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Abstract It is generally acknowledged that the inclusion of

relativistic effects is crucial for the theoretical description

of heavy-element-containing molecules. Four-component

Dirac-operator-based methods serve as the relativistic refer-

ence for molecules and highly accurate results can be

obtained—provided that a suitable approximation for the

electronic wave function is employed. However, four-com-

ponent methods applied in a straightforward manner suffer

from high computational cost and the presence of pathologic

negative-energy solutions. To remove these drawbacks, a

relativistic electron-only theory is desirable for which the

relativistic Fock operator needs to be exactly decoupled.

Recent developments in the field of relativistic two-compo-

nent methods demonstrated that exact decoupling can be

achieved following different strategies. The theoretical for-

malism of these exact-decoupling approaches is reviewed in

this paper followed by a comparison of efficiency and results.

Keywords Relativistic electronic structure theory �
Fock operator � Douglas–Kroll–Hess method �
X2C method � Picture change error

1 Introduction

It is a well-established experimental fact that any

mathematical description of electromagnetic phenomena

involving electrons and atomic nuclei has to obey the

principles of special relativity [1]. As a consequence, a

fundamental theory for chemistry should be a relativisti-

cally correct quantum-mechanical all-electron theory [2].

While a truly Lorentz-covariant many-electron theory is

not available—although its basic principles have been cast

in the theory of quantum electrodynamics [3]—it turned

out that a semi-classical theory that quantizes the matter

field only (first quantization) is sufficient if chemical

accuracy for energies is sought, i.e., if relative energies

shall be calculated with an accuracy of about 1 kJ/mol. For

such a first-quantized theory, a relativistic many-electron

Hamiltonian operator may be formulated as

H ¼
X

i

hDðiÞ þ
X

i\j

gði; jÞ þ VNN; ð1Þ

where VNN is the repulsion potential energy operator of the

nuclei in a molecule, hD Dirac’s 4 9 4 one-electron opera-

tor, and g(i, j) the two-electron interaction operator includ-

ing the leading Coulomb term plus magnetic and retardation

corrections as comprised by the Breit operator [2]. Hence,

the electron–electron interaction in Eq. 1 is approximate. An

additional approximation invoked in almost all practical

cases is the Born–Oppenheimer approximation, i.e., the

assumption of clamped nuclei. For the purist we should note

that we refrained from embracing the one-electron Dirac

Hamiltonian by positive-energy projectors (see below) for

the sake of brevity.

Because of the four-dimensional matrix structure of the

Dirac Hamiltonian hD, the resulting orbital-based elec-

tronic structure methods are called four-component meth-

ods named after the number of functions that constitute a

one-electron state. These one-electron states commonly

referred to as orbitals are known as spinors in relativistic

theory. A four-component orbital is called a 4-spinor, a
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two-component orbital, which may be an eigenvector of a

two-dimensional one-electron Hamiltonian, is called a

2-spinor. Unfortunately, jargon occasionally mixes this

notation for operators with that for the corresponding

orbitals and one speaks of four-component operators

although four-dimensional operators are meant.

As the Dirac Hamiltonian includes a kinetic energy term

associated with the electron’s spin momentum in a natural

way, spin–orbit interactions are consistently described.

However, this can already be achieved to arbitrary accu-

racy by a purely two-dimensional Hamiltonian [4]. The

four-dimensional structure is, however, the origin of neg-

ative-energy states which are interpreted as positronic

states in quantum electrodynamics, but which require ad

hoc assumptions in a first-quantized relativistic theory to

assure stability of matter (Dirac’s hole theory)—and,

consequently, lead to conceptual problems when applied in

chemistry.

From the point of view of numerical results, quantum

chemistry based on standard Schrödinger quantum

mechanics, the so-called non-relativistic approach, may

yield numerical results that do not deviate significantly

from a relativistic description. It is then said that the

quantity studied is not affected by so-called relativistic

effects. For example, most aspects that are studied in the

context of organic molecules hardly show relativistic

effects. But if we aim for a quantum mechanical theory

valid for all chemistry, i.e., for molecules and molecular

aggregates that may contain any atom from the periodic

table of the elements, a ‘‘fully relativistic’’ four- or two-

component approach is mandatory.

Here, it is important to distinguish between methods that

are ‘‘quasi-relativistic’’ and thus do not completely repro-

duce four-component reference results for the same choice

of electronic wave function approximation and methods

that yield in principle the same result (and in practice

results that agree with four-component results to the

desired chemical accuracy). While this work is devoted to

the latter kind, we should note that the former type of

methods is usually split into scalar relativistic (also called

one-component) approaches, whose computational cost are

basically equivalent to that of the non-relativistic approach,

and spin–orbit interactions including (two-component)

approaches. Since the inclusion of spin in the Hamiltonian

requires invoking the spin operator and hence the two-

dimensional Pauli spin matrices, spin–orbit coupling

including methods are always two-component and spin

itself is no longer a good quantum number. As the scalar-

relativistic approaches describe only kinematic relativistic

effects, they change only the one-electron kinetic energy

operators in the many-electron Hamiltonian of Eq. 1, but

cannot account for any effects that are due to electron

spin—like the spin–orbit interaction.

