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1. INTRODUCTION
In this paper we prove a generalization of a theorem of Schneider which can be seen as the counterpart

in the theory of transcendental numbers to work of Chern [1] in value distribution theory.
In the past transcendence theory has been largely related to the study of values of analytic functions

with additional properties. The first remarkable instance was Hermite’s work on e followed by Lin-
demann’s spectacular proof of the transcendence of π as a corollary of his celebrated theorem on the
transcendence of eα for algebraic α �= 0. A further example is the solution of Hilbert’s seventh problem
by Gelfond [2] and independently by Schneider [3]. All these results are theorems about holomorphic
functions of exponential type which satisfy linear differential equations. In 1936 Schneider [4] extended
the results to elliptic functions which again satisfy a system of first order differential equations. In
contrast to exponential functions they are only meromorphic and have order of growth 2. Then Schneider
[5] realized in 1948 that the methods which were developed by himself and by Gelfond can be used to
prove a very general and very conceptual transcendence criterion which included all the results described
so far. Schneider pointed out in [5, Section 3, b)] that Gelfond’s proof of the Hilbert problem is not
covered by his theorem and he puts this as an open question. In his book Lang [6] streamlined the
formulation of the theorem by simplifying the hypotheses and got a very elegant criterion, now known
as the Schneider–Lang Criterion. This has the effect that the theorem becomes less general but has
the advantage that its proof becomes slightly simpler and that the criterion is much easier to apply.
In particular Lang assumes that the functions satisfy differential equations which is not needed in
Schneider’s theorem. However it still covers the main applications and even includes Gelfond’s proof.
It is clear that requiring differential equations is restrictive and schrinks the general applicability of the
theorem.

Schneider–Lang Criterion. Let K ⊂ C be a number field and let f1, . . . , fN be meromorphic
functions of order ≤ ρ. Assume that the field K(f) = K(f1, . . . , fN ) has transcendence degree
≥ 2 over K and that the derivative ∇ = d/dt maps the ring K[f ] = K[f1, . . . , fN ] into itself. If S
is a set of points in C such that

fi(w) ∈ K

for all w ∈ S then |S| ≤ 20ρ[K : Q].

The elegance of the criterion was the starting point for further spectacular progress. In the same
book [6] Lang got a version of the theorem for functions on C

n. However he did not make real use of
the much more complicated complex analysis in the case of several variables. Schneider had already
pointed out among others in his paper this possibility. Later, in a wonderful paper [7], Bombieri, using
very deep techniques in complex analysis of several variables, got the genuine several variables version
of Schneider’s theorem á la Schneider–Lang.

Bombieri’s Theorem. Let K ⊂ C be a number field and let f = (f1, . . . , fn) be meromorphic
functions in C

d of finite order. Assume that

1The text was submitted by the authors in English.
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(1) tr deg K(f) ≥ d + 1;

(2) the partial derivatives ∂/∂zα, α = 1, . . . , d, map the ring K[f ] into itself.

Then the set S of points ξ ∈ C
n where f(ξ) takes values in KN is contained in an algebraic

hypersurface.

It is remarkable that the proofs of the two theorems above are closely related to value distribution
theory in the case of functions on C and C

n respectively.

One main topic in Nevanlinna theory is to understand the relation between the growth of pole divisors
and the growth of functions. In the case of rational functions the situation is very simple because the
divisors are all finite and then the theory dates back to Gauss and his work on the fundamental theorem
of algebra. In the case of meromorphic functions on C the value distribution theory is highlighted by two
Main Theorems which can be found in the monograph [8] by Nevanlinna.

The beauty of Nevanlinna’s theory seduced many mathematicians to try to understand the distribu-
tion property of functions in different and more general situations. First it was extended to functions on
C

n by Stoll in [9] and by Chern [10]. Chern’s insight into the role played by infinity in Nevanlinna
theory lead to an extension of the theory to affine curves which was published in [1]. The general
case of affine varieties has been accomplished by Ph. Griffiths and King in [11, 12]. They introduced
exhaustion functions to define growth and made use of differential geometric and complex algebrao-
geometric methods.

The work of Schneider, Lang and Bombieri in transcendence theory is related to the cases C and C
n

which were studied by Nevanlinna and Stoll whereas our work now deals with affine curves.

Let Z be a smooth projective curve of genus g over C and P a non-empty set of l points in Z. Then
C := Z − P is an affine algebraic curve. We let X be a non-singular algebraic variety defined over a
number field K with tangent sheaf TX . Further we assume that ψ : C → XC is an integral curve of a
vector field Δ ∈ Γ(X,TX ⊗MX) which by definition acts on the sheaf of meromorphic sections MX

as derivations. Then for every c ∈ C there is an analytic local section ∇ at c of the tangent sheaf TC

which does not vanish at c and such that locally we have ψ∗(∇) = ΔC. The section ∇ acts on analytic
functions on C as derivation f 
→ ∇(f) := (df,∇) given by evaluating the differential df of a function f
in ∇. The local sections ∇ for varying c ∈ C glue together and give a nowhere vanishing holomorphic
global section ∇ ∈ Γ(C,TC).

Our results depend on the order of the integral curve ψ. There are several essentially equivalent
approaches to a concept of order in our situation. In Section 5 we shall discuss the different ways to
define an order ρ(ψ) of ψ and we shall show that they lead to the same value which coincides with the
order in the Schneider–Lang criterion when C = A

1(C) and X = A
n.

Theorem 1.1. If the dimension of the Zariski closure ψ(C) of ψ(C) is at least 2 then

|ψ−1(X(K))| ≤ g + 1 + 2[K : Q] l max(ρ, 2g).

In Theorem 1.1 we start from objects on X. If instead we start with objects on C we get the following
theorem which then takes more the form of the Schneider–Lang criterion.

Theorem 1.2. Let K ⊂ C be a number field and let f1, . . . , fN be holomorphic functions on C with
order ≤ ρ. We assume that the field K(f1, . . . , fN ) has transcendence degree ≥ 2 over K and that
∇ is an analytic section of TC which acts as a derivation on K[f1, . . . , fN ] by f 
→ (∇, df). If S is
a subset of C such that fi(w) ∈ K for all w ∈ S and all i then

|S| ≤ g + 1 + 2[K : Q] ρl. (1)

We give two proofs of the theorem in the last Section. One is based on a Jensen’s Formula which will
be discussed in Section 4 and a second uses the maximum principle.

PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS Vol. 282 Suppl. 1 2013



MEROMORPHIC MAPS ON RIEMANN SURFACES AND TRANSCENDENCE S105

Before we state our next theorem we discuss how Theorem 1.1 and Theorem 1.2 are related. Let
f1, . . . , fN be functions on C as in Theorem 1.2 and let F : C → C

N be the map F (z) = (f1(z),
. . . , fN (z)). The derivation ∇ of K[f1, . . . , fN ] can be lifted to give a regular algebraic vector field Δ on
AN

K which can be obtained explicitly. For its construction we express K[f1, . . . , fN ] as K[T1, . . . , TN ]/I
for an ideal I. If ∇(fi) = gi(f1, f2, . . . , fN ) then we take Δ =

∑
i gi(T1, . . . , TN ) ∂/∂Ti. Clearly the

choice of Δ is not unique since taking Δ + h∂/∂Ti for any h ∈ I is another possibility to select. It is
clear however that they induce the same derivation on K[f1, . . . , fN ].

For a ∈ C we denote by ∇a the germ of ∇ at a. We have dF (∇a)(Ti) = ∇a(F ∗(Ti)) by the
definition of dF , we have ∇a(F ∗(Ti)) = gi(F (a)) by hypothesis and we have gi(F (a)) = ΔF (a)(Ti)
by construction. Since the differentials dTi give a basis for Ω1

CN at every point in C
N we deduce that

dF (∇a) = ΔF (a) and we conclude that F : C → C
N is an integral curve of ΔC provided that ∇ does

not have any zero on C. This shows that Theorem 1.2 is a special case of Theorem 1.1 when X = A
N
K .

However using a result of Griffiths the proof of Theorem 1.1 can be reduced to a situation as given in
Theorem 1.2. This will be explained in Section 6.

