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Abstract

Artificial Neural Networks are increasingly being used in complex real-world
applications because many-layered (i.e., deep) architectures can now be trained
on large quantities of data. However, training even deeper, and therefore more
powerful networks, has hit a barrier due to fundamental limitations in the design
of existing networks. This thesis develops new architectures that, for the first time,
allow very deep networks to be optimized efficiently and reliably. Specifically,
it addresses two key issues that hamper credit assignment in neural networks:
cross-pattern interference and vanishing gradients.

Cross-pattern interference leads to oscillations of the network’s weights that
make training inefficient. The proposed Local Winner-Take-All networks reduce
interference among computation units in the same layer through local competi-
tion. An in-depth analysis of locally competitive networks provides generalizable
insights and reveals unifying properties that improve credit assignment.

As network depth increases, vanishing gradients make a network’s outputs
increasingly insensitive to the weights close to the inputs, causing the failure
of gradient-based training. To overcome this limitation, the proposed Highway
networks regulate information flow across layers through additional skip con-
nections which are modulated by learned computation units. Their beneficial
properties are extended to the sequential domain with Recurrent Highway Net-
works that gain from increased depth and learn complex sequential transitions
without requiring more parameters.
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Chapter 1

Introduction

1.1 Motivation

The objective of building powerful computing machines is to program them to
perform tasks that are too complex, time-consuming, expensive, dangerous or
repetitive to be performed by humans. Many of these tasks require machines
to exhibit intelligent behavior typically shown by animals, such as perception,
reasoning or planning. For example, a computer programmed as a telemedicine
agent is required to understand a patient’s health condition through a series of
questions and answers, and then suggest an appropriate course of action. To take
another example, a robot may be required to assist in disaster relief efforts by
planning the rescue of an affected population.

Broadly, there are two ways to program machines to exhibit desired behavior
(i.e., produce certain outputs in response to certain inputs) within the limits of
computer science [Gödel, 1931]. The first is to manually program the computer
to produce the behavior based on expert knowledge, which has been the com-
mon approach in the design of many control systems. However, for many tasks
sufficient expert knowledge is unavailable or incomplete. An example of this is
in the field of computer vision where decades of research into hand-designed
image processing algorithms has not resulted in high-performing general object
recognition [Russakovsky et al., 2015]. Even if expert domain knowledge is avail-
able, writing programs for all of the large number of tasks humans are interested
in is likely to take prohibitive amounts of time and effort. So the first approach
is attractive for certain narrowly-defined tasks, but not a satisfactory long-term
solution. The second approach is to define a specification that can be used to test
the desired behavior, and then run a search procedure in the space of programs.
The advantage of this program search approach is that it is very general, with

1



2 1.1 Motivation

the primary disadvantage being that the search may take too long to succeed in
practice.

It was recognized early on that program search can be substantially sped up
if, like intelligent animals, machines can use examples of correct behavior or
experiences to guide the search for desired programs. The primary hurdle in
obtaining these speedups is the credit assignment problem [Newell, 1955; Samuel,
1959; Minsky, 1961]. In order for a machine to improve its own behavior by
learning from experience – what is called machine learning – it is necessary for it
to properly attribute its successes and failures to its past decisions such that it
can apply the appropriate changes.

Artificial neural networks (henceforth referred to as NNs or simply “networks”)
are a biologically inspired class of mathematical models used to implement pro-
grams in machine learning [Deng and Chen, 2014; Schmidhuber, 2015; Goodfel-
low et al., 2016]. They consist of a set of simple interconnected processing units,
usually organized in groups called layers, which can in principle approximate
arbitrary functions [Cybenko, 1989; Hornik et al., 1989] and run arbitrary pro-
grams [Siegelmann and Sontag, 1995]. Crucially, if the functions implemented
by the processing units are differentiable, there exists an efficient procedure for
credit assignment in arbitrary NNs: backpropagation [Linnainmaa, 1970, 1976;
Werbos, 1981]. This algorithm computes the gradients of a network’s outputs
with respect its parameters efficiently, allowing gradient-based search techniques
to be used for learning.

In recent years, this property combined with two key enabling factors has
generated wide interest in NNs, in particular for perception problems [LeCun et al.,
2015; Schmidhuber, 2015; Malik, 2017], although they have been studied since
the 1960s. The first of these enablers is the abundance of labeled data, fueled
by the ubiquity of the Internet and dedicated efforts to curate and label datasets
for the purposes of machine learning. The second is availability of increasingly
large amounts of computational power, which is required to learn from large
datasets with high variability and complexity, or complicated simulations of
physical systems.

Unfortunately, as more complex learning tasks are targeted, success of NNs is
hampered by several difficulties in training them. In particular, the efficiency of
gradient-based learning is highly dependent on the design of the neural network,
i.e., its architecture. Credit assignment using backpropagation in increasingly
large and complex networks becomes more and more difficult, and gradient
based training algorithms face a multitude of obstacles such as plateaus, saddle
points, and local minima. The number of layers in the network, the number
of computation units in each layer, the non-linear functions implemented by



3 1.2 Contributions

the units, and their connectivity all play crucial roles in determining how fast
the network can be trained in practice or if the training succeeds at all. These
choices also affect generalization, i.e., performance on unseen input data, since
an architecture with a more suitable inductive bias [Mitchell, 1980] will result in
better generalization for certain problems.

A particularly critical issue in NNs is that as the number of layers connected in
a chain (its depth) increases, credit assignment through backpropagation becomes
increasingly difficult or even altogether infeasible [Hochreiter et al., 2001]. This is
an important limitation since it is well known that increasing the number of layers
is an efficient way to increase the potential complexity of functions that can be
modeled using NNs [Bengio et al., 2013]. Many recent empirical breakthroughs
in supervised machine learning have been achieved using large and deep NNs.
Network depth played perhaps the most important role in these successes. For
instance, within just a few years, the top-5 image classification accuracy on the
1000-class ImageNet dataset increased from ∼84% [Krizhevsky et al., 2012]
to ∼95% [Szegedy et al., 2014; Simonyan and Zisserman, 2014] using deeper
networks with rather small receptive fields per layer [Ciresan et al., 2011, 2012].
Similar trends in other domains such as speech recognition have also underscored
the superiority of deeper networks in terms of accuracy and/or efficiency [Yu
et al., 2013; Zeiler et al., 2013]. Therefore, network architectures that improve
credit assignment and have suitable inductive biases for practical problems can
improve and scale the application of machine learning methods across a variety
of domains, from perception to modeling, control and decision-making.

Based on these motivations, the central motivation for this thesis is to develop
neural network architectures that permit efficient and reliable training of large
and deep neural networks. To this end, we design network architectures that
improve credit assignment among computation units in the same layer through
local competition, and across multiple layers through additional connections in
the network which are modulated by learned computation units.

1.2 Contributions

In order to achieve our goals, we address two key issues that hamper credit
assignment in neural networks: cross-pattern interference [Sutton, 1986] and
vanishing gradients [Hochreiter et al., 2001].

First, we propose a new architecture based on local competition called Local
Winner-Take-All (LWTA). In this architecture, units in a layer are arranged in
groups, and competition among units in each group prevents interference between
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learning signals from multiple training patterns. LWTA networks match or exceed
the performance of other network types in supervised learning experiments,
and they also have a reduced tendency to forget previously learned tasks when
abruptly trained on a new task.

Next, we explore a unifying interpretation of LWTA together with recently
popular rectified linear [Jarrett et al., 2009] and maxout [Goodfellow et al.,
2013b] networks as a collection of an exponential number of linear subnetworks.
Several experiments are performed to understand the extent and utility of this
interpretation: visualization of the active subnetworks, their training behavior,
suitability of subnetwork identities for classification, and impact of training with
dropout. The results confirm that implicit gating of input patterns based on their
mutual similarity plays a key role in the success of the three network types.

A main limitation of the above developments is that local competition improves
shallow NNs but not deep ones. In particular, NNs with more than about 20 layers
still remain very hard to train, suggesting that competition between units improves
credit assignment among units in each layer, but not across several layers. To
address the vanishing gradient problem that causes this, we combine insights
from LWTA and Long Short-Term Memory [Hochreiter and Schmidhuber, 1997b].
The resulting Highway network architecture overcomes the challenge of training
very deep networks reliably and produces state-of-the-art results on the CIFAR-
100 benchmark. When training a very deep network on two different tasks, we
show that a Highway network automatically learns to utilize more layers for the
“harder” task that intuitively requires more computational resources. Comparative
experiments are used to demonstrate how variants of Highway networks can lead
to similar or different results depending on the task.

Finally, we propose Recurrent Highway Networks (RHNs), which use Highway
layers to extend and improve LSTM networks. They address another unsolved
challenge related to depth: training recurrent neural networks with large depths
in the recurrent transition function which maps previous states to new states
during sequence processing. Using RHNs, we obtain increasingly improved results
for progressively deeper networks with constant number of parameters, and set
a new state of the art on the challenging enwik8 and text8 benchmarks for
modeling text sequences from Wikipedia.

1.3 Overview

The rest of the thesis is organized as follows: Chapter 2 introduces basic concepts
and establishes the relevant background for the rest of the thesis. Chapter 3
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identifies the key difficulties that prevent the effective use of NNs for machine
learning. It also provides a summary of past work that has attempted to address
these difficulties. Chapter 4 introduces Local Winner-Take-All LWTA networks, a
new architecture that utilizes local competition and guards against cross-pattern
interference. Chapter 5 presents a unifying analysis of three different locally
competitive architectures, including LWTA networks, and demonstrates the extent
of their conceptual similarities. Chapter 6 develops the Highway network archi-
tecture that makes reliable training of very deep networks possible and evaluates
its performance on several image classification datasets. Chapter 7 extends the
Highway architecture to the sequential setting resulting in Recurrent Highway
Networks. Profiting from their increased recurrence depth, Recurrent Highway
Networks outperform the state-of-the-art on two challenging sequence modeling
benchmarks. Finally Chapter 8 closes the thesis with a summary of the proposed
architectures and a discussion of promising directions for future work.
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Chapter 2

Background

This chapter reviews the basic concepts that underlie the use of NNs for machine
learning. The methods developed in this thesis are studied in the context of
supervised machine learning, so the treatment is limited to this setting. More
detailed exposition can be found in various textbooks on the subject [Bishop,
2006; Murphy, 2012; Goodfellow et al., 2016].

2.1 The Credit Assignment Problem

The desire to speed up search for programs brought up the credit assignment
problem early on in research on Artificial Intelligence (AI). This was one of
the challenges that Newell [1955]; Samuel [1959]; Minsky [1961] and others
identified in the context of developing programs to play games such as checkers
and chess. These games were used as a proxy for understanding how a computer
can successfully solve complex sequential decision making problems similar to
humans. It was realized that it is particularly difficult to write expert programs
for such problems, and so a learning system that could automatically design such
programs would be necessary. Such a system would immediately face the credit
assignment problem: if a machine makes several decisions to arrive at a result –
say dozens of moves in a game of chess – how to know which decisions should
have been different (and how) to obtain a better result? If this can not be known,
any search for solution programs for complex problems involving a large number
of intermediate decisions is unlikely to succeed in reasonable time. A method of
measuring the impact of intermediate decisions (or outputs) of the program on
the final outcome can direct the search towards better programs, leading to fast
learning. For example, Newell [1955] suggested to break problems into subgoals,
which would then provide additional signals for reinforcing useful decisions.

7



8 2.2 Supervised Learning

The credit assignment problem of sequential decision making is also relevant
to the learning of static functions mapping inputs to outputs. In order to learn
desired functions, a machine needs to identify which aspects of the data are
important and to what extent. For example, a chess-playing machine might
identify board configurations that are good or bad by selecting certain aspects of
the configuration as features on which further computations are performed. It is
this capability of learning methods that gives them an edge over hand-designed
programs which may lack the features crucial for obtaining good results. If one
considers a learning method that produces internal representations of the data
during a multi-step computation of the output, then these representations act
like intermediate decisions similar to chess moves. This challenge is related
to the problem of new terms [Samuel, 1959; Dietterich et al., 1982], and is
nowadays referred to as the problem of representation learning [Bengio et al.,
2013]. Assigning appropriate credit to internal representations can substantially
speed up learning and make it practical [Rumelhart et al., 1986].

Some researchers explicitly distinguish between two subproblems of the credit
assignment problem [Sutton, 1984]: the temporal version, where appropriate
credit for a final outcomes should be assigned to earlier decisions, and the struc-
tural version, where credit for a final outcome should be assigned to participating
computing units. The techniques developed in this thesis primarily attempt to
improve structural credit assignment. In certain cases, as done in Chapter 7, the
same techniques can be used to aid in temporal credit assignment.

2.2 Supervised Learning

In this thesis, techniques for improving credit assignment are developed in the
context of supervised learning problems, in particular the setting of single-label
classification [Bishop, 2006]. We are given a training set S of independently
and identically distributed (i.i.d.) pairs of input patterns and targets (x, y) for
training. “Supervised” refers to the availability of targets for guiding the training.
Each input pattern x is a real-valued vector associated with a single class label
y ∈ {0,1, . . . , K − 1} where K is the total number of classes. The objective is to
learn a classifier: a function F(x) that maps the inputs to class labels such that the
classification error rate (CER) or a related objective function is minimized for a test
set of input-target pairs. The test set S ′ is sampled from the same distribution as
the training set, and does not contain elements in common with the training set.
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The CER is defined as

CER(F,S ′) = Σ
(x,y)∈S ′

¨

0 if (F(x) = y),

1 otherwise.
(2.1)

Another problem setting, investigated in Chapter 7, which can be formulated as
a supervised classification problem is that of modeling discrete sequences. These
are sequential prediction problems such as predicting the next character or word in
a natural language text or the next set of music symbols in a piano roll. Although
the raw training data available in these cases are only samples of sequences,
input-target pairs can be constructed by time-delaying input sequences to produce
targets. For example, for the problem of word-level language modeling, training
datasets are prepared by using words from raw sentences as input sequences, and
the same word sequences shifted by one time step as target sequences. Once the
data is prepared in this form, the methods for supervised classification are used
to learn functions that predict the next symbol in the sequence at each time step.
The main differences from the classification setting are that:

• The class of functions used for learning is different, capable of processing
and producing sequential data.

• The learned function are interpreted and used as generative models of the
data, rather than discriminative classifiers. Such models can be used for
generating new samples from the data distribution, or for biasing/evaluating
the outputs of another model.

2.2.1 Maximum Likelihood Estimation

A principled approach for supervised classification that results in a consistent
training and evaluation methodology is to train probabilistic classifiers using
maximum likelihood estimation (MLE) [Bishop, 2006; Murphy, 2012]. Assume
that function F(x)maps input patterns to probabilities p(Ck|x), k ∈ {0, 1, . . . , K−1}
instead of classes. F is represented with a (sufficiently powerful) model such as
an NN with a set of adjustable parameters arranged in a vector θ. The desired
values of the parameters are fixed but unknown. The probability assigned by the
classifier to the target class is p(y|x,θ). The class prediction for computing the
CER is taken to be the label with the highest assigned probability arg max

k
p(Ck|x).

The likelihood function L(θ) is defined as the probability assigned by the
classifier to all samples in the training set for a given θ . Since the training
samples are i.i.d.,
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L(θ) = p(S |θ) =
∏

(x,y)∈S

p(y|x,θ). (2.2)

Maximum likelihood training involves estimating the value of the parameters
for which the likelihood is maximized:

θMLE = arg max
θ

L(θ). (2.3)

Intuitively, maximizing the likelihood of correctly classifying the training set
also minimizes the CER. It is common practice to minimize the negative log of
the likelihood instead, giving

θMLE = arg min
θ

∑

(x,y)∈S

− log p(y|x,θ). (2.4)

This does not change the results since log is a monotonically increasing func-
tion, but is done for multiple reasons: it increases the stability of computations, it
is more compatible with optimization literature which often considers minimiza-
tion instead of maximization problems, and it closely relates the quantity being
minimized to those used in training approaches other than MLE.

2.2.2 Underfitting & Overfitting

MLE casts learning as a specific optimization (or search) problem. One can define a
model F , the search space for θ , and then invoke a suitable optimization algorithm
for minimizing the objective function. This may not always succeed: the obtained
model may fail to produce low error rate on the training set. This can happen
because the selected model is not powerful enough to capture all the information
in the data for accurate prediction, or because the optimization procedure fails to
exploit its full expressive power – a phenomenon termed underfitting. Underfitting
can be addressed by using models that can learn more complex functions, but
care must be taken since complex models can be more difficult to optimize.

On the other hand, successfully obtaining a low error rate on the training
set may still result in poor performance on unseen data from the test set. This
happens due to overfitting – the model’s expressive power allows it to rely on
unique properties of the randomly selected training samples instead of learning
properties that can generalize to unseen test samples. Overfitting and underfitting
are challenges faced in almost every learning task and combating these issues is a
large and active field of study [Burnham and Anderson, 2003].
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In supervised machine learning, overfitting is often controlled through model
regularization. It refers to techniques for encouraging simpler model configura-
tions over complex ones, according to some notion of simplicity, in accordance
with Occam’s razor [Pearl, 1978; Angluin and Smith, 1983; Blumer et al., 1987].
The simplest regularization method is to add an additional term λR(θ) to the
maximum likelihood objective function, where λ is a weighting factor and R is a
regularization function of the model parameters. Most common regularization
functions have a Bayesian interpretation as priors over the model parameters.
For example, setting λR(θ) = θ>θ (called L2 weight decay) corresponds to as-
suming that the prior distribution of the model parameters is Gaussian [Bishop,
2006]. Some regularization techniques commonly used with NNs are discussed
in subsection 2.4.2.

2.3 Neural Networks

NNs are used as models for a variety of machine learning problems, whether they
be in supervised, unsupervised or reinforcement learning [Bishop, 2006; Sutton
and Barto, 1998]. Some early models that can be characterized as types of NNs
(e.g. Perceptrons [Rosenblatt, 1958], Neocognitron [Fukushima, 1980b]) were
inspired by models of information processing in the human brain, while others
such as GMDH networks [Ivakhnenko, 1971] were motivated by data analysis
and control problems. Modern NNs are descendants of these models, but depart
significantly in design from their biological inspirations. Schmidhuber [2015]
provides a detailed survey and historical overview of NN developments. In the
rest of the chapter, we cover fundamental NN concepts relevant to the rest of the
thesis. More details on all these topics can be found in books by Bishop [1995,
2006]; Graves [2012]; Goodfellow et al. [2016].

A wide variety of NNs exist, but in this thesis we will only consider deter-
ministic networks trained in a supervised setting. An NN can be described as a
computational graph of simple processing units (also called nodes or neurons)
connected by weighted directed edges. Each unit computes some function of the
inputs that it receives from units connected to it and emits the obtained outputs
(called its activation). The set of units in the graph are often divided into subsets
called layers; the number of units in a layer is referred to as its width. Subsets
of units that receive inputs to the network are called input layers and subsets
that produce network outputs are called output layers. The term hidden layers is
commonly used to refer to all other layers. The length of the longest path from
the input to output layers is referred to as the depth of the network.
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NNs with acyclic graphs are called feedforward NNs or FNNs, and those with
cyclic graphs recurrent NNs or RNNs. Unlike FNNs, RNNs contain connections
that have time lags – they transfer outputs emitted by source units in the past to
destination units (which may be the same as source units) at future time steps
during processing of sequential inputs. In mathematical notation, it is often
clearer to write NN equations in terms of computations at the layer level rather
than the unit level thanks to the succinctness of matrix notation, so this convention
is adopted throughout the thesis, except when noted otherwise.

