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Abstract Many older unreinforced masonry (URM) buildings feature timber floors and
solid brick masonry. Simple equivalent frame models can help predicting the expected failure
mechanism and estimating the strength of a URM wall. When modelling a URM wall with
an equivalent frame model rather than, for example, a more detailed simplified micro-model,
the strengths of the piers and spandrels need to be estimated from mechanical or empirical
models. Such models are readily available for URM piers, which have been tested in many
different configurations. On the contrary, only few models for spandrel strength have been
developed. This paper reviews these models, discusses their merits, faults and compares the
predicted strength values to the results of recent experimental tests on masonry spandrels.
Based on this assessment, the paper outlines recommendations for a new set of strength
equations for masonry spandrels.

Keywords Masonry spandrels · Strength models · Peak strength · Residual strength ·
Brick masonry · Unreinforced masonry

1 Introduction

Most performance-based seismic assessment methods require the computation of a push-
over curve. A number of analysis tools, with different degrees of sophistication, have been
developed for unreinforced masonry (URM) buildings, which constitute a large part of the
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worldwide building stock. Reviews of such tools can be found, for example, in Magenes
and Menon (2009) and Penna (2010). While the level of sophistication of any one method
is reflected in its computational costs and the expertise required to apply the method, it also
often determines the manner in which the spandrel elements are treated. Simple methods
typically consider a limit case in which the spandrels are either neglected or considered to
be infinitely rigid and strong (e.g., the storey mechanism model by Tomaževič 1987). Such
simple methods are suitable for an initial assessment of a building or when the geometry of
the wall justifies the limit assumptions on the spandrels as a reasonable approximation of the
expected behaviour. However, in most URM buildings, piers and spandrels both contribute to
the overall flexibility and it will be difficult to predict the mechanism that will form when the
building is subjected to seismic loading. For this reason, URM buildings are often analysed
using more advanced models that account for the flexibility and limited strength and deforma-
tion capacity of piers and spandrels. Finite element modelling approaches for the nonlinear
analysis of URM buildings can be classified as micro models (e.g., Lourenço 1996), macro
models (e.g., Gambarotta and Lagomarsino 1997) and equivalent frame models. Of the three
approaches, the equivalent frame models are often chosen for the analysis of entire buildings
as they are the least expensive computationally. Equivalent frame models have been devel-
oped by a number of research groups. Among the first were Braga and Liberatore (1990) and
Magenes and Della Fontana (1998). Today, the equivalent frame analysis programs “Tremu-
ri” (Lagomarsino et al. 2006) and “SAM” (Magenes et al. 2006) have been developed to a
level that makes the nonlinear analysis of URM buildings feasible in engineering practice.

Most equivalent frame models require strength formulations for URM piers and spandrels
that are closed-form expressions, and therefore equations derived from simple mechanical
strength models are often best suited for the implementation in equivalent frame models.
For URM piers, several such strength models have been proposed by different authors (e.g.,
Turnšek and Čačovič 1970; Magenes and Calvi 1997). For URM spandrels, such strength
models are rather scarce because experimental data on URM spandrels, which is required
for the validation of the models, was not available until recently. Nevertheless, a number
of scientific papers and design codes have proposed models for estimating the strength of
masonry spandrels. The objective of this paper is to summarise the existing strength models,
to review them in the light of new experimental tests on masonry spandrels and to outline
recommendations for a revised set of strength equations for masonry spandrels. As an intro-
duction to the topic, the paper commences with the review of experimental results for masonry
spandrels and some observations on the force-deformation behaviour of masonry spandrels
gained from quasi-static cyclic tests.

The paper addresses only solid brick URM spandrels in existing URM buildings with tim-
ber floors (Fig. 1), which are simply referred to as masonry spandrels. Neither stone masonry
spandrels (e.g., Calderoni et al. 2008; Graziotti et al. 2009), reinforced masonry spandrels
(Haach et al. 2012) nor composite masonry spandrels consisting of a RC beam and a masonry
spandrel (Beyer and Dazio 2012b) are considered in this paper. These types of spandrels are
excluded as experimental tests have revealed that such spandrel elements exhibit behaviour
that is different from that of masonry spandrels.

2 Experimental tests on masonry spandrel elements

The first experimental observations of the behaviour of masonry spandrels in URM build-
ings subjected to seismic loading stem from shake table tests or quasi-static cyclic tests on
URM building models. Benedetti et al. (1998, 2001), for example, tested 24 two-storey URM
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Fig. 1 Old URM building during the L’Aquila earthquake on April 6th, 2009, showing spandrel failure a and
detail of a spandrel test unit (b, Beyer and Dazio 2012a)

buildings at half-scale and observed that damage to the spandrels is the mechanism that, for
the types of buildings tested, has the largest energy absorption capacity. Quasi-static cyclic
tests on URM buildings (e.g., Magenes et al. 1995; Yi et al. 2006) and subassemblages (e.g.,
Foraboschi 2009; Augenti et al. 2011) revealed further insights into the interaction of piers
and spandrels. However, because buildings and subassemblages are statically indeterminate
systems, the internal forces of the spandrels are not known exactly but can only be estimated
based on assumed stiffness and strength values for the spandrels and piers. Tests of subas-
semblages are valuable for the validation of models comprising piers and spandrels; for the
development of models for the spandrel element, test setups with which the internal forces
of the spandrel element can be measured are better suited. Such test setups were recently
developed by Gattesco et al. (2008), Graziotti et al. (2009) and Beyer and Dazio (2012a); a
comparison of the different test setups is included in the latter.