The four-component approach for the optimization of

orbitals is computationally more demanding than the non-

relativistic one by some, not very large constant factor

(because of the matrix structure of the one-electron Ham-

iltonian in the former case). The four components of the

orbital (spinor) also affect the scaling behavior of the four-

index transformation for the application of subsequent

correlation methods like configuration interaction or cou-

pled cluster, but not the correlation methods themselves

[5]. Hence, in ab initio correlation calculations that do not

optimize the orbitals, four-component methods have basi-

cally the same computational cost as two-component

methods. However, the four-component optimization of

orbitals always automatically involves the optimization of

the negative-energy solutions, which require positive-

energy projectors if a variational procedure shall be applied

to the otherwise unbounded Hamiltonian. One may con-

sider the negative-energy states as pathologic as they cause

interpretative problems in semi-classical relativistic theory

employed here, ‘‘solved’’ only by Dirac’s hole theory. As a

consequence, actual calculations require the continuous

update of projectors [6]. From an algorithmic point of

view, these projectors are usually implicitly defined and

clearly depend on the external potential. As a consequence,

free-particle projectors proposed by Sucher [7] are not very

appropriate as Heully et al. [8] pointed out. However, for

the bound solutions, we are interested in, Talman [9, 10]

showed that a minimax principle holds, which can be

implemented in variational procedures also in the many-

electron case [11]. Still, negative-energy states may cause

numerical problems because of the choice of the one-par-

ticle basis set (usually kinetically balanced atom-centered

Gauss-type functions), in which the negative-energy (con-

tinuum) solutions are to be represented.

The negative-energy solutions can be considered as

superfluous for an electron-only theory that aims at the

positive-energy solutions. However, they can be exactly

removed by a decoupling of the negative- and positive-

energy states. For this, two pathways have been followed in

the past decades, namely the so-called elimination of the

small component and the unitary transformation approach.

The resulting Hamiltonians feature two-dimensional one-

electron operators, which allow one to set up two-compo-

nent methods.

The development of these two-dimensional operators

was neither straightforward nor without difficulties. For

instance, some featured energy-dependent operators or

operators that are difficult to calculate. The early two-

component approaches were called ‘‘quasi-relativistic’’

since some terms were discarded or approximated in the

desire to obtain efficient methods to implement in com-

puter programs. This has led to very efficient quasi-rela-

tivistic methods of which the zeroth-order regular

Page 2 of 20 Theor Chem Acc (2012) 131:1081

123



approximation (ZORA) [12–14] and the second-order

Douglas–Kroll–Hess approximation (DKH2) [15] are the

most prominent examples. Only within the past decade, it

has become clear that one may actually formulate ‘‘exact’’

two-component methods which approach four-component

reference results to (almost) arbitrary degree of accuracy.

For reviews of these developments see Refs. [16–24].

This work attempts a presentation of the ‘‘exact’’ two-

component approaches from the perspective of the one-

electron equation that determines the orbitals (spinors) in a

quantum chemical calculation. This point of view is usu-

ally not taken and instead only the Dirac Hamiltonian in an

external electrostatic field is considered, which allows one

to omit the discussion of how to deal with the electron–

electron interaction. It is, however, the treatment of these

two-electron terms (often accompanied by additional atom-

based (local) approximations) that introduces approxima-

tions which are the reason why we put ‘‘exact’’ in quotation

marks. It must be stressed that only a derivation of the

various ‘‘exact’’ two-component methods from the point of

view of the four-component Fock equation allows us to

highlight all approximations made within a particular

approach and to relate the different approaches to one

another. In addition to this review of the formal aspects of

‘‘exact’’ two-component methods, we present a detailed

comparison of them on the basis of new numerical results.

2 The Fock one-electron equation for the definition

of orbitals

By contrast to standard presentations of the subject, we start

from the relativistic (four-dimensional) Fock operator

rather than from the Dirac Hamiltonian. This choice is made

to clearly highlight the differences of ‘‘exact’’ two-com-

ponent approaches and the corresponding four-component

one. Most quantum chemical approaches approximate the

many-electron wave function by a direct product of one-

particle states. These one-particle states are obtained as

eigenvectors of an effective one-electron Hamiltonian, well

known as the Fock operator f.

The Fock operator comprises an operator for the kinetic

energy of an electron and its interaction with external

electromagnetic potentials (including those produced by

the atomic nuclei) as well as operators that describe the

interaction of the electron with other electrons. Especially,

the latter ones are not easy to approximate without com-

promising the resulting accuracy of numerical results. The

particular choice for such two-electron operators defines

the electronic structure method under consideration, be it

Hartree–Fock (HF), multi-configuration self-consistent

field (MCSCF) or Kohn–Sham density functional theory

(DFT).

All these methods rely on an effective one-electron

eigenvalue equation

f wi ¼ �iwi ð2Þ

with orbital energy �i and orbital wi. For a four-component

method, the Fock operator reads in Gaussian units

f ¼ hD þ qeVeff � qea � Aeff : ð3Þ

Here, the electromagnetic scalar and vector potentials, Veff

and Aeff ; respectively, are sums of all electromagnetic

potentials that couple to the electron’s charge qe = -e.

Note that the potential energy operator qeVeff � qea � Aeff is

to be understood as a four-dimensional matrix operator.

The field-free Dirac Hamiltonian is given by

hD ¼ ca � pþ ðb� 1Þmec2; ð4Þ

where a and b = diag(1, 1, -1, -1) are the Dirac

matrices and c is the speed of light. The vector a

contains three four-dimensional matrices whose off-

diagonal two-dimensional entries are the Pauli spin

matrices ri,

ai ¼
0 ri

ri 0

� �
8i 2 fx; y; zg: ð5Þ

The first term on the right hand side of Eq. 4 is the rela-

tivistic kinetic energy operator and the second term is the

rest energy operator of the electron, b mec
2 (me is its rest

mass), shifted by its rest energy -mec
2 in order to have the

same zero-energy reference level as in Schrödinger quan-

tum mechanics.

The effective electromagnetic potentials in Eq. 3 depend

on how the electron–electron interaction is described. This

question has two facettes as it refers to the choice of the

interaction operator, i.e., of g(i, j) in Eq. 1, and to the

approximation of the many-electron wave function (or

density). If we neglect all magnetic and retardation effects

in g(i, j), we obtain only terms in Veff but not in Aeff ; while

those effects, cast, e.g., as Breit operators, enter Aeff (but

can be written as a contribution to the scalar potential Veff;

see the detailed discussion in chapter 8.1 of Ref. [2]). The

wave-function approximation then affects the expressions

for the electromagnetic potentials in Eq. 3 as the electro-

magnetic interaction of an electron with another electron

depends on the other electron’s 4-current, i.e., on its den-

sity and current density to be calculated from the wave

function.

