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Abstract The present study evaluated the influence of
different composite bases and surface treatments on
marginal and internal adaptation of class II indirect
composite restorations, after simulated occlusal loading.
Thirty-two class II inlay cavities were prepared on human
third molars, with margins located in cementum. A 1-mm
composite base extending up to the cervical margins was
applied on all dentin surfaces in the experimental groups;
impressions were made and composite inlays fabricated.
The following experimental conditions were tested: no liner
(control group), flowable composite treated with soft air
abrasion (experiment 1), flowable composite sandblasted
(experiment 2) and restorative composite sandblasted
(experiment 3). All specimens were submitted to
1,000,000 cycles with a 100-N eccentric load. Tooth–
restoration margins were analysed semi-quantitatively by
scanning electron microscopy before and after loading;
internal adaptation was also evaluated after test completion.
The percentage of perfect adaptation in enamel was 79.5%
to 92.7% before loading and 73.3% to 81.9% after loading.
Perfect adaptation to dentin was reduced before loading

(54.8% to 77.6%) and after loading (41.9% to 63%), but no
difference was found among groups for pre- and post-
loading conditions. No debonding occurred between the
base and composite luting. A significant, negative influence
of cyclic loading was observed. The results of the present
study support the use of flowable or restorative composites
as base/liner underneath large class II restorations. Soft air
abrasion represents a potential alternative to airborne
particle abrasion for treating cavities before cementation.
The application of a composite base underneath indirect
composite restorations represents a feasible non-invasive
alternative to surgical crown lengthening to relocate cavity
margins from an intra-crevicular to supra-gingival position.
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Introduction

In direct class II adhesive restorations, incremental methods
[1–5], the use of ceramic inserts [6] or the application of a
base [3, 7], have been proposed to reduce the stresses
developed within the tooth–restoration system due to
composite polymerisation shrinkage [8–10] and post
curing, taking place up to several days after restoration
placement [11]. Despite the reduction of volumetric
shrinkage and elasticity modulus of modern composite
formulations, the aforementioned techniques are still
considered imperfect in large class II restorations because
of the combined “negative” effect of composite polymer-
ization and functional stresses. Then, an accepted and
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adequate solution to counteract both the detrimental effect
of polymerization shrinkage and the practical limits of
direct techniques in large class II cavities is to use an
indirect or semidirect technique [12]. Large cavities
frequently show undercuts and proximal extensions close
or even below the cement–enamel junction. This can lead
to unnecessary tissue loss if the appropriate cavity design
is achieved only by additional preparation and otherwise
generates clinical difficulties for placing rubber dam,
controlling restoration adaptation and fit or removing
cement excesses. Moreover, unprotected dentin surfaces
are more susceptible to contamination or environment
influence during the temporary phase. The application of a
base or liner underneath semidirect and indirect restora-
tions fulfils many requirements, such as reinforcing
undermined cusps, filling undercuts and providing the
necessary geometry for an inlay/onlay restoration; it also
represents a common, non-invasive alternative to surgical
crown lengthening in order to relocate cavity margins
from an intra-crevicular to supra-gingival position [13,
14]. The application of a base or liner is thus considered
the standard of care.

The elastic modulus of restorative and flowable
composite materials, among other physical properties,
influences their behaviour under stress [3, 7]; actually,
depending on the material's stiffness (elasticity modulus),
stresses transmitted to the adhesive interface and tooth
structure can be lowered (low elasticity (E) modulus) or just
passed on with limited or no stress reduction (high E
modulus). The concept and rationale of an “elastic” stress-
breaking liner or interface has been extensively evaluated
since the first works of Davidson and co-workers [15–17]
and appears in favour of the use of flowable composites
underneath large restorations. Flowable composites also
have the advantage of an easier placement and do not
require further adjustments, thus eliminating the risk for a
mechanical disruption of the dentinal seal.

When applying a base or liner underneath indirect
restorations, the interface quality between the resinous base
and luting composite and between the luting composite and
inlay, resulting from micro-mechanical retentions or
copolymerisation, was also found to be critical [18, 19].
Some procedures such as soft air abrasion or airborne
particle abrasion [20, 21] are used daily by many practi-
tioners with the aim to clean the cavity and to increase
micro-mechanical retention between the resinous base and
the luting cement.