After we had finished a first version of this article we learned that there is a paper by Wakabayashi [13]
on the same topic. His result is similar to our Theorem 1.2 with the difference that it applies for
meromorphic functions and gives a different estimate for the cardinality of S. It is difficult to compare the
estimate given there with ours because his order is defined in a different way. The order we use is defined
in an intrinsic way. The proofs rely on Jensen’s equality which needs exhaustion functions. Wakabayashi
builds on Green’s functions. In our approach we use Riemann–Roch to construct a finite map C → C

and then pull back the distance function of C to obtain the so called Griffiths–King’s exhaustion function
on C.

We are now going to state our Main Theorem and consider as before a holomorphic mapping
f : C → XC where X is a projective variety defined over K. Let ∇ be a vector field in Γ(C,TC) without
zero and assume that ∇ acts as a derivation on the field f∗(K(X)). Then ∇ can again be lifted to a
rational vector field Δ on X, i.e. ∇ ∈ Γ(C,TC)∩ Γ(C, f−1(TX ⊗MX)). We call a point x ∈ X a regular
point of Δ if and only if Δ(OX,x) ⊆ OX,x. Otherwise we call x a pole of Δ. The set of regular points of
Δ is an open subvariety U of X. As usual we let f(C) be the Zariski closure of f(C).

Theorem 1.3 (Main). If dim f(C) ≥ 2 then

|f−1(U(K))| ≤ g + 1 + 2[K : Q] l max(ρ, 2g).

A significant hypothesis in our theorems is the existence of differential equations. There are two
aspects which should be mentioned in this context. The first concerns the growth. It seems to be possible
that in some cases the condition on the growth of f can be replaced by more accessible data related to the
differential equations which determine the growth behavior of the solutions to some extend. We intend
to come back to this question in the future.

The second concerns Schneider’s original work where he taught us that differential equations are not
necessary. They can also be removed from our work in the spirit of Schneider without making our work
obsolete since results which can be expected without assuming differential equations are of different
nature. We shall also come back to this point in the last section.

Our main Theorem 1.3 goes much beyond Theorems 1.1 and 1.2 and much beyond Wakabayashi’s
result since it deals with maps instead of functions and in addition—and this is a novelty—we allow
singularities of the differential operator. To deal with singularities we use techniques from algebraic
geometry and commutative algebra and use a blow up argument to reduce the singular case to a regular.
In Section 7 we give several examples to illustrate how singular differential operators appear in nature.
In particular we deduce an old theorem of Schneider on the transcendence of periods of elliptic functions.
A similar example could also be given for abelian functions.

Theorems 1.3 and 1.1 are more of geometric nature and can be seen as a finiteness Theorem on
rational points on a certain class of analytic curves. Such an aspect is missing completely in the work of
Wakabayashi.

Finally we should explain why we for the moment kept off from the higher dimensional question á la
Bombieri. The main reason is that we intended first to investigate carefully all the possibilities which one
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has in a very new and unexplored area. For this we chose the most simple but still generic new situation.
The next step would then be to extend the work to mappings from an affine variety into a projective
variety along the lines given by Bombieri. The main work here consists of extending the L2-analysis on
C

n developed by Hörmander in [14] and used by Bombieri in his work to affine varieties. There are no
fundamental obstructions to be expected, in particular since much work has been done in this direction
so far by quite a number of authors, especially by H. Skoda and J.-P. Demailly.

Since Schneider’s original theorem has stayed relatively unattended we decided to state and discuss
the theorem in a version more in the style of today. We do this at the end of the paper in an appendix and
we shall also discuss possible extensions.

2. STANDARD ESTIMATES

Let K be an algebraic number field of degree d over the rationals Q and with discriminant disc(K).
For a place v of K we denote by | · |v the normalized absolute value such that |p|v = p−[Kv:Qp] when v | p
where Kv is the completion of K at v. For an archimedean place v | ∞ corresponding to the embedding
τ of K into C we define |x|v = |τ(x)|[Kv:R] where |τ(x)| is the Euclidean absolute value and where Kv

is defined as in the non-archimedean case. Let A
n be the affine space of dimension n. As in [15] we

introduce for x = (x1 . . . , xn) ∈ A
n(K) the absolute values2

|x|v =

⎧
⎪⎨

⎪⎩

maxi(|xi|v), v non-archimedean,

(
∑

i τ(xi)2)1/2, v real,
∑

i τ(xi)τ(xi), v complex

and define the logarithmic (Weil) height hL2(x) of x ∈ A
n(K) as

hL2(x) =
∑

v

log |x|v.

On writing log+(x) for max(0, log(|x|)) we introduce

h+
L2(x) =

∑

v

log+ |x|v .

The two sums are taken over all places of K. The definition of the height depends on the field K for which
x ∈ A

n(K).
If we take instead of the L2-norm the maximum norm |x|v = max(|xi|v) we get a different height

hmax(x). Both are related by

hmax ≤ hL2 ≤ hmax +
d

2
log(n + 1) (2)

when evaluated on A
n. The inequalities also hold for hL2 and hmax repaced by h+

L2 and h+
max. In the case

n = 1 we also introduce

h(x) =
∑

v

log+ |x|v.

The norm satisfies the product formula
∏

v

|x|v = 1

for any x �= 0 in K.

2The absolute values are norms as soon as v is either a non-archimedean or a real place. Norms are subadditive. At the
remaining places only the square root of the absolute value is a norm. However on taking log+ all absolute values lead to
subadditive functions. The modified definition comes from the fact that there are r real and 2s complex embeddings but
only r real and s complex places. This is compensated by introducing the weight 2 = [C : R] at the non-real archimedean
places and is built in in the definition of our absolute values so that the sum of the weights is r + 2s. This gives the very
useful subadditivity hL2(x + y) ≤ hL2(x) + hL2(y) and the same for hmax.
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The Weil height can be extended to polynomials in n variables T1, . . . , Tn with coefficients in K. Let

P =
∑

i piT
i be such a polynomial with i : {1, . . . , n} → N a multi-index and T i = T

i(1)
1 · · ·T i(n)

n . It
corresponds to a point p = ( . . . , pi, . . . ) in an affine space A

N (K) and we define |P |v as |p|v and the
height of P as

h(P ) =
∑

v

log |P |v ,

where h is hL2 or hmax depending on the choice of norms. We shall also use

h+(P ) =
∑

v

log+ |P |v .

The next Lemma is a modification of the classical Liouville estimate which gives a natural improvement
in a special case.

Lemma 2.1 (Modified Liouville Estimate). Let L = l1T1 + · · · + lNTN be a linear form with coeffi-
cients in Z, w is an archimedean place of K and ξ ∈ KN . If L(ξ) �= 0 then

log |L(ξ)|w ≥ −(h+
L2(ξ) + hL2(L)) + log |L| (3)

with |L| the L2-norm of L.

Proof. This is an easy application of the product formula and one has only to observe that by the
Schwarz inequality we have log |L(ξ)|v ≤ log |L|v + log |ξ|v for an archimedean v and log |L(ξ)|v ≤
log |ξ|v in the non-archimedean case.

In the proofs we shall consider a system of linear equations

Li(T1, . . . , TN ) =
N∑

j=1

li,j Tj = 0 (4)

with coefficients in K and with 1 ≤ i ≤ M .

Lemma 2.2 (Siegel’s Lemma). If N > M then (4) has a non-trivial solution x = (x1, . . . , xN ) ∈ ON
K

such that

h+
max(x) ≤ 1

2
log |disc(K)| + M

N − M
max

i
(hL2(Li)).

Proof. This is Corollary 11 of [15].

Let Δ: K[T1, . . . , TN ] → K[T1, . . . , TN ] be a differential operator of order 1. We may write

Δ = g1
∂

∂T1
+ g2

∂

∂T2
+ · · · + gN

∂

∂TN

with g1, g2, . . . , gN in K[T1, . . . , TN ]. It maps the vector space K[T1, . . . , TN ]D of polynomials of degree
≤ D into K[T1, . . . , TN ]D+ω for ω = maxi(deg gi) − 1 and we get for any set of integers mj with
0 ≤ mj ≤ m in terms of the L2-norm the bounds

log+ |ΔTm1
1 · · ·TmN

N |v ≤

⎧
⎪⎨

⎪⎩

∑
j log+ |gj |v + log+ |m|v + log(N), v real,

∑
j log+ |gj |v + log+ |m|v + log(N), v complex,

maxj(log+ |gj |v), v archimedean.