We may write the effective electrostatic potential in

general as

Veff ¼ Vext14 þ Vee; ð6Þ

where Vee represents the electron–electron interaction

whose explicit form depends on the wave function

approximation. The external potential Vext created by the
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atomic nuclei and any other external electrostatic field is

taken as a diagonal matrix operator (i.e., we do not con-

sider magnetic and retardation effects for the electron–

nucleus interaction, which is a common approximation in

quantum chemistry as it does not compromise chemical

accuracy) However, for the sake of brevity, we suppress

the four-dimensional unit matrix 14 in the following.

In the independent-particle model of four-component

Hartree–Fock theory, i.e., in Dirac–Hartree–Fock (DHF)

theory we obtain

VDHF
eff ¼ Vext þ J � K; ð7Þ

where J denotes the classical Coulomb potential

JðrÞ ¼ qe

Xocc

j¼1

Z
wyj ðr0Þ � wjðr0Þ
jr� r0j dr0 ¼ qe

Z
qðr0Þ
jr� r0j dr0; ð8Þ

and K denotes the exchange potential defined as

KwiðrÞ ¼ qe

Xocc

j¼1

Z
wyj ðr0Þ � wiðr0Þ
jr� r0j dr0wjðrÞ ð9Þ

(K produces off-diagonal (so-called odd) contributions of

the scalar electron–electron Coulomb potential). In the

MCSCF case, the two-electron terms have three spinor

indices for a given Fock equation [2, 25, 26]. The four-

component Kohn–Sham DFT case is similar to DHF theory

and the effective electrostatic potential reads

VDFT
eff ¼ Vext þ J þ VXC; ð10Þ

where all exchange and electron-correlation terms are then

obtained as functional derivatives of a properly

approximated exchange–correlation energy contribution

Exc,

VXCðrÞ ¼
dExc½qðrÞ�

dqðrÞ : ð11Þ

If magnetic interactions among the electrons shall be

considered in DHF theory or relativistic DFT, the effective

vector potential must be considered

AeffðrÞ ¼ AextðrÞ þ AGðrÞ þ AXCðrÞ; ð12Þ

where Aext is an external vector potential induced by an

external magnetic field. AG denotes the (unretarded)

magnetic interaction of electrons

AGðrÞ ¼
qe

c

Z
jðr0Þ
jr� r0j dr0; ð13Þ

which yields the Gaunt interaction and depends on the total

current density j of the electrons in the system. In DHF

theory AXC would contain ‘‘magnetic’’ exchange integrals,

while it is the relativistic current-density functional

derivative in relativistic DFT,

AXCðrÞ ¼
dExc½jðrÞ�

djðrÞ : ð14Þ

In the relativistic realm, the exchange–correlation

energy depends on both the electron density and the

current density, therefore the exchange–correlation energy

functional Exc ¼ Exc½qðrÞ; jðrÞ� also appears in the

expression for the effective vector potential.

Retardation effects that account for the transmission of

electromagnetic fields between the electrons with the finite

speed of light introduce additional terms that we here

neglect as it has turned out that such terms—approximated,

for instance, in the Breit interaction—lead to negligibly

small corrections for chemical applications. Note that these

terms depend on the choice of gauge for the electromag-

netic fields. Also the magnetic Gaunt interaction has only

very small contributions to electronic energy differences

and is thus usually omitted in calculations. Note that these

electronic contributions to the effective vector potential are

usually written as contributions to the effective electro-

static potential (see chapter 8.1 of Ref. [2]).

For the decoupling of the negative-energy states, it will

make a difference whether the effective potentials con-

tribute to the block-diagonal or to the off-diagonal entries

of the Fock operator. Therefore, it is advantageous to focus

first on the electrostatic effective potential and to consider

the magnetic contributions at a later stage.

The relativistic Fock operator in the absence of external

magnetic field, Aeff ¼ 0; is

f ¼ hD þ qeVeff : ð15Þ

If only a (block)-diagonal electrostatic potential is taken

into account, which is an approximation often made in the

derivation of two-component methods, the explicit matrix

form of the relativistic Fock operator will then read

f ¼ qeVdiag cr � p
cr � p qeVdiag � 2mec2

� �
; ð16Þ

where r denotes the vector of Pauli spin matrices. For

example, the one-electron Dirac operator and the Fock

operator in four-component DFT have a diagonal electro-

static potential, Vdiag = Vext and Vdiag = Vext ? J ?

VXC, respectively. Recall that a diagonal term in the 2 9 2

superstructure representation of the relativistic Fock oper-

ator is actually a block-diagonal 2 9 2 matrix contribution.

The 2 9 2 superstructure of the Fock operator is a gen-

eral feature and allows one to also write the corresponding

4-spinor in split notation, w ¼ ðu; vÞ; with u and v as its

upper and lower 2-spinor components. The components u
and v are often called large and small components,

respectively, because of their relative size for small external

potentials (i.e., for small nuclear charge numbers Z). Since

‘‘relative size’’ is somewhat vaguely defined, we should
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emphasize that it refers to a comparison of the absolute

values of both components over the whole spatial domain,

which shows only few exceptions (e.g., positions where the

large components have nodes). One may use the square root

of the integral of the large and of the small component

densities over the whole spatial domain to define ‘‘size’’.

However, this classifications is not valid for very heavy

elements (e.g., for nuclear charge numbers approaching

Z = 100 and higher Z’s) and therefore we consistently use

the former notation of ‘upper’ and ‘lower’ to distinguish the

components of the 4-spinor.

