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Abstract—Cryptographic channels aim to enable authenticated
and confidential communication over the Internet. The general
understanding seems to be that providing security in the sense
of authenticated encryption for every (unidirectional) point-
to-point link suffices to achieve this goal. As recently shown
(in FSE17/ToSC17), however, the security properties of the
unidirectional links do not extend, in general, to the bidirectional
channel as a whole. Intuitively, the reason for this is that
the increased interaction in bidirectional communication can
be exploited by an adversary. The same applies, a fortiori, in
a multi-party setting where several users operate concurrently
and the communication develops in more directions. In the
cryptographic literature, however, the targeted goals for group
communication in terms of channel security are still unexplored.
Applying the methodology of provable security, we fill this gap
by defining exact (game-based) authenticity and confidentiality
goals for broadcast communication, and showing how to achieve
them. Importantly, our security notions also account for the
causal dependencies between exchanged messages, thus naturally
extending the bidirectional case where causal relationships are
automatically captured by preserving the sending order. On the
constructive side we propose a modular and yet efficient protocol
that, assuming only point-to-point links between users, leverages
(non-cryptographic) broadcast and standard cryptographic prim-
itives to a full-fledged broadcast channel that provably meets the
security notions we put forth.

Index Terms—secure channels, broadcast communication,
causality preservation, integrity, confidentiality

I. INTRODUCTION

One of the fundamental applications of cryptography is
secure end-to-end communication, more precisely establishing
a secure channel to transport messages over an untrusted
medium. Prominent examples of secure channels (a.k.a. cryp-
tographic channels) that protect a reliable connection over
TCP/IP are the TLS protocol suite [1] and the SSH remote
shell protocol [2]. Due to their widespread deployment, both
TLS and SSH have been extensively studied in the crypto-
graphic literature (for instance, in [3], [4], [5] to name a few).
The resulting analyses identify confidentiality, integrity, and
protection against reordering and replay attacks as the main
security goals of these protocols.

The above goals are suitable for channel types allowing
to reliably transmit a sequence of messages from a sender
to a receiver in one direction, however, they do not fit the
more realistic scenario in which two parties communicate
simultaneously in both directions. This mismatch between how
TLS and SSH are modeled in theory and how they are used in
practice was recently pointed out in [6]. Beyond pinpointing

surprising results concerning the bidirectional security of chan-
nels, [6] extends confidentiality and integrity notions from the
unidirectional setting to the bidirectional case. As it turns out,
explicitly including the bidirectional flavor of interactivity in
the model is crucial for understanding and reaching security.

While [6] is a first step in an important direction, it unfor-
tunately halts at the case of two-party bidirectional channels.
Meanwhile, so called multi-party or broadcast communication
is being considered to continue increasing in importance in
the future, with certain estimates in 2006 already placing it
at 90% of the entire Internet traffic [7]. In such broadcast
transmissions, predominant for instance in group messaging
systems but also in automated communication systems like
interconnected bank computers, all participants may transmit,
and all transmissions target and are expected to eventually
reach all N > 2 participants. Given the clearly more involved
case of such broadcast communication and corresponding
channels for N > 2, and the previous above-mentioned expe-
riences with uni-directional vs bi-directional unicast channels,
attempting to directly infer security of broadcast channels from
security of their underlying two-party sub-channels seems a
naive choice.

Intuitively, when more than two users participate in a
conversation, the usual requirement of sequential delivery (i.e.,
that messages originating from each given user are received
reliably in the same order they were sent) is namely unlikely
to be sufficient to guarantee that users have a faithful view on
the conversation. Below we pinpoint some specific problematic
situations, illustrated in Figure 1, that may occur in a (three-
party) conversation even though messages are transmitted
reliably and delivered according to the sending order.

Consider a situation like the one illustrated in Figure 1a.
Alice asks Bob for the exact time of a party planned at his
place that is loosely scheduled for Thursday night. Due to an
exam on Friday, Bob decides to cancel the party and notifies
his friends. Meanwhile, Charlie asks when the exam on Friday
will be, and understands from Bob’s answer that the exam (and
not the party) has been canceled. In the same context, the
situation illustrated in Figure 1b is even more severe. Alice
asks for the day of the party and learns from Bob that it has
been canceled. Charlie instead makes an inquiry about the
exam, which will be on Friday as Bob announces. Due to
some delay affecting the network—or perhaps by the will of
an adversary—however, Charlie receives Bob’s message first,
and only then Alice’s question. . . In the end, not only Charlie
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Fig. 1. Misunderstandings caused by causality violations. Vertical dashed lines
symbolize per-party timeliness (time progresses top-down), bullets represent
broadcast and delivery actions.

misses the exam, he even shows up at Bob’s place on Friday.
Note that although these situations may look artificial, they are
perfectly in line with the delivery guarantees offered by point-
to-point TCP connections. In particular, network adversaries
have full control over message delivery and can easily arrange
the corresponding delays.

Situations like the ones described in Figure 1 are ordinary
in the context of multi-party communication. The technical
solution to misunderstandings of this type, classic in the
domain of distributed systems, is to enforce that deliveries
preserve the causality relation among messages. With other
words, no participant shall receive a message m if it has
not yet received every message sent before m (i.e., whose
content may have influenced that of m). Concretely, in both
situations from Figure 1, causality preservation would en-
sure that Charlie receives Alice’s message before receiving
anything from Bob, thus avoiding misunderstandings. Several
protocols that efficiently realize a causal broadcast network
exist in the distributed system literature (e.g., [8], [9], [10]).
However, such protocols do not provably give guarantees on
the causal delivery of messages in the face of adversaries that
control the network (also, they do not provide confidentiality
and authenticity against such adversaries.)

We are not the first to identify causality preservation as
a relevant (security) property for group messaging protocols.
This property is indicated in [11] as an explicit target of the
TextSecure v2 protocol, and according to the systematization
of knowledge (SoK) paper of Unger et al. [12] specific config-
urations of OTR [13], GOTR [14], OldBlue [15], KleeQ [16],
and TextSecure [17] offer some form of causality preservation
(however, not on formal grounds). Group messaging applica-
tions provide a natural motivation for the need of causality
preservation. In fact, maintaining causality is highly desired,
if not crucial, in many other applications such as publish-
subscribe systems, online stores, booking systems, (event-
based) intrusion-detection systems, and stock trading.

A. Contribution

Considering the wide-spread use of the above-mentioned ap-
plications, and their relevance, the security of causal broadcast
channels needs to be looked at more closely. Understanding
causality from the perspective of cryptography as well as
constructing corresponding secure schemes is the main goal
of the present work. Concretely, we treat secure broadcast
channels as a generalization of bidirectional channels to the
multi-user setting and, to capture a realistic scenario, we let
such channels run on top of a point-to-point network (imple-
mented for example with TCP/IP). Following the approach
of provable security, we give rigorous formalizations of the
novel functionality requirements (causality preservation) as
well as of appropriate security notions for this channel type,
and propose a secure construction that provably meets these
goals.

B. Organization

The paper is organized as follows. In Section II we discuss
closely related works. The technical contribution of our paper
starts in Section III by introducing some notation, specifying a
generalized syntax for (not necessarily cryptographic) broad-
cast channels, and recalling some concepts related to causality
preservation from distributed systems literature. We further
give a formal functionality definition and show how causal
broadcast can be achieved from simpler network primitives
in Section IV, and proceed with defining integrity and confi-
dentiality notions for broadcast channels in Section V, where
we also investigate how our notions are related to each other.
Finally, in Section VI we propose a cryptographic protocol
that provably meets the strongest confidentiality and integrity
properties proposed in this paper. Section VII concludes with
future directions.

II. RELATED WORK

A. Cryptography

Academic works studying the properties of secure channels
abound in the cryptographic literature. Our security notions
naturally extend the channel model of Bellare, Kohno, and
Namprempre [3], introduced for the analysis of the SSH chan-
nel component and later adopted (and adapted) by numerous
followups (e.g., [4], [18], [19], [6], [20]). We note that all
of these works are restricted to the two-party scenario, thus
ignoring potential security issues related to (the alteration of)
causal dependencies among exchanged messages.

Following that line of work, our security notions are game-
based. An alternative approach for defining security of cryp-
tographic protocols is via simulation-based notions such as
those employed in the frameworks of universal composability
(UC) by Canetti [21] and of constructive cryptography (CC) by
Maurer and Renner [22]. Both UC and CC aim to facilitate the
modular design of complex protocols by explicitly targeting
the appealing feature of composability, which enforces the
conditions in which a given scheme can be safely used within
any (possibly unknown) larger system. While it turns out
that certain cryptographic primitives are less accessible to



simulation-based modeling, we believe that this is not the
case for causal broadcast channels and that there exist natural
analogues of our notions in the UC and CC worlds. (In
particular we expect that the schemes proposed in this paper
will also be secure in their simulation-based counterparts.)