Together with induction this leads to the following.
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Lemma 2.3. Let P be a polynomial of degree ≤ r in K[T1, . . . , TN ] and x ∈ KN . Then there exist
positive real constants Cv depending only on Δ, N and x such that C =

∑
v Cv is finite and

log+ |ΔkP (x)|v ≤

⎧
⎪⎨

⎪⎩

log+ |P |v + k log(r + kω) + Cv(r + kω), v real,

log+ |P |v + 2k log(r + kω) + Cv(r + kω), v complex,

log+ |P |v + Cv (r + kω), v � ∞.

(5)

Remark. The constant C can be easily seen to be of the form C ′h+(x) with C ′ independent on x.

3. RATIONAL FUNCTIONS ON CURVES

Let Z be as in the introduction a smooth projective curve of genus g, P a non-empty finite set of l
points in Z, S a finite set of points in C = Z \ P and ∇ ∈ Γ(C,TC). We shall construct in this section
rational functions with prescribed zero and polar divisors using the classical theory of linear systems and
the Riemann–Roch Formula. For a divisor D we write O(D) for the invertible sheaf associated with D
which is L(D) in Hartshorne’s notation. The first lemma is classical but for convenience we give the
short proof.

Lemma 3.1. Let Z be a compact Riemann surface of genus g and let D be a divisor on Z with
deg D ≥ 2g. Then the complete linear system |D| of O(D) has no base point.

Proof. For p ∈ Z the exact sequence

0 → O(D − (p)) → O(D)
rp−→ Lp → 0

induces an exact sequence

H0(Z,O(D)) → H0(Z,Lp) → H1(Z,O(D − (p)))

in cohomology. Since the canonical bundle KZ on Z has degree 2g − 2 and since degO(D − (p)) =
deg D − 1 ≥ 2g − 1 we have deg(KZ ⊗ (O(p) − D)) < 0 and Serre duality gives

H1(Z,O(D − (p)) = H0(Z,KZ ⊗O((p) − D)) = 0.

We deduce that the connecting homomorphism H0(Z,O(D)) → H0(Z,Lp) is surjective and this means
that p is not a base point and the conclusion of the lemma follows.

Lemma 3.2. We assume that |S| ≥ m1|P| + 2g for some m1 ≥ 1. Then there exists a holomorphic
map f : Z → P

1 such that (f)0 =
∑

w∈S(w) and (f)∞ ≥
∑

p∈P m1 (p).

Proof. We apply the Riemann–Roch Formula to the divisor

D =
∑

w∈S
(w) −

∑

p∈P
m1(p),

which has deg D = |S| − m1l ≥ 2g and get l(D) = i(D) + deg D + 1 − g ≥ g + 1. The linear system
|D| is a projective space of dimension g. By Lemma 3.1 we know that |D| has no base points. Therefore
for w ∈ S the space Dw = {D′ ∈ |D| : w ∈ D′} is a hyperplane in |D| and |D| −

⋃
w∈S Dw is nonempty.

Each D′ ∈ |D| \
⋃

w∈S Dw is effective and has the property that D ∼ D′. Therefore
∑

w∈S(w) ∼
m1P + D′. By our selection of D′ we have w /∈ D′ for w ∈ S and this implies that no (w) with w ∈ S can
be canceled by D′. The difference is linearly equivalent to zero and this means that there is a holomorphic
map f : Z → P

1 such that (f)0 =
∑

w∈S(w) and (f)∞ =
∑

p∈P m1(p) + D′ ≥
∑

p∈P m1(p) as stated.

For each p ∈ P we choose a local coordinate zp in a neighborhood of p. We assume that |S| ≥
|P| + 2g and then there exist integers m1 ≥ 1 and 2g ≤ t ≤ l + 2g − 1 such that |S| = m1|P| + t.

Lemma 3.3. There exist constants C1, C2 > 0 such that for all integers N ≥ 1 there is a holomor-
phic mapping φN : Z → P

1 such that
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(i) (φN )0 =
∑

w∈S N (w);

(ii) |φN (zp)| ≥ |C1/zp|m1N for all p ∈ P and all zp sufficiently small;

(iii) |∇NφN (w)| ≤ N !CN
2 for all w ∈ S.

Proof. By Lemma 3.2 there exists a function g such that,

(g)0 =
∑

w∈S
(w), (g)∞ ≥

∑

p∈P
m1(p).

Now we put φN = gN and (i) follows.

Since g has a pole of order at least m1 at each p in P there exists a constant C1 > 0 such that
|g(zp)| ≥ |C1/zp|m1 for zp sufficiently small and p ∈ P. Therefore the function φN can be estimated from
below by |φN (zp)| ≥ |C1/zp|m1N for zp sufficiently small and p ∈ P which gives (ii).

Since ∇ is non-zero at w by hypothesis we find a local parameter t at w ∈ S satisfying t(w) = 0 such
that in a neighborhood of w the derivation ∇ takes the form ∂/∂t. Then g(t) can be written as tε(t) near
w for some unit ε(t) and φN (t) as tNε(t)N . Therefore ∇NφN (w) = N ! ε(0)N and if we define C2 as the
maximum of |ε(0)| taken over all w ∈ S we get (iii).

Remark. The existence of φN in Lemma 3.3 is essential for the first proof of Theorem 1.2. In classical
transcendence proofs there already exist functions which are analogous to our φN . We mention the
polynomial

∏
w∈S(t − w)N in [6] or the Blaschke products

∏
w∈S(r(w − t)/(r2 − wt))N in [16] which

play the role of our φN there. All such φN have the property that they take 0 up to order N at fixed finitely
many points and take large values near the boundary.

In the second proof of Theorem 1.2 we need a special exhaustion function for the affine curve
C = Z \ P. This is provided in the next lemma.

Lemma 3.4. For all a ∈ C and for all integers q ≥ 0 there exists a rational map π : Z → P
1 such

that

(i) (π)0 = t (a), ql ≤ t ≤ ql + g;

(ii) (π)∞ ≥
∑

p∈P q (p).

The projection π only depends on a and q.

Proof. The divisor D = (ql + g)(a) −
∑

p∈P q (p) has degree g and the Riemann–Roch Formula gives
l(D) = i(D) + deg D + 1 − g ≥ 1 which implies the desired conclusion.

4. JENSEN’S FORMULA

In this section we shall discuss Jensen’s Formula which was a starting point for Nevanlinna theory.
Although this formula can be stated in very simple and elementary terms it is conceptually better and
advantageous to express the formula in terms of the standard functions in Nevanlinna theory. We begin
with recalling the definition of the Nevanlinna characteristic function and of the order of a meromorphic
function f on C and we shall state the First Main Theorem (FMT) in classical Nevanlinna theory which
shows how the various functions are related.

For real α we recall log+ α to be the maximum of the numbers log α and 0, and we let n(r,∞) be the
number of poles of f in the closed disk |z| ≤ r. Then the standard functions in Nevanlinna theory are

M(r, f) = max
|z|=r

|f(z)|,

N(r, f) = N(r,∞) =
∫ r

0

n(t,∞) − n(0,∞)
t

dt + n(0,∞) log r,
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m(r, f) = m(r,∞) =
1
2π

∫ 2π

0
log+ |f(reiϕ)| dϕ,

N(r, a) = N

(

r,
1

f − a

)

,

m(r, a) = m

(

r,
1

f − a

)

,

T (r, f) = m(r,∞) + N(r,∞).

We call M(r, f) the maximum modulus function and T (r, f) the Nevanlinna characteristic function of f
and we write simply M(r), m(r), N(r), T (r) when no confusion can arise.

First Main Theorem [8, p. 166]. For any meromorphic function f we have

N(r, a) + m(r, a) = T (r, f) + O(1).

It is not difficult to see that the First Main Theorem is equivalent to Jensen’s Formula which we shall
present only for holomorphic functions since we need it only in this case. Such an entire function can be
expressed as f(z) = zλε(z) for some unit ε(z).

Jensen’s Formula [8, p. 164]. We have

log |ε(0)| + N(r, 0) =
1
2π

∫ 2π

0
log |f(reiθ)| dθ.