FNNs with a single hidden layer are known to be universal approximators
[Cybenko, 1989; Hornik et al., 1989], i.e., given enough hidden units, they can
approximate any continous function up to any desired accuracy. Similarly, RNNs
are known to be Turing-complete [Siegelmann and Sontag, 1995] in theory.

A series of results, starting from the work of [Håstad, 1987; Håstad and Gold-
mann, 1991] for simple threshold circuits, and continuing to present day [Bengio
et al., 2006; Bengio and Delalleau, 2011; Bianchini and Scarselli, 2014; Cohen
et al., 2016] show that there are function classes which can be represented far
more efficiently by deeper networks than shallower networks. In general, for most
practical problems of interest, it is unknown if they fall in the above classes of
functions. However, a pattern strong experimental results on challenging bench-
marks in the domains of computer vision [Krizhevsky et al., 2012; Szegedy et al.,
2014; Simonyan and Zisserman, 2014; He et al., 2016a] and speech recognition
[Hinton et al., 2012a; Graves et al., 2013] indicates that this might be the case.

2.3.1 Types of Networks & Layers

Multilayer Perceptron

The simplest type of NNs consist of layers connected to form a linear graph. These
networks are called Multilayer Perceptrons (MLP)s, and they typically consist of
fully-connected layers.

An MLP represents a function F : Rm→ Rn with L layers of computation units.
The `th layer (` ∈ {1, 2, . . . , L}) computes a non-linear transformation of its input
x` and produces its output ŷ`. Since an MLP is a linear graph, the input to each
layer is always the output of the previous layer, i.e., x` = ŷ`−1. Thus, x1 ∈ Rm is
the external input to the network and ŷL ∈ Rn is the network’s output. 1

The transformation implemented by a fully-connected layer involves first

1To keep notation intuitive, we use ŷ to denote layer outputs and y to denote desired outputs
in this chapter. However, the desired output is not used in the rest of this thesis, so we simply use
y to denote layer outputs.
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computing an affine function z` of the input parameterized by weights W` and bias
b`, followed by application of a non-linear activation function f . To summarize:

x` = ŷ`−1 (2.5a)

z` =W`x` + b` (2.5b)

ŷ` = f (z`). (2.5c)

If layer ` has N` number of units, the dimensions of W` are N` × N`−1 and b`
is an N`-dimensional column vector. The set of all weights and biases is often
collectively referred to as the parameters or weights of the network. Activation
functions are typically unit-wise non-linearities such as the logistic sigmoid ( f (x) =
σ(x) = 1

1+e−x ) or the hyperbolic tangent ( f (x) = tanh(x)), but in general they
can take other forms or incorporate their own learnable parameters.

The procedure of computing the output of a network given an input pattern
is termed a forward pass. It is the sequential activation of all the layers in the
network according to Equation 2.5 in topological ordering for a given input. In
the case of an MLP, x1 is set to the given input vector and then layers 1,2, . . . , L
are activated in order to compute ŷL.

Fully Recurrent layer

There are many ways of adding time-lag connections to NNs, and as a result
RNNs can have various topologies. See Lang et al. [1990]; Werbos [1990]; Elman
[1990] for some early architectures. The simplest types of recurrent layer is called
a fully recurrent layer or just, a simple RNN layer. Each unit in the layer has
one-step time lag connections to all other units (called recurrent connections),
and has incoming connections from all the inputs. As a result, the output of the
layer at any time step t is a function of not just the inputs but also its output at
the previous time step.

At any time step t > 0 of sequence processing, let x[t] ∈ Rm be the input to
the RNN and ŷ[t] ∈ Rn be its output. ŷ[0] is typically set to be the zero vector, but
in some cases it is set to another constant vector or learned during training. Let
us denote by W ∈ Rn×m the matrix of connection weights from the inputs to the
units, by b ∈ Rn a vector of bias weights and by R ∈ Rn×n the matrix of recurrent
connection weights. The forward pass equations for a simple recurrent layer are:

z[t] =Wx[t] +Rŷ[t−1] + b (2.6a)

ŷ[t] = f (z[t]). (2.6b)
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LSTM

The simple RNN layer described above is theoretically powerful, but ill-suited
for gradient-based learning, as discussed in subsection 3.1.5. Due to this reason,
the most successful recurrent architecture is Long Short-Term Memory (LSTM)
[Hochreiter and Schmidhuber, 1997b], which was specifically designed to address
the limitations of simple RNNs. The detailed architecture and its advantages are
described in subsection 3.1.6.

Convolutional and Pooling layers

For data with spatial regularities such as images, the most popular choice of
architecture used is a Convolutional Neural Network (CNN) [LeCun, 1989; LeCun
et al., 1998]. Like an MLP, it is a linear graph of layers, with special layers that are
designed to take advantage of the spatial relationships in the data. These layers
are called convolutional layers, which apply a modification of the transformation
used in fully-connected layers. In addition to convolutional layers, CNNs often
utilize pooling or sub-sampling layers to reduce the spatial dimensionality of their
inputs. Common types of pooling layers use the max or mean operations, applied
over fixed size receptive fields of the inputs. Further details of these layers can be
found in Goodfellow et al. [2016].

2.3.2 Output Activation Functions

The activation function used for the output layer of an NN depends on the
interpretation of the outputs according to the problem. If the NN is being trained
to predict unbounded real-valued targets, the identity activation f (x) = x is
commonly used. Similarly, if the targets are bounded in the range [−1,1], the
tanh activation function is a natural choice.

As discussed in section 2.2, the outputs of an NN trained as a probabilistic
classifier or discrete sequential predictor are interpreted as a categorical probabil-
ity distribution over the labels. To enable this, the activation f of the output layer
of the NN must be changed such that the outputs always form a valid probability
distribution. The softmax activation function serves this purpose:

f (x) = softmax(x) =
ex

Σ ex
(2.7)
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2.4 Training Neural Networks

2.4.1 Objective Functions

The forward pass is used to compute the outputs or predictions of a network for a
given input. To train the network on a given dataset using the method discussed
in section 2.2, an objective (also called the loss or error) function should be
minimized, which measures the discrepancy between the networks predictions
and the targets. Based on the MLE approach (Equation 2.4), the error function to
be minimized in the supervised classification setting is

E(y, ŷL) =
∑

(x,y)∈S

− log p(ŷ= y|x,θ) (2.8)

=
∑

(x,y)∈S

− y> log ŷL, (2.9)

where y is a one-hot vector encoding of the scalar target y as a binary vector
with all elements equal to zero except the y th element which is set to one. For
sequence prediction tasks, the error function is computed for each time step and
then summed over the sequence length for each sequence.

2.4.2 Regularization

Apart from weight decay, three other commonly used NN regularization tech-
niques are also used in this thesis. The particular choice of regularization for
each experiment is primarily motivated by the need to ensure reasonably fair
comparisons to recent work.

The first technique is to add random noise to the inputs, weights or activations
of the network [Holmström and Koistinen, 1992; Bishop, 1995; Hinton et al.,
2012b]. Dropout [Hinton et al., 2012b; Wan et al., 2013; Gal, 2015] is a modern
and most effective variation of this technique which inserts multiplicative Bernoulli
noise in the activations or weights of the network during training. For testing the
network on a test set, the noise is removed and the weights are suitably scaled to
account for the absence of noise.

The second technique is called early stopping [Holmström et al., 1989], and
utilizes a held-out validation set (separate from the training and test sets) to detect
overfitting during training. This is done by periodically monitoring a measure of
performance (such as the CER) on both the training and validation sets during
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optimization, and stopping training when the training set performance continues
to improve but the validation set performance starts to worsen.

Finally, batch normalization [Ioffe and Szegedy, 2015] is a recent technique
which was introduced to improve the speed of gradient-based training of FNNs,
but also acts as very effective regularization method in practice. Unlike the
above two methods, this technique has not been widely adopted for preventing
overfitting in RNNs.

2.4.3 Backpropagation

Backpropagation (often referred to as backprop) is the most common method of
assigning credit in NNs. It is an algorithm for efficiently computing derivatives
of the outputs of a network with respect to its parameters. While earlier work
had already used the algorithm for efficient computation of derivatives in NN-like
functions [Linnainmaa, 1970; Dreyfus, 1973], it was the work of Werbos [1974,
1981] that first developed NN-specific backprop2. Interestingly, mirroring the con-
text surrounding the first discussions of the credit assignment problem, backprop
was also brought to NNs with the goal of training sequential decision making
systems [Werbos, 2006]. Rumelhart et al. [1986] popularized backpropagation
in the context of learning pattern recognizers by demonstrated that useful inter-
nal representations emerged in NNs with hidden layers trained with the help of
backprop. It was soon generalized for the case of RNNs [Robinson and Fallside,
1987; Werbos, 1988; Williams and Zipser, 1989]. Thus, backprop can be used to
address both the structural and temporal credit assignment problems.

The procedure of applying backprop to compute derivatives of a network’s
parameters is called a backward pass, since it involves going through the layers in
the reverse order of the forward pass. During the backward pass, the derivatives
with respect to each of the layer’s activations and parameters are computed with
the help of activation values stored during the forward pass, and intermediate
derivatives computed so far. This is the key feature of backprop – the complexity
of the backward pass is the same as that of the forward pass.

The backward pass for the MLP described by Equation 2.5 proceeds as follows.
First we define a useful quantity δ` for the layer `, called the deltas for the layer:

δ` :=
∂ ŷL

∂ z`
(2.10)

The objective is to compute { ∂ ŷL
∂W`

, ∂ ŷL
∂ b`
},` ∈ {1,2, . . . , L}. This can be done by

2Schmidhuber [2015] and Griewank [2014] provide further details of backprop’s developments.
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starting at layer L and then using the following equations at each previous layer:

δL = f ′(zL), (2.11a)

δ` =W>
`+1δ`+1· f ′(z`), (2.11b)

∂ ŷL

∂W`

= δ`x
>
`

, (2.11c)

∂ ŷL

∂ b`
= δ`. (2.11d)

These equations can be used to compute the gradient of any loss function L
of the network’s output with respect to its parameters using the chain rule:

∂ L
∂W`

=
∂ L
∂ ŷL

∂ ŷL

∂W`

(2.12a)

∂ L
∂ b`

=
∂ L
∂ ŷL

∂ ŷL

∂ b`
(2.12b)

(2.12c)

As long as the first term in the above products can be computed (simple if L
is differentiable) or estimated, the second term can be computed using backprop.

When backprop is used for computing gradients for RNNs, it is termed Back-
propagation Through Time (BPTT) [Werbos, 1990]. The main idea of the proce-
dure is to unroll the RNN: converting an RNN processing a sequence of T time
steps into an FNN with T layers, where the same set of parameters are shared by
all the layers. This is intuitively based on the similarity between Equation 2.6 for a
simple RNN and Equation 2.5 for the MLP. The RNN equations can be transformed
(unrolled) into the MLP equations by replacing time indices with layer indices,
and adding a time-varying input at each layer in additional to the output of the
previous layer. After unrolling, backprop as usual can be applied for efficient
computation of gradients with respect to the RNN parameters with the same time
complexity as the forward pass.

2.4.4 Gradient Descent

The simplest algorithm for optimizing an objective function when the gradient
with respect to its parameters can be computed is gradient descent. It is an
iterative algorithm, which at the nth iteration uses the gradient to apply an
additive parameter update
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∆θ(n) = −α
∂ L
∂θ(n)

(2.13)

∆θ(n+ 1) = θ(n) +∆θ(n) (2.14)

The learning rate α is a hyperparameter. Similar to other hyperparameters
such as the topology of the network, the regularization weight etc., its value is
typically selected from a set of values based on validation set performance.

It is well known that always changing parameters in the exact direction of
steepest descent can be harmful, since the learning rate should be adapted dif-
ferently for different parameters [Sutton, 1986]. It is common to use modified
versions of gradient descent due to this reason. The most common variant incor-
porates momentum [Polyak, 1964; Nesterov, 1983] which changes the parameter
updates to

∆θ(n) = η∆θ(n− 1)−α
∂ L
∂θ(n)

(2.15)

where η is a hyperparameter. Momentum makes it easier for the optimization
algorithm to avoid getting stuck due to local minima and other tricky properties
of the objective function [Sutton, 1986; Rumelhart et al., 1986; Plaut et al., 1987;
Jacobs, 1988].

A final modification to gradient descent which makes it practical for training
on large training sets is the use of small subsets of the training set (called batches
or minibatches) to compute approximate gradients, instead of the full gradient
computed for the entire training set. Weights are updated after forward and
backward passes for each batch, instead of waiting for the entire training set to be
processed which might require prohibitive amounts of time and memory. When
each batch consists of only one training pair, the resulting algorithm is called
stochastic gradient descent. Although many other variations of gradient descent
exist (see subsection 3.1.2 for some alternatives) batch gradient descent with
momentum is used for all the experiments in this thesis. It is simple, easy to
implement, works well in practice, and the choice ensures that improvements
obtained in training with the proposed architectures are not due to use of a special
optimization method.

Having discussed the central ideas for setting up and training NNs for super-
vised learning, in the next chapter we discuss the issues arising in following these
concepts and trying to apply NN-based learning methods to problems in prac-
tice. This discussion will set up the stage for novel NN architectures introduced
Chapter 4 onwards that are designed to address these issues.



Chapter 3

Challenges & Related Work

Based on the tools discussed in the previous chapter, the recipe for attacking a
given problem using NNs is as follows: First, design an NN that is expected to
have sufficient representational power for the task. Then choose an appropriate
objective function based on a learning strategy (such as MLE) and techniques to
prevent overfitting. Finally, select and run an optimization algorithm to train the
network.1

Unfortunately, for a large number of problems the above procedure does not
result in a network that performs acceptably well on the test set. Assuming that
the amount of data available is sufficient and the objective function is appropriate
for the task, the reasons for failure can be broadly categorized into the following
issues:

a) Trainability gap: The optimization algorithm fails to sufficiently minimize
the objective function on the training set (in terms of desired performance
or available time budget), even though the NN is in principle capable of
learning the task very accurately (a type of underfitting).

b) Generalization gap: The network obtained as a result of training performs
much worse on the test set (unseen data) than the training set (overfitting).

This chapter provides a discussion of these issues, and reviews important
techniques from the literature that have been proposed to address them. Since
the methods developed in this thesis are primarily motivated by the trainability
gap, this issue is discussed in more detail. In particular, the problems arising
from making NNs very deep are discussed, since as discussed earlier, depth is

1Due to the involvement of several hyperparameters in these steps, it is usually necessary to
run several trials and choose the best performing hyperparameter values.
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an important characteristic that makes them capable of modeling extremely
complicated functions.

3.1 The Trainability Gap

In general training NNs is computationally intractable, i.e., there exist no efficient
algorithms for training an arbitrary network on a arbitrary problem [Blum and
Rivest, 1989; Judd, 1990; Hammer and Villmann, 2003]. There has been much
research into understanding under which constraints the training of certain classes
of NNs may be tractable [Anthony and Bartlett, 2009], but this quest is further
complicated by the fact that a theoretical understanding and categorization of
many practical problems of interest is missing. In practice, since there exists an
efficient algorithm for computing gradients for arbitrary differentiable networks
(backpropagation), most popular optimization algorithms for NNs are gradient-
based, such as variants of steepest descent.

The ability to compute gradients efficiently is not a panacea. The objective
function landscape for NNs is non-convex, with multiple local minima, saddle
points and other characteristics that make optimization using gradient based
methods tricky [Bishop, 1995]. These difficulties have motivated the development
of a variety of techniques to improve and speed up the training of NNs which
are discussed in this section. In the following chapters, new architectures are
developed to specifically address two key issues that hamper credit assignment
in NNs: cross-pattern interference (subsection 3.1.1) and vanishing gradients
(subsection 3.1.5).

3.1.1 Cross-pattern Interference & Competitive Learning

Cross-pattern interference [Sutton, 1986] arises naturally in gradient-based train-
ing of NNs when several units in the network simultaneously try to learn useful
computations for a varied set of input patterns. This can make learning inefficient,
since the weights of the units oscillate due to conflicting information coming
from different patterns presented to the network over time, and these oscillations
increase the total time required for the weights to converge.

A consequence of cross-pattern interference is catastrophic forgetting [Mc-
Closkey and Cohen, 1989; Carpenter and Grossberg, 1988], which is a funda-
mental obstacle for the use of NN in continual learning systems [Ring, 1994].
In this setting, which is much more general than the supervised learning setting
considered here, a machine’s goal is to continually improve its behavior over a
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single lifetime through interactions with its environement. Since the distribution
of input patterns that the machine observes can change significantly over time,
useful computations learned by an NN at earlier times get completely disrupted by
new information, meaning that the machine can not profit from past experiences.

Competitive Learning

Competitive interactions between units and neural circuits have long played an
important role in biological models of brain processes. The effects of excitatory
and inhibitory feedback found in many regions in the brain [Eccles et al., 1967;
Anderson et al., 1969; Stefanis, 1969]were modeled with competitive interactions
in several early models inspired by the brain’s information processing mecha-
nisms [von der Malsburg, 1973; Grossberg, 1976; Fukushima, 1980a; Kohonen,
1982]. These demonstrations of successfully combining competitive interactions
with simple Hebbian-like [Hebb, 1949] learning rules inspired further work by
Rumelhart and Zipser [1985] for feature learning, and by Schmidhuber [1989]
who used them in RNNs. However, these and several following developments of
competitive learning since the 1990s [Ahalt et al., 1990; Goodhill and Barrow,
1994; Terman and Wang, 1995; Wang, 1997] did not use gradient-based training.

The work of Jacobs et al. [1991a,b] was the first to leverage the properties of
competitive interactions for the purpose of mitigating cross-pattern interference.
They proposed to generalize competitive learning from the level of computational
units to networks by employing a modular NN architecture. The architecture
consisted of two types of networks, several expert networks and a gating network.
The output of the gating network was used to combine the outputs of the experts
to produce the final network output. This explicit modularity of the architecture
enabled it to avoid cross-pattern interference by allocating different input patterns
to different experts. Related architectures were also developed by Pollack [1987]
and Hampshire and Waibel [1992].

3.1.2 Step Size Adaptation

A common difficulty arising in NN optimization is that it may not be the best to
always follow the exact steepest descent direction. This is due to the presence
of structures like valleys and ravines in the landscape [Sutton, 1986; Jacobs,
1988; Qian, 1999] which require the use of different step sizes along different
dimensions. This can be achieved with momentum – a widely employed technique
to accelerate gradient descent [Polyak, 1964; Nesterov, 1983] that was brought
to NNs in the 1980s [Rumelhart et al., 1986; Plaut et al., 1987; Jacobs, 1988].
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Another principled way to address the same issue is to use the inverse of the
Hessian of the objective function to set the step sizes (i.e., Newton’s method),
and incorporating information about the curvature of the function in addition to
the gradient. Since this operation is computationally too demanding for all but
the smallest networks, many researchers have proposed methods to compute and
use approximations of the Hessian [Sutton, 1986; Becker and LeCun, 1988; Roux
et al., 2008; Martens, 2010, 2014; Grosse and Salakhudinov, 2015].

