
An Analysis of the Transport Layer Security Protocol

Thyla van der Merwe

Thesis submitted to the University of London

for the degree of Doctor of Philosophy

Information Security Group

School of Mathematics and Information Security

Royal Holloway, University of London

2018

Declaration

These doctoral studies were conducted under the supervision of Professor Kenneth G.

Paterson.

The work presented in this thesis is the result of original research I conducted, in collabo-

ration with others, whilst enrolled in the School of Mathematics and Information Security

as a candidate for the degree of Doctor of Philosophy. This work has not been submitted

for any other degree or award in any other university or educational establishment.

Thyla van der Merwe

May, 2018

2

Dedication

To my niece, Emma.

May you always believe in your abilities, no matter what

anybody tells you, and may you draw on the strength of

our family for support, as I have done

(especially your Gogo, she’s one tough lady).

“If you’re going through hell, keep going.”

Unknown

3

Abstract

The Transport Layer Security (TLS) protocol is the de facto means for securing commu-

nications on the World Wide Web. Originally developed by Netscape Communications,

the protocol came under the auspices of the Internet Engineering Task Force (IETF) in

the mid 1990s and today serves millions, if not billions, of users on a daily basis. The

ubiquitous nature of the protocol has, especially in recent years, made the protocol an

attractive target for security researchers. Since the release of TLS 1.2 in 2008, the protocol

has suffered many high-profile, and increasingly practical, attacks. Coupled with pressure

to improve the protocol’s efficiency, this deluge of identified weaknesses prompted the IETF

to develop a new version of the protocol, namely TLS 1.3.

In the development of the new version of the protocol, the IETF TLS Working Group has

adopted an “analysis-prior-to-deployment” design philosophy. This is in sharp contrast to

all previous versions of the protocol. We present an account of the TLS standardisation

narrative, commenting on the differences between the reactive development process for

TLS 1.2 and below, and the more proactive design process for TLS 1.3. As part of this

account, we present work that falls on both sides of this design transition. We contribute

to the large body of work highlighting weaknesses in TLS 1.2 and below by presenting

two classes of attacks against the RC4 stream cipher when used in TLS. Our attacks

exploit statistical biases in the RC4 keystream to recover TLS-protected user passwords

and cookies. Next we present a symbolic analysis of the TLS 1.3 draft specification, using

the Tamarin prover, to show that TLS 1.3 meets the desired goals of authenticated key

exchange, thus contributing to a concerted effort by the TLS community to ensure the

protocol’s robustness prior to its official release.

4

Publications

This thesis is based on the following five publications, to which each author contributed

equally:

1. Christina Garman, Kenneth G. Paterson, and Thyla van der Merwe. Attacks Only

Get Better: Password Recovery Attacks Against RC4 in TLS. In 24th USENIX

Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,

2015., pages 113-128, 2015.

2. Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated

Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication.

In IEEE Symposium on Security and Privacy, SP 2016, San Jose, CA, USA, May

22-26, 2016., pages 470-485, 2016.

3. Kenneth G. Paterson and Thyla van der Merwe. Reactive and Proactive Standardis-

ation of TLS. In Security Standardisation Research - Third International Conference,

SSR 2016, Gaithersburg, MD, USA, December 5-6, 2016., pages 160-186, 2016.

4. Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der

Merwe. A Comprehensive Symbolic Analysis of TLS 1.3. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,

pages 1773-1788, 2017.

5. Remi Bricout, Kenneth G. Paterson, Sean Murphy, and Thyla van der Merwe.

Analysing and Exploiting the Mantin Biases in RC4. Designs, Codes and Cryptogra-

phy, 86(4):743-770, April 2018.

5

Acknowledgements

I would like to thank my supervisor, Kenny Paterson, for his guidance and support over

the course of my Ph.D., and for facilitating a number of excellent research opportunities.

Thank you for always making time for my work. I would also like to thank Cas Cremers

for being an incredible mentor, collaborator, and friend. Your constant encouragement has

meant the world to me.

Thanks go to Eric Rescorla for hosting me at Mozilla as an intern (twice!), and for teaching

me a great deal about the protocol upon which this thesis is based, TLS. Your advice, and

help, over the years have been instrumental in dictating the direction of my research. I

also thank Christine Swart for sparking my interest in cryptography many moons ago.

Sam Scott and Jonathan Hoyland, I will never forget our Tamarin adventures, and I

thank you for your patience and good humour. Sam, I can’t believe that we ventured down

the Tamarin rabbit hole more than once! Thank you for teaching me so much about the

tool, and for introducing me to dulce de leche during our time in California. I have been

fortunate to have worked with a host of impressive and inspiring collaborators, I thank

you all.

Sheila Cobourne, I thank you for helping me to start the Women In the Security Domain

and/Or Mathematics (WISDOM) group, and for instilling in me a love of cake. I also

thank Thalia Laing for her calming influence on the group.

I thank my Ph.D. office mates for creating a lively working environment, and my friends,

James Hourston, Jayni Shah, Marc Nimmerrichter, Daniel Etcovitch, Sarah Frewen and

Marianne Jonassen for making me laugh when the journey seemed long, dark, and arduous.

I especially thank my friends Emily Grace Williams and Hugh Pastoll not only for providing

excellent proofreading services but for being fellow warriors in the Battle of Science.

6

Acknowledgements

I am grateful to the Engineering and Physical Sciences Research Council (EPSRC) for

funding my work as part of the Centre for Doctoral Training (CDT) at Royal Holloway,

University of London. Thanks go to my fellow CDT cohort members for making the ride

memorable.

I thank Dave and Sharon Jackson for their faith in me, and I thank Gary Turner for his

love and care over the last three hundred and fifty-two yards. Finally, I thank my family

for being there, always. You are the foundation upon which my dreams and aspirations

rest.

7

Contents

I Motivation and Background 16

1 Introduction 17

1.1 Motivation . 17

1.2 Thesis Structure . 20

2 Preliminaries 23

2.1 The TLS Protocol . 23

2.2 TLS 1.2 and Below . 25

2.2.1 The Handshake Protocol . 25

2.2.2 The Record Protocol . 28

2.2.3 Security Properties . 28

2.3 TLS 1.3 . 30

2.4 TLS 1.3 draft-10 . 32

2.4.1 The Handshake Protocol . 32

2.4.2 The Record Protocol . 36

2.4.3 Security Properties . 36

2.5 TLS 1.3 draft-21 . 38

2.5.1 The Handshake Protocol . 38

2.5.2 The Record Protocol . 42

2.5.3 Post-Handshake Mechanisms . 42

2.5.4 Security Properties . 43

3 Reactive and Proactive Standardisation of TLS 46

3.1 Post-Deployment Analysis . 46

3.1.1 Design, Release, Break, Patch . 47

3.1.2 Fixes, Constraints and Time Lags 51

3.1.3 Impact and Incentives . 53

8

CONTENTS

3.2 Pre-Deployment Analysis . 53

3.2.1 Design, Break, Fix, Release . 54

3.2.2 Available Tools . 58

3.2.3 Impact and Incentives . 61

II Attacking TLS 1.2 and Below 62

4 Password Recovery Attacks Against RC4 63

4.1 Introduction . 63

4.2 Preliminaries . 69

4.2.1 Bayes’ Theorem . 69

4.2.2 The RC4 Algorithm . 69

4.2.3 Single-byte Biases in the RC4 Keystream 70

4.2.4 Double-byte Biases in the RC4 Keystream 71

4.2.5 RC4 and the TLS Record Protocol 76

4.2.6 Passwords . 77

4.3 Plaintext Recovery via Bayesian Analysis 78

4.3.1 Formal Bayesian Analysis . 79

4.3.2 Using a Product Distribution . 82

4.3.3 Double-byte-based Approximation 83

4.4 Simulation Results . 85

4.4.1 Methodology . 85

4.4.2 Results . 88

4.5 Practical Validation . 98

4.5.1 The BasicAuth Protocol . 98

4.5.2 Attacking BasicAuth . 100

4.6 Conclusion . 102

5 Analysing and Exploiting the Mantin Biases in RC4 104

5.1 Introduction . 104

5.2 Preliminaries . 108

5.2.1 Inferential Form of Bayes’ Theorem 109

5.2.2 Order Statistics . 109

5.2.3 The Mantin Biases . 110

5.2.4 Dynamic Programming Algorithms 110

9

CONTENTS

5.3 Plaintext Recovery using the Mantin Biases 111

5.3.1 Maximum Likelihood Estimation . 112

5.3.2 Plaintext Recovery Attack . 114

5.3.3 Distribution of the Maximum Likelihood Statistic and Attack Per-

formance . 115

5.3.4 Incorporating Prior Information about Plaintext Bytes 120

5.4 Recovering Multiple Plaintext Bytes . 123

5.4.1 A Likelihood Analysis for Multiple Plaintext Bytes 124

5.4.2 Algorithms for Recovering Multiple Plaintext Bytes 125

5.5 Simulation Results . 127

5.5.1 Methodology . 127

5.5.2 Results . 128

5.6 Conclusion . 130

III Verifying TLS 1.3 134

6 Automated Analysis and Verification of draft-10 135

6.1 Introduction . 135

6.2 Preliminaries . 139

6.2.1 Symbolic Analysis . 139

6.2.2 Tamarin Fundamentals . 140

6.3 draft-10 Analysis . 154

6.3.1 Building the Model . 157

6.3.2 Encoding Security Properties . 162

6.3.3 Analysis and Results . 166

6.3.4 Attacking Post-handshake Client Authentication 169

6.4 Conclusion . 173

7 Automated Analysis and Verification of draft-21 175

7.1 Introduction . 175

7.2 Preliminaries . 178

7.3 draft-21 Analysis . 178

7.3.1 Building the Model . 182

7.3.2 Encoding Security Properties . 191

7.3.3 Analysis and Results . 198

10

CONTENTS

7.4 Conclusion . 203

IV Concluding Remarks 204

8 Conclusion 205

Bibliography 206

A STS .spthy File 225

11

List of Acronyms
AES Advanced Encryption Standard
AEAD Authenticated Encryption with Associated Data
AKE Authenticated Key Exchange
CBC Cipher Block Chaining
CORS Cross Origin Resource Sharing
DDM Decrypt-then-Decode-then-MAC
DHE Ephemeral Diffie Hellman
(EC)DHE (Elliptic Curve) Ephemeral Diffie Hellman
GCM Galois Counter Mode
HKDF HMAC-based Key Derivation Function
HMAC Hash-based Message Authentication Code
HTTP Hypertext Transfer Protocol
KCI Key Compromise Impersonation
MAC Message Authentication Code
MD5 Message Digest 5
MEE MAC-then-Encode-then-Encrypt
MITM Man-In-The-Middle
PFS Perfect Forward Secrecy
PKI Public Key Infrastructure
PKCS Public Key Cryptography Standards
PRF Pseudo-Random Function
PSK Pre-Shared Key
PSK-DHE Pre-Shared Key and Ephemeral Diffie-Hellman
RC4 Refers to a stream cipher developed by Ron Rivest.
RSA Refers to the RSA encryption primitive.
SHA Secure Hash Algorithm
SSL Secure Sockets Layer
STS Station-to-Station
TCP Transmission Control Protocol
TLS Transport Layer Security
WG Working Group
0-RTT Zero Round-Trip Time

12

List of Figures

2.1 TCP/IP protocol architecture . 24

2.2 TLS 1.2 initial handshake . 26

2.3 TLS 1.2 resumption handshake . 27

2.4 draft-10 (EC)DHE handshake . 32

2.5 draft-10 0-RTT handshake . 34

2.6 draft-10 PSK resumption handshake . 35

2.7 Key computation hierarchy for draft-10 36

2.8 draft-21 (EC)DHE handshake . 40

2.9 draft-21 PSK resumption handshake . 40

2.10 draft-21 0-RTT handshake . 41

2.11 Key computation hierarchy for draft-21 42

4.1 Measured biases for RC4 keystream byte pair (Z16, Z17) 72

4.2 Measured biases for RC4 keystream byte pair (Z384, Z385) 73

4.3 Measured biases for RC4 keystream byte pair (Z1, Z2) 74

4.4 Absolute value of the largest single-byte bias for keystream bytes Z240 to Z272 75

4.5 Recovery rate for Singles.org passwords using the RockYou data set 87

4.6 Recovery rates for the single-byte algorithm 89

4.7 Recovery rates for the double-byte algorithm 90

4.8 Performance of the single-byte algorithm versus a naive attack 91

4.9 Recovery rate of the single-byte versus the double-byte algorithm 92

4.10 Recovery rate for uniformly distributed passwords versus known a priori

distribution . 93

4.11 Effect of password length on recovery rate 94

4.12 Effect of try limit T on recovery rate . 96

4.13 Value of T required to achieve a given password recovery rate 97

4.14 Recovery rate of a base64 encoded password versus an ASCII password . . 98

4.15 Recovery rate of the shift attack versus the double-byte algorithm 99

13

LIST OF FIGURES

5.1 Cumulative distribution function of the plaintext rank 119

5.2 Experimental validation of the cumulative distribution function of the plain-

text rank . 121

5.3 Success rate of the list Viterbi algorithm using double-sided biases 129

5.4 Success rate of the list Viterbi algorithm using single-sided and double-sided

biases . 130

5.5 Success rate of the beam search algorithm using double-sided biases 132

5.6 Success rate of the beam search algorithm with first byte known versus first

byte unknown . 132

5.7 Success rate of the beam search algorithm without final list pruning versus

final list pruning . 133

5.8 Success rate of list the Viterbi algorithm versus the beam search algorithm 133

6.1 Basic STS protocol . 141

6.2 Tamarin PKI rules for the STS protocol 144

6.3 Tamarin client rules for the STS protocol 145

6.4 Tamarin server rules for the STS protocol 146

6.5 Simple state diagram for the STS protocol 149

6.6 Tamarin verification of the STS secrecy lemma 152

6.7 Partial Tamarin graph for the STS secrecy lemma 153

6.8 Excerpt from partial Tamarin graph for the STS secrecy lemma 153

6.9 Handshake modes for draft-10 . 155

6.10 Tamarin C 1 rule for draft-10 . 158

6.11 Partial client state machine for draft-10 159

6.12 Partial server state machine for draft-10 159

6.13 Client impersonation attack on draft-10+ 171

7.1 Handshake modes for draft-21 . 179

7.2 Partial state machine for draft-21 . 183

7.3 draft-21 (EC)DHE handshake in sub-flights 184

7.4 Tamarin client hello rule for draft-21 185

7.5 Part 1 of the full state machine for draft-21 187

7.6 Part 2 of the full state machine for draft-21 188

7.7 Record layer state machine for draft-21 . 189

7.8 Tamarin lemma map . 201

14

List of Tables

4.1 Password recovery attack parameters . 67

5.1 Plaintext recovery attack parameters . 107

5.2 Median rank of the maximum likelihood estimate 119

7.1 Tamarin results for draft-21 . 199

15

Part I

Motivation and Background

16

Chapter 1

Introduction

Contents
3.1 Post-Deployment Analysis . 46

3.2 Pre-Deployment Analysis . 53

In this chapter we provide an overview of this thesis. We discuss the motivation for our

work and present the overall structure of the thesis.

1.1 Motivation

The Transport Layer Security (TLS) protocol is the de facto means for securing commu-

nications on the World Wide Web. Initially released as Secure Sockets Layer (SSL) by

Netscape Communications in 1995, the protocol has been subject to a number of version

upgrades over the course of its 23-year lifespan. Rebranded as TLS when it fell under the

auspices of the Internet Engineering Task Force (IETF) in the mid-nineties, the protocol

has been incrementally modified and extended with the release of TLS 1.0 [48] in 1999,

TLS 1.1 [49] in 2006, and TLS 1.2 [50] in 2008. Since then, TLS has received increasing

amounts of attention from the security research community. Dozens of research papers

on TLS have been published [8, 10,11,16,18,19,26,29,31,33,34,37,40,42,56,67,68,71,77,

80,83,84,87,90,96,105,108,111,114,117,121,148,149,151], containing both positive and

negative results for the protocol. What began as a trickle of papers has, in the last five

years or so, become a flood. Arguably, the major triggers for this skyrocketing in interest

from the research community were the TLS Renegotiation flaw of Ray and Dispensa in

2009,1 and the BEAST2 [57] and CRIME3 [58] attacks in 2011 and 2012.
1This flaw was rediscovered by Martin Rex as part of a discussion on the TLS WG mailing list in

November of 2009. Ray and Dispensa discovered the problem in August of the same year. No formal
reference for the attack exists but a description can be found at http://www.educatedguesswork.org/
2009/11/understanding_the_tls_renegoti.html.

2Browser Exploit Against SSL/TLS
3Compression Ratio Info-leak Made Easy

17

1.1 Motivation

The many weaknesses identified in TLS 1.2 and below, as well as increasing pressure to

improve the protocol’s efficiency (by reducing its latency in establishing an initial secure

connection), prompted the IETF to start drafting the next version of the protocol, TLS

1.3, in the Spring of 2014. Unlike the development process employed for earlier versions,

the TLS Working Group (WG) has adopted an “analysis-prior-to-deployment” design

philosophy, making a concerted effort to engage the research community in an attempt to

catch and remedy any weaknesses before the protocol is finalised.

Given the critical nature of TLS, the recent shift in the IETF’s design methodology for TLS

1.3, and TLS 1.3 now reaching the end of the standardisation process, we think it pertinent

that the TLS standardisation story be told. Prior to the standardisation of TLS 1.3, the

TLS WG conformed to a reactive standardisation process – attacks would be announced

and the WG would respond to these attacks by either updating the next version of the

protocol or by releasing patches for the TLS standard. A number of factors contributed to

the adoption of such a standardisation process: protocol analysis tools were not mature

enough at the time of design, the research community’s involvement in the standardisation

process was minimal, and until the first wave of attacks in 2009-2012, attacks on TLS

were not considered to be of enough practical importance to warrant making changes with

urgency. In contrast, the TLS 1.3 standardisation process has been highly proactive. The

availability of more mature analysis tools, the threat of practical attacks, the presence of

an engaged research community, and a far more open dialogue with that community have,

we contend, enabled this shift in the TLS standardisation process.

In this thesis we present work that falls on both sides of this process shift. We describe

two attacks against TLS 1.2 and below, thus contributing to the post-2011 TLS attack era

and further highlighting the need for a new version of the protocol. Our attacks exploit

weaknesses in the RC4 keystream to recover plaintext protected by RC4 in TLS. The first

class of attacks extends the attack ideas of AlFardan et al. [10] to recover user passwords,

the pre-eminent means of user authentication on the Web. While the attacks in [10] break

RC4 when used in TLS in an academic sense, they are far from being practical. For instance,

the authors’ preferred method for recovering secure cookies requires around 234 encryptions

of the target cookie. We enhance the statistical techniques of [10] and exploit specific

features of the password setting to produce attacks that are of greater practical significance,

showing that good-to-excellent password recovery rates can be achieved using 224 − 228

ciphertexts. We demonstrate our attacks against the real-world protocol BasicAuth and

18

1.1 Motivation

help to render the use of RC4 in TLS indefensible.

Our second class of attacks exploits the Mantin biases [101] to recover plaintexts from

RC4-encrypted traffic. Our basic attack targets two unknown bytes of plaintext that

are located close to sequences of known bytes of plaintext, a situation which commonly

arises when RC4 is used in TLS. We go beyond the plaintext recovery attack to develop a

statistical framework that enables us to make predictions about the attack performance

and its variants. This framework relies on results from order statistics, a well-established

field of statistical investigation that, prior to our work, does not appear to have been used

extensively in cryptanalysis. Using standard dynamic programming techniques, we extend

our basic attack to recover longer plaintexts and show that TLS-protected HTTP cookies

can successfully be recovered using 231 ciphertexts, a result which again improves on the

attacks described in [10].

We note here that usage of RC4 has dropped rapidly due to the high-profile nature of our

attacks, and those by others [10,148], coupled with the deprecation of RC4 by the IETF in

2015, and the decision by major vendors to disable RC4 in their browsers.4

As mentioned, we also include work that concerns TLS 1.3, specifically work that contributes

to building confidence in the new protocol’s design and catching flaws in a timely fashion.

We present an analysis of revision 10 (henceforth referred to as draft-10) of the TLS 1.3

specification using the Tamarin prover, a state-of-the-art symbolic analysis tool designed

for the automated inspection of security protocols. Our work shows that draft-10 meets

the desired goals of authenticated key exchange and provides the first supporting evidence

for the security of complex protocol mode interactions in TLS 1.3, thereby ruling out attacks

which exploit the interaction of several handshake modes, such as the Renegotiation and

the Triple Handshake [29] attacks against TLS 1.2 and below. Our draft-10 analysis also

highlights an attack against the post-handshake client authentication feature as proposed

for inclusion in draft-11 of the specification. The attack was reported to the TLS WG and

informed the next revision of the specification, adding valuable insight into the protocol’s

design.

The TLS 1.3 specification has been a rapidly moving target, with large changes being

effectuated on a fairly regular basis. This has often rendered much of the analysis work
4See, for example, http://www.infoworld.com/article/2979527/security/google-mozilla-

microsoft-browsers-dump-rc4-encryption.html.

19

1.2 Thesis Structure

‘out-of-date’ within the space of a few months as substantial changes to the specification

effectively result in a new protocol, requiring a new wave of analysis. Building on our

draft-10 work, we contribute to what is hopefully the near-final wave of analysis of TLS

1.3 before its official release, analysing draft-21 of the specification using the Tamarin

prover. The many differences between draft-10 and draft-21 make for a very different

TLS 1.3 protocol, specifically from a symbolic perspective. As a Tamarin model aims to

consider the interaction of all possible handshake modes and variants, changes to these

modes as well as the inclusion of new post-handshake features, results in a very different

set of mode combinations to be considered when proving security properties. Hence, our

work on draft-21 presents a substantially different model to that of draft-10, and takes

a far more fine-grained and flexible approach to modelling TLS 1.3. Our draft-21 analysis

reveals an unexpected behaviour in the protocol which has the ability to inhibit strong

authentication guarantees in some implementations of the protocol.

The standardisation process for TLS 1.3 has arguably been successful, with several research

works [14, 27,32, 45–47,54,55,61, 61,85,91, 95] influencing the design of the protocol. The

amount of communication between those who implement TLS and those who analyse TLS

has probably never been greater. The results presented in this thesis reinforce the need

for a new version of TLS, and highlight the value of the more proactive design process

employed by the IETF by exposing several flaws in TLS 1.3 before the protocol is finalised.

1.2 Thesis Structure

This thesis is made up of four parts. Chapters 2 and 3 constitute the remainder of Part I,

Motivation and Background.

Chapter 2. This chapter provides detail concerning the TLS protocol. We describe

the general structure of the protocol, introducing its relevant sub-protocols and security

properties. We cover the pertinent technical details of TLS 1.2 and below, and TLS 1.3,

remarking on the differences between the various protocol versions. We introduce all

necessary details concerning the old and new handshake modes of TLS and briefly cover

TLS key derivation.

We note that, where necessary, all other chapter-specific preliminaries are introduced in

20

1.2 Thesis Structure

the relevant chapters.

Chapter 3. In this chapter we explore the TLS standardisation process, examining factors

which may have contributed to the different standardisation cycles employed for TLS 1.2

and below, and TLS 1.3, respectively. We comment on the tools available for analysis,

the levels of academic involvement, and the incentives driving the agents involved in the

standardisation process.

Part II of this thesis, namely Attacking TLS 1.2 and Below, covers our work on the

earlier versions of TLS and contains Chapters 4 and 5.

Chapter 4. In this chapter we introduce our password recovery attacks against RC4 in

TLS. We describe the RC4 algorithm, discuss the relevant single- and double-byte keystream

biases, and provide further background on password distributions. We present a formal

Bayesian analysis that combines a priori password distribution with keystream distribution

statistics to produce a posteriori password likelihoods, yielding a procedure which is

statistically optimal (if the password distribution is known exactly). We demonstrate

the effectiveness of our attacks via extensive simulations and present a proof-of-concept

implementation against a widely-used application that makes use of passwords over TLS,

namely BasicAuth.

Chapter 5. This chapter covers attacks against RC4 that exploit the Mantin biases –

patterns of the form ABSAB that occur in the RC4 keystream with higher probability

than expected for a random sequence (A and B are byte values, and S is an arbitrary

byte string of some length G). We develop a statistical framework for exploiting these

biases which leads to an algorithm that recovers adjacent pairs of unknown plaintext bytes,

under the assumption that the target plaintext bytes are in the neighbourhood of known

plaintext bytes, a valid assumption in an attack against TLS. Our analysis enables us

to make predictions about the number of ciphertexts needed to reliably recover target

plaintext bytes by using results from order statistics. We extend the algorithm to recover

longer sequences of plaintext bytes, as would be needed to attack 16-byte cookies protected

by TLS. We rely on the beam-search and list Viterbi algorithms to achieve this and report

on a large range of attack simulations, focussing on a 16-byte target plaintext.

In Part III, Verifying TLS 1.3, we present our results on TLS 1.3. These are laid out in

21

1.2 Thesis Structure

Chapters 6 and 7.

Chapter 6. This chapter covers our symbolic analysis of the TLS 1.3 draft specification

using the Tamarin prover. We introduce the symbolic setting and cover the necessary

Tamarin fundamentals. We formally model draft-10 of the specification and encode

the desired security properties, as laid out in the draft, using the Tamarin specification

language. We use a mixture of automated inspection and manual interaction with the

tool to analyse these properties. We also extend this model to include the post-handshake

authentication mechanism as suggested for draft-11. Our results represent some of the

first supporting evidence of the security of several handshake mode interactions in TLS 1.3.

Chapter 7. In this chapter we model and analyse draft-21 of the TLS 1.3 specification,

reforming our draft-10 model and incorporating the changes made to the specification

since draft-10. Our work on draft-21 reinforces the security of several handshake mode

interactions in TLS 1.3 for a near-final version of the protocol.

Finally, in Part IV, Concluding Remarks, we end with Chapter 8.

Chapter 8. In this chapter we conclude and briefly mention avenues for future work.

22

Chapter 2

Preliminaries

Contents
4.1 Introduction . 63

4.2 Preliminaries . 69

4.3 Plaintext Recovery via Bayesian Analysis 78

4.4 Simulation Results . 85

4.5 Practical Validation . 98

4.6 Conclusion . 102

This chapter provides detail concerning the TLS protocol. We describe the general structure

of the protocol, introducing its relevant sub-protocols and security properties. We cover the

pertinent technical details of TLS 1.2 and below, and TLS 1.3, remarking on the differences

between the various protocol versions. We introduce all necessary details concerning the old

and new handshake modes of TLS, and briefly cover TLS key derivation.

2.1 The TLS Protocol

TLS is a network protocol designed to provide security services for protocols running at

the application layer. TLS runs over transport layer protocols, as depicted in Figure 2.1.

Specifically, TLS runs over the Transmission Control Protocol (TCP) [124], a reliable

network protocol that ensures in-order delivery of network packets in the face of accidental

deletion and re-ordering.1 The primary goal of TLS is to facilitate the establishment of a

secure channel between two communicating entities, namely the client and the server.
1The Datagram Transport Security Layer (DTLS) protocol [130,131], which is based on TLS, is designed

to run over transport protocols which are not necessarily reliable, such as the User Datagram Protocol
(UDP) [125].

23

2.1 The TLS Protocol

Data Link

Network [IP]

Transport [TCP]

TLS

Application

Figure 2.1: Conceptual positioning of TLS within the TCP/IP protocol architecture
model [43]. Network layers are represented in red. Network protocols are depicted in blue.

The TLS protocol is made up of a number of sub-protocols, the two most important being

the Handshake Protocol and the Record Protocol. The Handshake Protocol negotiates all

cryptographically relevant parameters (including the TLS version, the authentication and

key exchange method, and what subsequent symmetric key algorithms will be used). It

authenticates one (or both) of the communicating entities, and establishes the keys for the

symmetric algorithms that will be used in the Record Protocol to protect application data.

For instance, if a client and a server agree on the TLS RSA WITH AES 128 CBC SHA256 cipher

suite during a TLS 1.2 handshake, then the server will provide an RSA certificate to be used

for key exchange and entity authentication purposes. In this example, the Record Protocol

will then make use of the Advanced Encryption Standard (AES) in Cipher Block Chaining

(CBC) mode for the encryption of application data, and the hash function SHA-2562 will

be used in the Hash-based Message Authentication Code (HMAC) algorithm to provide

message authentication.

TLS also includes another sub-protocol, namely, the Alert Protocol. This protocol triggers

when errors occur within the operation of the other two sub-protocols. It will provide alert

messages to the application layer, indicating the severity of the alert. Fatal alerts will result

in immediate termination of a TLS connection. Warning alerts are informational and do

not necessarily result in connection termination. We do not say much more about this
2From the Secure Hash Function 2, or SHA-2, family of hash functions.

24

2.2 TLS 1.2 and Below

protocol in the remainder of this chapter given that it is not a focus of the work contained

in this thesis.

The TLS Handshake Protocol is intended to negotiate cryptographic keys via the mechanism

of Authenticated Key Exchange (AKE). This means that not only are symmetric keys

securely established by the client and the server but also that there are guarantees regarding

the claimed identities of the communicating peers. The keys established in the Handshake

Protocol are then used by the Record Protocol to provide critical security guarantees,

including confidentiality and integrity of application data. TLS is intended to provide these

guarantees in the presence of an active network attacker,3 i.e., an attacker that can capture,

modify, delete, replay, and otherwise tamper with messages sent over the communication

channel. We say more about the desired security properties of TLS in the sections to

follow.

2.2 TLS 1.2 and Below

We now describe the structure of TLS 1.2 (and below – the logical structure of these

versions is similar), covering the various handshake modes, the Record Protocol, and the

intended security goals and properties.

2.2.1 The Handshake Protocol

TLS 1.2 [50] has three types of handshakes, including an initial handshake to set up the

TLS session, a renegotiation handshake to update the session’s cryptographic parameters,

and a resumption handshake for repeated handshakes within the session. We discuss these

handshake types now:

Initial Handshake. The message flows for an initial TLS 1.2 handshake are depicted in

Figure 2.2.4 Messages marked with an asterisk are optional or situation-dependent and

braces of the type “[. . .]” indicate encryption with the application traffic keys. The client and
3We note that throughout this thesis we use the terms ‘attacker’ and ‘adversary’ interchangeably.
4Our TLS-specific ladder diagrams closely follow the message flows and naming conventions as laid out

in the TLS specifications. We include descriptions of the necessary cryptographic parameters in the textual
descriptions of the diagrams.

25

2.2 TLS 1.2 and Below

the server exchange ClientHello and ServerHello messages in order to agree on a cipher

suite and to exchange nonce values. The communicating entities also exchange cryptographic

parameters (ServerKeyExchange, ClientKeyExchange) that allow for the derivation of

the pre-master secret. Certificates and the corresponding verification information

(Certificate, CertificateVerify) are sent for the purposes of entity authentication. A

master secret is derived from the nonce values and the pre-master secret, and in turn

used in the derivation of the application traffic keys to be employed by the Record Protocol.

The Finished message comprises a Message Authentication Code (MAC) over the entire

handshake, ensuring that the client and the server share an identical view of the handshake

and that an active attacker has not altered any of the handshake messages.

C S

ClientHello

ServerHello, Certificate*, ServerKeyExchange*,
CertificateRequest*, ServerHelloDone

Certificate*, ClientKeyExchange, CertificateVerify*,
ChangeCipherSpec, [Finished]

ChangeCipherSpec, [Finished]

[Application data]

Figure 2.2: TLS 1.2 initial handshake

The Handshake Protocol runs over the Record Protocol, initially with null encryption and

MAC algorithms. The ChangeCipherSpec messages signal the intent to start using newly

negotiated cryptographic algorithms and keys; these messages are not considered part of

the handshake but instead are the messages of a peer protocol, the ChangeCipherSpec

protocol. As the Finished messages come after the ChangeCipherSpec messages, they are

protected using the application data traffic keys derived in the handshake. These messages,

then, are the first to be protected as part of the Record Protocol. They are followed by

application data messages, now protected by the Record Protocol.

TLS 1.2 allows for static RSA [135] key exchange, static Diffie-Hellman key exchange [51],

as well as ephemeral Diffie-Hellman key exchange. In the case of an RSA key exchange,

the client will select a pre-master secret value and encrypt it with the server’s RSA

26

2.2 TLS 1.2 and Below

public key, received in the server’s Certificate message. This will form the client’s

ClientKeyExchange message. In the case of (ephemeral) Diffie-Hellman key exchange, the

client and the server will exchange Diffie-Hellman key shares in the ClientKeyExchange

and SeverKeyExchange messages, respectively.

Renegotiation. The cryptographic parameters established in the initial handshake

constitute a TLS session. A session can be updated via a renegotiation handshake. This

is a full handshake that runs under the protection of an already established TLS session.

This mechanism allows cryptographic parameters to be changed (for example, upgraded),

or client authentication to be demanded by a server (in the event that it was not requested

previously).

Session Resumption. In order to avoid the expensive public key operations in repeated

handshakes, TLS 1.2 also offers a lightweight resumption handshake in which a new master

secret is derived from the old pre-master secret and new nonces, thus forcing fresh

application data keys. Each such resumption handshake leads to a new TLS connection

within the existing session; many connections can exist in parallel for each session. A TLS

1.2 resumption handshake is depicted in Figure 2.3.

C S

ClientHello

ServerHello, ChangeCipherSpec, [Finished]

ChangeCipherSpec, [Finished]

[Application data]

Figure 2.3: TLS 1.2 resumption handshake

Pre-Shared Keys (PSKs), in this case symmetric keys established out-of-band prior to

communication, are allowed to be used in TLS 1.2 and below for authentication purposes.

Their use is described in TLS extensions RFC 4279 [59] and RFC 5487 [17]. They are

intended to avoid the use of expensive public key operations.

27

2.2 TLS 1.2 and Below

2.2.2 The Record Protocol

The Record Protocol provides a secure channel for transmission of application data (as

well as Handshake Protocol and Alert messages). In TLS 1.0 and 1.1, it uses a MAC-

then-Encode-then-Encrypt (MEE) construction, with the MAC algorithm being HMAC

instantiated with a range of hash functions and the encryption algorithm being instantiated

with CBC-mode of a block cipher or the RC4 stream cipher. Sequence numbers are

included in the cryptographic processing, creating a stateful secure channel in which

replays, deletions and re-orderings of TLS records can be detected. TLS 1.2 added support

for Authenticated Encryption with Associated Data (AEAD) schemes, with AES in Galois

Counter Mode (AES-GCM) being an increasingly popular option [138].

Our work in Chapters 4 and 5 of this thesis describe attacks on the RC4 stream cipher

when used in TLS 1.2 and below. We cover details concerning the operation of this cipher

in TLS in Chapter 4.

2.2.3 Security Properties

The TLS 1.2 Handshake Protocol is responsible for establishing the symmetric session keys

that will be used as part of the Record Protocol to provide confidentiality and integrity

for application data messages. The Handshake Protocol also (optionally) authenticates

communicating peers whilst establishing these keys. The stated goals and security properties

of TLS 1.2 are discussed in the Security Analysis section of the TLS 1.2 specification,

namely, Appendix F. According to this appendix, the Handshake Protocol should satisfy

the following TLS security properties:

1. Secrecy of Session Keys. Upon completion of the handshake, the client and the

server should have established a set of session keys which are known to the client

and the server only.

2. Peer (Entity) Authentication. In the case of unilateral authentication, upon

completion of the handshake, if a client C believes it is communicating with a server S,

then it is indeed S who is in the server role. An analogous property for the server also

holds in the case of mutual authentication, i.e., the server has a guarantee regarding

28

2.2 TLS 1.2 and Below

the identity of the client. Both forms of authentication are optional. It is also possible

that neither party authenticates. In this handshake variant, Diffie-Hellman is used as

the method of key exchange but, as noted in the specification, it is subject to the

well-known Man-In-The-Midde (MITM) attack in which an active attacker exploits

the lack of entity authentication to establish distinct session keys with the client

and the server, respectively, with the honest parties being oblivious to the MITM’s

presence.

3. Integrity of Handshake Messages. An active attacker should not be able to

successfully tamper with the handshake messages, potentially causing the client and

the server to adopt weak cipher suites.

Appendix D of the specification also addresses denial of service attacks as well as version

rollback attacks. Denial of service attacks against TLS are possible owing to the reliance

on the underlying TCP protocol. The opening up of a large number of TCP connections,

carrying TLS protocol messages, could overwhelm a server with TLS cryptographic com-

putations, and manipulation of the TCP protocol itself can also cause the termination

of TLS connections. TLS does not claim to be able to thwart this class of attacks. In

terms of version rollback attacks, the specification includes a countermeasure involving the

alteration of RSA encryption padding but this solution is not secure against all attackers

(further details can be found [50]).

The Record Protocol should satisfy the following desired property:

4. Protection of Application Data. This property is comprised of two sub-properties:

(i) Confidentiality of Application Data. Application data exchanged between a

client and a server should be known only to the client and the server.

(ii) Integrity of Application Data. The unauthorised manipulation of application

data exchanged between a client and a server should be detectable.

Showing that the Record Protocol confidentiality property is not achieved when RC4 is

used as the Record Protocol encryption algorithm in TLS 1.2 and below is the focus of our

work in Chapters 4 and 5.

29

2.3 TLS 1.3

We note here that TLS versions 1.0, 1.1 and 1.2 are all currently in use, with TLS 1.2

being the most popular for servers at the time of writing (according to SSL Pulse5).

2.3 TLS 1.3

Owing to the many attacks against TLS 1.2 and below, as well as pressure to improve

the protocols efficiency, since the Spring of 2014 the IETF has been working on the next

version of the protocol, TLS 1.3. In a large structural departure form TLS 1.2, the main

design goals of TLS 1.3 include [146]:

(i) encrypting as much of the handshake as possible,

(ii) re-evaluating the handshake contents,

(iii) reducing handshake latency – introducing a one Round-Trip Time (1-RTT) exchange

for full handshakes and a zero Round-Trip Time (0-RTT) mechanism for repeated

handshakes, and,

(iv) updating the record protection mechanisms.

We now discuss how TLS 1.3 meets these four requirements:

Handshake Encryption. The motivation behind handshake encryption is to reduce

the amount of observable data to both passive and active adversaries [146]. In contrast

to TLS 1.2, which only provides communicating entities with session keys to protect

application data, TLS 1.3 provides for the establishment of additional session keys to be

used for handshake encryption purposes. Handshake encryption begins immediately after

the handshake keys have been negotiated via a Diffie-Hellman exchange.

Handshake Contents. As will be discussed in the following section, the handshake

structure has been reworked for efficiency purposes. An additional server message has

been included to accommodate the event of a parameter mismatch, and compression of

application data has been removed. Static Diffie-Hellman and RSA have been removed

in favour of the Perfect Forward Secrecy (PFS)-supporting Ephemeral Diffie-Hellman
5Available at https://www.ssllabs.com/ssl-pulse/.

30

2.3 TLS 1.3

(DHE) and Elliptic Curve Ephemeral Diffie-Hellman (ECDHE) key exchange modes.6 RSA

certificates are still being used for entity authentication purposes in both the DHE and

ECDHE modes. Server-side signatures have been mandated in all handshake modes.

Handshake Latency. The TLS 1.2 handshake required a two Round-Trip Time (2-RTT)

exchange prior to communicating entities being able to transmit application data. The

handshake has been reworked in TLS 1.3 to require just 1-RTT if no parameter mismatches

occur.

TLS 1.3 also includes a 0-RTT option in which the client is able to send application data

as part of its first flight of messages, offering a clear efficiency advantage over TLS 1.2.

Additionally, the pre-existing mechanism for PSKs has been extended to cover session

resumption. This mode also requires a single round trip, and less computation than a

full handshake. We describe its details when discussing PSKs and session resumption in

Sections 2.4 and 2.5.

Record Protection Mechanisms. The earlier versions of TLS used the MAC-then-

Encrypt generic composition scheme as a record protection mechanism. This scheme is

not secure in general [22], and while it is still used today in TLS 1.2, there was a proposal

to replace it by the Encrypt-Then-MAC paradigm (in RFC 7366 [74]). Similarly, when

Krawczyk [89] announced the OPTLS protocol on the TLS mailing list, a protocol intended

to serve as a theoretical basis for TLS 1.3, he stated it would use Encrypt-then-MAC for

record protection. Ultimately, the TLS WG decided that TLS 1.3 would avoid generic

composition schemes and only use block ciphers that can operate in AEAD modes [106].

All non-AEAD ciphers have thus been removed in TLS 1.3.

At the time of writing, TLS 1.3 has been through twenty-six draft iterations. In the sections

to follow we discuss two of these drafts, including the protocol details necessary for the

understanding of the work presented in Chapters 6 and 7.
6Academic works often refer to Perfect Forward Secrecy using lowing case letters. Where suitable, we

adopt this convention.

31

2.4 TLS 1.3 draft-10

2.4 TLS 1.3 draft-10

We now discuss draft-10 of the TLS 1.3 protocol, covering the draft’s Handshake Protocol,

its Record Protocol and its claimed security goals and properties.

2.4.1 The Handshake Protocol

Some of the most significant changes in TLS 1.3 are due to the newly introduced handshake

mechanisms. Here we provide a brief overview of these different handshake modes, starting

with a description of the regular, initial handshake.

Initial (EC)DHE Handshake. The solid message flows in Figure 2.4 represent this

handshake. Again, messages marked with an asterisk are optional or situation-dependent,

and the CertificateRequest, Certificate and CertificateVerify protocol messages

followed by an asterisk can be omitted if only unilateral (server) authentication is required.

Braces of the type { } indicate encryption under the handshake traffic keys, whereas braces

of the type [] indicate encryption under the application traffic keys.

C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare,
{EncryptedExtensions}, {ServerConfiguration*},

{Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

Figure 2.4: draft-10 (EC)DHE handshake

A client sends a server an offer of cryptographic parameters, including a client nonce, that

are later used to establish session keys (ClientHello). It also sends freshly generated

32

2.4 TLS 1.3 draft-10

Diffie-Hellman key shares along with the associated set of groups (ClientKeyShare). The

server responds with its choice of cryptographic parameters, including a server nonce and

a selected group from among those offered by the client (ServerHello). The server also

sends its own freshly generated Diffie-Hellman key share (ServerKeyShare), extensions not

used for key establishment (EncryptedExtensions) and an optional semi-static (EC)DH

key share to be used in later handshakes (ServerConfiguration). Also included in the

server’s first flight are its public key certificate for authentication purposes (Certificate),

an optional request for the client’s certificate in the case that mutual authentication

is desired (CertificateRequest), and a signature on all messages exchanged thus far

(CertificateVerify). The server’s Finished message comprises a MAC over the entire

handshake using a handshake key derived from the Diffie-Hellman key shares. Finally, if

the client received a request for authentication, the client either sends its own certificate

(Certificate) and a signature on the whole handshake thus far (CertificateVerify),

or a blank certificate representing no authentication. As in the server’s case, the client’s

Finished is a MAC over the entire handshake using a handshake key derived from the

Diffie Hellman key shares. The purpose of the Finished messages is to provide integrity

of the handshake.

If the client does not supply an appropriate key share in its first flight (it may sug-

gest groups that are unacceptable to the server, for instance), the server transmits a

HelloRetryRequest message in order to entice the client to change its key share offer.

Upon receipt of this message, the client should send a newly generated key share. These

messages are indicated as dashed arrows in Figure 2.4. If no common parameters can be

agreed upon, the server will send a handshake failure or insufficient security alert

and the session will be aborted.

0-RTT. Following the initial handshake in which the server provides the client with a

semi-static (elliptic curve) Diffie-Hellman share, the client is able to use this share to

generate a shared key which it then uses to encrypt early data. Figure 2.5 depicts the

draft-10 0-RTT handshake. The client’s EarlyDataIndication value signals a 0-RTT

handshake, which the server can choose to ignore (the server would then not process the

early data and a 1-RTT handshake would ensue). Braces of the type () indicate encryption

under the early traffic keys derived from the server’s semi-static key share and the client’s

ephemeral key share.

33

2.4 TLS 1.3 draft-10

C S

ClientHello, ClientKeyShare, EarlyDataIndication,
(EncryptedExtensions), (Certificate*),

(Certificate Verify*), (ApplicationData)

ServerHello, ServerKeyShare, EarlyDataIndication,
{EncryptedExtensions}, {ServerConfiguration*},

{Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Finished}

[Application data]

Figure 2.5: draft-10 0-RTT handshake

PSKs and Session Resumption. TLS 1.3 effectively merges the PSK and session

resumption functionalities of TLS 1.2 into a single handshake mode. There are two possible

sources of PSKs: new session tickets (NSTs) and out-of-band mechanisms. While the

former are specified in draft-10, the latter are not entirely clarified with regards to their

intended implementation or assumed security properties (this becomes more explicit in

later drafts). Figure 2.6 depicts a PSK handshake following an initial handshake. Note

that a new session ticket is sent by the server directly after receiving the client’s Finished

message in the initial handshake.

In this PSK resumption handshake, the client sends a key share in its first flight to allow

for the server to decline resumption and fall back to the full (EC)DHE handshake. The

PreSharedKeyExtension value indicates the identity of the PSK to be used in the exchange.

We note that a PSK handshake need not only take the form of a resumption handshake; if a

client and a server share an existing secret, a PSK handshake may be an initial handshake.

PSKs may also be used in conjunction with an (EC)DHE exchange so as to provide forward

secrecy; the corresponding mode is called PSK-DHE.

Key Derivation. In contrast to TLS 1.2, TLS 1.3 employs the use of handshake traffic

keys as well as application traffic keys. This keying material is derived from two secrets,

namely the ephemeral secret (es) and the static secret (ss). In the 1-RTT (EC)DHE

handshake, es and ss are identical with the secret being derived from the ephemeral client

34

2.4 TLS 1.3 draft-10

C S

Initial handshake (see Figure 2.4)

[NewSessionTicket]

[Application data]

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

{Finished}

[Application data]

Figure 2.6: draft-10 PSK resumption handshake (after an initial handshake)

and server key shares. In a PSK handshake, these two values are again identical and take

on the value of the PSK. In PSK-DHE mode, es is derived from the ephemeral client and

server key shares and ss is the PSK. In a 0-RTT handshake, es is again derived from the

ephemeral client and server key shares and ss is computed using the server’s semi-static

key share and the client’s ephemeral key share.

The secrets described above are used as inputs to a HMAC-based Key Derivation Fucntion

(HKDF) [86,88] in order to derive a master secret ms. This secret, in turn, is used in HKDF

computations to derive a resumption secret rs, an exporter secret exs, and application

data keys. Handshake traffic keys are derived from es, and early traffic keys, as well as the

finished secret fs, are derived from ss. These secrets and keys are derived according to

the schematic presented in Figure 2.7.

Another input to HKDF computations is the handshake hash. This consists of a hash of

all the handshake messages, including all client and server messages, up to the present time

but excluding the Finished messages. The final value of the handshake hash is called the

session hash. As such, the session keys established are cryptographically bound to both

of the shared secrets negotiated, and rely on both parties having a matching view of the

handshake transcript.

35

2.4 TLS 1.3 draft-10

ephemeral
secret

static
secret

xES xSS

master
secret

handshake
traffic keys

exporter
secret

resumption
secret

application
traffic keys

finished
secret

early
traffic keys

Figure 2.7: Key computation hierarchy for draft-10. Key computation secrets are
represented in blue and traffic keys are depicted in red. xES and xSS are HKDF outputs
derived using the ephemeral secret and the static secret, respectively. Exporter secrets are
created for application layer protocols wishing to leverage TLS keying material for their
own purposes, outside of the already provided TLS functionality, as per RFC 5705 [126].
Image adapted from [134].