B. Distributed systems

Starting with Lamport’s groundbreaking work on (dis-
tributed) logical time [23], the role of causality in com-
munication systems has been extensively investigated in the
distributed systems community. For a survey on logical time,
its connections to causality, and related notions we suggest the
work by Schwarz and Mattern [24].

Security challenges related to causality preservation have
been recognized in the context of state machine replication
(SMR), a popular technique that implements a fault-tolerant
service by replicating it across multiple servers. In terms of
(functionality and) security, a replicated service should behave
identically to a centralized one in the eye of clients, even if
some of the servers may crash prematurely or be adversarially
controlled. Among other measures to realize secure replicated
services, the works of Reiter, Birman, and Gong [25] and of
Reiter and Birman [26] unveil attacks that exploit causality
violations based on compromised servers possibly colluding
with clients, and propose heuristic countermeasures. In the
same vein Reiter and Gong [27] identify security goals related
to the detection of causality violations and discuss a number
of techniques to achieve such goals. These works pioneer
the treatment of causality preservation as a security property,
dubbed input causality in subsequent works. Informally speak-
ing, input causality means that no honest server can deliver a
request until it has delivered all causally preceding requests
(i.e., all requests that may have contributed to that request).

The seminal work of Cachin et al. [28] tackles SMR from
a cryptographic perspective. Most importantly for the present
work, Cachin et al. introduce the notion of secure causal
broadcast which specifically targets input causality, and show
how to realize it by combining atomic broadcast (a.k.a. total
order broadcast) with public-key primitives. Building on [28],
Duan et al. [29] propose improved constructions for secure
causal broadcast using more generic and efficient crypto-
graphic building blocks (secret sharing and non-malleable
commitment schemes).

While also explicitly targeting causality preservation, these
works around SMR address a different application scenario
and thus technical problem and adversary model than the
present work. First off, the SMR work distinguishes between
clients and servers, with processes potentially exhibiting arbi-
trary (Byzantine) failures. In contrast the present work strives
for direct peer-based (server-less) communication among mu-
tually trusting participants in an adversarial network. In order
to keep the states of replicas from diverging, SMR also
requires total ordering among messages in addition to causal
ordering. On the one hand this may seem to make the problem
harder, as achieving such a total order is as hard as solving
the popular consensus problem [30], [31], which in turn is

provably unachievable in an asynchronous setting [32] like
the Internet. On the other hand, total order can be used to
enforce causal order [9], and most of the above-mentioned
works simply assume the existence of a total order broadcast
substrate, focusing on retaining causal order in some corner
cases (which may also exist in a benign setting depending on
the exact properties of the total order broadcast cf. [10]).

Since neither we seek protection against Byzantine behavior
(i.e., corrupt participants) nor we require total order delivery of
messages, in our setting we achieve provably secure construc-
tions from milder network assumptions, namely FIFO links
rather than atomic broadcast (i.e., more directly than via total
order), and symmetric cryptographic building blocks (i.e., au-
thenticated encryption with associated data). Last but not least,
our work is the first to the best of our knowledge to define and
prove security of causal communication rigorously in the well-
established game-base framework of modern cryptography.

C. Secure messaging systems

The already mentioned SoK paper on secure messaging
by Unger et al. [12] lists several properties that are targeted
or claimed by popular messengers, among which causal-
ity preservation. According to the authors, the latter means
that “implementations can avoid displaying a message before
messages that causally precede it.” So stated, this property
resembles the functionality of a causal broadcast channel,
but it does not address security. Our work provides formal
definitions, in the style of modern cryptography, of causality
preservation as a correctness property as well as corresponding
security notions of integrity and confidentiality for causal
communication. A closely-related notion, strictly stronger than
causality preservation (in the sense that it implies the latter), is
that of global transcript—“all participants see all messages in
the same order” as per [12]. This very notion was also listed
by Goldberg et al. [33] (under the name of consensus) as a
desired target for improving the off-the-record protocol [13] to
support group communication. The corresponding definitions
given in [33], [12] are rather informal, and it is unclear to
us whether in [33] the message ordering is meant to also
respect causality (i.e., whether only ‘atomic broadcast’ or
‘causal atomic broadcast’ is meant). Another work targeting
the global transcript property is by Reardon et al. [16]. These
authors propose a heuristic protocol, named KleeQ, to provide
secure group communication in ad-hoc networks with limited
connectivity. In contrast to our work, [16] explicitly targets
total order in addition to causality preservation. To some
extent, the goal of KleeQ is closer to atomic causal broadcast
(although [16] does not consider fault tolerance) rather than
to provide a secure causal channel as we define it. In addition
to that, KleeQ allows participants to dynamically join (but not
leave), while our setting considers a static set of participants.

III. PRELIMINARIES

A. Notation

To initialize an empty array X we write X[ ]← ∅. For N ∈
N we denote by 0N the all-zero vector of length N . If v is



a vector of length N and if i ∈ [1 .. N ], then v[i] denotes the
component of v at position i. If also w is a vector of length N ,
we write v ≤ w if ∀i : v[i] ≤ w[i], and we write v 6≤ w
if ∃i : v[i] > w[i]. We denote boolean values by T (true)
and F (false). Given a condition C we may use the shortcuts C
and ¬C for the expressions C = T and C = F, respectively.
If A is a deterministic algorithm, y ← A(x) indicates that A
is run on input x and its output is assigned to variable y. If
A is randomized and its coins are uniformly picked, we write
y ←$ A(x).

Our security definitions are in the game-based framework.
A game G is a randomized procedure that runs internally
an adversary A and eventually outputs a bit. Within an
algorithmic specification of a game G we write ‘Stop with b’,
for b ∈ {0, 1}, to indicate that G halts and outputs b, and we
denote by G(A)⇒ b the corresponding event. The adversary
may also call subroutines that are provided as oracles. Within
a subroutine we write ‘Give x to A’ to indicate that the adver-
sary obtains value x when the subroutine terminates. We write
‘Return’ to terminate the execution of an algorithm/subroutine
that does not produce any output visible to the adversary.

B. Broadcast channels

We consider multiple parties1 that exchange messages
in a broadcast fashion using two dedicated algorithms:
bcast (broadcast) and recv (receive). Conceptually, these al-
gorithms connect the application and the network layers in
the top-down and bottom-up directions, respectively: When a
sender wishes to broadcast a message to the other users they
invoke the bcast algorithm with that message, and when a
participant receives a datagram2 from the network they invoke
the recv algorithm with the datagram and an identifier of the
alleged sender. Internally, the two algorithms may invoke the
abstract subroutines send (send) and delv (deliver), where send
initiates the transport of a given datagram to an indicated
other user, and delv delivers a given message to the local user,
indicating also the (alleged) sender of that datagram/message.
Both the bcast and recv algorithms may be randomized and
keep state between invocations.

We formalize the above ideas as follows. Let N denote the
total number of participants, and letM be a message space and
D be a datagram space. Let i, j ∈ [1 .. N ] indicate two users.
Subroutine send is invoked as per send(i, j,D) if datagram
D ∈ D shall be sent by user i to user j. Similarly, subroutine
delv is invoked as per delv(i, j,m) if message m ∈M shall be
delivered at user i, and the message was broadcast (allegedly)
by user j. Both subroutines, send and delv, require i 6= j
and have no (explicit) output. A helpful shorthand form for

1We use the words party, participant, and user synonymously.
2Datagrams should be understood as encapsulations of messages or, more

pragmatically, as the data actually transmitted over the network. In the
cryptographic literature these objects are typically referred to as ‘ciphertexts’
(as they most often coincide with the output of an encryption primitive).

expressing the two syntactical conventions is

[1 .. N ]× [1 .. N ]×D → send

[1 .. N ]× [1 .. N ]×M→ delv

To broadcast messages m ∈ M, users invoke the bcast al-
gorithm as per st ′ ← bcastsend,delv(st ;m), where st , st ′ are
the original and the updated state, respectively. Similarly,
users can receive datagrams D ∈ D by invoking st ′ ←
recvsend,delv(st ; j,D), where j ∈ [1 .. N ] indicates from which
other user the datagram originates. If S is the state space, the
shorthand forms for algorithms bcast, recv are thus

S ×M→ bcastsend,delv → S
S × [1 .. N ]×D → recvsend,delv → S

The interplay of the bcast, recv, send, delv algorithms is also
illustrated in Figure 2.

