEVI% FEVI% value 

1 104.7 98.15 ns 92.5 91.97 ns 
(80.65-118.5) (73.59-119) (80.65- (75.39- 

120.1) 114.9) 

2 104.4 92.92 ns 94.59 83.80 0.02 
(74.60-111.1) (81.65-119) (79.03- (62.9-107) 

104.4) 

3 100.3 92.68 ns 100.1 88.17 0.004 
(70.56-119) (81.65-119) (77.42- (66.13- 

113.6) 108.4) 

Table 6.2 FEVI % immediately before bronchoscopy and prior to discharge 

Summary of the FEVI% (median ±interquartile range) of volunteers before bronchoscopy and 
after Oust prior to discharge) in terms of no increased AHR (Group A) and increased A-HR 
(Group B) status. Each measurement was taken 30 minutes after nebulised salbutamol. Both 
groups demonstrate reduction in FEV, following bronchoscopy but it only Group B with 
significantly increased ARR following allergen challenge that demonstrated a significant fall 
in FEV, - 

Group A Group B 

Bronchoscopy Day -Before Day-After p Day -Before Day-After p 
FOB FOB FOB FOB 

FEVI% FEVI% FEVI% FEVI% 

FOB 1 84.22 84.46 ns 84.40 87.98 ns 
(74.60-130) (63.71-113) (68.06- (73.78- 

98.10) 98.06) 

FOB2 91.21 83.17 88.85 78.55 0.01 
(70.96-130.4) (56.25- ns (67.1- (56.77- 

111.9) 126.4) 84.91) 

FOB 3 92.54 92 ns 83.09 84.3 ns 
(72-125) (81-120) (69.03- (68.68- 

105.6) 98.69) 

Figure 6.3 Summary of the effect of FOB on asthma control in terms of FEV, 
measured the day before and the day after 

Values are expressed as the median ± interquartile range. 
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Gro22 A Grou2 B 

Bronchoscopy Day Before FOB Day-After p Baseline Day-After p 
FOB FOB 

FOB 1 0 4 ns 0 5 0.02 
(0-4) (0-10) (0-4) (1-9) 

FOB2 2 0 3 ns 0 4 0.02 
(0-3) (04) (04) (0-9) 

FOB 3 0 3 ns 0 3 ns 
(0-2) (0-9) (0-10) (1.5-7) 

Table 6.4: Summary of the effect of FOB on asthma control in terms of volunteer 
inhaler usage frequency 

Only the group with increased AHR (group B) demonstrate significantly increased inhaler 
usage post bronchoscopy. Values are expressed as then median (± interquartile range). 

Grou pA Grou pB 

Bronchoscopy Day Before Day-After p Baseline Day-After p 
FOB FOB value FOB 

FOB 1 0 0 ns 0 3 ns 
(0-1) (0-2) (0-8) 

FOB 2 0 2 ns 0 3 0.03 
(0-2) (0-4) (0-15) 

FOB 3 0 0.5 ns 1 2 ns 
(0-2) (0-10) (0-7) 

Table 6.5: Summary of the effect of FOB on asthma control in terms of volunteer 
symptom scores the day before and the day after FOB 

Only Group B demonstrates significantly increased Symptoms in relation to FOB. Values are 
expressed as the median (-+ interquartile range). 
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Figure 6.1 Summary of volunteer diary data a week before and after each 
bronchoscopy 

Following the screening visit, volunteers recorded FEVI (A), salbutamol inhaler usage (B) and 
symptoms (C) in a run in period of two weeks before a baseline bronchoscopy with BAL and 
BB (FOB 1) and throughout the study period. A hand held Piko Device FEV, recorder 
(Ferraris Respiratory Europe Ltd, Hertford, UK) was used with the volunteers fully trained in 
its use. Volunteers were asked to take measurements in the morning before any reliever 
medication. 