The aim of this in vitro study was to evaluate the
influence of the composite type (flowable or restorative
consistency) used as a base and the impact of its surface
treatment on the marginal and internal adaptation of large
class II inlays. The first null hypothesis was that the
presence of a composite base would not influence

restoration marginal and internal restoration adaptation,
compared to non-lined cavities. The second null hypothesis
was that neither the composite viscosity or elasticity
modulus used as a base nor its surface treatment would
influence marginal and internal restoration adaptation. The

Fig. 1 Fatigue apparatus used to simulate cyclic masticatory stresses
and pulpal pressure. Samples are mounted on a semi-rigid rubber base
to allow for sliding movements such as encountered in natural dentition.
Detailed view of one of the eight chambers of the fatigue device

Fig. 2 a Diagrammatic representation of the base/lining applied
underneath composite inlays together with the segments considered
for the evaluation of internal adaptation b Segments considered for the
evaluation of marginal adaptation. OE occlusal enamel, PE proximal
enamel, CD cervical dentin

1386 Clin Oral Invest (2012) 16:1385–1393



third null hypothesis was that the mechanical loading
simulating functional stresses would have no influence on
restoration marginal and internal adaptation. Attention
was also paid to the quality of all interfaces and various
cavity walls, in order to identify the restoration's most
vulnerable areas.

Materials and methods

Freshly extracted human third molars were used for this
study. The inclusion criteria were absence of carious
lesions and a complete root formation. The teeth were
stored in a sodium azide solution (0.2%) at 4°C until the
experiment onset.

For each specimen, the root length was adjusted to fit
into the test chamber of the mechanical loading device
(Department of Cariology, Endodontics and Pedodontics;
Laboratory of Electronics of the Medicine Faculty; University
of Geneva) (Fig. 1). After the specimen was properly
positioned, it was fixed with light-curing composite on a
metallic holder (Baltec, Balzer, Liechtenstein); then, the root
base was embedded with self-curing acrylic resin to
complete the tooth stabilisation. Class II cavities (two
surfaces, OD or OM) were prepared, with the proximal
margin located 1.0 mm below the cementum–enamel
junction. The dimensions of the tapered preparations were
4.0 mm in width and 2.0 mm in depth at the bottom of the
proximal box, and 3.0 mm in width and depth for the
occlusal isthmus, all walls having 10° to 15° of divergence
(Fig. 2). The cavities were prepared using coarse diamond
burs under profuse water spray (Cerinlay No 3080.018 FG,
Intensiv, Viganello, Switzerland) and finished with fine
grained burs of the same shape (Cerinlay No 3025.018 FG,

Intensiv, Viganello, Switzerland). The 32 prepared teeth were
randomly assigned to one of the four experimental groups,
corresponding to the combination of restorative materials
described in Table 1.

Restorative procedures

After completion of the preparation, an “etch & rinse”
multi-functional adhesive system (Optibond FL, Kerr,
Orange, CA, USA) was used to treat the dentin surfaces,
according to the manufacturer's instructions. With excep-
tion of the control group (CTR), a lining of about 1-mm
thickness was applied on all dentin surfaces, including the
gingival margin, using a flowable (Premise Flow A2, Kerr,
Orange, CA, USA) (experiment 1 and 2 groups) or a
restorative material (Premise A2, Kerr, Orange, CA, USA)
(experiment 3 group) (Table 2 and Fig. 2). The lining
material was applied after placing a transparent matrix and
light cured for 30 s occlusally with a power density of
1,200 mW/cm2 (Bluephase, Ivoclar-Vivadent, Schaan,
Liechtenstein). After liner application, the enamel cavity
margins were finished with fine diamond burs (Cerinlay No
3025.018 FG, Intensiv, Viganello, Switzerland), and
impressions were made with polyvynil siloxane impression
material (President light and heavy bodies, Coltène,
Alstätten, Switzerland). Then, the cavities were coated with
a water-based glycerine gel (Airblock, DeTrey-Dentsply,
Konstanz, Germany) and the teeth were provisionally
restored with a soft light-curing resin (Fermit N, Ivoclar-
Vivadent, Schaan, Liechtenstein) and kept in saline for
7 days at 32°C. At completion of this interval, lined cavities
were submitted to either soft air abrasion with 100 μm
sodium bicarbonate particles at 3 bar pressure (Airflow
Handy 2+, EMS, Nyon, Switzerland) (experiment 1 group)