Gattesco et al. (2008) and Beyer and Dazio (2012a) tested brick masonry spandrels.
Gattesco et al. (2008) tested two different masonry spandrels—one with a timber lintel and
one with a timber lintel parallel to a flat arch. Beyer and Dazio (2012a) tested four masonry
spandrels that featured either a timber lintel or a shallow masonry arch. These tests on masonry
spandrels are briefly introduced in the following section, and the results are used to highlight
typical features of the force-deformation behaviour of masonry spandrels.

2.1 Test units and test setup

Quasi-static cyclic testing was carried out on four test units, which represented masonry
spandrel elements and the adjacent piers (Table 1). Out of the four test units, two featured
masonry spandrels with timber lintels and two included masonry spandrels with shallow
masonry arches (Fig. 2). Figure 3 shows the test setup. It imposed a drift on the two piers,
which defined the deformation demand on the spandrel. Horizontal tie rods restrained the
axial elongation of the spandrels. For two test units (TUA and TUC), the axial force in the
spandrel was kept constant throughout the test while for the other two test units (TUB and
TUD), the axial force in the spandrel depended on the axial elongation of the spandrel and
the stiffness and strength of the tie rods.
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Table 1 Material properties and details of the application of the axial load for the four spandrel elements
(Beyer and Dazio 2012a)

Test unit Spandrel type σpier
(MPa)

c (MPa) μ(−) fcm
(MPa)

ftb
(MPa)

Axial force in
the spandrel (Psp)

TUA Timber lintel 0.33 0.35 0.85 14.4 8.5 Constant first
80 kN, then
40 kN

TUB Timber lintel 0.33 0.35 0.85 14.4 7.0 Variable, plain
bars with low
axial stiffness

TUC Masonry arch 0.43 0.18 0.73 16.5 6.5 Constant 80 kN

TUD Masonry arch 0.43 0.18 0.73 16.5 5.0 Variable, plain
bars with high
axial stiffness

σpier Mean vertical stress on piers, c cohesion of mortar joint, μ coefficient of friction of mortar joint, fcm
compressive strength of masonry, ftb tensile strength of brick

1180
120

200140200

Fig. 2 Geometry of the four spandrel elements tested under quasi-static cyclic loading (Beyer and Dazio
2012a)

In addition to the quasi-static cyclic tests, material tests were carried out to determine
the mechanical properties of the construction materials. Those material properties, which
are required for the prediction of the spandrel strength (Sect. 5), are summarised in Table 1.
Note that TUA and TUB, as well as TUC and TUD, were constructed pairwise at the same
time. For each construction phase, only one set of compression tests and shear triplets was
constructed and tested; for this reason, the masonry strengths of TUA/TUB and TUC/TUD
are assumed to be equal.

2.1.1 Selected experimental results

The results of recent quasi-static cyclic tests have shown that the force-deformation behaviour
of masonry spandrels often has the following characteristics (Fig. 4a): up to the peak strength,
the shear force in the spandrel increases almost linearly, and the cracks in the spandrel remain
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Fig. 3 Test setup for spandrel tests. The side restraint is not shown. All dimensions are in (mm). LF = hollow
core jacks connected to load follower, which maintains constant oil pressure (Beyer and Dazio 2012a)

Fig. 4 Shear force-rotation relationship a and shear failure mechanism b (test unit TUC in Beyer and Dazio
2012a)

rather small. The peak strength is followed by a significant drop in strength; thereafter, the
cracks grow significantly in width and number. Observations during post-earthquake surveys
and experimental tests have shown that two types of crack patterns can be distinguished in
masonry spandrels, i.e., a flexural crack pattern and a shear crack pattern (Beyer and Dazio
2012a). Shear cracking of masonry spandrels leads to a characteristic X-type crack pattern
(Fig. 4b) that is similar to the shear failure of masonry piers. Flexural cracking is associated
with the formation of cracks that are approximately vertical and often pass through the joints
at the onset of cracking (Fig. 5a); as the cracks become wider, more and more bricks break,
and the crack passes mainly through head joints and bricks (Fig. 5b).
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Fig. 5 Flexural cracking of spandrels: crack pattern for small rotations with flexural cracks that follow the
joints a and crack pattern for larger rotations with flexural cracks through joints and bricks b (test unit TUB
in Beyer and Dazio 2012a)

Shear cracking is common for squat spandrels with large axial loads, whereas flexural
cracking is typical for slender spandrels or spandrels with small axial loads (Beyer and Dazio
2012a). In addition to flexural and shear types of failures, mixed failure modes have been
observed, where, for example, flexural cracks develop initially but, due to the increase in
axial force with increasing deformation, the residual strength after passing the peak resis-
tance is controlled by shear failure. Sliding is not a mechanism that is capable of initi-
ating the cracking of the spandrel because the shear force acts perpendicular to the bed
joints. The sliding mechanism can, however, control the residual strength of the spandrel
once flexural cracking leads to an approximately vertical rupture plane. However, in most
cases the rupture plane is curved (Fig. 5b), and hence the sliding failure of spandrels is
unlikely.