3 Theory of exact decoupling

The relativistic Fock equation in Eq. 2 has both positive-

energy (so-called electronic) and negative-energy (so-

called positronic) solutions

f wðþÞi ¼ �ðþÞi wðþÞi and f wð�Þi ¼ �ð�Þi wð�Þi : ð17Þ

The negative-energy solutions wi
(-) are not needed in

molecular calculations which consider electrons and nuclei

only. In DHF and relativistic DFT calculations, they are

always kept unoccupied and are never used to construct the

electron density and current density from which the

effective potentials are calculated. Since HF, MCSCF and

DFT approaches all utilize the variational principle, the

negative-energy states, whose number is finite in molecular

calculations only because of the choice of a finite basis set

for the representation of the components of the spinor,

cause problems for the variational stability. For this reason

it is desirable to derive a Fock operator for electrons only.

3.1 Two principal options

In principle, there are two conceptually different approa-

ches to obtain an electron-only Fock operator. One is the

projection approach and the other one the block-diagonal-

ization by unitary transformation. In the former one, a

projection operator is introduced [7] to remove the nega-

tive-energy states

PðþÞ ¼
X

i

jwðþÞi ihw
ðþÞ
i j; ð18Þ

(the sum runs over all positive-energy states). The

projected Fock operator f(?),

f ðþÞ ¼ PðþÞf PðþÞ; ð19Þ

possesses then only the positive-energy spectrum. But this

four-component projected Fock operator is not useful in

practice because the projection operator requires all

information of the positive-energy states which are actually

the result we aim for. One may introduce an atomic

approximation to the projection operator to overcome this

problem, which is efficient, but would be a first approxi-

mation in an exact-decoupling scheme.

The second option is to block diagonalize the four-

component Fock operator by a unitary transformation

f bd ¼ Uf Uy ¼ f ð2þÞ 0

0 f ð2�Þ

� �
; ð20Þ

where f(2?) and f(2-) possess only the electronic and

positronic solutions, respectively:

f ð2þÞ/ðþÞi ¼ �ðþÞi /ðþÞi and f ð2�Þ/ð�Þi ¼ �ð�Þi /ð�Þi : ð21Þ

Obviously, one can now simply discard the f(2-) operator

and employ the two-component electron-only Fock oper-

ator f(2?) to perform a relativistic molecular calculation.

The computational applicability of the decoupling trans-

formation depends crucially on whether one can derive an

efficient and computationally feasible algorithm to com-

pute the unitary transformation U as well as the corre-

sponding Fock operator f(2?). We will discuss the possible

options for their calculation in the following section.

3.2 The straightforward solution

The Fock equation, Eq. 2, can be rearranged to derive an

operator X that relates the large (upper (U)) component u
and the small (lower (L)) component v of a 4-spinor,

vðþÞ ¼ XuðþÞ: ð22Þ

Heully et al. [27] gave a closed form expression of the

exact decoupling transformation in terms of this key

operator X,

UX ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

1þXyX

p 1ffiffiffiffiffiffiffiffiffiffiffiffi
1þXyX

p Xy

� 1ffiffiffiffiffiffiffiffiffiffiffi
1þXXy

p X 1ffiffiffiffiffiffiffiffiffiffiffi
1þXXy

p

0
B@

1
CA; ð23Þ

whose derivation from the Fock equation is straightforward

[2]. This transformation has been called a Foldy–Wouthuysen

transformation [28], although the X-operator has not been

introduced in the original paper by Foldy and Wouthuysen,

that had a different focus to which we come back later. Note

that the operator X is an electron-only operator which connects

the large and small components of a positive-energy spinor.

No analytical energy-independent closed form of the

X-operator was discovered until now. However, the energy-

dependent form of X can be easily derived from the Fock

equation with the Fock operator of Eq. 16 [2],

X ¼ cr � p
2mec2 � qeVdiag þ �ðþÞi

: ð24Þ

A more general expression can be derived for the general

potential Veff,
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X ¼ cr � pþ qeVLU
eff

2mec2 � qeVLL
eff þ �

ðþÞ
i

: ð25Þ

This energy-dependent expression of X then depends on

which electronic spinor it acts on and does not lead to

eigenvalue equations, which makes it useless for actual

calculations.

3.3 The sequential solution

We can decompose the overall transformation U into a

sequence of unitary transformations

U ¼ � � �U3U2U1U0: ð26Þ

which is beneficial if the individual Ui are easier to obtain

than an expression for the total U. Foldy and Wouthuysen

[29, 30] were the first to attempt a derivation of such

unitary matrices. Their main result was to give a closed

form expression for UfpFW that (block)-diagonalizes the

field-free Dirac Hamiltonian,

UfpFW
0 cr � p

cr � p �2mec2

� �
UfpFW;y

¼
Ep � mec2 0

0 �Ep � mec2

 !
;

ð27Þ

The scalar relativistic energy Ep is given by Ep ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2c2 þ m2c4

p
; which is occasionally also abbreviated as

E0 because it is the zeroth-order term of the exactly

decoupled operators [without subtraction of the rest

energy]. However, any attempt to achieve a sequential

decoupling with operators ordered according to the formal

expansion parameter 1/c failed because of an ill-defined

series expansion [4] that yields operators at most to be used

in perturbation theory.