Before starting with the communication, the state of users
has to be initialized. The corresponding procedure may choose
identifiers for the users, initialize buffers, establish crypto-
graphic keys, etc. Formally, we require that there be a random-
ized algorithm init that, on input a number of users N , outputs
for each user i ∈ [1 .. N ] an individual initial state st i. For
expressing that N users shall be initialized we correspondingly
write (st1, . . . , stN )←$ init(N).

Definition 1. A broadcast channel Ch for a message spaceM
consists of a datagram space D, a state space S, and algo-
rithms init, bcast, and recv, that follow the syntax specified
above. Note that bcast and recv are defined in respect to
abstract subroutines send and delv.

application

protocol

network

bcast

recv

delv(i, ·, ·) delv(i, ·, ·)

send(i, ·, ·) send(i, ·, ·)

Fig. 2. Overview of broadcast and receiving algorithms and corresponding
sending and delivery subroutines.

C. FIFO order, causal order, and logical timestamping

While in the syntactical specification of broadcast channels
from Definition 1 the network interfaces (send and recv) in
principle support different network types, in this work we
assume reliable (point-to-point) FIFO links. With ‘reliable
FIFO’ we mean that datagrams are received according to the
sending order and without loss to the intended recipient, but
without any timing guarantee (think of TCP). In particular,
one can only expect that datagrams are eventually received
(however, datagrams that do reach the recipients are guaran-
teed to arrive in the right order). Concretely, we formalize the



(reliable) FIFO delivery condition by demanding that, at any
point in time, for any two users i, j ∈ [1 .. N ] the sequence of
datagrams that i receives from j is a prefix of the sequence
of datagrams that j sent to i.

Our goal is to build broadcast channels that, in addition to
FIFO delivery, also preserve causal relations among broadcast
and delivered messages. Informally, causal delivery means that
no party can deliver a given message unless they delivered
all messages that have contributed to (the creation of) that
message (i.e., they have been broadcast “before” the message
according to Lamport’s happened before relation [23]). For
instance, in situations like the ones of Figure 1, causal delivery
would guarantee that Charlie does not deliver Bob’s message
until he has delivered Alice’s message.

To verify that messages are delivered in a causal order we
borrow a technique developed in the domain of distributed sys-
tems that uses so-called vector clocks (or vector timestamps)
for realizing waiting causal broadcast [34]. The idea is that
each user i ∈ [1 .. N ] maintains a vector vci of counters
that is initialized to 0N and updated upon bcast and delv
invocations. Concretely, vci[i] is incremented whenever user i
performs a broadcast operation, and vci[j] is incremented
whenever i delivers a message with alleged originator j.
Whether a delivery occurs in the right causal order is then
verified as follows: let vcj be the vector clock of user j right
before broadcasting m and let vci be the vector clock of user i
immediately before delivering m from user j. Then the deliv-
ery of m at user i happens according to the causal order only
once vcj ≤ vci, i.e., once user i has delivered all messages
broadcast before. With a little unpacking, the condition above
precisely means that, at the moment of delivering m, user i
has already delivered all messages previously broadcast by
user j (this is expressed by vcj [j] ≤ vci[j]), and has already
delivered all messages that user j received so far from the
other users (formally: vcj [k] ≤ vci[k] for k /∈ {i, j}).

The vector clock formalism provides us with a handy tool
to verify that specific causality relations are met. In the next
section we will make use of this tool to define the functionality
(a.k.a. correctness) requirement of a causal broadcast protocol.
Lamport(’s own) clocks [23] are a well-known alternative to
vector clocks. Roughly speaking, the former clocks collapse
all the dimensions of the latter clocks into a single one. As a
result, Lamport clocks only have a single component, which
makes them “cheaper” to transmit in or along with messages.
By confounding the clock spaces of all broadcasters, Lamport
clocks however lead to false positives. More precisely, while
Lamport clocks do capture all actual causal relationships and
thus can be used for enforcing causal order, they also establish
an order among unrelated messages, i.e., messages of which
neither influenced the other. As a consequence, when used for
enforcing causal order in broadcasting in a way similar to what
was described above for vector clocks, Lamport clocks will
lead to artificially delaying the delivery of certain messages
which could be safely delivered without violating causal order.
(In a more mathematical sense, causal order induces a partial
order on events, whereas Lamport clocks yield a total order.)

IV. CAUSAL BROADCAST CHANNELS

Functionality (and security) notions for cryptographic pro-
tocols are tighly coupled with the delivery properties provided
by the underlying network. For this reason, specifying the
network assumptions is the very first step in the modeling
process. Typically, a cryptographic channel preserves the func-
tionality of the network—loosely speaking, the only role of
the cryptographic layer is to protect the communication over
the otherwise insecure network. For instance, the functionality
of a secure channel like TLS (which runs on top of TCP/IP)
guarantees that messages are delivered to the intended recip-
ient reliably and according to the sending order, as if they
were sent directly over the network. Following this line of
thought, a natural approach to build a cryptographic causal
channel would be to start with a causal broadcast network,
which already achieves on its own the expected functionality
of this channel type, and then add a cryptographic layer on
top of it to also provide security, i.e., to enforce that causality
relations are met.

In this work we explore another option and only assume that
the network offers unprotected FIFO links, leaving the task
of preserving causal relations to the cryptographic protocol
run on top. That is, we demand the cryptographic channel
to provide, beyond security, also an extended functionality
(effectively making the network and crypto layers overlap). We
anticipate (and discuss further in Section VI-A) that letting the
cryptographic channel handle the causality preservation results
in saving half the management work. Notice also that our
network assumption is met by the widely-deployed TCP/IP
network protocol. Thus, the notion of cryptographic causal
channel that we propose is suitable for a wide variety of
applications running on the Internet.

A. Functionality

In this section we specify the functionality of causal broad-
cast channels built on top of (point-to-point) links with first-in-
first-out delivery—FIFO links in short. Intuitively, a ‘proper’
channel of this type should guarantee that if datagrams are
received (via recv) in the same order they were sent (via send)
then all delivered (via delv) messages have been previously
broadcast (via bcast) by the alleged senders; moreover, deliv-
eries happen according to the causal order among messages.

We formalize this property through the (functionality)
game FUNC in Figure 3. In this game a scheduler A is given
access to algorithms bcast and recv through oracles bcast
and recv so that it controls the messages broadcast and the
datagrams received by all parties. Such a scheduler’s goal
might be to achieve a situation in which messages are delivered
with wrong content or in (causally) wrong order (in this sense,
A can be seen as an adversary).3 A ‘proper’ causal broadcast
channel is one for which no A can do that.

We proceed with explaining the functionality game in detail.
When oracle bcast is queried on input (i,m), it invokes
the broadcast algorithm on input message m and the current

3In distributed systems such a ‘bad’ situation would be a safety violation.



Game FUNCCh,N (A)
00 For i← 1 to N :
01 psv i ← T
02 bi ← 0; vci ← 0N

03 Mi[ ]← ∅; VCi[ ]← ∅
04 For j ← 1 to N , j 6= i:
05 sij , rij , dij ← 0
06 Dij [ ]← ∅
07 (st1, . . . , stN )←$ init(N)
08 Abcast,recv

09 Stop with 0

Oracle bcast(i,m)
10 Mi[bi]← m
11 VCi[bi]← vci
12 st i ←$ bcast

send,delv(st i;m)
13 bi ← bi + 1
14 vci[i]← bi
15 Return

Oracle recv(i, j,D)
16 If sji ≤ rij or Dji[rij ] 6= D:
17 psv i ← F
18 st i ←$ recv

send,delv(st i; j,D)
19 rij ← rij + 1
20 Return

Proc send(i, j,D)
21 If psv i:
22 Dij [sij ]← D
23 sij ← sij + 1
24 Give (s, i, j,D) to A
25 Return

Proc delv(i, j,m)
26 If psv i:
27 If bj ≤ dij or Mj [dij ] 6= m

or VCj [dij ] 6≤ vci:
28 Stop with 1
29 dij ← dij + 1
30 vci[j]← dij
31 Give (d, i, j,m) to A
32 Return

Fig. 3. Game for functionality/correctness of (cryptographic) causal broadcast channels. Note that vci always reflects the current contents of bi and dij :
vci[i] = bi and j 6= i ⇒ vci[j] = dij .

state st i (of user i). Similarly, if A queries recv on in-
put (i, j,D) the oracle invokes the receiving algorithm on input
datagram D, alleged originator j, and the current state st i.
The two oracles, beyond executing the channel algorithms on
adversarial request, also inform A of any sending and delivery
operation that occurs within the execution of bcast and recv.
To this end, for every call send(i, j,D) the oracle gives a
tuple (s, i, j,D) to the adversary as an indication that data-
gram D has been sent by user i to user j. This reflects that the
adversary controls the network and in particular knows which
datagram is transmitted by whom and to whom. Similarly,
whenever delv(i, j,m) is invoked, the oracle gives to A the
tuple (d, i, j,m) to report that message m has been delivered
to user i with reported originator user j. This captures the
adversary’s ability to observe the reaction of applications upon
delivery of specific messages.4

During the execution of the game, two specific events have
to be considered: whether A remains passive, meaning that
it only schedules recv operations that are consistent with the
FIFO guarantees expected by the network; and whether A
achieves the ‘bad’ situation (thus violating correctness).