AN Group A (no increased AHR) 

B0 Group B (increased AIIR) 
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6.2.6 Volunteer follow-up spirometric data 

Out of the 15 volunteers that entered the study 12 returned for follow up 2-6 weeks 

after the end of the study. The median FEVI% predicted was 99.88 (range 79-109) % 

at follow up compared to 95.18 (75.41-114.8)% measured at the study entry screening 

visit. All 12 of these volunteers were still maintained on short-acting 02 agonists only 

and none reported clinical deterioration of asthma control in the weeks following the 

study. 
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6.3 Discussion 
In this study we have shown that three consecutive bronchoscopies of volunteers with 

mild and moderate asthma were not associated with adverse events and that falls in 

FEV, post-procedure were associated with allergen-induced increased AHR. In 

addition there were no long term adverse effects. The model is validated by the 

demonstration of reproducibility of increased cellular recruitment into the airway at 

the 24 hour time point (Bentley et aL 1993)(Robinson et aL 1993) in association with 
AHR which is sustained 7 days later (Cockcroft et al. 1977). We have successfully set 

up a longitudinal model of human asthma where we can sample the airways in a time 

course manner which can be used to look at the induction and resolution of 
inflammatory and remodelling events in relation to symptoms and changes in airway 

physiology. 

The limited evidence suggests that FOB with bronchial biopsy (BB) does not 

exacerbate AHR and no deterioration in asthma control occurs measured in terms of 

the peak expiratory flow (PEF)(Humbert et aL 1996). In both normals as well as 

asthmatics there is, however, an increased risk of airway obstruction when bronchial 

biopsy is combined with BAL (Djukanovic et aL 1991). The falls in FEVI were 

greater in the asthmatics rather than normals however suggesting that the risk of 

bronchospasm. may also be related to AHR. The data in the study supports this finding 

in that falls in FEVI following bronchoscopy were greater in the presence of allergen 

induced increases in AHR. In terms of PEF, the degree of airway obstruction is less 

when BAL is omitted and only bronchial biopsy was performed (Humbert et aL 

1996). In this study the fall in FEVI was significantly correlated with the BAL volume 

recovered in this study, adding to the concept that BAL can adversely effect airway 

obstruction. This has important implications for BAL with more severe asthma. 

Theoretically BAL can also lead to an increased alveolar-arterial (A-a) gradient with 

resultant hypoxia but only minor falls in end procedure saturation were seen in 

volunteers, reaching statistical significance only after FOB2 and FOB3 when 

increases in AHR had been induced by allergen challenge. There was no significant 

correlation between the percentage BAL volume recovered and the change in oxygen 

saturation. 
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A major concern for clinicians performing FOB in asthmatics is whether the 

procedure will have an adverse effect on disease control. There is no available data on 
the degree of airway obstruction measured in terms of FEVI measurement at present. 
Diary data confirmed increased airway symptoms necessitating reliever after each 
FOB, but the FEVI did not deteriorate following baseline bronchoscopy or indeed 

after the final bronchoscopy. Significant falls in FEVI was seen only the day after 
bronchoscopy related to allergen challenge. This suggests that the increased AER 

after allergen increased the impact of bronchoscopy on symptoms and FEVI, or that 

these changes were related to allergen challenge alone as previously reported in 

allergen studies without bronchoscopy (Cockcroft et A 1977). There were no asthma 

exacerbations requiring additional treatment. Overall FOB was well tolerated. Only 

one volunteer found repeat bronchoscopy unacceptable despite sedation and declined 

to complete the final study FOB. 

6.4 Summary 

Three consecutive bronchoscopies combined with BAL and bronchial biopsy was 

well tolerated by these mild to moderate asthmatic volunteers. By careful volunteer 
selection, close monitoring and dedicated aftercare it is possible to develop 
longitudinal studies in human asthma. 
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Chapter 7 
General Discussion 
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Developing a human model of asthma whereby the dynamic events of airway 

remodelling can be examined in relation to changes in cellular inflammation and 

airway function was the primary aim of this study. The airway in stable disease was 

sampled with repeat sampling immediately after disease activation following allergen 

challenge as previously reported (Phipps et A 2004), and again at a time when the 

disease should either have been in resolution or in a state of further propagation. The 

development of such a study as this is particularly important in asthma as it is a 

chronic complex heterogenous condition and no animal model can ever mimic the 

human disease completely. Animal models provide valuable insights into the potential 

roles of complex molecular pathways, but ultimately studies of human asthma are 

required (Kariyawasam. & Robinson 2005; Wenzel & Holgate 2006). 