3 Strength models for masonry spandrels in codes

Most structural codes, such as Eurocodes 6 (CEN 2004) and 8 (CEN 2004, 2005a,b), and
the Canadian standard for the design of masonry structures (CSA 2004), do not address
the strength capacity of masonry spandrels. The draft version of the New Zealand code
(NZSEE 2011a) for the “Assessment and improvement of URM for earthquake resistance”
suggests that the capacity of spandrels can be evaluated using the mechanical models for
piers. Although Eurocode 8, Parts 1 and 3 (CEN 2004, 2005a,b), do not address the strength
of masonry spandrels, they permit the consideration of spandrels in the structural analy-
sis models provided that the spandrels are well bonded to the adjacent piers. The var-
ious codes do not address the strength capacity of spandrels because experimental data
and mechanical models were scarce or even unavailable at the time the codes were pre-
pared. As a result masonry structures are often analysed with simplified approaches, i.e.,
the strong spandrel—weak pier approach and the weak spandrel—strong pier approach.
In the strong spandrel—weak pier approach, the spandrels are modelled as rigid elements,
while in the weak spandrel—strong pier approach, the contributions of spandrels are fully
neglected (Cattari and Lagomarsino 2008). The FEMA 306 guidelines (FEMA 306 ATC
1998) and the Italian code OPCM 3431 (OCPM 2005) are, to our knowledge, the only stan-
dards that propose equations for the strength of masonry spandrels, and these are reviewed
below.
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3.1 FEMA 306

3.1.1 Spandrel strength equations in FEMA 306

At the time FEMA 306 was written, a methodology for estimating the strength of masonry
spandrels did not exist (FEMA 306 ATC 1998). The authors of FEMA 306 therefore rec-
ommended that the proposed equations should only be regarded as placeholders until such
research has been carried out. More than ten years after the publication of FEMA 306, the sit-
uation has hardly changed. From today’s point of view, the spandrel strength models included
in FEMA 306 are still unique because they allow both the peak and the residual strengths of
masonry spandrels to be addressed. Note that in FEMA 306, the peak and residual strengths
are referred to as the strengths of uncracked and cracked spandrels, respectively. This section
summarises the strength equations in FEMA 306 and discusses their merits and faults.

Peak flexural strength: The flexural capacity of the uncracked spandrel is derived from
the shear stresses in joints between bricks that are pulled out due to the opening of a flexural
crack at the interface between the pier and the spandrel (FEMA 306 ATC 1998). FEMA 306
assumes that the peak shear strength τ of the mortar joints can be described by a Mohr-Cou-
lomb relationship:

τ = c + μσ (1)

where c is the cohesion, μ is the friction coefficient and σ is the normal compressive stress
acting on the joint. FEMA 306 does not introduce μ as a variable but assumes μ = 1.0. Hence,
FEMA 306 estimates the equivalent tensile strength due to friction in the bed joints as:

f p,bj = 0.5
(
0.75c + γspσpier

)
(2)

where γspσpier is the axial compressive stress on the bed joints at the end of the spandrel,
which is expressed as a ratio of σpier , i.e., the vertical compressive stress in the adjacent pier.
A ratio of 0.5 is suggested for γsp .

As a second mechanism that contributes to the equivalent tensile strength of the spandrel,
FEMA 306 introduces the strength f p,s j , which is generated by the cohesion on the side
faces of the bricks if the wall consists of several wythes:

f p,s j = 0.5 (0.75c) (3)

The reduction factor of 0.75 on the cohesive strength c (Eqs. 2 and 3) accounts for shear trans-
ferred by the collar joints; this is because the cohesive strength is determined from in-situ
tests (NZSEE 2011b). As the shear strength is determined from triplet tests (see Sect. 2.1), it
can be omitted. The factor of 0.5 is assumed to be a partial safety factor and is therefore also
omitted when comparing experimental and predicted strength values (see Sect. 5). Assuming
a linear stress profile over the height of the spandrel and neglecting the effect of the axial
force Psp in the spandrel, FEMA 306 computes the peak moment resistance of the masonry
spandrel as:

Mp, f l = 2

3
hsp ·

(
f p,bj · tb · lb

2
+ f p,s j · lb

2
· hb · (N B − 1)

)
· hsp

4
(
h j + hb

) (4)

where NB is the number of wythes and tb the width of one brick, i.e., the width of one wythe.
The parameters hsp, lb, hband h j define the height of the masonry spandrel, the length of the
brick, the height of the brick and the thickness of the joint, respectively (Fig. 6). The axial
force, Psp , is positive when the spandrel is in compression. In our opinion, it is unclear why,
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Fig. 6 General geometry of spandrel and masonry

in Eq. (4), the equivalent tensile strength is multiplied by the width of a single brick tb and
not by the width of the spandrel tsp .

Peak shear strength: In FEMA 306, the peak shear strength of the spandrel is based on
the model by Turnšek and Čačovič (1970):

Vp,s = fdt · hsp · tsp · β ·
√

1 + psp

fdt
(5)

where fdt is the diagonal tensile strength of the masonry, tsp is the width of the spandrel and
psp is the mean axial compressive stress in the spandrel (psp = Psp/hsptsp). The parameter
β is a geometric parameter that accounts for the effect of the slenderness ratio on the shear
strength. In its original version, the equation addresses the shear strength of piers, and the
factor β is defined as a function of the inverse of the slenderness ratio, i.e., 0.67 ≤ β =
l pier /h pier ≤ 1.00 (Turnšek and Čačovič 1970; Magenes and Calvi 1997). In FEMA 306,
the factor β for spandrels is defined as being equal to the slenderness ratio lsp/hsp of the
spandrel (0.67 ≤ β = lsp/hsp ≤ 1.00). We believe, however, that this represents a typographic
error and that for spandrels, the factor β should be defined in analogy to the piers as 0.67 ≤
hsp/ lsp ≤ 1.00.

Residual strength after flexural cracking: The residual flexural strength after flexural
cracking is based on the same mechanism that is used in the equation for the peak flex-
ural strength. However, it is assumed that the cohesive strength of the joints has been lost.
Therefore, the residual strength of the bed joints equates to:

fr,bj = 0.5γspσpier (6)

where 0.5 is a safety factor. The moment is computed by assuming a symmetric stress dis-
tribution with a rectangular shape (Fig. 7):

Mr, f l = 1

2
hsp · fr,bj · tb

(
lb
2

− �s

)
· hsp

2
(
h j + hb

) (7)

The effective length, lb/2, over which the brick slips is reduced by the average head joint
opening �s .