Passiveness requires A to schedule recv operations in a
way that datagrams are transmitted faithfully and sequentially,
according to the sending order. This property is tested within
every call to oracle recv (in line 16). For this, the experiment
keeps boolean variables psv i, one for each user i ∈ [1 .. N ],
indicating whether an active measure of the adversary against
user i took place. Initially all flags are set to psv1 = · · · =
psvN = T. The flag of user i is set to psv i ← F when
the adversary causes user i to receive from some user j a
datagram D that either does not originate from that user, or
is not received according to the sequential order (in contrast

4In the functionality game, in contrast to the security games defined in
Section V, this ability actually does not give any advantage to the adversary
(by functionality, datagrams received faithfully will cause the delivery of
previously sent messages, which the adversary already knows).

to the guarantees offered by the FIFO links), or, transitively,
was sent by j after the latter itself was exposed to an active
measure of the adversary. To detect if any of the above
conditions is satisfied, the game records for each pair of
users (i, j) (equivalently, for each point-to-point connection)
the number sij of send operations performed by i to j as
well as the corresponding sequence Dij of sent datagrams,
and the number rij of receive operations by i with alleged
originator j. Using these variables, the game sets psv i ← F
in line 17 (meaning that user i is actively attacked) when i
receives from j more often than j sent (sji ≤ rij) or if they
receive a datagram that deviates from the genuine sequence
(Dji[rij ] 6= D). (See lines 21–23 for how the transitivity of
setting psv i ← F is implemented.)

Likewise, the game checks (in line 27) if there was a
correctness violation in any invocation of delv and, if so, it
declares the adversary “successful” and terminates with out-
put 1. For the correctness test, the game records the number bi
of broadcast operations performed by i, the corresponding
sequence Mi of broadcast messages, as well as the number dij
of delivery operations performed by i with alleged originator j
(note that vci[i] = bi and vci[j] = dij for all j ∈ [1 .. N ]
throughout the game), the current vector clock vci of user i,
and the sequence VCi of all vector clocks registered for user i
immediately before each of their broadcast operations (i.e.,
∀n : 0 ≤ n < bi vector VCi[n] is the vector clock associated
to i before the n-th invocation of bcast). Then, whenever an
operation of type delv(i, j,m) is performed, the game flags a
correctness violation in case the adversary is still passive and
message m does not match the genuine sequence of messages
broadcast by j (bj ≤ dij or Mj [dij ] 6= m), or its delivery
does not preserve causality (VCj [dij ] 6≤ vci).

For a broadcast channel Ch, we define the advantage of
an adversary A in the FUNC game as AdvfuncCh (A) =
Pr[FUNC(A) ⇒ 1], where the probability is taken over
the randomnesses of init, bcast, and recv, and over A’s



Algo init(N)
00 For i← 1 to N :
01 rej i ← F
02 bi ← 0; vci ← 0N

03 For j ← 1 to N , j 6= i:
04 rij , dij ← 0
05 Qij [ ]← ∅
06 Encode into state st i:

rej i, bi,vci, rij , dij ,Qij

07 Return (st1, . . . , stN )

Algo bcastsend,delv(st i;m)
08 If rej i: Goto line 14
09 D ← (vci,m)
10 For all j ∈ [1 .. N ], j 6= i:
11 send(i, j,D)
12 bi ← bi + 1
13 vci[i]← bi
14 Return st i

Algo recvsend,delv(st i; j,D)
15 If rej i: Goto line 25
16 Parse D as (vc,m)
17 If parsing fails:
18 rej i ← T; Goto line 25
19 Qij [rij ]← (vc,m)
20 rij ← rij + 1
21 While exist vc′,m′, j′ 6= i s.t.

(vc′,m′) = Qij′ [dij′ ] and vc′ ≤ vci:
22 delv(i, j′,m′)
23 dij′ ← dij′ + 1
24 vci[j

′]← dij′

25 Return st i

Fig. 4. Waiting causal broadcast. State variables bi, rij , dij are broadcast, receive, and delivery counters, respectively. Data structure Qij [ ] implements a
queue in which incoming datagrams are stored, in the order of their arrival, until they are eventually delivered (and implicitly removed).

randomness. In this paper we demand perfect correctness, i.e.,
AdvfuncCh (A) = 0 for every (even unbounded) adversary A.

We point out that the network guarantees—here FIFO
ordering—are reflected by the operations send and recv (these
are the interfaces between protocol and network layers),
while the delivery properties that applications expect—causal
ordering—concern operations bcast and delv (which provide
interfaces between application and protocol layers).

We reproduce a standard construction of a causal broad-
cast protocol, known in the distributed systems literature as
waiting causal broadcast [34], built on top of point-to-point
connections like TCP/IP. As we assume FIFO delivery from
the underlying network, the goal is to leverage this property
to causal delivery guarantees at the application layer. The
core idea is to let each user store incoming messages in
N − 1 queues, one for each possible sender, and to wait
until the time to deliver these messages has come. The ‘right’
delivery time is determined by counting how many messages
have been broadcast and delivered so far (concretely, this
is done using vector clocks that are included in datagrams).
Intuitively, the FIFO property is reflected in the use of queues
to store incoming messages, while causal delivery is achieved
by keeping and comparing vector clocks. The details of the
construction are given in Figure 4.

V. SECURITY NOTIONS

After defining broadcast channels and their functionality,
we have seen how they can be constructed. However, quite
obviously, the protocol in Figure 4 does not provide any
resilience against active network adversaries that are interested
in learning exchanged message contents or in altering them.
In this section we study cryptographic broadcast channels.
Syntactically and functionally such channels are like regular
broadcast channels, but they also give security guarantees.
Concretely, we formalize four security properties: integrity of
plaintexts and integrity of ciphertexts as authentication no-
tions, and indistinguishability against chosen-plaintext attacks
and indistinguishability against chosen-ciphertext attacks as

confidentiality notions.5 We then study how these notions
relate to each other. Our notions are in the style of [35], [36],
and [3] for symmetric (authenticated) encryption.

A. Integrity

We define two notions of authenticity: integrity of plain-
texts (INT-PTXT) and integrity of ciphertexts (INT-CTXT).
Intuitively, the former guarantees that all messages delivered
to users are authentic in the sense that they were broadcast
by some other user before (in the causal sense), while the
latter ensures that once a user’s recv algorithm is exposed to a
manipulated datagram the algorithm is isolated from user and
network so that it cannot do harm to anybody. The two notions
are different in spirit in that while INT-PTXT is formulated
from the point of view of the application, which cares about
the integrity of what it sees (messages) and not of what is
transferred on the wire (datagrams), INT-CTXT cares about
what happens on the wire and not what is delivered to the
application. Importantly, only INT-PTXT explicitly requires
that deliveries happen in causal order. (However, as we shall
prove, causal delivery is implicitly also ensured by INT-CTXT
as long as correctness is fulfilled.)

We start with the formalization of plaintext integrity. The
corresponding experiment is in Figure 5. It is best explained
by comparing it with the broadcast functionality game from
Figure 3: Recall that in the FUNC game the adversary wins
by making the delv algorithm deliver a message that was
either never sent by the alleged sender or is delivered out
of order (in the causal sense), and all this preconditioned on
the adversary remaining passive. For defining the INT-PTXT
notion we drop the latter condition and allow the adversary
to be active. To a channel Ch and a number of users N
we assign the INT-PTXT advantage of an adversary A as

5In contrast to the naming convention introduced in the previous section,
our security notions refer to ‘ciphertexts’ rather than ‘datagrams’ and to
‘plaintexts’ rather than ‘messages’. The reason for this (conservative) choice it
to stay close to the analogous integrity and confidentiality notions for authen-
ticated encryption/secure channels that are widely-adopted in the literature.