Jensen’s Formula is closely related to the Schwarz Lemma as it is used in transcendence theory.
There usually a holomorphic function is constructed with growth and vanishing conditions. The growth
conditions are used to give an upper bound for the integral in the formula. The vanishing conditions
lead to a lower bound for N(r, 0). Arithmetical data enter through the term log |ε(0)| on the left and one
derives a lower bound of log |ε(0)| using Liouville estimates. In this way a proof of Schneider’s theorem
can be obtained, although there is not too much difference with the standard proof. We shall give one
proof of Theorem 1.2 along these lines. This needs a Jensen’s Formula in the more general situation of
an affine algebraic curve which we shall derive now.

Let f be a meromorphic function on a smooth affine algebraic curve C as in Section 3. We recall
briefly from [12] some aspects of Nevanlinna theory of affine varieties in the case of curves, especially the
use of a special exhaustion function. Since Z is a smooth curve we can choose by Riemann–Roch a
projection π : Z → P

1 such that π−1(∞) =
∑

p∈P mp (p) with mp ≥ 1. The projection π gives a special
exhaustion function τ(z) = log |π(z)| on C in the sense of Griffiths and King and for real r ≥ 0 we put
C[r] = {z ∈ C : eτ(z) = |π(z)| ≤ r}. We consider now the curve C as a Riemann surface and for real
r ≥ 0 we define Div C[r] to be the free abelian group generated by C[r]. Its elements can be expressed
as finite suns

∑
z∈C[r] nz(z) with integer coefficients nz and with a symbol (z) for each z ∈ C[r]. For

s ≤ r there is a natural injective group homomorphism ιs,r : Div C[s] → Div C[r].
The family {Div C[r], ιs,r} is a direct system and Div C = lim−→Div C[r] is defined to be the group of

analytic divisors on C. Its elements can be written as

D =
∑

z∈C

D(z)(z)

with D(z) ∈ Z and zero up to a discrete and countable set of points, the support supp(D) of D. Let
pr : Div C → Div C[r] be the natural projection. Then D[r] = pr(D) has finite support in C[r] and
therefore nπ(D, r) =

∫
D[r] 1 is an integer. To characterize the growth of D we define

Nπ(D, r) =
∫ r

0

nπ(D, t) − nπ(D, 0)
t

dt + nπ(D, 0) log r.
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Let f : C → P
1 be a meromorphic function and ordz f its order at z ∈ C. Then

(f) =
∑

z∈C

(ordz f)(z)

is the divisor of f . To characterize the growth of the function f we define the Ahlfors–Shimizu
characteristic function by

T π
AS(r, f) =

∫ r

0

∫

C[t]
f∗

(
i

2π
dz ∧ dz

(1 + |z|2)2

)
dt

t
(6)

as given by (5.1) in [12] in the case m = q = 1. From the definition we easily see that T π
AS(r, f) ≥ C log r

for some positive C and sufficiently large r if f is non-constant. When we compare the growth of a divisor
and the growth of a function, the FMT in Nevanlinna theory (see [1, p. 332] and [12, pp. 184, 189–190]
for more details) shows us that the error term can be estimated by the proximity function

mπ
AS(r, f) =

∫

∂C[r]
log (1 + |f(z)|2) dcτ

with dcf defined as
√
−1
4π

(
∂f

∂z
dz − ∂f

∂z
dz

)

.

First Main Theorem∗. Let D∞ be the polar divisor of f . Then

T π
AS(r, f) = Nπ(D∞, r) + mπ

AS(r, f) + O(1). (7)

It can be shown that mπ
AS(∞, r) =

∫
∂C[r] log

+ |f(z)|2 dcτ + O(1) and therefore, if we define the

Nevanlinna’s characteristic function T π(r, f) as Nπ(D∞, r) + mπ(r, f), where

mπ(r, f) =
∫

∂C[r]
log+ |f(z)|2 dcτ,

we see that the First Main Theorem∗ implies that the Nevanlinna characteristic function and the
Ahlfors–Shimizu characteristic function coincide up to a bounded term.

As we have already mentioned the FMT is equivalent to a formula of Jensen’s type. We shall state
now a version of a general Jensen Formula as given in [12, Proposition 3.2], that is adapted to our
situation.

Jensen’s Formula∗. Let f be a meromorphic function on C with divisor D. Then for all real
numbers r and r0 with r ≥ r0 we have

Nπ(D, r) − Nπ(D, r0) +
∫

∂C[r0]
log |f |2 dcτ =

∫

∂C[r]
log |f |2 dcτ. (8)

An explicit form of FMT for functions on affine curves goes back to Chern in [1, p. 332]. Later Griffiths
and King [12] were able to extend it to affine varieties using special exhaustion functions. Since Chern’s
result does not depend on any special exhaustion function his result is more general than the result
of Griffiths and King in the one variable case. However we still prefer their setting because special
exhaustion functions make the formula more applicable. When n(D, 0) = 0 we can take r0 = 0 and
then the above formula becomes

Nπ(D, r) +
∑

π(z)=0

log |f(z)| =
∫

∂C[r]
log |f |2 dcτ. (9)

In the second proof of Theorem 1.2 we construct a holomorphic function f which satisfies again
growth and vanishing conditions. Then from the growth conditions we derive an upper bound for the
integral. The vanishing conditions lead to a lower bound for Nπ(D, r) and the sum can be bounded from
below by a Liouville estimate. A comparison of the bounds then leads to the stated result. In the next
section we discuss the notion of the order of a function which is used to characterize growth conditions.
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5. FUNCTIONS OF FINITE ORDER ON CURVES

Since there are at least two possible definitions of the order of functions on curves (see [17] or [12])
we have to discuss the notion carefully. For a clear and detailed exposition on the different indicators of
orders for meromorphic functions f : C → P

1 we refer to [18].
We discuss first the case when f is an entire function. Here the order of f is defined using the

maximum modulus function or the Nevanlinna characteristic function. It is given by

ρ(f) = lim
r→∞

log log M(r, f)
log r

and

ρ(f) = lim
r→∞

log T (r, f)
log r

,

respectively. The two definitions are equivalent and for a proof we refer to [8, p. 216].
When f is a meromorphic function, M(r, f) does not make sense. There are two variants to overcome

the difficulty. The first makes use of the well-known fact that a meromorphic function is of order ≤ ρ if
and only if it can be expressed as f = h/g where h and g are both entire functions and of order ≤ ρ (see
[8, p. 223]). Then ρ(f) is the infimum of max(ρ(h), ρ(g)) with h and g taken over all representations
of f = h/g as a quotient of two holomorphic functions. The second variant uses the Nevanlinna
characteristic function T (r, f) which is also well-defined for meromorphic functions.

In the case of a meromorphic function on a curve C = Z \ P we again begin with a holomorphic
function f and define the local maximum modulus function and the local order of f at p ∈ P by

Mp(r) = max
|zp|=1/r

|f(zp)|, ρp(f) = lim
r→∞

log log Mp(r)
log r

.

Then the order of f is given by ρ(f) = maxp∈P ρp(f) and it is easily seen that ρp(f) and therefore ρ(f)
are independent of the choice of local coordinates. Moreover f is of order ρ if and only if ρ is maximal
with the property that for any ε > 0 we always have log |f(zp)| ≤ 1/|zp|ρ+ε for all zp sufficiently small.
When f is a meromorphic function we define ρp(f) as before to be the infimum of max(ρ(h), ρ(g)) taken
over all representations of f = h/g in a neighborhood of p and ρ(f) = max ρp(f). This definition was
suggested by Griffiths in [17].

Another approach to the growth of functions is to use Nevanlinna’s or Ahlfors–Shimizu’s character-
istic function T π(r, f) and T π

AS(r, f) respectively and using a special exhaustion π which was suggested
by Griffiths and King in [12]. As already noted both functions coincide up to O(1). Therefore we can use
either of them to define the order of growth of a function f . We use Nevanlinna’s characteristic function
and put

ρπ
T (f) = lim

r→∞
log T π(r, f)

log r
. (10)

When f is holomorphic we can also use the maximum modulus function

Mπ(r, f) = max
z∈∂C[r]

|f(z)| (11)

and get

ρπ(f) = lim
r→∞

log log Mπ(r, f)
log r

. (12)

Although it is not the main purpose of this paper we shall prove that ρπ
T (f) and ρπ(f) are equal. This

gives a generalization of the classical identity for holomorphic functions on C described at the beginning
of this section. It also provides an example how the exhaustion function of Griffith and King can be
applied.