Residual strength after shear cracking: The residual flexural and shear strength is esti-
mated using the same equations as those for the uncracked spandrel, but the height hsp of
the spandrel should be reduced to only the amount of the remaining uncracked masonry.
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Fig. 7 Geometry and assumptions for FEMA 306 (adapted from ATC 1998)

3.1.2 Discussion of spandrel strength equations in FEMA 306

Considering the absence of experimental tests on masonry spandrels at the time of publica-
tion, the spandrel strength equations in FEMA 306 are remarkably refined. FEMA 306 does
not only distinguish peak and residual strengths but also differentiates between the residual
strength based on whether flexural or shear cracking has occurred. Moreover, it also con-
siders walls with several wythes. In spite of these considerable achievements, a number of
assumptions, in particular those related to the residual strength equations, seem disputable:

• FEMA 306 neglects the axial force when determining both the flexural peak and residual
strengths. Experimental results (e.g., Beyer and Dazio 2012a) and numerical analyses
(e.g., Cattari and Lagomarsino 2008; Milani et al. 2009) of masonry spandrels have,
however, shown that the residual flexural strength, in particular, is strongly dependent on
the axial force in the spandrel.

• The assumed mechanism of a flexural crack that is open over the entire height of the
spandrel is not quite correct and disagrees with the assumed stress distributions (Fig. 7).
For the computation of the residual flexural strength, the effective length, along which the
interlocking forces are transferred, is reduced by the average head joint opening �s . This
seems to be an unnecessary refinement that suggests an accuracy that such models can
hardly achieve. For example, for a standard brick with lb = 120 mm and an average head
joint opening of the flexural crack of �s = 5 mm, the difference in predicted strength is
only 8 %.

• The stress distribution assumed for the flexural strength after flexural cracking is disput-
able (Fig. 7). FEMA 306 assumes a rectangular stress distribution with the compressive
stress equal to the equivalent tensile stress. This is incorrect because the horizontal com-
pressive stress can be a multiple of the equivalent tensile stress.

• The instructions for estimating the residual strength after shear cracking are unsatisfac-
tory because recommendations for the choice of the residual height value are missing.
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Fig. 8 Diagonal compression strut model in OPCM 3431 used to estimate the flexural capacity a. Stress-strain
relationship for masonry by Cattari and Lagomarsino (b, adopted from Cattari 2007)

Moreover, for a diagonal crack through the spandrel, the effective height values vary
along the length of the spandrel from the full height to zero height. It might therefore be
concluded that the flexural and shear strengths after shear cracking are zero.

3.2 OPCM 3431

3.2.1 Spandrel strength equations in OPCM 3431

The Italian seismic design code OPCM 3431 (OPCM 2005) provides guidelines for comput-
ing the shear and flexural capacities of spandrel elements in URM buildings. It distinguishes
between spandrel elements for which the axial forces are known and unknown. If the axial
force in the spandrels is known, the spandrels are treated like piers. If it is unknown, the
capacity of the spandrel can only be considered if a strut-and-tie mechanism can develop,
i.e., a tension member must be present. If the axial force Psp is known, the shear strength
associated with the flexural mechanism of the spandrel can be computed as (Fig. 8a):

V f l = Psp · hsp

lsp

(
1 − Psp

0.85 fhd hsptsp

)
(8)

where fhd is the design compressive strength of the masonry in the horizontal direction.
If the axial force is unknown, the flexural capacity is computed by replacing Psp with the
minimum of Hp and 0.4hsptsp fhd , where Hp is the tensile strength of the horizontal tension
elements, such as steel ties or ring beams.

Like FEMA 306, OPCM 3431 adopts the shear capacity model by Turnšek and Čačovič
(Eq. 5) if the axial force is known. If it is unknown, the shear capacity is computed as:

Vs = hsptspc (9)

where c is the mean shear strength in the absence of compression, i.e., the mean cohesive
strength. If the axial force is known, OPCM 3431 also proposes an alternative model, which
computes the shear resistance as the sliding shear resistance in the compression zone:

Vs = hctsp · c + μ · Psp (10)

where hc is the depth of the compression zone in the spandrel. OPCM 3431 recommends a
value of 0.4 for the friction coefficient μ.
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3.2.2 Discussion of spandrel strength equations in OPCM 3431

Unlike FEMA 306, OPCM 3431 explicitly accounts for the contribution of the axial force to
the flexural strength; this represents a considerable improvement. However, some assump-
tions underlying the spandrel strength equations in OPCM 3431 can be discussed:

• OPCM 3431 does not explicitly state whether it addresses the peak or residual strength
values. The equation for the flexural strength model addresses the residual strength after
flexural cracking (model with a diagonal compression strut and stress block). On the
contrary, the shear strength models seem to address the peak strength before severe shear
cracking because the models rely on the diagonal tensile strength and cohesion, respec-
tively.

• Equation (10) was developed for the sliding failure of walls. However, in spandrels, inter-
locking bricks tend to prevent sliding failure at peak strength. At residual strength, the
failure plane created by the flexural crack is often not perfectly planar; for this reason, as
outlined in Sect. 2.1.1, sliding failure is considered to be a rare failure mode for spandrels.

• If the axial force in the spandrel is unknown, estimating the spandrel capacity based
on the axial force Psp= min(Hp , 0.4hsptsp fhd) overestimates the maximum spandrel
shear force because, in general, the maximum axial force Psp in the spandrel will be less
than the limit values of Hp and 0.4hsptsp fhd (Betti et al. 2008). Hence, the axial force
in the spandrel needs to be estimated from a numerical or mechanical model that captures
the axial, flexural and shear flexibilities of the piers, spandrels and, if present, tension
elements such as steel ties.