Game INTptxt
Ch,N (A)

00 For i← 1 to N :
01 bi ← 0; vci ← 0N

02 Mi[ ]← ∅; VCi[ ]← ∅
03 For j ← 1 to N , j 6= i:
04 dij ← 0
05 (st1, . . . , stN )←$ init(N)
06 Abcast,recv

07 Stop with 0

Oracle bcast(i,m)
08 Mi[bi]← m
09 VCi[bi]← vci
10 st i ←$ bcast

send,delv(st i;m)
11 bi ← bi + 1
12 vci[i]← bi
13 Return

Oracle recv(i, j,D)
14 st i ←$ recv

send,delv(st i; j,D)
15 Return

Proc send(i, j,D)
16 Give (s, i, j,D) to A
17 Return

Proc delv(i, j,m)
18 If bj ≤ dij or Mj [dij ] 6= m

or VCj [dij ] 6≤ vci:
19 Stop with 1
20 dij ← dij + 1
21 vci[j]← dij
22 Give (d, i, j,m) to A
23 Return

Fig. 5. Game for INT-PTXT security of cryptographic causal broadcast channels.

Game INTctxt
Ch,N (A)

00 For i← 1 to N :
01 psv i ← T
02 For j ← 1 to N , j 6= i:
03 sij , rij ← 0
04 Dij [ ]← ∅
05 (st1, . . . , stN )←$ init(N)
06 Abcast,recv

07 Stop with 0

Oracle bcast(i,m)
08 st i ←$ bcast

send,delv(st i;m)
09 Return

Oracle recv(i, j,D)
10 If sji ≤ rij or Dji[rij ] 6= D:
11 psv i ← F
12 st i ←$ recv

send,delv(st i; j,D)
13 rij ← rij + 1
14 Return

Proc send(i, j,D)
15 If ¬psv i: Stop with 1
16 Dij [sij ]← D
17 sij ← sij + 1
18 Give (s, i, j,D) to A
19 Return

Proc delv(i, j,m)
20 If ¬psv i: Stop with 1
21 Give (d, i, j,m) to A
22 Return

Fig. 6. Game for INT-CTXT security of cryptographic causal broadcast channels.

Advint-ptxtCh,N (A) = Pr[INTptxt
Ch,N (A) ⇒ 1], where the prob-

ability is over the game’s randomness including over A’s
coins. Intuitively, channel Ch offers plaintext integrity if
Advint-ptxtCh,N (A) is small for all N and realistic A.

We next formalize ciphertext integrity, based on the ex-
periment in Figure 6. Here the recv oracle is as in the
FUNC game, watching out for the adversary performing an
active attack by injecting an out-of-order datagram (in the
FIFO sense). The INT-CTXT notion demands that actively
attacked users refuse such manipulated datagrams and be-
come inoperative. The latter is formalized by requiring the
channel not to invoke that party’s send and delv procedures
any further. We define the advantage of an adversary A as
Advint-ctxtCh,N (A) = Pr[INTctxt

Ch,N (A) ⇒ 1]. Intuitively, chan-
nel Ch offers ciphertext integrity if Advint-ctxtCh,N (A) is small
for all N and realistic A.

B. Confidentiality
We define the confidentiality notions IND-CPA and

IND-CCA that consider passive and active adversaries, re-
spectively. Our games, in Figures 7 and 8, use the left-or-
right indistinguishability approach: If the adversary queries
the bcast oracle on messages m0 and m1, then message mb

is picked and broadcast, and the resulting datagrams are made
available to the adversary, where b is a secret challenge bit.
Intuitively, the scheme is confidential if no adversary can
distinguish the b = 0 from the b = 1 world. The adversary
further has access to a recv oracle to advance the state of the

corresponding participant. The difference between the notions
IND-CPA and IND-CCA is about the kind of datagrams
that can be submitted to recv: The former notion considers
passive adversaries, i.e., those that provide the recv oracle
with exclusively those datagram sequences (one per user) that
were output by the send procedure (see lines 09 and 10 of
Figure 7 on how this type of passive behavior is enforced),
while the latter notion considers active adversaries and has no
such restriction. In addition to that, oracle recv lets A obtain
messages delivered by users upon receiving manipulated data-
grams (again, datagram manipulation refers to any violation
of the network guarantees, including reordering), effectively
realizing the counterpart of a decryption oracle in the broadcast
channel scenario. Note that in both confidentiality games,
messages delivered by a given user are not given to the
adversary if no active measure took place against that user (in
the experiments,A is given the distinguished symbol � instead,
as in lines 18 and 21 of Figure 7 and Figure 8 respectively).
This is a standard technique to define sound confidentiality
notions for encryption and secure channels.

Formally, for any causal broadcast channel Ch and any
number N we define the IND-CPA advantage of an ad-
versary A as Advind-cpaCh,N (A) = |Pr[INDcpa,1

Ch,N (A) ⇒ 1] −
Pr[INDcpa,0

Ch,N (A) ⇒ 1]|. Intuitively, channel Ch offers indis-
tinguishability under chosen-plaintext attacks if the advan-
tage Advind-cpaCh,N (A) is small for all N and realistic A. The
IND-CCA advantage Advind-ccaCh,N (A) for the security notion of



Game INDcpa,b
Ch,N (A)

00 For i← 1 to N :
01 For j ← 1 to N , j 6= i:
02 sij , rij ← 0
03 Dij [ ]← ∅
04 (st1, . . . , stN )←$ init(N)
05 b′ ←$ Abcast,recv

06 Stop with b′

Oracle bcast(i,m0,m1)
07 st i ←$ bcast

send,delv(st i;mb)
08 Return

Oracle recv(i, j,D)
09 If sji ≤ rij or Dji[rij ] 6= D:
10 Stop with 0
11 st i ←$ recv

send,delv(st i; j,D)
12 rij ← rij + 1
13 Return

Proc send(i, j,D)
14 Dij [sij ]← D
15 sij ← sij + 1
16 Give (s, i, j,D) to A
17 Return

Proc delv(i, j,m)
18 Give (d, i, j, �) to A
19 Return

Fig. 7. Game for IND-CPA security of cryptographic causal broadcast channels.

Game INDcca,b
Ch,N (A)

00 For i← 1 to N :
01 psv i ← T
02 For j ← 1 to N , j 6= i:
03 sij , rij ← 0
04 Dij [ ]← ∅
05 (st1, . . . , stN )←$ init(N)
06 b′ ←$ Abcast,recv

07 Stop with b′

Oracle bcast(i,m0,m1)
08 st i ←$ bcast

send,delv(st i;mb)
09 Return

Oracle recv(i, j,D)
10 If sji ≤ rij or Dji[rij ] 6= D:
11 psv i ← F
12 st i ←$ recv

send,delv(st i; j,D)
13 rij ← rij + 1
14 Return

Proc send(i, j,D)
15 If psv i:
16 Dij [sij ]← D
17 sij ← sij + 1
18 Give (s, i, j,D) to A
19 Return

Proc delv(i, j,m)
20 If psv i:
21 Give (d, i, j, �) to A
22 Else:
23 Give (d, i, j,m) to A
24 Return

Fig. 8. Game for IND-CCA security of cryptographic causal broadcast channels.

indistinguishability under chosen-ciphertext attacks is defined
analogously.

C. Relations among notions

We proceed with establishing important relations among
the notions just defined: (1) IND-CCA implies IND-CPA,
(2) INT-CTXT implies INT-PTXT, (3) IND-CPA and
INT-CTXT together imply IND-CCA. These implications are
analogous to those for unidirectional channels from [3] and
bidirectional channels [6] (and reflect the fact that broadcast
channels are a generalization of two-party channels). Note
that while the first implication might be very expected (the
adversary in IND-CPA is more restricted than in IND-CCA),
proving the second is more involved and leverages on the
perfect correctness of the channel protocol. Also proving the
third implication is involved; its result will be key in the
analysis of our construction presented in Section VI.

Theorem 1 (IND-CCA =⇒ IND-CPA). Let Ch be a broad-
cast channel that offers indistinguishability under chosen-
ciphertext attacks (IND-CCA). Then Ch also offers indistin-
guishability under chosen-plaintext attacks (IND-CPA). More
precisely, for every adversary A there exists an adversary B
such that

Advind-cpaCh,N (A) ≤ Advind-ccaCh,N (B) .

The running time of B is about that of A. Further, the number
of bcast and recv queries it poses is the same as that of A.