2.4.2 The Record Protocol

Using keys established in the Handshake Protocol, the TLS 1.3 Record Protocol is respon-

sible for providing confidentiality and integrity of application data messages. It operates

on fragments (manageable blocks) of messages, protecting these fragments via the use of

AEAD mechanisms. As stated in Section 2.3, the list of supported symmetric algorithms to

be used as part of the Record Protocol now only includes AEAD algorithms. Upon receipt

of protected record fragments, the Record Protocol verifies, decrypts and reassembles

application data messages for delivery to the application protocol.

2.4.3 Security Properties

The TLS Record Protocol is claimed to provide confidentiality and integrity of application

data. The TLS Handshake Protocol is claimed to allow unilateral or, optionally, mutual

entity authentication, as well as establishing shared secrets that are unavailable to eaves-

36

2.4 TLS 1.3 draft-10

droppers and adversaries who can place themselves in the middle of the connection. The

handshake is claimed to be reliable: no adversary can modify the handshake messages

without being detected by the communicating parties.

The security properties for draft-10 are referred to in Appendix D (the security analysis

section) of the specification [127]. However, we note that this appendix contains the

disclaimer “Todo: Entire security analysis needs a rewrite”. As we will see in the next

section, this appendix did indeed get rewritten in subsequent drafts. The security properties

that the Handshake Protocol is required to satisfy (inferred from Appendix D) include the

following:

1. Secrecy of Session Keys. Upon completion of the handshake, the client and the

server should have established a set of session keys which are known to the client

and the server only.

2. Perfect Forward Secrecy (PFS). In the case of compromise of either party’s

long-term key material, sessions completed before the compromise should remain

secure. This property is not claimed to hold in the PSK-only handshake mode, nor

in the 0-RTT handshake mode.

In a PSK-only handshake, if compromised, the PSK could be used to decrypt all

messages previously protected by the PSK. In the 0-RTT case, the client is the only

party to have provided freshness, therefore early data messages may be replayed. In

addition, the security of the early data depends on the semi-static (elliptic curve)

Diffie-Hellman share, which may have a considerable validity period, and therefore

a large attack window. For these reasons, early data cannot be considered to be

forward secure.

3. Peer (Entity) Authentication. In the case of unilateral authentication, upon

completion of the handshake, if a client C believes it is communicating with a server S,

then it is indeed S who is in the server role. An analogous property for the server also

holds in the mutual authentication case. Authentication of the server is mandatory

in all handshake modes. Mutual authentication, i.e., additional authentication of the

client, is optional.

4. Integrity of Handshake Messages. An active attacker should not be able to

successfully tamper with the handshake messages, potentially causing the client and

37

2.5 TLS 1.3 draft-21

the server to adopt weak cipher suites.

The above properties form the focus of our work in Chapter 6. Besides the required need for

the protection of application data via the Record Protocol and the properties listed above,

as in the TLS 1.2 specification, Appendix D of the draft-10 specification also addresses

denial of service attacks as well as version rollback attacks. As stated previously, TLS does

not claim to be able to thwart denial of service attacks. Defending against version rollback

attacks, i.e., attacks which force the use of previous, potentially weaker versions of TLS

(or SSL), is rolled into the Downgrade Protection property mentioned in the next section.

2.5 TLS 1.3 draft-21

In comparison to draft-10 of the TLS 1.3 protocol, draft-21 [128] incorporates an altered

0-RTT handshake mode, a revised key schedule, and new post-handshake mechanisms, i.e.,

handshake-type mechanisms that can be executed at any time after a TLS 1.3 handshake

has been completed.

2.5.1 The Handshake Protocol

Initial (EC)DHE Handshake. In an initial (EC)DHE handshake, as depicted in

Figure 2.8, the client sends a ClientHello message containing a random nonce, i.e., a

freshly generated random value, and a list of symmetric algorithms. The client also

sends a set of Diffie-Hellman key shares and the associated groups, ClientKeyShare, and

potentially some other extensions (such as the preferred set of signature algorithms to be

used by the server, for instance).

Upon receipt of a ClientHello message, the server selects appropriate cryptographic

parameters for the connection and responds with a ServerHello message. This message

contains a server-generated random nonce, an indication of the selected parameters and

potentially some other extensions. The server also sends a ServerKeyShare message along

with an EncryptedExtensions message and optionally a CertificateRequest message.

The ServerKeyShare contains the server’s choice of group and its ephemeral Diffie-Hellman

38

2.5 TLS 1.3 draft-21

key share. The client and server key shares are used to compute handshake and application

traffic keys. The EncryptedExtensions message contains material that is not necessary for

determining cryptographic parameters. For instance, the draft specification lists the server

name and the maximum TLS fragment length as possible values to be sent in this message.

The CertificateRequest message indicates that the server requests client authentication

in the mutual authentication case.

The server will also send a Certificate message, containing the server’s certificate and

a CertificateVerify message, which is a digital signature over the current transcript.

These two messages allow the client to authenticate the server. The server also sends

a Finished message. This message is a MAC over the entire handshake, providing key

confirmation and binding the server’s identity to the computed traffic keys. As the server is

now in a position to establish the application data traffic keys, the server may send protected

application data at this point. However, as the client has not (yet) been authenticated,

this application data is being sent to an unauthenticated peer.

The client responds with Certificate and CertificateVerify messages, if requested,

and then sends its own Finished message. These message flows are depicted in Figure 2.8.

It can be the case that the groups sent by a client are not acceptable to the server and the

server may respond with a HelloRetryRequest message. This indicates to the client which

groups the server will accept, and provides the client with the opportunity to respond with

an appropriate key share before returning to the main handshake. The associated retry

request messages are indicated by dashed message flows in Figure 2.8.

PSKs and Session Resumption. The PSK handshake variant allows a client to use a

key established out-of-band to start a new session, or to use a new session ticket (NST)

established in a previous handshake to resume the session. In the event that a PSK has

been established, a client and a server can begin communicating without a Diffie-Hellman

exchange. This is potentially attractive for low-power environments. However, without

an ephemeral Diffie-Hellman exchange, the connection loses perfect forward secrecy. In

a PSK handshake, the server authenticates via a PSK. By combining a PSK with a

Diffie-Hellman exchange this mode maintains perfect forward secrecy. The PSK handshake

has the intended aim of avoiding the use of expensive public-key operations and, in the

case of a resumption and use of an NST, ties the security context of the new connection

to the original connection. In draft-21, the sending of NSTs acts as a post-handshake

39

2.5 TLS 1.3 draft-21

C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare,
{EncryptedExtensions}, {CertificateRequest*},

{Certificate}, {CertificateVerify},
{Finished}, [Application data*]

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

Figure 2.8: draft-21 (EC)DHE handshake

mechanism which we discuss in more detail in Section 2.5.3. As a server may reject a

resumption attempt made by a client, the specification recommends that the client supplies

an additional (EC)DHE key share with its pre-shared key (PSK) when trying to resume a

session. Figure 2.9 depicts a PSK resumption handshake.

C S

[NewSessionTicket] (at some point prior)

ClientHello, ClientKeyShare*, PreSharedKeyExtension

ServerHello, ServerKeyShare*
PreSharedKeyExtension, {EncryptedExtensions},

{Finished}, [Application data*]

{Finished}

[Application data]

Figure 2.9: draft-21 PSK resumption handshake

In contrast to draft-10 of TLS 1.3, draft-21 includes a PSK binder mechanism. A PSK

binder is a value that binds a PSK to the handshake where the PSK is offered by a client

in the PreSharedKeyExtension, and if a PSK was generated by the server in-band, to

40

2.5 TLS 1.3 draft-21

the handshake where it was generated. A PreSharedKeyExtension can contain multiple

binders arranged in a list, where each binder is computed as an HMAC over a hash of the

ClientHello up to but excluding the binder list.

0-RTT. A client can use a PSK to send application data in its first flight of messages,

reducing the latency of the connection. As noted in the draft-21 specification, this data is

not protected against replay attacks. If the communicating entities wish to take advantage

of the 0-RTT mechanism, they should provide their own replay protection at the application

layer. A 0-RTT handshake is depicted in Figure 2.10. The client’s early data is protected

by a PSK only, indicated by braces of the type ().

C S

ClientHello, ClientKeyShare*,
PreSharedKeyExtension, (Application data)

ServerHello, ServerKeyShare*
PreSharedKeyExtension, {EncryptedExtensions},

{Finished}, [Application data*]

{Finished}

[Application data]

Figure 2.10: draft-21 0-RTT handshake

Key Derivation. A TLS 1.3 handshake will generate a set of keys on which both the

client and the server agree. The draft-21 specification defines a key schedule which uses

the repeated application of an HKDF to combine the secret inputs with fixed labels so as

to generate a set of independent keys.

The key schedule has two secret inputs, the (EC)DHE key share and the PSK. Depending

on the handshake mode, either one or both of these will be used. The key schedule also

includes the transcript hash in the key derivation. As the transcript includes nonces, even

if the secret inputs are repeated, the generated keys are guaranteed to be independent.7

The respective key derivation secrets are derived according to the schematic presented in

Figure 2.11.
7Of course, collisions may occur with low probability

41

2.5 TLS 1.3 draft-21

PSK (EC)DHE

handshake
secret

master
secret

binder
secret

early
traffic keys

early
exporter secret

application
traffic keys

exporter
secret

resumption
secret

handshake
traffic keys

early
secret

Figure 2.11: Key computation hierarchy for draft-21. Key computation secrets are
represented in blue and traffic keys are depicted in red. Exporter secrets are created for
use in application layer protocols as previously described, and the binder secrets are for
computation of PSK binder values.

2.5.2 The Record Protocol

In comparison to draft-10, the operation of the Record Protocol has remained largely

unchanged. The Record Protocol section in draft-21 is, however, more precise and

explicitly discusses record boundary details. As this is an implementation concern, we do

not consider it in our modelling of the protocol in Chapter 7.

2.5.3 Post-Handshake Mechanisms

The TLS 1.3 draft-21 specification describes three post-handshake mechanisms:

New Session Ticket (NST). After a successful handshake, the server can issue an NST

at any time. These tickets specify a binding to a PSK (derived from the resumption

master secret) which can be used in subsequent handshakes. This differs to the draft-10

specification in which NSTs can only be sent immediately after an initial (EC)DHE

handshake.

42

2.5 TLS 1.3 draft-21

Post-Handshake Client Authentication. After a successful handshake, the server can

send a CertificateRequest message. If the client responds with an acceptable certificate

(and the accompanying digital signature), then the server might authenticate the client.

However, because the specification allows certificates to be rejected ‘silently’, the client

cannot be sure of its authentication status in general. We discuss this behaviour in greater

detail in Chapter 7.

Key Update. After a successful handshake, either party can request an application data

key update. As the read and write keys for application data are independent, either party

can immediately update their write key after requesting a key update. Current application

data keys are used as inputs to an HKDF function to create the new application data keys.

2.5.4 Security Properties

The TLS 1.3 Handshake Protocol negotiates cryptographic keys which are then used by

the Record Protocol to provide critical security guarantees, including confidentiality and

integrity of messages. As stated in the sections above, TLS 1.3 makes use of independent

keys to protect handshake messages and application data messages. Protection of the

handshake messages starts with the server’s EncryptedExtensions message, and in the

majority of handshake modes, protection of application data messages occurs after the

transmission of the server and client Finished messages, respectively. In draft-21, in the

case of a zero round trip time (0-RTT) handshake, any application data in the client’s first

flight of messages is protected with a PSK.

The TLS 1.3 draft-21 specification [128, Appendix E.1] lists eight properties that the

Handshake Protocol is required to satisfy:

1. Establishing Identical Session Keys. Upon completion of the handshake, the

client and the server should have established a set of session keys on which they both

agree.

2. Secrecy of Session Keys. Upon completion of the handshake, the client and the

server should have established a set of session keys which are known to the client

and the server only.

43

2.5 TLS 1.3 draft-21

3. Peer (Entity) Authentication. In the unilateral case, upon completion of the

handshake, if a client C believes it is communicating with a server S, then it is indeed

S who is executing the server role. An analogous property for the server also holds

in the mutual authentication case. Authentication of the server is mandatory and

mutual authentication is optional.

4. Uniqueness of Session Keys. Each run of the protocol should produce distinct,

independent session keys.

5. Downgrade Protection. An active attacker should not be able to force the client

and the server to employ weak cipher suites, or older versions of the TLS protocol.

6. Perfect Forward Secrecy (PFS). In the case of compromise of either party’s

long-term key material, sessions completed before the compromise should remain

secure. This property is not claimed to hold in the PSK key exchange mode.

7. Key Compromise Impersonation (KCI) Resistance. Should an attacker com-

promise the long-term key material of party A, the attacker should not be able to use

this key material to impersonate an uncompromised party in communication with A.

8. Protection of Endpoint Identities. The identity of the server cannot be revealed

by a passive attacker that observes the handshake, and the identity of the client

cannot be revealed even by an active attacker that is capable of tampering with the

communication.

As stated previously, 0-RTT mechanisms allow for replay of early data across sessions. The

draft-21 specification recommends addressing this at the application layer. We model

and discuss more fully the properties described above in Chapter 7 of this thesis. The

draft-21 specification refers to RFC 3552 [129] for an informal description of the TLS 1.3

threat model. This model assumes a Dolev-Yao adversary [53] – an adversary that can

perform MITM attacks by being able to replay, insert, delete, and modify messages at will.

We discuss this model, as well as our enhancements to it, in Chapter 7.

The material presented in this chapter informs the chapters to follow. Chapter 3 draws on

both the TLS 1.2 (and below) and TLS 1.3 information to discuss the different standardis-

ation procedures followed for TLS 1.2 and below, and TLS 1.3, respectively. Chapters 4

44

2.5 TLS 1.3 draft-21

and 5 are informed by the material on TLS 1.2 and below, and Chapters 6 and 7 make use

of the material provided on TLS 1.3

45

Chapter 3

Reactive and Proactive Standardisation
of TLS

Contents
5.1 Introduction . 104

5.2 Preliminaries . 108

5.3 Plaintext Recovery using the Mantin Biases 111

5.4 Recovering Multiple Plaintext Bytes 123

5.5 Simulation Results . 127

5.6 Conclusion . 130

In this chapter we explore the TLS standardisation process, examining factors which may

have contributed to the different standardisation cycles employed for TLS 1.2 and below

and TLS 1.3, respectively. We comment on the tools available for analysis, the levels of

academic involvement, and the incentives driving the agents involved in the standardisation

process.

3.1 Post-Deployment Analysis

The standardisation process for TLS 1.2 and below can arguably be described as reactive.

Following the announcement of attacks against the protocol, the TLS WG has responded

by either making the necessary changes to the next version of the standard or by releasing

interim recommendations or extensions. This conforms to what we will term the design-

release-break-patch cycle of standards development. In what follows, we outline this

development process as it pertains to TLS, highlighting high-profile attacks against the

protocol and the IETF’s responses to these attacks. We note that we provide just enough

46

3.1 Post-Deployment Analysis

technical detail concerning these attacks so as to effectively examine the IETF’s reactions.

This chapter is not intended to give a full technical account of each of the attacks mentioned;

the applicable references are provided for interested readers.

We note that each TLS version builds on the previous version, incorporating changes where

necessary. All TLS versions up to and including TLS 1.2 are currently in use, with clients

and servers often supporting more than one version. At the time of writing, almost 85% of

sites probed in the SSL Pulse1 survey support TLS 1.1, with support of TLS 1.0 and TLS

1.2 both being in the region of 90%.2

3.1.1 Design, Release, Break, Patch

The TLS standard officially sprang to life with a decision by the IETF to standardise a

version of the Secure Sockets Layer (SSL) protocol3 in 1996. The growing need to support

e-commerce and hence the growing deployment of the SSL protocol prompted the IETF

to this course of action. At this stage, two versions of SSL existed in the public domain,

namely SSLv2 and SSLv3 [66]. SSLv2 had a number of weaknesses, in particular offering

no defence against downgrade attacks. It was finally deprecated by the IETF in [147],

published in 2011.

In 1998, Bleichenbacher published an attack on RSA when encryption used the PKCS

#14 encoding scheme [81], affecting SSLv3 [37]. The attack targets the RSA-encrypted

pre-master secret sent from client to server (see Section 2.2.1) by using the distinctive

server-generated PKCS #1-padding error message as an oracle. Successive, adaptive calls

to this oracle allow an attacker to narrow in on the value of the pre-master secret, and once

this is obtained, the attacker is able to derive the symmetric keys used in the connection.

The TLS 1.0 standard [48] briefly addresses this attack in a two-paragraph note that

describes the following countermeasure: a server that receives an incorrectly formatted

RSA block should use a pre-generated, random 48-byte value as the pre-master secret

instead, thereby eliminating the oracle. The Bleichenbacher attack has been re-enabled (in
1SSL Pulse serves as a global dashboard, monitoring between 135,000 and 150,000 SSL- and TLS-enabled

websites. Websites are monitored over time and are selected based on the Alexa list of the most popular
websites worldwide. The dashboard is available at https://www.trustworthyinternet.org/ssl-pulse/.

2Support statistics for February 2018. Retrieved from https://www.trustworthyinternet.org/ssl-
pulse/.

3Designed by Netscape Communications in the 1990s.
4The first family of Public-Key Cryptography Standards (PKCS).

47

3.1 Post-Deployment Analysis

various forms) in several works [78,83,108], the most recent case being DROWN [16], a

cross-protocol attack targeting all versions of TLS running on servers that also support

SSLv2. Surprisingly, a large number of servers still support this legacy version of the

protocol.5

Following the release of TLS 1.0 [48], the first significant attack against TLS appears to be

Vaudenay’s padding oracle attack [42,149]. This attack exploits the specific Cipher Block

Chaining (CBC) mode padding format used by TLS in its MAC-then-Encode-then-Encrypt

(MEE) construction in the Record Protocol. The TLS WG initially responded to the attack

by adding a countermeasure to the attack in the TLS 1.1 specification [49]. This was

intended to equalise the running time of the reverse of the MEE processing – decryption,

decoding, MAC verification (DDM). This knowingly left a small timing channel, but it was

not believed to be exploitable. A decade later, in 2013, AlFardan and Paterson [11], in their

Lucky 13 attack, showed that in fact it was exploitable in a sophisticated timing attack.

Notably, the definitive patch against this attack required roughly 500 lines of new code in

the OpenSSL implementation, illustrating the difficulty of making the DDM operations

constant time. Moreover, several follow-up papers [9,12,13] have shown that variants of

the attack are still mountable in certain circumstances or for certain implementations.

Following the release of TLS 1.2 [50] in 2008, we see more of a “patch” process being

adopted by the TLS WG. During this time, we see an explosion of attacks against TLS.

We discuss some of these attacks next.

In 2009 Ray, Dispensa and Rex more or less simultaneously discovered the TLS Rene-

gotiation attack against the TLS handshake. By exploiting the lack of a cryptographic

binding between an attacker’s initial handshake and a subsequent renegotiation handshake

between an honest client and an honest server, the attacker is able to convince the server

to interpret traffic – both the attacker-injected traffic and the honest client’s traffic – as

coming from the honest client. The WG’s response to this attack was the announcement of

a mandatory TLS extension [132] applicable to all versions of TLS. The extension proposed

including the respective Finished messages in the client and server renegotiation Hello

messages, thus creating a binding between the two handshakes. Unfortunately, the Triple

Handshake attack of Bhargavan et al. [29] resurrected the Renegotiation attack by cleverly
5Approximately 3.5% of the roughly 150k servers surveyed by SSL Pulse still support SSLv2. Support

statistic for February 2018. Retrieved from https://www.trustworthyinternet.org/ssl-pulse/.

48

3.1 Post-Deployment Analysis

exploiting the interaction of various TLS resumption and renegotiation handshakes. The

attack completely breaks client authentication in TLS 1.2 and below.

In 2011 Duong and Rizzo announced the BEAST6 attack [57]. The attack affects the TLS

1.0 Record Protocol and makes use of the chained-IV vulnerability in CBC mode observed

by Moller [109] and Bard [19], though it has its roots in an observation of Rogaway [136]

from as early as 1995. BEAST exploits the fact that in TLS 1.0, the final ciphertext block

of a CBC-encrypted record becomes the IV for the next record to be encrypted. This

enables an attacker with a chosen plaintext capability to recover low entropy plaintexts.

The main significance of the BEAST attack is the clever use of malicious JavaScript running

in a victim’s browser to realise the low entropy, chosen plaintext requirement and thereby

mount an HTTP session cookie recovery attack against TLS. However, it should be noted

that the attack required a zero-day vulnerability7 in the browser in order to obtain the

required fine control over chosen plaintexts. The malicious JavaScript techniques were

leveraged a year later by the same authors in the CRIME8 attack (see [139] for a useful

description of the attack). Unlike BEAST, however, CRIME exploits the compression

side-channel inherent to all versions of TLS, a vulnerability noted in theoretical form by

Kelsey in 2002 [82]. Interestingly, whilst the BEAST and CRIME attacks can be seen

as having triggered the flood of research that followed, neither came from the academic

research community, but instead from the “hacker” community (which partly explains the

lack of formal research papers describing the attacks). Both attacks required a strong

understanding not only of the cryptographic aspects of the protocol, but also of how the

protocol is deployed in the web context.

The widespread response to CRIME was to disable TLS’s compression feature. However, this

does not completely solve the problem of compression-based attacks because compression

can also take place at the application layer and introduce similar side-channels (see the

BREACH and TIME attacks). A common response to BEAST was to switch to using

RC4 as the encryption method in the Record Protocol, since a stream cipher would not

be susceptible to the CBC vulnerabilities. Unfortunately, the RC4 keystream has long

been known to be biased [103], and these keystream biases were exploited in a number of

plaintext recovery attacks on TLS [10,40,68,113,148], leading to the IETF deprecating

RC4 in March 2015 in [122]. We say more about these attacks in Part II of this thesis.
6Browser Exploit Against SSL/TLS
7Details surrounding which zero-day was used were never specified.
8Compression-Ratio Info-leak Made Easy

49

3.1 Post-Deployment Analysis

Other notable attacks to follow the BEAST, CRIME and RC4 attacks include the

FREAK [26] and Logjam [8] attacks of 2015, and the SLOTH attack [34] of 2016. Both

FREAK and Logjam exploit the enduring widespread support for weak export-grade cryp-

tographic primitives. Whereas the FREAK attack affects certain TLS implementations, the

Logjam vulnerability, in contrast, is the result of a protocol flaw and targets Diffie-Hellman

key exchange in TLS. The attack requires a server to support export-grade cryptography,

and for the client to be willing to use low security Diffie-Hellman groups. An active attacker

can convince the server to provide an export-grade 512-bit group to a client that has

requested a non-export DHE cipher suite, and the client will in turn accept this weak

group as being valid for the DHE handshake. Clever use of a pre-computation phase for

state-of-the-art discrete logarithm algorithms in [8] allowed for the quick computation of

individual connections’ secrets. An early intimation of these types of cross-cipher-suite

attacks can be found in the work of Wagner and Schneier [151] as early as 1996. The

warning from this paper seems to have been either forgotten or ignored in subsequent

developments of TLS. Moreover, from version 1.1 onwards, export-grade cipher suites were

not supported by the TLS standards. However, as already noted, almost all servers do

support TLS 1.0 and so become vulnerable to this class of attack.

The change in TLS 1.2 from supporting the MD5/SHA-1 hash function combination to

supporting single hash functions for digital signatures meant that stronger hash functions,

such as SHA-256, could be used but alas, so could weaker hash functions, such as MD5.

Wang and Yu [152] described collision attacks against MD5 in 2005; the SLOTH attack [34]

exploits this weakness to break client authentication in TLS 1.2 when MD5-based signatures

are employed. The attacks presented are near-practical and falsify the belief of some

practitioners that only second-preimage resistance is required of the hash functions used

for TLS signatures.

We have described, at a high-level, a number of the most prominent attacks on TLS and

the TLS WG’s responses to these attacks. We now turn to examining whether or not

these attacks were adequately addressed, and indeed, to what extent they could have been

addressed by the standardisation process.

50

3.1 Post-Deployment Analysis

3.1.2 Fixes, Constraints and Time Lags

The TLS 1.2 specification provides the following cautionary note with regards to the

Bleichenbacher attack:

"a TLS server MUST NOT generate an alert if processing an RSA-encrypted

premaster secret message fails, or the version number is not as expected.

Instead, it MUST continue the handshake with a randomly generated pre-

master secret. It may be useful to log the real cause of failure for

troubleshooting purposes; however, care must be taken to avoid leaking

the information to an attacker (through, e.g., timing, log files, or

other channels.)"

Upon first glance, the countermeasure appears adequate. However, as pointed out by Jager

et al. [78], the discovery of new side-channels and the development of more sophisticated

analysis techniques allow for the implementation of Bleichenbacher-style attacks even

though the vulnerability was thought to be successfully patched. The attacks by Meyer et

al. [108] on implementations of TLS serve as an example of this. One course of action open

to the TLS WG was to remove the use of the PKCS#1 v1.5 encoding scheme in favour of

the PKCS#1 v2.1 encoding scheme (implementing OAEP padding) [79]. This would have

been more secure against the Bleichenbacher attack and all envisionable variants. However,

as is explained in the TLS 1.1 and TLS 1.2 RFCs, in order to maintain compatibility

with earlier TLS versions, this replacement was not made. We presume that the desire to

maintain backwards compatibility and confidence in the ad hoc countermeasure trumped

the evidently better security available from the use of PKCS#1 v2.1.9

A very similar situation pertains to padding oracle attacks and Lucky 13: an implementation

patch was put in place in TLS 1.1 and 1.2, but shown to be inadequate by the Lucky 13

attack [11]. With hindsight, it would have been less effort overall, and less damaging to the

reputation of the protocol, to reform the MEE construction used in TLS at an earlier stage,

replacing it with a modern design fully supported by theoretical analysis (notwithstanding

the positive results of [87], whose limitations were pointed out in [117]). A repeated pattern

in the development of TLS 1.2 and below is that the TLS community (a larger group of
9We note that Manager published an attack on PKCS#1 v2.1 in 2001 [100], however, his work included

improvements to address the weaknesses uncovered, and by the release of TLS 1.1 in 2006, precautions
against this attack had been incorporated into the PKCS#1 v2.1 standard.

51

3.1 Post-Deployment Analysis

individuals and organisations than the TLS WG) seem to need to see concrete working

attacks before addressing a potential vulnerability or adopting an intrinsically more secure

solution, rather than applying a patch to each specific vulnerability.

In the case of attacks that exploit the existence of primitives or mechanisms that have long

been known to exhibit weaknesses, the simple (but naive) solution is to simply consider

removing a primitive or mechanism as soon as it is shown to be weak. However, this

might not be straightforward given implementation and interoperability constraints. In

the case of FREAK and Logjam, the standardisation process cannot be faulted: the weak

export cipher suites were removed from TLS 1.1 and TLS 1.2 and these attacks exist as

a result of poor implementation choices by practitioners. Similar remarks apply to the

IV-chaining vulnerability, which while already known in 1995, was introduced to TLS 1.0

in 1999, but then removed in TLS 1.1 in 2006. Unfortunately, deployed versions of TLS did

not move so quickly, with widespread support for TLS 1.0 in servers even today. On the

other hand, all modern browsers will now prefer TLS 1.2 and Authenticated Encryption

with Associated Data (AEAD) cipher suites in an initial handshake attempt, thanks to

the long line of attacks on TLS’s CBC mode and RC4 options. In the case of SLOTH,

however, the issue might not be as clear-cut. MD5-based signature schemes should not

have been re-introduced in the TLS 1.2 RFC. And RC4 has a very long track-record of

weaknesses stretching back more than 15 years, meaning that its phasing out from TLS

could arguably have been initiated much sooner than it was, instead of waiting for the

attacks to become a threat. In many cases, particularly where hardware support for AES

is available, AES-GCM could have served as a better choice for encryption.

With the many research papers professing the security of the TLS Handshake Protocol

[31,71,77,90], the existence of attacks exploiting the interaction of various TLS handshakes

may have come as a surprise to the TLS community. However, even here, there were

early signs that things were amiss with the 1996 cross-cipher-suite attack of Wagner and

Schneier [151]. Perhaps the lack of a practical attack in that paper and in later papers

such as [105] led to a more relaxed attitude being adopted by the TLS WG here. The

subtle interaction of different TLS handshakes was never fully considered in any analysis of

TLS prior to the Triple Handshake attack of 2014 [29]. It is therefore not surprising that

attacks of this form would have slipped through the standardisation process. Yet it should

be remembered that the Triple Handshake attack is a resurrection of the Renegotiation

attack from 2009. This is indicative of insufficiently broad or powerful analysis tools having

52

3.2 Pre-Deployment Analysis

been available to the TLS WG in the period intervening between the two attacks.

We argue that, in general and in view of the extreme importance of TLS, a much more

conservative approach to dealing with attacks on TLS is warranted. We do, however,

appreciate that bringing about meaningful change is challenging given (i) the large scale and

wide diversity of TLS deployment, (ii) the historical reticence of the major implementations

to code newer versions of the protocol (especially TLS 1.2), and (iii) the slowness with

which users (particularly on the server side) have tended to update their TLS versions.

3.1.3 Impact and Incentives

In the design-release-break-patch standardisation cycle, maximal reward for researchers

has come in the form of producing and promoting high impact attacks against TLS, and

engagement of the research community was largely encouraged in a retroactive fashion.

The obvious problem with this incentive model is that it leaves users of published standards

vulnerable to attack and imposes a potential patch action on the TLS WG. In the next sec-

tion we show that a shift in the standardisation cycle leaves the opportunity for researchers

to have impact (of a different kind) whilst positively benefiting the standardisation process.

3.2 Pre-Deployment Analysis

In contrast to the development of TLS 1.2 and below, the standardisation process for

TLS 1.3 has been proactive in nature. It has followed what we describe as the design-

break-fix-release cycle for standards development. Working more closely with the research

community, the TLS WG has released multiple protocol drafts and welcomed analyses of

the protocol before its final release. This design philosophy has simultaneously led to the

discovery of weaknesses and provided confidence in the WG’s design decisions. We explore

the factors that have enabled this newer process by considering the improvements in the

protocol analysis tools available, as well as the shift in design attitudes and incentives.

53

3.2 Pre-Deployment Analysis

3.2.1 Design, Break, Fix, Release

As stated in the previous chapter, the two broad design goals for TLS 1.3 have been (i) to

improve efficiency of the Handshake Protocol and (ii) to address the weaknesses identified

in TLS 1.2 and below. The initial challenge for the TLS WG was to go about achieving

these goals without having to invent an entirely new protocol: in addition to requiring

new code libraries, a new protocol might introduce new weaknesses. The development of

Google’s QUIC Crypto by Langley and Chang [93] in 2013, offering a zero round-trip time

(0-RTT) capability for the QUIC protocol [137], put pressure on the TLS WG to consider

ways of reducing handshake latency in TLS 1.3. And, after the flurry of attacks in the

preceding years, the protocol was due an overhaul to remove weak or broken features.

In comparison to TLS 1.2 and below, the first few drafts of TLS 1.3 (beginning with draft

00 in April 2014) incorporated changes that aimed to fortify the protocol against known

attacks, such as the removal of support for compression, as well as the removal of static

RSA and Diffie-Hellman key exchange mechanisms, leaving ephemeral Diffie-Hellman as

the only method of key exchange. Troublesome record layer cipher suites, such as those

allowing for the use of CBC mode and RC4 were also removed, leaving AEAD algorithms

as the only supported algorithms for record layer protection. Handshake latency was also

reduced by the introduction of a one round-trip time (1-RTT) TLS handshake (previously

an initial handshake required two round trips before a client and a server could start

exchanging application data).

Two important changes that were introduced in the drafts up to and including draft-05

are the concept of a session hash and the removal of the renegotiation handshake. At the

time of release of draft-04, the session hash constituted a hash value of all messages in a

handshake starting with the ClientHello, up to and including the ClientKeyExchange.

The session hash is included in the key derivation process to prevent an active attacker from

synchronising the master secret across two different sessions, a trick employed in the

Triple Handshake attack [29]. The removal of renegotiation prevents renegotiation-based

attacks, the Triple Handshake attack again serving as an example of this class of attack.

In terms of analysis of TLS 1.3, Dowling et al. [54] and Kohlweiss et al. [85] published

works on draft-05, the latter set of authors using a constructive-cryptography approach

to provide security guarantees for the protocol. Their work highlights that the design

54

3.2 Pre-Deployment Analysis

choice in TLS 1.3 to separate out the Handshake and Record protocols helps with their

analysis, and indeed with provable security approaches in general. (Recall that in TLS 1.2

and below, the application traffic keys derived in the Handshake Protocol were used to

encrypt the Finished messages of the Handshake Protocol itself. This interaction adds

significant complexity to analyses of TLS 1.2 and below, in particular because it violates

the standard indistinguishability security goal for a key exchange protocol.)

Dowling et al. [54] used the multi-stage key exchange model of Fischlin and Günther [60]

to show that the keys output by the Handshake Protocol could be securely used in the

Record Protocol. Their work included several positive comments regarding the soundness

of the TLS 1.3 design, thereby explicitly providing useful feedback to the TLS WG.

In draft-07 we see the most radical shift away from TLS 1.2, with the cryptographic core

of the TLS handshake becoming strongly influenced by the OPTLS protocol of Krawczyk

and Wee [91], with many OPTLS elements being incorporated into the draft. OPTLS

has been expressly designed to be simple and modular, offering a 1-RTT, forward secure

TLS handshake that employs ephemeral Diffie-Hellman key exchange. OPTLS also offers

0-RTT support as well as a pre-shared key (PSK) mode, capturing the use case in which a

client and a server enter into the protocol having previously shared a key. This particular

mode is of relevance from draft-07 onwards as the TLS 1.2-style resumption mechanism

is replaced with a mechanism that makes use of PSKs. This draft included a 0-RTT

handshake and key derivation schedule that is similar to that of OPTLS, employing the

HKDF primitive designed by Krawczyk [88]. The OPTLS designers provided a detailed

analysis of their protocol in [91], again providing the TLS WG with confidence in its design

choices.

However, it should be noted that significant changes were made in adapting OPTLS to

meet the needs of TLS. For example, OPTLS originally assumed that servers’ long term

keys would be Diffie-Hellman values, in turn supported by certificates. However, such

certificates are not widely used in practice today, potentially hindering deployment of TLS

1.3. Thus, in the “translation” of OPTLS into TLS 1.3, a two-level process was assumed,

with the server using a traditional signing key to authenticate its long-term Diffie-Hellman

value. But this created yet another real-world security issue: if an attacker can gain access

to a server’s signing capability just once, then he would be able to forge a credential

enabling him to impersonate a server on a long-term basis. Thus it was decided to change

55

3.2 Pre-Deployment Analysis

the signature scope to also include client-supplied, session-specific information, limiting the

value of any temporary access to the signing capability. This reduces the efficiency of the

protocol, since now a fresh signature must be produced by the server in each handshake.

Notable changes in draft-08 and draft-09 of the protocol include the removal of support

for MD5-based signatures as well as the deprecation of SHA-1-based signatures, partly in

response to the SLOTH vulnerability [34] and as a result of pressure from practitioners and

researchers to remove these weak primitives, as evidenced on the TLS mailing list [69,70].

Cremers et al. [46] performed an automated analysis of TLS 1.3 using the Tamarin

prover [6]. Their model covers draft-10 and their analysis showed that this draft meets

the goals of authenticated key exchange. They used a symbolic model to analyse the

interaction of the various handshake components of draft-10. Anticipating the inclusion

of the post-handshake client authentication mechanism in the TLS 1.3 series of drafts, they

discovered a potential interaction attack which would break client authentication. Their

attack was communicated to the TLS WG, and draft-11, which officially incorporated

the post-handshake client authentication mechanism, included the necessary fix as part of

the design. This work will be described in detail in Chapter 6 of this thesis.

In concurrent work to [46], Li et al. [95] analysed the interaction of the various TLS 1.3

handshake modes in the computational setting using their multi-level&stage security model.

They found draft-10 to be secure in this model. The post-handshake authentication

threat was not identified in this work presumably because this mechanism was not officially

part of draft-10.

In February of 2016, just prior to the release of draft-12, the Internet Society hosted a

“TLS Ready or Not?” (TRON) workshop. The workshop showcased analyses of TLS 1.3,

both published and under development, bringing together members of the TLS Working

Group, researchers and industry professionals with the aim of testing the readiness of TLS

1.3 in its then current form. Besides the aforementioned works by Kohlwiess et al. [85],

Krawczyk and Wee [91], and Cremers et al. [46], there were several other presentations

highlighting progress in the protocol’s development, as well as the challenges still facing

the TLS WG. Dowling et al. updated their previous analysis to cover draft-10 [55],

showing the full (EC)DHE handshake to be secure in the multi-stage key exchange setting.

Bhargavan et al. introduced ProScript [32], a JavaScript variant of their verified TLS

56

3.2 Pre-Deployment Analysis

implementation, miTLS [3,30]. Interestingly, ProScript also allows for the extraction of

a symbolic model for use within the ProVerif protocol analysis tool [4, 35]. This work

highlighted the potential dangers of incorporating certificate-based authentication into

PSK handshakes, a potential protocol extension being considered by the TLS WG. Work

on the secure of implementation of TLS 1.3 by Berdouche et al. [25] considered how to

maintain compatibility with current TLS versions whilst protecting against downgrade

attacks, and highlighted simplifications to the protocol which could be beneficial from an

implementation point of of view.

Importantly, the TRON workshop led to discussions between the WG and the research

community regarding potential simplifications and enhancements to the protocol, informing

subsequent drafts of the protocol.

At around the same time as the TRON workshop, an analysis by the Cryptographic

protocol Evaluation towards Long-Lived Outstanding Security (CELLOS) Consortium,

using the ProVerif tool, was announced on the TLS WG mailing list [14,104]. This work

showed the initial (EC)DHE handshake of draft-11 to be secure in the symbolic setting.

Further publications of relevance to TLS 1.3 include the work on downgrade resilience by

Bhargavan et al. [28] and the work on key confirmation by Fischlin et al. [61]. The first

provides suggestions on how to strengthen downgrade security in TLS 1.3 and the second

provides assurances regarding the key confirmation mechanisms used.

A smaller ad hoc meeting informally called “TRON2” took place in May 2016. At this

meeting, the latest changes to the protocol were discussed, further formal analysis was

presented, and TLS 1.3 implementations were compared.10

Since the TRON2 meeting, more work on TLS 1.3 has been produced, including work by

Bhargavan et al. [27] on draft-18 that proposes a methodology for developing verified

symbolic and computational models of TLS 1.3 together with a high-assurance reference

implementation of the protocol. This work includes a symbolic ProVerif model, as

well as a computational CryptoVerif11 model, of draft-18, and an interoperable

implementation of TLS 1.0 through 1.3 known as RefTLS which allows for the extraction
10See https://www.mitls.org/tron2/ for details.
11An automated tool for the construction of models and the production of the corresponding proofs in

the computational setting. Available at [1].

57

3.2 Pre-Deployment Analysis

of symbolic ProVerif models from its statically typed JavaScript code. The authors’

symbolic and computational analyses of draft-18 of TLS 1.3 find that the protocol meets

its desired security properties, however, they explain a scenario in which an attacker is

able to mount an authenticated replay attack, i.e., a replay of an authenticated client’s

data, in the 0-RTT handshake case. The TLS 1.3 draft does not claim to prevent replays

of 0-RTT data, however, in response to the scenario presented in [27], it now includes

warnings regarding this type of attack. The work also confirmed the downgrade resistance

inherent in TLS 1.3, with respect to previous versions of TLS, and presented an important

tool for the development of TLS 1.3 implementations – a reference implementation with

support for symbolic verification.

Further progress on TLS 1.3 implementations includes the work by Delignat-Lavaud et

al. [47] which builds and verifies the first reference implementation of the TLS 1.3 Record

Protocol (as described in draft-19). Plugging their implementation into the miTLS

library [3], the authors show interoperability with the Chome and Firefox browsers.

Using their previous draft-10 analysis as a foundation, Cremers et al. developed a symbolic

model of draft-21 of the TLS 1.3 protocol using the Tamarin prover [45]. This work

shows that many of the TLS 1.3 handshake modes meet the desired properties, however,

the work also uncovers an unexpected authentication behaviour in the post-handshake

authentication setting. We discuss this work in more detail in Chapter 7 of this thesis.

Much of the work pertaining to draft-18 and beyond was presented at the “TLS 1.3:

Design, Implementation & Verification Workshop” (TLS:DIV) that was co-located with

the IEEE European Symposium on Security and Privacy and the Eurocrypt conferences

of 2017. This workshop again showcased the bringing together of the TLS WG and the

academic community, highlighting the collaborative nature of the TLS 1.3 design process

with an emphasis on finding and remedying flaws prior to the protocol’s official release.

3.2.2 Available Tools

Since the release of TLS 1.2 in 2008, cryptographic protocol analysis tools have developed

and matured to the extent that they can now effectively serve a proactive standardisation

process, thereby contributing to, and perhaps even enabling, a more collaborative design

58

3.2 Pre-Deployment Analysis

effort for TLS 1.3. Significant advances have been made across all fronts, from lower-level

primitives such as key derivation and authenticated encryption, to higher level primitives

such as authenticated key exchange and cryptographic modelling of secure channels.

An early analysis of the TLS protocol itself can be found in the work of Gajek et al. [67] in

2008. However, their analysis only covers unauthenticated key exchange. Many refinements

and advances in the area of provable security for TLS have since been made. A major

on-going challenge has been to provide accurate modelling of the protocol and to capture

the complexity of its many interacting components and modes. In 2010, Morrissey et

al. [111] also analysed the TLS Handshake Protocol. However, their work only considered

a truncated version of the protocol (with no encryption of Finished messages), assumed

that a CCA-secure encryption scheme was used for key transport (which is unrealistic

given that TLS implementations employ PKCS#1 v1.5-based RSA encryption), and relied

on the random oracle model. In 2012, Jager et al. [77] introduced the Authenticated

and Confidential Channel Establishment (ACCE) security model in an attempt to handle

the unfortunate mixing of key usage in the Handshake and Record protocols; they used

the ACCE model to analyse certain Diffie-Hellman-based key exchanges in TLS. Their

work built in part on a 2011 work of Paterson et al. [117], who introduced the notion of

length-hiding Authenticated Encryption, which models desired security goals of the TLS

Record Protocol.

Further important works include those by Krawczyk et al. [90] and Kohlar et al. [84]. The

former work analysed multiple, different TLS key exchange methods using a single, uniform

set of proof techniques in the ACCE setting, while the latter extended the work of Jager

et al. to show that the RSA and Diffie-Hellman handshakes can be proven secure in the

mutual authentication setting. Li et al. [96] performed a similar task for pre-shared key

cipher suites. Giesen et al. [71] explicitly consider multiple Handshake Protocol runs and

their interactions in their formal treatment of the security of TLS renegotiation, while

Dowling and Stebila [56] examined cipher suite and version negotiation in TLS. All of these

works offer techniques that have been harnessed, and extended, in the analysis of TLS 1.3,

prior to its final release. Moreover, they represent a growth in interest in the TLS protocol

from the research community, a necessary precursor to their greater involvement in the

TLS 1.3 design process.

A major step forward in the domain of program verification for TLS came with the first

59

3.2 Pre-Deployment Analysis

release of the miTLS reference implementation in 2013 [3, 30]. The miTLS implementation

integrates software security and computational cryptographic security approaches so as to

obtain security proofs for TLS source code. This approach aims to eliminate the reliance on

the simplifying assumptions employed by the more traditional provable security techniques

– those tend to analyse abstract and somewhat high-level models of TLS and tend to

ignore many implementation details in order to obtain tractable models (in the form of

pseudo-code) suitable for the production of hand-generated proofs; moreover, they tend

to focus on “fragments” of the TLS protocol suite rather than the entire system. Using

their approach, Bhargavan et al. provided a security analysis of the TLS 1.2 handshake as

implemented in miTLS [31]. The miTLS implementation provides a reference for the secure

implementation of TLS 1.2 and below, and interoperates with all major web browsers

and servers. Not only has the miTLS project lead to the discovery of vulnerabilities such

as the Triple Handshake attack and FREAK, but it has also left the TLS community

with tools such as FlexTLS [2] which allows for the rapid prototyping and testing of TLS

implementations. These tools have also been harnessed to assess TLS 1.3, as discussed in

the previous section.

The rise of automated protocol analysis tools such as ProVerif [4] and the Tamarin

prover [6] can also be counted as a boon for the TLS WG. The more recent Tamarin

tool, for instance, offers good support for Diffie-Hellman-based protocols and allows for

the instantiation of an unbounded number of protocol participants and sessions, making

it a good choice for the modelling and consequent symbolic analysis of TLS 1.3. Once

established, this type of model can also be easily adapted in response to protocol changes,

making this tool invaluable in an ongoing development process.

The advances in the areas of provable security, program verification and formal methods

have contributed to a development environment in which a design-break-fix-release stan-

dardisation cycle can thrive. Previously, the absence of these techniques, or the limited

experience in applying them to real-world protocols like TLS, would have limited the amount

of pre-release analysis that could have been performed, making a design-release-break-patch

standardisation cycle understandable, natural even, for TLS 1.2 and below.

60

3.2 Pre-Deployment Analysis

3.2.3 Impact and Incentives

In the development of TLS 1.3, the WG has taken many positive steps in aiming to protect

the protocol against the various classes of attacks mentioned in Section 3.1. Removal of

support for weak hash functions, renegotiation, and non-AEAD encryption modes, as well

as the introduction of the session hash mechanism serve as illustrative examples. The

WG has also made design choices that have eased the analysis of the protocol, such as

making a clean separation of the Handshake and Record Protocols, for instance. This is

undoubtedly a positive step by the WG to respond to the research community’s needs,

marking a shift in the WG’s design mindset. The TRON workshop also displays a desire by

the IETF to involve the research community in the design of TLS 1.3, and to incorporate

its contributions. The research community, on the other hand, has gained a much greater

awareness of the complexities of the TLS protocol and its many use cases, and has tried to

adapt its analyses accordingly. In view of the rising interest in, and focus on, TLS within

the research community over a period of years, and the attendant refinement of its analysis

tools, this community has been in a much better position to contribute to the TLS 1.3

design process than it was for former editions of the protocol.

The ability to adapt the protocol in response to potential attacks, such as those identified

by Cremers et al. [46] and Bhargavan et al. [32], makes for a stronger protocol and has

allowed the WG to implement changes pre-emptively, hopefully reducing the need to

create patches post-release. In comparison to the previous process described in Section

3.1, the design-break-fix-release standardisation cycle appears to leave the incentives for

researchers unchanged, with a number of top-tier papers being produced prior to the

protocol’s finalisation. However, it is notable that these papers provide largely positive

security results about TLS 1.3 rather than new attacks. We consider this to be as a result

of the research community’s stronger appreciation of the importance of TLS and its greater

awareness of the value in contributing to its standardisation, in comparison to former

development cycles.

61

Part II

Attacking TLS 1.2 and Below

62

Chapter 4

Password Recovery Attacks Against RC4

Contents
6.1 Introduction . 135

6.2 Preliminaries . 139

6.3 draft-10 Analysis . 154

6.4 Conclusion . 173

In this chapter we introduce password recovery attacks against RC4 in TLS. We describe the

RC4 algorithm, discuss the relevant single- and double-byte keystream biases, and provide

further background on password distributions. We present a formal Bayesian analysis

that combines an a priori password distribution with keystream distribution statistics to

produce a posteriori password likelihoods, yielding a procedure which is truly optimal (if the

password distribution is known exactly). We demonstrate the effectiveness of our attacks via

extensive simulations and present a proof-of-concept implementation against a widely-used

application that makes use of passwords over TLS, namely BasicAuth.