Instead of computing the Hessian of the objective function for use with second
order methods, another approach to speed up NN training is to still employ first
order gradient descent algorithms but use certain “tricks” to encourage favorable
properties of the Hessian. These tricks are choices regarding the network design,
initialization and data preprocessing. For convex optimization, the convergence
rate of gradient descent methods near the optimum is heavily influenced by the
Hessian, in particular by its condition number – the ratio of its largest and smallest
eigenvalues – which should be close to unity for fast convergence. Some tricks for
NN training that minimize the spread of eigenvalues are centering, normalizing
and decorrelating the inputs [LeCun et al., 1998], using a scaled tanh activation
function instead of the logistic sigmoid [LeCun et al., 1991; Kalman and Kwasny,
1992], and careful initialization of the weights [LeCun et al., 1998; Glorot and
Bengio, 2010; He et al., 2015].

A related set of techniques attempt to make the non-diagonal terms of the
Hessian as close to zero as possible [Schraudolph, 1998a; Raiko et al., 2012;
Desjardins et al., 2015; Ioffe and Szegedy, 2015; Salimans and Kingma, 2016].
Doing so makes first order methods perform better since only the diagonal terms
(one term corresponding to each dimension) need to be approximated. This can
be accomplished with the help of variants of gradient descent which automatically
adapt the step sizes per dimension. Popular choices include AdaGrad [Duchi
et al., 2011], AdaDelta [Zeiler, 2012], RMSProp [Tieleman and Hinton, 2012]
and Adam [Kingma and Ba, 2014].

3.1.3 Initialization Strategies

The initial values of a network’s weights have a direct impact on the success of
optimization. One reason for this is that many activation functions are designed to
saturate for large magnitude inputs, so that the unit outputs are always bounded.
Saturation refers to the fact that the output of the activation function changes
negligibly as the input changes i.e. its gradient becomes almost zero. For example,
for the tanh and hyperbolic sigmoid functions, large values of both positive
and negative net input leads to saturation, which will impede gradient flow
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during the backward pass (subsection 2.4.3). In general, having too large or
too small weights can severely attenuate signals (activations during forward
pass, gradients during backward pass) as they propagate through a network.
In conjunction with input data normalization [LeCun et al., 1991], normalized
weight initialization techniques [LeCun et al., 1998; Glorot and Bengio, 2010;
He et al., 2015] mentioned above are designed to make sure that the variance of
the signals remains constant and close to one over the layers of the network. Of
course, initialization can only guarantee favorable properties at the beginning of
training, but practitioners have found that this is sufficient to enable successful
training of small to medium-sized networks.

3.1.4 Activation Functions

In recent years, non-saturating activation functions have become popular, starting
with the Rectified Linear (ReL) [Jarrett et al., 2009; Nair and Hinton, 2010; Glorot
et al., 2011] function defined as y = max(0, x). Clearly this function does not
saturate for positive inputs, and is therefore less likely to contribute to diminishing
gradients during backpropagation. Moreover, while a complete theoretical under-
standing of this phenomenon is currently lacking, it has been found that if the
network weights are initialized according to normalization techniques mentioned
above, the saturation behavior of ReL for negative inputs does not impede training
if the network depth is not large. Following the popularity of ReL in applications,
its variants that do not saturate for negative inputs either have also been tried
[Maas et al., 2013; He et al., 2015] with mixed success.

In addition to preventing saturation, the activation function also affects opti-
mization through its effect on the properties of the Hessian. The ReL function
causes a bias shift at each layer because its output is always non-negative. Expo-
nential Linear Units [Clevert et al., 2015] use a modification of ReL that addresses
this issue and pushes the mean activations at each layer closer to zero, which
improves the conditioning of the Hessian. Recent work has further built upon this
to develop self-normalizing networks [Klambauer et al., 2017] which preserve the
mean and variance of signals during forward and backward propagation without
requiring explicit normalization techniques.

3.1.5 The Challenges of Depth

The above issues contributing to the trainability gap are common to all NNs, but
there is a specific challenge that fundamentally affects the trainability of powerful
and efficient networks – gradient based training becomes increasingly infeasible
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as the depth of the credit assignment problem increases. It was first analyzed in
the context of temporal credit assignment in RNNs [Hochreiter, 1991], and here
we briefly review this analysis breifly.

Consider the simple RNN described in Equation 2.6. Ignoring the bias and
inputs for clarity, the output of the RNN at time t is ŷ[t] = f (Rŷ[t−1]). Then the

temporal Jacobian At := ∂ ŷ[t]

∂ ŷ[t−1] is

At = diag
�

f ′(Rŷ[t−1])
�

R. (3.1)

Let γ be a maximal bound on f ′ and σmax be the largest singular value of R.
Then the norm of the temporal Jacobian satisfies

‖At‖ ≤


diag
�

f ′(Rŷ[t−1])
�

 ‖R‖ ≤ γσmax (3.2)

As discussed in subsection 2.4.3, to compute the delayed temporal Jacobian of
the output ŷ[t2] with respect to ŷ[t1] where t2 > t1, we can use the chain rule and
obtain

∂ ŷ[t2]

∂ ŷ[t1]
:=

∏

t1<t≤t2

At (3.3)

Based on the above, the norm of the delayed temporal Jacobian is upper-
bounded by (γσmax)t2−t1 implying that if the product γσmax is less than one,
the delayed Jacobian’s norm becomes exponentially smaller as the time delay
increases. Similarly, it can be shown that if the spectral radius ρ of At is large
enough, the norm of the delayed Jacobian can grow exponentially. Note that
γ= 1 for tanh and γ= 0.25 for the logistic sigmoid, so the necessary condition
for the gradients to explode for these cases is ρ > 1 and ρ > 4.

The phenomena of the temporal gradients becoming exponentially small
or large as the time delay increases are referred to as vanishing and exploding
gradients respectively [Hochreiter, 1991; Bengio et al., 1994; Hochreiter et al.,
2001; Pascanu et al., 2013b]. They are fundamental hindrances for successful
training of RNNs as they imply that an RNN’s outputs at future time steps quickly
become either insensitive or too sensitive to the outputs at past time steps.

The same analysis applies to FNNs with slight modifications. As discussed in
subsection 2.4.3, an RNN when “unrolled in time” for T time steps is mathemati-
cally equivalent to an FNN with T layers. Due to this equivalence, vanishing and
exploding gradients also hamper learning in very deep FNNs, where the adjective
“very deep” refers FNNs with a depth of approximately 20 or more. The two main
differences are: a) the RNN has inputs at each time step while the FNN has inputs
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only at the first layer, and b) the RNN uses the same recurrent weights R at each
time step to transform the outputs of the last step, while the FNN uses weights W`

for the `th layer. Experimentally it has been observed that traditional FNNs with
depth up to 20 layers can be optimized successfully if certain tricks are employed
(see e.g. Simonyan and Zisserman [2014], and experiments in subsection 6.3.2),
but training traditional NNs beyond this depth has remained impractical.

There is a common misconception that vanishing gradients are only (or mostly)
caused by the saturation of the activation functions. The above analysis clearly
shows that this is incorrect – even for a fully linear network (i.e. f (x) = x; f ′(x) =
1∀x ∈ R) vanishing or exploding gradients will result based on the value of σmax

(Equations 3.2 & 3.3). However, in principle the interaction between the weight
magnitudes and properties of the activation function can gaurd against vanishing
gradients, as shown recently by Klambauer et al. [2017].

3.1.6 Techniques for Training Very Deep Networks

The techniques discussed in subsection 3.1.2 and subsection 3.1.3 are useful, and
often essential, for training FNNs with depth up to 20 layers and RNNs that need
to model temporal dependencies of similar lengths. In this section we discuss
two lines of research specifically targeted at developing NN architectures that are
more resilient to the pathologies resulting from large depth.

LSTM Vanishing and exploding gradients in NNs are fundamentally a conse-
quence of their design, specifically the functional form of the transformation that
maps inputs to outputs. To specifically combat vanishing gradients, Hochreiter
and Schmidhuber [1997b] proposed a radical RNN design – Long Short-Term
Memory (LSTM) that can assign credit across hundreds of time steps. The key
design elements were the use of

a) a memory cell within each unit which has a recurrent self-connection with a
constant weight equal to one.

b) additional units with weighted recurrent connections that control (or gate)
the flow of information into and out of the cell.

Since the recurrent connections of the memory cell always have a weight of one,
it can maintain constant error flow without attenuation during backpropagation
through time. In fact, this mechanism is so successful at maintaining memory of
past events that Gers et al. [2000] later added a forget gate unit whose output
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is multiplied with the cell’s recurrent connection, enabled the memory to be
reset by producing forget gate outputs close to zero, which is necessary for many
sequential tasks. LSTMs with forget gates are now the most commonly used RNN
architecture for problem involving learning from sequential data. For a detailed
description of the various LSTM variants and their comparison, see the survey by
Greff et al. [2017a].2

Skip connections Skip connections modify MLPs by adding direct weighted
connections from lower layer (with lower layer indices `) to higher layers. This
is an intuitive way to improve gradient flow since such connections introduce
shorter credit assignment paths in the network along which gradients can flow
and support learning in the lower layers.

Skip connections for NNs have a long and winding history of development. It
was clearly well known in the 1980s that the class of NNs that could be trained
with backpropagation included those with skip connections [Rumelhart et al.,
1986] but standard MLPs did not include them. A prominent exception is the work
of Lang and Witbrock [1988] who used weighted connections from each layer to
all higher layers in their experiments. They called the extra connections short-cut
connections. This early work was also pioneering in that the motivation to use
skip connections was to successfully train deeper networks for a difficult problem,
although the vanishing gradient problem had not been formally identified yet by
[Hochreiter, 1991].

The Cascade-Correlation architecture [Fahlman and Lebiere, 1990] was a
way of incrementally adding computation units to an NN during supervised
training. Since each added unit received connections from all existing units,
this architecture naturally resulted in very deep networks with skip connections.
However, weights of existing units were typically frozen, so the purpose of skip
connections was not to improve credit assignment.

Lee and Holt [1992] connected inputs directly to the output of the network
in their Direct Linear Feedthrough networks. Their motivation was to separate
the learning of linear and non-linear contributions to speed-up learning and
improve understanding of the non-linearity in the data. Kalman et al. [1993];
Kalman and Kwasny [1994] used similar connections and motivations in their
TRAINREC system, referring to them as both “skip” and “shortcut” connections.
Schraudolph [1998b,a] analyzed learning in such networks and found that the
skip connections can in fact slow down learning. He then proposed a centering
method for backpropagated gradients to ensure benefits from skip connections.

2This survery was co-authored by the author of this thesis.
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Van Der Smagt and Hirzinger [1998] also advocated for skip connections to speed
up training, but proposed to use the same weights for linear skip connections
as the non-linear weights. The use of skip connections to speed up training by
separately learning the linear and non-linear parts of the function was revisited by
Raiko et al. [2012]. Instead of centering the gradient explicitly like Schraudolph
[1998b], they proposed to transform the non-linear functions used by the units.

The skip connections in the work mentioned above are mathematically the
same as all other connections in the networks. The only difference lies in their
inputs and outputs, as they change the connectivity of the network such that it is
no longer linear graph i.e. an MLP. Novel architectures developed in this thesis
(Chapter 6 onwards) also use skip connections, but they are of a different nature
– more similar to those used by memory cells in the LSTM architecture.

Layer-wise training In contrast to the Cascade-Correlation Architecture, incre-
mental layer-wise training without skip connections to improve credit assignment
was developed by Schmidhuber [1992] for RNNs and by Hinton et al. [2006];
Hinton and Salakhutdinov [2006] for FNNs. Note that in contrast to the Cascade-
Correlation architecture, these techniques were developed in the context pf unsu-
pervised training of NNs to learn the regularities in a dataset for the purposes of
compression or dimensionality reductions.

3.2 The Generalization Gap

The generalization gap exists for most model classes in machine learning, and
NNs are no exception. Due to their high capacity for representing complicated
functions, they are prone to overfitting [Vapnik, 2013; Bishop, 2006] to the
training set essentially by memorizing the training data. Most well-defined
measures of model complexity developed in statistical learning theory such as VC
dimension [Vapnik, 2013] and Rademacher complexity [Bartlett and Mendelson,
2002] can not be directly applied to NNs, but there have been partially successful
attempts to define such measures for specific network types [Bartlett, 1998;
Neyshabur et al., 2015]. In practice, regularization techniques such as those
mentioned in subsection 2.4.2 are almost always used during network training to
aid in closing the generalization gap.

The techniques that aid in training NNs also have additional properties that
affect generalization. This is because the geometry of the objective function
around the local minimum reached by the optimization algorithm is related to
the generalization ability of the network [Hochreiter and Schmidhuber, 1997a].
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If an optimization algorithm naturally prefers flat minima, it is likely to produce
solutions that generalize better. An example is the technique of Batch normal-
ization [Ioffe and Szegedy, 2015], which was designed to normalize the outputs
of each layer of a network to accelerate training, but also results in extremely
effective regularization due to the stochasticity in the normalization procedure
performed using batches sampled for training.

An important consideration in the context of generalization abilities of NNs is
the role of architecture. For example, it is well known that CNNs are much more
suitable for image analysis problems compared to simple fully-connected MLPs.
Although MLPs are perfectly capable of matching the training set performance
of CNNs, they do not generalize well to test data. The reason for this is that the
inductive bias [Mitchell, 1980] of the CNN is more suitable for spatial signals
such as images, i.e., the CNN is implicitly encouraged by design to implement
the “correct” function for processing images. Of course, the implicitly “correct”
functions are chosen by a scientist based on the properties of the domain, and
these choices may not be theoretically optimal. Other architectural choices that
together build up an NN such as connectivity, activation function, etc., are also
similarly connected to generalization performance. They act as priors over the
nature of functions/programs that are being modeled, and choosing the right
prior implies that the underlying function can be learned using much less data.
Thus, there is an interesting connection between the modeling capacity of deeper
networks (as discussed in section 2.3 and their generalization that is relevant
to this thesis. It has been noted by Bengio et al. [2013] that increasing depth is
not only a way to increase the modeling capacity, but can also lead to improved
generalization, since deeper NNs can model certain function classes significantly
more efficiently than shallower ones.

It is notable that this interplay between architectural choices, speed of learning
and generalization reflects the relationship between the two general approaches
of programming computers discussed in Chapter 1. Expert knowledge may not
be sufficient to write down the complete algorithmic solution to a problem, but it
can still speed up (or slow down!) search in the space of solutions. Hence it is
useful to identify and analyze a variety of feasible choices for the various building
blocks of NNs, so that they can be employed when suitable for a given problem.



Chapter 4

Local Winner-Take-All Networks

Consider a layer of units in an MLP being trained to classify input patterns as
being of one of the ten Arabic digits (0–9). The units are expected to learn to
identify certain features in the inputs which are indicative of the digit’s identity,
such as edges oriented at various angles. Assume that the dataset is very simple,
such that identifying horizontal and vertical edges would be sufficient to classify
the data correctly. When the network is not completely trained, it is likely that
many units respond to edges but do not have very high responses to these orien-
tations. Instead, there are several units that respond to edges with intermediate
orientations. Backpropagation will then assign some credit to all of these units,
and they will all be slowly adjusted towards one of the desired directions at each
learning step until the objective function is minimized.

The above problem of cross-pattern interference, as discussed in subsec-
tion 3.1.1, can potentially lead to inefficiencies during learning. The credit
assignment is diffused among several units since any number of them may be
learning the same feature. For an input pattern that only requires high response
to horizontal edges, it would be helpful to assign the credit to a single unit that
responds to horizontal edges. This would leave other units free to learn useful
features required for other input patterns when they are presented next, such as
vertical edges.

Competitive learning is a mechanism that was popular for supporting credit
assignment in NNs before backprop became widely popular and offers a nat-
ural way to avoid cross-pattern interference, as discussed in subsection 3.1.1.
In this chapter, we propose an architecture for gradient-based artificial neural
networks that takes inspiration from early competitive learning approaches, and
ultimately relies on Local Winner-Take-All (LWTA) behavior. In supervised learn-
ing experiments across a number of different networks and pattern recognition

29
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Figure 4.1. A fully-connection Local Winner-Take-All (LWTA) network with blocks
of size two showing the winning unit in each block (shaded) for a given input
pattern. Activations flow forward only through the winning units. Similarly, errors
are backpropagated only through the winning units. Grey-ed out connections
do not propagate activations. The active units constitute a subnetwork which
changes depending on the input pattern.

tasks, LWTA speeds up learning and enables test performance that matches the
state-of-the-art. Experiments show evidence that a type of modularity emerges
in LWTA networks trained in a supervised setting, such that different modules
(subnetworks) respond to different input patterns. LWTA also helps to prevent
catastrophic forgetting [McCloskey and Cohen, 1989; Carpenter and Grossberg,
1988] in NNs when they are first trained on a particular task, then abruptly trained
on a new task. This property is desirable in continual learning wherein learning
regimes are not clearly delineated [Ring, 1994].

4.1 Networks with Local Winner-Take-All Blocks

This section describes a general network architecture with locally competing units.
The network consists of a number of blocks organized into layers (Figure 4.1).
Each block consists of n computational units, and produces an output vector y,
determined by the local interactions between the individual neuron activations in
the block:

y= g(h), (4.1)
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where g(·) is a competition or interaction function, encoding the effect of local
interactions in each block, and h, is the vector of activations of the units in the
block computed in the standard way by:

h= f (Wx+ b), (4.2)

where x is the input vector from units in the previous layer, W is the matrix of
weights connecting the units in the previous layer to the units of the block, and
f is the (generally non-linear) activation function. The output activations y are
passed as inputs to the next layer. We define the interaction function g to be the
hard Winner-Take-All (WTA) function such that the output of the jth unit in the
block is set to:

y[ j] =

¨

h[ j] if h[ j]≥ h[k], k ∈ {1, . . . , n}
0 otherwise.

(4.3)

In the case of ties the winner is chosen by index precedence, so in an LWTA
layer, there are as many units as there are blocks active at any one time for a given
input pattern1. We denote a layer with blocks of size n as LWTA-n. To investigate
the capabilities of the hard winner-take-all interaction function in isolation, the
identity function is used as the activation function in Equation 4.2.

The difference between this Local Winner Take All (LWTA) network and a
standard MLP is that no non-linear activation functions are used, and during the
forward propagation of inputs, local competition between the units in each block
“turns off” the activation of all units except the one with the highest activation.
Therefore, LWTA can be interpreted as an activation function – but one that is
not an unit-wise operation. For gradient computation, the error signal is only
backpropagated through the winning units.

For each input pattern presented to an LWTA network, only a subgraph of
the full network (a subnetwork) is active, e.g. the highlighted units and synapses
in Figure 4.1. Training on a dataset consists of simultaneously training an ex-
ponential number of subnetworks that share parameters, as well as learning
which subnetwork should be active for each pattern. In this way, input patterns
consisting of very different sets of features can potentially be modeled more
efficiently through specialization of units. This modular property is similar to
that of networks with rectified linear (ReL units which were recently shown to be
effective for several learning tasks [Krizhevsky et al., 2012; Maas et al., 2013].
Links between LWTA and ReL are discussed in subsection 4.2.3.

1There is always the possibility that the winning neuron in a block has an activation of exactly
zero, so that the block has no output.
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Figure 4.2. Max-pooling/maxout vs. LWTA. (a) In max-pooling and maxout, each
group of units in a layer has a single set of output weights that transmits the
winning unit’s activation (0.8 in this case) to the next layer, i.e. the layer outputs
are subsampled. (b) In an LWTA block, the interaction function does not lead
to subsampling. Output activations of the winning units flow into units in the
subsequent layer via a different set of connections depending on the winning
unit.

4.2 Comparison with Related Methods

Certain techniques already used with NNs have similarities with how LWTA
is implemented and how it affects the activations in a network. This section
compares and contrasts LWTA with these techniques to clarify its nature.