Proof. The proof is based on the observation that the
IND-CPA game is a specifically restricted variant of the
IND-CCA game, and that thus any adversary that breaks
the former security notion also breaks the latter security
notion. The formal argument builds on the fact that for any
adversary A it is straight-forward to construct an adversary B
such that Pr[INDcpa,b

Ch,N (A) ⇒ 1] = Pr[INDcca,b
Ch,N (B) ⇒ 1], for

b ∈ {0, 1}. (This is possible because public information is
sufficient to check in oracle recv of Figure 8 whether A is
passive or not.) Ultimately this shows |Pr[INDcpa,1

Ch,N (A) ⇒
1] − Pr[INDcpa,0

Ch,N (A) ⇒ 1]| = |Pr[INDcca,1
Ch,N (B) ⇒ 1] −

Pr[INDcca,0
Ch,N (B)⇒ 1]|, and thus the claim.

Theorem 2 (INT-CTXT =⇒ INT-PTXT). Let Ch be a broad-
cast channel that offers integrity of ciphertexts (INT-CTXT).
Then Ch also offers integrity of plaintexts (INT-PTXT). More
precisely, for every adversary A there exists an adversary B
such that

Advint-ptxtCh,N (A) ≤ Advint-ctxtCh,N (B) .

The running time of B is about that of A. Further, the number
of bcast and recv queries it poses is the same as that of A.

Proof. Fix any N . Consider the game G0 := INTptxt
Ch,N from

Figure 5. Derive from G0 the game G1 by replacing the main
game body, the recv oracle, and the send procedure by the
corresponding versions of game FUNCCh,N from Figure 3,
leaving unmodified the bcast oracle and the delv procedure.



Note that these are pure rewriting steps that do nothing more
than introducing variables for tracking the internals of the
game, in particular the psv i flags. That is, the changes do
not affect the winning probability of the adversary. Thus,
Pr[G1(A)⇒ 1] = Pr[G0(A)⇒ 1].

Derive now game G2 from G1 by adding as first lines of
the send and delv procedures the conditional abort instruction
‘If ¬psv i: Stop with 0’. Compare G2 with the game INTctxt

Ch,N

from Figure 6 and observe that the newly added instructions
make a difference only for those adversaries A that are
successful with (implicitly) breaking the INT-CTXT property.
Formally, for any A there exists a reduction B such that
|Pr[G2(A)⇒ 1]− Pr[G1(A)⇒ 1]| = Advint-ctxtCh,N (B).

Observe finally that every adversary that wins in game G2

also wins in game FUNCCh,N . (This is because winning in G2

is possible only by having delv be invoked in a ‘psv i = T’
state, and in this case the winning conditions of G2 and
game FUNCCh,N are the same.) Thus Pr[G2(A) ⇒ 1] ≤
Pr[FUNCCh,N (A) ⇒ 1]. As we assume perfect correctness,
all in all we have Pr[G0(A)⇒ 1] = Advint-ctxtCh,N (B), and thus
the claim.

Theorem 3 (IND-CPA + INT-CTXT =⇒ IND-CCA). Let
Ch be a broadcast channel that offers indistinguishability
under chosen-plaintext attacks (IND-CPA) and integrity of ci-
phertexts (INT-CTXT). Then Ch also offers indistinguishability
under chosen-ciphertext attacks (IND-CCA). More precisely,
for every adversary A there exist adversaries B0,B1, C such
that

Advind-ccaCh,N (A) ≤ Advint-ctxtCh,N (B0)+
Advint-ctxtCh,N (B1) + Advind-cpaCh,N (C) .

The running times of B0,B1, C are about that of A. Further,
the number of bcast and recv queries they pose is the same
as that of A.

Proof. Fix any N . For b ∈ {0, 1} consider the games
Gb

0 := INDcca,b
Ch,N from Figure 8. Derive from Gb

0 the games Gb
1

by inserting in the send and delv procedures, right before
lines 15 and 20, the conditional abort instruction ‘If ¬psv i:
Stop with 0’. Compare Gb

1 with the game INTctxt
Ch,N from

Figure 6 and observe that the newly added instructions make
a difference only for those adversaries A that are successful
with (implicitly) breaking the INT-CTXT property. Formally,
for any A there exist (the obvious) reductions Bb such that
|Pr[Gb

1(A) ⇒ 1] − Pr[Gb
0(A) ⇒ 1]| = Advint-ctxtCh,N (Bb).

Further, a comparison with Figure 7 shows that for any A
there exists a reduction C such that Pr[Gb

1(A) ⇒ 1] =
Pr[INDcpa,b

Ch,N (C)⇒ 1]. (This holds because public information
is sufficient to check in oracle recv whether A is passive
or not.) Using the triangle inequality (and using a shortcut
notation that neither annotates A nor the probabilities) we have
|G1

0 − G0
0| ≤ |G1

0 − G1
1| + |G1

1 − G0
1| + |G0

1 − G0
0|. Together

with the above this implies the claim.

VI. CONSTRUCTIONS

After defining the security goals of cryptographic causal
broadcast in the previous section, we now present a particular
way to jointly achieve them. Our construction combines two
ingredients: the (non-cryptographic) protocol from Figure 4
that achieves causal broadcast from point-to-point links, and,
as a cryptographic primitive, an authenticated encryption with
associated data (AEAD) scheme. For reference, we recall
syntax, functionality, and security definitions of (one-time)
AEAD in Appendix A.

The algorithms of our construction are in Figure 9. As
they need to achieve the functionality requirements of causal
broadcast, not surprisingly their structure is similar to that of
the algorithms from Figure 4. The design challenge was to
augment the routines by AEAD invocations at the right spots
and in the right dosage, so that we could reach two over-
all goals simultaneously: security (our construction provably
meets all security notions defined in this paper), and efficiency
(we aimed at minimizing the number of AEAD invocations per
execution of bcast/recv.)

Let us compare the algorithms of our construction with
the ones from Figure 4. The init algorithms are almost the
same, the only difference being the fresh AEAD key K that is
shared among all participants of a broadcast channel instance.
In the bcast algorithm we see a slightly different structure:
While in Figure 4 one datagram D is computed and sent
to all N − 1 other users, in our design each user gets its
individual datagram Dj . When creating it we include the
identities of the sending and receiving users in the associated
data, as well as a transmission number, so that the adversary
cannot replay datagrams or issue them in the wrong order. Our
recv algorithm reverses the encryption step and recovers the
messages. Note that some of these might never be delivered
to the corresponding user, as they might not have appeared in
the correct causal order. We caution that leaking information
on waiting messages to the user would likely harm the
confidentiality of the scheme.

Correctness of our construction follows by inspection. In the
rest of this section we analyze the security of our construction.
Our argument consists of three steps: first we show that the
IND-CPA security of the AEAD implies the IND-CPA security
of the broadcast channel (cf. Theorem 4); we then show that
the INT-CTXT security of the AEAD implies the INT-CTXT
security of the broadcast channel (cf. Theorem 5); finally, as a
corollary of the two results, we apply Theorem 3 to establish
the IND-CCA security of the broadcast channel.

Theorem 4 (IND-CPA security). Let Ch be the broadcast
channel constructed in Figure 9 from FIFO links and an AEAD
scheme AEAD. If the AEAD scheme offers (one-time) indistin-
guishability under chosen-plaintext attacks (IND-CPA), also
Ch offers indistinguishability under chosen-plaintext attacks
(IND-CPA). More precisely, for every adversary A against Ch
there exists an adversary B against AEAD such that

Advind-cpaCh,N (A) ≤ Advind-cpaAEAD (B) .



Algo init(N)
00 K ←$ Gen
01 For i← 1 to N :
02 rej i ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , dij ← 0
06 Qij [ ]← ∅
07 Encode into state st i:

K, rej i, bi,vci, sij , rij , dij ,Qij

08 Return (st1, . . . , stN )

Algo bcastsend,delv(st i;m)
09 If rej i: Goto line 18
10 For all j ∈ [1 .. N ], j 6= i:
11 ad j ← i‖j ‖sij ‖vci
12 cj ← Enc(K; ad j ,m)
13 Dj ← (vci, cj)
14 send(i, j,Dj)
15 sij ← sij + 1
16 bi ← bi + 1
17 vci[i]← bi
18 Return st i

Algo recvsend,delv(st i; j,D)
19 If rej i: Goto line 33
20 Parse D as (vc, c)
21 If parsing fails:
22 rej i ← T; Goto line 33
23 ad ← j ‖ i‖rij ‖vc
24 m← Dec(K; ad , c)
25 If decryption fails:
26 rej i ← T; Goto line 33
27 Qij [rij ]← (vc,m)
28 rij ← rij + 1
29 While exist vc′,m′, j′ 6= i s.t.

(vc′,m′) = Qij′ [dij′ ] and vc′ ≤ vci:
30 delv(i, j′,m′)
31 dij′ ← dij′ + 1
32 vci[j

′]← dij′

33 Return st i

Fig. 9. Construction of cryptographic causal broadcast from FIFO links.