Table 1 Restorative procedures under evaluation (n=8 samples per group)

Group Adhesive Batch no. Lining Batch no. Lining treatment Luting and Restorative
material

Batch no.

Control OptiBond FL 2749121 None – None Premise A2 07-1144

Experiment 1 OptiBond FL 2749121 Premise Flow A2 07-114901 Prophy-Jet Premise A2 07-1144

Experiment 2 OptiBond FL 2749121 Premise Flow A2 07-114901 Airborne particle abrasion Premise A2 07-1144

Experiment 3 OptiBond FL 2749121 Premise A2 07-1144 Airborne particle abrasion Premise A2 07-1144

Table 2 Physical properties of base materials (manufacturer's data)

Product (manufacturer) Filler content
(W%/V%)

E modulus
(GPa)

Flexural
strength (MPa)

Compressive
strength (MPa)

Polymerization
shrinkage (%)

Premise (Kerr) 84/71.2 10.2 128 394 1.66

Premise Flow (Kerr) 72.5/na 7.1 117 297 2.95

Enamel E module, 80 GPa; dentine E modulus, 14–18 GPa [43–45]
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or airborne particle abrasion with 27 μm Al2O3 particles at
the same pressure (Kavo EWL, Type 5423, Biberach,
Germany) (experiment 2 and 3 groups); no cavity treatment
was performed in the control group.

A hard stone (Fujirock EP, Gc, Alsip, IL, USA) was
poured into the impressions to produce individual dies.
When present, small undercuts were filled with wax prior to
the impregnation of dies with a hardening liquid (Margidur,
Benzer Dental, Zurich, Switzerland). Finally, each die was
isolated with a thin layer of Vaseline before the fabrication
of the inlays. All inlays were made with the same micro-
hybrid composite (Premise A2). The inlays were also
submitted to a photothermal treatment (T=110°C) for
7 min in a post-curing unit (D.I 500 oven, Coltène,
Alstätten, Switzerland). The internal surfaces of the inlays
were sandblasted with 27 μm aluminium oxide powder at
about 3 bar pressure and covered with a pre-hydrolized
organic silane (Monobond S, Ivoclar-Vivadent, Schaan,
Liechtenstein) and a thin layer of bonding resin (Optibond
FL, Adhesive, Kerr, Orange, CA, USA), prior to cementa-
tion. The bonding resin was left uncured and the restoration
was placed in a box, protected from light (Vivapad, Ivoclar-
Vivadent, Schaan, Liechtenstein) until cementation. The
enamel margins were acid etched for 30 s and the adhesive
(Optibond FL, Kerr, Orange, CA, USA) was applied onto
all surfaces of the preparation, without light curing. The
cavity was covered with a thin layer of Premise A2 before
insertion of the inlay. The restoration was placed first with
manual pressure and then with the assistance of a specific
ultrasonic device (Cementation tip, EMS, Nyon, CH). After
removal of excesses, the restoration was light cured for 40 s
occlusally and thereafter for 20 s buccally and 20 s lingually
(Bluephase, Ivoclar-Vivadent, Schaan, Liechtenstein).
Restorations were then immediately finished and polished,
using flame and pear-shape fine diamonds burs (40 μm,
then 25-grain size) (Intensiv No 4205L, 4255, 5205L and
5255, Intensiv, Viganello, Switzerland) for occlusal margins

�Fig. 3 Percentages of marginal adaptation for occlusal (a), proximal
(b) enamel margins and for cervical dentin margins (c) expressed as
percentage of “perfect adaptation” before (pre) and after (post) loading