4 Strength models for masonry spandrels in the literature

Most equivalent frame analysis studies of URM buildings utilise some or all of the spandrel
strength equations in OPCM 3431 (see Table 2). However, additional equations for estimat-
ing the spandrel strength have been proposed by different research groups, i.e., Magenes and
Della Fontana (1998), Cattari and Lagomarsino (2008), and Betti et al. (2008). The section
considers only those models that present closed-form expressions for the strength of masonry
spandrels. Approaches that are based on numerical models of spandrels (e.g., Milani et al.
2009; Sabatino and Rizzano 2011) are not included in this summary. The following two
sections summarise the proposed equations for estimating the shear and flexural strengths of
masonry spandrels.

4.1 Shear strength of masonry spandrels

Magenes and Della Fontana (1998) were the first to study the effect of spandrels on the
behaviour of masonry buildings and therefore influenced the development of the treatment
of masonry spandrels in the Italian code OPCM 3431. In their analyses, they estimated the
spandrel strength in a manner similar to Eq. (9):

Vs = hsptspcred (11)

where hsp and tsp are the height and width of the masonry spandrel, respectively (Fig. 6) and
cred is the reduced cohesion of the mortar bed joints (Mann and Müller 1982):

cred = c
1

1 + 2
(
hb + h j

)
/
(
lb + l j

) (12)
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Table 2 Overview of models implemented in equivalent frame analysis studies on URM buildings for com-
puting spandrel strengths

Studies with equivalent frame
analyses of URM buildings

Implemented mechanical
models for computing the
spandrel strengths

Mechanical models A–D

A B C D

Magenes and Della Fontana (1998) × Shear strength model by
Turnšek and Čačovič
(1970) for diagonal tension:

Magenes (2000) × ×a Vp,s = fdt · hsp · tsp · β ·
√

1 + psp
fdt

(A)

Salonikios et al. (2003) × ×b Sliding shear resistance:

Lagomarsino et al. (2006) × × × ×a Vs = hsptspc (B)

Pasticier et al. (2008) × ×a Sliding shear resistance as a
function of compression zone:

Chen et al. (2008) × c Vs = hctsp · c + μ · Psp (C)

Mallardo et al. (2008) × × ×a Flexural resistance:

Belmouden and Lestuzzi (2009) × × ×a V f l = Psp · hsp
lsp

(
1 − Psp

α fhd hsptsp

)
(D)

Amadio et al. (2011) × ×a

Sabatino and Rizzano (2011) × c

aα = 0.85, bα = 0.70, cThe flexural resistance was computed by means of a section analysis that included
an equivalent tensile strength due to the interlocking of the bricks

where hb, h j , lb and l j are the dimensions of the bricks and joints, respectively (Fig. 6). To
our knowledge, additional models for estimating the shear strength of masonry spandrels
have not been published, but previous research concentrated on developing flexural strength
models of spandrels, which are discussed in the following section.

4.2 Flexural strength of masonry spandrels

All the proposed flexural strength models for masonry spandrels are based on the assump-
tion of a linear strain profile over the section. The proposed models can be grouped into
two groups, i.e., models that consider the equivalent tensile strength of the masonry due
to the interlocking of bricks and models that neglect it. The mechanism of the equivalent
tensile strength due to the interlocking of bricks was previously described by FEMA 306
(see Sect. 3.1.1).

4.2.1 Flexural strength models considering the equivalent masonry tensile strength

Cattari and Lagomarsino (2008) applied the approach of an equivalent tensile strength for
computing the flexural resistance of a masonry spandrel but neglected the cohesive strength
of the mortar joints. They refined the equivalent tensile strength by introducing an additional
tension limit that accounts for the limited tensile strength fbt of the bricks. Hence, their
model also accounts for the possibility of a flexural crack through the head joints and bricks.
The equivalent tensile strength is computed as:

ftu = min

(

μγspσpier
lb

2
(
h j + hb

) ; fbt

2

)

(13)
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Cattari and Lagomarsino proposed a value of 0.65 for γsp , which is slightly higher than the
value proposed by FEMA 306 (γsp = 0.5). Based on the stress-strain relationship shown in
Fig. 8b, the flexural capacity of the masonry spandrel is evaluated for an axial force Psp . The
complete set of equations is provided in Cattari (2007). In particular for low values of Psp ,
the model yields larger flexural capacities than Eq. (8), which neglects the tensile stresses
due to the interlocking of the bricks (Cattari and Lagomarsino 2008).

Adding the tensile failure of the bricks as an additional failure mode describes the failure
domain more accurately. However, in the present form, the tensile failure of the bricks is
only the controlling failure criterion if the compressive stress in the piers is large, i.e., when
the clamping stresses γspσpier on the bed joints at the interface of the spandrel and the pier
are rather large. This is contradictory to observations from tests, which have shown that at
the residual state the flexural cracks often pass through the bricks (Fig. 5b). However, we
believe that the bricks often break due to a combination of tensile force, local bending and
stress concentrations rather than a tensile force alone.