As we aim for an exact variationally stable procedure,

we must consider the only other formal expansion

parameter, namely the potential, which yields a conver-

gent series expansion of a variational one-electron Ham-

iltonian [4]. The idea for an expansion in terms of the

external electrostatic potential was first proposed by

Douglas and Kroll [31], but found no application in

electronic structure theory until rediscovered by Hess who

also turned its low-order approximation into a practical

method [15, 32]. The first unitary transformation in this

Douglas–Kroll–Hess (DKH) transformation protocol must

necessarily [4] be the above-mentioned closed-form

Foldy–Wouthuysen transformation, U0 = UfpFW, if the

off-diagonal terms to be eliminated in the Fock operator

are given by cr � p as in Eq. 16 and the new expansion

parameter, the potential, shall be introduced to first order

for the stepwise elimination up to infinite order by sub-

sequent unitary transformations U1;U2; . . .;U1:

Just as a historical side remark, we should mention that

Nakajima and Hirao [33] were the first to present third-

order DKH results based on Hess’ original work on second-

order DKH, followed by fourth- and fifth-order results by

our group [34] and then sixth-order results by van Wüllen

[35]. The final step in this direction was then our imple-

mentation of the first infinite-order DKH protocol [36] that

allowed the explicit symbolic derivation and evaluation of

the DKH one-electron Hamiltonian through all orders in

the external potential, which has been made available in

standard quantum chemistry programs [37, 38]. Its effi-

ciency was significantly increased by Peng and Hirao [39]

(see also below).

In addition to the analytical insights into the Douglas–

Kroll–Hess approach presented in Ref. [4], we also

presented in Ref. [34] a crucial reformulation called the

generalized DKH transformation. This was necessary as

different authors employed different parametrizations of

the unitary transformation matrices in terms of an off-

diagonal anti-Hermitean operator W to be chosen such that

the lowest-order off-diagonal term in the one-electron

Hamiltonian is stepwise eliminated. And it was not at all

clear whether these different parametrizations yield the

same results for finite DKH orders. The generalized DKH

transformation clarified these matters by definition of the

most general parametrization of a unitary transformation

given by a Taylor series expansion,

Uk ! UkðWkÞ ¼
X1

i¼0

ak;iW
i
k; ð28Þ

where the expansion coefficient ak,i are different for dif-

ferent parameterization schemes. These coefficients must

be chosen such that the unitarity of the transformation is

guaranteed.

The infinite-order DKH transformation,

UDKH ¼
Y0

k¼1
Uk; ð29Þ

can exactly decouple the relativistic Fock operator of

Eq. 16 (we denote the exact sequential DKH decoupling

transformation simply as ‘‘DKH’’, while we add a number

to it if decoupling is achieved only to a given order in the

electrostatic potential). If a sequential decoupling scheme

is applied to the block-diagonalization of the relativistic

Fock operator, then Douglas–Kroll–Hess theory is a unique

approach and no other option to produce closed-form

expressions (ordered by increasing powers of the potential)

exists [4]. For exact block-diagonalization of the operator

in Eq. 16, the full electrostatic potential Vdiag must be

considered as an expansion parameter. Standard DKH

implementations take, however, only the electron–nucleus

potential Vext because this then requires only a modification
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of the one-electron part of the Fock operator and leaves the

electron–electron term Vee untouched. This approximation

yields an efficient scheme but, of course, introduces inac-

curacies [40–43]. Of course, the exchange interaction in

DHF theory as well as vector potential (i.e., magnetic)

contributions make the DKH scheme even more involved

due to the occurrence of off-diagonal potential terms in the

Fock operator. However, to properly discuss the inclusion

of magnetic fields in exact decoupling methods is beyond

the scope of this work and we may refer the reader to the

overview in Ref. [44] instead.

3.4 The two-step solution

The most severe problem of the DKH expansion approach

when viewed as an exact-decoupling method is that it

introduces too many unitary transformations and thus too

many operators, which may make its implementation very

complicated (this is no problem for the efficient standard

low-order approximations like DKH2 or DKH4, but

becomes a true challenge for high orders). Therefore, we

should step back and reconsider the case if only one

transformation is introduced after the free-particle Foldy–

Wouthuysen transformation U0,

UBSS ¼ U01U0 with U0 ¼ UfpFW: ð30Þ

This idea was first proposed by Barysz et al. [45] and is

therefore know as the BSS approach although it has later

been called by Barysz and Sadlej the infinite-order two-

component (IOTC) method [46]. Their transformation U1

0

is a UX-like operator

U01 ¼
1ffiffiffiffiffiffiffiffiffiffiffi

1þRyR

p 1ffiffiffiffiffiffiffiffiffiffiffi
1þRyR

p Ry

� 1ffiffiffiffiffiffiffiffiffiffiffi
1þRRy

p R 1ffiffiffiffiffiffiffiffiffiffiffi
1þRRy

p

0
B@

1
CA; ð31Þ

where, instead of the original operator X of the (one-step) UX

transformation of Eq. 23, the operator R connects the upper

and lower components of the U0-transformed spinor obtained

as an eigenstate of the U0-transformed Fock operator

U0f U
y
0 ¼

FUU FUL

FLU FLL

� �
: ð32Þ

Here, we do not write explicit expressions as this is not

important for our following discussion. Barysz and co-

workers obviously had to face the same problem discussed

above for the UX transformation. I.e., the expression for U1

0

contains either unknown operators or impractical energy-

dependent operators and no analytical form was obtained.

However, the operator R can be obtained a solution of the

following equation

FLLR ¼ RFUU þ RFULR� FLU ; ð33Þ

which is easy to derive from the free-particle Foldy–

Wouthuysen-transformed Fock equation. Eq. 33 can be

iteratively solved with a proper initial guess. Obviously,

the iterative equation and iterative schemes for R are not

unique. There exist many ways to set up and solve the

iterative equations—a simple alternative to Eq. 33 would

be

RFUU ¼ FLLR� RFULRþ FLU ; ð34Þ

but they may result in divergent numerical solutions (for a

detailed discussion see Ref. [47]).