4.2.1 Max-pooling & Maxout

Neural networks with max-pooling layers [Zhou and Chellappa, 1988; Weng et al.,
1992] have been found to be very effective for image classification tasks where
they achieved state-of-the-art performance [Krizhevsky et al., 2012; Ciresan et al.,
2012]. These layers are used in CNNs to subsample the representation obtained
after convolving the input with learned weights, by dividing the representation
into pools and selecting the maximum in each one. Max-pooling lowers the
computational burden by reducing the number of connections in subsequent con-
volutional layers, and adds small translational/rotational invariance [Goodfellow
et al., 2016].

Maxout [Goodfellow et al., 2013a] is a recently proposed architecture2 for
FNNs that pools together the activity of subsets of units using the max operation.

2The original study on Maxout was published a few months before LWTA.
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It was designed to take advantage of training with dropout regularization [Hinton
et al., 2012b] and produced the best results on several benchmark datasets.
The difference between the two is that maxout outputs the maximum activity
of independent units, while max-pooling outputs the maximum over a spatial
representation produced by a single unit.

At first glance these operators seem very similar to LWTA, but there is a key
difference: there is no pooling in an LWTA block and thus the representation
dimension remains unchanged, instead the representation is “sparsified” (see
Figure 4.2).

4.2.2 Dropout

Dropout [Hinton et al., 2012b] can be interpreted as a model-averaging technique
that jointly trains several models sharing subsets of parameters and input dimen-
sions, or as data augmentation when applied to the input layer [Hinton et al.,
2012b; Goodfellow et al., 2013a]. This is achieved by probabilistically omitting
(“dropping”) units from a network for each example during training, so that those
units do not participate in forward/backward propagation. Consider, hypotheti-
cally, training an LWTA network with blocks of size two, and selecting the winner
in each block at random. This appears similar to training a neural network with a
dropout probability of 0.5 since such dropout also turns off half of the units in
the layer during the forward pass for each training example. Nonetheless, the
two are fundamentally different.

Dropout is a probabilistic regularization technique that affects each unit inde-
pendently while in LWTA the deterministic interaction between units in a block
replaces the per-neuron non-linear activation. Like any regularization technique,
dropout is not used when evaluating a trained network’s performance on the test
set. When performing the forward pass through a network during testing, the
output weights from all units in a layer trained with dropout are scaled down to
compensate for the fact that removal of dropout makes more units active [Hinton
et al., 2012b]. In an LWTA network, there is no difference in operation between
training and test times, and no output scaling is required. In fact, Dropout can be
used in LWTA networks to insert noise in the local competition between units and
improve generalization performance.

4.2.3 Rectified Linear Units

Rectified Linear (ReL) units are simply linear units that clamp negative activations
to zero ( f (x) = x if x > 0, f (x) = 0 otherwise). Networks with this activation
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Table 4.1. Comparison of rectified linear activation and LWTA.

ReLU units LWTA units
x1 x2 y1 y2 y1 y2

x1 > x2

Positive Positive x1 x2 x1 0
Positive Negative x1 0 x1 0
Negative Negative 0 0 x1 0

x2 > x1

Positive Positive x1 x2 0 x2

Negative Positive 0 x2 0 x2

Negative Negative 0 0 0 x2

function were shown to be useful for Restricted Boltzmann Machines [Nair and
Hinton, 2010], outperformed sigmoidal activation functions in deep neural net-
works [Glorot et al., 2011], and have been used to obtain the best results on
several benchmark problems across multiple domains [Krizhevsky et al., 2012;
Dahl et al., 2013; Maas et al., 2013].

Compare an LWTA block with two units to two ReL units, where x1 and x2

are the weighted sum of the inputs to each unit. Table 4.1 shows the outputs y1

and y2 for all combinations of positive and negative x1 and x2. For both ReL and
LWTA units, x1 and x2 are passed through as output in half of the possible cases.
The difference is that in LWTA both units are never active or inactive at the same
time, and the activations and errors flow always through exactly one neuron in
the block. For ReL units, being inactive (saturation) is a potential drawback since
units that do not get activated for any input patterns will not get trained, leading
to wasted capacity.

While many of the above arguments for and against ReLU networks apply to
LWTA networks, there is an important notable difference. During training of an
LWTA network, units that are inactive for all patterns can become active (and get
trained further) due to training of the other units in the same block. This suggests
that LWTA networks are less likely to suffer from reduced network capacity due
to degenerate units that become completely inactive for all data.

4.3 Experiments

In the following experiments, LWTA networks were tested on various supervised
learning datasets, demonstrating their ability to learn useful internal representa-
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Table 4.2. Test set errors on the permutation invariant MNIST dataset for methods
without data augmentation or unsupervised pre-training

Activation Test Error

Sigmoid [Simard et al., 2003] 1.60%
ReLU [Glorot et al., 2011] 1.43%
ReLU + dropout in hidden layers [Hinton et al., 2012b] 1.30%
LWTA-2 1.28%

tions without utilizing any other non-linearities.

In order to clearly assess the utility of local competition, no other strategies
such as augmenting training data with transformations, noise or dropout were
used. We also did not encourage sparse representations in the hidden layers by
adding activation penalties to the objective function, a technique used by Glorot
et al. [2011] for ReL units. Thus, our objective was to evaluate the utility of
using LWTA in NNs rather than achieving the absolute best testing scores. This
is also why the comparisons below only include published results of NN-based
approaches.

All networks used in this chapter contained 2 units per block, and were trained
using minibatch gradient descent, learning rate αt and momentum mt at epoch t
given by

αt =

¨

α0λ
t if αt > αmin

αmin otherwise

mt =

¨

t
T mi + (1−

t
T )m f if t < T

p f if t ≥ T

where λ is a learning rate annealing factor, αmin is the lower learning rate limit,
and momentum is scaled from mi to m f over T epochs after which it remains
constant at m f . L2 weight decay was used for the CNN experiments, and max-
norm regularization3 for other experiments. This setup is based on that of Hinton
et al. [2012b]. All experiments were conducted using an Nvidia GTX 580 GPU.4
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4.3.1 Permutation Invariant MNIST

We first evaluate LWTA networks in the permutation invariant setting on the
MNIST dataset (PI-MNIST; LeCun et al., 1998) of images of handwritten digits.
In this setting, the task is to classify the digits without utilizing the 2D structure
of the images, i.e. every input pattern is a vector of pixels.

The last 10,000 examples in the training set were used for tuning the hyper-
parameters (learning rate, momentum, regularization and network size) using a
small grid search. The network with the best hyperparameter setting was trained
until convergence on the full training set. Minibatches of size 20 were used during
training. The best model obtained, which gave a test set error of 1.28%, consisted
of three LWTA-2 layers of 500 blocks followed by a 10-way softmax layer. Table 4.2
compares our results with other comparable networks. The performance of LWTA
is comparable to that of a network whose units all use the ReL activation function
with dropout in the hidden layers, which in turn performs better than sigmoidal
networks. This is an encouraging result since it indicates that local competition
can be a viable alternative to conventional activation functions used in NNs. We
note again that performance on this task can be easily improved, for example by
using dropout in input layers as well [Hinton et al., 2012b; Goodfellow et al.,
2013a].

4.3.2 CNNs on MNIST

In this experiment on the MNIST dataset, the compatibility of LWTA with CNNs
which are designed to exploit the spatial structure of images was tested. The
architecture used consisted of convolution units with a receptive field of 7× 7
pixels in the first layer and 6× 6 pixels in second layer, with 16 and 32 maps
respectively. These layers were followed by two fully-connected layers each with
64 LWTA blocks and finally a 10-way softmax output layer. Every convolutional
layer was followed by a 2× 2 max-pooling operation.

We tested two variants: one in which LWTA-2 was used was used only in
the two fully-connected layers (the convolutional layers used the ReL activation
function), and one in which all hidden layers used LWTA-2. L2 weight decay with
coefficient 0.05 was found to be beneficial to improve generalization. The results
are summarized in Table 4.3 along with other NN-based approaches that do not

3This technique sets a maximum limit on the norm of the incoming weights for all units. The
weights are rescaled whenever this limit is exceeded [Srebro et al., 2005].

4 To speed up experiments, the Gnumpy [Tieleman, 2010] and CUDAMat [Mnih, 2009] libraries
were used.
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Table 4.3. Test set errors on MNIST dataset for convolutional NNs with no data
augmentation. Results marked with an asterisk use layer-wise unsupervised
feature learning to pre-train the network and global fine tuning.

Architecture Test Error

2-layer CNN + 2 layer MLP [Ranzato et al., 2007] * 0.60%
2-layer ReLU CNN + 2-layer LWTA 0.57%
3-layer ReLU CNN [Zeiler et al., 2013] 0.55%
2-layer CNN + 2 layer MLP [Jarrett et al., 2009] * 0.53%
2-layer LWTA CNN + 2-layer LWTA MLP 0.53%
3-layer ReLU CNN + stochastic pooling [Zeiler and Fergus, 2013] 0.47%
3-layer maxout + dropout [Goodfellow et al., 2013a] 0.45%

use data augmentation. Networks with LWTA are again highly competitive with
other high-performing architectures. They are outperformed with the help of
special regularization techniques (stochastic pooling in Zeiler and Fergus [2013]
and dropout in Goodfellow et al. [2013a]). These results indicate that LWTA
is also a promising activation for CNNs which are widely used in a variety of
domains.

4.3.3 Amazon Sentiment Analysis

Next, LWTA networks were tested on the Amazon sentiment analysis dataset [Blitzer
et al., 2007], since the ReL activation was shown to perform well in this do-
main [Glorot et al., 2011]. We used the balanced subset of the dataset consisting
of 1000 positive and 1000 negative reviews of four categories of products: Books,
DVDs, Electronics and Kitchen appliances. The task is to classify the text reviews as
positive or negative. The text of each review was converted into a binary feature
vector encoding the presence or absence of unigrams and bigrams. Following Glo-
rot et al. [2011], the 5000 most frequent vocabulary entries were retained as
features for classification. The data was then divided into 10 equally balanced
folds, and networks were tested with cross-validation, yielding the mean test
error over all folds.

Glorot et al. [2011] reported an overall accuracy of 78.95% for the ReL
activation function on this dataset in the context of unsupervised learning with
auto-encoding NNs to obtain sparse feature representations which were then
used for classification. An LWTA-2 network with three 500-blocks layers was
trained in a fully supervised setting to directly classify each review as positive
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Figure 4.3. Analysis of subnetworks in trained LWTA networks. (a) Each entry
in the matrix denotes the fraction of units that a pair of MNIST digits has in
common, on average, in the subnetworks that are most active for each of the two
digit classes. (b) The fraction of units in common in the subnetworks of each of
the 55 possible digit pairs, before and after training.

or negative using a 2-way softmax output layer. This resulted in mean test set
accuracies of Books: 80%, DVDs: 81.05%, Electronics: 84.45% and Kitchen: 85.8%,
for an overall accuracy of 82.82%. This result demonstrates the utility of local
competition on a problem in a domain from previous experiments, where the
input data consists of preprocessed binary vectors instead of continuous pixel
values for images.

Together, these results provide strong evidence that LWTA networks can be
used to match or outperform networks with the ReL activation function, which at
the time of writing is widely used in applications. This finding warrants further
investigation into their properties, which we continue in the following sections.
Note that soon after the publication of the above results, Wang and JaJa [2014]
used LWTA to obtain further state of the art results on various benchmark problems
in object recognition.

4.4 Analysis of Subnetworks

A network with a single LWTA-m layer of N blocks consists of mN subnetworks
which can be selected and trained for individual input patterns while training
over a dataset. After training, we expect that the subnetworks consisting of active
units for patterns from the same class to have more units in common compared to
subnetworks being activated for different classes. In the case of relatively simple
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Table 4.4. Local competition guards against catastrophic forgetting: LWTA net-
works outperform logistic sigmoid and ReL activation functions in remembering
dataset P1 after training on dataset P2.

Testing error on P1 LWTA Sigmoid ReLU

After training on P1 1.55± 0.20% 1.38± 0.06% 1.30± 0.13%
After training on P2 6.12± 3.39% 57.84± 1.13% 16.63± 6.07%

datasets like MNIST, it is possible to examine this by recording the units that were
active in the layer for each pattern in a subset of 10,000 input patterns. For each
class, the subnetwork consisting of units active for at least 90% of the examples
was designated the representative mean subnetwork, which was then compared
to mean subnetworks for all other classes by counting the number of units in
common.

Figure 4.3a shows the fraction of units in common between the mean subnet-
works of each pair of digits. Digits that are morphologically similar such as “3”
and “8” have subnetworks with more units in common than the subnetworks for
digits “1” and “2” or “1” and “5” which are intuitively less similar. To verify that
this subnetwork specialization is a result of training, the fraction of common units
between all pairs of digits for the same 10,000 patterns both before and after
training were compared (Figure 4.3b). The figure shows that the subnetworks
were much more similar prior to training, and the network has learned to partition
its parameters to reflect the structure of the data.

4.5 Implicit Long Term Memory

This section examines the effect of the LWTA architecture on catastrophic forget-
ting [McCloskey and Cohen, 1989; Carpenter and Grossberg, 1988] to answer
the question: does the ability of LWTA networks to act as a collection of several
subnetworks allow it to retain information about dataset A, even after being
trained on a different dataset B? To test for this implicit long term memory, the
MNIST training and test sets were each divided into two parts, P1 containing only
digits {0, 1, 2, 3, 4}, and P2 consisting of the remaining digits {5, 6, 7, 8, 9}. Three
different network architectures were compared: (1) three LWTA-2 hidden layers
each with 500 blocks each, (2) three hidden layers each with 1000 units and the
logistic sigmoid activation, and (3) three hidden layers of 1000 units each with
the ReL activation. All networks had a 5-way softmax output layer representing
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the probability of an example belonging to each of the five classes. All networks
were initialized with the same parameters, and trained with a fixed learning rate
and momentum.

Each network was first trained to reach a negative log-likelihood of 0.03 on
the P1 training set. This value was chosen heuristically to indicate successful
training within reasonable time for all three network types. The weights for the
output layer (corresponding to the softmax classifier) were then stored, and the
network was trained further, starting with new randomly sampled output layer
weights, to reach the same negative log-likelihood on P2. Finally, the output layer
weights saved from P1 were restored, and the network was evaluated on the P1
test set. The experiment was repeated for 10 different initializations to account
for stochasticity in initialization and training.

Table 4.4 shows that the LWTA network remembers what was learned from P1
much better than sigmoid and ReL networks, though it is notable that the sigmoid
network performs much worse than both LWTA and ReL. Over multiple trials,
the test error values depended on the learning rate and momentum used, but
LWTA networks tended to remember better than the ReLU networks by about a
factor of two in most cases, and sigmoid networks always performed much worse.
Although standard network architectures are known to suffer from catastrophic
forgetting, these results show that ReL networks are in fact more robust than
sigmoidal networks, and moreover, they are outperformed by LWTA.

Note that [Goodfellow et al., 2014] have conducted further experiments in
different settings extending the study here, and reported that on certain task
pairs, the use of dropout regularization during training has a strong impact on
implicit long-term memory of FNNs.

4.6 Discussion

In this chapter, we demonstrated that it is possible to fore-go traditional unit-wise
activation functions in NNs and replace them with a form of local competition
among units – local winner-take-all (LWTA) interactions. Although such interac-
tions have a long and rich history of use in NNs, it was not known that networks
employing them can be trained using backpropagation and common gradient
based optimization algorithms. During training, such networks automatically
self-modularize into a collection of multiple parameter-sharing subnetworks re-
sponding to different input representations. They match or improve upon results
of comparable methods on digit recognition and sentiment analysis, and also
avoid catastrophic forgetting, retaining useful representations of one set of in-
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put patterns even after being trained to classify another. This has implications
for continual learning agents that should not forget representations of parts of
their environment when being exposed to other parts. In our experiments, we
also found that LWTA networks train faster (i.e. achieve lower loss for the same
number of weight updates) compared to networks with sigmoidal non-linearities
– a behavior also shown by ReL networks.

A potential limitation of using LWTA interactions is that they introduce jump
discontinuities in the unit outputs, which can lead to instability during gradient-
based training. However, the particular experiments conducted here did not suffer
from this issue. Note that the total contribution of an LWTA block to the next
layer can in principle be continuous if all units learn the same outgoing weights.
In this case, the block behaves like a maxout [Goodfellow et al., 2013a] block.
Another limitation is that certain activation functions are known to benefit from
appropriate initialization of weights [LeCun et al., 1998; Glorot and Bengio, 2010;
He et al., 2015], but unfortunately such an initialization has not been identified
for LWTA networks. The initialization proposed by Glorot and Bengio [2010] for
the tanh activation function was used here, but this may not be the best choice in
general.

It is notable that Maass [1999, 2000] showed that FNNs with WTA dynam-
ics as the only non-linearity are computationally as powerful as networks with
threshold or sigmoidal units, and networks employing only soft WTA competition
are universal function approximators. Moreover, these results hold even when
the network weights are strictly positive—a finding which has ramifications for
our understanding of biological neural circuits, as well as the development of
neural networks for pattern recognition.

All of the above properties are a direct result of the simple competition mech-
anism by way of which credit is assigned to linear computation units in a network
during backpropagation. It has been noted before that the ReL activation func-
tion implements similar behavior in NNs [Nair and Hinton, 2010; Glorot et al.,
2011], but this phenomenon has not been investigated in detail so far. This raises
interesting open questions: to what extent is the assignment of different input
patterns to different linear subnetworks responsible for the performance of the
networks? Does this assignment happen early in training and remains constant
later — such that initially assigned subnetworks continue to get trained on the
assigned patterns — or does the assignment continue to change throughout the
training duration? Further, does the evolution of assignments during training
differ between LWTA, ReL, and the related maxout networks? Since all of these
three lead to improved results and faster training compared to networks with sig-
moidal activation functions, answering these questions can provide generalizable
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insights for improving credit assignment in NNs. This the goal for the analysis
presented in the next chapter.



Chapter 5

Understanding Locally Competitive
Networks

In the previous chapter, we demonstrated that local competition between units
implemented by way of LWTA is sufficient to train powerful FNNs. These results
are not too surprising once we note that other recently successful activation
functions such as ReL [Jarrett et al., 2009] and maxout [Goodfellow et al., 2013a]
are also locally competitive. In this chapter we examine this commonality in detail
with several experiments designed to understand how local competition regulates
credit assignment in these networks, and how understanding this phenomenon
may be useful in practice.

5.1 Locally Competitive Networks

We first briefly review the three activation functions described above as locally
competitive: ReL, LWTA and maxout. In a typical FNN, the total weighted input
or pre-synaptic activation z is first computed as z =w>x+ b, where x is the vector
of inputs to the unit, w is a trainable weight vector, and b is a trainable bias.1

When the ReL activation function is used, the output or post-synaptic activation
of each unit is simply max(z, 0), which can be interpreted as competition between
its total input and a fixed value of 0. For LWTA, the units in a layer are divided
into blocks of a fixed size and the output of each unit is Iz, where I is an indicator
which is one if the unit has the maximum z in its group and zero otherwise. In
maxout, the units in a block compete via the max operation, so that the output

1This equation describes the unit-level computation instead of the layer-level equations in
section 2.3
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Figure 5.1. Comparison of Rectified Linear Units (ReLUs), Local Winner-Take-All
(LWTA), and maxout activation functions. The pre- and post-synaptic activations
of the units are shown on the left and right side of the units respectively. The
shaded units are ‘active’ – non-zero activations and errors flow through them. The
main difference between maxout and LWTA is that the post-synaptic activation
can flow through outgoing connections with different weights depending on the
winning unit in LWTA. For maxout, the outgoing weight is the same for all units
in a block due to downsampling.

is that of the unit with the highest z in the block.2 A maxout block can also be
interpreted as an LWTA block with shared outgoing weights among the units. A
comparison of the three activation functions is shown in Figure 5.1.