4.1 Introduction

In 2013 the RC4 stream cipher suffered several blows from the academic community, as

evidenced in the works [10], [76] and [113]. The work in [10] by Al Fardan et al. specifically

targets RC4 when used in TLS, presenting two attacks aimed at recovering TLS-protected

HTTP session cookies. The first attack leverages the existence of single-byte biases in the

63

4.1 Introduction

early positions of the RC4 keystream, i.e., biases of the form

Pr(Zr = z) = 2−8 · (1 + ε),

where Zr denotes the r-th output byte of the RC4 keystream, z is a byte value, and ε 6= 0.

The attack exploits these biases to mount a ciphertext only attack against TLS. The attack

requires multiple, independent encryptions of the target plaintext, otherwise known as a

broadcast attack. The second attack exploits periodically occurring double-byte biases, i.e.,

biases of the form

Pr((Zr, Zr+1) = (z1, z2)) = 2−16 · (1 + ε),

where Zr and Zr+1 denote the r-th and (r + 1)-th output bytes of the RC4 keystream, z1

and z2 are byte values, and ε 6= 0. This attack also requires repeated encryptions of the

target plaintext.

Despite the existence of these attacks, SSL Pulse1 showed that, in February 2015, 74.5% of

the roughly 150,000 sites surveyed still allowed negotiation of RC4. Even worse, a January

2015 survey2 of about 400,000 of the Alexa top 1 million sites showed that 3712 of them,

or 0.79%, supported only RC4 cipher suites, and 8.75% forced the use of RC4 in TLS 1.1

and 1.2, where better ciphers (such as AES-GCM) were available. Adding to the affront,

March 2015 data from the ICSI Certificate Notary project3 showed that more than 30% of

SSL/TLS connections were still using RC4.

At the time, a major reason for RC4 remaining so popular was that while the attacks of [10]

broke RC4 in TLS in an academic sense, the attacks were far from being practical. For

example, the preferred cookie-recovery attack in [10] needs around 233 – 234 encryptions of a

16-byte, base64-encoded secure cookie to reliably recover it. The number is so high because,

with mainstream browsers and taking into account the verbosity of the HTTP protocol, the

target cookie is not located near the start of the RC4 keystream, meaning that the strong,

single-byte keystream biases in RC4 observed in [10] cannot be exploited. Rather, the

preferred attack from [10] uses the much weaker, long-term Fluhrer-McGrew double-byte

biases from [64]. This substantially increases the number of required encryptions before

the plaintext cookie can be reliably recovered, to the point where, even with highly-tuned
1Available at https://www.trustworthyinternet.org/ssl-pulse/.
2Available at https://securitypitfalls.wordpress.com/2015/02/01/january-2015-scan-results/.
3The International Computer Science Institute (ICSI) Certificate Notary project monitors live network

traffic, observing public key certificates in real time and recording the SSL/TLS cipher suites negotiated as
part of SSL/TLS handshakes.

64

4.1 Introduction

malicious JavaScript running in the victim’s browser generating 6 million cookie-bearing

HTTP POST requests per hour, the wall-clock time to execute the attack is on the order

of 2000 hours using the experimental setup reported in [10]; moreover the attack generates

many terabytes of network traffic. Thus the practical threat posed by the RC4 attacks

reported in [10] was arguably quite limited.

In this chapter we present attacks recovering TLS-protected passwords whose ciphertext

requirements are significantly reduced compared to those of [10]: we achieve a reduction

from 234 ciphertexts down to 226 – 228 ciphertexts. We also describe a proof-of-concept

implementation of these attacks against a specific application-layer protocol making use of

passwords, namely BasicAuth.

We revisit the statistical methods of [10], refining, extending and applying them to the

specific problem of recovering TLS-protected passwords. Our target is to reduce as much

as possible the ciphertext requirements of the original RC4 attacks from [10]. Our overall

objective when conducting this work was to bring the use of RC4 in TLS closer to the point

where it became indefensible and had to be abandoned by practitioners. Passwords served

as a good target for our attacks because they are still very widely used on the Internet

for providing user authentication, and are frequently protected using TLS to prevent

them being passively eavesdropped. It is true that major websites use secure cookies for

managing user authentication but the authentication is usually bootstrapped via password

entry. However, to build effective attacks, we needed to find and exploit systems in which

users’ passwords are automatically and repeatedly sent under the protection of TLS, so

that sufficiently many ciphertexts could be gathered for our statistical analyses.

Our contributions in this chapter are as follows:

(i) We present a formal Bayesian analysis that combines an a priori plaintext distribution

with keystream distribution statistics to produce a posteriori plaintext likelihoods.

This analysis formalises and extends the procedure followed in [10] for single-byte

attacks. There, only keystream distribution statistics were used (specifically, biases in

the individual bytes in the early portion of the RC4 keystream) and plaintexts were

assumed to be uniformly distributed, while here we also exploit (partial) knowledge

of the plaintext distribution to produce a more accurate estimate of the a posteriori

likelihoods. This yields a procedure that is optimal (in the sense of yielding a

65

4.1 Introduction

maximum a posteriori estimate for the plaintext) if the plaintext distribution is

known exactly. In the context of password recovery, an estimate for the a priori

plaintext distribution can be empirically formed by using data from password breaches

or by synthetically constructing password dictionaries. We will demonstrate, via

simulations, that this Bayesian approach improves performance (measured in terms

of success rate of plaintext recovery for a given number of ciphertexts) compared

to the approach in [10]. We develop two attack algorithms, the first making use

of a single-byte-based approximation for a vector of consecutive keystream bytes

(necessary for recovering a vector of consecutive plaintext bytes such as a password),

and the second making use of a double-byte based approximation for a vector of

consecutive keystream bytes. The dominant terms in the running time for both of

the resulting algorithms is O(nN) where n is the length of the target password and

N is the size of the dictionary used in the attack.

A major advantage of our new algorithms over the work in [10] is that they output

a value for the likelihood of each password candidate, enabling these to be ranked

and then tried in order against a user’s account. This fits neatly with how password

authentication often works in practice: users are given a pre-determined number of

tries before their account locks out.

(ii) We evaluate and compare our password recovery algorithms through extensive

simulations, exploring the relationships between the main parameters of our attack in

Table 4.1. Naturally, given the combinatorial explosion of possible parameter settings

(and the cost of performing simulations), we focus on comparing the performance

with all but one or two parameters or variables being fixed in each instance.

(iii) Our final contribution is to identify and apply our attacks to a specific and widely-

deployed application making use of passwords over TLS: BasicAuth. We introduce

the BasicAuth application and describe a proof-of-concept implementation of our

attacks against it, giving an indication of the practicality of our attacks.

Our attacks exhibit significant success rates with only S = 226 ciphertexts, in contrast

to the 234 ciphertexts required in [10]. This is because we are able to force the

target passwords into the first 256 bytes of plaintext, where the strong single-byte

keystream biases come into play. For example, with S = 226 ciphertexts, we would

expect to recover a length 6 BasicAuth password with a 44.5% success rate with

T = 5 tries; the rate rises to 64.4% if T = 100 tries are made. In practice, many sites

66

4.1 Introduction

Parameter Description
n The length in bytes of the target password.
S The number of available encryptions of the password.
r The starting position of the password in the plaintext

stream.
N The size of the password dictionary used in the attack.
T The number of tries made (meaning that our algorithm

is considered successful if it ranks the correct password
amongst the top T passwords, i.e., the T passwords
with highest likelihoods as computed by the algorithm).

algorithm choice Which of our two algorithms is used (the one computing
the keystream statistics using the product distribution
or the one using a double-byte-based approximation).

encoding Whether the passwords are base64 encoded before be-
ing transmitted, or are sent as raw ASCII/Unicode.

Table 4.1: Attack parameters

do not configure any limit on the number of BasicAuth attempts made by a client;

moreover a study [39] showed that 84% of websites surveyed allowed for up to 100

password guesses (though these sites were not necessarily using BasicAuth as their

authentication mechanism). As we will show, our result compares very favourably to

the previous attacks and to random guessing of passwords without any reference to

the ciphertexts.

However, there is a downside too: to make use of the early, single-byte biases in

RC4 keystreams, we have to repeatedly cause TLS connections to be closed and new

ones to be opened. Due to latency in the TLS Handshake Protocol, this leads to

a significant slowdown in the wall clock running time of the attack; for S = 226, a

fairly low latency of 100ms, coupled with exploiting browsers’ propensity to open

multiple parallel connections, we estimate a running time of around 300 hours for the

attack. This is still more than 6 times faster than the 2000 hours estimated in [10].

Related Work. The RC4 stream cipher has long been subject to analysis by the academic

community and has been shown to exhibit many weaknesess [63, 64, 72, 73, 99, 101, 103,

120,140]. Many of these weaknesses concern biases in the RC4 keystream, which in turn

have been exploited to recover plaintext. Within the context of TLS, besides the two

attacks by AlFardan et al. [10] against RC4 in TLS (using single-byte biases in the first

and double-byte Fluhrer-McGrew biases from [64] in the second), Isobe et al. [76] present

plaintext recovery attacks for RC4 using single-byte and double-byte biases, although their

67

4.1 Introduction

attacks are less effective than those of [10] and they do not explore in any great detail

the applicability of the attacks to TLS. The work by Ohigashi et al. [113] also introduces

plaintext recovery attacks against RC4 but instead makes use of the Mantin biases [101],

i.e., biases of the form

Pr ((Zr, Zr+1) = (Zr+G+2, Zr+G+3)) = 2−16
(

1 + e(−4−8G)/256

256

)
,

where G ≥ 0 is a small integer and Zr denotes the r-th output byte of the RC4 keystream.

In concurrent work to ours, Vanhoef and Piessens [148] conducted an extensive search for

new biases in RC4 keystreams, and settled on exploiting the Mantin biases in combination

with the Fluhrer-McGrew biases to target the recovery of HTTP session cookies from TLS

sessions. This work, along with the work of Ohigashi et al., is relevant to the material

presented in the next chapter and will be discussed in more detail therein (in Section 5.1).

In further concurrent work, Mantin presented the Bar Mitzvah attack against RC4 in

TLS [102]. The attack exploits the Invariance Weakness identified by Fluhrer et al. in

2001 [63]. Exploiting this weakness allows for a partial plaintext recovery attack against

RC4 in TLS, allowing for the recovery of the least significant bits (LSBs) of up to 100 bytes

of the encrypted stream. Unfortunately, owing to the infrequent presence of the desired

weakness in the RC4 keystream, an attacker needs to observe, on average, roughly 230

TLS connections before the attack is successful. Also, the verbosity of the HTTP protocol

ensures that no data of interest to an attacker is located within the first 100 bytes of the

encrypted stream, reducing the practical threat of the attack.

We note that several other works present attacks against RC4 outside of the context of

TLS, focusing on the stream cipher’s usage in WPA [115,116,143,144,150], and the HIVE

hidden volume encryption system [119]. We are currently not aware of any other attacks

that exploit biases in the RC4 keystream to specifically target passwords when protected

by RC4 in TLS.

68

4.2 Preliminaries

4.2 Preliminaries

We now present concepts and definitions that are relevant to the understanding of the

sections to follow. We introduce Bayes’ Theorem and include a description of the RC4

algorithm, explaining its usage in TLS. We provide more detail on the single- and double-

byte biases present in the RC4 keystream, and in particular, provide details concerning

our search for double-byte biases in the early positions of the RC4 keystream. We also

provide more detail concerning user-selected passwords.

4.2.1 Bayes’ Theorem

Named after Reverend Thomas Bayes in tribute to his foundational work on the theory of

probability [21], simply put, Bayes’ Theorem states that

Pr(A|B) = Pr(B|A) · Pr(A)
Pr(B) ,

where A and B are events, i.e., sets of outcomes of experiments to which probabilities are

assigned, and Pr(B) 6= 0. Pr(A|B) is the likelihood of A occurring given that B is true

(a conditional probability). Pr(B|A) is the likelihood of B occurring given that A is true.

Pr(A) and Pr(B) represent the probabilities of A and B occurring independently of each

other (known as marginal probabilities). We use this notion in our statistical attacks on

stream cipher encrypted plaintexts in Section 4.3.1.

4.2.2 The RC4 Algorithm

Originally a proprietary stream cipher designed by Ron Rivest in 1987, RC4 is remarkably

fast when implemented in software and has a very simple description. Details of the cipher

were leaked in 1994 and the cipher has been subject to public analysis and study ever since.

RC4 allows for variable-length key sizes, anywhere from 40 to 256 bits, and consists of two

algorithms, namely, a key scheduling algorithm (KSA) and a pseudo-random generation

algorithm (PRGA). The KSA takes as input an l-byte key and produces the initial internal

state st0 = (i, j,S) for the PRGA; S is the canonical representation of a permutation of

69

4.2 Preliminaries

Algorithm 1: RC4 key scheduling (KSA)
input : key K of l bytes
output : initial internal state st0
begin

for i = 0 to 255 do
S[i]← i

j ← 0
for i = 0 to 255 do

j ← j + S[i] +K[i mod l]
swap(S[i],S[j])

i, j ← 0
st0 ← (i, j,S)
return st0

Algorithm 2: RC4 keystream generator (PRGA)
input : internal state str
output : keystream byte Zr+1 updated internal state str+1
begin

parse (i, j,S)← str
i← i+ 1
j ← j + S[i]
swap(S[i],S[j])
Zr+1 ← S[S[i] + S[j]]
str+1 ← (i, j,S)
return (Zr+1, str+1)

the numbers from 0 to 255 where the permutation is a function of the l-byte key, and i and

j are indices for S. The KSA is specified in Algorithm 1 where K represents the l-byte key

array and S the 256-byte state array. Given the internal state str, the PRGA will generate

a keystream byte Zr+1 and updated state str+1 as specified in Algorithm 2.

4.2.3 Single-byte Biases in the RC4 Keystream

RC4 has several cryptographic weaknesses, notably the existence of various biases in the

RC4 keystream, see for example [10,73,101,103]. Large single-byte biases are prominent

in the early positions of the RC4 keystream. Mantin and Shamir [103] observed the

first of these biases, in Z2 (the second byte of the RC4 keystream), and showed how to

exploit it in what they termed a broadcast attack, wherein the same plaintext is repeatedly

encrypted under different keys. AlFardan et al. [10] performed large-scale computations to

estimate these early biases, using 245 keystreams to compute the single-byte keystream

70

4.2 Preliminaries

distributions in the first 256 output positions. They also provided a statistical approach to

recovering plaintext bytes in the broadcast attack scenario, and explored its exploitation in

TLS. Much of the new bias behaviour they observed was subsequently explained in [140].

Unfortunately, from an attacker’s perspective, the single-byte biases die away very quickly

beyond position 256 in the RC4 keystream. This means that they can only be used in

attacks to extract plaintext bytes which are found close to the start of plaintext streams.

This was a significant complicating factor in the attacks of [10], where, because of the

behaviour of HTTP in modern browsers, the target HTTP secure cookies are not so located.

4.2.4 Double-byte Biases in the RC4 Keystream

Fluhrer and McGrew [64] showed that there are biases in adjacent bytes in RC4 keystreams,

and that these so-called double-byte biases are persistent throughout the keystream. The

presence of these long-term biases (and the absence of any other similarly-sized double-byte

biases) was confirmed computationally in [10]. AlFardan et al. [10] also exploited these

biases in their double-byte attack to recover HTTP secure cookies.

Owing to the fact that we wish to exploit double-byte biases in early portions of the RC4

keystream and because the analysis of [64] assumes the RC4 permutation S is uniformly

random (which is not the case for early keystream bytes), we carried out extensive

computations to estimate the initial double-byte keystream distributions: we used roughly

4800 core-days of computation to generate 244 RC4 keystreams for random 128-bit RC4

keys (as used in TLS); we used these keystreams to estimate the double-byte keystream

distributions for RC4 in the first 512 positions.

While the gross behaviour that we observed is dominated by products of the known

single-byte biases in the first 256 positions and by the Fluhrer-McGrew biases in the

later positions, we did observe some new and interesting double-byte biases. In Figure

4.1, for instance, the influence of the single-byte key-length-dependent bias [72], and the

single-byte r-bias [10] are evident. The former can be observed as the strong vertical line

at Z16 = 0xEO, while the latter can be seen as the lines at Z16 = 0x10 and Z17 = 0x11.

The faint diagonal line appears to be a new double-byte bias (that is not accounted for as

a product of single-byte biases). It appears in many early positions. For example, it is at

least twice as strong as that arising in the product distribution for at least 64 of the 256

71

4.2 Preliminaries

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
,
P
o
si

ti
o
n
 1

7
 [

0
..
.2

5
5

]

Byte value, Position 16 [0...255]

INFILE using 1:2:(max(min(4194304*$3,1.0),-1.0))

-1

-0.5

 0

 0.5

 1

Figure 4.1: Measured biases for RC4 keystream byte pair (Z16, Z17). The colouring scheme
encodes the strength of the bias, i.e., the deviation from the expected probability of 1/216,
scaled by a factor of 222, capped at a maximum of 1.

possible byte values from positions (Z3, Z4) up to positions (Z110, Z111). It then gradually

disappears but reappears at around positions (Z192, Z193) (albeit as a positive bias) and

persists up to positions (Z257, Z258) (changing sign again at (Z255, Z256)).

The presence of horizontal and vertical lines in Figure 4.1 and the absence of other strong

biases, which is typical for the early positions, indicates that the adjacent bytes behave

largely independently of each other. In other words, there are very few strong conditional

biases in the first 256 positions of the RC4 keystream. For later positions in the keystream,

Figure 4.2 depicts what is typical in terms of bias behaviour: the presence of Fluhrer-

McGrew biases only. These are visible in Figure 4.2 at (Z384, Z385)= (0x00, 0x01) and

(0x81, 0xFF) for example.

Finally, of particular interest is the distribution of (Z1, Z2). Figure 4.3a shows the raw

distribution for this position pair, while Figure 4.3b shows the residual biases when

the product distribution of Z1 and Z2 is removed. Note that the raw distribution is

predominantly negatively biased; this is because of the effect of the large Mantin-Shamir

positive bias towards 0x00 in position Z2, and the compensating negative single byte biases

72

4.2 Preliminaries

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
,
P
o
si

ti
o
n
 3

8
5

 [
0

..
.2

5
5

]

Byte value, Position 384 [0...255]

INFILE using 1:2:(max(min(16777216*$3,1.0),-1.0))

-1

-0.5

 0

 0.5

 1

Figure 4.2: Measured biases for RC4 keystream byte pair (Z384, Z385). The colouring
scheme encodes the strength of the bias, i.e., the deviation from the expected probability
of 1/216, scaled by a factor of 224, capped at a maximum of 1.

for all other values of Z2. Note also the two diagonal lines in Figure 4.3b. The “positive”

(blue-coloured) diagonal here represents a negative bias in (Z1, Z2) for all byte pairs (z, z)

where z ∈ B \ {0x00} where B denotes the set of bytes {0x0x00, . . . , 0x0xFF}; this bias is

also evident in the raw distribution in Figure 4.3a. The “negative diagonal” in Figure 4.3b

shows that there is a systematic difference between the raw double-byte distribution and

the product distribution. It manifests itself as a white-coloured negative diagonal in the

raw double-byte distribution shown in Figure 4.3a; thus, in the raw distribution, it forms a

structured set of unbiased pairs against a largely negatively-biased background.

The only other previously known bias of this nature in this portion of the keystream is due

to Isobe et al. [76], who showed that:

Pr(Z1 = 0x00 ∧ Z2 = 0x00) = 2−16 · (1 + 20.996).

This bias is also evident in Figure 4.3. By contrast, the new diagonal biases are negative,

73

4.2 Preliminaries

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
,

P
o
si

ti
o
n
 2

 [
0

..
.2

5
5

]

Byte value, Position 1 [0...255]

INFILE using 1:2:(max(min(4194304*$3,1.0),-1.0))

-1

-0.5

 0

 0.5

 1

(a) Colouring scheme encodes the strength of the
bias, scaled by a factor of 222, capped at a maxi-
mum of 1.

 0

 32

 64

 96

 128

 160

 192

 224

 255

 0 32 64 96 128 160 192 224 255

B
y
te

 v
a
lu

e
,

P
o
si

ti
o
n
 2

 [
0

..
.2

5
5

]

Byte value, Position 1 [0...255]

INFILE using 1:2:(max(min(4194304*$3,1.0),-1.0))

-1

-0.5

 0

 0.5

 1

(b) Colouring scheme encodes the strength of the
bias after the product of single-byte biases for
positions Z1 and Z2 is removed, scaled by a factor
of 222, capped at a maximum of 1.

Figure 4.3: Measured biases for RC4 keystream byte pair (Z1, Z2).

sporting magnitudes in the region of 2−22. For example, we empirically observe:

Pr(Z1 = 0x14 ∧ Z2 = 0x14) = 2−16 · (1− 2−6.097).

We formally define a large double-byte bias to be one whose magnitude is at least 2−24. We

observed 103,031 such large biases in total. Note that with 244 keystreams, all such biases

are statistically significant and highly unlikely to arise from random fluctuations in our

empirical analysis. For, in each position pair (r, r + 1) we have 216 counters, one for each

possible pair (Zr, Zr+1), so, in the absence of any biases, each counter would be (roughly)

normally distributed with mean 244 · 2−16 = 228 and standard deviation σ of approximately
√

228 = 214. Then a bias of size 2−24 would lead to a counter value of around

244 · (2−16 + 2−24) = 228 + 26 · 214

which is a 64σ event. Using the standard tail bound for the normal distribution, even with

225 counters in total (across 512 positions), we would expect to see only 218 · e−2048/π � 1

such events.

We found that 643 (less than 1%) of the large biases that we observed were at least twice

the size (in absolute value) of biases resulting from the products of single-byte biases or of

the expected Fluhrer-McGrew bias in the same positions. In other words, most of the large

biases that we observed arise from the product distribution or are explained by Fluhrer

74

4.2 Preliminaries

and McGrew’s results. We also note that we did find double-byte biases in all the positions

predicted by Fluhrer and McGrew [64] starting from byte pair (Z4, Z5) onwards. This is

not surprising given that the idealised assumption concerning the internal state of the RC4

algorithm that was used in the analysis of [64] is well approximated after a few invocations

of the RC4 keystream generator. However, in many such cases, the magnitude of the bias

we observed is greater than is predicted by the Fluhrer-McGrew analysis. For example, in

byte pair (Z6, Z7) we observed

Pr(Z6 = 0x07 ∧ Z7 = 0xFF) = 2−16 · (1− 2−6.487),

whereas the corresponding specified Fluhrer-McGrew probability for this byte pair, namely

the (i+ 1, 0xFF) byte pair where i is the internal variable of the RC4 keystream generator,

is 216(1 + 2−8).

We do, however, note a transition to the regular Fluhrer-McGrew double-byte biases from

position 257 onwards. We also note the disappearance of the single-byte biases from roughly

this point onwards. This is illustrated in Figure 4.4, which shows the absolute value of the

largest single-byte bias observed in our data as a function of keystream position r.

2-22

2-21

2-20

2-19

2-18

2-17

 240 245 250 255 260 265 270 275

B
ia

s

Keystream Byte Position

Figure 4.4: Absolute value of the largest single-byte bias for keystream bytes Z240 to Z272.

75

4.2 Preliminaries

4.2.5 RC4 and the TLS Record Protocol

We provide an overview of the TLS Record Protocol with RC4 selected as the method for

encryption (further details for TLS 1.2 and below are given in Chapter 2 of this thesis).

Application data to be protected by TLS, i.e, a sequence of bytes or a record R, is processed

as follows: An 8-byte sequence number SQN, a 5-byte header HDR and R are concatenated

to form the input to an HMAC function. We let T denote the resulting output of this

function. In the case of RC4 encryption, the plaintext, P = T ||R, is XORed byte-per-byte

with the RC4 keystream. In other words,

Cr = Pr ⊕ Zr,

for the rth bytes of the ciphertext, plaintext and RC4 keystream respectively (for r =

1, 2, 3 . . .). The data that is transmitted has the form HDR||C, where C is the concatenation

of the individual ciphertext bytes.

The RC4 algorithm is initialised in the standard way at the start of each TLS connection

with a 128-bit encryption key. This key, k, is derived from the TLS master secret that is

established during the TLS Handshake Protocol; k is either established via the full TLS

Handshake Protocol or TLS session resumption. The first few bytes to be protected by

RC4 encryption is a Finished message of the TLS Handshake Protocol. We do not target

this record in our attacks since this message is not constant over multiple sessions. The

exact size of this message is important in dictating how far down the keystream our target

plaintext will be located; in turn this determines whether or not it can be recovered using

only single-byte biases. A common size is 36 bytes, but the exact size depends on the

output size of the TLS pseudo-random function (PRF) used in computing the Finished

message and of the hash function used in the HMAC algorithm in the Record Protocol.

Decryption is the reverse of the process described above. As noted in [10], any error in

decryption is treated as fatal – an error message is sent to the sender and all cryptographic

material, including the RC4 key, is disposed of. This enables an active attacker to force

the use of new encryption and MAC keys: the attacker can induce session termination,

followed by a new session being established when the next message is sent over TLS, by

simply modifying a TLS Record Protocol message. This could be used to ensure that the

76

4.2 Preliminaries

target plaintext in an attack is repeatedly sent under the protection of a fresh RC4 key.

However, this approach is relatively expensive since it involves a rerun of the full TLS

Handshake Protocol, involving multiple public key operations and, more importantly, the

latency involved in an exchange of 4 messages (2 complete round-trips) on the wire. A

better approach is to cause the TCP connection carrying the TLS traffic to close, either

by injecting sequences of FIN and ACK messages in both directions, or by injecting a RST

message in both directions. This causes the TLS connection to be terminated, but not

the TLS session (assuming the session is marked as “resumable” which is typically the

case). This behaviour is codified in [50, Section 7.2.1]. Now when the next message is sent

over TLS, a TLS session resumption instance of the Handshake Protocol is executed to

establish a fresh key for RC4. This avoids the expensive public key operations and reduces

the TLS latency to 1 round-trip before application data can be sent.

4.2.6 Passwords

Text-based passwords are arguably the dominant mechanism for authenticating users to

web-based services and computer systems. As is to be expected of user-selected secrets,

passwords do not follow uniform distributions. Various password breaches of recent years,

including the Adobe breach of 150 million records in 2013 and the RockYou leak of 32.6

million passwords in 2009, attest to this with passwords such as 123456 and password

frequently being counted amongst the most popular.4 For example, our own analysis of

the RockYou password data set confirmed this: the number of unique passwords in the

RockYou dataset is 14,344,391, meaning that (on average) each password was repeated 2.2

times, and we indeed found the most common password to be 123456 (accounting for about

0.9% of the entire data set). Our later simulations will make extensive use of the RockYou

data set as an attack dictionary. A more-fine grained analysis of this data set can be found

in [153]. We also make use of data from the Singles.org breach for generating our target

passwords. Singles.org is a now-defunct Christian dating website that was breached in

2009; religiously-inspired passwords such as jesus and angel appear with high frequency

in its 12,234 distinct entries, making its frequency distribution quite different from that of

the RockYou set.
4A comprehensive list of data breaches, including password breaches, can be found at http://www.

informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/.

77

4.3 Plaintext Recovery via Bayesian Analysis

There is an extensive literature regarding the reasons for poor password selection and usage,

including [7, 62, 154, 155]. In [38], Bonneau formalised a number of different metrics for

analysing password distributions and studied a corpus of 70M Yahoo! passwords (collected

in a privacy-preserving manner). His work highlights the importance of careful validation

of password guessing attacks, in particular, the problem of estimating attack complexities

in the face of passwords that occur rarely – perhaps uniquely – in a data set, the so-called

hapax legomena problem. The approach to validation that we adopt benefits from the

analysis of [38], as explained further in Section 4.4.

4.3 Plaintext Recovery via Bayesian Analysis

Our Bayesian analysis concerns vectors of consecutive plaintext bytes, which is appropriate

given passwords as the plaintext target. This however means that the keystream distribution

statistics also need to be for vectors of consecutive keystream bytes. Such statistics do

not exist in the prior literature on RC4, except for the Fluher-McGrew biases [64] (which

supply the distributions for adjacent byte pairs far down the keystream). Fortunately, in

the early bytes of the RC4 keystream, the single-byte biases are dominant enough that a

simple product distribution can be used as a reasonable estimate for the distribution on

vectors of keystream bytes. We also show how to build a more accurate approximation to

the relevant keystream distributions using double-byte distributions. This approximation is

not only more accurate but also necessary when the target plaintext is located further down

the stream, where the single-byte biases disappear and where double-byte biases become

dominant. Indeed, our double-byte-based approximation to the keystream distribution on

vectors can be used to smoothly interpolate between the region where single-byte biases

dominate and where the double-byte biases come into play (which is exhibited as a fairly

sharp transition around position 256 in the keystream, see Figure 4.4).

In the end, what we obtain is a formal algorithm that estimates the likelihood of each

password in a dictionary based on both the a priori password distribution and the

observed ciphertexts. This formal algorithm is amenable to efficient implementation using

either the single-byte based product distribution for keystreams or the double-byte-based

approximation to the distribution on keystreams.

78

4.3 Plaintext Recovery via Bayesian Analysis

We now present our formal Bayesian analysis of plaintext recovery attacks in the broadcast

setting for stream ciphers. We then apply this to the problem of extracting passwords,

specialising the formal analysis and making it implementable in practice based only on the

single-byte and double-byte keystream distributions.

4.3.1 Formal Bayesian Analysis

Suppose we have a candidate set of N plaintexts, denoted X , with the a priori probability

of an element x ∈ X being denoted px. We assume for simplicity that all the candidates

consist of byte strings of the same length, n. For example X might consist of all the

passwords of a given length n from some breach data set, and then px can be computed as

the relative frequency of x in the data set. If the frequency data is not available, then the

uniform distribution on X can be assumed.

Next, suppose that a plaintext from X is encrypted S times, each time under independent,

random keys using a stream cipher such as RC4. Suppose also that the first character of the

plaintext always occurs in the same position r in the plaintext stream in each encryption.

Let c = (cij) denote the S × n matrix of bytes in which row i, denoted c(i) for 0 ≤ i < S,

is a vector of n bytes corresponding to the values in positions r, . . . , r+ n− 1 in ciphertext

i. Let X be the random variable denoting the (unknown) value of the plaintext.

We wish to form a maximum a posteriori estimate for X, given the observed data c and

the a priori probability distribution px, that is, we wish to maximise Pr(X = x | C = c)

where C is a random variable corresponding to the matrix of ciphertext bytes.

Using Bayes’ theorem, we have

Pr(X = x | C = c) = Pr(C = c | X = x) · Pr(X = x)
Pr(C = c) .

Here the term Pr(X = x) corresponds to the a priori distribution px on X . The term

Pr(C = c) is independent of the choice of x (as can be seen by writing Pr(C = c) =∑
x∈X Pr(C = c | X = x) · Pr(X = x)). Since we are only interested in maximising

Pr(X = x | C = c), we ignore this term henceforth.

79

4.3 Plaintext Recovery via Bayesian Analysis

Now, since ciphertexts are formed by XORing keystreams z 5 and plaintext x, we can write

Pr(C = c | X = x) = Pr(W = w)

where w is the S × n matrix formed by XORing each row of c with the vector x and W

is a corresponding random variable. Then to maximise Pr(X = x | C = c), it suffices to

maximise the value of

Pr(X = x) · Pr(W = w)

over x ∈ X . Let w(i) denote the i-th row of the matrix w, so w(i) = c(i) ⊕ x. Then w(i)

can be thought of as a vector of keystream bytes (coming from positions r, . . . r + n− 1)

induced by the candidate x, and we can write

Pr(W = w) =
S−1∏
i=0

Pr(Z = w(i))

where, on the right-hand side of the above equation, Z denotes a random variable corre-

sponding to a vector of bytes of length n starting from position r in the keystream. We

can rewrite this as:

Pr(W = w) =
∏
z∈Bn

Pr(Z = z)Nx,z

where the product is taken over all possible byte strings of length n and Nx,z is defined as:

Nx,z = |{i : z = c(i) ⊕ x}0≤i<S |,

that is, Nx,z counts the number of occurrences of vector z in the rows of the matrix formed

by XORing each row of c with candidate x. Putting everything together, our objective is

to compute for each candidate x ∈ X the value:

Pr(X = x) ·
∏
z∈Bn

Pr(Z = z)Nx,z

and then to rank these values in order to determine the most likely candidate(s).

Notice that the expressions here involve terms Pr(Z = z) which are probabilities of oc-

currence for n consecutive bytes of keystream. Such estimates are not generally available

in the literature, and for the values of n we are interested in (corresponding to putative
5Note that we now let z denote n consecutive bytes of keystream. Previously, we used z to denote a

byte value.

80

4.3 Plaintext Recovery via Bayesian Analysis

Algorithm 3: Single-byte attack
input : ci,j : 0 ≤ i < S, 0 ≤ j < n – array formed from S independent encryptions of

fixed n-byte candidate X
r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution

output : {γx : x ∈ X} – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n− 1 do
for z = 0x00 to 0xFF do

N ′z,j ← 0

for j = 0 to n− 1 do
for i = 0 to S − 1 do

N ′ci,j ,j
← N ′ci,j ,j

+ 1

for j = 0 to n− 1 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z,j ← N ′z⊕y,j

Ly,j =
∑
z∈BNy,z,j log(pr+j,z),

for x = (x0, . . . , xn−1) ∈ X do
γx ← log(px) +

∑n−1
j=0 Lxj ,j

return {γx : x ∈ X}

password lengths), obtaining accurate estimates for them by sampling many keystreams

would be computationally prohibitive. For example, our computation for double-byte prob-

abilities discussed in Section 4.2.4 involved 244 keystreams and, with highly optimised code,

consumed roughly 4800 core-days of computation. This yields the required probabilities

only for n = 2. Moreover, the product
∏
z∈Bn involves 28n terms and is not amenable to

calculation. Thus we must turn to approximate methods to make further progress.

Note also that taking n = 1 in the above analysis, we obtain exactly the same approach as

was used in the single-byte attack in [10], except that we include the a priori probabilities

Pr(X = x) whereas these were (implicitly) assumed to be uniform in [10].

81

4.3 Plaintext Recovery via Bayesian Analysis

4.3.2 Using a Product Distribution

Our task is to derive simplified ways of computing the expression

Pr(X = x) ·
∏
z∈Bn

Pr(Z = z)Nx,z

and then to apply these to produce efficient algorithms for computing (approximate)

likelihoods of candidates x ∈ X .

The simplest approach is to assume that the n bytes of the keystreams can be treated

independently. For RC4, this is actually a very good approximation in the regime where

single-byte biases dominate (that is, in the first 256 positions). Thus, writing Z =

(Zr, . . . , Zr+n−1) and z = (zr, . . . , zr+n−1) (with the subscript r denoting the position of

the first keystream byte of interest), we have:

Pr(Z = z) ≈
n−1∏
j=0

Pr(Zr+j = zr+j) =
n−1∏
j=0

pr+j,z

where now the probabilities appearing on the right-hand side are single-byte keystream

probabilities, as reported in [10] for example. Then writing x = (x0, . . . , xn−1) and

rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
n−1∏
j=0

∏
z∈B

pr+j,z
Nxj ,z,j .

where Ny,z,j = |{i : z = ci,j ⊕ y}0≤i<S | counts (now for single bytes instead of length n

vectors of bytes) the number of occurrences of byte z in the column vector formed by

XORing column j of c with a candidate byte y.

Notice that, as in [10], the counters Ny,z,j for y ∈ B can all be computed efficiently by

permuting the counters N0x00,z,j , these being simply counters for the number of occurrences

of each byte value z in column j of the ciphertext matrix c.

In practice, it is more convenient to work with logarithms, converting products into sums,

so that we evaluate for each candidate x = (x0, . . . , xn−1) an expression of the form

γx := log(px) +
n−1∑
j=0

∑
z∈B

Nxj ,z,j log(pr+j,z).

82

4.3 Plaintext Recovery via Bayesian Analysis

Given a large set of candidates X , we can streamline the computation by first computing

the counters Ny,z,j , then, for each possible byte value y, the value of the inner sum∑
z∈BNy,z,j log(pr+j,z), and then reusing these individual values across all the relevant

candidates x for which xj = y. This reduces the evaluation of γx for a single candidate x

to n+ 1 additions of real numbers.

The above procedure, including the various optimisations, is specified as an attack in

Algorithm 3. We refer to it as our single-byte attack because of its reliance on the single-

byte keystream probabilities pr+j,z. It outputs a collection of approximate log likelihoods

{γx : x ∈ X} for each candidate x ∈ X . These can be further processed to extract, for

example, the candidate with the highest score, or the top T candidates.

4.3.3 Double-byte-based Approximation

We continue to write Z = (Zr, . . . , Zr+n−1) and z = (zr, . . . , zr+n−1) and aim to find an

approximation for Pr(Z = z) which lends itself to efficient computation of approximate log

likelihoods as in our first algorithm. Now we rely on the double-byte keystream distribution,

writing

ps,z1,z2 := Pr((Zs, Zs+1) = (z1, z2)), s ≥ 1, k1, k2 ∈ B

for the probabilities of observing bytes (z1, z2) in the RC4 keystream in positions (s, s+ 1).

We estimated these probabilities for r in the range 1 ≤ r ≤ 511 using 244 RC4 keystreams;

for larger r, these are well approximated by the Fluhrer-McGrew biases [64] (as was verified

in [10]).

We now make the assumption that, for each j,

Pr(Zj = zj | Zj−1 = zj−1 ∧ · · · ∧ Z0 = z0)

≈ Pr(Zj = zj | Zj−1 = zj−1),
(4.1)

meaning that byte j in the keystream can be modelled as depending only on the preceding

byte and not on earlier bytes. We can write

Pr(Zj = zj | Zj−1 = zj−1) = Pr(Zj = zj ∧ Zj−1 = zj−1)
Pr(Zj−1 = zj−1)

83

4.3 Plaintext Recovery via Bayesian Analysis

where the numerator can then be replaced by pj−1,zj−1,zj and the denominator by pj−1,zj−1 ,

a single-byte keystream probability. Then using an inductive argument and our assumption

(4.1), we easily obtain:

Pr(Z = z) ≈
∏n−2
j=0 pr+j,zj ,zj+1∏n−2
j=1 pr+j,zj

giving an approximate expression for our desired probability in terms of single-byte and

double-byte probabilities. Notice that if we assume that the adjacent byte pairs are

independent, then we have pr+j,zj ,zj+1 = pr+j,zj · pr+j+1,zj+1 and the above expression

collapses down to the one we derived in the previous subsection.

For candidate x, we again write x = (x0, . . . , xn−1) and rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
∏n−2
j=0

∏
z1∈B

∏
z2∈B p

Nxj ,xj+1,z1,z2,j

r+j,z1,z2∏n−2
j=1

∏
z∈B p

Nxj ,z,r+j

r+j,z

.

where Ny1,y1,z1,z2,j = |{i : z1 = ci,j⊕y1∧z2 = ci,j+1⊕y2}0≤i<S | counts (now for consecutive

pairs of bytes) the number of occurrences of bytes (z1, z2) in the pair of column vectors

formed by XORing columns (j, j+1) of c with candidate bytes (y1, y2) (and where Nxj ,z,r+j

is as in our previous algorithm).

Again, the counters Ny1,y2,z1,z2,j for y1, y2 ∈ B can all be computed efficiently by permuting

the counters N0x00,0x00,z1,z2,j , these being simply counters for the number of occurrences of

pairs of byte values (z1, z2) in column j and j + 1 of the ciphertext matrix c. As before,

we work with logarithms, so that we evaluate for each candidate x = (x0, . . . , xn−1) an

expression of the form

γx := log(px) +
n−2∑
j=0

∑
z1∈B

∑
z2∈B

Nxj ,xj+1,z1,z2,j log(pr+j,z1,z2)

−
n−2∑
j=1

∑
z∈B

Nxj ,z,r+j log(pr+j,z).

With appropriate pre-computation of the terms Ny1,y2,z1,z2,j log(pr+j,z1,z2) and Ny,z,r+j

log(pr+j,z) for all y1, y2 and all y, the computation for each candidate x ∈ X can be reduced

to roughly 2n floating point additions. The pre-computation can be further reduced by

computing the terms for only those pairs (y1, y2) actually arising in some candidate in X

in positions (j, j + 1). We use this further optimisation in our implementation.

84

4.4 Simulation Results

The above procedure is specified as an attack in Algorithm 4. We refer to it as our double-

byte attack because of its reliance on the double-byte keystream probabilities ps,z1,z2 . It

again outputs a collection of approximate log likelihoods {γx : x ∈ X} for each candidate

x ∈ X , suitable for further processing such as extracting the candidate with the highest

score, or find the top T candidates. Note that for simplicity of presentation, it involves a

quintuply-nested loop to compute the values Ny1,y2,z1,z2,j ; these values should of course be

directly computed from the (n− 1) · 216 pre-computed counters N ′ci,j ,ci,j+1,j
in an in-line

fashion using the formula Ny1,y2,z1,z2,j = N ′z1⊕y1,z2⊕y2,,j .

4.4 Simulation Results

We performed extensive simulations of both of our attacks, varying the different parameters

to evaluate their effects on success rates.

4.4.1 Methodology

We focus on the problem of password recovery, using the RockYou data set as an attack

dictionary and the Singles.org data set as the set of target passwords. Except where

noted, in each simulation, we performed 256 independent runs of the relevant attack. In

each attack simulation, we select a password of some fixed length n from the Singles.org

password data set according to the known a priori probability distribution for that data set,

encrypt it S times in different starting positions r using random 128-bit keys for RC4, and

then attempt to recover the password from the ciphertexts using the set of all passwords of

length n from the entire RockYou data set (14 million passwords) as our candidate set X .

We declare success if the target password is found within the top T passwords suggested by

the algorithm (according to the approximate likelihood measures γx). Our default settings,

unless otherwise stated, are n = 6 and T = 5, and we try all values for r between 1 and

256− n+ 1, where the single-byte biases dominate the behaviour of the RC4 keystreams.

Typical values of S are 2s where s ∈ {20, 22, 24, 26, 28}.

Using different data sets for the attack dictionary and the target set from which encrypted

passwords are chosen is more realistic than using a single dictionary for both purposes, not

least because in a real attack, the exact content and a priori distribution of the target set

85

4.4 Simulation Results

Algorithm 4: Double-byte attack
input : ci,j : 0 ≤ i < S, 0 ≤ j < n – array formed from S independent encryptions of

fixed n-byte candidate X
r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution
pr+j,z1,z2 (0 ≤ j < n− 1, z1, z2 ∈ B) – double-byte keystream distribution

output : {γx : x ∈ X} – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n− 2 do
for z1 = 0x00 to 0xFF do

N ′z,j ← 0
for z2 = 0x00 to 0xFF do

N ′z1,z2,j ← 0

for j = 0 to n− 2 do
for i = 0 to S − 1 do

N ′ci,j ,j
← N ′ci,j ,j

+ 1
N ′ci,j ,ci,j+1,j

← N ′ci,j ,ci,j+1,j
+ 1

for j = 1 to n− 2 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z,j ← N ′z⊕y,j

Ly,j =
∑
z∈BNy,z,j log(pr+j,z),

for j = 0 to n− 2 do
for y1 = 0x00 to 0xFF do

for y2 = 0x00 to 0xFF do
for z1 = 0x00 to 0xFF do

for z2 = 0x00 to 0xFF do
Ny1,y2,z1,z2,j ← N ′z1⊕y1,z2⊕y2,,j

Ly1,y2,j =
∑
z1∈B

∑
z2∈BNy1,y2,z1,z2,j log(pr+j,z1,z2),

for x = (x0, . . . , xn−1) ∈ X do
γx ← log(px) +

∑n−2
j=0 Lxj ,xj+1,j −

∑n−2
j=1 Lxj ,j

return {γx : x ∈ X}

86

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

Singles.org
RockYou

Figure 4.5: Recovery rate for Singles.org passwords using RockYou data set as dictionary,
compared to recovery rate for RockYou passwords using RockYou data set as dictionary
(S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-byte attack).

would not be known. This approach also avoids the problem of hapax legomena highlighted

in [38]. However, this has the effect of limiting the success rates of our attacks to less than

100%, since there are highly likely passwords in the target set (such as jesus) that do

not occur at all, or only have very low a priori probabilities in the attack dictionary, and

conversely. Figure 4.5 compares the use of the RockYou password distribution to attack

Singles.org passwords with the less realistic use of the RockYou password distribution to

attack RockYou itself. It can be seen that, for the particular choice of attack parameters

(S = 224, n = 6, T = 5, double-byte attack), the effect on success rate is not particularly

large. However, for other attack parameters, as we will see below, we observe a maximum

success rate of around 80% for our attacks, whereas we would achieve 100% success rates if

we used RockYou against itself. The observed maximum success rate could be increased

by augmenting the attack dictionary with synthetically generated, site-specific passwords

and by removing RockYou-specific passwords from the attack dictionary. Our work did

not explore these improvements.

Many data sets are available from password breaches. We settled on using RockYou for

the attack dictionary because at the time this work was conducted, it was one of the

biggest data sets in which all passwords and their associated frequencies were available,

and because the distribution of passwords, while certainly skewed, was less skewed than

87

4.4 Simulation Results

for other data sets. We used Singles.org for the target set because the Singles.org breach

occurred later than the RockYou breach, so that the former could reasonably used as an

attack dictionary for the latter. Moreover, the Singles.org distribution being quite different

from that for RockYou makes password recovery against Singles.org using RockYou as a

dictionary more challenging for our attacks. A detailed evaluation of the extent to which

the success rates of our attacks depend on the choice of attack dictionary and target set is

left to future work.

A limitation of our approach is that we assume the password length n to be already known,

whereas in reality this may not be the case. At least four potential solutions to this

problem exist. Firstly, in specific applications, n may leak via analysis of packet lengths

or other forms of traffic analysis. Secondly we can run our attacks for the full range of

password lengths, possibly adjusting the likelihood measure γx for each password candidate

x to scale it appropriately by its length (except for the px term). A third approach is

to augment the shorter passwords with the known plaintext that typically follows them

in a specific targeted application protocol and then run our attacks for a fixed, but now

longer, n. A fourth approach applies in protocols which use known delimiters to denote the

end of a password (such as the = symbol seen at the end of base64 encodings for certain

username/password lengths); here, the idea is to adapt our general attacks to compute the

likelihood that such a delimiter appears in each possible position, and generate an estimate

for n by selecting the position for which the likelihood is highest. We leave the exploration

of these approaches to future work.

4.4.2 Results

Single-Byte Attack. We ran the attack described in Algorithm 3 with our default

parameters (n = 6, T = 5, 1 ≤ r ≤ 251) for S = 2s with s ∈ {20, 22, 24, 26, 28} and

evaluated the attack’s success rate. We used our default of 256 independent runs per

parameter set. The results are shown in Figure 4.6. We observe that:

• The performance of the attack improves markedly as S, the number of ciphertexts,

increases, but the success rate is bounded by 75%. We attribute this to the use of

one dictionary (RockYou) to recover passwords from another (Singles.org) – for the

same attack parameters, we achieved 100% success rates when using RockYou against

88

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

S
u
cc

e
ss

 R
a
te

Starting Position

220

222

224

226

228

Figure 4.6: Recovery rates for single-byte algorithm for S = 220, . . . , 228 (n = 6, T = 5,
1 ≤ r ≤ 251).

RockYou, for example.