There are more difficulties associated with this iterative

approach. First, if the iterations are carried out explicitly,

the analytic expression of R becomes very complicated

already after a few iterations (therefore, the iterative

equations are always solved with matrix representations of

the corresponding operators). Second, the solutions of the

iterative equations are not unique, as it may produce an

operator connecting the upper and lower components of

any solution of the original Fock operator, which need not

necessarily be an electronic solution. This means that even

if the iteration converges, it may converge to an unwanted

solution. However, by properly organizing the iterative

solution, the correct operator R can be obtained and the

Fock operator is then exactly decoupled by the BSS

transformation.

3.5 The one-step solution

It should be clear that if the UX-like transformation U1

0
can

be obtained by an iterative solution, the original transfor-

mation UX also has an iterative solution. The only differ-

ence is that the iterative equations are slightly different and

may have different convergence behavior. The UX trans-

formation is indeed obtained within matrix representation

via the so-called eXact-2-Component (X2C) approach [47–

53]. However, an important characteristic of the X2C

approach is that it invokes a non-iterative construction of

the key operator X in UX. The drawbacks of the iterative

construction method discussed above do not exist in the

X2C approach. In this non-iterative construction method,

the matrix operator X is obtained from the electronic

eigenvectors of the relativistic Fock–Roothaan equation

FUU FUL

FLU FLL

� �
C
ðþÞ
U

C
ðþÞ
L

 !
¼ �ðþÞ C

ðþÞ
U

C
ðþÞ
L

 !
; ð35Þ

where the components of the 4-spinor are expanded in a

one-electron basis set (in the above equation we kept the

typical 2 9 2 superstructure of the Fock operator). CU
(?)

and CL
(?) are the coefficients of the basis set expansions of

upper (U) and lower (L) components of the 4-spinor

eigenvectors, respectively. The diagonal matrix �ðþÞ
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contains all positive-energy eigenvalues. Once the

coefficients CU
(?) and CL

(?) have been obtained, the matrix

X is simply obtained by

X ¼ C
ðþÞ
L C

ðþÞ
U

� ��1

: ð36Þ

This ‘‘trick’’ was called ‘‘Douglas–Kroll the easy way’’ by

Jensen [48], who introduced it in a talk at the REHE2005

conference and which was then the starting point for the

extensive development by Kutzelnigg and Liu [47, 49, 50].

Since the X matrix is directly evaluated from the electronic

solutions of the Fock operator, the four-component Fock

operator must first be diagonalized. But this already solves the

problem and no additional unitary transformation is required.

Hence, a two-component electron-only Fock operator is

then actually no longer needed to obtain electronic solu-

tions. However, there are two points that must be consid-

ered. First, the exact-decoupling approach not only

separates the electronic solutions from the positronic

solutions but also constructs the electronic two-component

spinors instead of four-component ones. This is clearly an

advantage, but it will also reduce the effort for the four-

index transformation if post-DHF correlation methods shall

be applied. These issues have been discussed in detail in

Ref. [54]. Second, as relativistic many-electron calcula-

tions require an external-field no-pair projection one

may view this projection to be accomplished by the exact-

decoupling approach. However, if actually a four-compo-

nent calculation must be carried out before the

two-dimensional operator can be evaluated (as in the X2C

case), the ‘‘projection by two-component approach’’ is no

valid advantage as the four-component variational solution

for the 4-spinors already required (implicit) projection to

the electronic solutions (in iterative protocols like the self-

consistent field algorithm, the projectors may even

be optimized implicitly when solving for the electronic

4-spinors; see the discussion in the Introduction and ref-

erences given there).

Formally, the X2C decoupling transformation is just the

UX transformation

UX2C ¼ UX; ð37Þ

although UX is not obtained by Eq. 23 but through Eq. 36.

4 Algorithmic aspects of ‘‘exact’’ decoupling methods

Complementary to the principles of exact-decoupling

methods discussed above, their actual implementation

poses additional challenges that we shall discuss in this

section. The most decisive insight which connects all

decoupling methods is the construction of a so-called

kinetically balanced basis set that ensures the correct

non-relativistic limit when the speed of light approaches

infinity (in actual electronic structure calculations, the

speed of light is then set to a sufficiently high value, e.g., to

1,000,000 Hartree atomic units).

In four-component calculations, basis functions for the

small component must be chosen carefully. One cannot

simply employ the same basis set for the large and small

components. This would lead to variationally unstable

results as already observed in the first attempt by Kim [5,

55] and to a wrong non-relativistic limit [56], The correct

non-relativistic limit is obtained if the kinetic-balance (KB)

condition [28, 57–60] which relates the basis sets for large

and small components,

u!
X

l

CU;lul; ul 2 fkkg ð38Þ

v!
X

l

CL;lvl; vl 2 fr � pkkg; ð39Þ

is obeyed. Here, {kk} represents the space spanned by the set

of basis functions kk. The KB condition is a natural

requirement as it has its origin in the off-diagonal terms of

the 2 9 2 superstructure of the Fock operator in Eq. 16.

Strictly speaking, the requirement in Eq. 39 is a restricted KB

condition. The most rigorous KB condition is defined by

Eq. 22, but this equation is not useful as no closed-form

solution for X exists and the energy-dependent expressions of

Eqs. 24 and 25 are, of course, totally impractical for actual

calculations. However, any choice of basis set which

guarantees the correct non-relativistic limit is sufficient for

exact-decoupling approaches. Hence, the one defined in

Eq. 39, which fulfills

vS
l ¼ XKBvL

l; with XKB ¼
1

2c
r � p; ð40Þ

is appropriate. In the case of numerical instabilities asso-

ciated with Eq. 40, it can be advisable to choose the small-

component basis functions normalized.