5.2 Hypothesis

Our approach to analyzing Locally Competitive Networks (LCNs) starts at the
observation that in these networks, only a subset of units (i.e. a “subnetwork”
or “submodel”) has non-zero activations or gradients for any given input pattern.
As an illustrative example, consider the activation of a neural network with
rectified linear units (ReLUs) in a single hidden layer. An examination of the
subnetworks activated for 100 randomly selected input patterns shows that a
large number of different subnetworks are activated (Figure 5.2). The identity
of the units composing the active subnetwork is decided through rather simple
local competition, as discussed above. Put another way, this competition enables
hard credit assignment, as opposite to diffused credit assignment present in a

2In our terminology, the terms unit and block correspond to the terms filter and units in
Goodfellow et al. [2013a].
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Figure 5.2. Subnetworks for 100 examples for 10 ReLUs. The examples activate
many different possible subsets of the units, shown in dark. In this case, unit
number 3 is inactive for all examples.

network without such competition, that mitigates the problem of cross-pattern
interference [Sutton, 1986]. In fact, a linear subnetwork of the network performs
the effective computation for any single input pattern, but this subnetwork is
different for different input patterns. This observation has been made for ReL
networks by Nair and Hinton [2010]; Glorot et al. [2011]. Instead of treating a
neural network as a complex, global function approximator, the expressive power
of the network can be interpreted to be coming from its ability to activate different
subnetworks of linear units for different patterns.

The above observation leads to our central hypothesis: locally competitive
networks act as a models that can switch between linear submodels such that
similar submodels respond to similar patterns, and more importantly, in the classifi-
cation setting the mutual similarity of active subnetworks is highly indicative of class
membership. We call this the model of models hypothesis and in the remainder
of this chapter, demonstrate its validity through visualizations and numerical
comparisons. While it is not surprising that the linear subnetworks that respond
to patterns of the same class have several units in common, our results show that
the relationship between the subnetworks and class membership is strong enough
that a simple binary encoding of the active units in a trained network can be used
to represent queries for classification or retrieval tasks.
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5.3 Subnetwork Analysis

We propose a simple encoding of subnetworks as bit strings called submasks for
analysis. For input pattern i, the submask si ∈ {0, 1}u represents the corresponding
subnetwork by having a ‘1’ in position j, j = 1..u, if the corresponding unit would
have non-zero gradients during backpropagation for the pattern i, and ‘0’ otherwise,
where u is the number of units in the full network. There are two important
points to note:

• Instead of extracting submasks from all the layers in a network, they will
only be extracted from a single layer to keep analysis computationally
tractable. Typically, the analysis will focus on the last hidden layer, i.e. the
layer whose outputs are fed directly into the final output layer in networks
trained for classification.

• In ReL and LWTA layers, the units which would have non-zero gradients
during backpropagation are simply those for which the output activations
are non-zero. For maxout layers, submasks are constructed by binarizing
the unit activations such that only the units producing the maximum pre-
synaptic activation are represented by a ‘1’ and the rest by ‘0’.

The submasks uniquely and compactly encode each subnetwork in a format that
is amenable to analysis, and as subsection 5.4.2 shows, facilitate efficient data
retrieval.

In the next subsection, the t-SNE dimensionality reduction algorithm [Van der
Maaten and Hinton, 2008] is used to visualize the relationship between sub-
networks that emerge during training. Later in subsection 5.3.2, the evolution
of subnetworks during training is examined. subsection 5.3.3 shows that the
submasks obtained from a trained network can directly be used for classification
using a simple nearest neighbors approach. Finally, subsection 5.3.4 analyses how
using dropout during training affects the utility of the submasks. All experiments
in this section were performed on the MNIST dataset [LeCun et al., 1998]. This
familiar dataset was chosen because it is relatively small and easy for NNs, and
therefore provides a tractable setting in which to verify the repeatability of our
results. More complex datasets are used in section 5.4 to demonstrate the utility
of submasks for classification and retrieval.

5.3.1 Visualization through Dimensionality Reduction

In order to visualize the relationship between submasks for a large number of
input patterns, MLPs with three hidden layers and various activation functions
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Figure 5.3. 2-D Visualization of submasks from the last of the 3 hidden layers in
ReL network for the MNIST test set. (a) shows the submasks before training which
lack any discernible relationship. (b) shows submasks from a trained network,
showing clearly demarcated clusters relevant to the supervised classification task.
‘Mistakes’ made by the network can also be observed, such as mistaking ‘4’s for
‘9’s.

were trained on the MNIST training set, stopping when the error on a separate
validation set did not improve for 50 epochs. The submasks for the entire test set
of 10K examples were then extracted and embedded into two dimensions using
t-SNE for visualization. Each submask is a bit string of length corresponding to
the size of the network’s last hidden layer (1000 in this case).

Figure 5.3 shows the visualization of the submasks from the last hidden layer
of the ReL network before (a) and after (b) training. Before training, i.e. for a
randomly initialized network, there is no discernible structure to be observed.
After training, ten distinct clusters of submasks are present, one for each MNIST
class. It is notable that irrespective of the actual activation values which are
lost in the binary representation, the submasks for the test examples are clearly
highly indicative of class memberships. In other words, the subnetworks for input
patterns of the same class are much more similar to each other compared to those
of patterns from different classes.

Figure 5.4 shows that some class-indicative structure can already be observed
before training if submasks from the first hidden layer (instead of the third)
are visualized. This indicates that at the start of network training, the random
projection in the first hidden layer already leads to slightly different subsets of
units (on average) responding to patterns from different classes. subsection 5.3.2
quantifies how often unit responses change during training.
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Figure 5.4. 2-D visualization of submasks obtained before training from the 1st
(closest to the input) hidden layer of 3-hidden-layer LWTA and ReL networks on
MNIST test set.

Visualizations of submasks from trained LWTA and maxout networks show
class-specific clusters similar to those from the ReL network, as shown in Figure 5.5.
Note that the visualizations also show many instances where the network makes
incorrect predictions on the test set. The submasks for some examples lie in the
cluster of submasks for the wrong class, indicating that the ‘wrong’ subnetwork
was selected for these examples.

5.3.2 Behavior during Training

How do submasks for different examples become organized over the course of
training a network? To answer this question, the submasks of each sample in the
training set were recorded at each epoch. Figure 5.6 characterizes the change
in the subnets over time by counting the number of input patterns for which a
unit flips from being on to being off, or vice-versa, from one epoch to the next.
The plot in the figure shows the fraction of patterns for which an inter-epoch
flip occurred, averaged across all units in the network. Higher values indicate
that the assignment of subnets to patterns is not stable. The batch size for this
experiment was 100, which means that each pass over the training set consists
of 500 weight updates. For the run shown, the average fraction of flips starts at
0.2, but falls quickly below 0.05 and keeps falling as training proceeds, indicating
that, the assignment of subnetworks to individual examples stabilizes quickly.

From a model of models perspective, Figure 5.6 suggests that during training,
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Figure 5.5. 2-D visualization of submasks from the last hidden layer of 3-hidden-
layer LWTA and maxout networks on MNIST test set. Organization of submasks
into distinct class-specific clusters similar to that in ReL networks is observed.

the subnetworks rapidly organize in an early transient phase such that subnet-
works responding to similar examples have more parameters in common than
those responding to dissimilar examples. This allows for better specialization
of subnetworks due to the reduced interference from dissimilar examples and
shared parameters for similar examples. In the later fine-tuning phase when the
network already has a low loss, training slows down and much less re-assignment
of subnetworks takes place.

5.3.3 Evaluating Submasks

Since the visualization of submasks for the test set shows task-relevant structure, it
is natural to ask: how well can a submask represent the input pattern that produces
it? If the submasks for similar examples are similar, perhaps they can be used as
data descriptors for tasks such as similarity-based retrieval. Class-representative
submasks that can be generated without explicit training for retrieval are an
attractive possibility since sparse informative binary codes enable efficient storage
and retrieval for large and complex datasets. Consequently, learning to generate
them is an active research area [Gong et al., 2013; Masci et al., 2014b,a; Grauman
and Fergus, 2013]. To quantify the extent of similarity between submasks that
result for similar input patterns, we trained LCNs with fully-connected layers for
image classification and then used a simple k nearest neighbors (kNN) algorithm
to classify images based only on the generated submasks. Training was performed
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Figure 5.6. The plot shows the mean of the fraction of examples (total 10K) for
which units in the layer flip (turn from being active to inactive or vice-versa) after
every pass through the training set. The units flip for up to 20% of the examples
on average in the first few epochs, but quickly settle down to less than 5%.

MNIST training set, and the value of k with the lowest validation error was
selected to classify the test set. If this approach results in a classification error
that is close to that obtained using the network’s softmax layer’s output, we can
conclude that submasks are indeed highly informative.

The results are shown in Table 5.1. In each case, the accuracy of the kNN
predictions is close to that obtained using the network’s outputs. Note that in case
of the maxout network, the softmax layer processes the outputs of the last maxout
layer, but the submasks were obtained from unit activations before the pooling
operation in the layer. So in this case it is more appropriate to compare the kNN
classification error for submasks to that obtained if kNN is used to classify the
unit activations before pooling as well, which resulted in 121 errors.

Submasks can also be obtained from convolutional layers in trained CNNs.
The maxout CNN from Goodfellow et al. [2013a] yields 52 errors on the MNIST
test set. Since the penultimate layer in this model is convolutional, the submasks
were constructed using the pre-synaptic unit activations from this layer for all
convolutional maps. Visualization of these submasks showed similar structure to
that obtained from fully-connected layers in Figure 5.5b, and kNN classification on
the submasks resulted in 65 errors. It is evident that for all well-trained networks,
the kNN performance is close to the performance of the network’s final output
layer.
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Table 5.1. Classification results on the permutation invariant MNIST test set using
the networks last layer outputs (softmax) vs. kNN on the submasks. All submasks
were extracted from the last hidden layer. Classification based on submasks
incurs only a minor degradation in performance.

Network
No. test errors

Softmax kNN

ReL (trained without dropout) 161 158
LWTA (trained with dropout) 142 154
Maxout (trained with dropout) 116 131

5.3.4 Effect of Dropout

Regularization through dropout [Hinton et al., 2012b] has proven to be an efficient
technique for improving the generalization of large networks, and has been often
used in combination with locally competitive activation functions [Krizhevsky
et al., 2012; Goodfellow et al., 2013a; Zeiler and Fergus, 2013]. In order to
examine how dropout may affect the organization of useful submasks, a 3-hidden-
layer network with 800 ReLUs in each hidden layer was trained without dropout
(denoted by ND) on PI-MNIST, starting from five different initializations until the
validation set error did not improve. The networks were then trained again from
the same initialization with dropout (WD) until the validation error matched
(WD-M) and then fell below (WD-B) the lowest validation error from the ND case.
In both cases, minibatch gradient descent with momentum was used. Finally,
the submasks from both ND and WD networks were compared in terms of kNN
classification performance.

The networks which were trained to result in lower classification error with
dropout (WD-B) also yielded better submasks in terms of kNN classification per-
formance. On the other hand the submasks from ND and WD-M networks give
similar results. These results support the interpretation of dropout as a regulariza-
tion technique that prevents “co-adaptation of feature detectors” (units) [Hinton
et al., 2012b], leading to better representation of data by the subnetworks. In
the model of models view, dropout improves generalization by injecting noise in
the assignment of submodels, making them more robust.
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(a) (b)

Figure 5.7. 2-D visualizations of the submasks obtained from the penultimate
layer of the trained maxout networks reported in Goodfellow et al. [2013a]. (a)
The CIFAR-10 test set. The 10-class structure is visible, although the clusters are
not as well separated as in the case of MNIST. This corresponds with the higher
error rates obtained using both kNN and the full network. (b) The CIFAR-100 test
set. It is difficult to visualize any dataset with 100 classes, but several clusters are
still visible. The separation between clusters is much worse, which is reflected
in the high classification error.
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5.4 Experiments on Larger Datasets

The following experiments apply the methods described in the previous section
to more challenging benchmark problems: CIFAR-10, CIFAR-100, and ImageNet.
For the CIFAR experiments, the models described in Goodfellow et al. [2013a]
are used since they use locally competitive activations (maxout), are trained with
dropout, and good hyperparameter settings for them are available [Goodfellow
et al., 2013b]. We report the classification error on the test set obtained using the
softmax output layer, as well as kNN classification on both the penultimate layer
unit activations and submasks for comparison. The best value of k was obtained
based on the validation set, though k = 5 with distance weighting was found to
usually work well.

5.4.1 CIFAR-10 & CIFAR-100

CIFAR-10 and CIFAR-100 [Krizhevsky, 2009] are datasets of 32×32 color images
divided into 10 classes. The results obtained on the test sets for these datasets
are summarized in Table 5.2. kNN on submasks resulted in a loss in accuracy of
1.25% on the CIFAR-10 dataset, and 2.26% on the CIFAR-100 dataset on average,
compared to using unit activations. Figure 5.7a shows the 2-D visualization of
the test set submasks for CIFAR-10. Some classes can be seen to have highly
representative submasks, while confusion between classes can be seen in the
lower half of the plot. The clusters of subnetworks are not as well separated as
they were with MNIST 3 , reflecting the relatively worse classification performance
of the full network. Submask visualization for CIFAR-100 (Figure 5.7b) reflects
the high error rate for this dataset. Although any visualization with 100 classes
can be hard to interpret, many small clusters of submasks can still be observed.

5.4.2 ImageNet

In this section, the utility of the submasks obtained from large CNNs trained on
the ImageNet Large Scale Visual Recognition Challenge 2012 (ImageNet 2012)
[Deng et al., 2012] dataset is evaluated, pointing to potential practical uses of
submasks.

We first evaluate classification using kNN as before, but report top-5 instead
of top-1 accuracy, as is common practice for this dataset. Two networks are

3In general, this depends on the value of the perplexity hyperparameter in t-SNE. However,
well separated clusters similar to MNIST were not obtained for various values of perplexity.
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Table 5.2. Classification errors on CIFAR datasets comparing maxout network per-
formance, kNN on activation values, kNN on pre-activations (before maximum
pooling) and kNN on binary submasks. Results are averaged over 5 runs.

Dataset Softmax kNN
(activations)

kNN
(pre-
activations)

kNN
(submasks)

CIFAR-10 9.94 ± 0.31% 9.63 ± 0.21% 10.11 ± 0.16% 11.36 ± 0.22%
CIFAR-100 34.49 ± 0.22% 37.54 ± 0.14% 41.37 ± 0.26% 43.63 ± 0.18%

Table 5.3. Top-5 Classification accuracy on validation set when performance of
two different networks on ImageNet is compared to performance of submasks
obtained from each of them. Note that as network accuracy improves by about
6%, submask accuracy improves by about 10%.

Network Softmax kNN on submasks

DeCAF [Donahue et al., 2013] 19.2% 29.2%
Convnet 13.5% 20.4%

compared: DeCAF [Donahue et al., 2013] and Toronto Convnet4. Table 5.3
compares the results obtained from both networks originally as well as those
obtained using kNN on the submasks from the penultimate layer. Submasks
retain a large amount of information on this difficult large-scale task, while
greatly improving storage efficiency since only one bit per dimension is required
for storage. It is also important to note that submasks obtained from a better
trained network result in better performance. An improvement of 5.7% in the
network error translates to 8.8% improvement in the performance of kNN on
submasks. This progression, together with similar trends observed for small scale
datasets in the previous sections, indicates that using more accurate networks,
highly accurate and efficient submasks can be obtained.

There are many approaches dedicated to constructing binary codes for fast
similarity-based search and retrieval (Grauman and Fergus [2013] provide a
review). Krizhevsky et al. [2012] have suggested that the activations from a
trained convolutional network can be compressed to binary codes using auto-
encoders. As a cheap alternative to these approaches, the results here show
that submasks from a trained network can be utilized directly for efficient data

4https://github.com/torontodeeplearning/convnet/
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Table 5.4. Comparison of mean average precisions at various thresholds using
binary codes obtained using different techniques on the ImageNet 2012 dataset.
Submasks are obtained directly from networks trained for classification without
any further training. Up to mAP@100 the submasks show a constant performance
degradation of about 3 points.

Technique mAP@5 mAP@10 mAP@100

Submasks 58.3 56.7 46.7
Diffhash 61.0 59.3 49.5

retrieval based on similarity, without the use of any pair-wise supervision during
training of the original network.

Submask based retrieval results on ImageNet 2012 were compared to those ob-
tained using binary codes produced by DiffHash, a supervised similarity-preserving
hashing method proposed by Strecha et al. [2012] trained on the non-binarized
last hidden layer features from the network. The network used was Toronto
Convnet, with a top-5 classification error of 13.5% on the validation set. DiffHash
learns a linear projection and is trained by providing similar and dissimilar pairs
of points, for which a ground-truth similarity measure is known, i.e., sharing the
same class or not. Precision-recall curves obtained for the two approaches are
shown in Figure 5.8, and Table 5.4 reports results for mean average precision;
mAP =

∑R
r=1 P(r) · rel(r), where rel(r) indicates the relevance of a result at a

given rank r, P(r) is the precision at r, and R is the number of retrieved results.
The performance obtained using submasks is comparable to but strictly lower

than that of DiffHash codes. Nevertheless, the results of this comparison are very
encouraging considering the experimental setting, and there are clear indications
that submasks from a network with lower classification error may further close
the gap. A few sample retrieval results for examples from the ImageNet 2012
dataset are shown in Figure 5.9. An interesting avenue for future research is
exploration of additional regularization techniques during supervised training of
the network to further improve the utility of submasks for search and retrieval.

5.5 What about Sigmoidal Networks?

In principle it is possible to use sigmoidal activation functions to obtain bi-
nary codes by thresholding the activation values after supervised or unsuper-
vised [Salakhutdinov and Hinton, 2009] training. But there are two limitations
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Figure 5.8. Comparisons of precision-recall curves on ImageNet 2012 when
using binary codes obtained using different techniques. The performance of
submasks is competitive and decays only for high recall values where supervised
hashing obtains a better ranking of the results due to the pair-wise supervision.

of this approach:

• The main limitation is that large sigmoidal networks are slow to train.
Due to this, obtaining useful activations from them is impractical for large
datasets which are common in retrieval settings. LCNs have been crucial
for the successful application of neural networks to such datasets.

• The thresholding is somewhat arbitrary and the best threshold needs to
be selected by trial-and-error. For LCNs, the binarization is natural and
inherent to the process of credit assignment in these networks.

5.6 Discussion

To recap, we presented the following evidence in support of the model of models
hypothesis put forth at the beginning of this chapter:

• In LCNs, local competition within each layer assigns credit to similar subsets
of units (having many units in common) for similar input patterns (as
determined by the objective function used for training).
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Figure 5.9. Retrieval based on finding images with similar submasks on the
ImageNet 2012 dataset. The first image in each row is the query image, the other
five are the responses retrieved using nearest neighbor search.

• During training of networks, a large degree of reassignment of subnetworks
happens early in the training as the networks loss improves rapidly. The
reassignment slows down later in training in the fine tuning phase.