We begin with a simple lemma. Let r : D → D be the ramified covering of the open unit disk D of
degree n given by z 
→ zn and assume that u : D → R ∪ {−∞} is a subharmonic function on D.
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Lemma 5.1. The function v : D → R ∪ {−∞} given by

v(z) = max
r(w)=z

u(w)

is subharmonic.

Proof. The function v is upper semi-continuous and takes values in [−∞,+∞). According to [19,
Chap. 3, Corollary 7 to Proposition 4] the property to be subharmonic is local. To show that v(z)
is subharmonic we let h(z) be a harmonic function on a sufficiently small compact disk B ⊂ D with
h(z) ≥ v(z) on the boundary ∂B. We shall prove that this holds for all z in B. This will imply that v is
subharmonic (see [19, Definition 4]).

The upper semi-continuous function ϕ(w) = maxζn=1 u(ζw) is the maximum of a finite collection of
subharmonic functions and therefore subharmonic. The pullback of h(z) by the holomorphic function
r(w) is harmonic as one sees by applying the Laplace operator 4 ∂∂ to the pullback.3 Furthermore it
satisfies

(r∗h)(w) = h(z) ≥ v(z) = max
r(w)=z

u(w) = max
ζn=1

u(ζw) = ϕ(w)

for w on the boundary r−1(∂B) and z = r(w). Since ϕ(w) is subharmonic we deduce that this holds for
all w with r(w) ∈ B. The image z = r(w) of such a w is in B and

h(z) = (r∗h)(w) ≥ ϕ(w) = max
ζn=1

u(ζw) = max
r(w)=z

u(w) = v(z).

The lemma is applied to yield a global version for finite (i.e., proper and non-constant) mapping
between Riemann surfaces.

Lemma 5.2. For all finite and holomorphic mappings f : X → Y between Riemann surfaces and
all subharmonic functions u on X the function v(z) = maxf(w)=z u(w) is subharmonic on Y .

Proof. Again we use that subharmonicity is a local property. The map f is a finite covering and if the
disk i : D ↪→ Y is small enough the inverse image f−1(D) = D ×Y X of D under f has only finitely many
connected components Xι and all ramification points are in the fiber over the center of the disk. The
restriction fι of f to any of the components Xι then takes the form as described in Lemma 5.1 which we
apply now to all the components. It follows that the function vι associated with fι is subharmonic. We
write v(z) as maxι vι(z). The same arguments as in the proof of the previous lemma then show that v(z)
is subharmonic as stated.

Remark. Our lemma can be regarded as subharmonic descent under holomorphic coverings and v(z)
can be seen as (f∗u)(z). The Lemma then says that f∗u is subhamonic for u subharmonic.

We apply the Lemma in the case when X is an affine curve and when Y is the complex plane C.

Proposition 5.3. We have

ρπ(f) = ρπ
T (f).

Proof. Let d be the degree of π. Since f is holomorphic, Nπ(D∞, r) is zero and therefore, by the
definition of the Nevanlinna characteristic function, we have

T π(r, f) = mπ(r, f) =
∫

∂C[r]
log+ |f(z)|2 dcτ ≤ d log+ Mπ(r).

3Here the calculation: we write u = u(w, w), w = f(z), w = f(z) and differentiate. Applying first ∂, then ∂ and observing
that ∂zf = 0 and ∂z∂zf = 0 we get ∂(f∗u) = f∗(∂wu) · ∂zf and then

∂∂(f∗u) = f∗(∂w∂wu) · ∂zf ∂zf + f∗(∂wu) · ∂z∂zf = f∗(∂w∂wu) · ∂zf ∂zf = 0.

Since ∂zf ∂zf ≥ 0 we deduce – this only as a side remark – that the pullback of a subharmonic function by a holomorphic
function is subharmonic. For this one uses that ∂∂u ≥ 0 for subharmonic u.
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We know that log+ |f(w)| is subharmonic on C for f holomorphic and Lemma 5.2 implies that h(z) =
maxπ(w)=z(log

+ |f(w)|) is a subharmonic function on C. For z = reiϕ and r < � the Harnack inequality
gives

h(z) ≤ � + r

� − r

∫ 2π

0
h(�eiθ) dθ ≤ � + r

� − r

∫

∂C[�]
log+ (|f(z)|2) dcτ =

� + r

� − r
T π(�, f)

and this implies that

log+ Mπ(r, f) ≤ � + r

� − r
T π(�, f).

On putting the inequalities together we deduce that

1
d

T π(r, f) ≤ log+ Mπ(r, f) ≤ � + r

� − r
T π(�, f).

Since f is nontrivial, there exists C > 0 such that T π(r, f) ≥ C log r (see the remark following (6) and
notice that T π(r, f) and T π

AS(r, f) differ only by a bounded term). Therefore the left hand side of the
inequalities shows that log+ Mπ(r, f) = log Mπ(r, f) for sufficiently large r. We put � = r + ε for ε > 0
and then an easy calculation gives

ρπ(f) = lim
r→∞

log log+ Mπ(r)
log r

= lim
r→∞

log T π(r, f)
log r

= ρπ
T (f).

The order ρπ
T depends on the choice of the covering map π in Section 4 whereas the order ρ = maxp ρp

with p ∈ P is independent of any choice. However they can be compared.

Lemma 5.4. We have ρπ
T = maxp(ρp/mp).

Proof. Since we shall not use Lemma 5.4 later we only verify it for holomorphic f . The function
(1/π(z))1/mp gives a local coordinate on a neighborhood Up of p and then for sufficiently large r we
have

Mp(r) = max(|f(z)| : z ∈ Up, |π(z)| = rmp).

Since Mπ(r) = max|π(z)|=r(|f(z)|) we conclude that Mπ(r) = maxp Mp(r1/mp). This implies that

ρπ
T (f) = ρπ(f) = lim

r→∞
log log Mπ(r)

log r
= max

p

(

lim
r→∞

log log Mp(r1/mp)
log r

)

and the latter is maxp(ρp/mp).

We point out that ρ(f) depends only on some smooth completion of C and therefore is an intrinsic
notion in the case of affine curves (since a smooth completion of a smooth affine curve is unique).
However the order function ρπ depends on a special exhaustion function induced by a projection
π : C → C and is therefore an extrinsic notion. By Lemma 5.4 the order function ρ(f) is finite if and
only if ρπ(f) is finite and Griffiths uses both in [17] and [12]. However for our purpose an estimate in
terms of ρ(f) is essential.

Let C be an affine algebraic curve and let V be a projective algebraic variety. Let as usual R(V )
be the field of rational functions on V . A holomorphic map f : C → V has order ≤ ρ if and only if
f∗R(V ) consists of meromorphic functions of order ≤ ρ. It is easy to see that the latter is equivalent
to ρ(f∗(zi/zj)) ≤ ρ.

In the next proposition we shall compare the growth of a positive divisor D =
∑

z∈C D(z) (z) with
the growth of a function. We put

n(r,D) =
∑

z

D(z),
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where the sum is take over all z ∈ C not in the union of the sets |zp| ≤ r−1 with p ∈ P and

ρ(D) = lim
r→∞

∫ r
r0

n(t,D) dt/t

log r
.

The following proposition is [17, Proposition 5.23].

Proposition 5.5. Let D be a positive divisor on C. Then there exists a function f ∈ O(D) such
that (f) = D and

ρ(f) ≤ max(ρ(D), 2g).

It is essential for the proof of the following.

Lemma 5.6. Let f1, . . . , fn be meromorphic functions of order ≤ ρ on C and let S ⊂ C be a finite
set. If fi(w) �= ∞ for 1 ≤ i ≤ n and w ∈ S then there exists a holomorphic function h on C such
that

(i) ρ(h) ≤ max(ρ, 2g);

(ii) hfi are all holomorphic and ρ(hfi) ≤ max(ρ, 2g) for 1 ≤ i ≤ n;

(iii) h(wi) �= 0 for w ∈ S.