• For 224 ciphertexts we see a success rate of greater than 60% for small values of

r, the position of the password in the RC4 keystream. We see a drop to below

50% for starting positions greater than 32. We note the effect of the key-length-

dependent biases on password recovery; passwords encrypted at starting positions

16`− n, 16`− n+ 1, . . . , 16`− 1, 16`, where ` = 1, 2, . . . , 6, have a higher probability

of being recovered in comparison to neighbouring starting positions.

• For 228 ciphertexts we observe a success rate of more than 75% for 1 ≤ r ≤ 120.

Double-Byte Attack. Analogously, we ran the attack of Algorithm 4 for S = 2s with

s ∈ {20, 22, 24, 26, 28} and our defaults of n = 6, T = 5. The results for these simulations

are shown in Figure 4.7. Note that:

• Again, at 224 ciphertexts the effect of key-length-dependent biases is visible.

• For 226 ciphertexts we observe a success rate that is greater than 78% for r ≤ 48.

Comparing the Single-Byte Attack with a Naive Algorithm. Figure 4.8 provides

a comparison between our single-byte algorithm with T = 1 and a naive password recovery

89

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

S
u
cc

e
ss

 R
a
te

Starting Position

220

222

224

226

228

Figure 4.7: Recovery rates for double-byte algorithm for S = 220, . . . , 228 (n = 6, T = 5,
1 ≤ r ≤ 251).

attack based on the methods of [10], in which the password bytes are recovered one at a

time by selecting the highest likelihood byte value in each position and declaring success if

all bytes of the password are recovered correctly. Significant improvement over the naive

attack can be observed, particularly for high values of r. For example with S = 224, the

naive algorithm essentially has a success rate of zero for every r, whereas our single-byte

algorithm has a success rate that exceeds 20% for 1 ≤ r ≤ 63. By way of comparison,

an attacker knowing the password length and using the obvious guessing strategy would

succeed with probability 4.2% with a single guess, this being the a priori probability of the

password 123456 amongst all length 6 passwords in the Singles.org dataset (and 123456

being the highest ranked password in the RockYou dictionary, so the first one that an

attacker using this strategy with the RockYou dictionary would try). As another example,

with S = 228 ciphertexts, a viable recovery rate is observed all the way up to r = 251 for

our single-byte algorithm, whereas the naive algorithm fails miserably beyond r = 160 for

even this large value of S. Note however that the naive attack can achieve a success rate of

100% for sufficiently large S, whereas our attack cannot. This is because the naive attack

directly computes a password candidate rather than evaluating the likelihood of candidates

from a list which may not contain the target password. On the other hand, our attack

trivially supports larger values of T , whereas the naive attack is not so easily modified to

enable this feature.

90

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

sb, 220

sb, 222

sb, 224

sb, 226

sb, 228

old, 220

old, 222

old, 224

old, 226

old, 228

Figure 4.8: Performance of our single-byte algorithm versus a naive single-byte attack
based on the methods of AlFardan et al. (labelled “old”). (n = 6, T = 1, 1 ≤ r ≤ 251.)

Comparing the Single-Byte and Double-Byte Attacks. Figure 4.9 provides a

comparison of our single-byte and double-byte attacks. With all other parameters equal,

the success rates are very similar for the initial 256 positions. The reason for this is the

absence of many strong double-byte biases that do not arise from products of the known

single-byte biases in the early positions of the RC4 keystream.

Effect of the a priori Distribution. As a means of testing the extent to which our

success rates are influenced by knowledge of the a priori probabilities of the candidate

passwords, we ran simulations in which we tried to recover passwords sampled correctly

from the Singles.org dataset but using a uniform a priori distribution for the RockYou-

based dictionary used in the attack. Figure 4.10 shows the results (S = 224, n = 6, T = 5,

double-byte attack) of these simulations, compared to the results we obtain by exploiting

the a priori probabilities in the attack. It can be seen that a significant gain is made by

using the a priori probabilities, with the uniform attack’s success rate rapidly dropping to

zero at around r = 128.

Effect of Password Length. Figure 4.11 shows the effect of increasing n, the password

length, on recovery rates, with the sub-figures showing the performance of our double-byte

attack for different numbers of ciphertexts (S = 2s with s ∈ {24, 26, 28}). Other parameters

are set to their default values. As intuition suggests, password recovery becomes more

91

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

db, 220

db, 222

db, 224

db, 226

db, 228

sb, 220

sb, 222

sb, 224

sb, 226

sb, 228

Figure 4.9: Recovery rate of single-byte versus double-byte algorithm for S = 220, . . . , 228

(n = 6, T = 5, 1 ≤ r ≤ 251).

difficult as the length increases. Also notable is that the ceiling on success rate of our

attack decreases with increasing n, dropping from more than 80% for n = 5 to around

50% for n = 8. This is due to the fact that only 48% of the length 8 passwords in the

Singles.org data set actually occur in the RockYou attack dictionary: our attack is doing

as well as it can in this case, and we would expect stronger performance with an attack

dictionary that is better matched to the target site.

Effect of Increasing Try Limit T . Recall that the parameter T defines the number of

password trials our attacks make. The number of permitted attempts for specific protocols

like BasicAuth is server-dependent and not mandated in the relevant specifications. Whilst

not specific to our chosen protocols, a 2010 study [39] showed that 84% of websites surveyed

allowed at least T = 100 attempts; many websites appear to actually allow T =∞. Figure

4.12 shows the effect of varying T in our double-byte algorithm for different numbers of

ciphertexts (S = 2s with s ∈ {24, 26, 28}). Other parameters are set to their default values.

It is clear that allowing large values of T boosts the success rate of the attacks.

Note however that a careful comparison must be made between our attack with parameter

T and the success rate of the obvious password guessing attack given T attempts. Such a

guessing attack does not require any ciphertexts but instead uses the a priori distribution

on passwords in the attack dictionary (RockYou) to make guesses for the target password

92

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

uniform
a priori

Figure 4.10: Recovery rate for uniformly distributed passwords versus known a priori
distribution (S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

in descending order of probability, the success rate being determined by the a priori

probabilities of the guessed passwords in the target set (Singles.org). Clearly, our attacks

are only of value if they significantly out-perform this ciphertext-less attack.

Figure 4.13 shows the results of plotting log2(T) against success rate α for S = 2s with

s ∈ {14, 16, . . . , 28}. The figure then illustrates the value of T necessary in our attack to

achieve a given password recovery rate α for different values of S. This measure is related

to the α-work-factor metric explored in [38] (though with the added novelty of representing

a work factor when one set of passwords is used to recover passwords from a different

set). To generate this figure, we used 1024 independent runs rather than the usual 256,

but using a fixed set of 1024 passwords sampled according to the a priori distribution for

Singles.org. This was in an attempt to improve the stability of the results (with small

numbers of ciphertexts S, the success rate becomes heavily dependent on the particular set

of passwords selected and their a priori probabilities, while we wished to have comparability

across different values of S). The success rates shown are for our double-byte attack with

n = 6 and r = 133, this specific choice of r being motivated by it being the location of

passwords for our BasicAuth attack proof-of-concept when the Chrome browser is used

(similar results are obtained for other values of r). The graph also shows the corresponding

work factor T as a function of α for the guessing attack (labeled “optimal guessing” in the

figure).

93

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(a) 224 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(b) 226 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

Len 5
Len 6
Len 7
Len 8

(c) 228 ciphertexts

Figure 4.11: Effect of password length on recovery rate (T = 5, 1 ≤ r ≤ 251, double-byte
algorithm).

94

4.4 Simulation Results

Figure 4.13a shows that our attack far outperforms the guessing attack for larger values

of S, with a significant advantage accruing for S = 224 and above. However, as Figure

4.13b shows, the advantage over the guessing attack for smaller values of S, namely 220

and below, is not significant. This can be attributed to our attack simply not being able

to compute stable enough statistics for these small numbers of ciphertexts. In turn, this is

because the expected random fluctuations in the keystream distributions overwhelm the

small biases; in short, the signal does not sufficiently exceed the noise for these low values

of S.

Effect of Base64 Encoding. We investigated the effect of base64 encoding of passwords

on recovery rates, since many application layer protocols use such an encoding. The

encoding increases the password length, making recovery harder, but also introduces

redundancy, potentially helping the recovery process to succeed. Figure 4.14 shows our

simulation results comparing the performance of our double-byte algorithm acting on

6-character passwords and on base64 encoded versions of them. It is apparent from the

figure that the overall effect of the base64 encoding is to help our attack to succeed. In

practice, the start of the target password may not be well-aligned with the base64 encoding

process (for example, part of the last character of the username and/or a delimiter such as

“:” may be jointly encoded with part of the first character of the password). This can be

handled by building a special-purpose set of candidates X for each possibility. Handling

this requires some care when mounting a real attack against a specific protocol; a detailed

analysis is not conducted here.

Shifting Attack. It was observed in [10] and elsewhere that for 128-bit keys, RC4

keystreams exhibit particularly large “key-length-dependent” biases at positions r = 16`,

` = 1, . . . , 7, with the bias size decreasing with increasing `. These large biases boost

recovery rates, as already observed in our discussion of Figure 4.6.

In certain application protocols and attack environments (such as HTTPS) it is possible for

the adversary to incrementally pad the plaintext messages so that the unknown bytes are

always aligned with positions having large keystream biases. Our algorithm descriptions and

code are both easily modified to handle this situation, and we have conducted simulations

with the resulting shift attack.

95

4.4 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

1
3
5

10
100

(a) 224 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

1
3
5

10
100

(b) 226 ciphertexts

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

1
3
5

10
100

(c) 228 ciphertexts

Figure 4.12: Effect of try limit T on recovery rate (n = 6, 1 ≤ r ≤ 251, double-byte
algorithm).

96

4.4 Simulation Results

 0

 5

 10

 15

 20

 25

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

lo
g

2
(T

)

Recovery Rate

214

216

218

220

222

224

226

228

optimal guessing

(a) α ∈ [0, 1]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.05 0.1 0.15 0.2

lo
g

2
(T

)

Recovery Rate

214

216

218

220

optimal guessing

(b) α ∈ [0, 0.2]

Figure 4.13: Value of T required to achieve a given password recovery rate α for S = 2s
with s ∈ {14, 16, . . . , 28} (n = 6, r = 133, double-byte algorithm).

97

4.5 Practical Validation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 64 128 192 256

S
u
cc

e
ss

 R
a
te

Starting Position

db, 220

db, 222

db, 224

db, 226

db, 228

base64, 220

base64, 222

base64, 224

base64, 226

base64, 228

Figure 4.14: Recovery rate of base64 encoded password versus a “normal” password for
6-character passwords (T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

Figure 4.15 shows the results for the shift version of our double-byte algorithm. In the shift

attack, the true number of ciphertexts is equal to n× S, since we now use S ciphertexts at

each of n shift positions. So a proper comparison would compare with one of our earlier

attacks using an appropriately increased value of S. Making this adjustment, it can be

seen that the success rate is significantly improved, particularly for small values of r = 16`

where the biases are biggest.

4.5 Practical Validation

We now describe a proof-of-concept implementation of our attacks against a specific

application-layer protocol running over TLS, namely BasicAuth.

4.5.1 The BasicAuth Protocol

Defined as part of the HTTP/1.0 specification [24], the Basic Access Authentication scheme

(BasicAuth) provides a means for controlling access to webpages and other protected

resources. Here we provide a high-level overview of BasicAuth and direct the reader to [24]

and [65] for further details.

98

4.5 Practical Validation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

S
u
cc

e
ss

 R
a
te

Starting Position

shift, 220

shift, 222

shift, 224

shift, 226

db, 220

db, 222

db, 224

db, 226

db, 228

Figure 4.15: Recovery rate of shift attack versus double-byte algorithm (n = 6, T = 5,
1 ≤ r ≤ 251).

BasicAuth is a challenge-response authentication mechanism: a server will present a client

with a challenge to which the client must supply the correct response in order to gain access

to the resource being requested. In the case of BasicAuth, the challenge takes the form

of either a 401 Unauthorized response message from an origin server, or a 407 Proxy

Authentication Required response message from a proxy server. BasicAuth requires

that the client response contain legitimate user credentials – a username and password – in

order for access to be granted. Certain web browsers may display a login dialog when the

challenge is received and many browsers present users with the option of storing their user

credentials in the browser, with the credentials thereafter being automatically presented

on behalf of the user.

The client response to the challenge is of the form

Authorization: Basic base64(userid:password)

where base64(·) denotes the base64 encoding function (which maps 3 characters at a time

onto 4 characters of output). Since the username and password are sent over the network

as cleartext, BasicAuth needs to be used in conjunction with a protocol such as TLS.

99

4.5 Practical Validation

4.5.2 Attacking BasicAuth

In order to obtain a working attack against BasicAuth, we need to ensure that two

conditions are met:

• The base64-encoded password included in the BasicAuth client response can be

located sufficiently early in the plaintext stream.

• There is a method for forcing a browser to repeatedly send the BasicAuth client

response.

We observed that the first condition is met for particular browsers, including Google

Chrome 38. For example, we inspected HTTPS traffic sent from Chrome to an iChair

server.6 We observed the user’s base64-encoded password being sent with every HTTP(S)

request in the same position in the stream, namely position r = 133 (this includes 16 bytes

consumed by the client’s Finished message as well as the 20-bytes consumed by the TLS

Record Protocol MAC tag). For Mozilla Firefox 34, the value of r was the less useful 349.

For the second condition, we adopt the methods used in the BEAST, CRIME and Lucky

13 attacks on TLS, and also used in attacking RC4 in [10]: we assume that the user

visits a site www.evil.com which loads JavaScript into the user’s browser; the JavaScript

makes GET or POST requests to the target website at https://www.good.com by using

XMLHttpRequest objects (this is permitted under Cross Origin Resource Sharing (CORS),

a mechanism developed to allow JavaScript to make requests to a domain other than

the one from which the script originates). The base64-encoded BasicAuth password is

automatically included in each such request. In order to force the password to be repeatedly

encrypted at an early position in the RC4 keystream, we use a Man-In-The-Middle (MITM)

attacker to break the TLS connection (by injecting sequences of TCP FIN and ACK messages

into the connection). This requires some careful timing on the part of the JavaScript and

the MITM attacker.

We built a proof-of-concept demonstration of these components to illustrate the principles.

We set up a virtual network with three virtual machines each running Ubuntu 14.04,
6At the time this work was conducted, iChair was a popular system for conference reviewing, widely

used in the cryptography research community and available from http://www.baigneres.net/ichair. It
uses BasicAuth as its user authentication mechanism.

100

4.5 Practical Validation

kernel version 3.13.0-32. On the first machine, we installed iChair. We configured the

iChair web server to use RC4 as its default TLS cipher. The second machine was running

the Chrome 38 browser and acted as the client in our attack. We installed the required

JavaScript directly on this machine rather than downloading from another site. The third

machine acted as the MITM attacker, required to intercept the TLS-protected traffic and

to tear-down the TLS connections. We used the Python tool Scapy7 to run an ARP

poisoning attack on the client and server from the MITM so as to be able to intercept

packets; with the connection hijacked we were able to force a graceful shutdown of the

connection between the client and the server after the password-bearing record had been

observed and recorded. We observed that forcing a graceful shutdown of each subsequent

connection did allow for TLS resumption (rather than leading to the need for a full TLS

Handshake run).

With this setup, the JavaScript running in the client browser sent successive HTTPS GET

requests to the iChair server every 80ms. Our choice of 80ms was motivated by the fact

that for our particular configuration, we observed a total time of around 80ms for TLS

resumption, delivery of the password-bearing record and the induced shutdown of the TCP

connection. This choice enabled us to capture 216 encrypted password-bearing records

in 1.6 hours (the somewhat greater than expected time here being due to anomalies in

network behaviour). Running at this speed, the attack was stable over a period of hours.

We note that the latency involved in our setup is much lower than would be found in a

real network in which the server may be many hops away from the client: between 500ms

and 1000ms is typical for establishing an initial TLS 1.2 (and below) connection to a

remote site, with the latency being roughly half that for session resumptions. Notably,

the cost of public key operations is not the issue, but rather the network latency involved

in the round-trips required for TCP connection establishment and then running the TLS

Handshake. However, browsers also open up multiple TLS connections in parallel when

fetching multiple resources from a site, as a means of reducing the latency perceived by

users; the maximum number of concurrent connections per server is 6 for both the Chrome

and Firefox browsers (though, we only ever saw roughly half this number in practice).

This means that, assuming a TLS resumption latency (including the client’s TCP SYN,

delivery of the password-bearing record and the final, induced TCP ACK) of 250ms and

the JavaScript is running fast enough to induce the browser to maintain 6 connections in
7Available at http://www.secdev.org/projects/scapy/.

101

4.6 Conclusion

parallel, the amount of time needed to mount an attack with S = 226 would be on the

order of 776 hours. If the latency was further reduced to 100ms (because of proximity of

the server to the client), the attack execution time would be reduced to 312 hours.

Again setting n = 6 , T = 100, r = 133 and using the simulation results displayed in Figure

4.14, we would expect a success rate of 64.4% for this setup (with S = 226). For T = 5,

the corresponding success rate would be 44.5%.

We emphasise that we did not execute a complete attack on these scales, but merely

demonstrated the feasibility of the attack in our laboratory setup.

4.6 Conclusion

We have presented plaintext recovery attacks that derive from a formal Bayesian analysis

of the problem of estimating plaintext likelihoods given an a priori plaintext distribution,

suitable keystream distribution information, and a large number of encryptions of a fixed

plaintext under independent keys. We applied these ideas to the specific problem of

recovering passwords encrypted by the RC4 algorithm with 128-bit keys as used in TLS

1.2 and below, though they are of course more generally applicable – to uses of RC4 other

than in TLS, and to stream ciphers with non-uniform keystream distributions in general.

Using large-scale simulations, we have investigated the performance of these attacks under

different settings for the main parameters.

We then studied the applicability of these attacks for the application layer protocol

BasicAuth. For certain browsers and clients, user passwords were located at a favourable

point in the plaintext stream and we could induce a password to be repeatedly encrypted

under fresh, random keys. We built a proof-of-concept implementation of this attack. It

was difficult to arrange for the rate of generation of encryptions to be as high as desired

for a speedy attack. This was mainly due to the latency associated with TLS connection

establishment (even with session resumption) rather than any fundamental barrier. We

discussed scenarios in which the latency may be reduced.

Good-to-excellent password recovery success rates can be achieved using 224 – 228 ciphertexts

in our attacks. We also demonstrated that our single-byte attack for password recovery

102

4.6 Conclusion

significantly outperforms a naive password recovery attack based on the ideas of [10]. We

observed an improvement over a guessing strategy even for low numbers (222 or 224) of

ciphertexts. In contrast to these numbers, the preferred double-byte attack of [10] required

on the order of 234 encryptions to recover a 16-byte cookie. In view of our results, we feel

justified in claiming that we significantly narrowed the gap between the feasibility results

of [10] and our goal of achieving practical attacks on RC4 in TLS. In fact, by November

2015, a few months after our research was published, usage of RC4 in TLS had dropped

to 8.3%, according to the ICSI Certificate Notary project. This accounts for a decrease

in roughly 22% of RC4 usage since the release of our work in March 2015. Of course,

other factors such as the deprecation of RC4 in TLS in February 2015 [122], as well as

publication of concurrent work, [148] and [102], also contributed to the dramatic reduction

of RC4 usage in TLS during this time. However, we would like to think that our work

played as big of a role in bringing RC4 to the point where it had to be abandoned by

practitioners. In early 2016, mainstream browsers such as Chrome and Firefox shipped

without support for RC48, and today, usage of RC4 in TLS 1.2 and below doesn’t even

feature in an independent category on the ICSI Certificate Notary project website.9 The

degree to which it contributes to the ‘other cipher suites’ category which stands at 6%

is unclear. Nevertheless, we determine it safe to conclude that usage of RC4 in TLS has

dropped significantly since the onset of our work, and in part because of it.

8Google and Mozilla announcements available at https://security.googleblog.com/2015/09/
disabling-sslv3-and-rc4.html and https://blog.mozilla.org/security/2015/09/11/deprecating-
the-rc4-cipher/, respectively.

9See https://notary.icsi.berkeley.edu/.

103

Chapter 5

Analysing and Exploiting the Mantin
Biases in RC4

Contents
7.1 Introduction . 175

7.2 Preliminaries . 178

7.3 draft-21 Analysis . 178

7.4 Conclusion . 203

This chapter covers attacks against RC4 that exploit the Mantin biases – patterns of the

form ABSAB that occur in the RC4 keystream with higher probability than expected for

a random sequence (A and B are byte values, and S is an arbitrary byte string of some

length G). We develop a statistical framework for exploiting these biases which leads to an

algorithm that recovers adjacent pairs of unknown plaintext bytes, under the assumption

that the target plaintext bytes are in the neighbourhood of known plaintext bytes, a valid

assumption in an attack against TLS. Our analysis enables us to make predictions about the

number of ciphertexts needed to reliably recover target plaintext bytes by using results from

order statistics. We extend the algorithm to recover longer sequences of plaintext bytes, as

would be needed to attack 16-byte cookies protected TLS. We rely on the beam-search and

list Viterbi algorithms to achieve this and report on a large range of attack simulations,

focussing on a 16-byte target plaintext.

5.1 Introduction

As discussed in the previous chapter, the usage of RC4 in protocols such TLS and WPA

has come under heavy attack in recent years – see [10,68,76,113,115,116,148]. The main

104

5.1 Introduction

idea of these attacks is to exploit known and newly discovered biases in RC4 keystreams to

recover fixed plaintexts that are repeatedly encrypted under RC4. Such attacks can be

realised against applications using RC4, including TLS, and in particular, lead to serious

breaks in application layer protocols using TLS.

Mantin [101] showed that patterns of the form ABSAB occur in RC4 keystreams with

higher probability than expected for a random sequence. Here A and B are byte values

and S is an arbitrary byte string of some length G. Mantin’s main result can be stated as

follows: Let G ≥ 0 be a small integer and let Zr denote the r-th output byte produced by

RC4. Under the assumption that the RC4 state is a random permutation at step r, then

Pr ((Zr, Zr+1) = (Zr+G+2, Zr+G+3)) = 2−16
(

1 + e(−4−8G)/256

256

)
.

Note that for a truly random byte string Zr, . . . , Zr+G+3, the probability that (Zr, Zr+1) =

(Zr+G+2, Zr+G+3) is equal to 2−16. The relative bias is therefore equal to e(−4−8G)/256/256,

which is about 1/256 for small G.

Mantin’s biases are particularly attractive for use in attacks on RC4 because they are (a)

relatively large, (b) numerous, and (c) persistent in RC4 keystreams. Their presence was

confirmed experimentally in [101] and [119]. Indeed, they have already been exploited in

attacks, [113], and in concurrent work to ours, [148]. In this chapter, we make a systematic

study of their use in attacking RC4 in the broadcast setting. Our main contributions can

be summarised as follows:

(i) We develop a statistical framework for exploiting the Mantin biases in plaintext

recovery attacks for the broadcast setting. We provide such a framework which

directly leads to an algorithm that recovers adjacent pairs of unknown plaintext bytes,

under the assumption (also used in [113] and [148] and valid in practice for attacks

against protocols like TLS) that the target plaintext bytes are in the neighbourhood

of known plaintext bytes.

(ii) Importantly, and in contrast with [113] and [148], our analysis enables us to make

predictions about the numbers of ciphertexts needed to reliably recover target plain-

text bytes. More precisely, our attack computes the likelihood of each possible target

plaintext byte pair, and we are able to compute the distribution of the rank of the

likelihood of the correct byte pair amongst the likelihoods of all possible pairs as

105

5.1 Introduction

a function of the number of ciphertexts, N , and the number of known plaintext

bytes T 1. In particular, we can compute the values of (N,T) needed to ensure that

the median value of the rank is 1, meaning that the correct plaintext is recovered

with high probability. Our approach here is to use results from order statistics, a

well-established field of statistical investigation that does not appear to have been

applied extensively before in cryptanalysis.

(iii) Our framework extends smoothly to make predictions in practically interesting cases

where, for example, some additional information is known about the plaintexts, or

where known plaintext bytes are present on either side of the unknown bytes.

(iv) We extend the algorithm targeting just two unknown plaintext bytes to the situation

where the target is a longer sequence of unknown plaintext bytes. This is a situation

of practical interest in attacking session cookies [10] and passwords (as dicussed

in the previous chapter) that are protected by RC4 in TLS. We formally justify

using as a likelihood estimate for a longer sequence of plaintext bytes the sum of

the likelihoods of the overlapping pairs of adjacent bytes comprising that longer

sequence. As a consequence of our summation formula for likelihoods, we are able to

make use of standard methods from the literature, namely beam search and the list

Viterbi algorithm [145], to find longer plaintext candidates having high likelihoods.

The beam search algorithm is memory-efficient but does not provide any guarantees

about the quality of its outputs; the list Viterbi algorithm is memory-intensive but is

guaranteed to output a list of candidates having the L highest likelihoods, where L is

a parameter of the algorithm. In practical attacks involving cookies and passwords,

this type of guarantee is sufficient, since large numbers of candidates can be tested

for correctness.

(v) We report on a range of experiments with the beam search and list Viterbi algorithms,

evaluating their performance for different parameters, as specified in Table 5.1. For

example, using L = 216 in the list Viterbi algorithm, N = 231 ciphertexts, and 130

known plaintext bytes split either side of a 16-byte unknown plaintext, we are able

to recover the 16-byte target plaintext with a success rate of about 80%. This is

a significant improvement on the preferred attack of [10], which required around

233 – 234 ciphertexts, and our result is broadly comparable with the results obtained
1In the previous chapter we used T to denote the password rate limiting factor, i.e., the number of

password candidates attempted in our password recovery attacks. In this chapter, as stated, T denotes the
number of known plaintext bytes.

106

5.1 Introduction

in [148].

Parameter Description
N The number of available encryptions of the target plain-

text.
T The number of known plaintext bytes.

algorithm choice The dynamic programming algorithm selected, either
list Viterbi or beam search.

L The list size of the list Vitberbi algorithm and the
beam width of the beam search algorithm.

Table 5.1: Attack parameters

Related Work. As stated in the previous chapter, AlFardan et al. [10] presented two

attacks against RC4 in TLS, using single-byte biases in the first and double-byte Fluhrer-

McGrew biases from [64] in the second. As in our work, their second attack uses a Viterbi

algorithm (though only outputting a single plaintext candidate, so not a list Viterbi

algorithm). Their second attack requires around 234 ciphertexts to reliably recover a

16-byte target plaintext. Isobe et al. [76] also give plaintext recovery attacks for RC4 using

single-byte and double-byte biases – their attacks are less effective than those of [10] and

are not directly applied to TLS.

Ohigashi et al. [113] were the first to use the Mantin biases in plaintext recovery attacks

against RC4. They present an attack that targets a single unknown plaintext byte and that

uses multiple Mantin biases (for different values of G). Roughly speaking, the unknown

plaintext byte is aligned with the second “B” in patterns of the form ABSAB for varying

sizes of S, while the plaintext bytes in the other 3 positions are known; a count is made of

the number of times in the RC4 output a string ABSAB is suggested for each unknown

plaintext byte. In the analysis of [113], all biases are “weighted” in the same way, while,

intuitively, the weaker the bias, the less reliable the information about plaintext bytes

it provides. This overweights the known plaintext bytes that are far from the unknown,

target bytes, and leads to a statistically sub-optimal attack. Their attack also recovers

multiple plaintext bytes in a byte-by-byte fashion, meaning that if the attack goes awry,

then it tends to continue unsuccessfully. This in turn means that the success rate of the

attack decreases exponentially with the target plaintext length. Ohigashi et al. did not

provide any rigorous analysis of their attacks, relying instead on simulations to estimate

their effectiveness.

In concurrent work to ours, Vanhoef and Piessens [148] conducted an extensive search for

107

5.2 Preliminaries

new biases in RC4 keystreams and settled on using the Mantin biases in combination with

the Fluhrer-McGrew biases to target HTTP session cookies protected by TLS. Like us, they

use a likelihood-based analysis involving Mantin biases but their analysis is only formalised

for single values of G, and they simply take the products of likelihoods for different values

of G without further formal statistical justification (though this procedure can be rigorously

justified, as our work shows). They also include in their product a likelihood term arising

from the Fluhrer-McGrew biases. Given the ad hoc nature of their approach, they resort

to verification of attack performance via simulations. By contrast, we are able to provide

an analytical approach which makes predictions about the distribution of the rank of our

likelihood statistic for the correct plaintext bytes.

Vanhoef and Piessens [148] extend their attacks to the recovery of multiple plaintext bytes

using a list Viterbi algorithm, though without providing a formal justification, as we do.

Their impressive headline result is obtained using a list size L = 223 and recovers a 16-byte

plaintext with a 94% success rate using N = 9 · 227 ciphertexts, and roughly 256 known

plaintext bytes on either side of the unknown bytes. However, it should be noted that

this result applies for a restricted plaintext alphabet, which, as our analysis shows, can

significantly boost the performance of attacks. Building on the work of [10], they implement

their attack in a real network environment, showing that HTTP session cookies could be

recovered in around 75 hours. We do not carry out our attack with this level of realism but

instead content ourselves with performing extensive simulations to confirm our theoretical

analysis.

5.2 Preliminaries

Much of the preliminary material presented in Chapter 4 (Section 4.2) is relevant here,

in particular the material on Bayes’ Theorem, the RC4 algorithm, and its usage in TLS.

We now provide detail on additional notions and concepts that are necessary for the

understanding of the material presented in this chapter. We present an alternate form of

Bayes’ Theorem, introduce a result from order statistics, discuss the Mantin biases, and

expound briefly on the dynamic programming algorithms used in our attacks.

108

5.2 Preliminaries

5.2.1 Inferential Form of Bayes’ Theorem

In the previous chapter, we introduced the traditional statement of Bayes’ Theorem,

namely,

Pr(A|B) = Pr(B|A) · Pr(A)
Pr(B) ,

where A and B are events, Pr(B) 6= 0, and Pr(A|B) and Pr(B|A) are likelihoods (condi-

tional probabilities). The denominator, Pr(B), in the above expression acts as a normalising

factor for the posterior probability, Pr(A|B), and for work concerned with finding the

most likely outcome of event A given event B, the numerator works just as well as the

normalised posterior. Hence, in the context of Bayesian updating, Bayes’ Theorem can be

expressed as a statement about proportionality of the posterior probability and the Bayes

numerator:

Pr(A|B) ∝ Pr(B|A) · Pr(A).

In other words,

Posterior ∝ Likelihood × Prior.

We use this form of Bayes’ Theorem in our attacks in Section 5.3. We note that we

implicitly applied this form of Bayes’ Theorem in Chapter 4.

5.2.2 Order Statistics

Given random variables X1, . . . , Xk, the order statistics X(1), . . . , X(k) are themselves

random variables defined by sorting the realisations of X1, . . . , Xk in increasing order. Our

work makes use of the following result concerning order statistics [15]:

Result 1. Suppose X1, . . . , Xk are independent standard normal N(0, 1) random variables

and that Φ denotes the distribution function of a standard normal N(0, 1) random variable.

Then Φ(X1), . . . ,Φ(Xk) are independent uniform Uni(0, 1) random variables and the order

statistics X(1), . . . , X(k) satisfy

E
(
Φ(X(j))

)
= j

k + 1 ,

109

5.2 Preliminaries

where E denotes the expected value (in this case of the random variable Φ(X(j))).

5.2.3 The Mantin Biases

As stated in Section 5.1, in 2005 Mantin published a result showing that patterns of the

form ABSAB occur in the RC4 keystream with higher probability than expected of a

random sequence [101]. His main result is the following:

Pr ((Zr, Zr+1) = (Zr+G+2, Zr+G+3)) = 2−16
(

1 + e(−4−8G)/256

256

)
, (5.1)

where A and B are byte values and S is an arbitrary byte string of some length G. In

the published paper containing the work presented in this chapter [40], we present results

showing that the distribution of patterns of the form ABSAB in RC4 outputs does not

conform exactly with Mantin’s analysis. However, the deviations from the predicted

behaviour are small, in the sense of affecting the probabilities of only a small proportion

of the possible patterns. Hence, in our attacks, we make use of Mantin’s result as stated

above.

5.2.4 Dynamic Programming Algorithms

Our work employs two dynamic programming algorithms, namely, the list Viterbi algorithm

and the beam search algorithm.

List Viterbi Algorithm. The list Viterbi algorithm is described in detail in [145] and

generalises the usual Viterbi algorithm. In its general form the algorithm finds the L

lowest cost state sequences through a complete trellis of some width W on some state

space, given an initial state and a final state and where each state transition in the trellis

has an associated cost. The algorithm produces a rank ordered list of the L globally best

candidates after the trellis search.

Beam Search Algorithm. The beam search algorithm is a heuristic algorithm that

explores a graph by expanding the most promising nodes within a limited set of nodes. It is

110

5.3 Plaintext Recovery using the Mantin Biases

known as a best-first search algorithm, meaning that it orders all partial solutions according

to a specified heuristic aimed at determining how close a partial (local) solution is to a

complete (global) solution. However, the algorithm only keeps the most promising partial

solutions as candidates for the next round of expansion, i.e., it keeps a predetermined

number, say L, of them. Thus it is a greedy algorithm – making the locally optimal choice

at each stage. The beam search algorithm gradually builds a search tree, at each level

expanding states (nodes) by generating all successors of the current states, sorting them

according to the specified heuristic, and then pruning them down to the L best candidates.

The beam search operation makes it memory-efficient, however, it cannot guarantee the L

globally best candidates upon completion.

We discuss the applicability of these algorithms to our work in Section 5.4.2.

5.3 Plaintext Recovery using the Mantin Biases

We present a plaintext recovery attack that exploits the Mantin biases. The attack is

derived by first posing the plaintext recovery problem as one of maximum likelihood

estimation. This enables us to also provide a concise analysis of the expected number of

ciphertexts required to successfully recover the correct plaintext (and, more generally, to

rank the correct plaintext within the top R candidates, for some chosen value of R).

We operate in the broadcast setting, so the same plaintext is assumed to be encrypted

many times under different RC4 keystream segments, in known positions. We target the

recovery of two unknown, consecutive plaintext bytes that are adjacent to a group of known

plaintext bytes. These attack assumptions (partially known plaintext and the broadcast

setting) are fully realistic when mounting attacks that target HTTP cookies when protected

by RC4 in TLS (see [10], for instance). In the following section (Section 5.4), we explain

how to extend our attack targeting two consecutive plaintext bytes so as to recover longer

strings of bytes.

111

5.3 Plaintext Recovery using the Mantin Biases

5.3.1 Maximum Likelihood Estimation

We consider the problem of plaintext recovery for various situations arising from RC4

encryption as a maximum likelihood problem. In comparison to the analysis presented in

the previous chapter, we adopt a far more rigorous statistical approach to the problem

of recovering plaintext bytes, largely out of necessity – harnessing the full effect of the

Mantin biases requires such rigour.

Notational Setup. Suppose p1, . . . , pT , PT+1, PT+2 are T + 2 successive plaintext bytes

which are to be encrypted a number of times under RC4 using a number of different

keystreams. We suppose that the first T plaintext bytes p1, . . . , pT are known plaintext

bytes, but that the next two plaintext bytes PT+1, PT+2 are unknown and we wish to

determine them. (Throughout we use lower-case letters for known quantities, and upper-case

for unknown quantities, which can be regarded as random variables.)

We let ci,1, . . . , ci,T , ci,T+1, ci,T+2 denote the T + 2 successive known ciphertext bytes ob-

tained by encrypting the plaintext bytes p1, . . . , pT , PT+1, PT+2 using the ith RC4 keystream

zi,1, . . . , zi,T , Zi,T+1, Zi,T+2. Thus we have that

zi,1 = p1 ⊕ ci,1, . . . , zi,T = pT ⊕ ci,T are known keystream bytes

and

Zi,T+1 = PT+1 ⊕ ci,T+1, Zi,T+2 = PT+2 ⊕ ci,T+2 are unknown keystream bytes.

Now the Mantin bias can be expressed in the following way: We first define a positive

decreasing sequence δ0, δ1, . . . , δT−2 by

δG = e(−4−8G/256)/256 = 2−8e−
1

64 e−
G
32 [G = 0, 1, . . . , T − 2].

Then, from Mantin’s result (Equation 5.1), we have:

Pr ((Zi,T+1, Zi,T+2) = (zi,T−G−1, zi,T−G)) ≈ 2−16(1 + δG).

For byte pairs (a1, a2) not in the ith RC4 keystream we have

Pr ((Zi,T+1, Zi,T+2) = (a1, a2)) ≈ 2−16 [(a1, a2) 6= (zi,1, zi,2), . . . (zi,T−1, zi,T)].

112

5.3 Plaintext Recovery using the Mantin Biases

A Likelihood Function. We now calculate the probability mass function for θ =

(PT+1, PT+2) for the ith encryption based on the above probabilities. This will lead us to a

likelihood function for θ.

By a straightforward calculation, we have:

Pr
(
(PT+1, PT+2) = (p′, p′′)

)
= Pr

(
(Zi,T+1, Zi,T+2) = (p′ ⊕ ci,T+1, p

′′ ⊕ ci,T+2)
)
.

This probability is therefore different from 2−16 if, for some G, there exists a keystream

byte pair (zi,T−G−1, zi,T−G) such that

(p′ ⊕ ci,T+1, p
′′ ⊕ ci,T+2) = (Zi,T+1, Zi,T+2) = (zi,T−G−1, zi,T−G)

= (pT−G−1 ⊕ ci,T−G−1, pT−G ⊕ ci,T−G),

that is to say if

(p′, p′′) = (pT−G−1 ⊕ ci,T−G−1 ⊕ ci,T+1, pT−G ⊕ ci,T−G ⊕ ci,T+2).

We now let xi,G denote the known 2-byte quantity

(pT−G−1 ⊕ ci,T−G−1 ⊕ ci,T+1, pT−G ⊕ ci,T−G ⊕ ci,T+2)

for the ith RC4 encryption, and we let xi = (xi,0, . . . , xi,T−2)T denote the vector of such

known 2-byte quantities. If we then let θ denote the value of the unknown plaintext bytes

(PT+1, PT+2), then the probability mass function of xi given the parameter θ is

f(xi; θ) ≈

 2−16(1 + δG) xi,G = θ [G = 0, . . . , T − 2]

2−16 otherwise.

This means that the likelihood function of the parameter θ = (PT+1, PT+2) given the data

xi is given by

L(θ;xi) ≈

 2−16(1 + δG) θ = xi,G [G = 0, . . . , T − 2]

2−16 otherwise.

Here the approximations arise from the fact that, for a given i, the equality θ = xi,G could

hold for multiple values of G, while our analysis ignores this eventuality (which is of low

113

5.3 Plaintext Recovery using the Mantin Biases

probability).

We now consider the likelihood function of the parameter θ = (PT+1, PT+2) given N such

data vectors x1, . . . , xN derived from known plaintext-ciphertext bytes. If we let

SG(θ;x) = #{xi,G = θ | i = 1, . . . , N}

be a count of the number of times the Gth component of x1, . . . , xN is equal to θ, then the

joint likelihood function satisfies

L(θ;x1, . . . , xN) ≈ 2−16N
T−2∏
G=0

(1 + δG)SG(θ;x).

Thus if we let x denote the data x1, . . . , xN , then the log-likelihood function is given by

L(θ;x) = logL(θ;x) = −16N log 2 +
T−2∑
G=0

SG(θ;x) log(1 + δG)

≈ −16N log 2 +
T−2∑
G=0

δGSG(θ;x)

≈ δTS(θ;x)− 16N log 2,

where δ = (δ0, . . . , δT−2)T and S(θ;x) = (S0(θ;x), . . . , ST−2(θ;x))T . Thus the value of θ

which maximises

δTS(θ;x) ≈ L(θ;x) + 16N log 2

is essentially the maximum likelihood estimate θ̂ of the plaintext parameter θ = (PT+1, PT+2)

given the known data x.

5.3.2 Plaintext Recovery Attack

The preceding analysis leads immediately to an attack recovering the two unknown bytes

θ = (PT+1, PT+2) given access to N ciphertexts: for each value of θ, compute δTS(θ;x)

and output the value of θ which maximises this expression.

The attack can be implemented efficiently by processing the i-th ciphertext as it becomes

available, using it to compute the quantities xi,G and updating a (T − 1)× 216 array of

integer counters by incrementing the array in positions (G, xi,G) for each G between 0 and

T − 2. Once all N ciphertexts are processed in this way, the array contains the counts

114

5.3 Plaintext Recovery using the Mantin Biases

SG(θ;x) from which the log likelihood of each candidate θ can be computed by taking

inner products with the vector δ.

Note too that, since the attack produces log likelihood estimates for each of the 216

candidates θ, it is trivially adapted to output a ranked list of plaintext candidates in order

of descending likelihood. This feature is important for our extended attacks in the following

section.

This basic attack can be extended in several different ways (some of which can be considered

in combination):

1. To the situation where the unknown plaintext bytes are not contiguous with the

known plaintext bytes. This merely requires adjusting the above analysis to use

Mantin biases for the correct values of G (rather than starting from G = 0). Note

that because the Mantin biases decrease in strength with increasing G, the attack

will be rendered less effective.

2. To the case where known plaintext bytes are located on both sides of the unknown

plaintext bytes (possibly in a non-contiguous fashion on one or both sides). Again,

this only requires the above analysis to be adjusted to use the correct set of values

for G. Using more biases in this way results in a stronger attack.

3. To the case where one of two target plaintext bytes, PT+1 say, is already known. This

is easily done by considering only the log likelihoods of a reduced set of candidates θ

in the attack.

4. To the situation where the plaintext space is constrained in some way, for example,

where the bytes of θ are known to be ASCII characters or where base64 encoding is

used. Again, this can be done by working with a reduced set of candidates θ.

5.3.3 Distribution of the Maximum Likelihood Statistic and Attack Perfor-

mance

We now proceed to evaluate the effectiveness of the above basic attack, as a function of

the number of available ciphertexts, N , and the number of known plaintext bytes, T .

115

5.3 Plaintext Recovery using the Mantin Biases

We let θ∗ denote the true value of the plaintext parameter θ. The component SG(θ;x) has

a binomial distribution, and there are two cases depending on whether or not θ is this true

value θ∗, so we have

SG(θ∗;x) ∼ Bin(N, 2−16(1 + δG))

and SG(θ;x) ∼ Bin(N, 2−16) [θ 6= θ∗].

If we write µ = N2−16, then E(SG(θ∗;x)) = 2−16N(1 + δG) = µ(1 + δG) and E(SG(θ;x)) =

2−16N = µ for θ 6= θ∗, with Var(SG(θ;x)) ≈ 2−16N = µ for all θ (to a very good

approximation). For the values of N and hence µ = 2−16N of interest to us, these

binomial random variables are very well-approximated by normal random variables, and

we essentially have

SG(θ∗;x) ∼ N(µ(1 + δG), µ)

and SG(θ;x) ∼ N(µ, µ) [θ 6= θ∗].

Thus the vector S(θ∗;x) = (S0(θ∗;x), . . . , ST−2(θ∗;x))T corresponding to the true parame-

ter θ∗ and the vectors S(θ;x) = (S0(θ;x), . . . , ST−2(θ;x))T (for θ 6= θ∗) corresponding to

other values of the plaintext parameter have a multivariate normal distribution. Further-

more, it is reasonable to assume that the components of these vectors are independent, so

we have
S(θ∗;x) ∼ NT−1(µ(1 + δ), µIT−1)

and S(θ;x) ∼ NT−1(µ1, µIT−1) [θ 6= θ∗].

The maximum likelihood statistic is essentially determined by the distributions of δTS(θ∗;x)

and δTS(θ;x) (for θ 6= θ∗). However, these are just rank-1 linear mappings of multivariate

normal random variables and so have univariate normal distributions given by

δTS(θ∗;x) ∼ N(µ(δT1 + |δ|2), µ|δ|2)

and δTS(θ;x) ∼ N(µδT1, µ|δ|2) [θ 6= θ∗].

The above distributions suggest that it is convenient to consider the function

J(θ;x) = δTS(θ;x)− µ1T δ
µ

1
2 |δ|

= µ−
1
2 |δ|−1

(
δTS(θ;x)

)
− µ

1
2 |δ|−

1
2 (1T δ)

on the parameter space. It is clear that J(θ;x) is a very good approximation to an affine

116

5.3 Plaintext Recovery using the Mantin Biases

transformation of the log-likelihood function, so the value of θ which maximises J(θ;x) is

essentially the maximum likelihood estimate θ̂ of the plaintext parameter θ = (PT+1, PT+2)

given the known data x.

We note that J(θ;x) has a univariate normal distribution with unit variance in both cases

as we have

J(θ∗;x) ∼ N
(
µ

1
2 |δ|, 1

)
and J(θ;x) ∼ N (0, 1) for θ 6= θ∗.

Furthermore, we may essentially regard all of these random variables J(θ;x) as independent

since the random variables SG(θ;x) are very close to being independent.

The function J(θ;x) can be thought of as a “variance-stabilised” form of log-likelihood

function L(θ;x) of the plaintext parameter θ. Furthermore, the squared length of the

vector δ can be calculated as

|δ|2 =
T−2∑
G=0

δ2
G = e

1
32 − e

1
32 (3−2T)

216(e
1

16 − 1)
.

This means, for instance, that |δ| ≈ 0.00385 for T = 2 and |δ| ≈ 0.00930 for T = 8, with

|δ| ≈ 0.0156 for large T .

Performance of Plaintext Ranking in the Basic Attack. With the above reformu-

lation, finding the maximum likelihood estimate θ̂ by maximising the function J(θ;x) can

now be seen as essentially comparing a realisation of a normal N(µ
1
2 |δ|, 1) random variable

(corresponding to J(θ∗;x)) with a set R = {J(θ;x)|θ 6= θ∗} of realisations of 216−1 = 65535

independent standard normal N(0, 1) random variables. Thus the maximum likelihood

estimate θ̂ gives the true plaintext parameter θ∗ if a realisation of an N(µ
1
2 |δ|, 1) random

variable exceeds the maximum of the realisations of 216 − 1 independent standard normal

random variables.

This enables the probability that the maximum likelihood estimate is correct (and the basic

attack succeeds) to be evaluated as a function of N and T . However, we are able to go

further and consider the rank of the correct plaintext θ∗ in the ordered list of values J(θ;x)

(from highest to lowest) as a function of N and T , that is to evaluate the performance of

the ranking version of the plaintext recovery attack. Such an evaluation makes use of the

result concerning order statistics mentioned in Section 5.2, namely:

117

5.3 Plaintext Recovery using the Mantin Biases

Result 1. Suppose X1, . . . , Xk are independent standard normal N(0, 1) random variables

and that Φ denotes the distribution function of a standard normal N(0, 1) random variable.

Then Φ(X1), . . . ,Φ(Xk) are independent uniform Uni(0, 1) random variables and the order

statistics X(1), . . . , X(k) satisfy

E
(
Φ(X(j))

)
= j

k + 1 ,

where E denotes the expected value of the random variable Φ(X(j)).

It follows that Φ(z) is an accurate representation on a linear uniform scale between 0 and

1 of the position of a value z within X(1), . . . , X(k). Thus the random variable giving the

position (from highest to lowest) or “rank” of J(θ∗;x) with respect to the set R, and hence

the rank of θ∗, is given accurately by rounding the random variable

Rk(θ∗) = 216(1− Φ(J(θ∗;x)))

to the nearest integer.