4.2.2 Flexural strength models neglecting the equivalent masonry tensile strength

Betti et al. (2008) proposed, as an alternative to Eq. (8), two additional equations for esti-
mating the ultimate flexural capacity of a spandrel. For large axial compressive forces Psp ,
they proposed:

Mu = h2
sptsp

6

(
0.85 fhm − psp

)
(14)

For small axial compressive forces or tensile forces (Psp <0), they proposed:

Mu = h2
sptsp

6

(
ftm + psp

)
(15)

where ftm is the tensile strength of the masonry, i.e., the tensile strength of the mortar joints.
The formulae are based on the assumption of a linear stress distribution. This suggests that the
authors intended to address the peak flexural resistance rather than the residual flexural resis-
tance. Unlike Eqs. (4) and (13), they do not, however, consider the equivalent tensile strength
due to the interlocking mechanism. For most masonry spandrels, the axial compressive stress
psp in the spandrel is rather low; Eq. (14) should, therefore, rarely be relevant.

Parisi and Augenti (2011) compared the flexural strength domain of masonry spandrels
obtained from section analyses for different constitutive models for the masonry. The masonry
was assumed to act only in compression. Their results showed that the flexural strength is
relatively insensitive to the assumed constitutive models for axial load ratios Psp/hsptsp fhd

less than ∼0.2, which should apply to most spandrels. For such axial load ratios, their models
yield similar results to the flexural strength equation in OPCM 3431 (Eq. 8). If the axial force
ratio is greater than ∼0.3, the assumed constitutive model can have a significant influence
on the estimated flexural capacity of the spandrel. For conservative estimates, they recom-
mended their own constitutive model, or an elasto-perfectly brittle constitutive relationship,
to describe the behaviour of masonry in compression.

5 Comparison of predicted strength values with experimental results

This section compares the proposed equations for estimating the spandrel strength to the
experimental results obtained from the four spandrel tests presented in Sect. 2. The section is
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divided into three parts, which summarise the applied equations, compare the predicted and
experimental strength values and discuss the findings, respectively.

5.1 Summary of equations for predicting spandrel strength

The comparison is based on the equations included in the OPCM 3431 and FEMA 306
codes and the flexural strength models proposed by Cattari and Lagomarsino (2008) and
by Betti et al. (2008). The other equations summarised in Sect. 4 are not included for the
following reasons: (i) Magenes and Della Fontana (1998) approach for computing the shear
strength of spandrels is now included in the Italian code OPCM 3431. (ii) As outlined in
Sect. 4.2.1, the constitutive model proposed by Parisi and Augenti (2011) is only relevant for
axial load ratios greater than approximately 0.2–0.3. The axial load ratios of the four span-
drels varied between zero and 0.04 and are therefore much less than that is relevant for their
model.

The spandrel strength equations included in the comparison are summarised in Table 3.
As suggested in OPCM 3431, if the spandrel strength is originally given in terms of the
bending moment, an equivalent shear strength is computed by assuming that the spandrel
is subjected to double bending. The material properties are summarised in Table 1. The
diagonal tensile strength of the masonry fdt was not determined experimentally. To include
the equation in the comparison, a value of fdt = 0.15 MPa was assumed for all spandrels
(e.g. Turnšek and Čačovič 1970). The horizontal strength fhd of the masonry was also not
determined experimentally. As a first approximation, fhd is assumed as equal to the vertical
compressive strength of the masonry fcm (Beyer and Dazio 2012a). The tensile strength of
the masonry joints, which is required for the model by Betti et al. (2008), was estimated from
the experimentally determined values for cohesion and friction using the parabolic tension
cut-off criterion for mortar joints proposed by Rots and Lourenço (1993):

fh j = c

2μ
(16)

The mean height of a brick and a joint together was 74 mm. The length of a brick and the
width of a head joint were assumed to be 120 mm and 10 mm, respectively. The reduced cohe-
sion according to Mann and Müller (1982), which was used to compute the shear strength
according to OPCM 3431, therefore equates to cred= 0.47c.

Cattari’s and Lagomarsino’s flexural strength model, which was developed for beam ele-
ments with concentrated plasticity at their ends, is based on an elasto-plastic stress-strain
relationship. Hence, its rigorous application requires the assumption of a strain profile that is
related to the global spandrel deformation. For comparison with the experimental results, the
elasto-plastic stress-strain relationship was replaced by a rigid-plastic relationship, and it was
further assumed that the tensile and compressive strain capacity was unlimited. The strength
was therefore independent of the curvature. Note that the tensile strength of the bricks used
for the construction of the test units was rather large (see Table 1). For this reason, the equiv-
alent tensile strength was controlled by the limited strength of the interlocking mechanism
and not by the tensile failure of the bricks.

The objective is to compute the strength values without applying any safety factors. For
this reason, all factors in the FEMA equations that were interpreted as safety factors or factors
that account for particularities of the in-situ test methods (see Sect. 3.1.1) were set to unity.
Note also that in the FEMA equation describing the residual flexural strength, the brick width
was replaced by the spandrel width (see Sect. 3.1.1).
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Table 3 Summary of equations for predicting the spandrel strength

OPCM 3431 (2005) Flexure V f l = Psp · hsp
lsp

(
1 − Psp

0.85 fhd hsptsp

)
Eq. (8)a

Shear 1 Vs = hsptspcred with cred = c 1
1+2

(
h j +hb

)
/
(
lb+l j

) Eqs. (11) & (12)

Shear 2 Vs = hctsp ·cred +0.4·Psp with hc = Psp
0.85 fhd tsp

and cred as in Shear 1

Eq. (10)

FEMA 306
ATC (1998)

Flexure,
peak

Vp, f l = 2
lsp

· 2
3 hsp · f p,tot · hsp

4
(
h j +hb

)

with f p,tot = f p,bj · tb · lb
2 + f p,s j ·

lb
2 · hb · (N B − 1) and f p,bj = c +

0.5 · σpier , NB = 1

Eq. (4)a

Flexure,
residual

Vr, f l = 2
lsp

· 1
2 hsp · fr,bj ·

tsp

(
lb
2 − �s

)
· hsp

2
(
h j +hb

) with

fr,bj = 0.5σpier and �s= 0

Eq. (7)a

Turnšek and
Čačovič (1970)