Table 4 Results of internal restoration adaptation after the loading,
expressed as mean percentages of “perfect adaptation” interface for
the four groups (n=8) expressed as mean percentages (±SD)

Occlusal dentin Axial dentin Cervical dentin

Control 82.8 (15.9) 86.9 (10.7) 60.1 (35.1)

Experiment 1 90.8 (9.3) 89.1 (16) 52 (30.8)

Experiment 2 80.9 (11.2) 77.8 (25.7) 68.6 (37.3)

Experiment 3 83.3 (12.2) 85.9 (11.9) 74 (26.6)

Kruskall–Wallis test p=0.261 (NS) p=0.538 (NS) p=0.573 (NS)

occlusal dentin

axial dentin 

cervical dentin

a

b

c

Fig. 4 Percentages of internal adaptation for occlusal (a), axial (b)
and cervical (c) dentin interfaces expressed as percentage of “perfect
adaptation”

Clin Oral Invest (2012) 16:1385–1393 1389



and discs of decreasing grain size (Pop On XT, 3M, St. Paul,
MN, USA) for proximal margins.

Mechanical loading

Twenty-four hours after cementation, two samples of each
group were arbitrarily placed in the fatigue machine. The
pulp chamber of each sample was penetrated buccally or
palatally with a tube (sealed with a Dentin Bonding Agent),
which was connected to a simulated pulpal circulation of
horse serum under a pressure of 14.1 cm H2O (Fig. 1) [22].
All specimens were subjected to 1,000,000 cycles with
100 N eccentric occusal loading force. The axial force was
applied at a 1.5-Hz frequency following a one half-sine
wave curve. These conditions are taken to simulate about
4 years of clinical service [23, 24]. By having the specimen
holder mounted on a hard rubber disc, a sliding movement
of the tooth was produced between the first contact on an
inclined plane and the central fossa [23].

Specimen evaluation

Before the fatigue test, as well as after completion of each
loading phase, gold-sputtered epoxy resin replicas (Epofix,
Struers, Rødrove, Denmark) were made from polyvinyl
siloxane impressions (President light, Coltène). The
following segments were observed: enamel margins on
the occlusal and proximal sides and dentin margins on
the proximal side, below the cementum–enamel junction
(Fig. 2b). The tooth–restoration interface was analysed
semi-quantitatively by scanning electron microscopy (SEM)
(Digital SEM XL20, Philips, Eindhoven, Netherlands) by
employing an established evaluation method [25, 26]. The
restoration margins were observed at a standard ×200
magnification or when necessary for assessment accuracy,
higher magnifications up to ×1000 were used. The following
evaluation criteria were tentatively considered: perfect
adaptation (continuity), overfilling, underfilling, marginal
opening, marginal restoration or tooth fracture. Results for
the restoration marginal adaptation, before and following the
loading phase, were expressed as percentages of “perfect

adaptation” (defect free) for occlusal and proximal enamel
margins and cervical dentin. Percentages were calculated as
the ratio between the cumulative distance of all segments
showing the same morphological quality and the whole
interface length.

At completion of the mechanical loading and after
sample replication, the teeth were embedded in a slow-
curing epoxy resin (Epofix, Struers, Rødrove, Denmark)
and sectioned mesio-distally for internal adaptation evalu-
ation. The restoration internal adaptation was then assessed
semi-quantitatively on the gold-sputtered replicas under
SEM at ×200 magnification; when necessary for assess-
ment accuracy, higher magnifications up to ×1000 were
used. The restoration internal adaption was evaluated
according to two criteria: continuity and interfacial opening.
Results were expressed as the percentage of “perfect
adaptation” (defect free) for occlusal, axial and cervical
dentin segments in relation to the whole internal restoration
interface length. A single and trained evaluator performed
all SEM observations in a blind manner (without knowledge
of group composition, restorative techniques or materials
employed).

All results of the SEM analysis were subjected to a non-
parametric statistical analysis. The Kruskall Wallis test and
in case of significance, the Nemenyi test, were applied for
comparing the different restorative protocols at baseline and
after the loading test for marginal adaptation and after the
loading test, for internal adaptation. In addition, the effect
of the restorative protocol on the difference between pre-
and post-loading marginal adaptation was examined using
the same statistical analysis. The difference in marginal
adaptation between pre- and post-loading was tested for
significance by a Wilcoxon test. All tests were carried out at
a 5% level of significance.