The distribution function FRk(θ∗) of this (unrounded) rank Rk(θ∗) of θ∗ is given by

FRk(θ∗)(z) = Pr (Rk(θ∗) ≤ z) = Pr
(
216(1− Φ(J(θ∗;x))) ≤ z

)
= Pr

(
J(θ∗;x) ≥ Φ−1 (1− 2−16z

))
= 1− F∗

(
Φ−1 (1− 2−16z

))
,

where F∗ is the distribution function of J(θ∗;x), that is to say of an N
(
µ

1
2 |δ|, 1

)
distribution.

Figure 5.1 shows the cumulative distribution function of the rank Rk(θ∗) for different

numbers of ciphertexts, N , for the specific value T = 26. It can be seen that as N

approaches 232, it becomes highly likely that the rank of θ∗ is rather small. On the other

hand, when N drops below 228, the attack does not have much advantage over random

guessing (which would produce a diagonal line on the cumulative distribution plot).

The median of Rk(θ∗), which is very close to the mean of Rk(θ∗), is the value of z satisfying

FRk(θ∗)(z) = 1
2 , that is to say

Median (Rk(θ∗)) = 216
(
1− Φ

(
F−1
∗

(
1
2

)))
= 216

(
1− Φ

(
µ

1
2 |δ|

))
= 216Φ

(
−2−8N

1
2 |δ|

)
.

118

5.3 Plaintext Recovery using the Mantin Biases

N 227 228 229 230 231 232 233 234 235 236 237

T = 21 28236 26390 23838 20387 15920 10628 5353 1596 174 3 1
T = 23 22081 18078 13105 7664 3024 566 25 1 1 1 1
T = 26 15735 10423 5176 1502 155 2 1 1 1 1 1

Table 5.2: Median rank of maximum likelihood estimate of plaintext parameter

Table 5.2 shows some median rankings for the value of J(θ∗;x) within the set of all such

216 values of J(θ;x). A median rank of “1” indicates that the maximum likelihood estimate

θ̂ gives the true plaintext parameter θ∗ with high probability.

Performance of Plaintext Ranking in Variant Attacks. The above analysis is easily

extended to evaluate the performance of the variant attacks described in Section 5.3.2.

For variant 1, in which the unknown plaintext bytes are not contiguous with the known

plaintext bytes, we need only replace the value of |δ| with the appropriate value computed

from the biases actually used in the attack. For variant 2, where known plaintext bytes are

located on both sides of the unknown plaintext bytes, the same is true, but this time δ

increases; the analysis is otherwise identical. For example, |δ|2 doubles when we use an

additional T known plaintext bytes pT+3, . . . , p2T+2 in concert with p1, . . . , pT . Recalling

that J(θ∗;x) has a N
(
µ

1
2 |δ|, 1

)
distribution with µ = 2−16N , it can be seen that the effect

of doubling |δ|2 by using “double-sided” biases in this way is the same as that of doubling N

in the attack; put another way, using double-sided biases reduces the number of ciphertexts

0 10 000 20 000 30 000 40 000 50 000 60 000

0.2

0.4

0.6

0.8

1.0

N=2^32

N=2^31

N=2^30

N=2^29

N=2^28

Figure 5.1: Cumulative distribution function of the rank Rk(θ∗) for different numbers of
ciphertexts, N (T = 26).

119

5.3 Plaintext Recovery using the Mantin Biases

needed to obtain a given median ranking for the value of J(θ∗;x) by a factor of 2.

Variants 3 and 4 both concern the case where the plaintext space for the pair (PT , PT+1)

is reduced from a set of 216 candidates to some smaller set of candidates, C say. For

example, in variant 3, where one of the plaintext bytes is known, |C| = 28. This means

that our fundamental statistical problem becomes one of distinguishing a realisation of

a normal N(µ
1
2 |δ|, 1) random variable (corresponding to J(θ∗;x)) from a now smaller set

R = {J(θ;x)|θ ∈ C \ θ∗} of |C| − 1 realisations of independent standard normal N(0, 1)

random variables. Our previous analysis goes through as above, except that we simply

replace 216 by |C| where appropriate, resulting in

Median (Rk(θ∗)) = |C| · Φ
(
−2−8N

1
2 |δ|

)
.

The effect of this is to divide all the entries in Table 5.2 by 216/|C|. For example, in variant

3 where |C| = 28, we would expect a median rank of roughly 6 with N = 230 ciphertexts

and T = 26.

Note that these two effects are cumulative. For example, using double-sided biases and

assuming one byte of plaintext from the pair (PT+1, PT+2) is known has the effect of both

reducing N by a factor of 2 and dividing the median rank by 28. Then, for example, with

only N = 229 ciphertexts and T = 26 we would expect J(θ∗;x) to have a median rank of

about 6, meaning that the correct plaintext θ∗ can be expected to have a high ranking.

Experimental Validation. We carried out an experimental validation of our statistical

analysis, performing experiments with T = 26 for different numbers of ciphertexts, N ,

and computing the cumulative distribution function of the rank Rk(θ∗). The results are

shown in Figure 5.2 for N = 228, 229 and 230. Good agreement can be seen between

the experimental results and the predictions made by our statistical analysis, with the

experiments slightly outperforming the theoretical predictions in each case.

5.3.4 Incorporating Prior Information about Plaintext Bytes

Prior information about the unknown plaintext bytes is frequently available and can be

exploited (as was done in the previous chapter) to improve attacks.

120

5.3 Plaintext Recovery using the Mantin Biases

N=2^28 HEmpricialL
N=2^28 HTheoreticalL

0 10 000 20 000 30 000 40 000 50 000 60 000

0.2

0.4

0.6

0.8

1.0

N=2^29 HEmpricialL
N=2^29 HTheoreticalL

0 10 000 20 000 30 000 40 000 50 000 60 000

0.2

0.4

0.6

0.8

1.0

N=2^30 HEmpricialL
N=2^30 HTheoreticalL

0 10 000 20 000 30 000 40 000 50 000 60 000

0.2

0.4

0.6

0.8

1.0

Figure 5.2: Cumulative distribution function of the rank Rk(θ∗) for different numbers of
ciphertexts, N (T = 26): N = 228 (top), N = 229 (middle), N = 230 (bottom).

Prior information in our setting can be incorporated using the inferential form of Bayes

Theorem, which can be loosely expressed as

Posterior ∝ Likelihood × Prior,

or equivalently in its logarithmic form as

Log-Posterior = Log-Likelihood + Log-Prior + Constant.

If we let π(θ) denote the prior probability of the plaintext parameter θ = (PT+1, PT+2)

121

5.3 Plaintext Recovery using the Mantin Biases

and π(θ;x) the posterior probability of the parameter θ given the data x, then we have

log π(θ;x) = L(θ;x) + log π(θ) + Constant

≈ δTS(θ;x) + log π(θ) + Constant.

This suggests that for purposes such as posterior plaintext ranking, we consider an adapta-

tion of J(θ;x) given by

Jπ(θ;x) = δTS(θ;x) + log π(θ)− µ1T δ
µ

1
2 |δ|

= J(θ;x) + log π(θ)
µ

1
2 |δ|

.

We note that Jπ(θ;x) has a univariate normal distribution with unit variance as we have

Jπ(θ∗;x) ∼ N
(
µ

1
2 |δ|+ log π(θ∗)

µ
1
2 |δ|

, 1
)

and Jπ(θ;x) ∼ N
(

log π(θ)
µ

1
2 |δ|

, 1
)

for θ 6= θ∗.

It is clear that when N or equivalently µ = 2−16N is small, that is roughly speaking

when µ|δ|2 << |log π(θ)|, the mean value of the posterior scoring function is given by

E (Jπ(θ;x)) ≈ µ−
1
2 |δ|−1 log π(θ) for both θ = θ∗ and θ 6= θ∗. Thus when N or µ is small,

the posterior scoring function essentially orders the plaintext parameters π according to the

prior distribution π; analysis of the available ciphertexts does not yield enough evidence

to “overturn” the evidence given by the prior distribution. By contrast when N or µ is

large, that is roughly speaking when µ|δ|2 >> |log π(θ)|, then E (Jπ(θ∗;x)) ≈ µ
1
2 |δ| and

E (Jπ(θ;x)) ≈ 0 for θ 6= θ∗. In this situation, the evidence of the experiment “overwhelms”

the evidence given by the prior distribution, and we are essentially considering the previous

scenario.

The interesting situation is therefore when µ|δ|2 and |log π(θ)| are of roughly comparable

size. We consider how much data is needed to “overturn” an ordering of plaintext parameters

according to their prior probabilities. In this situation, the scoring function for the plaintext

parameter has means given by

E (Jπ(θ∗;x)) = µ
1
2 |δ|+ log π(θ∗)

µ
1
2 |δ|

and E (Jπ(θ;x)) = log π(θ)
µ

1
2 |δ|

for θ 6= θ∗.

Thus the scoring function for the correct plaintext parameter θ∗ is expected to exceed that

122

5.4 Recovering Multiple Plaintext Bytes

of the plaintext parameter θ when E (Jπ(θ∗;x)) > E (Jπ(θ;x)), that is to say when

µ >
1
|δ|2

log π(θ)
π(θ∗) or equivalently when N >

216

|δ|2
log π(θ)

π(θ∗)

The interesting case is obviously when π(θ) > π(θ∗), that is to say when θ is a priori a

more likely plaintext parameter than θ∗. In this case, the above expression indicates how

many samples are likely to be required to be able to place an a posteriori rank θ∗ above

that for θ. Clearly, the answer depends on the specifics of the distribution π.

5.4 Recovering Multiple Plaintext Bytes

We now extend the attacks and analysis presented in the previous section to consider

the situation where the target plaintext extends over multiple bytes. As in previous [10,

68, 76, 113, 115, 116] and concurrent [148] works, this is important in building practical

attacks targeting HTTP cookies and passwords. We are particularly interested in attack

algorithms that output lists of candidates rather than single candidates, since in many

practical situations, many suggested candidates can be tried one after another, as was first

suggested in [10]. Throughout, we let W denote the byte-length of the target plaintext.

This problem was already addressed in [10] and [113] for attacks exploiting Fluhrer-McGrew

and Mantin biases, respectively. Although not explicit in [10], the algorithm used there

is a Viterbi algorithm and is guaranteed to output the best plaintext candidate on W

bytes according to an approximate log likelihood metric; roughly 233 – 234 ciphertexts

were needed to recover a 16-byte plaintext with high success rate. The algorithm in [113]

proceeds on a byte-by-byte basis and the success probability of it recovering the correct

plaintext is the product of success rates for single bytes. This, unfortunately, means that

the success rate drops rapidly as a function of W . For example, with N = 232 ciphertexts

and T = 66 known plaintext bytes, the algorithm of [113] achieves a success rate of 0.7656

for a single byte, but this would be reduced to (0.7656)16 = 0.014 for W = 16 bytes.

123

5.4 Recovering Multiple Plaintext Bytes

5.4.1 A Likelihood Analysis for Multiple Plaintext Bytes

As before, we assume plaintext bytes p1, . . . , pT are known. Our task now is to recover

the W unknown bytes θ = (PT+1, . . . , PT+W). We let θw denote (PT+w, PT+w+1) for

1 ≤ w ≤W −1. Using the methods of Section 5.3, we can form W −1 ranked lists of values

for L(θw;x), where as before x denotes the collection of N data vectors x1, . . . , xN derived

from known plaintext-ciphertext bytes. Note here that when w ≥ 2, these log-likelihoods

will be computed using progressively weaker Mantin biases with G ≥ 1.

To evaluate the overall log-likelihood L(θ;x), we will replace this quantity with the sum:

W−1∑
w=1
L(θw;x) (5.2)

of log-likelihoods for the byte pairs θi.

This replacement is formally justified as follows. Consider the probability mass function of a

data vector xi given the unknown byte pairs θ = (θ1, . . . , θW−1). This can be approximated

as

f(xi; θ1, . . . , θW−1) ≈

 2−16(1 + δG+w−1) xi,G = θw

2−16 otherwise.

Here, the nature of the approximation is similar to that made in our analysis in Section 5.3:

it assumes that at most one low probability event xi,G = θw occurs for each i.

However, the probability mass function of a data vector xi given a single unknown byte

pair θw can be approximated as

f(xi; θw) ≈

 2−16(1 + δG+w−1) xi,G = θw

2−16 otherwise,

so the product of all such probability mass functions can be approximated as

W−1∏
w=1

f(xi; θw) ≈

 2−16(W−2) 2−16(1 + δG+w−1) xi,G = θw

2−16(W−2) 2−16 otherwise.

This enables us to give an approximate proportionality relationship between the the proba-

bility mass function of a data vector xi given the unknown byte pairs θ = (θ1, . . . , θW−1)

124

5.4 Recovering Multiple Plaintext Bytes

and the probability mass functions of a data vector xi given single unknown byte pairs θw
since we now see that

f(xi; θ1, . . . , θW−1) ∝
W−1∏
w=1

f(xi; θw).

This can be re-formulated in terms of likelihood functions as

L(θ;xi) = L(θ1, . . . , θW−1;xi) ∝
W−1∏
w=1

L(θw;xi).

The likelihood function of the byte pairs θ = (θ1, . . . , θW−1) given all the data vectors

x = (x1, . . . , xN) is therefore proportional (to a good approximation) to a product of

individual likelihood functions, that is to say

L(θ;x) ∝
N∏
i=1

(
W−1∏
w=1

L(θw;xi)
)

=
W−1∏
w=1

(
N∏
i=1

L(θw;xi)
)

=
W−1∏
w=1

L(θw;x),

which can be expressed in log-likelihood terms (for some constant C) as

L(θ;x) ≈ C +
W−1∑
w=1
L(θw;x).

Thus maximising the overall log-likelihood L(θ;x) can be achieved (to a good approximation)

by maximising the sum
∑W−1
w=1 L(θw;x) of individual log-likelihoods.

5.4.2 Algorithms for Recovering Multiple Plaintext Bytes

It follows from the above analysis that, to find high log-likelihood candidates for θ, we

need to find sequences of overlapping byte pairs θw for which the sums in (5.2) are large,

given the W − 1 lists L(θw;x). This is a classic problem in dynamic programming that can

be solved by a number of different approaches. We consider two such standard approaches:

List Viterbi. Recall that in its general form the list Viterbi algorithm finds the L lowest

cost state sequences through a complete trellis of some width W on some state space,

given an initial state and a final state and where each state transition in the trellis has

an associated cost. The algorithm is easily adapted to the problem at hand by setting

the edge weights to be the log-likelihood values L(θw;x) and interpreting the states as

125

5.4 Recovering Multiple Plaintext Bytes

byte values.2 The algorithm is relatively memory intensive and somewhat slow, requiring

roughly 256 ·W times as much storage as the beam search algorithm to return a final list

of L candidates. However, the algorithm has the advantage that it guarantees to return

the L best plaintext candidates on W bytes, that is the top L candidates according to the

metric represented by (5.2).

Beam Search. In the beam search algorithm, we generate a list of L candidates on j

positions T+1, . . . , T+j, each candidate being accompanied by a partial sum
∑j−1
w=1 L(θw;x).

We then expand the list to include all 256 · L candidates that are 1-byte extensions of

candidates on the list, computing a new sum
∑j
w=1 L(θw;x) for each candidate by adding

a term L(θw;x). We then prune the list back to L candidates again, by keeping just the

top L candidates, but now on w + 1 positions. The process is initialised using the top

L values for L(θ1;x) on the first two unknown plaintext bytes. The process is finalised

when w = W − 1, and the list need not be pruned at the final step, though we do so in

our implementation to provide a fair comparison with the list Viterbi algorithm. The

algorithm is deemed successful if the correct plaintext (PT+1, . . . , PT+W) appears on the

final pruned list of L candidates. In a further enhancement, we may assume the first and

last byte of the plaintext are known, and force the candidate plaintexts to begin and end

with those known bytes. The beam search algorithm is fast and memory-efficient, but does

not provide any guarantees about the quality of its outputs (that is to say, we do not know

if it will successfully include the highest log-likelihood plaintext on its output list).

Note that both algorithms extend smoothly to the double-sided case where some plaintext

bytes are known on both sides of the W unknown bytes; the only modification is to the

computation of the log likelihoods L(θw;x) that are input to the algorithms. Again we will

be forced to use Mantin biases starting with non-zero values of G in computing the values

L(θw;x), because of the presence of a run of unknown plaintext bytes before reaching

the known plaintext bytes. Both algorithms also generalise easily to the case where the

plaintext space is constrained in some way, simply by considering only restricted sets of

plaintext bytes when extending candidates (in beam search) or traversing the trellis (in

the list Viterbi case).
2Several additional notational and conceptual changes are needed compared to the original description

in [145]. In particular, the initialisation process described in [145] contains a small error, and we wish to
maximise rather than minimise the cost of state sequences. The basic algorithm also requires the first and
last bytes of plaintext, PT +1 and PT +W to be known.

126

5.5 Simulation Results

5.5 Simulation Results

We performed experiments with the beam search and list Viterbi algorithms, for a variety

of attack parameters.

5.5.1 Methodology

We focus on recovering 16 unknown plaintext bytes, a length typical of HTTP cookies,

and on attacks using single-sided and double-sided biases with, respectively, T = 66 and

130 known plaintext bytes – in the case of List Viterbi, we require a trellis of width 18

as the first and last plaintext bytes need to be known, and for beam search we assume

known plaintext bytes, one on either side of the 16 unknown target plaintext bytes. We

are most interested in how the attack performance varies with N , the number of available

ciphertexts, and L, the pruned list size/output list size in the two algorithms. Further

experiments to explore how performance changes with T and W , and for the case of a

constrained plaintext space, would be of interest, but we did not have the computing

resources available to perform these. Notably, target plaintexts such as cookies often have

symbols coming from a much reduced plaintext space, a fact exploited in [148] to reduce

their attack’s ciphertext requirements.

Our experiments ran in two phases: in phase 1, we generated 212 keystream groups, each

group containing N = 227 blocks of keystream bytes. On the fly, for each group, we

computed and stored the single-sided and double-sided log-likelihood measures L(θw;x)

for each of the 216 possible values of θw for each of 17 overlapping pairs of positions,

yielding log-likelihood information for 18 consecutive unknown plaintext bytes. Then,

in phase 2, we collated the measures coming from different groups to create measures

for groups corresponding to progressively larger sets of blocks. This enabled us to carry

out 128 plaintext recovery attacks on up to N = 232 ciphertexts each, using our beam

search and list-Viterbi algorithms. We ran each of these algorithms with L = 216 and

computed the success rate across different values of N (typical values of N are n · 227 where

n ∈ {8, 10, 11, 12, 13, 14, 15, 16, 18, 20, 24, 28, 32}).

All computations were performed on the Google Compute Engine (GCE), and we optimised

various parameters internal to our code for this platform. Each list Viterbi execution with

127

5.5 Simulation Results

L = 216 on a trellis of width 18 took around 2 hours on a single GCE core; by contrast,

the execution of the beam search algorithm completed in a only a couple of minutes for

the same parameter L. This favourable running time inspired us to conduct further beam

search experiments for higher values of L. For L = 217 each beam search experiment took

about 20 minutes, and for L = 218, the running time was roughly 2.5 hours per experiment.

We attribute this unfortunate scaling in the running time to an increasing number of cache

misses as L grows. In total we used around 6,200 GCE core-hours of computation for the

experiments.

5.5.2 Results

We present our results for the attack simulations starting with those for the list Viterbi

algorithm. We then discuss a number of results for the beam search algorithm and conclude

this section with a comparison of the two algorithms.

List Viterbi. Figure 5.3 shows how the success rate varies with N , the number of

ciphertexts available, for the list Viterbi algorithm with double-sided biases (130 known

plaintext bytes split either side of 16 unknown bytes, with 2 of the known bytes being

used in the list Viterbi algorithm and the remaining 128 being used for computing log

likelihoods). Each curve represents a different value of L. It can be seen that, for fixed N ,

the success rate increases steadily with L and that a threshold phenomenon is observable,

where above roughly 230 ciphertexts, the success rate takes off rapidly. For example, with

N = 231 we see a success rate 86% for L = 216. We are confident that the success rate

would continue to improve with increasing L and with a larger number of known plaintext

bytes, bringing our results into contention with those of [148] (which used 256 known

bytes instead of our 130, the significantly larger L = 223 in the list Viterbi algorithm, and

an undisclosed reduced plaintext space to achieve a success rate of 94% for recovering a

16-byte plaintext with 9 · 227 ciphertexts, a little over 230 ciphertexts).

Figure 5.4 compares the performance of the single-sided and double-sided version of the

attacks. Not surprisingly, the use of double-sided biases significantly improves the attack

performance.

Beam Search. Unless otherwise stated, we use the enhancement of assuming the bytes

128

5.5 Simulation Results

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 11 12 13 14 15 16 18 20 24 28 32

L=20

L=24

L=28

L=212

L=216

Figure 5.3: Success rate of list Viterbi algorithm in recovering a 16-byte unknown plaintext
for different numbers of ciphertexts, N and different list sizes L, using double-sided biases,
and 130 known plaintext bytes. The x-axis shows the number of ciphertexts divided by
227.

directly adjacent to the 16 target plaintext bytes to be known, and we force our respective

18-byte candidates to start and end with these bytes. Figure 5.5 shows the performance of

the beam search algorithm for varying numbers of ciphertexts, N , and for L = 216, 217 and

218. As expected, we do see an improvement in success rates as L grows. For example, with

N = 231 we see a success rate increase of 3% in going from L = 216 to L = 218. Significant

gains, however, are likely to be made with larger values of L, say L = 220.

In order to determine the extent to which assuming adjacent bytes to be known improves

attack performance, we ran the following two sets of experiments: We assumed the first

byte adjacent to the 16 target plaintext bytes to be known and used the single-sided biases

to recover 17-byte candidates (in other words, W = 17 with PT+1 known). We then used

the single-sided biases to recover 16 unknown target bytes (W = 16 and PT+1 unknown).3

Figure 5.6 shows that there is a small advantage to using this enhancement. For instance,

with N = 232 we see the success rate increase by 3%.

In a further enhancement, we did not prune the list of plaintext candidates in the final

stage of the beam search algorithm. In other words, we retained 28 · L candidates in the

last step of the process and declared success if the correct plaintext appeared on this larger
3Using the generated double-sided biases with W = 18 for the recovery of 16-byte plaintexts would have

resulted in us not being able to use some of the strongest biases for plaintext recovery; targeting bytes
PT +2 to PT +17 would mean not using biases when G = 0, and targeting bytes PT +1 to PT +16 would mean
not using biases for each G between 0 and 2 in the recovery of PT +15 and PT +16.

129

5.6 Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 12 14 16 18 20 24 28 32

double-sided

single-sided

Figure 5.4: Success rate of list Viterbi algorithm in recovering a 16-byte unknown plaintext
for different numbers of ciphertexts, using single-sided and double-sided biases (with 66
and 130 known plaintext bytes, respectively) and L = 216. The x-axis shows the number
of ciphertexts divided by 227.

list of candidates. Figure 5.7 shows the performance of the beam search algorithm using

this enhancement in comparison to the case in which this enhancement is not used. We

see a very slight improvement in attack performance as a result of this enhancement.

Comparing List Viterbi and Beam Search. Figure 5.8 compares the performance of

list Viterbi and beam search algorithms with L set to 216 in both cases. It can be seen

that the beam search algorithm performs very well, close to the optimal attack that is

represented by list Viterbi. It may make for an attractive alternative in practice, especially

for such large values of L where the memory consumption of the list Viterbi algorithm

becomes prohibitive.

5.6 Conclusion

Exploiting the Mantin biases that are present in the RC4 keystream, we have developed a

statistical framework that enables us to make accurate predictions about the performance of

plaintext recovery attacks targeting adjacent pairs of plaintext bytes. A particular novelty

is the introduction of order statistics, enabling the expected rank of the true plaintext

amongst all possible candidates to be computed. We extended our 2-byte attacks to the

situation of multiple unknown plaintext bytes, and provided an experimental evaluation of

130

5.6 Conclusion

two different attacks for this setting, using the list Viterbi and beam search algorithms,

respectively.

Our attacks target unknown bytes of plaintext that are located close to sequences of known

plaintext bytes, a situation that is commonplace in practice when RC4 is used in TLS. Our

experiments have shown that we can successfully recover 16-byte plaintexts, such as TLS

session cookies, with an 80% success rate using 231 ciphertexts. This is an improvement

over the preferred cookie-recovery attack of AlFardan et al. [10].

Although this work has undoubtedly contributed to the body of work responsible for

bringing the use of RC4 in TLS to its knees (and thereby highlighting the folly of allowing

the use of flawed primitives in TLS 1.2 and below), it is its potential for predictive power

that makes it a valuable contribution to the RC4 attack space. This is especially true

given recent attempts at making the use of RC4 viable in TLS, such as the TLS Scramble

and MCookies techniques of Levillain et al. [94]. Using techniques introduced by the work

presented in this chapter, Paterson and Schuldt [118] show that the techniques put forth

in [94] only moderately increase the security of RC4 in TLS. In the case of TLS Scramble,

the authors of [118] were able to adapt the techniques developed in our work to perform

a theoretical evaluation of the number of ciphertexts needed to guarantee the success of

their cookie-recovery attack with high probability.

131

5.6 Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 11 12 13 14 15 16 18 20 24 28 32

L = 216

L = 217

L = 218

Figure 5.5: Success rate of beam search algorithm in recovering a 16-byte unknown plaintext
for different numbers of ciphertexts, N , and different sizes of L, using double-sided biases
and 130 known plaintext bytes. The x-axis shows the number of ciphertexts divided by
227.

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 12 14 16 18 20 24 28 32

beam search (known)

beam search (unknown)

Figure 5.6: Success rate of the beam search algorithm in recovering a 17-byte plaintext
(first byte known) using single sided-biases with 65 known plaintext bytes compared to
recovering a 16-byte unknown plaintext using single-sided biases with 64 known plaintext
bytes, for different numbers of ciphertexts, N , and for L = 216. The x-axis shows the
number of ciphertexts divided by 227.

132

5.6 Conclusion

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 11 12 13 14 15 16 18 20 24 28 32

beam search (not truncated)

beam search (truncated)

Figure 5.7: Success rate of beam search algorithm without final list pruning compared to
use of final list pruning in recovering a 16-byte unknown plaintext for different numbers of
ciphertexts, N , using double-sided biases and 130 known plaintext bytes, and for L = 216.
The x-axis shows the number of ciphertexts divided by 227.

 0

 0.2

 0.4

 0.6

 0.8

 1

8 10 11 12 13 14 15 16 18 20 24 28 32

list viterbi

beam search

Figure 5.8: Success rate of list Viterbi algorithm compared to beam search algorithm in
recovering a 16-byte unknown plaintext for different numbers of ciphertexts, N , using
double-sided biases, L = 216, and 130 known plaintext bytes. The x-axis shows the number
of ciphertexts divided by 227.

133

Part III

Verifying TLS 1.3

134

Chapter 6

Automated Analysis and Verification
of draft-10

This chapter covers our symbolic analysis of the TLS 1.3 draft specification using the

Tamarin prover. We introduce the symbolic setting and cover the necessary Tamarin

fundamentals. We formally model draft-10 of the specification and encode the desired

security properties, as laid out in the draft, using the Tamarin specification language. We

use a mixture of automated inspection and manual interaction with the tool to analyse

these properties. We also extend this model to include the post-handshake authentication

mechanism as suggested for draft-11. Our results represent some of the first supporting

evidence of the security of several handshake mode interactions in TLS 1.3.

6.1 Introduction

Since its emergence in the Spring of 2014, the TLS 1.3 specification has been subject

to much analysis and refinement, as described in Chapter 3 of this thesis. The flaws

identified in TLS 1.2 and below, of which the preceding two chapters serve as testament,

prompted the TLS WG into taking a different approach to the design of TLS 1.3, this time

incorporating input from the academic community, and analysing the protocol thoroughly

prior to deployment. A notable departure from the TLS 1.2 design is marked by the

influence of the OPTLS protocol [91] of Krywczyk and Wee – this protocol was designed

to offer a zero Round-Trip Time (0-RTT) exchange and to ensure perfect forward secrecy,

meeting important designs goals for TLS 1.3. Its simple structure lends itself to analysis

via manual and automated means, a benefit that was deemed desirable for TLS 1.3, but

its influence introduced complexity into the protocol via the addition of new handshake

135

6.1 Introduction

components, including the 0-RTT functionality and a new resumption mechanism based on

Pre-Shared Keys (PSKs). Ensuring the security of TLS 1.3 in the face of this complexity

is a vital task if attacks exploiting the interaction of differing handshake modes, such as

the Triple Handshake attack against TLS 1.2 [29], are to be avoided.

Our work on draft-10 of the TLS 1.3 specification tackles this task: We formally analyse

the interaction of the various draft-10 handshake modes, showing the absence of an attack

against the draft-10 specification.1 Prior to our work on draft-10, the most up-to-date

analysis pertaining to TLS 1.3 was the analysis of OPTLS by its designers [91]. In this

work, the authors noted that their analysis was not intended to cover the full TLS 1.3

specification. In particular, they only considered the different handshake modes in isolation,

and the work did not cover client authentication or resumption.

Our analysis complements the work from [91] and previous works [54,85] by covering the

following aspects:

(i) The security, and secure interaction, of the following handshake modes: regular

(EC)DHE mode, PSK mode, PSK-DHE mode and 0-RTT mode.

(ii) The PSK-resumption handshake when composed with any acceptable initial hand-

shake, namely, an (EC)DHE handshake, a PSK handshake, a PSK-DHE handshake

or a 0-RTT handshake.

We go on to extend our draft-10 model to incorporate the post-handshake authentication

mechanism suggested for draft-11 on the TLS WG mailing list [123], and hence a third

aspect covered by our work includes:

(iii) The security of the proposed draft-11 post-handshake authentication mechanism in

the context of all previous modes.

For our analysis, we use the Tamarin prover [6], a state-of-the-art tool for the symbolic

analysis of security protocols. The Tamarin framework enables us to specify and analyse

the secrecy and authentication properties of the various handshake modes. Furthermore,
1We note that since the release of draft-10, the TLS 1.3 protocol has undergone many changes. The

work presented in the next chapter of this thesis analyses draft-21, a near-final version of the protocol.

136

6.1 Introduction

Tamarin’s multiset-rewriting semantics are well-suited for modelling the complex transition

system implied by the TLS 1.3 specification; the tool allows for the analysis of the interaction

of the assorted handshake modes and the resulting infinite loops that may occur, as well

as an unbounded number of concurrent TLS sessions. We note here that this thesis

will not delve into the tool’s theoretical foundations; we employ the tool as a means of

analysing the TLS 1.3 protocol and hence only provide as much detail as is necessary for the

understanding of this analysis. A formal treatment of Tamarin’s theoretical foundations

can be found in [141], [107] and [142].

Our analysis considers a Dolev-Yao adversary: an adversary that is able to observe network

messages, alter and drop these messages, and possibly inject their own messages into the

network, i.e., an adversary that has complete control of the network. Our adversary is

also capable of revealing the long-term private keys of honest protocol participants. Our

Tamarin model includes both the client authentication mechanism as well as session

resumption. The OPTLS analysis did not include these components so our property

specifications go well beyond the basic session key secrecy considered in [91].

We find that draft-10 achieves the standard goals of authenticated key exchange. In

particular, we show that a client has assurances regarding the secrecy of the established

session key, as well as assurances regarding the identity of the server with whom it has

established this key. The server obtains equivalent assurances when authenticating the

client in the standard way, i.e., as part of an initial handshake, and when using the newly

introduced 0-RTT mechanism. Our analysis confirms perfect forward secrecy of session keys

and also covers the properties of handshake integrity (transcript agreement) and secrecy

of early data keys. We verify these desirable properties in the presence of composable

handshake modes and for an unbounded number of concurrent TLS sessions, something

which had not been done in previous TLS 1.3 analyses.

Our exploration of the initial proposal for a post-handshake client authentication mechanism

[123] resulted in the discovery of an attack. Specifically, an adversary is able to impersonate a

client when communicating with a server owing to a vulnerability in the client authentication

mechanism of the PSK-resumption handshake. Our attack highlights the strict necessity of

creating a binding between consecutive TLS 1.3 handshakes.

Related Work. The 0-RTT mechanism of OPTLS, and hence of TLS 1.3, is similar to

137

6.1 Introduction

that of Google’s Quick UDP Internet Connections (QUIC) protocol [93]. Lychev et al.

introduce a security model for what they term Quick Connections (QC) protocols and

analyse QUIC within this framework [98]. Although they do not focus on TLS 1.3, they do

point out that the 0-RTT mode of TLS 1.3, as described in draft-10, fits the definition of

a QC protocol. Fischlin and Günther also provide an analysis of QUIC [60] by developing

a Bellare-Rogaway style model [23] for multi-stage key exchange protocols.

The TLS 1.3 Handshake Protocol can be viewed as a multi-stage key exchange protocol

because the communicating parties establish multiple session keys during an exchange,

potentially using one key to derive another. In work by Dowling et al. [54], two TLS 1.3

drafts, specifically draft-05 and draft-dh are analysed using the multi-stage framework.

Although the authors showed that keys output by the Handshake Protocol could be securely

used by the Record Protocol, at the time of writing, the TLS drafts did not include a

0-RTT mode and resumption had not yet been merged with the PSK mode. Kohlweiss et

al. also produced an analysis of draft-05 using a constructive-cryptography approach [85].

Although there were changes including a reduction in handshake latency, removal of

renegotiation and a switch to AEAD ciphers in the earlier drafts of TLS 1.3, it is not until

draft-07, with the encroaching influence of OPTLS, that we see a shift in the design of

the protocol away from TLS 1.2. Hence, the results described above do not easily transfer

to later drafts.

In concurrent work to ours, Li et al. analyse draft-10 in the computational setting using

their multi-level&stage security model which examines the composition of the various

TLS 1.3 handshake modes [95]. Their work, however, does not include the proposed

post-handshake authentication mechanism (not surprising as this was not part of the

draft-10 specification). In an update on their previous computational analysis, Dowling

et al. released results on draft-10 at a similar time to our work [55]. Their work shows

the initial (EC)DHE handshake to be secure in the multi-stage key exchange model. To

our knowledge, ours is the first published work examining TLS 1.3 in the symbolic setting,

and indeed the first to consider the full interaction of the various components of TLS 1.3.2

2Work relating to later drafts of TLS 1.3 will be covered in Chapter 7.

138

6.2 Preliminaries

6.2 Preliminaries

We now present the notation, concepts and definitions used throughout this chapter,

including a description of symbolic analysis as well as an introduction to the Tamarin

prover [6], covering the fundamentals necessary for the understanding of our TLS 1.3

analysis.

6.2.1 Symbolic Analysis

Symbolic analysis is one means by which to analyse critical security protocols such as

TLS. Other methods include inspecting concrete implementations of the protocol (program

verification), or producing what are traditionally thought of as “pen and paper security

proofs” via computational analysis. In the symbolic model, introduced by Needham and

Schroeder [112] and Dolev and Yao [53], cryptographic primitives are represented as function

symbols, and messages are represented by abstract terms on these symbols (as opposed to

bitstrings). For instance, a symmetric encryption primitive could be represented by the

two function symbols enc and dec, and encryption and decryption of a message m under a

key k is modelled using the following equality:

dec(enc(m,k), k) = m.

All cryptographic primitives are modelled in this fashion, using the appropriate function

symbols and specifying the necessary equations. A consequence of this approach is that

all primitives are considered to be perfect, meaning that the only operations possible are

those that satisfy the specified primitive equations, as in the encryption example above.

An adversary would not be able to learn anything about the length of the message being

encrypted, for instance. We expound more on this notion of perfect cryptography in Section

6.2.2.

In the symbolic model, all honest protocol participants, as well as the adversary, only have

access to the primitives (and equations) which have been specified. This is in contrast

to the popular computational model in which primitives are modelled as functions from

bitstrings to bitstrings, and where all network actors may invoke equalities which have not

been explicitly specified. We do not go into detail here concerning the differences between

the symbolic model and the computational model – a more considered treatment of the

139

6.2 Preliminaries

differences between these two models is given in [36].

As pointed out in [36], security properties generally fall into one of two categories, namely,

trace properties and equivalence properties. Trace properties are properties that can be

defined for each possible run of the protocol; a trace property is satisfied when it holds

for each applicable run of the protocol. Equivalence properties capture the ability of

an adversary to distinguish between two processes, or two instantiations of a protocol.3

Symbolic analysis typically concerns itself with trace properties, making it well-suited to

automation, and indeed, many automated symbolic analysis tools have come to the fore in

recent years, including the Scyther [5], ProVerif [4] and Tamarin [6] tools. We note

that automated tools are also available for the computational setting, see CryptoVerif [1]

for instance, but these are not the focus of this chapter.

We elaborate on the concepts described above and make them more concrete by introducing

the Tamarin tool.

6.2.2 Tamarin Fundamentals

The Tamarin specification language facilitates the construction of highly detailed models

of security protocols, their security requirements, and powerful Dolev-Yao-style attackers.

The Tamarin prover takes as input the security protocol model, a specification of the

adversary, and a specification of the protocol’s desired properties. It then attempts to

construct a proof showing that the protocol meets the specified properties in the presence

of the specified attacker, even when arbitrarily many interleaved protocol executions are

instantiated.

The steps required for analysing a protocol with the Tamarin prover include: (i) building an

abstract model of the protocol using the tool’s specification language, including modelling

honest protocol participants, as well as the network-controlling adversary, (ii) encoding the

desired protocol security properties, also using the Tamarin specification language, and

(iii) constructing proofs for the specified properties within the Tamarin framework.

As a precursor to our TLS 1.3 analysis, we introduce the Tamarin specification language
3This is what is known as indistinguishability in the computational model.

140

6.2 Preliminaries

and discuss these three steps by first considering a simpler network protocol, namely the

Basic Station-to-Station (STS) protocol introduced by Diffie, van Oorschot and Wiener [52],

depicted in Figure 6.1.

C S

gx

gy, {sigS(gy, gx)}

{sigC(gx, gy)}

Figure 6.1: The Basic Station-to-Station (STS) Protocol. Brackets of the type {} indicate
encryption under a key, k, which is shared by C and S.

We assume that entities make use of known, system-wide Diffie-Hellman parameters p and

g. The parameter p is a large prime and g is a generator of the multiplicative group of

integers modulo p. We also assume that entities have access to the public keys of peers via

a Public Key Infrastructure (PKI). The client, C, generates a Diffie-Hellman exponent,

x, and sends its key share, gx, to the server, S. Upon receipt of the client’s key share,

the server generates a Diffie-Hellman exponent, y, as well as its key share, gy. The server

computes a shared key, k, from the value (gx)y and signs (gy, gx) using its private key.

The server sends this signature to the client encrypted under k, along with its key share,

gy. Upon receipt of the server’s key share, the client computes k from (gy)x and decrypts

the signature sent by the server. The client then uses the server’s public key to verify the

server’s signature on (gy, gx). The client signs (gx, gy) using its public key and encrypts

this signature using k. Upon receipt of this message from the client, the server decrypts

and verifies the client signature.

The STS protocol was constructed to overcome the well-known Man-In-The-Middle (MITM)

attack against Diffie-Hellman key agreement [52]. In addition to providing secrecy of the

shared key k, or any other session key derived from (gx)y, the protocol provides mutual

authentication of the communicating entities. This thwarts the attack against the classic

Diffie-Hellman protocol in which an adversary exploits the lack of entity authentication to

establish distinct session keys with C and S, respectively, with both parties being none the

wiser.

141

6.2 Preliminaries

We now explain how the STS protocol can be analysed within the Tamarin framework,

describing how we (i) build a model, (ii) encode security properties and (iii) construct

proofs to verify these properties. We introduce all of the necessary Tamarin concepts for

the execution of each of these steps prior to describing the STS example.

6.2.2.1 Modelling

A Tamarin model defines a labelled transition system whose state space comprises a

multiset or “bag” of facts, representing the adversary’s knowledge, messages on the network,

and the state of protocol participants, respectively. The permissible state transitions

are specified by Tamarin rules which encode the behaviour of protocol participants, as

well as adversarial capabilities. A sequence of state transitions within the model gives

rise to a trace – the sequence of labels produced upon instantiation of the model rules.

Rules and facts make up the basic ingredients necessary for building an abstract model in

Tamarin, along with terms and equational theories. The role of each of these elements in

the modelling process will be made clear in the subsections to follow:

Facts and Rules. The concept of terms in symbolic analysis was introduced above in

Section 6.2.1 – these are how we model cryptographic messages and quantities. Facts are

of the form F(t1,t2,...,tn) where F is a fact symbol and the ti are terms. Facts are

fundamental to the concept of Tamarin rules, which we introduce by considering the

Fresh rule:

rule Fresh:
[]--[]->[Fr(˜x)]

Tamarin rules consist of three respective parts: a left-hand side ([]), actions ([]), and

a right-hand side ([Fr(˜x)]). The rules are used to define a transition system, whose

global state is maintained as a multiset of facts. The initial state of the transition system

is the empty multiset. A rule can only be executed if all the facts on its left-hand side are

available in the current state. When a rule is executed, it will consume the facts on the

left, i.e., remove them from the global state, and produce facts on the right, i.e., add them

to the global state. This “rewriting” of the state sometimes leads us to refer to Tamarin

rules as rewrite rules. Facts are either linear or persistent. While linear facts model limited

resources that cannot be consumed more times than they are produced, persistent facts

142

6.2 Preliminaries

model unlimited resources, which can be consumed any number of times once they have

been produced. In the Fresh rule above there are no premises (left-hand side facts) or

actions, and every execution of the rule produces a single linear Fr(˜x) fact. Only the

Fresh rule can produce Fr facts and each of these facts will be unique and will represent a

discrete value within the Tamarin framework. Use of the ∼ symbol denotes a variable

of the type Fresh. Other variable types include Public, denoted by $, and Temporal,

denoted by #.

Actions do not influence transitions but are “logged” when rules are triggered as a means

of incrementally constructing observable labels for use in traces, which in turn represent

a record of a specific execution. Actions are used to express security properties, thereby

forming the glue between the defined transition system and the specified protocol properties.

In Tamarin there are three special types of facts: Fr facts, as described above, In facts

and Out facts. Whereas Fr facts model the generation of unique, fresh values, In facts

and Out facts model interaction with an untrusted network. An In fact models a protocol

participant receiving a message from the untrusted network, a message that has potentially

been manipulated by a network-controlling (Dolev-Yao) adversary. An Out fact models a

protocol participant sending a message to the untrusted network, where it could potentially

be manipulated by a Dolev-Yao adversary. In facts can only be present on the left-hand

side of Tamarin rewrite rules, and Out facts can only occur on the right-hand side of

Tamarin rewrite rules. The Fresh rule described above is a built-in Tamarin rule, and

the tool also contains sets of adversary rules which consume Out facts and produce In

facts, modelling how an adversary may interact with, and manipulate, network messages.

Cryptographic Primitives. The ability to model cryptographic protocols requires the

representation of cryptographic primitives. In the symbolic setting, we model cryptographic

functionality using functions and sets of equations that describe the relationship between

these functions. In Tamarin, symmetric encryption, for instance, is modelled using two

binary functions, senc and sdec, and an equation of the form

sdec(senc(m, k), k) = m

where k is a shared secret key and m is a message. Hence, symbolically, the term senc(m, k)

can be combined with k to recover m. Without explicitly defining a rule that allows the

adversary to obtain the shared secret k, there is no way for the adversary to learn k and

143

6.2 Preliminaries

rule Gen_keypair:
[Fr(˜ltkA)]--[GenLtk($A, ˜ltkA)
]->
[!Ltk($A, ˜ltkA), !Pk($A, pk(˜ltkA))]

rule Reveal_Ltk:
[!Ltk($A, ˜ltkA)] --[RevLtk($A)]-> [Out(˜ltkA)]

Figure 6.2: Tamarin PKI rules for the STS protocol.

recover m. In other words, as is to be expected, the symmetric encryption equational theory

does not allow for the adversarial extraction of k from senc(m,k) – there is no defined

equation describing this type of extraction.

As certain primitives are used repeatedly across many cryptographic protocols, there

are built-in definitions for them. The Tamarin built-ins include equational theories for

Diffie-Hellman group operations, asymmetric encryption, symmetric encryption, digital

signatures and hashing.

Perfect Cryptography. The use of Tamarin built-ins results in the abstraction that

cryptographic primitives are perfect, as is to be expected in the symbolic model. For

example, the encryption mechanism reveals nothing about the underlying plaintext since all

cryptographic inputs and outputs are considered to be abstract quantities, without being

sampled with a specific length or from a specified distribution. Similarly, signatures are

unforgeable, hash functions act as random oracles (with zero collision probability), MACs

are unforgeable, and all parties generate truly random values. The assumption of perfect

cryptography is common in the symbolic setting, however, it is indeed possible to model

weak primitives. We could, for example, introduce rules which let the adversary create

signature forgeries, or MAC forgeries, but all weaknesses and flaws need to be explicitly

defined.

We present the rules necessary for modelling the STS protocol in Figures 6.2, 6.3 and 6.4.

Our first client rule generates a fresh Diffie-Hellman exponent (Fr[˜a]), logs actions

Start(˜a, $C, ’client’) and DH($C, ˜a), and sends the client’s key share out to the

network (Out(<$C,’g’ˆ˜a>)). The rules to follow become somewhat more complex as long-

term keys are retrieved from the PKI rules, and as data items are encrypted and signed using

the Tamarin builtins – see senc{sign{<’g’ˆ˜b, ckeyshare>}˜ltkS}k in the Server_1

144

6.2 Preliminaries

rule Client_1:
[Fr(˜a)
]

--[C1(˜a)
, Start(˜a, $C, ’client’)
, DH($C, ˜a)
]->
[Client_1($C, ˜a)
, Out(<$C,’g’ˆ˜a>)
]

rule Client_2:
let

k = skeyshareˆ˜a
in

[Client_1($C, ˜a)
, !Ltk($C, ˜ltkC)
, !Pk(S, pk(˜ltkS))
, In(<S, skeyshare, s_encryptedsignature>)

]
--[C2(˜a)

, Neq(S, $C)
, Eq(verify(sdec{s_encryptedsignature}k, <skeyshare, ’g’ˆ˜a>,
pk(˜ltkS)), true)
, SessionKey($C, S, k, ’authenticated’)
, SignC(’g’ˆ˜a, skeyshare)
, Running($C, S, ’client’, ’g’ˆ˜a, skeyshare)
, Commit($C, S, ’client’, ’g’ˆ˜a, skeyshare)
]->
[Client_2($C, S, ˜a, skeyshare, k)
, Out(senc{sign{<’g’ˆ˜a, skeyshare>}˜ltkS}k)
]

Figure 6.3: Tamarin client rules for the STS protocol.

145

6.2 Preliminaries

rule Server_1:
let

k = ckeyshareˆ˜b
in

[Fr(˜b)
, !Ltk($S, ˜ltkS)
, In(<C,ckeyshare>)
]

--[S1(˜b)
, Start(˜b, $S, ’server’)
, UseSessionKey(C,k)
, Neq($S, C)
, SignS(’g’ˆ˜b, ckeyshare)
, Running($S, C, ’server’, ’g’ˆ˜b, ckeyshare)
]->
[Server_1($S, C, ˜b, ckeyshare, k)
, Out(<$S,’g’ˆ˜b, senc{sign{<’g’ˆ˜b, ckeyshare>}˜ltkS}k>)

]

rule Server_2:
[Server_1($S, C, ˜b, ckeyshare, k)
, !Pk(C, pk(˜ltkC))
, In(c_encryptedsignature)
]

--[S2(˜b)
, Eq(verify(sdec{c_encryptedsignature}k, <ckeyshare, ’g’ˆ˜b>,
pk(˜ltkC)), true)
, SessionKey($S, C, k,’authenticated’)
, Commit($S, C, ’server’, ’g’ˆ˜b, ckeyshare)
]->
[Server_2($S, C, ˜b, ckeyshare, k)
]

Figure 6.4: Tamarin server rules for the STS protocol.