Shear Vp,s = fdt · hsp · tsp · β ·
√

1 + psp
fdt

with 0.67 ≤ hsp
lsp

≤ 1.00

Eq. (5)

Cattari and
Lagomarsino
(2008)

Flexure V f l = 2
lsp

· tsp·
(

0.85 fhd hc

(
hsp

2 − hc
2

)
+ ftu

(
hsp − hc

) hc
2

)

with ftu = min

(
μ · 0.65 · σpier

lb
2
(
h j +hb

) ; fbt
2

)
,

hc = psp+ ftu
0.85 fhd + ftu

hsp

Eq. (13)

Betti et al.
(2008)

Flexure V f l = 2
lsp

· h2
sp tsp

6
(

ftm + psp
)

with ftm = c
2μ

Eqs. (15) & (16)a

a End moments are converted to a shear force assuming the spandrel is subjected to double bending

5.2 Comparison of predicted and experimental strength values

The comparisons of the predicted values with the experimentally determined strength values
are shown in Figs. 9, 10, 11 and 12. In the test results, only the positive and negative envelopes
of the cyclic force-deformation curves are plotted. The plots include both the shear forces
and the axial forces of the spandrels. The forces are plotted against the average pier rotation.
TUA developed a mixed flexural-shear mechanism, TUB developed a flexural mechanism
and TUC developed a shear mechanism. TUD developed flexural cracks at the beginning of
the test. Due to the strong axial restraint, which caused a significant increase in the axial
force with increasing deformation, the mechanism changed rapidly to a mechanism domi-
nated by shear cracks (a more detailed description of the failure mechanisms is contained in
Beyer and Dazio (2012a)). Hereafter we focus on the comparison between the predicted and
observed strength values for TUB and TUC, which developed a clear flexural and a clear
shear mechanism, respectively.

The results for TUB are shown in Fig. 10. All predicted values, which estimate the flexural
strength, are plotted in red, while those predicting the shear strength are plotted in blue. The
model by Betti et al. (2008), which is supposedly intended to estimate the peak strength,
yields by chance very similar values as the FEMA equation for the residual flexural strength.
It underestimates the peak strength by approximately 70 % and therefore seems to be unsuit-
able for estimating the peak flexural strength of the spandrel. This indicates that for the peak
strength, the equivalent tensile strength due to interlocking should be considered. Indeed,
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Fig. 9 TUA: comparison of predicted and experimentally determined strength values

Fig. 10 TUB: comparison of predicted and experimentally determined strength values

the model proposed by Cattari and Lagomarsino and the FEMA equation for the flexural
peak strength, which both account for the equivalent tensile strength due to interlocking,
underestimate the peak strength only by approximately 20–30 %. The OPCM equation for
flexural strength underestimates the experimentally determined residual flexural strength of
the spandrel once the spandrel has cracked by approximately 20 kN, which corresponds to
approximately 25–35 % of the actual strength. The FEMA equation for the residual strength,
however, grossly underestimates the strength of the spandrel after cracking. This can be
attributed to the fact that FEMA does not account for the axial force in the spandrel when
computing its flexural strength. To summarise, the model by Cattari and Lagomarsino and
the FEMA equation for the flexural peak strength seem to be best suited for estimating
the peak flexural strength, while the OPCM equation for flexural strength best captures the
strength after cracking. However, all three equations underestimate the actual strength values
by approximately 25 %.
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Fig. 11 TUC: comparison of predicted and experimentally determined strength values

Fig. 12 TUD: comparison of predicted and experimentally determined strength values

Figure 10 shows the results for TUC, which developed a shear failure mechanism. The
two OPCM equations for the shear strength lead to similar values, which are very close to the
experimentally determined residual strength. It is surprising that the first OPCM shear equa-
tion, which is based on the cohesive strength of the spandrel alone, matches the residual shear
strength of the spandrel so well, as the cohesive strength of the joints is lost after the joints
undergo some sliding movement associated with the shear mechanism. The shear strength
equation by Turnšek and Čačovič overestimates the actual peak strength by approximately
30 %. The reader is reminded, however, that the diagonal tensile strength, which enters into
this equation, was not obtained from material tests but was merely roughly estimated as
fdt = 0.15 MPa. For a diagonal tensile strength of fdt = 0.10 MPa, the predicted strength
would match the experimentally obtained peak strength. Note also that the set of FEMA
equations suggests that a flexural mechanism would form rather than a shear mechanism. As
outlined above, the FEMA equations for the flexural strength do not account for the axial
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force of the spandrel and therefore underestimate the flexural capacity. This leads to incorrect
conclusions regarding the dominant failure mechanism, in particular, for spandrels with rel-
atively large axial forces, such as TUC. The equation by Cattari and Lagomarsino therefore
seems to be the better choice when estimating the peak flexural strength of a spandrel.

5.3 Summary of findings from the comparison of predicted and experimental strength
values

The results for TUA and TUD, which developed mixed failure mechanisms, show very sim-
ilar trends as those for TUB and TUC, which developed a flexural and a shear mechanism,
respectively. Grouped according to failure mode and peak or residual strength, the following
observations can be summarised:

Peak flexural strength: Cattari’s and Lagomarsino’s model gave the best estimate for the
peak flexural strength capacity of the spandrels. To apply the model to TUA-TUD, the elasto-
plastic stress-strain relationship with a limited strain capacity was replaced by a rigid-plastic
relationship with an unlimited strain capacity. This modification might account for the fact
that the model sometimes overestimates the peak strength, although it neglects the cohesive
strength of the bed joints and the tensile strength of the head joints. FEMA 306, which is also
based on an interlocking mechanism but assumes a linear stress distribution (Fig. 7), neglects
the effect of the axial force in the spandrel and therefore tends to underestimate the peak
flexural strength. The equation by Betti et al. (2008) neglects the equivalent tensile strength
due to the interlocking mechanism and only considers the tensile strength of the mortar
in the head joints. As a result, the flexural peak strength of the spandrels is considerably
underestimated.