Results

The results and statistical analysis for the marginal
adaptation in enamel and dentin, before and after loading,
are presented in Table 3 and in Fig. 3a–c. The results and

Fig. 5 a Initial adaptation with
enamel showing a perfect
adaptation before loading. b
Same restoration margin
segment after loading showing
perfect adaption and a stable
margin quality, which was the
most common observation in
both occlusal and proximal
enamel areas
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statistical analysis for the internal adaptation in dentin after
loading are presented in Table 4 and in Fig. 4a–c.

The marginal adaptation to enamel (occlusal or proximal)
(Table 3; Figs. 3a–b and 5a–b) has shown no influence of the
liner presence and type or surface treatment between the four
groups for pre- and post-loading. Perfect adaption percen-
tages did vary from 88.9% (CTR) to 79.5% (experiment 1)
occlusally and from 92.7% (CTR) to 86.7% (experiment 1)
proximally, before loading. After loading, the percentages
decreased and ranged from 75.9% (experiment 3) to 76.6%
(experiment 1) occlusally and from 73.3% (experiment 1) to
81.9% (experiment 3) proximally. These differences in
marginal adaptation between pre- and post-loading, within
groups, proved significant, except for experiment 1 (Premise
flow liner with Prophy-Jet treatment), in occlusal enamel

The marginal adaption to cervical dentin (Table 3;
Figs. 3c and 6a–b) has shown no influence of the liner
presence and type or surface treatment for pre- and post-
loading. Perfect adaptation in cervical dentin ranged from
54.8% (experiment 1) to 77.6% (experiment 3) before
loading and from 41.9% (CTR) to 63.1% (experiment 3).
These differences between pre- and post-loading were
significant within groups, except for experiment 2 (Premise
flow liner with airborne particle abrasion treatment). A
significant difference in dentin adaptation between pre- and
post-loading was found for the comparison CTR (no liner)
and experiment 2 (Premise flow liner with airborne particle
abrasion treatment), meaning a more severe marginal
degradation of the CTR group due to loading.

There was no difference evidenced for internal adaption
(Table 4) (Figs. 4a–c and 7) between the different interface
segments (occlusal, axial dentin and cervical dentin).
However, more gaps were found on the proximal preparation
shoulder (cervical dentin). Perfect adaptation in cervical
dentin did actually range from 51.9% (experiment 1) to
74.0% (experiment 3) while in occlusal and axial dentin,
percentages did vary respectively from 80.1% (experiment
2) to 90.8% (experiment 1) and from 77.8% (experiment 2)
to 89.1% (experiment 1). When present, gaps were located
above the hybrid layer. No defect between flowable or
restorative composite base and luting composite was
observed in either group or sample.

Discussion

The rationale for using a base or liner underneath direct or
indirect large class II restorations is multifactorial. In
particular, the concept of “stress breaking” layer or flexible
liner and base has been extensively described in the
literature [15–17, 27–30]. It is actually considered that the
presence of such a layer assists in absorbing stresses
resulting from composite polymerization, in case of a direct
restoration, and in general contributes to lower strains
exerted on the adhesive interface by functional stresses.
These forces may actually induce debonding which in turn
can trigger post-operative sensitivity (induced by hydro-
dynamic phenomena) [31], reduce the restoration's tooth
strengthening effect or allow fluid movements or bacterial
penetration toward the pulp when the gap extends to the
margin. A base or liner placed underneath inlays and onlay
also contributes to avoid unnecessary tissue sacrifice to
meet geometry restrictions of indirect restorations and
functions as an ideal protection of the pulpo–dentinal
complex during the temporary phase [13, 14]. In addition,
it was proven to increase bond strength and adhesive
interface quality in full crown preparations, class II
restorations and veneers as well [32–36]. The thickness of
the layer [29] together with the stiffness of the liner have
various effects on restoration quality and adaptation;