The study presented here confirms that longitudinal studies, whereby disease activity 

defined by airway physiological changes in relation to inflammation and remodelling 

events, are possible and as such should encourage research groups to undertake 

similar studies in the future. Careful volunteer selection and close monitoring is 

essential in any further studies involving bronchoscopy. This study reports on the 

safety and tolerability of bronchoscopy with allergen challenge in 15 volunteers and 

although generalisation from such numbers is not possible the data does suggest that, 

provided that an established bronchoscopy protocol is followed and the procedure is 

performed by an experienced group of operators with dedicated after-care, three 

consecutive bronchoscopies can be carried out in volunteers with asthma. A repeat 

study might consider airway biopsy at a fourth time point with a reduction in the 

number of biopsies taken at each bronchoscopy. Such an extended study would likely 

provide insights into what aspects of remodelling and TGF-P Superfamily signalling 

may be yet sustained when AHR returns to baseline levels. 

An important point of current discussion is what relationship airway inflammation has 

to airway remodelling? There are only three possibilities; firstly that inflammation 

leads to airway remodelling; secondly that the asthmatic airway has an intrinsic 

propensity to remodelling in response to obvious environmental insults such as viral 

infection, pollution or allergen and that inflammation is both promoted and sustained 

in response to such an abnormal airway architecture; or thirdly both inflammation and 

remodelling are independent separate events in the airway each contributing to 

different aspects of the asthma phenotype. 
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The findings examined in this thesis confirm that allergen provocation is associated 

with the rapid and simultaneous activation of cellular inflammation and airway 

remodelling but dissociation of selected aspects of remodelling from inflammation 

occur at a later time point. An explanation for this observation may be that the 

epithelial-mesenchymal trophic unit (EMTU) initially responds and interacts with the 

steroid responsive Th2 mediated aspects cellular of inflammation and mediators, but 

that the EMTU may itself take on a more active and sustained role in driving 

remodelling in the absence of further inflammatory cell recruitment. In support of this 

concept is the finding that airway myofibroblasts (a-SMA) and collagen are partially 

responsive to corticosteroids (Bergeron et A 2005), presumably by attenuation of the 

inflammatory contribution to remodelling. IL-4 and IL-13 are established key 

cytokines in inflammatory propagation. Recent studies have identified airway 

structural cells as additional targets for these cytokines. IL-13 knockout mice display 

decreased subepithelial fibrosis, epithelial changes and goblet cell hyperplasia (Kumar 

et al. 2002) as well cosinophils and other inflammatory cell recruitment. Eosinophils 

are implicated in both inflammation and remodelling by the release of cytokines and 

fibrogenic factors (Phipps et al. 2002). Such a mechanism of EMTU mediated 

remodelling may explain the more complex and severe disease phenotypes where 

airway obstruction and AHR becomes less sensitive to anti-inflammatory therapy (i. e 

steroid refractory) and less dependent on factors such as environmental allergens 

which are considered more important in the milder disease phenotypes. These 

findings also provide an explanation for why some aspects of remodelling may be 

steroid responsive whilst others are not, and why disease progression can occur 

despite anti-inflammatory therapy. Why some asthmatics develop such complex and 

steroid refractory phenotypes is not known. 

Whilst it is likely that inflammatory events may initiate remodelling through 

epithelial-mesenchymal activation it is possible that such activation may occur 

independently of inflammation, for example through allergen-induced injury of 

epithelium directly or mechanical stretch leading to epithelial activation, both events 

leading to underlying mesenchyrnal signalling and activation. Epithelial-fibroblast in- 

vitro co-culture experiments support such a mechanism. The development of animal 

models with an inducible vulnerability for airway epithelial injury and abnormal 

repair is eagerly awaited as such models may help in the evaluation of what aspects of 
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remodelling events can proceed in the absence of inflammation as a result of aberrant 

epithelial-mesenchyinal signalling alone. 