• The submask encoding representing the credit assignment is highly infor-
mative and can be used for making predicting the class membership of
test data instead of the unit outputs. For highly accurate networks, the
predictive accuracy approaches that of the outputs.

LCNs enable easier and faster training on complex pattern recognition tasks
compared to networks with sigmoidal or similar activation functions. The findings
in this chapter indicate that low interference due to hard credit assignment among
subnetworks is the key property that speeds up learning by reducing cross-pattern
interference in NNs.

The core principles that underlie the beneficial properties of LCNs are essen-
tially the same as those that motivated competitive learning approaches developed
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in the past several decades (subsection 3.1.1). In particular, a key difference to
the Mixture of Experts architecture developed by Jacobs et al. [1991a,b] is that
LCNs are not composed of separate expert networks that specialize in processing
different sets of input patterns. Instead, every possible subset of units of in a
network acts as a very “local” expert, and increasingly different input patterns
activate increasingly different subsets of units.



Chapter 6

Highway Networks

This chapter addresses the challenge of designing NN architectures with the
purpose of improving the training of very deep networks by deriving inspirations
from multiple sources. The first inspiration comes from the benefits of improved
regulation of information flow in locally competitive NNs studied in chapters
4 and 5. The second is the work of Jacobs et al. [1991a,b] whose modular
networks explicitly regulate information flow between network modules through
a separately learned gating network. Finally, ideas from the LSTM architecture
for RNNs that ease temporal credit assignment are borrowed and extended to the
case of feedforward networks. Together, these ideas lead to Highway networks, a
class of feedforward networks that can be reliably trained even when they have
hundreds of layers.

6.1 Architecture

For simplicity, in this chapter the non-linear function implemented by the `th layer
in a plain MLP (Equation 2.5) is written compactly as:

y` = H(x`), (6.1)

where applying the function H typically consists of an affine transformation (with
weights and biases) of the input xl followed by a non-linearity, but in general it
can take other forms.

Local competition supports implicit, local gating of information to constituent
subnetworks in contrast to the explicitly-learned, global gating network in the
work of Jacobs et al. [1991a,b], as mentioned at the end of the previous chapter.
As a first step towards an architecture that extends the benefits of information

59
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gating to very deep networks, the best of both approaches can be combined such
that the gating of information is explicit, but still implemented locally at each
unit. A layer in such an explicit-but-local network can then be defined as

y` = H(x`)·G(x`). (6.2)

where G is a gating transformation similar to H, implemented by an additional
set of units. We refer to this as a Mixture of Units (MoU) architecture. Compared
to a plain layer of units, each unit in the MoU layer is paired with an additional
gating unit (with its own weights and bias) which adjusts its output dynamically,
i.e. differently for each input pattern, through a multiplicative connection.1

Preliminary experiments on the MNIST dataset using NNs with the above
architecture were conducted using the logistic sigmoid activation function in G
and tanh in H. The results and speed of training observed were similar to ReL and
LWTA networks, even though the network used only sigmoidal non-linearities.
Since plain networks with sigmoidal non-linearities are generally slow to train,
we can surmise that the introduced local gating mechanism improves credit
assignment and enables performance comparable to locally competitive networks.
However, the MoU architecture does not fundamentally address the difficulties
encountered when training very deep networks since, like locally competitive
networks in previous chapters, they only improve credit assignment among units
in the same layer.

To address this limitation, we take inspiration from the architecture of LSTM,
and further extend the MoU architecture by adding additional units, implemented
with a non-linear transformation C , that learn to regulate the flow of information
across layers in addition to within layers:

y` = H(x`)· T (x`) + x` · C(x`) (6.3)

where the gating transformation, G. has been renamed since there are now two
types of gating units. T implements the transform gates, which learn how much
the regular transformation, H, of the input contributes to the total output y of
the layer. C implements the carry gates, which learn how much of the input is
carried over to the output. The gates are analogues of the input and forget gates
in the LSTM architecture, while a skip connection from input to output with a
constant weight of one is analogous to the recurrent self-connection used by the
LSTM cell. We refer to networks with this architecture as Highway networks,
since they allow unimpeded flow of information across layers.

1To support this interpretation, G should be defined such that it produces values in [0,1]
although in practice this may not be a hard constraint.
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The transformation implemented by a Highway layer is much more flexible
than Equation 6.1. In particular, observe that for particular outputs of T and C ,

y` =

¨

x`, if T (x`) = 0, C(x`) = 1,

H(x`), if T (x`) = 1, C(x`) = 0.
(6.4)

Similarly, for the derivative of the layer outputs with respect to its inputs,

dy`
dx`
=

¨

I, if T (x`) = 0, C(x`) = 1,

H ′(x)`, if T (x`) = 1, C(x`) = 0.
(6.5)

Thus, depending on the output of the transform and carry gates, a Highway
layer can vary its behavior between that of H, a layer that simply passes its inputs
through, and their unit-wise combination. This design enables credit assignment
across large depths since during the backward pass, gradients can flow backwards
without diminishing through paths on which carry gate outputs are non-zero. We
define the following terminology for subsequent sections: just as a plain layer
consists of multiple computing units each computing its output y = H(xl), a
Highway layer consists of multiple blocks, with each block computing a block
state H(xl), transform gate output T(xl) and carry gate output C(xl). Finally, it
produces the block output y = H(x) ∗ T (x) + x ∗ C(x), which is connected to the
next layer. Note that x is the scalar output of the corresponding block in the
previous layer, while x is the vector of all block outputs from the previous layer.

6.2 Variants of Highway Networks

Just like it is possible to construct several variants of the LSTM architecture by
adding/removing units or connections [Greff et al., 2017a; Jozefowicz et al.,
2015], corresponding variants of Highway networks can also be constructed. For
most experiments in the remainder of this thesis, the coupled variant is used by
setting C(x`) = 1− T(x`), so that the block output is a convex combination of
H(xl) and xl:

y` = H(x`)· T (x`) + x` · (1− T (x`)). (6.6)

Several further variants can be constructed by restricting the gate outputs to
constant values instead of learning weights that control them:

Full. The original Highway architecture in which both transform and carry gates
are learned, i.e., Equation 6.3.
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Table 6.1. Test set classification accuracy for pilot experiments on the MNIST
dataset. Results reported for Maxout [Goodfellow et al., 2013b] and Deeply
Supervised Nets (DSN) [Lee et al., 2015] are included for comparison.

Network Highway Networks Maxout DSN
10-layer 10-layer

(width 16) (width 32)

No. of parameters 39 K 151 K 420 K 350 K
Test Accuracy (in %) 99.4±0.03 99.54±0.02 99.55 99.61

MoU. No skip connections, obtained if carry gates are always set to zero, i.e.,
Equation 6.2.

Multiplicative-skip Transform gates are always set to zero, i.e., y` = x` · C(x`).

Additive skip or Residual. Proposed by He et al. [2016a], in which both trans-
form and carry gate are set to one, i.e., y` = H(x`) + x`.

C-Only. Retains learned carry gates but transform gates are set to one i.e. y` =
H(x`) + x` · C(x`).

T-Only. Retains learned transform gates but carry gates are set to one i.e. y` =
H(x`)· T (x`) + x`.

Section 6.5 presents experimental comparisons between variants obtained in this
manner.2

For all variants, the dimensionality of x`,y`, H(x`), T (x`), and T (C`) must be
the same for the unit-wise multiplicative gating in Equation 6.3 to be valid. To
change the size of the intermediate representation, one can replace x` with x̂`
obtained by suitably sub-sampling or zero-padding x`. The strategy used in this
thesis is to simply use a plain layer instead of a Highway layer whenever the size
of the representation in the network needs to be changed.

2Pilot optimization experiments (subsection 6.3.2) on training very deep networks were also
successful with a more complex design based on an LSTM block “unrolled in time", but this design
is not explored further here since simpler designs already work well.
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Figure 6.1. Comparison of optimization of plain networks and Highway networks
of various depths. All networks are trained for MNIST digit classification. Left: The
training curves for the best hyperparameter settings obtained for each network
depth. Right: Mean performance of top 10 (out of 100) hyperparameter settings.
Plain networks become much harder to optimize with increasing depth, while
Highway networks with up to 100 layers can still be optimized well.

6.3 Experiments

6.3.1 Setup

We implemented transform gates as T(x`) := σ(WT x` + bT ), where WT is the
weight matrix and bT the bias vector for the transform gates. Note that σ(x) ∈
(0,1),∀x ∈ R, so the conditions in Equation 6.4 would never be met exactly.
This suggests a simple initialization scheme that is independent of the form of
H: bT can be initialized with a negative value (e.g. -1, -3 etc.) such that the
network is initially biased towards carry behavior. This scheme is based on the
proposal by Gers et al. [2000] to initially bias the gates in an LSTM network in
order to help bridge long-term temporal dependencies early in learning. In our
experiments, it was found that a negative bias initialization for the transform
gates was sufficient for training to proceed in very deep networks with more than
1000 layers for various zero-mean initial distributions of the weights and different
activation functions used by H. In general the initial bias is best treated as a
hyperparameter, but as a first guess, values of -1, -2 and -3 for Highway networks
of depth approximately 10, 20 and 30 respectively worked well.

Convolutional Highway networks were constructed by simply employing the
coupled Highway transformation (Equation 6.6) in CNN layers, using convolution
operations with the same receptive fields and spatial strides for all transformation
functions in a layer. All networks were trained using SGD with momentum. An
exponentially decaying learning rate was used in subsection 6.3.2. For the rest
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of the experiments, a simpler commonly used strategy was employed where the
learning rate starts at a value and decays according to a fixed schedule by a factor.
These hyperparameters and schedule were selected once based on validation
set performance on the CIFAR-10 dataset, and kept fixed for all experiments
in subsection 6.3.5. All convolutional Highway networks used the rectified lin-
ear activation function [Glorot and Bengio, 2010] to compute the block state
H. To provide a better estimate of the variability of classification results due to
random initialization, results are reported based on 5 runs wherever available.
Experiments were conducted using Caffe [Jia et al., 2014], Brainstorm (https:
//github.com/IDSIA/brainstorm), and Torch [Collobert et al., 2011] frameworks.
Source code, hyperparameter search results and related scripts are publicly avail-
able at the URL: http://people.idsia.ch/~rupesh/very_deep_learning/.

6.3.2 Optimization Stress Test

To support the hypothesis that training of Highway networks does not fail when
depth increases dramatically, a series of rigorous optimization experiments were
conducted, comparing them to plain networks with normalized initialization
[Glorot and Bengio, 2010; He et al., 2015]. Plain and Highway networks of
varying depths were trained on the MNIST digit classification dataset. All networks
were thin: each layer had 50 blocks for highway networks and 71 units for plain
networks, yielding roughly identical numbers of parameters (≈5000) per layer. In
all networks, the first layer was a fully-connected plain layer followed by 9, 19, 49,
or 99 fully-connected plain or Highway layers. The network output was produced
by a softmax layer. A random search of 100 runs was performed for both plain and
Highway networks to find good settings for the following hyperparameters: initial
learning rate, momentum, learning rate exponential decay factor & activation
function (either rectified linear or tanh). For Highway networks, an additional
hyperparameter was the initial value for the transform gate bias (between -1 and
-10). Weights for the H and T transformations were initialized using the same
normalized initialization as plain networks.

The training curves for the best performing networks for each depth are
shown in Figure 6.1. As expected, 10 and 20-layer plain networks exhibit very
good performance (mean loss < 1× 10−4), which significantly degrades as depth
increases, even though network capacity increases. Highway networks do not
suffer from an increase in depth, and 50/100 layer highway networks perform
similar to 10/20 layer networks. The 100-layer highway network performed more
than 2 orders of magnitude better than a similarly-sized plain network. It was
also observed that Highway networks consistently converged significantly faster

https://github.com/IDSIA/brainstorm
https://github.com/IDSIA/brainstorm
http://people.idsia.ch/~rupesh/very_deep_learning/
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Table 6.2. Experimental comparison between Fitnets and Highway networks
for CIFAR-10 object recognition. Architectures tested were based on Fitnets
trained by Romero et al. [2014] using two-stage hint based training. Highway
networks were trained in a single stage without hints, matching or exceeding the
performance of Fitnets.

Network Depth Parameters Accuracy (%)

Fitnets (reported by Romero et al. [2014])
Teacher 5 ≈9M 90.18
Fitnet A 11 ≈250K 89.01
Fitnet B 19 ≈2.5M 91.61

Highway networks
Highway A (Fitnet A) 11 ≈236K 89.18
Highway B (Fitnet B) 19 ≈2.3M 92.28±0.16
Highway C 32 ≈1.25M 91.20

than plain ones.

6.3.3 MNIST Digit Classification

As a sanity check for the generalization capability of Highway networks, 10-layer
convolutional Highway networks on MNIST were trained, using two architectures,
each with 9 convolutional layers followed by a softmax output layer. The number
of filter maps (width) was set to 16 and 32 for all the layers. The trained networks
resulted in test set performance competitive with state of the art methods but had
much fewer parameters, as show in Table 6.1.

6.3.4 Comparison to Fitnets on CIFAR-10

Due to improved credit assignment through local competition, maxout networks
[Goodfellow et al., 2013b] can cope much better with increased depth than those
with traditional activation functions. However, Romero et. al. [Romero et al.,
2014] recently reported that training on CIFAR-10 through plain backpropagation
was only possible for maxout networks with a depth up to 5 layers when the
number of parameters was limited to ≈250K and the number of multiplications
to ≈30M. Similar limitations were observed for higher computational budgets.
Training of deeper networks was only possible through the use of a two-stage
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training procedure and addition of soft targets produced from a pre-trained
shallow teacher network (hint-based training).

Highway networks with number of parameters and operations comparable to
those of Fitnets were found to be easy to train in a single stage using minibatch
gradient descent with momentum. As shown in Table 6.2, networks Highway A
and Highway B, which were based on the architectures of Fitnet A and Fitnet B,
respectively, obtained similar or higher accuracy on the test set. It was further
found that the networks could be made thinner and deeper: for example a 32-
layer highway network consisting of alternating receptive fields of size 3×3 and
1×1 with ≈1.25M parameters performed better than the earlier teacher network
[Goodfellow et al., 2013b].

6.3.5 Results on CIFAR-10 and CIFAR-100

It is possible to obtain high performance on the CIFAR-10 and CIFAR-100 datasets
by utilizing very large networks and extensive data augmentation. This approach
was popularized by Ciresan et al. [2012] and recently extended by Graham
[2014]. Since our aim is only to demonstrate that deeper networks can be trained
without sacrificing ease of training or generalization ability, here we performed
experiments in the more common setting of global contrast normalization, small
translations and mirroring of images. Following Lin et al. [2014], the fully
connected layer used in the Highway B network from the previous section was
replaced with a convolutional layer having a receptive field of size one followed
by a global average pooling layer. The hyperparameters from the last section
were re-used for both CIFAR-10 and CIFAR-100. The test set results obtained
for these datasets are tabulated in Table 6.3. The results are close to the best
results obtained in a comparable setting for CIFAR-10, and significantly better for
CIFAR-100. Together, these results demonstrate that not only does the Highway
architecture allow direct training of deeper networks with popular gradient de-
scent algorithms, it also results in networks that generalize well on unseen test
data.

In the next section, we conduct introspective experiments to gain a qualitative
understand of the computations performed by coupled Highway networks (the
variant used in experiments so far) trained for supervised learning.
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Table 6.3. Test set accuracy of convolutional Highway networks on the CIFAR-10
and CIFAR-100 object recognition datasets with typical data augmentation. For
comparison, the accuracy reported by recent studies in similar experimental
settings is listed as well.

Network CIFAR-10
Accuracy (%)

CIFAR-100
Accuracy (%)

Maxout [Goodfellow et al., 2013b] 90.62 61.42
dasNet [Stollenga et al., 2014] 90.78 66.22
NiN [Lin et al., 2014] 91.19 64.32
DSN [Lee et al., 2015] 92.03 65.43
All-CNN [Springenberg et al., 2014] 92.75 66.29
Highway Network 92.31±0.12 67.61±0.15

6.4 Analysis

Figure 6.2 illustrates the inner workings of the best3 50-hidden-layer fully-connected
Highway networks trained on MNIST (top row) and CIFAR-100 (bottom row).
In each row, the x-axis corresponds to Highway blocks and y-axis corresponds to
Highway layers, with the top most layer being the closest to the network’s input.
The first three columns show the bias, the mean activity over all training samples,
and the activity for a single random sample for each transform gate respectively.
Block outputs for the same single sample are displayed in the last column.

The transform gate biases of the two networks were initialized to -2 and -4
respectively, and Figure 6.2 shows that most biases decreased further during
training. For the CIFAR-100 network the biases increase gradually with depth.
They are lowest near the input (top) and highest near the output (bottom),
forming a color gradient in the figure. Interestingly, this pattern is the inverse of
the average activity of the transform gates which decreases from input to output,
as seen in the second column. This indicates that the strong negative biases of
transform gates near the network’s input are not used to shut down the gates, but
to make them more selective. This behavior is also suggested by the fact that the
transform gate activity for a single example (column 3) is very sparse. The effect
is more pronounced for the CIFAR-100 network, but can also be observed to a
lesser extent in the MNIST network.

The last column of Figure 6.2 displays the block outputs and visualizes the

3obtained via random search over hyperparameters to minimize the best training set error
achieved using each configuration
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Figure 6.2. Visualization of best 50 hidden-layer highway networks trained on
MNIST (top row) and CIFAR-100 (bottom row). The first hidden layer is a plain
layer which changes the dimensionality of the representation to 50. Each of the
49 highway layers (y-axis) consists of 50 blocks (x-axis). The first column shows
the transform gate biases, which were initialized to -2 and -4 respectively. In the
second column the mean output of the transform gate over all training examples
is depicted. The third and fourth columns show the output of the transform gates
and the block outputs (both networks using tanh) for a single random training
sample. Best viewed in color.

concept of “information highways”. Most of the outputs stay constant over many
layers forming a pattern of stripes. Most of the change in outputs happens in the
early layers (≈ 15 for MNIST and ≈ 35 for CIFAR-100).

6.4.1 Routing of Information

An important feature of the Highway architecture over hard-wired shortcut con-
nections is that the network can learn to dynamically adjust the routing of the
information based on the current input. This begs the question: does this behavior
manifest itself in trained networks or do they just learn a static routing that applies
to all inputs similarly. A partial answer can be found by looking at the mean
transform gate activity (second column) and the single example transform gate
outputs (third column) in Figure 6.2. Especially for the CIFAR-100 case, most
transform gates are active on average, while they show very selective activity for
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Figure 6.3. Visualization showing the extent to which the mean transform gate
activity for certain classes differs from the mean activity over all training samples.
Generated using the same 50-layer highway networks on MNIST on CIFAR-100
as Figure 6.2. Best viewed in color.

the single example. This implies that for each sample only a few blocks perform
transformation but different blocks are utilized by different samples.

This data-dependent routing mechanism is further investigated in Figure 6.3.
Each of the columns show how the average over all samples of one specific class
differs from the total average shown in the second column of Figure 6.2. For
MNIST digits 0 and 7 substantial differences can be seen within the first 15 layers,
while for CIFAR class numbers 0 and 1 the differences are sparser and spread
out over all layers. In both cases it is clear that the mean activity pattern differs
between classes. The gating system acts not just as a mechanism to ease training,
but also as an important part of the computation in a trained network.