The running time of B is about that of A, and B poses as
many Enc queries as A poses bcast queries.

Proof. For b ∈ {0, 1}, consider games Gb
0 from Figure 10.

They are identical to games INDcpa,b
Ch,N from Figure 7, but

with the following rewriting steps applied: (a) the abstract
bcast and recv algorithms are instantiated with the ones
from Ch, (b) as variables sij appear in both INDcpa,b and the
specification of Ch, but during game execution they would
always carry the same values, they were unified, (c) the
variables rij from the Ch specification were renamed to r′ij
(the game variables rij were not renamed). Further, in line 13
we added an instruction that populates associative array L with
entries that map associated-data–ciphertext pairs established
by the AEAD algorithm Enc to the messages they decrypt
to. As none of the steps changes the output of the game we
have Pr[INDcpa,b

Ch,N (A)⇒ 1] = Pr[Gb
0(A)⇒ 1] for any A and

b ∈ {0, 1}.
Consider next the games Gb

1 in Figure 10. The difference
to Gb

0 is that they replace the invocation of the AEAD
algorithm Dec by a table look-up using associative array L.
The key argument of why this is possible is that in the
IND-CPA setting the adversary remains passive, i.e., it only
queries the recv oracle on ciphertexts that were output by
the bcast oracle before. Inspection shows that the mechan-
ics enforced by lines 21–22 indeed ensure that the vectors
(j, i, r′ij ,vc, c) appearing in line 31 were first added to array L
in line 13. Thus, by the perfect correctness of AEAD, we have
Pr[Gb

0(A)⇒ 1] = Pr[Gb
1(A)⇒ 1] for any A and b ∈ {0, 1}.

Observe now that in the recv oracle of games Gb
1 the

messages m recovered in line 31 are never used. (That is, they
are stored in Qij and then removed again, but not ever any
game action depends on their value.) We thus define games Gb

2

that are like Gb
1 except that in line 13 the value � is stored

in L instead of message mb. We obtain Pr[Gb
1(A) ⇒ 1] =

Pr[Gb
2(A)⇒ 1].

In games Gb
2 the Enc invocation of line 12 can be sim-

ulated using the Enc oracle provided by an IND-CPA chal-
lenger of the AEAD scheme. More precisely, there exists a
straight-forward reduction B such that Pr[Gb

2(A) ⇒ 1] =
Pr[INDcpa,b

AEAD(B)⇒ 1], for any A and b ∈ {0, 1}.
All in all we obtain |Pr[INDcpa,1

Ch,N (A) ⇒ 1] −
Pr[INDcpa,0

Ch,N (A) ⇒ 1]| = |Pr[INDcpa,1
AEAD(B) ⇒ 1] −

Pr[INDcpa,0
AEAD(B)⇒ 1]|. and thus the claim.

Theorem 5 (INT-CTXT security). Let Ch be the broadcast
channel constructed in Figure 9 from FIFO links and an
AEAD scheme AEAD. If the AEAD scheme offers (one-time)
integrity of ciphertexts (INT-CTXT), also Ch offers integrity of
ciphertexts (INT-CTXT). More precisely, for every adversary A
against Ch there exists an adversary B against AEAD such
that

Advint-ctxtCh,N (A) ≤ Advint-ctxtAEAD (B) .

The running time of B is about that of A. Further, B poses
at most as many Enc and Dec queries as A poses bcast and
recv queries, respectively.

Proof. Consider game G0 from Figure 11. It is identical to
game INTctxt

Ch,N from Figure 6, but with the following rewriting
steps applied: (a) the abstract bcast and recv algorithms are
instantiated with the ones from Ch, (b) as variables sij appear
in both INTctxt and the specification of Ch, but during game
execution they would always carry the same values, they were
unified, (c) the variables rij from the Ch specification were
renamed to r′ij (the game variables rij were not renamed).
Further, in line 13 we added an instruction that populates a
set L with the associated-data–ciphertext pairs that emerge
in the processing of the bcast oracle. As none of the steps



Games Gb
0(A), Gb

1(A)
00 L[ ]← ∅; K ←$ Gen
01 For i← 1 to N :
02 rej i ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , r

′
ij , dij ← 0

06 Dij [ ]← ∅; Qij [ ]← ∅
07 b′ ←$ Abcast,recv

08 Stop with b′

Oracle bcast(i,m0,m1)
09 If rej i: Goto line 20
10 For all j ∈ [1 .. N ], j 6= i:
11 ad j ← i‖j ‖sij ‖vci
12 cj ← Enc(K; ad j ,mb)
13 L[i, j, sij ,vci, cj ]← mb

14 Dj ← (vci, cj)
15 Dij [sij ]← Dj

16 sij ← sij + 1
17 Give (s, i, j,Dj) to A
18 bi ← bi + 1
19 vci[i]← bi
20 Return

Oracle recv(i, j,D)
21 If sji ≤ rij or Dji[rij ] 6= D:
22 Stop with 0
23 If rej i: Goto line 38
24 Parse D as (vc, c)
25 If parsing fails:
26 rej i ← T; Goto line 38
27 ad ← j ‖ i‖r′ij ‖vc
28 Only G0: m← Dec(K; ad , c)
29 Only G0: If decryption fails:
30 Only G0: rej i ← T; Goto line 38
31 Only G1: m← L[j, i, r′ij ,vc, c]
32 Qij [r

′
ij ]← (vc,m)

33 r′ij ← r′ij + 1
34 While exist vc′,m′, j′ 6= i s.t.

(vc′,m′) = Qij′ [dij′ ] and vc′ ≤ vci:
35 Give (d, i, j′, �) to A
36 dij′ ← dij′ + 1
37 vci[j

′]← dij′

38 rij ← rij + 1
39 Return

Fig. 10. Games Gb
0, G

b
1, b ∈ {0, 1}, used in the IND-CPA proof of Theorem 4. Games Gb

0 include all lines with exception of line 31, and games Gb
1 include

all lines with exception of lines 28–30.

changes the output of the game we have Pr[INTctxt
Ch,N (A) ⇒

1] = Pr[G0(A)⇒ 1] for any A.
Consider next the game G1 in Figure 11. The difference

to G0 is that in lines 32–33 it has an added abort instruction
that is executed if the Dec invocation in line 29 fails to reject
a ciphertext that was not created by Enc before (in line 12).
The probability that this condition is ever fulfilled is bounded
by the INT-CTXT advantage of an AEAD adversary: There
exists an obvious reduction B such that |Pr[G0(A) ⇒ 1] −
Pr[G1(A)⇒ 1]| ≤ Pr[INTctxt

AEAD(B)⇒ 1].
Let us finally assess the probability Pr[G1(A)⇒ 1]. To stop

with 1, game G1 needs to run into either line 15 or line 37
with psv i = F for some party i ∈ [1 .. N ]. Note that the
flags psv i are initially set to T for all parties, and that they
are cleared in exclusively line 23, namely when a datagram is
provided to the recv oracle that is not in synchrony with what
the bcast oracle output before. Consider thus a query (i, j,D)
to recv where D is not authentic such that the psv i flag of
user i is cleared. If the query is posed and condition rej i = T
is fulfilled, or if rej i = T is set by lines 27 or 31 during the
processing of the query, then by lines 09, 24, 27, and 31 the
instructions in lines 15 and 37 become unreachable (within
all further queries involving participant i). The one remaining
possibility for stopping with 1 is that line 32 is reached during
the query in which flag psv i is cleared. But recall that the flag
was cleared due to an unauthentic ciphertext. This means that
line 33 will abort the game with outcome 0. The conclusion is
that for no participant i the game will run into a ‘Stop with 1’
instruction. This means Pr[G1(A) ⇒ 1] = 0. The claim
follows.

Corollary 1 (IND-CCA security). Let Ch be the broad-
cast channel constructed in Figure 9 from FIFO links and
an AEAD scheme AEAD. If the AEAD scheme offers both
(one-time) indistinguishability under chosen-plaintext attacks
(IND-CPA) and (one-time) integrity of ciphertexts (INT-CTXT),
then Ch offers indistinguishability under chosen-ciphertext
attacks (IND-CCA).

A. Discussion

Intuitively, any solution that realizes a causality-preserving
broadcast channel from an unprotected peer-to-peer network
will contain two components: one that constructs (non-
cryptographic) causal broadcast from FIFO links, and one
that contributes the cryptographic protection of the commu-
nication. Combining these components, our dedicated con-
struction (cf. Figure 9) achieves causality preservation and
cryptographic protection directly.