Proof. By (7) we have ρ((fi)∞) ≤ ρ and this gives

ρ((f1)∞ + · · · + (fn)∞) ≤ max
i

ρ(fi)∞ ≤ ρ.

By Proposition 5.5 there is a holomorphic function h of order at most max(ρ, 2g) on C such that
(h) = (f1)∞ + · · · + (fn)∞ and such that h satisfies the conditions in the statement of the lemma.

6. ALGEBRAIC POINTS AND ALGEBRAIC DISTRIBUTIONS

In this section we give the proofs of the theorems. We begin with Theorem 1.2 for which we shall give
two different proofs. As usual the first step in the proofs is the construction of an auxiliary function F .
Here we use Lemma 2.2. In the first proof we apply the maximum principle to the function F/φN with φN

constructed in Lemma 3.3. The second proof is based on the Griffiths–King exhaustion function which
was constructed in Lemma 3.4 and on Jensen’s Formula associated with the exhaustion function.

Proof of Theorem 1.2. Let f, g ∈ {f1, f2, . . . , fN} be algebraically independent over K. We define
m = |S| and choose integers r, n with n sufficiently large such that

r2 ≥ 2nm log(n) ≥ (r − 1)2.

For the construction of the auxiliary function we consider the polynomial P =
∑r

i,j=1 ai,jS
iT j with

undetermined coefficients ai,j . They will be chosen in OK such that the system of mn linear equations
r∑

i,j=1

ai,j∇k(f igj)(w) = 0 (13)

for 0 ≤ k < n and w ∈ S in r2 unknowns ai,j is satisfied. By Lemma 2.3 we see that the L2-heights of
the linear forms

Lk,w =
r∑

i,j=1

ai,j∇k(f igj)(w)

in the unknowns ai,j can be estimated from above by

[K : Q] k log(r + kω) + C(k + r).
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On applying Lemma 2.2 with N = r2 and M = nm together with (2) and on observing that r =
O(

√
n log(n) ) which gives

M

N − M
≤ 1

log(n)

for n ≥ 4 we find a nontrivial solution a = (. . . , ai,j , . . . ) ∈ Or2

K such that

h+
max(P ) ≤ C3[K : Q]n,

where C3 only depends on w. Since f, g are algebraically independent over K, the function F = P (f, g)
is not identically zero.

From (13) we deduce that the holomorphic function F on C satisfies (F )0 ≥
∑

w∈S n (w). We let
s ≥ n be the largest integer such that

(F )0 ≥
∑

w∈S
s (w). (14)

By definition ∇sF does not vanish at some w ∈ S. By Lemma 2.3 the height h+(∇sF (w)) is at most
h+

max(P ) + [K : Q] s log(r + s) + O(r + s) and this leads to

h+(∇sF (w)) ≤ [K : Q] s log s + C4s, (15)

where C4 only depends on Δ, [K : Q] and w.

Variant 1. In this variant we obtain a bound which is slightly weaker than the bound stated in the
theorem. We write m = lm1 + t with m1 ≥ 0 and 2g ≤ t ≤ l + 2g − 1 and we may assume that m1 ≥ 1
since otherwise |S| ≤ 2g + l − 1. Lemma 3.3 gives a function φs such that

E =
F

φs

is holomorphic. We shall derive an upper bound by the maximum principle and by the Liouville estimate
a lower bound for log |E(w)| and compare the upper and the lower bound. This will eventually give an
estimate from above for |S| which is slightly weaker than (1).

We begin with the upper bound. Since f and g are of order ≤ ρ we know that for all ε > 0, for a
sufficiently small positive η and for all p ∈ P the inequality

log max(|f(zp)|, |g(zp)|) ≤ |zp|−(ρ+ε)

for |zp| ≤ η gives

log |F (zp)| ≤ C5n + 2r|zp|−(ρ+ε).

Together with (ii) in Lemma 3.3 we conclude that

log |E(zp)| ≤ C5n + 2r|zp|−(ρ+ε) − m1s log
C1

|zp|
.

From the maximum principle applied to the complement of the union of the discs with radius η around
p for p ∈ P we get the upper bound

log |E(w)| ≤ C5n + 2rη−(ρ+ε) − m1s log
C1

η
. (16)

For the lower bound we observe that E(w) = ∇sF (w)/∇sφs(w) and that by (iii) in Lemma 3.3 we
have

log |∇sφs(w)| ≤ s log s + s log C2.

This leads together with Lemma 2.1 to the lower bound

log |∇sF (w)| ≥ −([K : Q] − 1)s log s − C4s.
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Note that the contribution involving s log s comes from the exponents of the polynomial F by differenti-
ating s times a monomial, and therefore is in Z. As a consequence one has only to account for [K : Q]− 1
terms of size s log s.

We put the estimates together and obtain the lower bound

log |E(w)| = log |∇sF (w)| − log |∇sφs(w)| ≥ −[K : Q]s log s − C6s.

Since n ≤ s a comparison of the upper bound (16) and the lower bound above gives

−[K : Q]s log s ≤ 2rη−(ρ+ε) − m1s log
C1

η
+ C7s,

where C7 only depends on w, [K : Q] and Δ. We relate η and s by the equation sηρ+ε = rCρ+ε
1 and find

that

0 ≤ [K : Q]s log s −
(

m1

2ρ + 2ε

)

s log s + C8s log log s.

This can hold for large s only if [K : Q](ρ + ε) ≥ m1/2 for all ε > 0 so that

|S| = m ≤ l(m1 + 1) + 2g − 1 ≤ 2[K : Q]ρl + l + 2g − 1 ≤ l + 2[K : Q] ρl + 2g − 1.

Remark. Note that the upper bound can be improved to 2[K : Q] ρl + 2g − 1 if ρ ≥ (l − 1)/2l.

Variant 2. In this variant we use Jensen’s Formula which needs an exhaustion function. We
fix a positive integer q and then Lemma 3.4 gives a projection π : Z → P

1 with ql ≤ deg π ≤ ql + g.
Furthermore the Lemma shows that there exists a divisor D ≥ 0 such that (π)∞ =

∑
p∈P q(p) + D. We

put C ′ := C \ suppD and replace P by P ′ = suppD ⊇ P, S by S ′ = S \ suppD to obtain a new curve
such that π restricts to a finite covering π′ : C ′ → C which is totally ramified above 0 with π′−1(0) = t(w)
for t = deg π.

Similar to the definition of E we define the function G = F t/πs on C ′ with s the order of F at w. The
function G is holomorphic on C ′ by construction and has divisor

D0 ≥ st
∑

u

(u) (17)

with the sum taken over all u �= w in S ′.
We choose a local parameter z at w such that z(w) = 0 and such that ∇ can be written as ∂/∂z. Then

we have F (z)t/zst = (∇sF (w)/s!)t + zε(z) and π(z)s/zst = ε′(z)s near w where ε and ε′ are units. This
gives

G(w) =
F (w)t

π(w)s
=

(∇sF (w)/s!)t

ε′(0)s

and the lower bound

log |G(w)| ≥ −([K : Q] − 1) ts log s − C9ts

follows readily. The constant C9 only depends on w and q.
Now we are ready to apply Jensen’s Formula (9) with C replaced by C ′ and f replaced by G. Since π

is totally ramified in w the sum
∑

π(z)=0 log |G(z)| in Jensen’s Formula becomes t log |G(w)| and from
the inequality above we obtain for the sum the lower bound

∑

π(z)=0

log |G(z)| ≥ −([K : Q] − 1)t2s log s − C9t
2s. (18)

For the integral we need an estimate from above for |G|R := max(|G(z)|) where the maximum is
taken over all z ∈ C ′ with |π(z)| = R. The boundary Γ decomposes into connected components Γp, one
for each p ∈ supp(π)∞ for which we choose local coordinates zp = (1/π(z))1/np . We have

max
z∈Γp

(log |G(z)|) = t max
z∈Γp

(log |F (z)|) − s log R.
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Since np ≥ q for p ∈ P the inequality (16) gives

max
z∈Γp

(log |G(z)|) ≤ C5tn + 2rtR(ρ+ε)/q − s log R

for p ∈ P. This also holds for p ∈ supp(π)∞ \ P since f and g are of order 0 at p. We conclude that
∫

∂C′[R]
log |G|2 dcτ ≤ C5t

2n + 2rt2R(ρ+ε)/q − st log R. (19)

We also need a lower bound for the zero divisor D0 of the holomorphic function G on C ′. Since
|C \ C ′| ≤ g by Lemma 3.4 the number of terms in the sum is at least m − g − 1 and this leads to the
lower bound

nπ(D0, r) =
∫

D[r]
1 ≥ st(m − g − 1)

for sufficiently large r. Therefore we obtain

Nπ(D0, R) ≥ (m − g − 1)st log
R

C10
(20)

for some positive constant C10 which depends only on w and q provided that R is sufficiently large which
is certainly the case if rR(ρ+ε)/q = s. This choice makes the estimate for the integral given in (19) a
second order term of the form O(t2s). A comparison of the leading terms for n and therefore also for s
going to infinity in (18)–(20) shows that

(m − g − 1)q ≤ 2[K : Q](ρ + ε)t

for all q ≥ 1. Since by (i) in Lemma 3.4 we have limq→∞ t/q = l the desired inequality for |S| follows
readily.