6.4.2 Layer Importance

Since all the transform gates were initially biased towards being closed, in the
beginning of training every layer mostly copies the activations of the previous
layer. Does training indeed change this behavior, or is the final network still
essentially equivalent to a network with a much fewer layers? To shed light on
this issue, we investigated the extent to which lesioning a single layer affects the
total performance of trained networks from subsection 6.3.2. Lesioning means
manually setting all the transform gates of a layer to 0, forcing it to simply copy
its inputs. For each layer, the network was evaluated on the full training set with
the gates of that layer closed. The resulting performance as a function of the
lesioned layer is shown in Figure 6.4.

For MNIST (left) it can be seen that the error rises significantly if any one of
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Figure 6.4. Lesioned training set loss (y-axis) of the best 50-layer highway networks
on MNIST (left) and CIFAR-100 (right), as a function of the lesioned layer (x-axis).
Evaluated on the full training set while forcefully closing all the transform gates of
a single layer at a time. The non-lesioned performance is indicated as a dashed
line at the bottom.

the early layers is removed, but layers 15− 45 seem to have close to no effect on
the final performance. About 60% of the layers do not learn to contribute to the
final result, likely because MNIST is a simple dataset that does not require much
depth.

A different picture emerges for the CIFAR-100 dataset (right) with performance
degrading noticeably when removing any of the first ≈ 40 layers. This suggests
that for complex problems a Highway network can learn to utilize all of its layers,
while for simpler problems like MNIST it will keep many of the unneeded layers
idle. Such behavior is desirable for deep networks in general, but appears difficult
to obtain using plain networks.

6.5 Comparison of Highway Network Variants

Many possible variants of the Highway network architecture can be constructed
as discussed in section 6.2, but all experiments in this chapter so far were per-
formed with the coupled Highway architecture. It is natural to question whether
the differences in these variants are substantial enough to lead to significantly
different results. In general our understanding of the computations required to
solve complex problems is limited, so it is extremely hard to say a priori which
architecture variant may be more suitable for which types of problems. Therefore,
in this section we perform two sets of experiments to compare and contrast the
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Table 6.4. Comparison between Highway network variants trained for ImageNet
2012 object recognition. Top-5 classification errors are reported based on 3 runs
per network. BN indicates use of Batch Normalization [Ioffe and Szegedy, 2015].

Variant Top-5 Error

Coupled Highway 10.03 ± 0.17
Coupled Highway-ReL 10.21 ± 0.03
Resnet 9.40 ± 0.18
Coupled Highway + BN 7.53 ± 0.05
Coupled Highway-ReL + BN 7.29 ± 0.11
Resnet + BN 7.17 ± 0.14

performance of Highway variants in two different domains.

6.5.1 Image Classification

He et al. [2016a] extensively developed and studied the Residual variant of
the Highway networks, and used it to outperform all other entries at the 2016
ImageNet challenge. In this set of experiments, the goal is to carefully compare
two variants: Residual and coupled Highway. Through these comparisons, it
also becomes possible to examine the validity of the following claims regarding
coupled Highway networks made in follow-up work [He et al., 2016a,b; Veit et al.,
2016]:

1. They are harder to train compared to Residual networks, resulting in stalled
training or poor results.

2. They require extensive tuning of the initial bias, and even then produce
much worse results compared to Residual networks.

3. They are wasteful in terms of parameters since they utilize extra learned
gates, doubling the total parameters for the same number of units compared
to a Residual networks.

Residual and coupled Highway CNNs with 50 layers each were trained for
comparison, following the general model architecture proposed by He et al.
[2016a].The design of the two networks were similar (including use of batch nor-
malization (BN) [Ioffe and Szegedy, 2015]), except for the use of coupled Highway
blocks instead of Residual blocks, where a block is defined as a chain of following



72 6.5 Comparison of Highway Network Variants

0 10 20 30 40 50 60 70 80 90
Epochs

0

1

2

3

4

5

6
T

ra
in

in
g 

Lo
ss

Resnet50 with BN
HighwayNet50 with BN

0 10 20 30 40 50 60 70 80 90
Epochs

0

10

20

30

40

50

60

70

80

T
op

5
 V

al
id

at
io

n 
S

et
 C

la
ss

ifi
ca

tio
n 

E
rr

or
 (

%
)

Resnet50 with BN
HighwayNet50 with BN

(a) with batch normalization

0 10 20 30 40 50 60 70 80 90
Epochs

0

1

2

3

4

5

6

T
ra

in
in

g 
Lo

ss

Resnet50 without BN
HighwayNet50 without BN

0 10 20 30 40 50 60 70 80 90
Epochs

0

10

20

30

40

50

60

70

T
op

5
 V

al
id

at
io

n 
S

et
 C

la
ss

ifi
ca

tio
n 

E
rr

or
 (

%
)

Resnet50 without BN
HighwayNet50 without BN

(b) without batch normalization

Figure 6.5. Comparing 50-layer Highway vs. Residual networks on ImageNet
2012 classification.

layers: Convolution-BN-ReLConvolution-BN-ReLConvolution-BN by He et al.
[2016a]. Note that in this notation, the ReL activation function is treated as a
layer. To implement the corresponding coupled Highway architecture, two chains
of the same operations were used to implement H and T and then combined them
using the coupled Highway formulation. An additional coupled Highway CNN
called Highway-ReL was trained which was slightly different: it used an additional
ReL layer at the end of the block in H. The block design for T was Conv-BN-ReLU-
Conv-BN-ReLUConv-BN-Sigmoid in both Highway networks. Convolution layers
in both H and T used the same receptive fields and number of parameters. The
transform gate biases were set to −1 at the start of training. For fair comparison,
the number of feature maps in convolutional layers throughout the Highway
network was reduced such that the total number of parameters is similar to the
Residual network. The training algorithm and learning rate schedule were kept
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the same as those used for the Residual network.
The plots in Figure 6.5a show that the Residual network fits the data better—

its final training loss is lower than the coupled Highway network. Table 6.4 shows
that the final performance of all networks on the validation set is very similar,
with the Residual network producing a slightly better top-5 classification error of
7.17% vs. 7.53% for the Highway network. The Highway-Full network produces
a slightly better mean error of 7.29%. These results contradict claims 1 and 2
above, since the Highway networks could be trained easily without requiring
any bias tuning. However, there is some support for claim 3 since the coupled
Highway network appears to slightly underfit compared to the Residual network,
suggesting lower capacity for the same number of parameters.

Importance of Expressive Gating. The mismatch between the results above
and claims 1 and 2 made by He et al. [2016b] can be explained based on the
importance of having sufficiently expressive transform gates. For experiments
with Highway networks (which they refer to as Residual networks with exclusive
gating), He et al. [2016b] used 1× 1 convolutions for the transform gate, instead
of having the same receptive fields for the gates as the plain transformation H.
This change in design appears to be the primary cause of instabilities in learning
since the gates can no longer function effectively. Therefore, this experiment
underscores the importance of using equally expressive transformations for H
and T in Highway networks.

Role of Batch Normalization. Since all Highway variants have allow improved
credit assignment by design compared to plain networks, it is interesting to
inquire as to the necessity of batch normalization for training the above networks.
To investigate this, the networks were retrained without batch normalization,
resulting in the training curves shown in Figure 6.5b.

Without batch normalization, both networks reach an even lower training
error than before but perform worse on the validation set, indicating increased
overfitting. Interestingly, the effect is more pronounced for the coupled Highway
network, which now fits the data better than the Residual variant. This contradicts
claim 3, since a Highway network with the same number of parameters as a
Residual network demonstrates slightly higher capacity. On the other hand both
networks produce a higher validation error – 10.03% and 9.40% for the Highway
and Residual network respectively –indicating a clear case of overfitting. This
establishes that batch normalization is not necessary for training these networks
and does not speed up learning, but is a powerful regularizer.
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Table 6.5. Comparison of various Highway variants for character-aware neural
language models [Kim et al., 2015] on the Penn Treebank dataset.

Variant Functional Form Perplexity

Plain H(x) 92.60
Residual H(x) + x 91.32
T-Only H(x) · T (x) + x 82.94
Multiplicative-skip x · C(x) 79.45
C-Only H(x) + x · C(x) 79.15
Coupled H(x) · T (x) + x · (1− T (x)) 79.13
Full H(x) · T (x) + x · C(x) 79.09

6.5.2 Language Modeling

In this set of experiments, different Highway variants are compared on language
modeling. Kim et al. [2015] proposed a novel model for this task and showed
that utilizing Highway fully connected layers within it instead of plain layers
improved performance for a variety of languages. Their final language model
consisted of a stack of convolutional layers followed by Highway layers and
then an LSTM layer which predicted the next word in a text dataset based on
the words seen so far. Notably, they reported that only two to four Highway
layers were necessary to obtain significant modeling improvements, so the central
advantage of using Highway layers was not that they eased credit assignment
over depth. Instead, it appears that the structure of these layers introduces a
favorable modeling bias for this task. Following the study by Kim et al. [2015],
similar models that incorporate coupled Highway layers have been used to obtain
significant improvements in large-scale language modeling [Jozefowicz et al.,
2016] and character level machine translation [Lee et al., 2016].

To empirically compare how variants of Highway networks perform as part of
the model proposed, several models, only differing in the Highway layer variant
used, were trained on the Penn Treebank dataset (PTB; Marcus et al., 1993) using
the setup and code made available by the authors. Specifically, the “LSTM-Char-
Large model” configuration was used, only changing the two coupled Highway
layers to different variants. The performance of each model variant, measured in
terms of the perplexity on the test set, is shown in Table 6.5.

The Full, Coupled, C-Only, and Multiplicative-skip variants have similar per-
formance, which is better than the T-Only variant and significantly better than
the Residual variant. The Residual variant results in poor performance, close to
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that obtained by using a single plain layer, even though four Residual layers were
used in order to match the amount of parameters used by other variants. A useful
result is that the Multiplicative-skip variant performs almost as well as the coupled
variant, since this reduces the number of the parameters and computations in
the fully connected layers by half. Overall, the variation in performance across
variants on this task highlights that no single variant can be expected to be the
best choice for any specific task.

6.6 Discussion

Highway networks are the culmination of a series of ideas proposed in the past
to improve credit assignment in NNs. On one hand, like locally competitive
networks discussed in the previous chapters and mixtures of experts [Jacobs et al.,
1991b], they automatically direct different input patterns to different subnetworks,
reducing cross-pattern interference and improving credit assignment. From this
perspective they are models of models, similar to locally competitive networks,
as described in Chapter 5. On the other hand, their similarity to LSTM RNNs
provides resistance to vanishing gradients and enables the training of very deep
networks that can not be trained otherwise.

Highway networks also continue a long history of feedforward architectures
with skip connections (subsection 3.1.6), but with some important differences.
The skip connections used by Highway layers do not connect all units in a lower
layer to all units in a higher layer, and do not have learnable weights that remain
fixed after training, unlike past work. Instead, they only connect the output of
the ith unit in one layer to the output of the ith unit in the next layer, where
i ∈ {1,2, . . . N}, and N is the number of units in each of the layers. These
connections are modulated by learned gating units, which produce different
outputs for different input patterns.

Due to the ability of unit outputs in Highway networks to skip layers, a possible
limitation is that many units might remain unused and the network capacity may
be underutilized. However, experiments in this chapter demonstrate that this
possibility does not manifest in practice, and the propagation of error signals
through the network is sufficient to train the units to perform useful computations.
For instance, deep Highway networks with fewer parameters match or exceed the
accuracy of shallower maxout networks on test data, which would not be possible
if the units were underutilized.

Moreover, the unique structure of Highways layers can be exploited to directly
evaluate the contribution of each layer as done in Figure 6.4. Through the same
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analysis, Highway networks allow us to examine how much computation depth
may be needed for a given problem. Such a direct analysis can not be performed
with plain NNs since removing any layer completely disrupts their computations.

Simply redesigning NNs to improve credit assignment, as shown in this chapter,
has another positive side effect: Highway layers can be used as building blocks in
a variety of contexts and problem domains. While only feedforward architectures
were used in this chapter, the next chapter explores how they can be used to
address an important trainability challenge in RNNs that prevents them from fully
benefiting from the potential efficiency of deep transformations.



Chapter 7

Recurrent Highway Networks

Simple RNNs struggle to model long-term dependencies due to fundamental
difficulties which result from their design: the vanishing and exploding gradient
problems (subsection 3.1.5). LSTM RNNs overcome this difficulty by changing
the architecture, but the recurrent transition function in LSTM – which maps the
previous state to the next – does not take advantage of depth. Therefore, if there
are complex dependencies between data at nearby time-steps, LSTM RNNs may
not be efficient. Simple RNNs can be modified to utilize depth in the recurrent
transition [Pascanu et al., 2013a], but this makes training them extremely hard
and unreliable, even when increasing the depth by a single layer.

In this chapter, we overcome this difficulty with the help of Highway networks,
and develop Recurrent Highway Networks (RHNs), which remain easy to train
even with tens of layers in the recurrent transition. Benefiting from increased
modeling power, deeper RHNs obtain better results than shallower ones for the
same number of parameters, and set the state-of-the-art on two challenging
character prediction benchmarks: enwik8 and text8.

7.1 Recurrence Depth in RNNs

When an RNN processes a sequence with T time-steps, it induces a deep function
of depth T. This is the motivation behind the use of backpropagation through
time for training RNNs – it can be treated as a FNN with T layers – and makes it
valid to say that RNNs are deep “in time”.

Like feedforward layers, recurrent layers can also be connected in a linear
graph (or stack) [Schmidhuber, 1992] to produce a deep RNN. Such an RNN is
said to be deep in two dimensions, space (due to stacking) and time, and requires
proper credit assignment across both of them. Increased depth from stacking
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layers enables these deep RNNs to be more powerful without substantial increase
in computational complexity similar to deep FNNs, and introduces correspond-
ing challenges in training. Since Highway layers are designed to address the
difficulties of training as more and more layers are stacked, researchers have
recently used variants of them to also train deep stacked RNNs [Zhang et al.,
2016; Kalchbrenner et al., 2015].

However, stacking layers is not the only way in which RNNs can profit from
increased depth. Consider the depth of the recurrent transition function that
computes a simple RNN layer’s output ŷ[t+1] at time t+1 from the previous output
ŷ[t] at time t (Equation 2.6). Even though the computation is deep in time when
the RNN processes a long sequence, the depth of the above function, which we
call the recurrence depth, is still one. This implies that a single layer NN models
the relationships between adjacent time-steps of the sequence, which may be
extremely complex for real world data.

Pascanu et al. [2013a] proposed to increase the recurrence depth by adding
multiple non-linear layers to the recurrent transition, resulting in Deep Transition
RNNs (DT-RNNs) and Deep Transition RNNs with Skip connections (DT(S)-RNNs).
While being powerful in principle, these architectures are seldom used due to
exacerbated gradient propagation issues resulting from extremely long credit
assignment paths. In related work, Chung et al. [2015] added extra connections
between all states across consecutive time-steps in a stacked RNN, which also in-
creases recurrence depth. However, their model required many extra connections
with increasing depth, gave only a fraction of units access to the largest depth,
and still faced gradient propagation issues along the longest paths.

A general method to increase the recurrence depth is to let an RNN “tick”
for several micro time-steps per time step of the sequence [Schmidhuber, 1991;
Srivastava et al., 2013b; Graves, 2016], and learn the optimal number of micro
time-steps from the data itself. This method can adapt the recurrence depth
to the problem, but the RNN has to learn by itself which parameters to use for
memories of previous events and which for standard deep nonlinear processing.
Moreover, learning the optimal number of micro time-steps is difficult due to
non-differentiability. Graves [2016] proposed an approach to tackle the non-
differentiability with a smooth approximation and reported improvements on
simple algorithmic tasks, but did not obtain performance improvements on real
world datasets.

Compared to stacking recurrent layers, increasing the recurrence depth can
add significantly higher modeling capacity to an RNN. Figure 7.1 illustrates that
stacking d RNN layers allows a maximum credit assignment path length (number
of non-linear transformations) of d− 1+ T between hidden states which are T
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Figure 7.1. Comparison of stacked RNN with depth d = 2 (top) and Deep
Transition RNN of recurrence depth d = 2 (bottom) processing a sequence of
length T. Long and dotted vertical lines demarcate time-steps. Within each
time-step, each circle denotes a layer. The sequential processing in both RNNs
shows that the longest credit assignment path between hidden states T time-steps
apart are longer in the latter architecture (d × T) compared to the first d + T− 1.

time-steps apart, while a recurrence depth of d enables a maximum path length of
d×T. This allows greater power and efficiency using larger recurrence depths, but
it also explains why this makes training extremely difficult compared to stacked
RNNs.

7.2 Architecture

Recall that the recurrent state transition in a standard RNN is described by
y[t] = f (Wx[t] + Ry[t−1] + b). We propose to construct a Recurrent Highway
Network (RHN) layer with one or multiple Highway layers in the recurrent state
transition (equal to the desired recurrence depth). Formally, let WH,T,C ∈ Rn×m and
RH`,T`,C` ∈ R

n×n represent the weights matrices of the H nonlinear transform and
the T and C gates at layer ` ∈ {1, . . . , L}. The biases are denoted by bH`,T`,C` ∈ R

n
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and let s` denote the intermediate output at layer ` with s[t]0 = y[t−1]. Then an
RHN layer with a recurrence depth of L is described by

s[t]
`
= H(s[t]

`−1) · T (s
[t]
`−1) + s[t]

`−1 · C(s
[t]
`−1), (7.1)

where

H(s[t]
`−1) = tanh(WHx[t]I{`=1} +RH`s

[t]
`−1 + bH`), (7.2)

T (s[t]
`−1) = σ(WT x[t]I{`=1} +RT`s

[t]
`−1 + bT`), (7.3)

C(s[t]
`−1) = σ(WCx[t]I{`=1} +RC`s

[t]
`−1 + bC`), (7.4)

and I{} is the indicator function.
A schematic illustration of the RHN computation graph is shown in Figure 7.2.

The output of the RHN layer is the output of the Lth Highway layer i.e. y[t] = s[t]L .
Note that x[t] is directly transformed only by the first Highway layer (`= 1) in
the recurrent transition1 and for this layer s[t]

`−1 is the RHN layer’s output of the
previous time step. Subsequent Highway layers only process the outputs of the
previous layers. Dotted vertical lines in Figure 7.2 separate multiple Highway
layers in the recurrent transition.

For conceptual clarity, it is important to observe that an RHN layer with L = 1
is essentially a basic variant of an LSTM layer. Similar to other variants such as
GRU [Cho et al., 2014] and those studied by Greff et al. [2017a] and Jozefowicz
et al. [2015], it retains the essential components of the LSTM – multiplicative
gating units controlling the flow of information through self-connected additive
cells. However, an RHN layer naturally extends to L > 1, extending the LSTM
to model far more complex state transitions. Similar to Highway and LSTM
layers, other variants can be constructed without changing the basic principles,
for example by fixing one or both of the gates to always be one.

7.3 Experiments

Experiments were performed on four datasets of discrete symbolic sequences: the
JSB Chorales polyphonic music prediction dataset [Boulanger-Lewandowski et al.,
2012], the Penn Treebank [Marcus et al., 1993] word-level language modeling,
and the Hutter Prize Wikipedia datasets: text8 and enwik8 [Hutter, 2012]. All
tasks consisted of training models for next step prediction. On JSB Chorales, the
goal was to perform an optimization stress test similar to subsection 6.3.2. On

1This is not strictly necessary, but simply a convenient choice.
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Figure 7.2. Schematic showing computation within an RHN layer inside the
recurrent loop. Vertical dashed lines delimit stacked Highway layers. Horizontal
dashed lines imply the extension of the recurrence depth by stacking further
layers. H, T & C are the transformations described in equations 7.2, 7.3 and 7.4,
respectively.