Fig. 7 Typical sample with failing interface in cervical dentin; when
present, debonding did occur above the hybrid layer

Fig. 6 a Initial adaptation with
cervical dentin showing a perfect
adaptation before loading. Hybrid
layer and bonding layer are
visible at the interface. b Same
restoration margin segment after
loading showing defective
adaption; such gap formation
was observed in rather same
proportions in all groups

Clin Oral Invest (2012) 16:1385–1393 1391



actually, with a low E modulus, adaption was found inferior
to a restoration without base while the optimum “stress-
absorbing effect” is thought to be at around 7–7.5 Gpa [28].
In the same study, the restorative material had shown more
interfacial defects already at the time of placement; this
later finding was considered to be related to a reduced
wetting capability of the selected brand and the present
study aimed at confirming whether a base made of
restorative material was appropriate or not. In regarding
the type of resinous liner or base, the absence of proven in
vivo cario-protective effect of fluoride release from dental
materials (i.e. glass ionomers and resin-modified glass
ionomers) [37], restorative or flowable composites appear
today as the most suitable base material underneath large
class II direct or indirect restorations.

In the present study, restorations were cemented after
7 days following impression and cavities were roughened
with soft air abrasion (experiment 1) and airborne particle
abrasion (experiment 2, experiment 3); the later treatments
are widely applied and accepted as standard of care to
increase the cohesion between two layers of composite [21,
38, 39]. No debonding was observed in either sample or
group, confirming that the combination of soft air abrasion,
airborne particle abrasion and co-polymerization or the co-
polymerization alone as in the control group was effective
enough to generate a strong and stable interface, at least
stronger than the weaker interface with dentin.

The marginal and internal adaptation percentages were
found to be well correlated but failed to show any clear
advantage of a specific material's consistency or filler
content for use as a base/liner underneath indirect, large
class II restorations. All groups exhibited a significant
reduction of excellent margin proportions due to mechan-
ical loading, thereby confirming the prominent role of
mechanical, cyclic stresses in restoration interface degrada-
tion and supporting the use of simulated functional loading
in in vitro tests [40].

The only significant difference regarding marginal
adaptation was found in the control group (no base), with
a more pronounced reduction of excellent adaptation. Even
though not statistically significant, restorations with a
flowable composite liner tended to present more marginal
defects in cervical dentin before loading but this trend
disappeared after loading despite some rather large varia-
tions in the results. Percentages of perfect internal cervical
adaptation were inferior to those found in occlusal or
approximal interfaces; this suggests the critical importance
of this interface and the less favourable adhesion potential
of cervical dentin [41, 42]. When considering both marginal
and internal adaptation to cervical dentin, it appeared that
the behaviour of the restorative system and products under
investigation is improvable in the present in vitro environ-
ment and that none of the composites tested as base/liner,

whatever their surface treatment was, could prevent the
development of interfacial defects.

Thus, these findings support the current use of flowable
composites as base/liner taking, however in consideration
some known restrictions in regard to the material thickness
and filler content [28–30]. In case of extended use, airborne
particle abrasion could partially remove the adhesive layer
and is therefore to be considered technically more sensitive
[38]; then, soft air abrasion represents a feasible alternative
due to its potentially less aggressive effect than airborne
particle abrasion for cleaning and preparing cavities before
cementation.

Conclusion

The marginal adaptation and internal adaptation of large
indirect class II composite restorations was evaluated in
vitro before and after simulated functional loading and
pulpal pressure. Their adaptation to either enamel or dentin
was not influenced by the type of composite liner (flowable
or restorative composite) nor was it affected by the surface
treatment of the composite base/liners; then the first and
second null hypothesis were confirmed. The behaviour of
the restorative system and products under evaluation was
found satisfactory at the level of enamel while their cervical
dentin adaptation proved improvable and significantly
degraded following fatigue loading; thus, the third null
hypothesis had to be rejected. The results of the present
study support the use of flowable or restorative composites
as base/liner underneath large class II restorations and
confirm that soft air abrasion represents a feasible alterna-
tive to airborne particle abrasion for treating cavities and
base/liner before cementation.
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