Remark. By a suitable modification of Lemma 3.4 and of the second proof of Theorem 1.2 the statement
of Theorem 1.2 can be improved to give

|S| ≤ g + 1 + 2[K : Q]
∑

p∈P
ρp,

where ρp = maxi ρp(fi).

Proof of Theorem 1.3. Let S ⊂ C be a finite set such that f(S) ⊂ U(K). Let π : X̃ → X be the
blow-up of X in X \ U and let E = π−1(X \ U) be the exceptional divisor. We choose a hyperplane
section H of X which does not meet f(S) and put H̃ = π−1H . Then if n is sufficiently large the divisor
nH̃ + E is very ample. Therefore Ỹ = X̃ \ (H̃ ∪ E) takes the form SpecR for some K-algebra R of
finite type which can be written as R = K[y1, y2, . . . , yn]. Since the rational vector field Δ is regular
on Ỹ we have Δ(O

˜Y ,y) ⊆ O
˜Y ,y for all y ∈ Ỹ and therefore O

˜Y ,y = Rmy where my denotes the maximal
ideal at y. By [20, Theorem 4.7] we have R =

⋂
y∈˜Y Rmy . We conclude that Δ(R) ⊆ R and hence

there exist gi ∈ K[y1, . . . , yn] such that Δ(yi) = gi on Ỹ . Then the functions fi(z) = f∗(yi) satisfy
∇(fi) = gi[f1, . . . , fn]. They are meromorphic of order ≤ ρ on C and satisfy fi(w) �= ∞ for 1 ≤ i ≤ n
and w ∈ S. Let h be as in Lemma 5.6 and replace in the second proof the function G = F t/πs by
G = F th2rt/πs. The required estimate follows then similarly.

Remark. Our method still works if the holomorphic tangent vector ∇ has zeroes and we get results
similar to Theorem 1.2 and Theorem 1.3. For instance the conclusion of Theorem 1.2 holds for S replaced
by S0 = {w ∈ S : ∇w �= 0}.

Proof of the Theorem 1.1. Our discussion before the statement of Theorem 1.1 shows that the
hypothesis of Theorem 1.3 are satisfied. By Theorem 1.3,

|f−1(U(K))| ≤ g + 1 + 2[K : Q] l max(ρ, 2g).

However C is integral and this implies that ψ(C) ⊆ U which implies desired results.
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7. SINGULARITIES

It is critical to exclude poles in the formulation of Theorem 1.3. Otherwise |f−1(X(K))| < ∞ is not
generally true. We give a simple example.

Example 7.1. Consider the map f : C → P
3 = {(z0 : z1 : z2 : z3)} which is given by f(z) = (z : ℘(z) :

℘′(z) : 1) and ∇ ∈ Γ(C,TC) where ∇ = ∂/∂z. Let

z02 =
z0

z2
, z12 =

z1

z2
, z32 =

z3

z2
.

Then we may take Δ as

Δ(z02) = z32 −
z02z

2
12

z32
+

g2

2
z02z12,

Δ(z12) = 1 − 6z3
12

z32
+

g2

2
z12z32, Δ(z32) =

g2

2
z2
32 − 6z2

12.

Notice that A = (0 : 0 : 1 : 0) is in the set P (Δ) of singular points of Δ and also in P
3(K) but |f−1(A)| =

|Λ| = ∞. This occurs because A /∈ U(K).

A slight modification of the example leads to

Example 7.2. Consider the map f : C → X = V (z2
2z3 − 4z3

1 + g2z1z
2
3 + g3z

3
3) ⊂ P

3 which is given by
f(z) = (z : ℘(z) : ℘′(z) : 1) and ∇ = ∂/∂z ∈ Γ(C,TC). Now we have

Δ(z02) = z32 −
z02z

2
12

z32
+

g2

2
z02z12,

Δ(z12) = 1 − 6z3
12

z32
+

g2

2
z12z32, Δ(z32) =

g2

2
z2
32 − 6z2

12.

Although 6z3
12/z32 is a regular function at A = (0 : 0 : 1 : 0) ∈ X, z02z

2
12/z32 is not a regular function

at A ∈ X. This explains why we have both A = (0 : 0 : 1 : 0) ∈ X(K) and |f−1(A)| = |Λ| = ∞.

We now change in a different way and give a slightly new proof of a theorem of Schneider on the
transcendence of periods.

Example 7.3. Consider the map f : C → X = P
1 × E which is given by f(z) = ((z : 1), (℘(z) :

℘′(z) : 1)) where

E = V (z2
2z3 − 4z3

1 + g2z1z
2
3 + g3z

3
3) ⊂ P

2 = {(z1 : z2 : z3)}
and ∇ = ∂/∂z ∈ Γ(C,TC). One can check that f∗∇ is regular at ((z : 1), (0 : 1 : 0)) for all
z ∈ C. If a non-zero w ∈ Λ is an algebraic number and is in K, then we will have f(nw) = ((nw : 1),
(0 : 1 : 0)) ∈ X(K) \ P (f∗Δ)) for all n ∈ N. This contradicts Theorem 1.3.

8. APPENDIX

8.1. Schneider’s Theorem revisited. In this appendix we shall state Schneider’s theorem as an-
nounced in the introduction, we shall comment on it and relate it to our work. We make the same
geometric assumptions as in Theorem 1.2. In particular we fix a vector field ∇.

In Section 4 we introduced the notion of an analytic divisor on C to be an element of the group
Div C = lim−→Div C[r]. We shall extend the notion slightly and define D̃iv C using the same direct system

and requiring that an element of D̃iv C is a family of divisors D = {D[r] =
∑

z∈C[r] D[r](z) (z)} which
as divisors satisfy D[r] ≤ D[s] for r ≤ s. The limit is given by

∐
Div C[r]/∼ where D[r] ∼ D[s] if and

only if there exists some t such that D[t] ≥ D[r] and D[t] ≥ D[s]. This obviously is an equivalence
relation and shows that the limit exists.
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Translated into the language of schemes this means that if Jr denotes the ideal of D[r] in OC then
there are closed immersions ι[r] : Spec(OC/Jr) → C which form a direct system of schemes and we
write D̃ = lim−→Spec(OC/Jr). It has the property that the divisor associated with D̃ is D. We identify

D[r] with Spec(OC/Jr). Clearly we have D̃iv C ⊇ Div C. A divisor D in D̃iv C is effective if D[r] ≥ 0
for all r. There is for each r a canonical surjective homomorphism of sheaves ι[r]� : Oan

C → ι[r]∗OD[r].
Here Oan

C is the sheaf of germs of holomorphic functions on C. The kernel of ι[r]� is an ideal sheaf
J [r]. For z ∈ suppD[r] we choose a local coordinate τz ∈ J [r]z at z such that ∇ = d/dτz locally
at z. The local coordinate is uniquely determined by this property. For D[r] given we introduce the

algebra R[r] =
⊕

K[τz]/(τ
D[r](z)
z ) and then Γ(D[r], ι[r]∗OD[r]) = R[r] ⊗K C. There is a canonical

identification of R[r] considered as a vector space with KD[r] and this is used to define the h+(f) of
f ∈ R[r]. The homomorphism ι[r]� extends to the sheaf of germs of meromorphic functions on C which
are holomorphic on D. We let now D ∈ D̃iv C be a divisor and define

δ = lim
log deg D[r]

log r
.