Further studies into understanding the mechanisms of how inflammation and 

remodelling occur in asthma and how these contribute to altered airway function, in 

particular AJHR, are required. An important follow on study would be to look at the 

inflammatory and remodelling changes allergic of rhinitic patients in a time course 

manner with allergen provocation as defined in this thesis. Allergic rhinitic (AR) 

patients show some features of airway remodelling (Chakir et aL 1996). If the 

asthmatic airway is predisposed to dysregulated and exaggerated repair, then it can be 

expected that in the AR group inflammation and remodelling will be similar to the 

asthmatic group in the acute phase at 24 hours with resolution of remodelling markers 

that were otherwise sustained in the asthmatic group at the 7 day time point. Another 

important study would comprise a group of asthmatics on high-dose inhaled steroids 

to evaluate the remodelling response when cellular inflammation is more attenuated. 

in this thesis the expression of TGF-P Superfamily ligands and signalling pathway 

components in the asthmatic airway compared to the normal airway have been 

defined and the activation and modulation of these signalling pathways in response to 

disease activation in response to allergen challenge evaluated. These are the initial 

steps towards an understanding of the complex signalling pathways that are operative 

in the asthmatic airway. The data confirms that TGF-P Superfamily signalling 

pathways are markedly abnormal in the asthmatic airway. Rapid activation and 

modulation of signalling components is seen with allergen-induced disease 

provocation. However, despite modulation of signalling components, the expression 

levels of selected receptors and inhibitory Smads, at least in immunohistochemical 

terms, remains markedly abnormal. This suggests that TGF-P Superfamily signalling 

in the asthmatic airway is occurring through alternative receptor combinations without 

strict regulation. Combinatorial interactions of different Type I and Type 11 receptors 

provide a versatile system by which TGF-O ligands can achieve multiple outcomes in 

a cell. At present comprehension into signalling by this complex pathway is at a very 

basic stage but it can be predicted that such aberrant signalling leads to functional 

outcomes that contribute to disease pathology in asthma. The challenge is to 

understand the exact functional consequences of such altered signalling has for the 

airway. In terms of therapeutic intervention, it is obvious even at this stage that 
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targeting a single TGF-0 ligand by itself is unlikely to be effective given the 

complexity of receptor modulation that is present and the ability for other signalling 

cascades to interact and regulate TGF-P signalling pathway components. Only by 

understanding the initiation and integration of these complex pathways can TGF-0 

signalling become a therapeutic target. 

The inherent weakness of the data in this study is that it is predominantly derived 

from immunohistochemical work which is a semi-quantative method. In addition 

there is no functional data to support the concepts of TGF-P Superfamily signalling 
highlighted by this work. Nevertheless it is possible to begin to propose an overall 

mechanism of TGF-P Superfamily signalling in asthma (Figure 7.1). In 

immunohistochemical terms, similar levels of TGF-PI-2 and BMP ligand expression is 

present in both the norinal and asthmatic airway, such expression being consistent 

with the known regulatory role in airway inflammatory and repair processes. The 

asthmatic group demonstrated increased numbers of cells expressing TGF-P3 and 

activin-A. It appears that activin-A may be a more a disease specific growth factor, as 

has been shown for other inflammatory and fibrotic disease such as Crohn's disease. 