146

6.2 Preliminaries

rule, for instance. The senc and sign constructs use the keys k and ˜ltkS to encrypt and

sign data items, respectively. Decryption and subsequent verfication of the encrypted signa-

tures occur by applying the sdec function, and by checking that the signature verification re-

turns a true result (Eq(verify(sdec{c_encryptedsignature}k, <ckeyshare, ’g’ˆ˜b>,

pk(˜ltkC)), true)). State transitions within the model occur via the production and

subsequent consumption of state facts. The Client_1 rule produces the Client_1($C, ˜a)

state fact. In order for the next client rule, Client_2, to fire, this fact needs to be consumed

by the left-hand side of the second client rule, which indeed it is. This ‘passing’ of state

facts within the model gives rise to the model transition system. The rule actions serve as

labels for the state transitions, thereby creating a labelled transition system.

6.2.2.2 Encoding Security Properties

In order to prove security properties within the Tamarin framework, properties need

to be encoded using the Tamarin specification language. In Tamarin, this is done by

constructing what are known as Tamarin lemmas. These lemmas are specified in a guarded

fragment of first-order logic, allowing for quantification over messages and timepoints, and

the resultant logic formulae are considered across applicable traces.

As pointed out in Section 6.2.1, properties fall into one of two categories: trace or equivalence

properties. A trace property is satisfied when it holds for all applicable execution traces

of the protocol. Equivalence properties allow for the encoding of more nuanced security

properties since these capture the ability of an adversary to distinguish between two

processes, or two instantiations of the protocol. Symbolic tools, in general, focus on proving

trace properties as the automation of equivalence properties is more difficult to achieve.4

Tamarin also offers a mechanism for restricting the traces considered. We discuss these

restrictions shortly.

Lemmas. Since Tamarin formulae are specified in a fragment of first-order logic they

offer the usual connectives (where & and | denote and and or, respectively), quantifiers All

and Ex, and timepoint ordering <. In formulae, the prefix # denotes that the variable to

follow is of type timepoint. The expression Action(args)@t denotes that Action(args)

is logged in the action trace at point t, resulting from an instantiation of a rule.
4This is true for the Tamarinprover, however, recent work [20] has extended the tool to accommodate

the proving of equivalence properties.

147

6.2 Preliminaries

We use the Tamarin property language to encode different kinds of properties as Tamarin

lemmas. These can include, for example, basic state reachability tests as well as security

properties. Constructing state reachability lemmas is an important part of the symbolic

analysis process – ensuring that each state within the model is reachable ensures that

property lemmas will indeed be considered across all applicable traces, and we are also

provided with some assurances regarding the correctness of our model. The successful

execution of state reachability tests instils confidence in the model’s state machine, which

in turn serves as a valuable resource when it comes to proving protocol properties. In order

to perform state reachability tests, it is convenient to temporarily remove the network-

controlling adversary from the model. In other words, we would like to ensure the existence

of a secure channel between honest protocol participants. We do this by replacing In

and Out facts with AuthMessage facts. For instance, AuthMessage($A, $B, m) represents

sending message m from $A to $B in a secure fashion as the AuthMessage facts will only

be passed from honest party rule to honest party rule and will never become adversary

knowledge since In and Out facts are never consumed or produced.

Restrictions. The Tamarin tool also allows for the specification of restrictions. These

restrict the set of traces considered during analysis. For example, the following restriction

instructs the Tamarin tool to only consider traces where the specified equality check

succeeds:

restriction Equality_Check_Succeeds:
"All x y #i. Eq(x,y) @ i ==> x = y"

We typically use restrictions to avoid traces where protocol participants initiate sessions

with themselves, or where large numbers of key pairs are generated for a single protocol

participant as this may make it difficult to isolate the correct key pair for the protocol

thread under analysis.

In order to check correctness of our STS Tamarin model, we replace the In(m) and Out(m)

facts with AuthMessage($C, $S, m) to construct reachability lemmas. When checking

reachability we employ the following restriction, where ACTOR can be C or S, respectively,

and * represents the state label (i.e., 1 or 2):

restriction At_most_1_of_ACTOR*:
"All #i #j tid1 tid2. ACTOR*(tid1)@#i & ACTOR*(tid)@#j ==> #i = #j"

148

6.2 Preliminaries

This ensures that we only ever instantiate one client and one server. We can then write

simple reachability lemmas of the form:

lemma exists_ACTOR*:
exists-trace
"Ex tid #i. ACTOR*(tid)@i"

This lemma simply checks whether or not the action ACTOR*(tid) is triggered (for a

particular thread identifier, tid), which corresponds to the protocol participant ACTOR

reaching state *. Our STS model gives rise to the simple state machine presented in Figure

6.5. We check the above lemma for all states so as to confirm that all states in our state

machine are reachable. The verification of lemmas in Tamarin will be discussed in the

next section, Section 6.2.2.3.

C0start

C1

C2

S0start

S1

S2

Client 1 Server 1

Client 2 Server 2

Figure 6.5: Simple state diagram for the STS protocol, as encoded in our STS Tamarin
model.

The trace properties typically considered in the analysis of Authenticated Key Exchange

(AKE) protocols include secrecy and authentication. In the case of the STS protocol, we

would like to show that the shared key k, is known only to the honest protocol participants.

We encode this secrecy property in the following lemma:

lemma session_key_secrecy:
(1) "All actor peer k #i.
(2) SessionKey(actor, peer, k,’authenticated’)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

| (Ex #r. RevLtk(actor)@r & #r < #i))
(4) ==> not Ex #j. K(k)@j"

This lemma requires that for all protocol behaviours, and for all variables listed in (1), if

an authenticated session key is accepted (encoded in the SessionKey action) (2), and the

adversary has not revealed the long-term keys of honest protocol participants (3), then the

149

6.2 Preliminaries

adversary does not the know the key, k (4) (adversarial knowledge is encoded via the K()

construct). Typically, secrecy is represented as the adversary not having knowledge of a

data item, which is in this case the shared session key.

We would also like to show that the protocol participants have some guarantees regarding

the identity of their communication partners. Although this general notion of entity

authentication provides an intuitive understanding of the property, it is more instructive

to consider Lowe’s more granular set of definitions for authentication [97]. Lowe constructs

a hierarchy of authentication properties, starting with basic aliveness, running all the way

through to full agreement. The weakest authentication property, aliveness, captures the

notion that at some point, protocol participants were engaged in a run of the protocol. The

strongest authentication property, full agreement, captures the notion that both protocol

participants agree on all possible data items that could have been exchanged, or created

as a result of the exchange, during a run of the protocol, and that there is a one-to-one

relationship between the protocol runs, i.e., every protocol run of the initiator corresponds

to a unique run of the protocol by the responder. Prior to reaching full agreement in the

hierarchy, we encounter Lowe’s notions of agreement and injective agreement. Agreement

guarantees that protocol participants agree on a set of data items (not necessarily all

possible data items), and injective agreement, whilst also providing agreement, additionally

incorporates the one-to-one protocol run condition. Hence, full agreement is injective

agreement expanded to cover all possible data items. Each of Lowe’s authentication

properties can be strengthened by incorporating a notion of recentness – this incorporates

the additional requirement that protocol participants are currently running the protocol.

This is achieved by participants agreeing on fresh values, such as nonces, timestamps or

sequence numbers.

These agreement-style notions are typically used for capturing authentication properties

in symbolic analysis, and in our STS example, an authentication lemma (encoded as an

agreement-style property) may look like this:

lemma entity_authentication:
(1) "All actor peer keyshare1 keyshare2 #i.
(2) Commit(actor, peer, ’server’, keyshare1, keyshare2)@i
(3) & not ((Ex #r. RevLtk(peer)@r) | (Ex #r. RevLtk(actor)@r))
(4) ==> (Ex #j. Running(peer, actor, ’client’, keyshare2, keyshare1)@j
(5) & #j < #i)"

This lemma requires that for all protocol behaviours, and for all variables listed on the

150

6.2 Preliminaries

first line (1), that when a server logs that it has observed certain key shares (2), and the

long-term key of neither party has been revealed (3), then there existed a thread of the

peer, running as the client, that agreed on these key shares at an earlier point in time (5).

This corresponds to Lowe’s notion of agreement.

6.2.2.3 Constructing Proofs

The Tamarin verification algorithm is based on constraint solving and multiset-rewriting

techniques. A proof for a property, encoded as a guarded first-order logic formula, is

constructed using a backwards search over applicable traces to check satisfiability of the

formula. This is done by considering the negation of the encoded property as a constraint

solving problem. If the constraints cannot be met, the property cannot be negated, and

hence the property holds. If the constraints can be met, then we have a counterexample,

which typically constitutes an attack. In other words, a proof consists of showing that the

logic statement holds across all applicable traces.

In proving our secrecy lemma for the STS protocol, the Tamarin tool attempts to find a

contradiction – a state in which SessionKey(...)@i and K(k)@j hold, without the long-

term keys of honest participants having been revealed. The tool starts by considering all

states in which the SessionKey(...) action occurs. This action may be present in multiple

states. Using the process outlined above, the Tamarin prover then works backwards

through applicable traces until either a contradiction is found, or the applicable traces

are shown to be contradiction-free. In more detail, Tamarin’s proof state is a collection

of constraints that represent partial information concerning a set of traces in which the

negated property may indeed hold. The tool uses constraint solving techniques and case

distinctions in an attempt to collect enough information to either establish that the set is

empty, or to construct a member of set, i.e., a counterexample. It is also possible for the

tool to make use of previously proven properties (lemmas) whilst trying to prove the current

property; the backwards search may trigger a previously proven property and conclude that

the current property holds. This behaviour is extremely advantageous when attempting

to prove properties for complicated protocols. Being able to prove, and subsequently use,

auxiliary lemmas allows for a modular approach to proving security properties within the

Tamarin framework.

151

6.2 Preliminaries

Figure 6.6: Tamarin verification of the STS secrecy lemma via the tool’s command line
option.

Tamarin also allows for the construction of proofs via induction5 – instead of employing

backwards reasoning, i.e., deriving information about earlier states by starting with later

states, the tool is able to reason forwards by making assumptions about earlier states to

derive information about later states. We do not describe the specialised mechanism by

which this is achieved in Tamarin, a thorough treatment of the topic is provided in [107].

Invoking Tamarin’s support for inductive proofs is remarkably useful when trying to prove

properties about protocols which may exhibit looping behaviour (such as TLS).

In Tamarin a proof can be obtained in one of two ways: First, Tamarin has a fully

automated mode that performs the proof search. If the automated proof search terminates,

then the tool either returns a proof of correctness or a counter-example, demonstrating an

attack against the property in question. However, as the correctness of security protocols is

an undecidable problem,6 the tool may not terminate for a given verification problem. In this

case, users have the second option of turning to Tamarin’s interactive mode, comprising an

extensive graphical user interface that enables the visualisation and interactive construction

of proofs. Manually guiding the tool through its backwards search employs the user’s

intimate knowledge of the modelled protocol to verify a property more efficiently than

would be done via the Tamarin heuristics employed in the tool’s automated mode. This

greatly improves the likelihood of termination.

Using Tamarin’s automated proof search for the STS secrecy lemma results in verification

of the lemma in 47 steps, as displayed when calling the Tamarin prover from the command

line. This result is depicted in Figure 6.6. Using the graphical interface allows for interaction

with Tamarin graphs, as depicted in Figures 6.7 and 6.8. In these graphs, green boxes

represent model rules, with premises (left-hand side facts) and conclusions (right-hand side

facts) on the top and the bottom, respectively. Grey arrows represent premise sources, and
5Tamarin supports a limited form of inductive reasoning. Induction can be performed over actions

arising from user-defined rules, and not over built-in adversary rules.
6A problem is undecidable if it is impossible to construct an algorithm that consistently returns a correct

‘yes’ or ‘no’ answer to the problem.

152

6.2 Preliminaries

Figure 6.7: Partial Tamarin graph for the STS secrecy lemma. The adversary will attempt
to construct the In fact of the Client 2 rule from information that it might learn from
the network.

grey bubbles represent adversary goals. We note that the graphs presented in Figures 6.7

and 6.8 were constructed during an early phase of the lemma proof process, and hence

they are not populated with many elements. Graphs such as these are generated by

user-selection of which goal (typically a premise source or an adversary goal) should be

solved by the tool.

Figure 6.8: Excerpt from a partial Tamarin graph for the STS secrecy lemma. Red
arrows represent the adversary obtaining information from the network, and then possibly
being able to use this information to construct future rule premises, represented by dashed
arrows.

The full STS Tamarin security protocol theory (.spthy) file is given in Appendix A. The

authentication lemmas given in the file are also auto-provable.7

7It is possible to capture simple protocols and their properties in Tamarin with a few rules and lemmas.
More complex protocols, such as TLS, require vastly more rules, and many more lemmas.

153

6.3 draft-10 Analysis

6.2.2.4 Tamarin for TLS

The Tamarin prover inherently supports non-monotonic state, i.e., a state which need not

necessarily grow after each rule is executed, and is thus ideal for the analysis of complex

protocols exhibiting branches and loops. Monotonic state provers, such as the ProVerif

tool [4], struggle with loops because all facts are persistent and therefore once added

to the state space, cannot be removed or overwritten, a feature which complicates the

representation of looping as this necessitates the overwriting of facts. Also, since facts

cannot be removed in monotonic state provers, support for ephemeral values is limited.

This is not the case in Tamarin. Non-monotonic state, together with Tamarin’s multiset-

rewriting semantics provides the tool’s support for branching. Moreover, the Tamarin

prover offers state-of-the-art symbolic Diffie-Hellman support, making it very useful in the

analysis of Diffie-Hellman-based protocols such as TLS. An in-depth explanation of the

tool’s support for Diffie-Hellman key exchange can be found in [142].

6.3 draft-10 Analysis

Using the Tamarin framework, we build a formal model of the Handshake and Record

protocols of draft-10 of TLS 1.3. The Tamarin tool is well-suited for the analysis

of TLS 1.3 for several reasons: First, Tamarin’s multiset-rewriting semantics enable

a direct specification of the complex state machines of TLS 1.3, including the complex

interactions between all of the handshake modes. Second, its state-of-the-art support for

Diffie-Hellman allows for a high degree of precision in modelling the protocol. Third, its

property specification language lets us model the TLS 1.3 security properties intuitively

and accurately.

Our aim is to verify the properties of TLS 1.3 as an AKE protocol. Details concerning the

various TLS 1.3 handshake modes, as well as the protocol’s desired security properties, are

given in Chapter 2; for ease of readability, we repeat these details here (see Figure 6.9 for

handshake modes).

The TLS 1.3 draft-10 security properties include:

154

6.3 draft-10 Analysis

C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare,
{EncryptedExtensions}, {ServerConfiguration*},

{Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

(a) draft-10 (EC)DHE handshake

C S

ClientHello, ClientKeyShare, EarlyDataIndication,
(EncryptedExtensions), (Certificate*),

(Certificate Verify*), (ApplicationData)

ServerHello, ServerKeyShare, EarlyDataIndication,
{EncryptedExtensions}, {ServerConfiguration*},

{Certificate}, {CertificateRequest*},
{CertificateVerify}, {Finished}

{Finished}

[Application data]

(b) draft-10 0-RTT handshake

C S

Initial handshake (see Figure 2.4)

[NewSessionTicket]

[Application data]

ClientHello, ClientKeyShare, PreSharedKeyExtension

ServerHello, PreSharedKeyExtension,
{EncryptedExtensions}, {Finished}

{Finished}

[Application data]

(c) draft-10 PSK resumption handshake

Figure 6.9: Handshake modes for draft-10.
155

6.3 draft-10 Analysis

1. Secrecy of Session Keys. Upon completion of the handshake, the client and the

server should have established a set of session keys which are known to the client

and the server only.

2. Perfect Forward Secrecy (PFS). In the case of compromise of either party’s

long-term key material, sessions completed before the compromise should remain

secure. This property is not claimed to hold in the PSK-only handshake mode, nor

in the 0-RTT handshake mode.

In a PSK-only handshake, if compromised, the PSK could be used to decrypt all

messages previously protected by the PSK. In the 0-RTT case, the client is the only

party to have provided freshness, therefore early data messages may be replayed. In

addition, the security of the early data depends on the semi-static (elliptic curve)

Diffie-Hellman share, which may have a considerable validity period, and therefore

a large attack window. For these reasons, early data cannot be considered to be

forward secure.

3. Peer (Entity) Authentication. In the case of unilateral authentication, upon

completion of the handshake, if a client C believes it is communicating with a server S,

then it is indeed S who is in the server role. An analogous property for the server also

holds in the mutual authentication case. Authentication of the server is mandatory

in all handshake modes. Mutual authentication, i.e., additional authentication of the

client, is optional.

4. Integrity of Handshake Messages. An active attacker should not be able to

successfully tamper with the handshake messages, potentially causing the client and

the server to adopt weak cipher suites.

Specifically, we would like to show that TLS 1.3 meets the listed properties in the presence

of a Dolev-Yao adversary, and that all of the desired security properties hold when the

interaction of all of the TLS 1.3 components is considered.

As with the STS protocol, we analyse the TLS 1.3 protocol using the Tamarin tool by (i)

building an abstract model of the protocol, (ii) encoding the desired security properties

as Tamarin lemmas, and (iii) constructing proofs for the specified properties using the

Tamarin verification algorithm.

156

6.3 draft-10 Analysis

6.3.1 Building the Model

6.3.1.1 Constructing Model Rules

Modelling TLS 1.3 in Tamarin involves depicting the protocol as sequence of Tamarin

rules, which capture client, server and adversary actions alike. In the case of legitimate

clients and servers, our constructed model rules generally correspond to all processing

actions associated with respective flights of messages. For instance, our first client rule

captures a client generating and sending all necessary parameters as part of the first flight

of an (EC)DHE handshake, as well as transitioning to the next client state within the model.

In Figure 6.10, the let...in block allows us to perform basic variable substitutions. In

practice, this is useful for enforcing the type of variables, such as C = $C, or for keeping the

rule computations logically separated. We use the variable tid to name the newly created

client thread. The action DH(C,˜a) allows us to map the private Diffie-Hellman exponent

˜a to the client C. The Start(tid, C, ’client’) action signifies the instantiation of the

client C in the role of ’client’ and the Running(C, S, ’client’, nc) action indicates

that the client C has initiated a run of the protocol with the server S, using the fresh value

nc as the client_random value as specified in TLS 1.3. The C1 action simply marks the

occurrence of the C_1 rule with its associated tid. The St_C_1_init fact encodes the

local state of thread tid, which doubles as a program counter by allowing the client to

recall sending the first message in thread tid. The Out fact represents sending the first

client message to the network, after which it becomes adversarial knowledge.8

Figures 6.11 and 6.12 capture all relevant model rules and represent the union of all the

options that a client and a server have in a single execution. We explain the client-side

behaviour and map it to the corresponding transitions while briefly mentioning the intended

server interaction: The client can initiate three types of handshake, namely, an (EC)DHE

handshake (C_1), a PSK handshake (C_1_PSK) and a 0-RTT handshake (C_1_KC); we

use KC (an abbreviation for Known Configuration) to denote 0-RTT handshakes. In the

(EC)DHE handshake, the server may reject the client parameters due to a possible mismatch,

whereafter the client needs to provide new parameters (C_1_retry). Additionally, the

client may optionally authenticate in the 0-RTT case (C_1_KC_Auth). While the (EC)DHE

and 0-RTT handshakes only have a single continuation (respectively C_2 and C_2_KC),
8The increase in complexity in comparison to the first client rule of the STS example is an inevitable

consequence of modelling a much more complex protocol.

157

6.3 draft-10 Analysis

rule C_1:
let

// Default C1 values
tid = ˜nc

// Client Hello
C = $C
nc = ˜nc
pc = $pc
S = $S
$

// Client Key Share
ga = ’g’ˆ˜a

messages = <nc, pc, ga>
in

[Fr(nc)
, Fr(˜a)
]

--[C1(tid)
, Start(tid, C, ’client’)
, Running(C, S, ’client’, nc)
, DH(C, ˜a)
]->
[St_C_1_init(tid, C, nc, pc, S, ˜a, messages, ’no_auth’)
, Out(<C, nc, pc, ga>)
]

Figure 6.10: Rule C 1 in our Tamarin model of TLS 1.3 draft-10.

158

6.3 draft-10 Analysis

c0start

c1−dhe

c1−psk

c1−kc

c2a c2 c3

ClientHello Receive Server-
Hello/Finished +

Send ClientFinished

Client
authentication

C 1

C 1 PSK

C 1 KC

C 2 PSK

C 2 PSK DHE

C 1 KC Auth

C 1 retry

C 2

C 2 KC

C 2 NoAuth

C 2 Auth C 3

C 3 NST

C send

C recv

Figure 6.11: Partial client state machine for draft-10 as modelled in our Tamarin analysis.
The diagram represents the union of all the options for a client in a single execution. Not
depicted are the additional transitions representing a client starting a new handshake using
either a PSK established by C_3_NST or a ServerConfiguration for a 0-RTT handshake.
Note that the C_1_KC_Auth edge may only occur once per handshake.

s0start

s1a−psk

s1a

s1 s2 s3

S 1

S 1 KC

S
1 KC

RecvAuth

S 1 PSK

S
1

PSK
DHE S

1
PSK

AuthS 1 PSK
NoAuth

S 1 NoAuthS 1 AuthReq

S 1 retry

S 2

S 2 RecvAuth

S 2 Auth

S 3

S 3 NST

S send

S recv

Process ClientHello +
Send ServerHello

Update authen-
tication state

Receive ClientFinished
(with authentication)

Update authen-
tication status

Figure 6.12: Partial server state machine for draft-10 as modelled in our Tamarin
analysis. The diagram represents the union of all the options for a server in a single
execution. Not depicted are the additional transitions representing a server starting a
new handshake using either a PSK established by S_3_NST or a ServerConfiguration
for a 0-RTT handshake. Note that the S_2_Auth edge may only occur at most once per
handshake.

159

6.3 draft-10 Analysis

the PSK handshake has two different modes: plain PSK (C_2_PSK) and PSK with DHE

(C_2_PSK_DHE). The latter is used to obtain PFS guarantees by means of adding an

ephemeral (elliptic curve) Diffie-Hellman value to the applicable key derivations.

We model the server as always requesting client authentication, but allow traces to capture

when the server accepts and both rejects authentication of the client. If the client decides to

authenticate, it sends the authentication messages along with the client Finished message

(C_2_Auth). Otherwise, only the Finished message is transmitted (C_2_NoAuth). The

handshake concludes with the client either receiving a new session ticket (C_3_NST), which

can be used for resumption in a later PSK handshake, or doing nothing (C_3). The client

can then proceed to send (C_Send) and receive (C_Recv) any finite number of application

data messages.

We note that the Figure 6.11 represents a ‘snapshot’ in time beyond the initial establishment

of a connection. Consequently, it lacks certain states and transitions in which the client,

or the server, responds to an established connection. We list the omissions here as rules

that can follow a previously executed rule, i.e., the rule given on the right-hand side of the

arrow can follow the rule given on the left-hand side of the arrow:

C_2→C_1_KC
C_2_KC→C_1_KC
S_1→S_1_KC
S_1_KC→S_1_KC
S_1→S_1_KC_RecvAuth
S_1_KC→S_1_KC_Recvauth
C_3_NST→C_1_PSK
S_3_NST→S_1_PSK
S_3_NST→S_1_PSK_DHE.

Configuration Parameters. We note that we simplify our model by treating certain

parameters as abstract quantities within the model. For example, the EncryptedExten-

sions message of a client in the 0-RTT handshake will be logically bundled together with

all other messages of this kind and represented by the single public value exts. However,

since these components comprise part of the handshake transcript, we establish whether

the client and the server agree on these values by the end of the handshake through the

transcript integrity property.

Alert Messages. We also do not explicitly model the TLS 1.3 alert protocol; our model

does not capture errors arising from deviations in the protocol that would result in the

160

6.3 draft-10 Analysis

immediate termination of a connection (fatal alerts), or acknowledgements of a graceful

shutdown (closure alerts). From the perspective of our model, and the security properties

we are capturing, an alert and subsequent connection closure is equivalent to a trace which

simply does not have any subsequent actions beyond the point at which the connection

terminated.

Over-approximations. In certain situations, we assume that the client, or server, will

send the maximal message load. For example, the client will always send 0-RTT data in the

0-RTT case. Similarly, we model the server as always including a CertificateRequest

message in the first flight. However, the client does not always send authentication

parameters, and the server does not necessarily accept these parameters if sent. Therefore,

the possible traces we observe are equivalent to those in which the server optionally sends

the certificate request.

6.3.1.2 Managing Model Complexity

The complexity of TLS 1.3 presents an interesting challenge for automated symbolic analysis.

As Figures 6.11 and 6.12 demonstrate, the many handshake modes make for a large number

of state transitions. In software engineering, conditional branches are a fairly mundane part

of code. For example, the code might perform the check: “if received client authentication

then verify signature and set client status to authenticated else do nothing”. However, in

Tamarin we require two distinct state transitions representing these two possibilities. The

TLS 1.3 handshake exhibits such conditional branching. Ideally, branches in the protocol

would be represented by as few rules as possible, which can be done by merging some of the

resulting states into one. For example, by the end of the server’s first phase, the state needs

to contain a transcript of the received messages, the computed values of ss and es, and

the authentication status of the client. While all four handshake modes will compute these

values in a different way, from that point of computation onwards the server’s behaviour

does not depend on the handshake mode. Therefore these can be merged into the resulting

s1 state. With this approach, we can create simple rules that ensure the composability

of the various protocol modes and closely follow the original specification. For example,

the numbering of states (c1, c2, etc.) corresponds to message flights. In some cases, we

require two rules to construct a single message flight, e.g., C_2 and C_2_Auth, wherein a

client optionally adds a signature to its final handshake message.

161

6.3 draft-10 Analysis

6.3.1.3 Examples of Complex Interactions

By defining the client and server rules as outlined above, we now have the ability to model

the interaction of an unbounded number of interleaved handshakes. That is, while we

express properties in terms of a specific client and a specific server, there may exist an

unbounded number of other interacting agents, which the adversary may additionally

compromise through possibly revealing their long-term keys. The adversary can then

impersonate these agents, leading to an increase in the number of possible interactions.

Also, consider the following scenario: a client and a server have derived session keys after

agreeing to use a PSK. We know that at some point the client must have authenticated

the server (assuming the PSK is not from the out-of-band mechanism). However, we

potentially need to resolve an unbounded number of handshakes before we arrive at the

initial handshake in which the client verified the server’s signature. The Tamarin prover

allows us to reason inductively about such scenarios, facilitating the verification of important

security properties that are typically out of reach of backwards unfolding.

Our full Tamarin model is available for inspection at [44].9

6.3.2 Encoding Security Properties

We now describe our threat model, and how we formally model the required TLS 1.3

security properties in Tamarin.

6.3.2.1 General Approach and Threat Model

Our aim is to analyse the core security properties of the TLS 1.3 protocol. Our work also

considers all of the possible complex interactions between the various handshake modes.

For these interactions, we prove both secrecy and authentication properties. Prior to our

analysis, the work on TLS 1.3 generally considered handshake modes in isolation.

The threat model that we consider in our analysis is an active network adversary that can
9This is a stable URL containing links to our draft-10 and draft-21 source code, as well as supple-

mentary material.

162

6.3 draft-10 Analysis

compromise the long-term keys of agents. In particular, we consider adversaries that can

compromise the long-term keys of all agents after the thread under attack ends (to capture

PFS) as well as the long-term keys of agents that are not the actor or the intended peer of

the attacked thread, at any time (to capture Lowe-style MITM attacks and to contain the

consequences of long-term key compromise).

Similarly to standard AKE models, our threat model has two components: the Tamarin

rule that encodes the full capability (i.e., the ability to compromise an agent’s long-term

private key) and a restriction on the relevant security notion that prevents the adversary

from compromising all the keys (corresponding to the fresh or clean predicates in AKE

models [41]). We present the Reveal_Ltk rule here, and return to the restrictions when

we describe the specific properties:

rule Reveal_Ltk:
[!Ltk($A, ˜ltkA)] --[RevLtk($A)]-> [Out(˜ltkA)]

This rule can be triggered if a long-term private key ˜ltkA was previously generated

for the agent $A. The right-hand side of the rule encodes that ˜ltkA is sent on the

network, effectively adding it to the adversary’s knowledge. Additionally, we log the action

RevLtk($A), which enables us to restrict this capability in the property specifications.

Our model describes the behaviour of the TLS 1.3 protocol in the presence of an active

network adversary, and makes use of the standard perfect cryptography abstraction, as

outlined in Section 6.2.2.1. This view simplifies the proofs and enables the analysis of

many different security contexts. In the following two sections, we model and verify the

required secrecy and authentication properties.

6.3.2.2 Secrecy Properties

We formally model and analyse two main secrecy properties. The first is the secrecy of

session keys, implying perfect forward secrecy in the presence of an active adversary. The

formal property we wish to verify is given in the secret session keys lemma.

Intuitively, the property requires that for all protocol behaviours and for all possible values

of the variables on the first line (All) (1): if an authenticated session key k is accepted

(encoded by the occurrence of the SessionKey action) (2), and the adversary has not

163

6.3 draft-10 Analysis

lemma secret_session_keys:
(1) "All actor peer role k #i.
(2) SessionKey(actor, peer, role, <k, ’authenticated’>)@i
(3) & not ((Ex #r. RevLtk(peer)@r & #r < #i)

|(Ex #r. RevLtk(actor)@r & #r < #i))
(4) ==> not Ex #j. KU(k)@j"

revealed the long-term private keys of the actor or the peer before the session key is

accepted (3), then the adversary cannot derive the key k (4).10

Our modelling of this property is very flexible: In the unilateral authentication mode,

only the client establishes a session key with the flag authenticated. In the mutual

authentication mode, both roles log this action. As we will see later, these actions are also

suitable for the more flexible post-handshake client authentication modes that will be part

of the final TLS 1.3 specification.

The second property that we prove is that the client’s early data keys are secure as long as

the long-term private key of the server is not revealed.

lemma secret_early_data_keys:
(1) "All actor peer k #i.
(2) EarlyDataKey(actor, peer, ’client’, k)@i
(3) & not (Ex #r. RevLtk(peer)@r)
(4) ==> not Ex #j. KU(k)@j"

In particular, each time (1) that a client logs production of an early data key (2) and the

peer’s long-term private keys are not compromised (3), the adversary does not know the

early data key (4).

6.3.2.3 Authentication Properties

We model authentication properties as agreement on certain values, such as agent identities

and nonces. As discussed previously, this is a standard way of defining authentication [97].

The first property that we model is that when a client assumes there is a peer with whom

it shares nonces, then this is actually the case:
10Our draft-10 lemmas employ KU to denote adversary knowledge. Although functional, technically, this

syntax is internal to Tamarin; the more suitable K should be used in externally exposed lemmas.

164

6.3 draft-10 Analysis

lemma entity_authentication:
(1) "All actor peer nonces #i.
(2) CommitNonces(actor, peer, ’client’, nonces)@i
(3) & not (Ex #r. RevLtk(peer)@r)
(4) ==> (Ex #j peer2.
(5) RunningNonces(peer, peer2, ’server’, nonces)@j
(6) & #j < #i)"

In detail, this formula specifies that when the client logs that it has observed certain nonces

at the end of its thread and believes it is communicating with a specific peer (1,2), and the

long-term private key of this peer was not compromised (3), then there existed a thread

(4) of that peer in the server role that agrees on the nonces (5) at an earlier point in time

(6). Note that we would like to perhaps verify that peer2 is equal to actor, but in the

unilaterally authenticated mode, no such guarantee can be obtained.

The second property encodes that not only do the actor and the peer agree on the nonces

and who the server is, they in fact agree on the complete transcript:

lemma transcript_agreement:
"All actor peer transcript #i.
CommitTranscript(actor, peer, ’client’, transcript)@i
& not (Ex #r. RevLtk(peer)@r)
==> (Ex #j peer2.
RunningTranscript(peer, peer2, ’server’, transcript)@j
& #j < #i)"

The above two properties only provide guarantees for the client, as in the main use case

for TLS, where only the server is authenticated.

We now turn to the (optional) server guarantees. We have equivalent properties in the mu-

tual authentication case, however, since both parties authenticate each other, we can achieve

a stronger notion of authentication but with the restriction that the adversary cannot reveal

either long-term key. The third property, encoded in the mutual_entity_authentication

lemma, represents the authentication guarantee for the server, which can be obtained if the

server performs the mutually authenticated handshake or requests client authentication

(perhaps at a later time, as proposed for post-handshake client authentication).

165

6.3 draft-10 Analysis

lemma mutual_entity_authentication:
"All actor peer nonces #i.
CommitNonces(actor, peer, ’server’, nonces)@i
& not ((Ex #r. RevLtk(peer)@r)

|(Ex #r. RevLtk(actor)@r))
==> (Ex #j.
RunningNonces(peer, actor, ’client’, nonces)@j
& #j < #i)"

The fourth property is analogous to the second, and ensures that the server obtains a

guarantee on the agreement on the transcript with the client, after it has been authenticated.

lemma mutual_transcript_agreement:
"All actor peer transcript #i.
CommitTranscript(actor, peer, ’server’, transcript)@i
& not ((Ex #r. RevLtk(peer)@r)

|(Ex #r. RevLtk(actor)@r))
==> (Ex #j.
RunningTranscript(peer, actor, ’client’, transcript)@j
& #j < #i)"

We note that all of the properties specified in our lemmas are trace properties, as is fairly

typical in symbolic analysis.

6.3.3 Analysis and Results

6.3.3.1 Positive Results

Our model from Section 6.3.1 covers the many possible, complex interactions between

the various handshake modes of TLS 1.3 for an unbounded number of sessions. When

combined with the security properties in the preceding section, this gives rise to complex

verification problems. Nevertheless, we successfully prove the main properties of TLS 1.3

(as given in Chapter 2, and above) and our results imply the absence of a large class of

attacks, many of which are not covered by other analysis methods, i.e., attacks exploiting

the interaction between various handshake modes. This is a very encouraging result, since

it shows that the core design underlying draft-10 is sound.

166

6.3 draft-10 Analysis

6.3.3.2 Proof Approach in Tamarin

Many of the security properties of TLS 1.3 stem from the secrecy of the shared secrets,

i.e., the ephemeral secret (es) and the static secret (ss). Proving the secrecy of these

components may seem simple; at its core, the main TLS 1.3 mechanism includes an

authenticated Diffie–Hellman exchange and hence secrecy results should simply rely on

standard Diffie-Hellman assumptions. However, complications arise due to the interactions

between different handshake modes in an unbounded number of sessions and connections,

and the possibility of powerful adversarial interference.

As a first step, it is necessary to prove a few fundamental invariant properties. These

include properties which remain unchanged as the protocol progresses from one state to the

next. A simple example of an invariant property in our model is captured by the following

lemma:

lemma static_dh_invariant [reuse, use_induction]:
(1) "All actor x #i.
(2) UseServerDH(actor, x)@i
(3) ==> Ex #j. GenServerDH(actor, x)@j
(4) & #j < #i"

This lemma states that when an actor (which will be the server in our model) uses a

semi-static Diffie-Hellman exponent as part of a semi-static server key share (1,2), then a

corresponding generation of this semi-static exponent (3) took place prior to the exponent

being used. Such properties help all future proofs by either reducing the number of

contradictory dead-ends which the prover would otherwise explore, or by ‘shortcutting’

the proof by skipping a number of common intermediate steps. The property above, for

instance, helps Tamarin to easily, and quickly, reason back to the source of the semi-static

Diffie-Hellman exponent. The use_induction flag indicates to the Tamarin tool that it

should use induction as its method of proof and the reuse flag indicates that this result

may be used in the proving of all other lemmas going forward. In other words, the lemma

is assumed to hold going forward.

In addition to simple lemmas such as these, the application of some inductive proofs is

essential so as to avoid falling into the many infinite loops present. An example of an

infinite loop in TLS 1.3 is the PSK-resumption loop – after an initial handshake has

completed, a client may infinitely resume the established connection and the Tamarin

167

6.3 draft-10 Analysis

prover could get stuck in rolling backwards through this loop. We address this by proving

lemmas, via induction, that ensure that a PSK-resumption handshake has its roots in an

initial handshake, i.e., we enable Tamarin to quickly, and easily, find its origin.

Once problems such as looping have been resolved, simple auxiliary lemmas can be

constructed. These lemmas help in piecing together more complicated proofs in a modular

fashion. The auxiliary lemmas are sufficiently small, as well as sufficiently incremental, that

they can be proved using Tamarin’s fully automated functionality. Since each describes

a small property which is likely to remain consistent throughout model changes, these

auxiliary lemmas can be used to quickly check changes and reproduce proofs. The proofs

for secrecy of ss and es follow from the auxiliary lemmas in a more manageable way

than would otherwise be the case. For example, a common deduction uses the fact that

knowledge of the resumption PSK implies that the adversary must also have knowledge of

some (ss, es) pair from a previous handshake. This is captured in an auxiliary lemma,

proven in Tamarin, and subsequently used in proving the secrecy of ss and es for the

PSK-resumption case. The main burden of proof is, for all handshake modes, to unravel the

client and server states to a point where either the adversary needs to break the standard

Diffie-Hellman assumptions, or else secrecy follows from inductive reasoning.

Finally, the proof of session key secrecy then follows from the secrecy proofs for the ss

and es values, which are both used as key derivation inputs. Using this approach, we

successfully verify properties in Tamarin for the full interaction of the various handshake

modes.

We note that the construction of the auxiliary lemmas and the proving of the secrecy of

ss and es requires an intimate knowledge of TLS 1.3 and this part of the analysis is not a

straightforward application of the Tamarin tool – considerable interaction with the tool

is required so as to correctly guide it through the proof trees of the respective ss and es

lemmas.

In total, our Tamarin analysis effort required roughly 6 person-months worth of work,

including constructing the model, writing the lemmas, and subsequently proving the

lemmas. We used a quad-core machine with 16GB of RAM. Of the lemmas which were

auto-provable, the most complicated required approximately 20 minutes to complete. As a

point of comparison, the STS lemmas prove in a matter of seconds.

168

6.3 draft-10 Analysis

6.3.3.3 Separation of Properties

One of the decisions made when specifying the security properties was to separate the

secrecy and authentication requirements. Note that we could have equally combined both

into a single property, as commonly defined in AKE models. The benefit of our approach

is twofold: First of all, separating the properties results in a richer understanding of the

security of the protocol. For instance, the structure of the proof confirms the intuition that

the secrecy of session keys depends largely on the use of a Diffie-Hellman key exchange. The

second benefit of this approach is that it provides a better foundation for future analysis.

While our draft-10 model considers the security of all handshake modes equally, there

are some discrepancies in the guarantees provided by the various handshake modes. For

example, if we were to allow adversarial compromise of semi-static secrets such as PSKs

and server semi-static Diffie-Hellman exponents, we would discover that the secrecy of the

static secret ss is not immediate in all handshake modes. Choosing to keep the properties

separate allows for the development of a more nuanced security model, as will be shown to

be the case in Chapter 7.

6.3.3.4 Implicit Authentication

In building the series of lemmas which lead to the final security properties, the most

problematic areas coincided with the PSK handshake modes. In particular, the security of

the PSK handshake relies on knowing that the resumption secret can only be known by a

previous communication partner. This is an implicit authentication property. While we

were able to overcome this challenge (by writing auxiliary lemmas to establish the source

of the resumption secret) and eventually prove that this property holds, it does identify a

potentially troublesome component to analyse. As we will see in the next section, the PSK

mode certainly requires close attention.

6.3.4 Attacking Post-handshake Client Authentication

While draft-10 does not permit certificate-based client authentication in PSK mode (and

in particular in resumption using a PSK), we extended our model as specified in one

of the proposals for this intended functionality [123]. By enabling client authentication

169

6.3 draft-10 Analysis

with a post-handshake signature over the most recent handshake hash (as dictated by

the proposal), our Tamarin analysis finds an attack. The result is a violation of client

authentication, as the adversary can impersonate a client when communicating with a

server.

6.3.4.1 The Attack

Our inability to prove the mutual authentication lemma in the post-handshake authen-

tication case alerted us to a problem with this mechanism. After careful examination of

the lemma sub-case, i.e., the proof search sub-tree, in which the property did not hold, we

confirmed the attack.

Our attack is depicted in Figure 6.13 and we describe it in more detail here: Alice plays

the role of the victim client, and Bob the role of the targeted server. Charlie is an active

MITM adversary, whom Alice believes to be a legitimate server. In the interest of clarity,

we have omitted message components and computations which are not relevant to the

attack.

The attack proceeds in three main steps, each involving different TLS 1.3 mechanisms:

Step 1: Establish Legitimate PSKs. In the first stage of the attack, Alice starts a

connection with Charlie, and Charlie starts a connection with Bob. In both connections, a

PSK is established. At this point, both handshakes are computed honestly. Alice shares a

PSK, denoted PSK1, with Charlie, and Charlie shares a PSK, denoted PSK2, with Bob.

Note that Charlie ensures the session ticket (psk id) is the same across both connections

by replaying the psk id value obtained from Bob.

Step 2: Resumption with Matching Freshness. In the next step, Alice wishes to

resume a connection with Charlie using PSK1. As usual, Alice generates a random nonce

nc, and sends it to Charlie together with the PSK identifier, psk id.

Charlie re-uses the value nc to initiate a PSK-resumption handshake with Bob, using the

same identifier, psk id. Bob responds with a random nonce ns, and the server Finished

message computed using PSK2.

170

6.3 draft-10 Analysis

Client Alice Charlie
(As server Charlie) (As client Alice)

Server Bob

Reuse psk idInitial handshake 1
Client not authenticated, PSK1 exchanged

Initial handshake 2
Client not authenticated, PSK2 exchanged

Generate nc

Start PSK1 resumption Start PSK2 resumptionReuse nc, psk id
client random = nc
session ticket = psk id

client random = nc
session ticket = psk id

Generate ns

Accept PSK2 resumptionAccept PSK1 resumption Recompute Finished

Reuse ns server random = nsserver random = ns

PSK1 resumption done PSK2 resumption doneRecompute Finished

Compute session
keys based on

PSK1

Compute session
keys based on
PSK1, PSK2

Compute session
keys based on
PSK2

Client authentication requestClient authentication request Re-encrypt

Client authentication Client authenticationRe-encrypt
Certificate = CertAlice
CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Certificate = CertAlice
CertificateVerify =
sign(nc, ns, psk id,CertAlice, . . .)

Alice is in a session with me (Bob).

Only Alice knows the session keys.

Application data exchange

Charlie impersonates Alice

Figure 6.13: Client impersonation attack on TLS 1.3 if post-handshake client authentication
is allowed in PSK mode (draft-10+). The attack exploits an initial handshake, a PSK-
resumption handshake, and a post-handshake client authentication request.

171

6.3 draft-10 Analysis

Charlie now re-uses the nonce ns, and recomputes the server Finished message using

PSK1. Alice returns her Finished message to Charlie, who recomputes it using PSK2.

At this point, Alice and Charlie share session keys (i.e., application traffic keys) derived

from PSK1, and Charlie and Bob share session keys derived from PSK2. Note that the

keys that Charlie shares with Alice and with Bob respectively, are distinct.

Step 3: Post-handshake Client Authentication. Following the resumption hand-

shake, Charlie attempts to make a request to Bob over their established TLS channel.

The request calls for client authentication, so Charlie is subsequently prompted for his

certificate and verification.11 Charlie re-encrypts this request for Alice.

In order to compute the verification signature, Alice uses the session_hash value, which is

defined as the hash of all handshake messages excluding Finished messages. In particular,

the session hash will contain nc, ns, and the session ticket psk id.

Notice that this session hash will match the one of Charlie and Bob. Therefore, this

signature will also be accepted by Bob. Hence, Charlie re-encrypts the signature for Bob,

who accepts Alice’s certificate and verification as valid authentication for Charlie.

Charlie has therefore successfully impersonated Alice to Bob, and has full knowledge of

the session keys for both connections. This enables Charlie to impersonate Alice in future

communication with Bob, allowing him to fake messages or to access confidential resources,

and to violate the secrecy of messages that Bob tries to send to Alice. Thus, the attack

completely breaks client authentication.

6.3.4.2 Underlying Cause and Mitigation

The above attack is possible due to the absence of a strong binding between the client

signature and the connection for which it is intended. Therefore, the attacker is able to

reuse the signature it receives to impersonate the client to a server on another connection.

The second component of the attack is that the attacker is able to force the two resumption

sessions to have matching transcripts.
11This is one of the main use cases for the post-handshake client authentication mechanism [123].

172

6.4 Conclusion

This suggests several potential ways to mitigate the attack. The most direct approach

involves including the server certificate in the handshake hash. A similar mechanism is used

in the 0-RTT case, where the server certificate is bound to the semi-static Diffie-Hellman

share. However, this is not ideal because it complicates the out-of-band mechanism.

Another potential option includes implementing an explicit authentication step as part of

the PSK mechanism.

In parallel to our analysis, the TLS WG proposed several modifications to draft-10 in the

move towards draft-11. One of these proposals, PR#316 [133] (which takes a different

approach to [123]), explicitly allows client authentication in the context that we analyse

and redefines the client signature based on a new HandshakeContext value, which includes

the server Finished message. Intuitively, this definition appears to address the attack

because the adversary will need to force the Finished messages to match across the two

sessions – a complicated, if not impossible, task as the Finished message is bound to the

PSK, which is derived from a previously authenticated session (whether using certificates

or out-of band mechanisms).

Discussions with members of the TLS WG revealed that the WG was previously not aware

of the possibility of our attack, and the resulting strict necessity for a stronger binding

between the client certificate and the security context that emerges from combining the

PSK mode with post-handshake client authentication.

6.4 Conclusion

Even though symbolic analysis traditionally allows for the verification of less fine-grained

security properties in comparison to computational analysis (i.e., trace vs equivalence

properties), we argue that it is still of great benefit to the analysis of real-world protocols

such as TLS 1.3.12 Symbolic analysis tools such as the Tamarin prover allow for the

automated verification of security properties, reducing burden on the proof process. This

automated functionality also accommodates protocol changes more readily than compu-

tational analysis, allowing for the quicker checking of security properties after changes

have been effected. A major strength of symbolic analysis tools is their ability to verify

properties in the presence of protocol mode compositions, thereby offering an avenue
12And with ongoing work on enhancing observational equivalence proofs [20], this gap is closing.

173

6.4 Conclusion

for discovery of attacks exploiting the interaction of protocol components, as is clearly

exhibited in the attack described in Section 6.3.4.

Tamarin’s many features make it a good fit for the modelling and in-depth analysis of

highly complex protocols such as TLS 1.3. In our analysis, the support for branching

allowed us to model decisions that the protocol participants could make during execution,

the looping support was instrumental in covering repeated resumptions within a single

session, and the main security aspects of TLS 1.3 critically depend on Diffie-Hellman

key exchange, meaning that we could leverage the excellent support for Diffie-Hellman

in Tamarin. Also, the visualisations of attacks found by Tamarin provided us with a

means of rapidly identifying potential problems, with either the protocol or our model –

the graphical user interface proved a valuable asset in guiding our TLS 1.3 analysis.