Residual strength after flexural cracking: The model proposed by OPCM 3431, which is
based on a diagonal compression strut, seems to be the most suitable approach for estimating
the residual strength after flexural cracking, although it tends to underestimate the experi-
mentally obtained strength to some extent. Observations from the experimental tests indicate
that the difference in strength can possibly be attributed to the contribution of timber lintels
or masonry arches to the spandrel strength. The equation in FEMA 306, which is based on
the interlocking mechanism of the bricks, underestimates the actual residual strength signif-
icantly because it neglects, as for the peak strength, the effect of the axial force. Moreover,
it was observed that at the residual state, cracks pass through many bricks, and the inter-
locking failure mechanism is therefore impaired. This observation suggests that the residual
flexural strength should not be based on the interlocking failure mechanism, which should
be confirmed through further tests.

Peak shear strength: For the peak shear strength of masonry spandrels, FEMA 306 and
OPCM 3431 propose the model by Turnšek and Čačovič (1970). Because the diagonal ten-
sile strength of the masonry was not determined from material tests, a rather rough estimate
was necessary to apply the model to the spandrels. The comparison suggests, however, that
the model by Turnšek and Čačovič (1970) is able to estimate the peak shear strength of the
spandrel.

Residual strength after shear cracking: The two shear strength models in OPCM 3431 are
not explicitly referred to as models for estimating the residual spandrel strength after shear
cracking. Indeed, the fact that shear strength is, in both cases, a function of the cohesion
could suggest that they are aimed at estimating the peak shear strength. The first OPCM
shear equation neglects the influence of the axial force Psp on the shear strength of the span-
drel, although experimental observations have suggested that at the residual state, the axial
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load plays a particularly important role. However, the comparison to the experimental results
showed that, in particular, the first OPCM shear equation yields good estimates of the residual
shear strength for the four analysed spandrels. Because this finding seems somewhat contrary
to the mechanical understanding, we recommend that the validity of this conclusion should
be carefully revisited once more experimental results become available. The second OPCM
shear equation computes the shear strength as the sliding resistance of the compression zone.
It yields a good estimate of the shear strength of TUC but underestimates the shear strength of
TUA. As outlined above, we do not consider sliding failure to be a particularly critical failure
mode for estimating either the peak strength or the residual strength of masonry spandrels.

6 Conclusions

Despite the lack of experimental data for masonry spandrels, a number of strength models for
spandrels have been proposed in the past, both in codes and in scientific papers. The objective
of this paper was to give an overview of the existing strength models, apply these models
to spandrels that have been recently tested experimentally and, based on the comparison,
formulate recommendations for future strength models for spandrels. The experimentally
determined force-deformation relationships of spandrels show two different strength lev-
els: a peak strength, which is attained for rather small deformation demands, and a residual
strength, which is typically much lower than the peak strength but which is associated with
a much larger deformation capacity than the peak strength. For this reason, new strength
models should continue the path set by FEMA 306 and clearly distinguish between peak and
residual strength values. Based on the comparison of mechanical models and experimental
results, a number of models were identified that seem particularly well suited for estimating
the peak and residual strength of a masonry spandrel when it develops either a flexural or
shear failure mechanism.

All the models address only the behaviour of plane masonry spandrels. However, most
spandrel elements contain a timber lintel or a masonry arch next to the masonry spandrel.
None of the reviewed models accounts for the contribution of the lintel or the arch to the
strength of the spandrel element or discusses the interaction of the lintel or the arch with
the masonry spandrel. The crack pattern and mechanisms that developed during the testing
of the four spandrels (Beyer and Dazio 2012a) suggested that these elements might play an
important role, in particular, after cracking, i.e., for the residual strength. Future work should
therefore investigate the influence of lintels and arches on the behaviour of the spandrel and
develop models that account for the contribution of a lintel or a masonry arch to the strength
of the spandrel.

The axial force in the spandrel greatly influences whether a flexural or a shear mecha-
nism develops (Beyer and Dazio 2012a). The comparison of predicted and experimentally
obtained values also showed that, with the exception of the first shear model in OPCM 3431
(Eq. 9), only models that account for the axial force in the spandrel yield good estimates
of the observed spandrel strengths. The axial force should therefore be included in future
strength models for spandrels. The challenge is, however, to estimate the axial force in the
spandrel. The axial force in the spandrel can be caused by the restraining effect of steel ties
and piers as well as the redistribution of shear forces between piers. The two estimates of axial
forces in OPCM 3431 are based on the tensile failure of the tie and the compressive failure
of the spandrel, respectively. However, such estimates might considerably overestimate the
actual axial forces in the spandrel and, therefore, the strength of the spandrel and ultimately
the seismic resistance of the building. It is therefore recommended to use numerical models
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to estimate the axial force in the spandrels. Such models should ideally capture the axial,
shear and flexural stiffnesses of piers and spandrels, including the reduction of the stiffness
with cracking, as well as the elongation of the spandrel due to shear and flexural cracking.
In particular, the latter might be difficult to include in simple equivalent frame models, and
future research should therefore more closely investigate the limitations and the range of
applicability of such models.
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