Equivalent to the KB condition is the idea of transfer-

ring the restriction on the small component’s basis func-

tions to the relativistic Fock operator of Eq. 15 by

1 0

0 r � p

� �
f

1 0

0 r � p

� �
¼ qeVeff cp2

cp2 V � 2mec2p2

� �

ð41Þ

where the transformation is clearly inspired by the

restricted KB condition. where V ¼ ðr � pÞqeVeffðr � pÞ:
The idea was proposed by Dyall [61] in the context of the

so-called modified Dirac equation

qeVeff cp2

cp2 V � 2mec2p2

� �
ui

evi

� �
¼ �i

1 0

0 p2

� �
ui

evi

� �
;

ð42Þ
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which we should call here the modified Fock equation.

Note that the lower component evi is no longer the small

component of the original Dirac spinor. It is called the

pseudo-large component. Now, the same basis set can be

employed for the large and pseudo-large components of the

modified Fock operator.

However, the modified Fock equation, Eq. 42, changes

the overlap metric as can be seen on the right hand side. It

is therefore more convenient to introduce a unitary trans-

formation to ensure the important KB condition and also to

preserve the identity as the metric. This is achieved with

the help of a special operator s,

s ¼ r � p
p

; with p �
ffiffiffiffiffi
p2

p
: ð43Þ

because its square is the two-dimensional unit matrix, s2 ¼ 1:

The KB unitary transformation [56] then reads

UKB ¼
1 0

0 s

� �
: ð44Þ

and yields the KB-transformed Fock operator

ef ¼ UKBf U
y
KB ¼

qeVeff cp
cp V

p2 � 2mec2

� �
: ð45Þ

Now, the corresponding transformed Fock equation does

no longer need a non-identity metric. In the following

discussion, we denote the form eO with a tilde on top of the

symbol as the KB-transformed operator of an original

operator O

eO ¼ UKBOU
y
KB: ð46Þ

It is crucial to employ the KB-transformed operators in the

implementation of exact-decoupling methods.

The operator s in Eq. 43 is a quite special operator. The

calculation of the square root of p2 needed for p seems to

be difficult to evaluate considering the usual definition of

the momentum operator as a differential operator. More-

over, there exists a restriction on the evaluation of operator

p-1 arising from the KB condition. The operator s must

preserve the KB condition such that the space spanned by

{skk} must be equivalent to fr � pkkg: From the form of

operator s we understand that the KB condition thus

reduces to requiring that the space spanned by {p-1kk}

must be equivalent to {kk}. Therefore, p-1 must be defined

within the basis functions space {kk}, which a priori is not

a condition trivially fulfilled in position space (only in

momentum space it is).

In general, it is easy to calculate the action of operators

that are algebraic functions of p2 in the space of eigen-

functions of p2; fhig: Then, the operator p2 can be replaced

by its eigenvalues

p2hi ¼ p2
i hi ¼) f ðp2Þhi ¼ f ðp2

i Þhi: ð47Þ

For a finite basis-function space, {kk}, Hess [15, 32, 62]

suggested that the exact momentum eigenfunctions hi are

to be replaced by the eigenfunctions of the matrix repre-

sentation of p2; fhkkjp2jklig: A transformation into this

basis is easily achieved as the non-relativistic kinetic

energy matrix, which is available in every quantum

chemistry program package, is proportional to p2 and can

be diagonalized after multiplication by -2me. Within this

scheme, the KB condition is satisfied since any p-1kk

belongs to the space {kk}.

In particular, all unitary transformations applied to the

relativistic Fock operator must preserve the KB condition.

The explicit form of the KB-transformed free-particle

Foldy–Wouthuysen transformation [29] reads

eU0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0þmec2

2E0

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0�mec2

2E0

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0�mec2

2E0

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
E0þmec2

2E0

q

0
@

1
A: ð48Þ

It only consists of operators which are algebraic functions

of p2: Therefore, they can be evaluated within the Hess

scheme. Obviously, eU0 will not violate the KB condition.

For the DKH expansion algorithm to exactly decouple the

relativistic Fock operator, the subsequent Uk (k [ 0)

transformations as well as their components Wk must be

evaluated within the KB-transformed space. In other

words, one must calculate the matrices of eUk and eWk

instead of their untransformed forms.

The traditional arbitrary-order DKH approach did not

evaluate the KB-transformed eUk; but expanded the final

Fock operator in terms of low-level operators [36]. The

high-level intermediates, which are very useful to reduce

the computational costs, were not used. Instead, the tradi-

tional DKH approach then leads to an exponentially scaling

algorithm with increasing order of the expansion, which

can makes it hard to approach infinite-order results in

practice. By contrast, the DKH method using KB-trans-

formed operators scales only polynomially [39] so that the

calculation of infinite-order results is feasible for any ele-

ment from the periodic table.

As a side remark, we should note that the expansion

formulation in terms of low-level operators is not directly

evaluated. In order to reduce the number of matrix opera-

tors needed to evaluate the Hamiltonian, the resolution of

identity operator s2 = 1 is inserted into proper positions so

that only a small number of operator matrices is required

for the evaluation of the two-component DKH operator. In

its scalar-relativistic variant, the identity to be employed

reduces to p2=p2 and only the matrix representation of

gp � Vp is needed in addition to eT and eV (see Sect. 5.2). We
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found the insertion approach to be numerically equivalent

to the approach using the KB-transformed operators

In the BSS approach, the operator R is also not directly

evaluated. In fact, the BSS approach proposes a set of

iteration equations for an operator Y to replace R. The

operator Y is defined as

Y ¼ sR ¼ r � p
p

R: ð49Þ

This definition turned to be the most crucial point for the

implementation of the BSS method in a computer program.

However, the reason why this step was invoked appears to

be mostly historical from our current perspective—namely,

it paralleled the procedure of the DKH approach [17],

namely to avoid the evaluation of matrix of operators

which include an odd number of r � p operators. By con-

trast, here, we start from a more fundamental point of view,

namely from the KB condition and the non-relativistic

limit, whose true importance has not been recognized in

previous work on the BSS approach.