The work presented in this chapter meaningfully contributes to the ‘analysis-prior-to-

deployment’ design process adopted by the IETF in the development of TLS 1.3, and serves

as an excellent example of the benefits of a pre-deployment analysis design paradigm. Our

attack highlighted a flaw in the protocol prior to its official release, giving the TLS WG

time to implement a fix for the problem before the flaw could be exploited by malicious

agents in the wild. Also, our work brought into existence a symbolic model for TLS 1.3,

meaning that changes to the protocol can be checked fairly quickly, a clear advantage for

a rapidly moving target such as the TLS 1.3 design specification. In fact, our draft-10

model serves as the basis for the work on draft-21 described in the next chapter.

174

Chapter 7

Automated Analysis and Verification
of draft-21

In this chapter we model and analyse draft-21 of the TLS 1.3 specification, reforming

our draft-10 model to incorporate the changes made to the specification since draft-10.

Our work on draft-21 establishes the security of several handshake mode interactions in

TLS 1.3 for a near-final version of the protocol.

7.1 Introduction

As has been discussed at length in the preceding chapters, there have been substantial

efforts from the academic community in the areas of program verification – analysing

implementations of TLS 1.3 [32, 47], the development of computational models – analysing

TLS within Bellare-Rogaway style frameworks [54, 55, 61, 85, 91], and the use of formal

methods tools such as ProVerif [4] and Tamarin [6], i.e., the work presented in Chapter 6,

to analyse symbolic models of TLS [14,27,46,75]. All of these endeavours have helped to

both find weaknesses in the protocol and confirm and guide the design decisions of the

TLS WG, as was displayed in the previous chapter.

The TLS 1.3 draft specification, however, has been a rapidly moving target, with large

changes being effected in a fairly regular fashion. This has often rendered much of the

analysis work outdated within the space of a few months, as large changes to the specification

effectively result in a new protocol, requiring a new wave of analysis.

In this chapter we present a tool-supported, symbolic verification of a near-final draft

of TLS 1.3, adding to the large effort by the TLS community to ensure that TLS 1.3 is

175

7.1 Introduction

free of the many weaknesses affecting earlier versions, and that it is imbued with security

guarantees befitting such a critical protocol. As of draft-21, many of the cryptographic

mechanisms of TLS 1.3 have reached a stable state, and at the time of our analysis, we did

not expect substantial changes to be implemented in subsequent drafts. And indeed, the

current version of the specification, draft-261, does not incorporate any changes that affect

the cryptographic logic of the protocol – the changes are largely implementation-specific.

Our main contributions in this chapter are as follows:

(i) Using our draft-10 model as a foundation, we develop a symbolic model of draft-

21 of the TLS 1.3 specification that considers all the possible interactions of the

available handshake modes, including the Pre-Shared Key (PSK)-based resumption

and zero-Round Trip Time (0-RTT) exchanges. Its fine-grained, modular structure

greatly extends and refines the coverage of our previous symbolic model. Our model

effectively captures a new TLS 1.3 protocol, incorporating the many changes that

have been made to the protocol since the development of our previous model.

(ii) We prove the majority of the specified security requirements of TLS 1.3, including

the secrecy of session keys, perfect forward secrecy of session keys (where applicable),

peer (entity) authentication, and Key Compromise Impersonation (KCI) resistance.

We also show that after a successful handshake the client and server agree on identical

session keys and that session keys are unique across handshakes.

(iii) We uncover a strange authentication behaviour that may lead to security compli-

cations in applications that assume that TLS 1.3 provides strong authentication

guarantees. More specifically, we show that a client and a server may not agree

on the authentication status of the client after the post-handshake authentication

mechanism has been applied.

Related Work. As mentioned, there has been a great deal of work conducted in the

complementary analysis spheres pertinent to TLS 1.3. Of most interest to this work are

the symbolic analyses presented in [14], [27], and the previous chapter.

Since our draft-10 analysis, there have been multiple changes made to the TLS 1.3

specification – 11 drafts-worth of changes to be precise. These updates have included
1Released on March 4th, 2018.

176

7.1 Introduction

major revisions of the 0-RTT mechanism and the key derivation schedule. In draft-10,

the sending of early data required a client to possess a semi-static (EC)DH value of the

server. This particular handshake mode was removed and replaced by a PSK-based 0-RTT

handshake mode – in draft-21 early data can only be encrypted using a PSK. In fact, the

PSK mechanism has been greatly enhanced since draft-10, with new PSK variants and

binding values being incorporated into the specification. Post-handshake authentication

was officially incorporated from draft-11 onwards and a few drafts later, post-handshake

authentication was enabled to operate within the PSK handshake mode. Another change

to be incorporated after draft-10 was the inclusion of 0.5-RTT data – the server being

able to send fully protected application data as part of its first flight of messages.

All of these changes have resulted in what is effectively a very different TLS 1.3 protocol,

particularly from a symbolic perspective. As a Tamarin model aims to consider the

interaction of all possible handshake modes and variants, changes to these modes, as well

as the inclusion of new post-handshake combinations, results in a very different set of

traces to be considered when proving security properties. Hence, this work presents a

substantially different model to the model presented in Chapter 6, with differences between

the two models being highlighted in Section 7.3.1, and in addition to developing a new

model, we follow a far more fine-grained and flexible approach to modelling TLS 1.3.

The work in [14] is an analysis of TLS 1.3 by the Cryptographic protocol Evaluation

towards Long-Lived Outstanding Security (CELLOS) Consortium using the ProVerif

tool. Announced on the TLS WG mailing list at the start of 2016, it showed the initial

(EC)DHE handshake of draft-11 to be secure in the symbolic setting. In comparison to

our work, this analysis covers only one handshake mode of a draft that is now somewhat

outdated.

The ProVerif models of draft-18 presented by Bhargavan et al. in [27] include most

TLS 1.3 modes, and cover rich threat models by considering downgrade attacks (both

with weak cryptographic mechanisms and downgrade to TLS 1.2). However, unlike our

work, they do not consider all modes, as they do not consider the post-handshake client

authentication mode. While they cover relatively strong authentication guarantees (which

led to the discovery of an unknown key-share attack2), their analysis did not uncover the
2In their attack, Bhargavan et al. show that a dishonest server, M , can convince a client, C, that it is

connected to M , when indeed it is connected to a server S.

177

7.2 Preliminaries

potential mismatch between the client and server views that we describe in Section 7.3.3.3.

7.2 Preliminaries

All of the preliminary material presented in Chapter 6, Section 6.2, is relevant here. We

do, however, make shrewder use of the Tamarin tool. In our draft-21 analysis, we

make better use of what are known as typing lemmas. Tamarin’s backwards search relies

on the ability to identify the sources of rule premises, i.e., where facts on the left-hand

side of rules come from. Typing lemmas greatly help to refine the origins of facts, aiding

Tamarin’s verification algorithm.3 As with induction and reusable lemmas, typing lemmas

are annotated with an instruction label, namely, typing. Further theoretical details

concerning typing lemmas can be found in [107].

7.3 draft-21 Analysis

Using Tamarin’s modelling framework we construct a comprehensive symbolic model of

draft-21 of TLS 1.3, capturing the specified protocol behaviours, as well as unexpected

behaviours that might arise from the complex interaction of an unbounded number of

sessions. Our model captures these behaviours in the presence of a powerful Dolev-Yao

attacker.

Our aim is to verify the claimed security properties of TLS 1.3, as laid out in the draft-21

specification. Details concerning the various handshake modes for draft-21, as well as

the desired security properties, are given in Chapter 2; for ease of reference, we repeat the

draft-21 handshake diagrams (see Figure 7.1), as well as the security property descriptions,

here:

The TLS 1.3 draft-21 security properties include:

1. Establishing Identical Session Keys. Upon completion of the handshake, the

client and the server should have established a set of session keys on which they both
3In the latest version of Tamarin, typing lemmas are more aptly named sources lemmas.

178

7.3 draft-21 Analysis

C S

ClientHello, ClientKeyShare

HelloRetryRequest

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare,
{EncryptedExtensions}, {CertificateRequest*},

{Certificate}, {CertificateVerify},
{Finished}, [Application data*]

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

(a) draft-21 (EC)DHE handshake

C S

[NewSessionTicket] (at some point prior)

ClientHello, ClientKeyShare*, PreSharedKeyExtension

ServerHello, ServerKeyShare*
PreSharedKeyExtension, {EncryptedExtensions},

{Finished}, [Application data*]

{Finished}

[Application data]

(b) draft-21 PSK resumption handshake

C S

ClientHello, ClientKeyShare*,
PreSharedKeyExtension, (Application data)

ServerHello, ServerKeyShare*
PreSharedKeyExtension, {EncryptedExtensions},

{Finished}, [Application data*]

{Finished}

[Application data]

(c) draft-21 0-RTT handshake

Figure 7.1: Handshake modes for draft-21.

179

7.3 draft-21 Analysis

agree.

2. Secrecy of Session Keys. Upon completion of the handshake, the client and the

server should have established a set of session keys which are known to the client

and the server only.

3. Peer (Entity) Authentication. In the unilateral case, upon completion of the

handshake, if a client C believes it is communicating with a server S, then it is indeed

S who is executing the server role. An analogous property for the server also holds

in the mutual authentication case. Authentication of the server is mandatory and

mutual authentication is optional.

4. Uniqueness of Session Keys. Each run of the protocol should produce distinct,

independent session keys.

5. Downgrade Protection. An active attacker should not be able to force the client

and the server to employ weak cipher suites, or older versions of the TLS protocol.

6. Perfect Forward Secrecy (PFS). In the case of compromise of either party’s

long-term key material, sessions completed before the compromise should remain

secure. This property is not claimed to hold in the PSK key exchange mode.

7. Key Compromise Impersonation (KCI) Resistance. Should an attacker com-

promise the long-term key material of party A, the attacker should not be able to use

this key material to impersonate an uncompromised party in communication with A.

8. Protection of Endpoint Identities. The identity of the server cannot be revealed

by a passive attacker that observes the handshake, and the identity of the client

cannot be revealed even by an active attacker that is capable of tampering with the

communication.

In comparison to our draft-10 analysis, the changes to the TLS 1.3 specification which

most affect our modelling effort include:

(i) New post-handshake mechanisms. In draft-21, new session tickets can be sent at

any time. In draft-10 a new session ticket could only be sent after a full (EC)DHE

handshake. draft-21 also includes a key update mechanism which can be employed

at any time. As read and write keys differ, either party can immediately update

180

7.3 draft-21 Analysis

their write key after requesting a key update. This mechanism had not been finalised

in draft-10. The post-handshake client authentication mechanism, with a fix to

combat the weakness we uncovered, was officially included in the TLS 1.3 specification

from draft-11 onwards and has remained in place.

(ii) A new 0-RTT mechanism. Our previous analysis considered a dedicated 0-RTT

mechanism. In draft-21, the 0-RTT functionality has been rolled into a PSK

handshake, i.e., early data can be sent by a client using a PSK. The use of a

semi-static server key share is no longer an option.

(iii) PSK binders. The draft-10 specification did not include PSK binder values. These

values bind PSKs to the handshake in which they are being used, as well as the

handshake in which they were generated.

(iv) A new key schedule. In comparison to draft-10, draft-21 includes a key derivation

schedule that is more streamlined and better suited to implementation. The differences

between the respective key derivation schedules are detailed in Chapter 2.

As with our previous work, we analyse draft-21 of the TLS 1.3 specification using the

Tamarin tool. Specifically, we (i) build an abstract model of the protocol, (ii) encode

the desired security properties (as listed in the draft-21 specification), and (iii) construct

proofs for the specified properties using the Tamarin verification algorithm.

Many TLS 1.3 analyses consider the constituent parts of TLS 1.3 in isolation, viewing

these as separate protocols, and then proceed to tie the individual proofs together with a

composability result. For instance, [27] considers the resumption mechanism as a separate

protocol in which both the client and the server take as input a symmetric value – the

PSK. If the PSK remains unknown to the attacker in every execution of the resumption

protocol, a gap remains to be filled before concluding that the full series of handshakes

always completes without the attacker knowing the PSK. This gap is filled by a manual

composability proof. In our work, there is no need for such manual proofs; composition is

automatically guaranteed by our comprehensive model, as Tamarin considers all possible

component interactions in the proving of each property.

181

7.3 draft-21 Analysis

7.3.1 Building the Model

Although our model undoubtedly draws from the Tamarin model described in Chapter

6 of this thesis, here we opt to model TLS 1.3 with a significant increase in fidelity to

the draft specification. Such an approach results in an improved ability to capture the

full functionality of TLS 1.3, and hence broader coverage of realistic attacks, including

complicated interaction attacks, such as the post-handshake client authentication attack

discussed in Chapter 6. Additionally, by closely matching our model to the specification

and allowing for an almost line-per-line comparison, we achieve full transparency regarding

which parts of the specification we abstract away from, and the assumptions upon which

our modelling process relies.

Not only is our model more comprehensive than the Tamarin model described in the

previous chapter, it also incorporates the many changes to the TLS 1.3 specification that

have materialised since the development of the draft-10 model. In what follows, we

describe the modelling process for draft-21 and point out enhancements over the previous

model.

7.3.1.1 Constructing Model Rules

As with our draft-10 model, we employ the use of Tamarin rules to model state transitions

within the TLS 1.3 protocol. However, our state transitions are far more fine-grained and

modular in comparison to the model discussed in the previous chapter – we model the

effective change in state as a result of transmission, receipt and processing of cryptographic

parameters. For instance, a basic, initial TLS 1.3 handshake invokes up to 21 different

rules and the associated state transitions before post-handshake operations can commence.

Our draft-10 model only invokes a maximum of 5 rules in transitioning through an initial

handshake.

The draft-21 initial handshake state transitions are depicted in Figure 7.2, and correspond

to messages sent and the resultant cryptographic processing performed, as displayed in

Figure 7.3. In comparison to the depiction of the basic, initial handshake in Figure 7.1a, the

handshake displayed in Figure 7.3 represents message flows in a far more modular fashion,

effectively breaking up the server’s first message flight into three smaller ‘sub-flights’.

182

7.3 draft-21 Analysis

C0Client

C1

C2a

C2b

C2c

C2d

C3

C4

S0Server

S1

S2a

S2b

S2c

S2d

S3

S4

client hello

recv server hello

recv server auth

client gen keys

recv encrypted extensions

recv cert request OR
skip recv cert request

client auth OR
client auth cert

recv client hello

server hello

server auth

server gen keys

encrypted extensions

cert request OR
skip cert request

recv client auth OR
recv client auth cert

ClientHello
+Extensions

ServerHello
+Extensions

EncryptedExtensions

CertRequest

Cert CertVerify
Finished

Cert CertVerify
Finished

Figure 7.2: Partial state diagram for full TLS 1.3 handshake. Tamarin rules are indicated
in blue. The messages exchanged between entities are given in green.

Building our model according to this intended deconstruction of message flights allows for

a more granular and flexible Tamarin model.

In Figure 7.2, the transition from the the starting state, C0, is invoked by the firing of the first

client rule, client_hello. This rule does not require any previous rule to trigger and moves

the client into state C1, from which the next client rule, recv_server_hello can be trig-

gered. In addition to the client needing to be in the correct state, the recv_server_hello

rule also requires inputs (facts) that have been generated by the server_hello rule (this

is marked in green in the diagram). Both server and client continue to transition according

to the rules and message flights depicted in Figures 7.2 and 7.3 until such time as the initial

handshake completes. We note that rule options that transition from C2c/S2c to C2d/S2d

and from C3/S3 to C4/S4, respectively, capture the modelling of unilateral versus mutual

authentication; the server may request the client to authenticate in the initial handshake

(cert_request), and the client should respond to this request (client_auth_cert). In

the unilateral authentication case, the skip_cert_request and client_auth fire instead.

As an example of a model rule, we present our first client rule, client_hello, in Figure 7.4.

183

7.3 draft-21 Analysis

C S

ClientHello, ClientKeyShare

ServerHello, ServerKeyShare

{EncryptedExtensions}, {CertificateRequest*}

{Certificate}, {CertificateVerify}, {Finished}

[Application data]

{Certificate*}, {CertificateVerify*}, {Finished}

[Application data]

Figure 7.3: Full (EC)DHE handshake for draft-21, represented in sub-flights. The
messages associated with a Hello Retry Request (HRR) have been omitted for the sake of
simplicity.

As before, the let...in block allows for basic variable substitutions, and again we use the

tid to name the newly created client thread (which we tie to the client nonce in the model).

The C0(tid) action marks the occurrence of the C0 state as a result of the client_hello

rule being triggered, with its associated tid. The Start(tid, C, ’client’) action

signifies the instantiation of the client, C, in the role of ’client’, and the running_client

action indicates that client has initiated a run of the protocol. The DH(tid, C, X) action

indicates the mapping of the private Diffie-Hellman exponent, x, to the client C. The

State(C1, tid, ...) fact captures the local state of the thread tid, and is a rule output

which will be consumed by the next applicable client rule, thereby transitioning the client

thread to the next state, C1. The DHExp fact exists for consumption by adversary rules,

if applicable.4 The Out fact represents sending the ClientHello message to the network,

after which it may become known to the adversary.5

We note the extensive use of macros in our model, enabled by the m4 preprocessor, which

allows us to cover most of the specification, whilst syntactically keeping our model close to

it. For example, our ClientHello message is a macro that expands to:
4The need for this output fact will become clear in the discussion of our threat model in Section 7.3.2.1.
5The HonestUse actions now exist as an artefact in our model. They were constructed to help ensure

that the intended Diffie-Hellman parameters were used as Diffie-Helman parameters only, and not misused
by an adversary as nonces, or other message values.

184

7.3 draft-21 Analysis

rule client_hello:
let

// Initialise state variables to zero.
init_state()

// Abstract client identity - does not currently correspond to
// anything concrete.
C = $C

// Server identity - can be interpreted as the hostname.
S = $S

// Client nonce
nc = ˜nc

// Reuse the client nonce to be a thread identifier.
tid = nc

// Group, DH exponent, key share
g1 = $g1
g2 = $g2
sg = <g1, g2>
client_sg = <g1, g2>
g = g1
x = ˜x
gx = gˆx

messages = <messages, ClientHello>
es = EarlySecret

in
[Fr(nc),

Fr(x)
]

--[C0(tid),
Start(tid, C, ’client’),
running_client(Identity, C),
Neq(g1, g2),
DH(tid, C, x),
HonestUse(˜x),
HonestUse(gx)

]->
[

State(C1, tid, C, S, ClientState),
DHExp(x, tid, C),
Out(ClientHello)

]

Figure 7.4: First client rule, client hello

185

7.3 draft-21 Analysis

handshake_record(’1’,
ProtocolVersion,
ClientRandom,
’0’, // legacy_session_id
$cipher_suites,
’0’, // legacy_compression_methods
ClientHelloExtensions)

which reflects almost exactly how this message is presented in the draft-21 specifica-

tion.6 ClientRandom is itself a macro, defined to be the value of the client nonce nc.

ClientHelloExtensions is yet another macro which expands according to the following:

define(<!ClientHelloExtensions!>, <!<SupportedVersions,
NamedGroupList, SignatureSchemeList, KeyShareCH >!>),

again reflecting our intention of modelling the draft-21 specification as closely as possible,

allowing for a direct syntactic comparison between our model and the specification. Our

previous Tamarin model also employs macros, but the connection to the specification is

much less evident. For instance, in the draft-10 model, ClientHello is defined to be the

pair of values nc,pc, representing the client’s nonce and ‘parameters’, which serves as a

placeholder for handshake values that are abstracted away.

In our model we have tried to define cryptographic components in a way that is reminiscent

of imperative programming. As in the specification, we compute the handshake secret by

computing the function HKDF-Extract(gxy,es), and the handshake keys are computed

by applying a Derive-Secret (HKDF-Expand) function to this value. This is not strictly

necessary due to the assumption of perfect cryptography – we could ignore the HKDF

computations and focus solely on the secrets involved – but this makes it easier to connect

our model to the specification.

The full state machine diagram of our draft-21 model can be viewed in Figures 7.5

and 7.6. Both figures display the post-handshake mechanisms discussed previously,

i.e., new session tickets (new_session_ticket, recv_new_session_ticket), key updates

(update_req_server, update_recv_client, update_fin_server and the corresponding

client-initiated key update rules), and post-handshake authentication (certificate_request

_post, recv_certificate_request_post, client_auth_post, recv_client_auth_post).

We note that the post-handshake rules effectively loop back into the C4 and S4 states – for

ease of representation, we represent these rules vertically in Figure 7.6.
6In Tamarin’s syntax, constants are enclosed by single quotes.

186

7.3 draft-21 Analysis

C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

ClientPSK ServerPSK

S4C4

C4 S4

C4 S4

S4C4

C4 S4

S4

recv hello retry request

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

recv new session ticket new session ticket
NewSessionTicket

client hello OR

client hello psk

recv client hello OR

recv client hello psk

server hello OR

server hello psk OR

server hello psk dhe

ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉
recv server hello OR

recv server hello psk OR

recv server hello psk dhe
ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉

recv server auth OR

recv server auth pskauth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} server auth OR

server auth psk

auth mode = ‘psk auth’

Finished

certificate request postrecv certificate request post
CertificateRequest

client auth post recv client auth post

Certificate
CertificateVerify

Finished

update req serverupdate recv client
KeyUpdate

update fin server

KeyUpdate

Figure 7.5: Part 1 of the full state diagram for our Tamarin model, showing all rules
covered in the initial handshake (excluding rules dealing with the record layer).

187

7.3 draft-21 Analysis

C0start

C1

C2a

C2b

C2c

C2d

C3

C4

S0start

S1

S2a

S2b

S2c

S2d

S3

S4

ClientPSK ServerPSK

S4C4

C4 S4

C4 S4

S4C4

C4 S4

S4C4

C4 S4

S4C4

C4

recv hello retry request

client gen keys

recv encrypted extensions

recv certificate request OR

skip recv certificate request

client auth OR

client auth certcert req ctxt 6= ‘0’

cert req ctxt = ‘0’

hello retry request

server gen keys

encrypted extensions

certificate request OR

skip certificate request

cert req ctxt 6= ‘0’

recv client auth OR

recv client auth cert

cert req ctxt = ‘0’

ClientHello

+Extensions

ServerHello

+Extensions

EncryptedExtensions

CertificateRequest

Certificate
CertificateVerify

Finished

Certificate
CertificateVerify

Finished

Finished

recv new session ticket new session ticket
NewSessionTicket

client hello OR

client hello psk

recv client hello OR

recv client hello psk

server hello OR

server hello psk OR

server hello psk dhe

ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉
recv server hello OR

recv server hello psk OR

recv server hello psk dhe
ke mode =

〈 ‘psk dhe ke’, ‘psk ke’ 〉

recv server auth OR

recv server auth pskauth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} server auth OR

server auth psk

auth mode = ‘psk auth’

Finished

certificate request postrecv certificate request post
CertificateRequest

client auth post recv client auth post

Certificate
CertificateVerify

Finished

update req serverupdate recv client
KeyUpdate

update fin server

KeyUpdate

update req client update recv server
KeyUpdate

update fin client

KeyUpdate

Figure 7.6: Part 2 of the full state diagram for our Tamarin model, showing all post-
handshake rules covered.

188

7.3 draft-21 Analysis

For ease of readability, our state machine diagrams do not convey our modelling of the

Record Protocol. In comparison to our draft-10 model, we model the Record Protocol

more accurately in that we separate the Record Protocol rules from the Handshake

Protocol rules, effectively modelling two different protocols, in accordance with the TLS 1.3

specification. Previously, we modelled the application data send and receive rules as looping

back into Handshake Protocol states (see Figure 6.11 in Chapter 6). Whilst not incorrect,

a more accurate approach would call for separation of the respective protocol states, and

in our draft-21 model, we create Record Protocol states and applicable rules, which exist

alongside the Handshake Protocol states and rules. This can be viewed in Figure 7.7. Note

that this still allows for the Handshake Protocol to run over the Record Protocol, as is most

definitely the case for the post-handshake messages as these are encrypted with record

layer keys. One can imagine overlaying Figure 7.7 on top of Figures 7.5 and 7.6 to get a

sense of our complete draft-21 model.

C2c

C2d

C3

C4

S2c

S2d

S3

S4

SendRecv

RecvSend

recv send

send recv

Application Data

Post-handshake
Messages

Application Data

Post-handshake
Messages

cert req ctxt 6= ‘0’

cert req ctxt = ‘0’

auth mode = ‘psk auth’

auth mode ∈
{‘psk sign auth’, ‘0’} auth mode = ‘psk auth’

Figure 7.7: Record layer state diagram for TLS 1.3 draft-21. Record layer rules are
indicated in blue. The messages exchanged between the client and the server, using distinct
upstream and downstream traffic keys, are given in green.

7.3.1.2 Advanced Features

In our model we capture a number of complicated interactions and logic flows inherent to

the TLS 1.3 handshake, greatly improving on our preceding model, adding features to the

model which we consider to be ‘advanced’.

189

7.3 draft-21 Analysis

Group Negotiation. We model the client and the server as having the ability, albeit

limited, to negotiate the group used in the Diffie–Hellman key exchange. In Tamarin’s

syntax, variables that are always instantiated with public values are prefixed by $. In

our model, the client starts with a pair of public values $g1,$g2 that represent two

supported groups, and offers these to the server along with a corresponding key share for

$g1. Similarly, the server starts with a supported group $g. The model allows the server

to return a HelloRetryRequest to the client, enforcing that $g is not equal to $g1, and

expects the client to return instead a key share that matches $g2.

This interaction enables a much greater coverage of Diffie-Hellman key exchange with

respect to our draft-10 model. Previously, a HelloRetryRequest would only enable a

client to pick a new Diffie-Hellman exponent for use with the same $g; we did not model

negotiation of the Diffie-Hellman group.

Handshake Flows. One of the most complex elements inherent to modelling TLS 1.3 is

the vast number of possible state machine transitions. After a session resumption, the server

can choose between using the PSK only, or using the PSK along with a Diffie-Hellman key

share. Alternatively, the server might reject the PSK entirely, and fall back to a regular

(initial) handshake, or request that the client use a different group for the Diffie-Hellman

exchange. Additionally, as discussed, there are several complex messages that can be sent

in the post-handshake state: client authentication requests, new session tickets, and key

update requests.

Since all of the above interactions can happen asynchronously, the resulting model becomes

very complex and requires sophisticated handling logic. A number of complicated protocol

flows, involving any number of sequential handshake modes and post-handshake extensions

can, and will, transpire and we deal with this eventuality via our very modular approach

to modelling, employing this strategy for all possible handshake modes.

Our full model is available at [44].7

7This is a stable URL containing links to our draft-10 and draft-21 source code, as well as supple-
mentary material.

190

7.3 draft-21 Analysis

7.3.2 Encoding Security Properties

We describe our threat model and our formal modelling of the desired TLS 1.3 security

properties within the Tamarin framework.

7.3.2.1 Threat Model

We consider an extension of the Dolev-Yao adversary as our threat model. As described in

Chapter 6, Section 6.3.2.1, the Dolev-Yao adversary has complete control of the network,

and can intercept, send, replay, and delete any message. In order to construct a new message,

the adversary can combine any information previously obtained but our assumption of

perfect cryptography implies that the adversary cannot encrypt, decrypt or sign messages

without knowledge of the appropriate keys. In the previous chapter, we consider a Dolev-

Yao adversary that has the ability to compromise the long-term keys of protocol participants.

In order to consider different types of compromise, in this chapter, we additionally allow the

adversary to compromise the PSKs of protocol participants (whether created out-of-band

or through a new session ticket (NST)), as well as their Diffie-Hellman exponents. We

model these additional adversary capabilities using the following Tamarin rules:

rule Reveal_PSK:
[SecretPSK($A, res_psk)]--[RevealPSK($A, res_psk)]->[Out(res_psk)]

rule Reveal_DHExp:
[DHExp(˜x, ˜tid, $A)]--[RevDHExp(˜tid, $A, ˜x)]->[Out(˜x), DHExp(˜x,

˜tid, $A)]

The PSK_Reveal rule can be triggered if a PSK (represented by res_psk) is generated for

the agent $A. The right-hand side of the rule encodes that res_psk is sent out on the

network, at which point it becomes adversary knowledge. The Reveal_DHExp rule can

be triggered when a Diffie-Hellman exponent is generated for the agent $A, as is done in

the client_hello rule in Section 7.3.1.1; the DHExp(˜x, ˜tid, $A) is produced by the

client_hello rule and can thus be consumed by the Reveal_DHExp rule.

Our Reveal_Ltk lemma remains unchanged:

rule Reveal_Ltk:
[!Ltk($A, ˜ltkA)] --[RevLtk($A)]-> [Out(˜ltkA)]

191

7.3 draft-21 Analysis

TLS 1.3 is not intended to be secure under the full combination of all of the types of

compromise listed above. For example, session key secrecy can be broken by an adversary

who eavesdrops on the communication and compromises the Diffie-Hellman values of a

single protocol participant. A natural approach when encoding security properties is to

weaken the attacker model by adding realistic constraints until either the claimed security

goals of the protocol are achieved, or the corresponding attackers become weaker than the

ones we expect to face in practice (in which case proving the property in question would

amount to nothing meaningful). Hence, this approach requires us to express exactly what

needs to be protected, and when each of the claimed TLS 1.3 security properties can be

expected to hold.

We now present our Tamarin encodings of the TLS 1.3 security properties as given in the

draft-21 specification (and as discussed in Chapter 2, Section 2.5.4, and repeated in this

chapter). In comparison to draft-10, the draft-21 specification has a more developed

overview of the desired TLS 1.3 security properties (see Appendix E of [128]). Hence, in

addition to secrecy and authentication properties, we cover the other properties listed in

the specification, namely, uniqueness of session keys, identical session key establishment,

downgrade protection, and Key Compromise Impersonation (KCI) resistance.

7.3.2.2 Secrecy Properties

We now discuss the secrecy of session keys as well as perfect forward secrecy with respect

to long-term keys:

Secrecy of Session Keys. Our secret_session_keys lemma, given below, is our

encoding of property 2., the secret session keys property, given earlier.

lemma secret_session_keys:
(1) "All tid actor peer write_key read_key auth_status #i.
(2) SessionKey(tid, actor, peer, <auth_status, ’auth’>, <write_key, read_key>)@i &
(3) not (Ex #r. RevLtk(peer)@r & #r < #i) &
(4) not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
(5) not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
(6) not (Ex resumption_master_secret #r. RevealPSK(actor, resumption_master_secret)@r) &
(7) not (Ex resumption_master_secret #r. RevealPSK(peer, resumption_master_secret)@r)
(8) ==> not Ex #j. K(read_key)@j"

The intuition for this lemma is that if an actor believes it has established a session key

with an authenticated peer (2), then the attacker does not know the key (8). However,

192

7.3 draft-21 Analysis

given the capabilities of the attacker, this will not hold without imposing some restrictions.

This is why the additional clauses are required, (3) – (7).

The five adversary conditions stated in the depicted lemma are generally repeated across all

lemmas, and encapsulate the basic assumptions we make about our attacker. We describe

them in more detail here. The first imposes the restriction that the long-term signing key

of the peer is not compromised. This restriction can additionally be understood to signify

that the actor is communicating with an honest peer, since the attacker can effectively

impersonate a party when in possession of its long-term key. Furthermore, it should be

noted that the attacker is still allowed to compromise the peer’s long-term key (LTK) after

the session key is established. Hence we show that the session keys achieve perfect forward

secrecy (PFS) with respect to the LTK.

The second and third clauses bar the attacker from revealing any Diffie-Hellman exponents

generated by the client or the server, respectively, before the session key is established.

The attacker may reveal exponents that are generated after the session key is established.

The last two clauses specify that the attacker cannot compromise a PSK associated with

either the actor or the peer. Note that the attacker is restricted from revealing these PSKs

at any time, i.e., before or after the session key has been established, which corresponds to

the proviso in the specification that the PSK-only exchange mode does not provide PFS.

We note that the PSK and Diffie-Hellman restrictions are necessary when considering the

secrecy of session keys as the key derivation schedule (Section 2.5.1) employs both of these

secrets, in the applicable handshake modes, to establish session keys.

Forward Secrecy with Respect to Long-term Keys. The PFS property is briefly

touched upon above in the context of the long-term signing keys and the secrecy of session

keys. However, in those cases, we do not cover the requirement for forward secrecy with

regards to the PSK coupled with a Diffie-Hellman key exchange. In this instance, forward

secrecy should be achieved, whereas with a PSK-only handshake, this is not guaranteed.

We have an additional lemma, secret_session_keys_pfs, which captures that, in either

a full DHE or PSK-DHE handshake, the secrecy of the session keys does not depend on

the PSK remaining secret after the session is concluded.

193

7.3 draft-21 Analysis

In order to achieve this, we modify the secret_session_keys lemma depicted above

by adding a condition for the key-exchange mode, not psk_ke_mode = psk_ke (i.e., not

a PSK-only handshake), and loosening the restrictions on the attacker such that the

RevealPSK action is only forbidden for any time point #r < #i. In proving this lemma we

show that the session keys are forward secure after a Diffie-Hellman exchange.

7.3.2.3 Authentication Properties

Peer (Entity) Authentication. The specification defines this property, somewhat

informally, as a form of authentication whereby both parties should agree on the identity of

their peer. Again, looking at this more formally through the lens of Lowe’s authentication

hierarchy [97], this definition corresponds to weak agreement, i.e., the protocol guarantees

to the client that when it completes a run of the protocol, apparently with the server, then

the server was previously running the protocol, apparently with the client. In particular,

we note that this property does not imply recentness – the requirement that the peer is

currently running the protocol – nor does it specify whether any other values should be

agreed upon.

We model entity authentication in two parts so as to capture the distinction between the

mutual and unilateral authentication cases. Authentication in the unilateral case means

that if a client completes a TLS handshake, apparently with a server, then the server

previously performed a TLS handshake with the client, and they both agree on certain data

values of the handshake, including the identity of the server and the nonces used. Note that

this is already a stronger property than is stipulated in the specification. Here we also prove

non-injective agreement8 on the nonces, which additionally provides recentness since both

parties contribute a fresh nonce to the handshake. The unilateral entity authentication

lemma we aim to prove is the following:

lemma entity_authentication [use_induction, reuse]:
(1) "All tid actor peer nonces client_auth_status #i.
(2) CommitNonces(tid, actor, ’client’, nonces)@i &
(3) CommitIdentity(tid, actor, ’client’, peer, <client_auth_status, ’auth’>)@i &
(4) not (Ex #r. RevLtk(peer)@r & #r < #i) &
(5) not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i) &
(6) not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i) &
(7) not (Ex resumption_master_secret #r. RevealPSK(actor, resumption_master_secret)@r & #r < #i) &
(8) not (Ex resumption_master_secret #r. RevealPSK(peer, resumption_master_secret)@r & #r < #i)
(9) ==> (Ex tid2 #j. RunningNonces(tid2, peer, ’server’, nonces)@j & #j < #i)"

8The client and the server agree on the nonces but there is no guarantee that there is a one-to-one
relationship between the protocol runs of the client and the protocol runs of the server.

194

7.3 draft-21 Analysis

The intuition for this lemma is that if a client believes it has agreed on a pair of nonces

with a server, (2) and (3), then the server was, at some point prior, engaged in a run of the

protocol using these nonces (9). We again impose the necessary restrictions on the attacker

to achieve this property, (4) – (8). The property can only hold if the attacker does not

acquire any of the secrets prior to the client agreeing on nonces. While one might expect

that only the legitimacy of the signing key is necessary for authentication, if the attacker

is able to obtain the PSK then the attacker is able to resume a session and impersonate

the peer.

We encode mutual entity authentication with an additional lemma that is almost identical

to the entity authentication lemma given above – it is written with the server as the

actor, i.e., all ’client’ instances are replaced with ’server’ instances. The two lemmas

individually capture authentication of the server and the client, respectively, and together

capture mutual entity authentication.

In addition to entity authentication, we consider a transcript agreement property, where

the value agreed upon is a hash of the session transcript. This provides us with near-full

agreement9 – there are a couple of notable omissions. Firstly, the Handshake Protocol

continues after the initial exchange of messages in the handshake, although none of these

delayed, post-handshake messages are included in the session transcript. Secondly, we

observe that the actors do not necessarily agree on the current authentication status of the

handshake, an oddity we cover in more detail in Section 7.3.3.3.

Finally, we also aim to prove an injective variant of mutual transcript agreement (which

TLS should naturally achieve by agreeing on fresh nonces). Hence, we aim to show that

TLS achieves a relatively strong authentication notion: mutual agreement on a significant

portion of the state with recentness.

7.3.2.4 Additional Properties

We now discuss our encoding of the remaining TLS 1.3 properties listed in Chapter 2, and

repeated above.
9We recall that full agreement captures the notion that both protocol participants agree on all possible

data items that could have been exchanged, or created as a result of the exchange, during a run of the
protocol, and that there is a one-to-one relationship between the protocol runs.

195

7.3 draft-21 Analysis

Identical Session Keys. The definition of this property as given in Section 2.5.4 (and

above) is taken from [41], where it is referred to as a consistency property. However,

there is ambiguity in the circumstances that are necessary and sufficient for two protocol

participants to establish the same keys. An answer to this question is typically given

through the well-established practice of defining session partnering [23,41,92]. One possible

way to do so is to assign session identifiers in terms of a value (or pair of values) on which

the two parties agree. We opted for the least restrictive session identifier, namely the pair

of nonces generated by the client and the server. Therefore, if a partnered client and server

complete the handshake, then they must agree on session keys.

We consider this property with respect to an attacker that can compromise all session

keys except for those of the test session, i.e., the session in which the attacker attempts

to obtain information about the key [41, 92]. This property is captured by our lemma

session_key_agreement:

lemma session_key_agreement:
(1) "All tid tid2 actor peer actor2 peer2 nonces keys keys2 cas as2 #i #j #k #l.
(2) SessionKey(tid, actor, peer2, <cas, ’auth’>, keys)@i &
(3) running(Nonces, actor, ’client’, nonces)@j &
(4) SessionKey(tid2, peer, actor2, as2, keys2)@k &
(5) running2(Nonces, peer, ’server’, nonces)@l &
(6) not (Ex #r. RevLtk(peer)@r & #r < #i & #r < #k) &
(7) not (Ex tid3 x #r. RevDHExp(tid3, peer, x)@r & #r < #i & #r < #k) &
(8) not (Ex tid4 y #r. RevDHExp(tid4, actor, y)@r & #r < #i & #r < #k) &
(9) not (Ex rms #r. RevealPSK(actor, rms)@r & #r < #i & #r < #k) &
(10)not (Ex rms #r. RevealPSK(peer, rms)@r & #r < #i & #r < #k)
(11)==> keys = keys2"

Intuitively, this lemma states that if two actors have partnered with the same nonces, (3)

and (5), then they have established identical session keys (11).

Uniqueness of Session Keys. In order to capture the uniqueness of session keys, we aim

to prove that any two matching session keys generated must be from the same session, and

indeed from the same TLS connection. In other words, each run of the protocol produces

distinct session keys. This should hold without any restriction on the attacker, since it

is a straightforward consequence of an actor generating a fresh nonce for each session

(since nonces are included in the computation of traffic keys). The property as listed in

the draft-21 specification also mentions that session keys should be independent. We

do not aim to prove anything about the independence of session keys, or whether or not

two session keys are related, since this trivially follows from our assumption of perfect

cryptography. We capture the uniqueness property in our Unique_session_keys lemma:

196

7.3 draft-21 Analysis

lemma unique_session_keys:
"All tid tid2 actor peer peer2 kr kw as as2 #i #j.
SessionKey(tid, actor, peer, as, <kr, kw>)@i &
SessionKey(tid2, actor, peer2, as2, <kr, kw>)@j
==> #i = #j"

Downgrade Protection. The draft-21 specification cites the work by Bhargavan et

al. [28] for a definition of downgrade protection, as given in Section 2.5.4 and above. This

definition is not directly equivalent to any of Lowe’s classical agreement definitions; it only

requires that both parties negotiate the same configuration parameters as would be the

case without the presence of an attacker. Specifically, we observe that agreeing on the

configuration parameters (in the sense of non-injective agreement) is sufficient to achieve

this, but not necessary. Therefore, within our model we capture downgrade protection

through our authentication lemmas. However, we note that this does not accurately capture

the spirit of downgrade protection owing to the fact that we assume all cryptographic

primitives to be perfect, and given that we do not model previous versions of TLS. The

weakening of primitives, as well as the modelling of previous versions of TLS in Tamarin,

would make for interesting future work.

Key Compromise Impersonation (KCI) Resistance. The only restriction we place

on compromising long-term keys is that the peer’s LTK must not be compromised. None

of our security properties rely on the actor’s LTK being hidden from the attacker.10 This

fact coupled with our authentication properties additionally captures the KCI resistance

property as laid out in Section 2.5.4 (and above).

7.3.2.5 Parameter Negotiation

The security of a TLS session critically depends on the integrity of the parameters negotiated

during the corresponding TLS handshakes in the initial and subsequent connections in the

session. In TLS these parameters include the protocol version, the cipher suite, and the

signature algorithm. Depending on the negotiated protocol version, additional values may

or must be negotiated, such as the handshake mode, the Diffie-Hellman group, and/or the

PSK to be used.
10A minor exception to this is that the adversary cannot use the actor’s long-term key to impersonate

the actor to itself since in this case, the actor is also the peer.

197

7.3 draft-21 Analysis

For Diffie-Hellman group negotiation, we model the client sending a list of two symbolic

groups from which the server may choose. This feature allows us to provide a limited

coverage of the Hello Retry Request (HRR) functionality of the protocol. We also provide

support for PSKs but limit the number of PSKs offered to one per handshake.

With our transcript agreement lemmas, we capture the client and the server agreeing on

the transcript of the protocol and hence on the values selected during negotiation. This

means that an adversary should not be able to force the client or the server to accept a

value that they did not initially offer.

There are two main classes of parameter negotiation attacks: forcing the use of bad cipher

suites [8, 34] or bad signature algorithms [26], and forcing the use of older and insecure

versions of SSL/TLS [16,110]. As mentioned, because we model perfect cryptography and

cover TLS 1.3 only, these attacks are not captured by our analysis.

7.3.3 Analysis and Results

We now provide a detailed description of our analysis, including a discussion of our results

and an exploration of an authentication anomaly uncovered by our work.

7.3.3.1 Positive Results

In general, we find that TLS 1.3 meets the properties outlined in the draft-21 specification,

those that our modelling process was able to capture at least. We show that TLS 1.3 enables

a client and a server to agree on secret session keys and that these session keys are unique

across, as well as within, handshake instances. Our analysis shows that PFS of session keys

holds in the expected situations, i.e., in the (EC)DHE and PSK+(EC)DHE handshake

modes. We also show that TLS 1.3, by and large, provides the desired authentication

guarantees in both the unilateral and mutual authentication cases. The situation in which

this is not the case is covered in Section 7.3.3.3.

We present our results in Table 7.1. For each property discussed in Section 2.5.4 (and

above), we indicate our findings. We use ∗ to indicate that the property holds in most

198

7.3 draft-21 Analysis

situations. As mentioned, we discuss cases in which the property does not hold to the

expected degree in sections to follow. We also list our applicable Tamarin lemma(s) in

Table 7.1.

Property Proven Lemma(s)
(1) Secret session keys secret_session_keys
(2) Perfect forward secrecy secret_session_keys_pfs

(3) Peer authentication∗ entity_authentication
mutual_entity_authentication

(4) Identical session keys session_key_agreement
(5) Unique session keys unique_session_keys

(7)
Key Compromise
Impersonation (KCI)
resistance

entity_authentication
mutual_entity_authentication

Table 7.1: TLS 1.3 draft-21 Tamarin results

We recall that our model does not truly cover downgrade protection. A treatment of

downgrade protection across TLS protocol versions would require modelling the earlier

versions of TLS in a way that is consistent with the TLS 1.3 model as developed here.

In order to consider the downgrade protection of cipher suites, we would need to relax

our current assumption of perfect cryptography through rules that, for instance, allow an

attacker to learn the payload of encrypted messages without knowing the key. In spite of

the fact that these additional considerations would substantially complicate the model and

the proof process, our model is well-suited to their inclusion and could form the basis of

future work.

7.3.3.2 Proof Approach in Tamarin

For models as complex as those needed to capture TLS 1.3, proving lemmas in Tamarin

is a multi-stage process, and proving complex lemmas directly is often infeasible as proof

trees can become very large. Tamarin provides a number of features that allow complex

proofs to be broken down into more manageable sections. Writing auxiliary lemmas, or

sub-lemmas, provides hints to the Tamarin constraint solving algorithm, allowing it to

solve complex sections of a larger proof directly, making the overall proof more manageable.

For our draft-21 model, we use several types of lemmas: Helper lemmas are used to

quickly solve repetitive subsections of a larger proof without repeatedly unrolling the entire

sub-tree (corresponding to the repetitive subsection), and typing lemmas provide hints to

the Tamarin engine about the potential sources of messages, reducing the branching of

199

7.3 draft-21 Analysis

a proof tree. Inductive lemmas instruct Tamarin to prove lemmas inductively, allowing

us to break out of loops in the protocol, which otherwise can produce infinite proof trees.

Proving the main properties of draft-21 required many auxiliary lemmas, of all of these

kinds.

The Tamarin engine can also use heuristics to automate the proving of lemmas, which

proved invaluable in quickly re-proving large sections of properties after making changes

to the model. By investing time in writing auto-provable sub-lemmas, we could easily

incorporate changes made to the specification without having to restart our analysis from

scratch.

The more complex lemmas used in our analysis of draft-21, however, required manual

proving in the Tamarin interactive prover. We note that by manual proving in this context

we mean manually guiding the Tamarin prover through a proof by using the Tamarin

graphical user interface.

In order to give an indication of the number of auxiliary lemmas required, and the

relationship between all of our lemmas, we have constructed a lemma map, displayed in

Figure 7.8. The map also indicates which lemmas were auto-proved by Tamarin, and

which ones needed manual guidance for Tamarin to be able to prove them.

In total, the analysis effort represents approximately 3 person-months worth of work.

However, the vast majority of that time can be allocated to the process of writing lemmas

to break down the overall proving effort into smaller, auto-provable chunks. With these

lemmas in place, proving the entire model takes about a week, and significant computing

resources. We made use of a 48-core machine with 512GB of RAM. The model itself takes

over 10GB RAM to load, and can easily consume 100GB RAM in the course of a proof.

The underlying language on which Tamarin is built, Haskell11, automaticially detects the

number of cores available on a machine and employs as many threads, using multi-treading

to speed up the proof search. Once produced, our proofs can be verified within the space

of a day, still requiring vast amounts of RAM.
11See https://www.haskell.org/.

200

7.3 draft-21 Analysis

uniqueness
one_s_per_tid
*s in {ALL STATES}
S1_vs_S1_PSK_DHE
S1_PSK_vs_S1_PSK_DHE
S1_PSK_vs_S1
C1_vs_C1_PSK_DHE
C1_PSK_vs_C1
C1_PSK_vs_C1_PSK_DHE
s_vs_s_cert
*s in {C3,S3}
s_vs_s_PSK
*s in {C2a,S2a,C2d,S2d}

DH chal
dh_chal_dual

DH injectivity
dh_exp_invariant(i)
one_dh_per_x
rev_dh_ordering(i)
rev_dh_before_hs

invariants
tid_invariant(i)
one_start_per_tid(i)
cert_req_origin(t)
nst_source(t)

secret helpers
ku_extract(i)
ku_expand(i)
ku_hs
ku_ltk
ku_fresh_psk
hsms_derive
posths_rms_weak(i)
posths_rms(i)
matching_transcripts_posths
matching_rms_posths
matching_rms_actors
sig_origin
invariant_post_hs
matching_sessions(i)

auth_psk
matching_hsms
post_master_secret
invariant_post_hs(i)
handshake_secret(i)
handshake_secret_pfs(i)

auth helpers
matching_nonces
consistent_nonces
invariant_nonces
matching_rms_nonces

Properties
secret_session_keys
secret_session_keys_pfs
unique_session_keys

session_key_agreement
entity_authentication(i)
transcript_agreement
mut_entity_authentication(i)
mut_transcript_agreement
injective_mut_entity_auth

Figure 7.8: Lemma Map. Lemma names with a purple background indicate where manual
interaction via the Tamarin visual interface was required. The remaining lemmas were
automatically proven by Tamarin, without manual interaction. An arrow from one
category to another implies that the proof of the latter depends on the former, and (i)
and (t) indicate inductive and typing lemmas, respectively. The Properties box contains
the main TLS 1.3 properties.