Increased staining of activin-A in baseline asthma with identification of inflammatory 

cells as significant sources suggests that the asthmatic airway has a tendency for a 

pro-fibrotic response following injury. The level of Smad7 expression is a 

determinant of overall TGF-Superfamily responsiveness. A pro-fibrotic tendency is 

also suggested by the significantly low levels of inhibitory Smad7 in asthma, 

indicating that TGF-P signalling pathways are inherently dysregulated compared to 

the normal airway. Allergen-induced airway injury is associated with the rapid 

activation of stored ligand rather than rapid synthesis, although there was evidence for 

increased epithelial and inflammatory cell sources of BMP-7. The down-regulation of 

the TGF-Pl-3 Type I receptor ALK-5 but not the down-regulation of the predominant 

activin receptor ALK-4 may suggest that the rapid increase in pSmad2 signalling is a 

predominant response to activin signalling. The activin Type 11 receptor ActRIIA is 

down-regulated in asthma compared to normal volunteers. Thus activin signalling 

may be predominantly through the other Type II Receptor ActRIIB, a combinatorial 

interaction that leads to an alternate functional outcome in the cell. The rapid increase 

in ActRIIA at the 24 hour post allergen time point may be an attempt by the airway to 

regulate the activin signalling response. The versatility of the signalling system is 

such that the increased expression of the ActRIIA is perhaps a response to local 
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activation of BMP ligands. Baseline expression of BMPRII in the asthmatics group 

was less compared to the normal airway with no further modulation despite rapid 
BMP signalling as evidenced by increases in pSmadl/5 signalling. BMP can also 

signal through ActRIIA and ActRIIB. Therefore it is possible that up-regulation of 

ActIIA is also related to BMP mediated signalling. BMP-ActRIIA signalling will lead 

to a separate functional outcome compared to signalling via BMPRIL Rapid induction 

of Smad7 suggests that some regulation of the signalling process occurs but overall 

the intensity and degree of Smad7 expression fails to reach that of the normal airway. 

Thus altered and dysregulated TGF-P signalling occurs in asthma. 

it is also possible to begin to propose how the allergen induced injury-repair process 

may proceed in atopic asthma. Allergen challenge is associated with inflammatory 

cell influx, an important source of cytokines such as IL-4 and IL-13 but also TGF-P 

Superfamily ligands. There is also local activation of stored TGF-P Superfamily 

ligands. Activation of structural cells can now occur. Epithelium in particular is 

an important source of TGF-P Superfamily growth factors. Given the dysregulated 

TGF-P signalling pathways present in asthma at baseline, ligand activation may lead 

not only to an exaggerated and dysregulated response but also to an altered functional 

cellular outcome. Such aberrant signalling may thus contribute to a sustained and 

excessive repair response that remains associated with AHR in the absence of further 

inflammatory cell influx. 
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Figure 7.1 Illustration of a proposed pathway of TGF-P Superfamily signalling in 
asthma. 

(1). The excess of TGF-03 and activin-A alongside the low levels of the inhibiton, Smad7 in 
the asthmatic airway leads to an increased fibrotic tendency in response to environmental 
insults. (2) The TGF-Superfamily response is dysregulated Altered expression of Type 11 and 
Type I receptors leads to alternative ligand-rcccptor combinatorial interactions. Down- 
regulated ALK-5 expression suggests attenuation of cellular sensitivity to TGF-PI-3, epithchal 
ALK-4 expression remains unaltered and is further up-regulated in inflammatory cells and 
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The functional significance of the modulation of signalling pathways cannot be 

effectively studied in humans and it is in these circumstances that animal experiments 

are valuable. Already many hypotheses involving molecular and one-gene mediated 

diseases have been effectively studied in whole animals. The murine immune system 

in particular is well characterised, in-bred strains with defined traits are easily 

available and there is the ability to easily manipulate the genome, all of which are 

distinct biological advantages. Trangenic models are particularly useful here, for 

example where a specific Type I or Type II receptor can be over or under expressed to 

evaluate tissue responses to injury. Not withstanding that transgenic models mimic 
isolated aspects of a complex process, they clearly provide valuable insights into 

dissecting the complex TGF-P Superfamily signalling cascades that operate. The 

increased amounts of activin-A expression in the asthmatic airway and the continued 

high levels of expression of its Type I receptor ALK-4, particularly on epithelial and 

mesenchymal cells, would indicate this particular receptor in particular should be an 

area of focus in such a transgenic model combined with allergen challenge. 