Penn Treebank, the primary goal was to understand the benefits of increasing
the recurrence depth while keeping model size constant, i.e, utilizing the same
number of paramters for increasing depth instead of width of the layers.

Setup: For all experiments, the carry gate was coupled to the transform gate
by setting C(·) = 1 − T(·) as in Chapter 6. Note that a similar coupling was
also used by the Gated Recurrent Unit (GRU) architecture [Cho et al., 2014], a
variant of LSTM. It reduces model size for a fixed number of units and prevents
an unbounded blow-up of state values since each Highway layers output s[t]

`
is a

convex combination of H(s[t]
`−1) and s[t]

`−1. This stabilizes training, but imposes a
modeling bias which may be sub-optimal for certain tasks. For optimization and
Wikipedia experiments, the transform gates were biased towards being closed
at the start of training, again similar to the bias initialization used for Highway
networks in Chapter 6. All networks used a single RHN layer since we are only
interested in studying the influence of recurrence depth, and not of stacking
multiple layers. Source code for the experiments in this chapter is available at
https://github.com/julian121266/RecurrentHighwayNetworks.

Regularization of RHNs: Like all RNNs, we found suitable regularization
of RHNs to be essential for obtaining good generalization. The regularization
technique proposed by Gal [2015] was used, which is an interpretation of dropout

https://github.com/julian121266/RecurrentHighwayNetworks
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Figure 7.3. Swarm plot of optimization experiment results for various architectures
for different depths on next step prediction on the JSB Chorales dataset. Each
point is the result of optimization using a random hyperparameter setting. The
number of network parameters increases with depth, but is kept the same across
architectures for each depth. For architectures other than RHN, the random
search was unable to find good hyperparameters when depth increased.

based on approximate variational inference. Hence, RHNs regularized by this
technique are referred to as variational RHNs. For the word-level language
modeling on the Penn Treebank dataset, results are reported both with and
without Weight Tying (WT) regularization: a technique specificially proposed for
regularizing language modeling RNNs by sharing the same set of weights between
the network’s input and output layers Press and Wolf [2016]; Inan and Khosravi
[2016].

7.3.1 Optimization Stress Test

RHN is an architecture designed to enable the optimization of recurrent networks
with deep transitions. Therefore, the primary experimental verification required
is whether RHNs with high recurrence depths are easier to optimize compared
to other alternatives, preferably using conventional gradient based methods. In
this section, optimization of RHNs is compared to DT-RNNs and DT(S)-RNNs
[Pascanu et al., 2013a].

Networks with recurrence depth of 1, 2, 4 and 6 were trained for next step
prediction on the JSB Chorales dataset. The number of Highway units in each
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Figure 7.4. Test set perplexity on Penn Treebank word-level language modeling
using RHNs with fixed number of total parameter and increasing recurrence
depth. Increasing the depth improved performance up to 9 layers.

layer in the recurrent transition was equal and set to {1.5 × 105, 3 × 105, 6 ×
105, 9× 105}. Optimization was performed using batch gradient descent with
momentum equal to 0.9. The batch size was set to 32 and training for a maximum
of 1000 epochs was performed, stopping early if the loss did not improve for
100 epochs. tanh(·) was used as the activation function for the nonlinear layers.
60 random hyperparameter settings sampled uniformly were then evaluated for
each architecture and depth. The initial transform gate bias was sampled from
{0,−1,−2,−3}, the initial learning rate from [100, 10−4] using the logarithmic
scale. Finally, all weights were initialized using a Gaussian distribution with
standard deviation sampled uniformly on the logarithmic scale from [10−2, 10−8].

In general, larger networks should reach the minimum objective function
value on the training set, or at least a lower value compared to smaller networks.
However, the swarm plot in Figure 7.3 shows that both DT-RNN and DT(S)-
RNN become considerably harder to optimize with increasing depth, similar to
plain feedforward networks. It also shows that the optimization of RHNs did
not become more difficult as depth increased, indicating that RHNs are a viable
choice for constructing powerful and efficient deep sequence models that can be
trained reliably.
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Table 7.1. Validation and test set perplexities of the best RHNs obtained,
compared to those reported for state of the art word-level language models
on the Penn Treebank dataset. The model from Kim et al. [2015] uses feed-
forward Highway layers to transform a character-aware word representation
before feeding it into LSTM layers. dropout indicates the regularization
used by Zaremba et al. [2014] which was applied to only the input and
output of recurrent layers. Variational refers to the dropout regularization
from Gal [2015] based on approximate variational inference. WT indicates
Weight Tying regularization Press and Wolf [2016]; Inan and Khosravi [2016].
RHNs with large recurrence depth achieve highly competitive results and
are highlighted in bold.

Model Size Best Val. Test

RNN-LDA + KN-5 + cache 1 9 M – 92.0
Conv.+Highway+LSTM+dropout 2 19 M – 78.9
LSTM+dropout 3 66 M 82.2 78.4
Variational LSTM 4 66 M 77.3 75.0
Variational LSTM + WT 5 51 M 75.8 73.2
Pointer Sentinel-LSTM 6 21 M 72.4 70.9
Variational LSTM + WT + augmented loss 7 51 M 71.1 68.5
Variational RHN 32 M 71.2 68.5
Neural Architecture Search with base 8 8 32 M – 67.9
Variational RHN + WT 23 M 67.9 65.4
Neural Architecture Search with base 8 + WT 8 25 M – 64.0
Neural Architecture Search with base 8 + WT 8 54 M – 62.4

1 [Mikolov and Zweig, 2012]
2 [Kim et al., 2015]
3 [Zaremba et al., 2014]
4 [Gal, 2015]
5 [Press and Wolf, 2016]
6 [Merity et al., 2016]
7 [Inan et al., 2016]
8 [Zoph and Le, 2016]
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7.3.2 Sequence Modeling

Penn Treebank

To evaluate whether increasing recurrence depth can result in more powerful
models without increasing model size, RHNs with fixed total number of parameters
(32 M) and recurrence depths ranging from 1 to 10 were trained for word-level
language modeling on the Penn TreeBank dataset [Marcus et al., 1993]. This
resulted in RHNs with number of units per Highway layer ranging from 1275 to
830 units. Each network had a single linear layer that reduced the dimension of
the inputs, followed by a single hidden RHN layer and a softmax output layer
with 10 K outputs (the vocabulary size). All sentences were truncated to a length
of 35 as done by Zaremba et al. [2014]. Batch size for gradient descent was fixed
to 20. The learning rate started at a value of 0.2, and was decayed by a factor of
0.98 starting at 20 epochs. L2 regularization with coefficient 10−7 was added to
the objective function. During training, the gradients were rescaled whenever
their norm exceeded a value of 10 [Pascanu et al., 2013b]. Dropout rates were
chosen to be 0.25 for the linear layer, 0.75 for the input to the RHN gates, 0.25
for the hidden units and 0.75 for the outputs. All weights were initialized from
a uniform distribution on [−0.04,0.04]. It was found that for the best 10-layer
model obtained, lowering the weight decay to 10−9 further improved results.

For each depth, the test set perplexity of the best model based on performance
on the validation set is shown in Figure 7.4. The results for each model trained
again with WT regularization [Inan and Khosravi, 2016] are also shown, which
further reduces the total number of parameters. In both cases, the test score
improves as the recurrence depth increases from 1 to 10, dramatically at first, then
leveling out at nine to ten layers. Note that as the recurrence depth increased
from 1 to 10 layers, the “width" of the network decreased since the number
of parameters was kept fixed. Thus, these results demonstrate that even for
small datasets utilizing parameters to increase depth can yield much greater
benefits than increasing width. Table 7.1 compares the obtained result to the
best published results on this dataset. RHNs outperform most single models as
well as all previous ensembles, and also benefit from the recently proposed WT
regularization similar to LSTMs. The only model that outperforms RHNs was
automatically discovered through a large scale architecture learning technique by
Zoph and Le [2016].
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Table 7.2. Entropy in Bits Per Character (BPC) on the enwik8 test set (results
under 1.5 BPC & without dynamic evaluation). LN refers to the use of layer
normalization [Ba et al., 2016].

Model BPC Size

Grid-LSTM [Kalchbrenner et al., 2015] 1.47 17 M
MI-LSTM [Wu et al., 2016] 1.44 17 M
mLSTM [Krause et al., 2016] 1.42 21 M
LN HyperNetworks [Ha et al., 2016] 1.34 27 M
LN HM-LSTM [Chung et al., 2016] 1.32 35 M
RHN - Rec. depth 5 1.31 23 M
RHN - Rec. depth 10 1.30 21 M
Large RHN - Rec. depth 10 1.27 46 M

Table 7.3. Entropy in Bits Per Character (BPC) on the text8 test set (results
under 1.5 BPC & without dynamic evaluation). LN refers to the use of layer
normalization [Ba et al., 2016].

Model BPC Size

MI-LSTM [Wu et al., 2016] 1.44 17 M
mLSTM [Krause et al., 2016] 1.40 10 M
BN LSTM [Cooijmans et al., 2016] 1.36 16 M
HM-LSTM [Chung et al., 2016] 1.32 35 M
LN HM-LSTM [Chung et al., 2016] 1.29 35 M
RHN - Rec. depth 10 1.29 20 M
Large RHN - Rec. depth 10 1.27 45 M

enwik8 & text8 Datasets

This experiment evaluated RHNs for the next symbol prediction task on the
challenging Hutter Prize Wikipedia datasets: text8 and enwik8 [Hutter, 2012].
These text datasets have 27 and 205 unicode symbols in total, respectively. Due to
their size (100 M characters in total) and complexity (inclusion of Latin/non-Latin
alphabets, XML markup and various special characters for enwik8) these datasets
stress the learning and generalization capacity of RHNs.

Variational RHNs with recurrence depths of 5 or 10, and 1000 or 1500 units
per hidden layer, were trained on both datasets. Similar to experiments on Penn
Treebank, gradient scaling and L2 regularization with a coefficient of 10−7 was
used, and the network consisted of a linear layer to project the inputs down to
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fewer dimensions, followed by a single RHN layer, followed by a softmax output
layer. The size of the linear layer was the same as the size of the symbol set. For
batch gradient descent, an initial learning rate of 0.2 and a learning rate decay
factor of 0.96 was used. The learning rate was multiplied by the decay factor,
after each epoch, starting after 5 epochs of trainings. For the largest models
with 10 stacked layers and 1500 units the decay factor was 0.97. Weights were
initialized uniformly from the range [−0.04, 0.04] and an initial bias value of −4
was set for the transform gates to facilitate learning early in training. Dropout
probabilities were selected using a grid search over values in {0.05,0.1} for the
linear layer and the RHN hidden units, and {0.3, 0.4, 0.5} for the output layer and
RHN inputs. The performance of the models was measured in terms of entropy
of its predictions on the test set in Bits Per Character (BPC).

On text8 a validation/test set score of 1.19/1.27 BPC for a model with 1500
units and recurrence depth 10 is achieved. Similarly, on enwik8 a validation/test
set score of 1.26/1.27 BPC is achieved for the same model and hyperparameters.
Table 7.2 and Table 7.3 show that RHNs outperform all published models on
text8 and enwik8 with significantly fewer total parameters.

7.4 Analysis

RHNs are built using Highway layers, so an analysis of trained networks similar
to that in section 6.4, was performed examine their behavior and understand the
difference, if any, from their behavior in the feedforward case.

For the RHN with a recurrence depth of six trained on the JSB Chorales dataset
in subsection 7.3.1, Figure 7.5 shows the mean transform gate activity in each
layer over time for four example sequences (A—D), each 50 time-steps long.
Note that although the gates were biased towards zero (white) before training by
setting their biases to negative values, the network has learned to activate gates in
all the layers through training. The gate activity in the first layer of the recurrent
transition is typically high on average, indicating that at least one layer in the
transition is almost always utilized. Gates in other layers have varied behavior,
dynamically switching their activity over time in a different way for each sequence
and time-step. This indicates that the RHN utilizes varying amount of modeling
power over time.

Next, the lesioning experimental setup from section 6.4 was used to compare
the contributions of the Highway layers in a trained network toward its perfor-
mance. That is, for one layer at a time, all the gates were pushed towards carry
behavior by setting the bias to a large negative value, and the resulting loss was
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Figure 7.5. Mean activations of the transform (T ) gates at different depths (1—6)
in a trained RHN for four sequences (A—D) from the JSB Chorales dataset, on
which it was trained in subsection 7.3.1. Each sequence is 50 time-steps long.
An active transform gate indicates that the recurrence layer is used to process
input at a particular time step, as opposed to passing it to the next layer.

measured. Figure 7.6 shows the change in loss due to the lesioning of each layer,
and hence its contribution to the network performance. We find that the first
layer contributes several times more to the overall performance compared to
others. However, unlike the 50-layer lesioned feedforward Highway networks in
section 6.4, it is notable that removing any layer hurts the performance substan-
tially. This is likely due to the recurrent nature of the network. Since the same
six layers are activated at each time step of each sequence, each layer is likely to
have at least a few units that learn useful computations for some subsequences in
the dataset.

7.5 Discussion

The work of Pascanu et al. [2013a] showed that RNNs with deep recurrent
transitions fall in the category of models that can perform very well on sequence
processing tasks, but can not be trained reliably. This limitation was effectively
removed by employing Highway networks instead of plain layers in the transition,
resulting in the RHN architecture. The extensive experiments in this chapter on
challenging benchmarks show that increased recurrence depth can substantially
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Figure 7.6. Changes in loss when the Highway layers in a trained RHN are
biased towards carry behavior (i.e., effectively removed), one layer at a time. The
recurrence of the RHN was six, and it was trained on the JSB Chorales dataset
for next step prediction (subsection 7.3.1).

improve sequence models without taking a hit in terms of number of parameters.
It should be noted that although increasing depth while decreasing layer width

results in improved performance, RHNs with high recurrence depth benefit less
from massively parallel computing hardware such as Graphics Processing Units.
This is because parallel computations get traded for sequential computations as
depth increases. However, this trade-off affects all NN architectures and is in
fact desirable in situations where the amount of parallel processing resources are
limited.

Similar to the feedforward case, the Highway layers in RHNs perform adaptive
computation, i.e., the effective amount of transformation is dynamically adjusted
for each sequence and time step. The maximum depth of computation at each
time step is limited to the recurrence depth of the RHN layer. In principle, it
would be more attractive to not have this limitation and simply learn to repeatedly
use an LSTM layer for multiple micro-ticks as needed, but efforts to accomplish
this behavior are still in their early stages [Graves, 2016].
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Chapter 8

Conclusion

This thesis contributes neural network architectures that permit efficient and reli-
able training of large and deep NNs. Chapter 3 summarized a long line of previous
research that was inspired by similar motivations of improving the trainability of
neural networks. Standing on the shoulders of giants, in chapters 4 to 7, a series
of network architectures were proposed to overcome two significant hurdles in
training powerful NNs: cross-pattern interference and vanishing gradients.

Below, we summarize the proposed architectures, with references to the corre-
sponding publications in which they first appeared. Finally, the thesis concludes
with a discussion of future work.

LOCAL WINNER-TAKE-ALL NETWORKS (LWTA) [Srivastava et al., 2013a, 2015b]
LWTA networks represent a unique and effective solution to the problem of

cross-pattern interference in NNs. Instead of utilizing per-unit non-linearities,
these networks derive their power from simple local competition among groups
of units in each layer.

Experiments on digit classification and sentiment analysis tasks demonstrated
their strong performance on benchmarks. More importantly, analysis of LWTA
revealed implicit local gating of input patterns to specialized sets of computation
units, thereby mitigating cross-pattern interference and making training efficient.

While it had been noted previously that the ReL activation function directs
input patterns through different linear subnetworks within a network, the ex-
tent and utility of this phenomenon had never been investigated. Building upon
this observation, we formulated and tested the model of models hypothesis to
understand the superior performance of not just networks with the ReL activa-
tion function, but also LWTA and maxout networks, and studied their common
properties.
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A battery of experiments on MNIST, CIFAR-10, CIFAR-100 and ImageNet 2012
datasets confirmed the validity of our hypothesis, underscoring the significance
of implicit local gating present in all three types of networks studied.

HIGHWAY NETWORKS [Srivastava et al., 2015a]
Highway networks retain the property of avoiding cross-pattern interference

among units in the same layer through the use of explicit gating units, and further
enable credit assignment across a large number of layers through skip connections.

Image classification experiments on MNIST, CIFAR-10, and CIFAR-100 with
Highway networks demonstrated that training them reliably remained straight-
forward even as they became increasingly more powerful due to the addition of
more layers, while in the past NN became increasingly cumbersome to train in
this case. Therefore, they represent a significant advance in the ability to train
large and deep NNs.

RECURRENT HIGHWAY NETWORKS (RHNS) [Zilly and Srivastava et al., 2017]
RHNs are an extension of Highway networks to the sequential setting, and

successfully address another identified challenge in the field: training of RNN
with deep recurrent transitions for modeling complex temporal dependencies
efficiently.

Experiments performed with RHNs consistently demonstrated the benefits
of addressing the challenge of increased depth in time. On the Penn Treebank
dataset for language modeling, increasingly better performance was obtained
by RHNs with progressively deeper transitions while the number of parameters
remained the same. On the challenging enwik8 and text8 benchmarks, the same
trend was observed and state of the art results were obtained in terms of both
performance and parameter efficiency.

8.1 Future Work

The developments presented in this thesis overcome many hurdles in the training
of NNs, but they also open up several new lines of inquiry:

What are the inductive biases of the new architectures?
This question pertains to developing an understanding of the implicit assumptions
a practitioner makes when choosing a particular network architecture for a new
task. As discussed in section 3.2, choosing an architecture amounts to selecting a
prior set of assumptions that affect learning and generalization. This is because
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even if the network is capable of representation a huge variety of function types,
the information baked into the architecture of a network (and relatedly, its
initialization) biases it towards learning certain types of functions before others.
For example, we would like to know the types of functions that specific variants
of Highway networks are biased towards learning. This knowledge would be both
prescriptive, since it would enable the selection of the most suitable variant based
on an understanding of the task characteristics, and descriptive, since it would
explain why a particular variant performs the best on one task but not another.
We have already made some initial progress in this direction in our own work
[Greff et al., 2017b].

What is the effect of these architectures on optimization?
The architectures developed in this thesis were designed to improve credit assign-
ment among units and avoid vanishing gradients during backpropagation. While
the results demonstrate that these goals were successfully achieved, a proper
understanding of the full loss landscape of NNs is still lacking. In particular,
an important topic for investigation is: how does the addition of elements like
local competition, gating and skip connections modify the loss landscape of the
network? A satisfactory answer to this question would a) explain the success of
the proposed architectures, and b) suggest other methods of effecting the same
modifications. For recent work in this direction, see Orhan and Pitkow [2017].

How to best utilize their benefits?
Experimental results presented in this thesis already demonstrate substantial
improvements in performance or efficiency on many benchmark problems, but an
important open question is: which new problems can now be attacked with the
help of an expanded set of tools that we could not tackle before? There is also an
equally important secondary question: which other techniques can we develop
specifically keeping in mind these new developments to solve existing problems
even better, or even new set of problems? For example, are there regularization
techniques that work particularly well with LWTA or Highway networks? The
answers to this questions will be the key to further broadening the impact of the
work presented here.

We believe that continued investigations along these lines will lead to further
advancements in understanding and successful applications of NNs.
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