7.3.3.3 Authentication Mismatch

During the development of our draft-21 model, and in particular the analysis of the

post-handshake client authentication, we encountered a possible behaviour that suggested

that TLS 1.3 fails to meet certain strong authentication guarantees. While there are many

definitions of authentication, the common thread among strong authentication guarantees

is that both parties share a common view of the session, i.e., that they agree on exchanged

and computed data. During our analysis of the post-handshake client authentication

mechanism, it became apparent that the client does not receive any explicit confirmation

that the server has successfully received the client’s response. Due to the asynchronous

nature of this post-handshake client authentication, the client may keep receiving data from

the server, and will not be able to determine if the server has received its authentication

message. As a consequence, the client cannot be sure as to whether or not the server has

sent subsequent data under the assumption that the client has been authenticated.

201

7.3 draft-21 Analysis

In concurrent work by Bhargavan et al. [27], a similar issue was uncovered for the 0.5-

RTT case. A discussion with the TLS WG on draft-21 revealed that an equivalent

problem also exists within the main (initial) handshake. During the main handshake, the

server can request a client certificate, and may decide to reject it (for example because it

violates certain domain-specific policies), but still continue with the connection as if the

certificate was accepted. Therefore, the client cannot be sure (after what appears to be

a main handshake with mutual authentication) that the server considers the client to be

authenticated. Thus, this phenomenon leaves the client uncertain as to whether or not the

server considers it to be authenticated, even though (i) the server asked for a certificate,

and (ii) the client supplied it and the corresponding authentication signature.

In order to see why this may become a problem at the application level, consider the

following application: Assume a TLS 1.3 enabled client and server pair where the server

implements the policy that any data received over a mutually authenticated connection

are stored in a secure database; all data received over connections where the client is not

authenticated are stored in an insecure log. The client connects to the server, the server

requests a certificate (and the corresponding authentication signature), which the client

duly provides, but the server rejects the client’s certificate (and hence the authentication

signature) and continues regardless. Since the server rejected the client’s certificate,

it continues to store incoming messages in the insecure log. However, the client may

assume it has been authenticated, and therefore may start sending sensitive data, which is

consequently stored in the insecure log, rather than in the secure database as the client

may expect.

The TLS WG has decided not to fix this behaviour for TLS 1.3, meaning that this remains

true for all subsequent TLS 1.3 drafts, and has not introduced any mechanism that informs

the client of the server’s view of the client’s authentication status. If a client wants to

be certain that the server considers it to be authenticated, this confirmation needs to

be supplied at the application layer. We anticipate that some client applications will

incorrectly assume that sending a client certificate (with the associated authentication

information) and obtaining further server messages indeed guarantees that the server

considers the connection to be mutually authenticated. As stated, this is not the case in

general, and may lead to serious security issues despite there being no direct violation of

the specified TLS 1.3 security requirements.

202

7.4 Conclusion

7.4 Conclusion

In this work we modelled draft-21 of the TLS 1.3 specification within the symbolic

analysis framework of the Tamarin prover, and used the tool to verify the majority of the

security guarantees that TLS 1.3 claims to offer.

We focus on ruling out complex interaction attacks by considering an unbounded number of

concurrent connections, and all of the TLS 1.3 handshake modes. We cover both unilateral

and mutual authentication, as well as session key secrecy in all of the TLS 1.3 handshake

modes with respect to a Dolev-Yao attacker. We also capture more advanced security

properties such as perfect forward secrecy and Key Compromise Impersonation resistance.

Our draft-21 Tamarin modelling effort embraces a far more modular approach, accurately

capturing the draft specification.

Besides verifying that draft-21 of the TLS 1.3 specification meets the claimed security

properties in most of the handshake modes and variants, we also discover an unexpected

authentication behaviour which may have serious security implications for implementations

of TLS 1.3. This unexpected behaviour, at a high level, implies that TLS 1.3 provides no

direct means for a client to determine its authentication status from the perspective of

a given server. As a server may treat authenticated data differently to unauthenticated

data, the client may end up in a position in which its sensitive data gets processed as

non-sensitive data by the server.

The work presented in this chapter again contributes to the newer, proactive TLS 1.3 design

approach, confirming the TLS WG’s design choices, as well as pointing out weaknesses in

the protocol which may lead to complications in the future.

203

Part IV

Concluding Remarks

204

Chapter 8

Conclusion

In this chapter we conclude and briefly mention avenues for future work.

In the development of the latest version of TLS, namely TLS 1.3, the IETF has embraced

a more collaborative and proactive design process, welcoming analyses of the protocol by

the academic community prior to the protocol’s official release with a view to catch and

remedy flaws before the protocol is finalised. This thesis has examined the reasons for

the IETF’s decision to adopt a new development process, and has presented work that

supports this design shift.

In Chapter 3 we presented an account of TLS standardisation, starting with the early

versions of TLS, right up until TLS 1.3, which is, at the time of writing, nearing completion.

We described how the process for TLS 1.2 and below fits the design-release-break-patch cycle

of standards development, and how a shift in the process has resulted in the standardisation

of TLS 1.3 conforming to the design-break-fix-release development cycle. We commented

on the factors that have influenced the change in the TLS WG’s design methodology,

namely, the protocol analysis tools available, the levels of involvement from the research

community, and the incentives driving the relevant stakeholders.

In Chapters 4 and 5 we presented work that attacks the use of RC4 in TLS 1.2 and

below, showing that the Record Protocol does not meet its intended confidentiality goal.

In Chapter 4 we showed how to recover passwords when protected by RC4 in TLS, and in

Chapter 5 we attacked 16-byte plaintexts protected by RC4, introducing techniques that

enable predictions regarding the number of ciphertexts needed for the successful recovery of

target plaintexts. As mentioned in Chapter 4, avenues for future work include adapting our

password-recovery attacks to operate with an unknown password length, and examining

205

the effect of dictionary choice on attack success rates in more detail.

The material presented in Chapters 4 and 5 adds to a large body of work that confirms the

need for a new version of TLS – a version that has undergone analysis prior to release. In

Chapters 6 and 7 we presented work that contributes towards this goal. We analysed two

drafts of TLS 1.3, namely draft-10 and draft-21, using the Tamarin prover . In Chapter

6 we showed that the draft-10 Handshake Protocol meets its desired security properties

but we found an attack against the post-handshake client authentication mechanism. This

attack informed the next revision of TLS 1.3 which indeed implemented a patch for this

attack. In Chapter 7 we showed that draft-21, by and large, meets its intended security

goals. We did, however, observe a strange authentication behaviour in the post-handshake

client authentication mechanism which could have security implications for real-world

systems. This behaviour was reported to the TLS WG.

Our symbolic analyses in Chapters 6 and 7 employed the use of perfect cryptography. One

possibility for extending our analyses is to weaken cryptographic primitives by introducing

rules which, for instance, allow an adversary to create hash function collisions, or signature

and MAC forgeries. Another area of future exploration includes incorporating Tamarin

models for TLS 1.2 and below so as to fully cover downgrade protection. This, however,

could prove to be computationally expensive.

The newer standardisation process followed for TLS 1.3 by the IETF exhibits benefits

over the process employed previously as it allows for the pre-emptive detection and fixing

of weaknesses, thus producing a potentially stronger protocol and reducing the need for

patches post-release. A proactive process such as this is truly befitting of a critical protocol

such as TLS.

206

Bibliography

[1] CryptoVerif: Cryptographic protocol verifier in the computational model. Available

at: http://prosecco.gforge.inria.fr/personal/bblanche/cryptoverif/.

[2] FlexTLS: A tool for testing TLS implementations. Available at: https://mitls.

org/pages/flextls.

[3] miTLS: A verified reference implementation of TLS. Available at: https://mitls.

org/.

[4] ProVerif: Cryptographic protocol verifier in the formal model. Available at: http:

//prosecco.gforge.inria.fr/personal/bblanche/proverif/.

[5] Scyther tool. Available at: https://www.cs.ox.ac.uk/people/cas.cremers/

scyther/.

[6] Tamarin prover (develop branch). Available at https://github.com/tamarin-

prover/tamarin-prover.

[7] Anne Adams and Martina A. Sasse. Users are not the enemy. Communications of

the ACM, 42(12):40–46, December 1999.

[8] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew

Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel Thomé, Luke

Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella Béguelin, and Paul

Zimmermann. Imperfect forward secrecy: How Diffie-Hellman fails in practice. In

Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15: 22nd

Conference on Computer and Communications Security, pages 5–17, Denver, CO,

USA, October 12–16, 2015. ACM Press.

[9] Martin R. Albrecht and Kenneth G. Paterson. Lucky microseconds: A timing attack

on Amazon’s s2n implementation of TLS. In Marc Fischlin and Jean-Sébastien

207

BIBLIOGRAPHY

Coron, editors, Advances in Cryptology – EUROCRYPT 2016, Part I, volume 9665

of Lecture Notes in Computer Science, pages 622–643, Vienna, Austria, May 8–12,

2016. Springer, Heidelberg, Germany.

[10] Nadhem J. AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering,

and Jacob C. N. Schuldt. On the security of RC4 in TLS. In Proceedings of the 22nd

USENIX Conference on Security, USENIX Security 13, pages 305–320, Berkeley, CA,

USA, 2013. USENIX Association.

[11] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the TLS

and DTLS record protocols. In 2013 IEEE Symposium on Security and Privacy,

pages 526–540, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer Society Press.

[12] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir.

Verifiable side-channel security of cryptographic implementations: Constant-time

MEE-CBC. In Thomas Peyrin, editor, Fast Software Encryption – FSE 2016, volume

9783 of Lecture Notes in Computer Science, pages 163–184, Bochum, Germany,

March 20–23, 2016. Springer, Heidelberg, Germany.

[13] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar.

Lucky 13 strikes back. In Feng Bao, Steven Miller, Jianying Zhou, and Gail-Joon

Ahn, editors, ASIACCS 15: 10th ACM Symposium on Information, Computer and

Communications Security, pages 85–96, Singapore, April 14–17, 2015. ACM Press.

[14] Kenichi Arai. Formal verification of TLS 1.3 full handshake protocol using Proverif.

Technical report, Cryptographic protocol Evaluation toward Long-Lived Outstanding

Security Consortium (CELLOS), February 2016. Available at: https://www.cellos-

consortium.org/studygroup/TLS1.3-fullhandshake-draft11.pv.

[15] Barry C. Arnold, N. Balakrishnan, and H.N. Nagaraja. A First Course in Order

Statistics. SIAM, Philadelphia, PA, USA, 2008.

[16] Nimrod Aviram, Sebastian Schinzel, Juraj Somorovsky, Nadia Heninger, Maik

Dankel, Jens Steube, Luke Valenta, David Adrian, J. Alex Halderman, Viktor

Dukhovni, Emilia Käsper, Shaanan Cohney, Susanne Engels, Christof Paar, and

Yuval Shavitt. DROWN: Breaking TLS using SSLv2. In 25th USENIX Security

Symposium (USENIX Security 16), pages 689–706, Austin, TX, 2016. USENIX

Association.

208

BIBLIOGRAPHY

[17] M. Badra. Pre-Shared Key Cipher Suites for TLS with SHA-256/384 and AES Galois

Counter Mode. RFC 5487 (Proposed Standard), March 2009.

[18] Gregory V. Bard. The vulnerability of SSL to chosen plaintext attack. Cryptology

ePrint Archive, Report 2004/111, 2004. http://eprint.iacr.org/2004/111.

[19] Gregory V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext

attack on SSL. In SECRYPT, pages 99–109, 2006.

[20] David A. Basin, Jannik Dreier, and Ralf Sasse. Automated symbolic proofs of

observational equivalence. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:,

editors, ACM CCS 15: 22nd Conference on Computer and Communications Security,

pages 1144–1155, Denver, CO, USA, October 12–16, 2015. ACM Press.

[21] Thomas Bayes. An essay towards solving a problem in the doctrine of chances.

Philosophical Transactions, 53:370–418, 1763.

[22] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations

among notions and analysis of the generic composition paradigm. In Tatsuaki

Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of

Lecture Notes in Computer Science, pages 531–545, Kyoto, Japan, December 3–7,

2000. Springer, Heidelberg, Germany.

[23] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In

Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773

of Lecture Notes in Computer Science, pages 232–249, Santa Barbara, CA, USA,

August 22–26, 1994. Springer, Heidelberg, Germany.

[24] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0.

RFC 1945 (Informational), May 1996.

[25] Benjamin. Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cedric

Fournet, S. Ishtiaq, Markulf Kohlweiss, Jonathan Protzenko, Nikhil Swamy, Santiago

Zanella-Béguelin, and Jean-Karim Zinzindohoué. Towards a provably secure imple-

mentation of TLS 1.3. Presented at TRON 1.0, San Diego, CA, USA, February 21,

2016.

[26] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim

Zinzindohoue. A messy state of the union: Taming the composite state machines of

209

BIBLIOGRAPHY

TLS. In 2015 IEEE Symposium on Security and Privacy, pages 535–552, San Jose,

CA, USA, May 17–21, 2015. IEEE Computer Society Press.

[27] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models

and reference implementations for the TLS 1.3 standard candidate. In 2017 IEEE

Symposium on Security and Privacy, pages 483–502, San Jose, CA, USA, May 22–26,

2017. IEEE Computer Society Press.

[28] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green, Markulf

Kohlweiss, and Santiago Zanella Béguelin. Downgrade resilience in key-exchange

protocols. In 2016 IEEE Symposium on Security and Privacy, pages 506–525, San

Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

[29] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti,

and Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing

authentication over TLS. In 2014 IEEE Symposium on Security and Privacy, pages

98–113, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer Society Press.

[30] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and

Pierre-Yves Strub. Implementing TLS with verified cryptographic security. In 2013

IEEE Symposium on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,

2013, pages 445–459, 2013.

[31] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-

Yves Strub, and Santiago Zanella Béguelin. Proving the TLS handshake secure (as

it is). In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology –

CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer Science, pages 235–

255, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[32] Karthikeyan Bhargavan, Nadim Kobeissi, and Bruno Blanchet. ProScript TLS:

Building a TLS 1.3 implementation with a verifiable protocol model. Presented at

TRON 1.0, San Diego, CA, USA, February 21, 2016.

[33] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of 64-bit

block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In Edgar R.

Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai

Halevi, editors, ACM CCS 16: 23rd Conference on Computer and Communications

Security, pages 456–467, Vienna, Austria, October 24–28, 2016. ACM Press.

210

BIBLIOGRAPHY

[34] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks: Breaking

authentication in TLS, IKE and SSH. In ISOC Network and Distributed System

Security Symposium – NDSS 2016, San Diego, CA, USA, February 21–24, 2016. The

Internet Society.

[35] Bruno Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In

14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), pages 82–96,

Cape Breton, Nova Scotia, Canada, June 11–13, 2001. IEEE Computer Society Press.

[36] Bruno Blanchet. Security protocol verification: Symbolic and computational models.

In Pierpaolo Degano and Joshua D. Guttman, editors, Principles of Security and

Trust, pages 3–29, Tallinn, Estonia, March 24 – April 1, 2012. Springer, Heidelberg,

Germany.

[37] Daniel Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA

encryption standard PKCS #1. In Hugo Krawczyk, editor, Advances in Cryptology –

CRYPTO’98, volume 1462 of Lecture Notes in Computer Science, pages 1–12, Santa

Barbara, CA, USA, August 23–27, 1998. Springer, Heidelberg, Germany.

[38] Joseph Bonneau. The science of guessing: Analyzing an anonymized corpus of 70

million passwords. In 2012 IEEE Symposium on Security and Privacy, pages 538–552,

San Francisco, CA, USA, May 21–23, 2012. IEEE Computer Society Press.

[39] Joseph Bonneau and Sören Preibusch. The password thicket: Technical and market

failures in human authentication on the web. In 9th Annual Workshop on the

Economics of Information Security, WEIS 2010, Harvard University, Cambridge,

MA, USA, June 7 - 8, 2010.

[40] Remi Bricout, Sean Murphy, Kenneth G. Paterson, and Thyla van der Merwe.

Analysing and exploiting the Mantin biases in RC4. Designs, Codes and Cryptography,

86(4):743–770, April 2018.

[41] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology

– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages

453–474, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[42] Brice Canvel, Alain P. Hiltgen, Serge Vaudenay, and Martin Vuagnoux. Password

interception in a SSL/TLS channel. In Dan Boneh, editor, Advances in Cryptology –

211

BIBLIOGRAPHY

CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–599,

Santa Barbara, CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[43] Douglas E. Comer. Internetworking with TCP/IP, volume 1. Pearson, Harlow, Essex,

UK, sixth edition, 2013.

[44] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der

Merwe. Automated analysis of TLS 1.3: Symbolic analysis using the Tamarin prover.

Website, November 2017. https://tls13tamarin.github.io/TLS13Tamarin/.

[45] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der

Merwe. A comprehensive symbolic analysis of TLS 1.3. In Proceedings of the 2017

ACM SIGSAC Conference on Computer and Communications Security, CCS ’17,

pages 1773–1788, New York, NY, USA, 2017. ACM.

[46] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated

analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authentication.

In 2016 IEEE Symposium on Security and Privacy, pages 470–485, San Jose, CA,

USA, May 22–26, 2016. IEEE Computer Society Press.

[47] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko,

Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, Karthikeyan Bhargavan,

Jianyang Pan, and Jean Karim Zinzindohoue. Implementing and proving the TLS

1.3 record layer. In 2017 IEEE Symposium on Security and Privacy, pages 463–482,

San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

[48] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC 2246 (Proposed

Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs 3546, 5746,

6176, 7465, 7507.

[49] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version

1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246, updated

by RFCs 4366, 4680, 4681, 5746, 6176, 7465, 7507.

[50] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version

1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,

6176, 7465, 7507, 7568, 7627, 7685.

[51] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE Trans-

actions on Information Theory, 22(6):644–654, September 2006.

212

BIBLIOGRAPHY

[52] Whitfield Diffie, Paul C. van Oorschot, and Michael J. Wiener. Authentication and

authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125, June

1992.

[53] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, 29(2):198–208, March 1983.

[54] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-

graphic analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray,

Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference

on Computer and Communications Security, pages 1197–1210, Denver, CO, USA,

October 12–16, 2015. ACM Press.

[55] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-

graphic analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol.

Cryptology ePrint Archive, Report 2016/081, 2016. http://eprint.iacr.org/

2016/081.

[56] Benjamin Dowling and Douglas Stebila. Modelling ciphersuite and version negotiation

in the TLS protocol. In Ernest Foo and Douglas Stebila, editors, ACISP 15: 20th

Australasian Conference on Information Security and Privacy, volume 9144 of Lecture

Notes in Computer Science, pages 270–288, Wollongong, NSW, Australia, June 29 –

July 1, 2015. Springer, Heidelberg, Germany.

[57] Thai Duong and Juliano Rizzo. Here come the ⊕ ninjas. Unpublished manuscript,

May 2011.

[58] Thai Duong and Juliano Rizzo. The CRIME attack. Ekoparty Security Conference

presentation, 2012.

[59] P. Eronen and H. Tschofenig. Pre-Shared Key Ciphersuites for Transport Layer

Security (TLS). RFC 4279 (Proposed Standard), December 2005.

[60] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s

QUIC protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS

14: 21st Conference on Computer and Communications Security, pages 1193–1204,

Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[61] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key

confirmation in key exchange: A formal treatment and implications for TLS 1.3. In

213

BIBLIOGRAPHY

2016 IEEE Symposium on Security and Privacy, pages 452–469, San Jose, CA, USA,

May 22–26, 2016. IEEE Computer Society Press.

[62] Dinei Florencio and Cormac Herley. A large-scale study of web password habits. In

Proceedings of the 16th International Conference on World Wide Web, WWW ’07,

pages 657–666, New York, NY, USA, 2007. ACM.

[63] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key scheduling

algorithm of RC4. In Serge Vaudenay and Amr M. Youssef, editors, SAC 2001:

8th Annual International Workshop on Selected Areas in Cryptography, volume

2259 of Lecture Notes in Computer Science, pages 1–24, Toronto, Ontario, Canada,

August 16–17, 2001. Springer, Heidelberg, Germany.

[64] Scott R. Fluhrer and David A. McGrew. Statistical analysis of the alleged RC4

keystream generator. In Bruce Schneier, editor, Fast Software Encryption – FSE 2000,

volume 1978 of Lecture Notes in Computer Science, pages 19–30, New York, NY,

USA, April 10–12, 2001. Springer, Heidelberg, Germany.

[65] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and

L. Stewart. HTTP Authentication: Basic and Digest Access Authentication. RFC

2617 (Draft Standard), June 1999. Obsoleted by RFCs 7235, 7615, 7616, 7617.

[66] A. Freier, P. Karlton, and P. Kocher. The Secure Sockets Layer (SSL) Protocol

Version 3.0. RFC 6101 (Historic), August 2011.

[67] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg

Schwenk. Universally composable security analysis of TLS. In Joonsang Baek, Feng

Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec 2008: 2nd International Conference

on Provable Security, volume 5324 of Lecture Notes in Computer Science, pages

313–327, Shanghai, China, October 31 – November 1, 2008. Springer, Heidelberg,

Germany.

[68] Christina Garman, Kenneth G. Paterson, and Thyla van der Merwe. Attacks only

get better: Password recovery attacks against RC4 in TLS. In 24th USENIX Security

Symposium (USENIX Security 15), pages 113–128, Washington, D.C., 2015. USENIX

Association.

[69] David Garret. Banning SHA-1 in TLS 1.3, a new attempt. TLS mailing list

post, October 2015. Available at http://www.ietf.org/mail-archive/web/tls/

current/msg17956.html.

214

BIBLIOGRAPHY

[70] David Garret. MD5 diediedie (was Re: Deprecating TLS 1.0, 1.1 and SHA1 signature

algorithms). TLS mailing list post, January 2016. Available at http://www.ietf.

org/mail-archive/web/tls/current/msg18977.html.

[71] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS

renegotiation. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,

ACM CCS 13: 20th Conference on Computer and Communications Security, pages

387–398, Berlin, Germany, November 4–8, 2013. ACM Press.

[72] Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. Proof

of empirical RC4 biases and new key correlations. In Ali Miri and Serge Vaude-

nay, editors, SAC 2011: 18th Annual International Workshop on Selected Areas in

Cryptography, volume 7118 of Lecture Notes in Computer Science, pages 151–168,

Toronto, Ontario, Canada, August 11–12, 2012. Springer, Heidelberg, Germany.

[73] Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar. (Non-

)random sequences from (non-)random permutations - analysis of RC4 stream cipher.

Journal of Cryptology, 27(1):67–108, January 2014.

[74] P. Gutmann. Encrypt-then-MAC for Transport Layer Security (TLS) and Datagram

Transport Layer Security (DTLS). RFC 7366 (Proposed Standard), September 2014.

[75] Marko Horvat. Formal Analysis of Modern Security Protocols in Current Standards.

PhD thesis, University of Oxford, 2016.

[76] Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu Morii. Full

plaintext recovery attack on broadcast RC4. In Shiho Moriai, editor, Fast Software

Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages

179–202, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany.

[77] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of

TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors,

Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer

Science, pages 273–293, Santa Barbara, CA, USA, August 19–23, 2012. Springer,

Heidelberg, Germany.

[78] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On the security of TLS 1.3 and

QUIC against weaknesses in PKCS#1 v1.5 encryption. In Indrajit Ray, Ninghui Li,

and Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer

215

BIBLIOGRAPHY

and Communications Security, pages 1185–1196, Denver, CO, USA, October 12–16,

2015. ACM Press.

[79] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1: RSA

Cryptography Specifications Version 2.1. RFC 3447 (Informational), February 2003.

[80] Jakob Jonsson and Burton S. Kaliski Jr. On the security of RSA encryption in

TLS. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442

of Lecture Notes in Computer Science, pages 127–142, Santa Barbara, CA, USA,

August 18–22, 2002. Springer, Heidelberg, Germany.

[81] B. Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational),

March 1998. Obsoleted by RFC 2437.

[82] John Kelsey. Compression and information leakage of plaintext. In Joan Daemen

and Vincent Rijmen, editors, Fast Software Encryption – FSE 2002, volume 2365 of

Lecture Notes in Computer Science, pages 263–276, Leuven, Belgium, February 4–6,

2002. Springer, Heidelberg, Germany.

[83] Vlastimil Kĺıma, Ondrej Pokorný, and Tomás Rosa. Attacking RSA-based sessions

in SSL/TLS. In Cryptographic Hardware and Embedded Systems - CHES 2003,

5th International Workshop, Cologne, Germany, September 8-10, 2003, Proceedings,

pages 426–440, 2003.

[84] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH and

TLS-RSA in the standard model. Cryptology ePrint Archive, Report 2013/367, 2013.

http://eprint.iacr.org/2013/367.

[85] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Björn Tackmann, and Daniele

Venturi. (De-)Constructing TLS. Cryptology ePrint Archive, Report 2014/020, 2014.

http://eprint.iacr.org/2014/020.

[86] H. Krawczyk and P. Eronen. HMAC-based Extract-and-Expand Key Derivation

Function (HKDF). RFC 5869 (Informational), May 2010.

[87] Hugo Krawczyk. The order of encryption and authentication for protecting commu-

nications (or: How secure is SSL?). In Joe Kilian, editor, Advances in Cryptology –

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 310–331,

Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany.

216

BIBLIOGRAPHY

[88] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In

Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture

Notes in Computer Science, pages 631–648, Santa Barbara, CA, USA, August 15–19,

2010. Springer, Heidelberg, Germany.

[89] Hugo Krawczyk. OPTLS: Signature-less TLS 1.3. TLS mailing list, November 2014.

http://www.ietf.org/mail-archive/web/tls/current/msg14385.html.

[90] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the

TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,

Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in

Computer Science, pages 429–448, Santa Barbara, CA, USA, August 18–22, 2013.

Springer, Heidelberg, Germany.

[91] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE

European Symposium on Security and Privacy (EuroS&P), pages 81–96, Saarbrücken,

Germany, March 21-24, 2016. IEEE Computer Sociciety Press.

[92] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of

authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors,

ProvSec 2007: 1st International Conference on Provable Security, volume 4784 of

Lecture Notes in Computer Science, pages 1–16, Wollongong, Australia, November 1–

2, 2007. Springer, Heidelberg, Germany.

[93] Adam Langley and Wan-Teh Chang. QUIC Crypto, June 2013. Avail-

able at https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_

L2f5LTaDUDwvZ5L6g/.

[94] Olivier Levillain, Baptiste Gourdin, and Hervé Debar. TLS record protocol: Security

analysis and defense-in-depth countermeasures for HTTPS. In Feng Bao, Steven

Miller, Jianying Zhou, and Gail-Joon Ahn, editors, ASIACCS 15: 10th ACM Sym-

posium on Information, Computer and Communications Security, pages 225–236,

Singapore, April 14–17, 2015. ACM Press.

[95] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. Multiple

handshakes security of TLS 1.3 candidates. In 2016 IEEE Symposium on Security

and Privacy, pages 486–505, San Jose, CA, USA, May 22–26, 2016. IEEE Computer

Society Press.

217

BIBLIOGRAPHY

[96] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On the

security of the pre-shared key ciphersuites of TLS. In Hugo Krawczyk, editor,

PKC 2014: 17th International Conference on Theory and Practice of Public Key

Cryptography, volume 8383 of Lecture Notes in Computer Science, pages 669–684,

Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[97] Gavin Lowe. A hierarchy of authentication specifications. In Proceedings of the

10th IEEE Workshop on Computer Security Foundations, CSFW ’97, pages 31–,

Washington, DC, USA, 1997. IEEE Computer Society.

[98] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How

secure and quick is QUIC? Provable security and performance analyses. In 2015

IEEE Symposium on Security and Privacy, pages 214–231, San Jose, CA, USA,

May 17–21, 2015. IEEE Computer Society Press.

[99] Subhamoy Maitra, Goutam Paul, and Sourav Sengupta. Attack on broadcast RC4

revisited. In Antoine Joux, editor, Fast Software Encryption – FSE 2011, volume

6733 of Lecture Notes in Computer Science, pages 199–217, Lyngby, Denmark,

February 13–16, 2011. Springer, Heidelberg, Germany.

[100] James Manger. A chosen ciphertext attack on RSA optimal asymmetric encryption

padding (OAEP) as standardized in PKCS #1 v2.0. In Joe Kilian, editor, Advances

in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science,

pages 230–238, Santa Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg,

Germany.

[101] Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream generator. In

Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494

of Lecture Notes in Computer Science, pages 491–506, Aarhus, Denmark, May 22–26,

2005. Springer, Heidelberg, Germany.

[102] Itsik Mantin. Bar Mitzvah Attack: Breaking SSL with a 13-year old RC4

weakness, March 2015. Presented at Blackhat Asia 2015. Paper available

at https://www.blackhat.com/docs/asia-15/materials/asia-15-Mantin-Bar-

Mitzvah-Attack-Breaking-SSL-With-13-Year-Old-RC4-Weakness-wp.pdf.

[103] Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In Mitsuru

Matsui, editor, Fast Software Encryption – FSE 2001, volume 2355 of Lecture Notes

218

BIBLIOGRAPHY

in Computer Science, pages 152–164, Yokohama, Japan, April 2–4, 2002. Springer,

Heidelberg, Germany.

[104] Shin’ichiro Matsuo. Formal verification of TLS 1.3 full handshake protocol using

Proverif (draft-11). TLS mailing list post, February 2016. Available at https:

//www.ietf.org/mail-archive/web/tls/current/msg19339.html.

[105] Nikos Mavrogiannopoulos, Frederik Vercauteren, Vesselin Velichkov, and Bart Preneel.

A cross-protocol attack on the TLS protocol. In Ting Yu, George Danezis, and Virgil D.

Gligor, editors, ACM CCS 12: 19th Conference on Computer and Communications

Security, pages 62–72, Raleigh, NC, USA, October 16–18, 2012. ACM Press.

[106] D. McGrew. An Interface and Algorithms for Authenticated Encryption. RFC 5116

(Proposed Standard), January 2008.

[107] Simon Meier. Advancing Automated Security Protocol Verification. PhD thesis, ETH

Zurich, 2013.

[108] Christopher Meyer, Juraj Somorovsky, Eugen Weiss, Jörg Schwenk, Sebastian

Schinzel, and Erik Tews. Revisiting SSL/TLS implementations: New Bleichen-

bacher side channels and attacks. In 23rd USENIX Security Symposium (USENIX

Security 14), pages 733–748, San Diego, CA, 2014. USENIX Association.

[109] Bodo Möller. Security of CBC ciphersuites in SSL/TLS: Problems and counter-

measures, 2004. Unpublished manuscript. Available at https://www.openssl.org/

˜bodo/tls-cbc.txt.

[110] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploiting

the SSL 3.0 fallback, 2014. Unpublished manuscript. Available at https://www.

openssl.org/˜bodo/ssl-poodle.pdf.

[111] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. The TLS handshake protocol:

A modular analysis. Journal of Cryptology, 23(2):187–223, April 2010.

[112] Roger M. Needham and Michael D. Schroeder. Using encryption for authentication

in large networks of computers. Communications of the Association for Computing

Machinery, 21(21):993–999, December 1978.

[113] Toshihiro Ohigashi, Takanori Isobe, Yuhei Watanabe, and Masakatu Morii. How

to recover any byte of plaintext on RC4. In Tanja Lange, Kristin Lauter, and Petr

219

BIBLIOGRAPHY

Lisonek, editors, SAC 2013: 20th Annual International Workshop on Selected Areas

in Cryptography, volume 8282 of Lecture Notes in Computer Science, pages 155–173,

Burnaby, BC, Canada, August 14–16, 2014. Springer, Heidelberg, Germany.

[114] Kenneth G. Paterson and Nadhem J. AlFardan. Plaintext-recovery attacks against

datagram TLS. In ISOC Network and Distributed System Security Symposium –

NDSS 2012, San Diego, CA, USA, February 5–8, 2012. The Internet Society.

[115] Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Big bias

hunting in amazonia: Large-scale computation and exploitation of RC4 biases

(invited paper). In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology –

ASIACRYPT 2014, Part I, volume 8873 of Lecture Notes in Computer Science, pages

398–419, Kaoshiung, Taiwan, R.O.C., December 7–11, 2014. Springer, Heidelberg,

Germany.

[116] Kenneth G. Paterson, Bertram Poettering, and Jacob C. N. Schuldt. Plaintext

recovery attacks against WPA/TKIP. In Carlos Cid and Christian Rechberger,

editors, Fast Software Encryption – FSE 2014, volume 8540 of Lecture Notes in Com-

puter Science, pages 325–349, London, UK, March 3–5, 2015. Springer, Heidelberg,

Germany.

[117] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does

matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and

Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of

Lecture Notes in Computer Science, pages 372–389, Seoul, South Korea, December 4–

8, 2011. Springer, Heidelberg, Germany.

[118] Kenneth G. Paterson and Jacob C.N. Schuldt. Statistical attacks on cookie masking

for RC4. Cryptology ePrint Archive, Report 2018/093, 2018. Available at https:

//eprint.iacr.org/2018/093.

[119] Kenneth G. Paterson and Mario Strefler. A practical attack against the use of

RC4 in the HIVE hidden volume encryption system. In Feng Bao, Steven Miller,

Jianying Zhou, and Gail-Joon Ahn, editors, ASIACCS 15: 10th ACM Symposium

on Information, Computer and Communications Security, pages 475–482, Singapore,

April 14–17, 2015. ACM Press.

[120] Goutam Paul and Subhamoy Maitra. Permutation after RC4 key scheduling reveals

the secret key. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors,

220

BIBLIOGRAPHY

SAC 2007: 14th Annual International Workshop on Selected Areas in Cryptography,

volume 4876 of Lecture Notes in Computer Science, pages 360–377, Ottawa, Canada,

August 16–17, 2007. Springer, Heidelberg, Germany.

[121] Lawrence C. Paulson. Inductive analysis of the internet protocol TLS. ACM

Transactions on Information Systems Security, 2(3):332–351, August 1999.

[122] A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465 (Proposed Standard), February

2015.

[123] Andrei Popov. TLS 1.3 client authentication. In Meeting proceedings of the IETF-

93 Workshop, Prague. Retrieved from https://www.ietf.org/proceedings/93/

slides/slides-93-tls-2.pdf, 2015.

[124] J. Postel. DoD standard Transmission Control Protocol. RFC 761, January 1980.

Obsoleted by RFC 793.

[125] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD), August

1980.

[126] E. Rescorla. Keying Material Exporters for Transport Layer Security (TLS). RFC

5705 (Proposed Standard), March 2010.

[127] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 (draft, revision

10), October 2015. Available at https://tools.ietf.org/html/draft-ietf-tls-

tls13-10.

[128] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 (draft, revision

21), October 2015. Available at https://tools.ietf.org/html/draft-ietf-tls-

tls13-21.

[129] E. Rescorla and B. Korver. Guidelines for Writing RFC Text on Security Considera-

tions. RFC 3552 (Best Current Practice), July 2003.

[130] E. Rescorla and N. Modadugu. Datagram Transport Layer Security. RFC 4347

(Proposed Standard), April 2006. Obsoleted by RFC 6347, updated by RFCs 5746,

7507.

[131] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2.

RFC 6347 (Proposed Standard), January 2012. Updated by RFC 7507.

221

BIBLIOGRAPHY

[132] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer Security (TLS)

Renegotiation Indication Extension. RFC 5746 (Proposed Standard), February 2010.

[133] Eric Rescorla. TLS 1.3 specification pull request: WIP client auth revision #316.

https://github.com/tlswg/tls13-spec/pull/316/.

[134] Eric Rescorla. TLS 1.3 Status. In Meeting proceedings of the IETF-93 Workshop,

Prague. Previously available at https://www.ietf.org/proceedings/93/slides/

slides-93-tls-8.pdf, 2015.

[135] Ronald L. Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communicaitons of the ACM,

21(2):120–126, February 1978.

[136] Phillip Rogaway. Problems with proposed IP cryptography. Unpublished manuscript,

1995. http://www.cs.ucdavis.edu/˜rogaway/papers/draft-rogaway-ipsec-

comments-00.txt.

[137] J. Roskind. QUIC: Quick UDP Internet Connections, April 2012. Available

at https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-

ev2jRFUoVD34/edit?pref=2&pli=1.

[138] J. Salowey, A. Choudhury, and D. McGrew. AES Galois Counter Mode (GCM)

Cipher Suites for TLS. RFC 5288 (Proposed Standard), August 2008.

[139] Pratik Guha Sarkar and Shawn Fitzgerald. Attacks on SSL – a comprehensive

study of BEAST, CRIME, TIME, BREACH, Lucky 13 and RC4 biases, August

2013. White paper. Available at https://www.isecpartners.com/media/106031/

ssl_attacks_survey.pdf.

[140] Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy Maitra. Proving

TLS-attack related open biases of RC4. Cryptology ePrint Archive, Report 2013/502,

2013. http://eprint.iacr.org/2013/502.

[141] Benedikt Schmidt. Formal Analysis of Key Exchange Protocols and Physical Protocols.

PhD thesis, ETH Zurich, 2012.

[142] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated analysis

of Diffie-Hellman protocols and advanced security properties. In Proceedings of the

2012 IEEE 25th Computer Security Foundations Symposium, CSF ’12, pages 78–94,

Washington, DC, USA, 2012. IEEE Computer Society.

222

BIBLIOGRAPHY

[143] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux. Discovery and exploita-

tion of new biases in RC4. In Alex Biryukov, Guang Gong, and Douglas R. Stinson,

editors, SAC 2010: 17th Annual International Workshop on Selected Areas in Cryp-

tography, volume 6544 of Lecture Notes in Computer Science, pages 74–91, Waterloo,

Ontario, Canada, August 12–13, 2011. Springer, Heidelberg, Germany.

[144] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux. Statistical attack on

RC4 - distinguishing WPA. In Kenneth G. Paterson, editor, Advances in Cryptology

– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages

343–363, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Germany.

[145] Nambi Seshadri and Carl-Erik W. Sundberg. List Viterbi decoding algorithms with

applications. IEEE Transactions on Communications, 42(234):313–323, 1994.

[146] Transport Layer Security Charter, February 2014. Available at https://

datatracker.ietf.org/wg/tls/charter.

[147] S. Turner and T. Polk. Prohibiting Secure Sockets Layer (SSL) Version 2.0. RFC

6176 (Proposed Standard), March 2011.

[148] Mathy Vanhoef and Frank Piessens. All your biases belong to us: Breaking RC4 in

WPA-TKIP and TLS. In 24th USENIX Security Symposium (USENIX Security 15),

pages 97–112, Washington, D.C., 2015. USENIX Association.

[149] Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL, IPSEC,

WTLS... In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002,

volume 2332 of Lecture Notes in Computer Science, pages 534–546, Amsterdam, The

Netherlands, April 28 – May 2, 2002. Springer, Heidelberg, Germany.

[150] Serge Vaudenay and Martin Vuagnoux. Passive-only key recovery attacks on RC4.

In Carlisle M. Adams, Ali Miri, and Michael J. Wiener, editors, SAC 2007: 14th

Annual International Workshop on Selected Areas in Cryptography, volume 4876 of

Lecture Notes in Computer Science, pages 344–359, Ottawa, Canada, August 16–17,

2007. Springer, Heidelberg, Germany.

[151] David Wagner and Bruce Schneier. Analysis of the SSL 3.0 protocol. In Proceedings

of the 2nd Conference on Proceedings of the Second USENIX Workshop on Electronic

Commerce - Volume 2, WOEC’96, pages 4–4, Berkeley, CA, USA, 1996. USENIX

Association.

223

BIBLIOGRAPHY

[152] Xiaoyun Wang and Hongbo Yu. How to break MD5 and other hash functions. In

Ronald Cramer, editor, Advances in Cryptology – EUROCRYPT 2005, volume 3494

of Lecture Notes in Computer Science, pages 19–35, Aarhus, Denmark, May 22–26,

2005. Springer, Heidelberg, Germany.

[153] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing metrics for

password creation policies by attacking large sets of revealed passwords. In Ehab

Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10: 17th

Conference on Computer and Communications Security, pages 162–175, Chicago,

Illinois, USA, October 4–8, 2010. ACM Press.

[154] Jeff Yan, Alan Blackwell, Ross Anderson, and Alasdair Grant. Password memorability

and security: Empirical results. IEEE Security and Privacy, 2(5):25–31, September

2004.

[155] Moshe Zviran and William J. Haga. Password security: An empirical study. Journal

of Management Information Systems, 15(4):161–185, March 1999.

224

Appendix A

STS .spthy File

theory sts

begin

builtins: diffie-hellman, hashing, asymmetric-encryption, symmetric-encryption,

signing

/*

Modeling the Public Key Infrastructure

*/

// Registering a public key

rule Gen_keypair:

[Fr(˜ltkA)]--[GenLtk($A, ˜ltkA)

]->

[!Ltk($A, ˜ltkA), !Pk($A, pk(˜ltkA))]

// Revealing a long-term key

rule Reveal_Ltk:

[!Ltk($A, ˜ltkA)] --[RevLtk($A)]-> [Out(˜ltkA)]

225

/*

Modeling the Protocol

*/

rule Client_1:

[Fr(˜a) // Choose fresh DH exponent.

]

--[C1(˜a)

, Start(˜a, $C, ’client’) // Log a start action.

, DH($C, ˜a) // Log a DH action.

]->

[Client_1($C, ˜a) // Store DH exponent for the next step.

, Out(<$C,’g’ˆ˜a>) // Send DH exponent to S.

]

rule Server_1:

let

k = ckeyshareˆ˜b

in

[Fr(˜b) // Choose fresh DH exponent.

, !Ltk($S, ˜ltkS) // Retrieve server long-term key.

, In(<C,ckeyshare>) // Receive client key share.

]

--[S1(˜b)

, Start(˜b, $S, ’server’) // Log a start action.

, UseSessionKey(C, k) // Log use of session key.

, Neq($S, C) // Avoiding trivial adversarial wins.

, SignS(’g’ˆ˜b, ckeyshare) // Log signature on the key shares.

, Running($S, C, ’server’, ’g’ˆ˜b, ckeyshare) // Log a running action.

]->

[Server_1($S, C, ˜b, ckeyshare, k) // Store state.

, Out(<$S,’g’ˆ˜b, senc{sign{<’g’ˆ˜b, ckeyshare>}˜ltkS}k>) // Send key share

// and encrypted

// signature.

]

226

rule Client_2:

let

k = skeyshareˆ˜a

in

[Client_1($C, ˜a) // Retrieve DH exponent from previous

// step.

, !Ltk($C, ˜ltkC) // Retrieve client long-term key.

, !Pk(S, pk(˜ltkS)) // Retrieve public key.

, In(<S,skeyshare, s_encryptedsignature>) // Receive server key share and

// encrypted signature.

]

--[C2(˜a)

, Neq(S, $C) // Avoiding trivial adversarial wins.

, Eq(verify(sdec{s_encryptedsignature}k, <skeyshare, ’g’ˆ˜a> , pk(˜ltkS)),

true) // Verify the server signature.

, SessionKey($C ,S ,k, ’authenticated’) // Log shared session key.

, SignC(’g’ˆ˜a, skeyshare) // Log signature on the key shares.

, Running($C, S, ’client’, ’g’ˆ˜a, skeyshare) // Log a running action.

, Commit($C, S, ’client’, ’g’ˆ˜a, skeyshare) // Log a commit action.

]->

[Client_2($C, S, ˜a, skeyshare, k) // Store state.

, Out(senc{sign{<’g’ˆ˜a, skeyshare>}˜ltkS}k) // Send encrypted signature.

]

rule Server_2:

[Server_1($S, C, ˜b, ckeyshare, k) // Retrieve DH exponent, client key

// share and shared key from previous

// step.

, !Pk(C, pk(˜ltkC)) // Retrieve client public key.

, In(c_encryptedsignature) // Receive server key share and

// encrypted signature.

]

--[S2(˜b)

, Eq(verify(sdec{c_encryptedsignature}k, <ckeyshare, ’g’ˆ˜b> , pk(˜ltkC)),

true) // Verify the client signature.

, SessionKey($S,C,k,’authenticated’) // Log shared session key.

, Commit($S, C, ’server’, ’g’ˆ˜b, ckeyshare) // Log a commit action.

]->

[Server_2($S, C, ˜b, ckeyshare, k) // Store state.

]

227

/*

Encoding Properties

*/

restriction Equality_Checks_Succeed:

"All x y #i. Eq(x,y) @ i ==> x = y"

restriction NEquality_Checks_Succeed:

"All x y #i. Neq(x, y)@i ==> not (x = y)"

restriction One_Ltk:

"All A x y #i #j. GenLtk(A, x)@i & GenLtk(A, y)@j ==> #i = #j"

restriction One_Role_Per_Actor:

"All actor tid1 tid2 role1 role2 #i #j. Start(tid1, actor, role1)@i

& Start(tid2, actor, role2)@j

==> role1 = role2"

/*

Reachability tests -- replace In and Out with AuthMessage when checking

reachability, and comment this section out when proving other security

properties.

*/

restriction At_most_1_of_C1:

"All #i #j tid1 tid2. C1(tid1)@i & C1(tid2)@j ==> #i = #j"

restriction At_most_1_of_S1:

"All #i #j tid1 tid2. S1(tid1)@i & S1(tid2)@j ==> #i = #j"

restriction At_most_1_of_C2:

"All #i #j tid1 tid2. C2(tid1)@i & C2(tid2)@j ==> #i = #j"

restriction At_most_1_of_S2:

"All #i #j tid1 tid2. S2(tid1)@i & S2(tid2)@j ==> #i = #j"

lemma exists_C1:

exists-trace

"Ex tid #i. C1(tid)@i"

228

lemma exists_S1:

exists-trace

"Ex tid #i. S1(tid)@i"

lemma exists_C2:

exists-trace

"Ex tid #i. C2(tid)@i"

lemma exists_S2:

exists-trace

"Ex tid #i. S2(tid)@i"

/*

Encoding Security Properties

*/

lemma entity_authentication[reuse]:

"All actor peer keyshare1 keyshare2 #i.

Commit(actor, peer, ’client’, keyshare1, keyshare2)@i

& not (Ex #r. RevLtk(peer)@r)

==> Ex #j peer2. Running(peer, peer2, ’server’, keyshare2, keyshare1)@j

& #j < #i"

lemma mutual_authentication[reuse]:

"All actor peer keyshare1 keyshare2 #i.

Commit(actor, peer, ’server’, keyshare1, keyshare2)@i

& not ((Ex #r. RevLtk(peer)@r) | (Ex #r. RevLtk(actor)@r))

==> (Ex #j. Running(peer, actor, ’client’, keyshare2, keyshare1)@j

& #j < #i)"

lemma session_key_secrecy:

"All actor peer k #i. SessionKey(actor, peer, k,’authenticated’)@i

& not ((Ex #r. RevLtk(peer)@r & #r < #i)

| (Ex #r. RevLtk(actor)@r & #r < #i))

==> not Ex #j. K(k)@j"

end

229