In this section we briefly discuss other options to realize
causal broadcast channels. One alternative approach would
be to construct a (unprotected) causal broadcast network
from the FIFO links and complement it with a cryptographic
layer on top to add security guarantees. This method may
appear ‘more modular’ than ours as it neatly isolates the two
components responsible for causality preservation and cryp-
tographic protection, respectively. Such clean design comes
at a price, though: the crypto layer needs to verify that the
underlying network indeed provides causality (an adversary
that might prevent it from doing so needs to be caught) and
this requires some form of logical timestamps such as vector
clocks or Lamport clocks (cf. Section III-C) or more complex
(and expensive) constructions. Then, two separate components



Games G0(A), G1(A)
00 L← ∅; K ←$ Gen
01 For i← 1 to N :
02 psv i ← T; rej i ← F
03 bi ← 0; vci ← 0N

04 For j ← 1 to N , j 6= i:
05 sij , rij , r

′
ij , dij ← 0

06 Dij [ ]← ∅; Qij [ ]← ∅
07 Abcast,recv

08 Stop with 0

Oracle bcast(i,m)
09 If rej i: Goto line 21
10 For all j ∈ [1 .. N ], j 6= i:
11 ad j ← i‖j ‖sij ‖vci
12 cj ← Enc(K; ad j ,m)
13 L← L ∪ {(i, j, sij ,vci, cj)}
14 Dj ← (vci, cj)
15 If ¬psv i: Stop with 1
16 Dij [sij ]← Dj

17 sij ← sij + 1
18 Give (s, i, j,Dj) to A
19 bi ← bi + 1
20 vci[i]← bi
21 Return

Oracle recv(i, j,D)
22 If sji ≤ rij or Dji[rij ] 6= D:
23 psv i ← F
24 If rej i: Goto line 41
25 Parse D as (vc, c)
26 If parsing fails:
27 rej i ← T; Goto line 41
28 ad ← j ‖ i‖r′ij ‖vc
29 m← Dec(K; ad , c)
30 If decryption fails:
31 rej i ← T; Goto line 41
32 Only G1: If (j, i, r′ij ,vc, c) /∈ L:
33 Only G1: Stop with 0
34 Qij [r

′
ij ]← (vc,m)

35 r′ij ← r′ij + 1
36 While exist vc′,m′, j′ 6= i s.t.

(vc′,m′) = Qij′ [dij′ ] and vc′ ≤ vci:
37 If ¬psv i: Stop with 1
38 Give (d, i, j′,m′) to A
39 dij′ ← dij′ + 1
40 vci[j

′]← dij′

41 rij ← rij + 1
42 Return

Fig. 11. Games G0, G1 used in the INT-CTXT proof of Theorem 5. Game G0 includes all lines with exception of lines 32–33, and game G1 includes all
lines.

would need to assert the causal order, namely the network
layer and the crypto layer.

Another approach would be to secure the FIFO links in-
dividually and run any (non-cryptographic) causal broadcast
protocol on top. The resulting construction directly remedies
the efficiency penalty of the previous construction by making
the cryptographic layer oblivious of causality preservation.
This method is actually very close to ours, however our
construction, for being ad hoc, is more efficient.

We note that generic solutions of this kind generally seem
to be less efficient than direct designs that more closely
intertwine both components. Specifically, our design crucially
and directly benefits from the associated data (AD) input field
that modern encryption primitives offer, and avoids encrypting
data that is publicly available anyway (e.g., vector clocks) but
only authenticates it. We are not sure how AD inputs could
be exploited in a generic approach.

VII. CONCLUSION & FUTURE WORK

In this work we define game-based security notions for
cryptographic multi-party channels that allow a group of
mutually trusted users to exchange messages in a confidential,
authentic, and causality-preserving manner, and propose a
provably secure instantiation of this channel type. Our work is
a first step towards understanding the security foundations of
causal multi-party communication and suggests further direc-
tions that we briefly discuss. Our model assumes a static set of
users, and hence it does not capture applications that let users
join and leave the conversation. While the problem of securely

distributing and updating keys among a dynamic set of users
has been investigated [37], [38], a study of confidentiality,
authenticity, and causality preservation in such a dynamic
scenario yet has to appear. An orthogonal problem is that
of relaxing the trust assumption of our model and tolerate
corruption of (a fraction of) participants. Again, broadcast
protocols that tolerate Byzantine behavior are known in the
distributed systems literature [25], [26], [27], [28], [29], but
they are designed for different/more specific applications than
secure multi-party channels and, thus, a fresh look at the
problem can lead to more efficient solutions.
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APPENDIX A
DEFINITIONS OF AEAD

We recall the definition of AEAD from [39], slightly adapt-
ing it to a new syntax. The security properties that we give
interpolate the ones of [39], [40].

Definition 2 (AEAD). A scheme providing authenticated en-
cryption with associated data (AEAD) for a message spaceM
and an associated data space AD consists of a key space K,
a ciphertext space C, and three algorithms, Gen,Enc,Dec,
with the following syntax. The key generation algorithm Gen



Game INDcpa,b
AEAD(A)

00 D← ∅
01 K ←$ Gen
02 b′ ←$ AEnc

03 Stop with b′

Oracle Enc(ad ,m0,m1)
04 If (ad , ·) ∈ D: Stop with 0
05 c←$ Enc(K; ad ,mb)
06 D← D ∪ {(ad , c)}
07 Return c

Fig. 12. One-time IND-CPA security games for AEAD. Note that line 04
encodes the requirement for a fresh associated data string per Enc query.

is randomized, takes no input, and outputs a key K ∈ K.
The encryption algorithm Enc, which may be randomized
or deterministic, takes a key K, an associated data string
ad ∈ AD, and a message m ∈ M; its output is a ciphertext
c ∈ C. Finally, the decryption algorithm Dec is deterministic
and takes a key K, an associated data string ad , and a
ciphertext c; its output is a message m, or an indication
that decryption failed (the latter is often encoded by writing
m = ⊥). A helpful shorthand form for expressing this
syntactical convention is

Gen→ K
K×AD ×M→ Enc→ C
K ×AD × C → Dec→M/⊥

For correctness we require that for all K ∈ [Gen], ad ∈ AD,
and m ∈M, if c ∈ [Enc(K, ad ,m)] then Dec(K, ad , c) = m.

Note that we do not require Enc to be a randomized
algorithm. The reason is that randomization is not necessary
in our application where the associated data input to Enc
never repeats. Correspondingly, the security definitions we
give for AEAD are one-time notions in the sense that they
do not promise anything if the ad input is not fresh for
each invocation of Enc. This is a weaker requirement than
standard, and thus allows for more efficient instantiations. (Or,
put differently, if ‘only’ a randomized or nonce-based AEAD
scheme is at hand, it doesn’t hurt to use it).

Game INTctxt
AEAD(A)

00 D← ∅
01 K ←$ Gen
02 AEnc,Dec

03 Stop with 0

Oracle Enc(ad ,m)
04 If (ad , ·) ∈ D: Stop with 0
05 c←$ Enc(K; ad ,m)
06 D← D ∪ {(ad , c)}
07 Return c

Oracle Dec(ad , c)
08 m← Dec(K; ad , c)
09 If (ad , c) /∈ D and m 6= ⊥:
10 Stop with 1
11 Return m

Fig. 13. One-time INT-CTXT security game for AEAD. Note that line 04
encodes the requirement for a fresh associated data string per Enc query.

We formalize IND-CPA security as a confidentiality notion
and INT-CTXT security as an authenticity notion. It is a
folklore result that an AEAD scheme that fulfills both notions
is actually IND-CCA secure.

Definition 3 (IND-CPA). We say scheme AEAD =
(Gen,Enc,Dec) provides (one-time) indistinguishability under
chosen-plaintext attacks (IND-CPA) if it is hard to distinguish
the encryptions of two messages in a passive attack. Formally,
to an adversary A we assign the advantage Advind-cpaAEAD (A) =
|Pr[INDcpa,1

AEAD(A) ⇒ 1] − Pr[INDcpa,0
AEAD(A) ⇒ 1]|, where the

games are in Figure 12. Intuitively, the scheme is secure if all
realistic adversaries have small advantage.

Definition 4 (INT-CTXT). We say scheme AEAD =
(Gen,Enc,Dec) provides (one-time) integrity of ciphertexts
(INT-CTXT) if it is hard to find ciphertexts (beyond reg-
ularly created ones) that validly decrypt. Formally, to an
adversary A we assign the advantage Advint-ctxtAEAD (A) =
Pr[INTctxt

AEAD(A) ⇒ 1], where the game is in Figure 13.
Intuitively, the scheme is secure if all realistic adversaries have
small advantage.