An important finding in this study is that eosinophils are a significant source of the 

anti-fibrotic ligand BMP-7. This concurs with the growing understanding that the 

eosinophil may be a repair cell. Given that eosinophils are also the predominant 
inflammatory cell source of TGF-Pi (Minshall et aL 1997) it may be that BMP-7 is 

co-secreted alongside profibrotic TGF-P, in order to regulate the repair response. 

Although BMPRII is the predominant Type II receptor for BMP ligand signalling, 

BMP-7 can also bind either ActIIA or ActRIIB and can subsequently recruit ALK-2, 

ALK-3 or ALK-6. Given the findings in this study of abnormal BMPRII expression 

both in baseline asthmatic airway and after allergen provocation, it may be that BMP- 

7 signalling leads to a functional outcome in the airway that is not necessarily 

regulation of repair processes. Such hypotheses will be important to investigate, 

examining also factors that induce BMP-7 expression in eosinophils. 

By characterising the expression pattern and the functional activation of TGF-P 

system components in human asthmatic airways in a time-course manner, it is 

possible to begin to identify which aspects of TGF-P signalling may be relevant to 

human asthma. Although fibrosis is very relevant to other organ systems such as the 

kidney, liver and heart it is impossible to provoke disease and obtain tissue in a time 
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course manner to follow the dynamic events of TGF-P signalling in relation to 

remodelling events in these organs. This thesis has validated that this is possible in the 

asthmatic airway. It therefore presents a very novel and important model of human 

asthma. 

An important future step would be to quantitate MRNA of the TGF-P signalling 

pathway components at the cellular level. This is important as not only will it provide 

quantitative measures of expression but will also determine whether the difference in 

expression in asthma is a result of down-regulation at the level of gene transcription 

and translation. Tissue has been processed and preserved to be available for future 

laser capture micro-dissection (LCM) which can be used to isolate specific cell types 

within the biopsy after delineation by immunostaining. This technique is becoming 

increasingly established in research centres. So far, direct analysis of tissues from 

mammals has not been straightforward due to the cellular complexity of the material. 

The affected cellular component often represents a small fraction of the total cellular 

mass and the composition of the tissue is commonly altered in consequence of the 

disease. Therefore changes in protein expression can be masked or can be due to 

comparison of heterogeneous samples, thus not reflecting specific changes in their 

regulation. The development of the laser capture microdissection technology has 

provided a powerful way of overcoming these problems. This technology allows the 

isolation of tissue sub-compartments i. e. epithelial, endothelial or inflammatory cells 

from either diseased or healthy tissue, restricting the analysis/comparison to similar 

tissue sub-compartments or even single cells. LCM can be used to isolate epithelial 

cells, fibroblasts, eosinophils and smooth muscle cells for subsequent quantitative 

real-time PCR analysis of mRNA expression for TGF-P Superfamily ligands and 

receptors. Such data obtained will be essential for the design of blocking 

interventional studies in both animal models and in-vitro cell culture systems. 

Experiments using dominant-negative Smads and receptors will provide insight into 

which components of the signalling pathway have most relevance to the signalling 

process. 

In summary this thesis presents a model of airway remodelling and TGF-P 

Superfamily signalling in asthma. Encouraging safety and tolerability data for three 

consecutive bronchoscopies is presented. It is shown for the first time that sustained 

increases in cellular inflammation is not required for the maintenance of AHR and 
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that inflammation can be dissociated from AHR and airway remodelling. These 

findings allow further hypotheses to be proposed and support the view that 

remodelling may contribute some component to AHR. The study has also confirmed 

that the TGF-P Superfamily signalling pathways are markedly abnormal in the 

asthmatic airway. There is rapid activation and sustained modulation of signalling 

pathways in response to allergen provocation suggesting TGF-P Superfamily 

signalling has functional consequences for the asthmatic airway. This study is a first 

step towards identifying remodelling and TGF-P Superfamily signalling events for 

planning future mechanistic and interventional studies in the future. Conclusions from 

such studies may lead to novel and target-specific therapeutic intervention in asthma. 
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