Let f be a meromorphic function on C which is holomorphic on D and which has the property that
ι[r]�(f) ∈ R[r] for all r. Then the arithmetic growth of f along D is defined as

μ = lim
log h+(ι[r]�(f))

log deg D[r]
.

Let D ∈ D̃iv C be an effective divisor such that D[r](z) log D[r](z) ≤ deg D[r] for all z ∈ suppD[r].
Let f1, f2, . . . , fn be holomorphic functions on C and assume that ι[r]�(fi) ∈ R[r] for 1 ≤ i ≤ n and r
sufficiently large. We define ρ = maxi(ρi) and μ = maxi(μi) where ρ1, ρ2, . . . , ρn and μ1, μ2, . . . , μn are
the growth and arithmetic growth respectively of the functions. The following theorem is an extension
to Riemann surfaces of Schneider’s Satz III in [5] mentioned in the introduction in the case when the
functions are holomorphic.

Theorem 8.1. If we have max(μ, ρ/δ) < 1 − 1/n then the image of the mapping

f = (f1, f2, . . . , fn) : C → C
n

is contained in an algebraic hypersurface defined over K.

The proof is very similar to the proof of our main theorems but here (8) is not sufficient, instead we
need to use a version of Jensen’s Formula as formulated in [1, p. 332]. In the case when the functions
are meromorphic one has to assume in addition that ρ ≥ 2g where g is the genus of C. This is needed
because [17, Proposition 5.25] (see Section 8.0.8.3).

As an application which is not covered by any of the theorems in the introduction we take a
meromorphic function f on C which has the property that ι[r]�(f) ∈ R[r] for all sufficiently large r.
We put f1 = f , f2 = ∇f , . . . , fn = ∇n−1f for n sufficiently large so to satisfy the hypothesis of the
theorem. Then the function f satisfies an algebraic differential equation with constant coefficients. As
has been mentioned in the introduction the theorem does not include Gelfond’s proof of the seventh
Hilbert Problem and, as a consequence, does not include the Schneider–Lang Criterion, even in the
case when C = C. It would be very interesting to find a criterion in the style of our theorem above
which does include our main theorems and without making the assumption that the functions satisfy
differential equations.

All theorems that have been mentioned so far deal only with the transcendence of numbers. As
already has been pointed out in the last paragraph of Schneider’s paper in [5] the methods are not strong
enough to get a criterion about algebraic independence. The only substantial contribution in this very
general direction is [21]. The techniques which are applied there are much more involved. Any further
progress in the direction opened there would be of highest interest.

8.2. Proof of Theorem 8.1. We shall give now a short sketch of the proof of the theorem. The proof is
very similar to the proof of Theorem 1.2 and depends on estimates of the same flavor as those given there
together with estimates similar to those in [5]. Therefore we shall not give such details here which can
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be extracted without much effort from [5]. The main difference is that we do not use any kind of Schwarz
Lemma. Especially in the case when the functions are meromorphic but not holomorphic the estimates
which are needed there become very unpleasant. Instead our approach goes through Nevanlinna theory
and seems to be new. We reduce the proof to an application of Jennsen’s Formula together with the First
Main Theorem. This gives a very elegant and clean way to do the last step in the proof. For simplicity
we restrict ourselves to the special case when C = C.

The first step is standard. We choose an integer r sufficiently large and construct on the ba-
sis of Siegel’s Lemma a polynomial F ∈ K[T1, . . . , Tn] of degree d such that f ∈ ker ι[r]� for f =
F (f1, . . . , fn) and ι taken in the analytic category. The parameters are chosen such that

(d + 1)n ≥ N(D[r], R) > dn

and such that R = r1+ε. As a consequence we have

N(D[r], R) ≥ N(D[r], r) + m(D[r]) log
(

R

r

)

,

where m = m(D[r]) denotes the geometric degree of the divisor D[r]. This shows that the exponent
M/(N − M) which occurs in Siegel’s Lemma is of order 1/ log m. An application of the Siegel
lemma shows that the logarithmic height of F is at most O(m1/n+μ+ε + m1/n+η+ε) since the exponent
M/(N − M) kills the log m in the logarithm of the factorials. The condition on η then shows that this is
at most O(m1−ε) for ε sufficiently small. The function f is in ker ι[r]� by construction and this shows that
N(f, 0, R) ≥ m(D[r]) log(R/r). We write f(z) = cez

eε(z) with ε(z) = 1 +
∑

n≥1 ε(n)zn and assume
for simplicity that 0 is a component of the divisor. The general case can be treated in a similar way.

Lemma 8.2 (Jensen’s Inequality). Let f be meromorphic. Then

log |ce| ≤ T (f,∞, r) − N(f, 0, r). (21)

Proof. This is an easy consequence of Jensen’s Formula.

In our situation N(f, 0, R) can be bounded from below by N(D[r], r), we use standard inequalities
for the Nevanlinna characteristic function T to bound T (f,∞, R) from above and the Liouville estimate
gives a lower bound for log |ce|. Comparing the upper and lower bound then gives f ∈ ker ι[r + 1]�.
Since this holds for all r we conclude that f ∈ ker lim←− ι[r]�. By Schneider’s arguments one deduces that
f = 0.

8.3. Meromorphic functions of finite growth on affine varieties. In Theorems 1.1 and 1.3 the upper
bound for the number of points in the set S contains the term max(ρ, 2g) with g the genus of the affine
curve C. It is an interesting question to see whether the dependence is natural or whether it can be
removed. This turns out to be a question about meromorphic functions on affine curves.

The field of meromorphic functions M(C) contains as a subfield the field of meromorphic functions
Mf.o.(C) of finite order with the order defined by using either the Nevanlinna or the Ahlfors–Schimizu
characteristic function. Both characteristic functions are based on a choice of an exhaustion function.
In Section 4 such a function has been constructed on applying the Riemann–Roch Theorem. We have
seen that the resulting order does not depend on the chosen characteristic function. The field Mf.o.(C)
contains for any ρ as algebraically closed subfield the field Mρ(C) of meromorphic functions of order at
most ρ and is the direct limit of this system of subfields (see [22]).

A basic question is whether there are meromorphic functions on an affine curve C different from
algebraic functions. Another question is whether a meromorphic function of order ρ can be expressed as
a quotient of two entire functions of order ρ. It turns out that this is the case provided that the order is
≥ 2g (see Proposition 5.5) and the bound is also best possible in general as can be found in the already
mentioned articles of Griffiths.

The answer to the first question is given by the Weierstrass Product Theorem on Riemann surfaces.
In section 4 we introduced the analytic divisors Div(C) on C which can be seen as maps D : C → Z. By
[23, Theorem 25.5] each divisor D is principal and this shows that there are meromorphic functions f on
C which have D a divisor. If the divisor D is effective so that D(z) ≥ 0 for all z ∈ C then we introduced
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Nπ(D, r) and D has order ρ if Nπ(D, r) = O(rρ). By [17, Theorem I] there exists an entire function f
on C which has ρ(f) = ρ(D) and divisor D. As an application a transcendental function of finite order
can be constructed by choosing a divisor D with Nπ(D, r) = O(rρ) and ρ > 0 and then the function f
is transcendental. An interesting consequence is the following.

Theorem 8.1. For each non-negative integer n there exists a subring L ⊆ Mf.o.(C) which has
transcendence degree n over the field of rational functions R(C) of C.

Proof. For n = 0 we take L0 = R(C). We proceed by induction and assume the theorem to be true for n
with subring Ln. There exist f1, . . . , fn ∈ Ln such that Ln is algebraic over R(C)[f1, . . . , fn]. We take
ρ = max1≤i≤n(ρ(fi)) and choose fn+1 ∈ Ok(C) with k = ρ(fn+1) > ρ. Since Oρ(C) is algebraically
closed in Mρ(C) the entire function fn+1 is transcendental over Ln and we tale Ln+1 = Ln[fn+1].
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14. L. Hörmander, “L2 estimates and existence theorems for the ∂ operator,” Acta Math. 113 (1), 89–152 (1965).
15. E. Bombieri and J. Vaaler, “On Siegel’s lemma,” Invent. Math. 73 (1), 11–32 (1983).
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