Not surprisingly, in implementations of the X2C method

the X matrix operator is evaluated from the CL
(?) matrix

which consists of basis set expansion coefficients of the

pseudo-large components instead of the small components.

This means that the X matrix is evaluated in the KB-

transformed basis-function space.

Exact-decoupling methods have been given many names

by different authors mostly for historical reasons. Actually,

there exist only three variants of exact-decoupling methods

up to now. These three variants and their main protagonists

shall be briefly reviewed in the following three subsections.

In Sect. 6, we shall demonstrate how efficient the three

variants of exact-decoupling methods are. We will then

also demonstrate that, if properly implemented, all three

variants are almost equally efficient.

4.1 One-step transformation

If the exact-decoupling method is algorithmically achieved

by only one unitary transformation, we shall call it a ‘‘one-

step transformation’’. On formal grounds this notation may

be ambiguous as the single unitary transformation can be

decomposed or combined from more than one unitary

transformation. This is the reason why we write ‘‘algo-

rithmically achieved’’ in order to clearly state that it is a

matter of implementation into a computer program. Cur-

rently, the only example for a ‘one-step transformation’ is

the UX-transformation, but there might exist other analyt-

ical expressions that can be implemented in a single step.

The X2C method implements a one-step transformation.

However, the discussion of the X2C method usually starts

from the modified Dirac equation proposed by Dyall [61],

but the modified Dirac equation method is equivalent to the

four-component method with KB-transformed basis func-

tions. Very closely related to this method is the normal-

ized-elimination of the small component (NESC) method

[63–67] also proposed by Dyall, which is an electron-only

method, but with eigenfunctions expressed in terms of the

large components of electronic 4-spinors. In one NESC

paper [66], Dyall discussed the transformation (with a

renormalization matrix) to pure two-component wave

functions, and this version of the NESC method has almost

all characteristics of the current X2C method except for the

construction scheme of the X matrix. Dyall employed an

energy- or eigenfunction-dependent form to evaluate the X

matrix iteratively [68], although a non-iterative scheme as

in X2C could also be formulated in the NESC framework.

It must be noted that when the essential ideas of the X2C

approach had been worked out in 2005, it turned out that

Filatov and co-workers [68–70] had actually come to

similar conclusions considering an iterative NESC

approach [71, 72].

In a series of papers by Kutzelnigg and Liu [47, 49, 50]

the iterative way to construct the X matrix was discussed in

detail. These authors suggested the non-iterative construc-

tion scheme for many-electron calculations. Later, the non-

iterative construction approach was implemented into the

BDF program [51, 52] by Peng and Liu for molecular cal-

culations. The method was first called XQR (exact quasi-

relativistic) or infinite-order quasi-relativistic method. This

XQR method is a pure two-component method employing

Dyall’s renormalization matrix. A one-step transformation

method named IOTC (infinite-order two-component) was

implemented into the DIRAC program [53] by Iliaš and Saue.

[Note that the name IOTC has also been used for other

exact-decoupling approaches (see Sect. 3.4 above) and it

may easily cause misunderstandings.] Iliaš and Saue

adopted almost the same algorithm as the one implemented

in BDF except for Dyall’s renormalization matrix (and they

used a numerically more stable expression for the evalua-

tion of the X operator). In their implementation, the basis

functions are first converted into an orthonormalized set and

every matrix is then evaluated within the orthonormalized

set, while the implementation in the BDF program uses the

matrices expressed in unnormalized basis functions. Dyall’s

renormalization matrix turned out to be problematic [73]

and a new implementation in the BDF program fixed this

problem using a new renormalization matrix, which made

the BDF implementation equivalent to the IOTC method of

the DIRAC program. Finally, Liu and co-workers found the

name XQR to be not suitable to describe this approach. The

acronym ‘‘X2C’’ is now commonly used as the name for the

one-step exact-decoupling transformation approach as a

result from extensive discussions of Jensen, Kutzelnigg,

Liu, Saue, and Visscher at the DFT-2007 conference in

Amsterdam in August 2007. so far. Unfortunately, any
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exact-decoupling method may be called an exact two-

component method or infinite-order two-component

method. However, the acronym X2C has been used only for

this special one-step transformation algorithm. The current

X2C method has the following features : (1) an UX-type

transformation is employed, (2) X is defined within a KB-

transformed basis, (3) X is non-iteratively constructed.

4.2 Two-step transformation

The first transformation of a two-step method is the free-

particle Foldy–Wouthuysen transformation which was

considered necessary for the BSS approach [4]. As dis-

cussed above, the second step is then the UX-type trans-

formation as first proposed by Barysz et al. [45]. It was the

first approach proposed to exactly decouple the relativistic

Dirac Hamiltonian in an external electrostatic potential

operator. The non-iterative construction of the Y-operator

has been discussed in a paper by Kȩdziera and Barysz [74]

but was already mentioned in the talk by Jensen [48].

Almost all other calculations published employed the

iterative scheme. One exception that used the prescription

of Jensen was given in Ref. [75] for calculations on PbO.

The scheme is usually called the ‘‘BSS approach’’ [4, 45,

46], but later Barysz et al. preferred the abbreviation

‘‘IOTC’’. Other names for their approach, which have been

used, are IOFW (infinite-order Foldy–Wouthuysen) [76,

77] and IODK (infinite-order Douglas–Kroll) [43, 78].

Clearly, the adjective ‘‘infinite-order’’ is not appropriate to

describe the latest version of the BSS approach, since this

approach uses either an iterative or non-iterative algorithm

(like the X2C method) to achieve exact decoupling. A

notion refering to an ‘‘order’’ is rooted in the history of this

approach, which was proposed in 1997 as an attempt to

decouple to a certain order in 1/c [4, 45]. As the attribute

‘‘infinite-order’’ is no longer suitable and we continue to

simply use the name ‘‘BSS method’’.

The conventional BSS method has the following char-

acteristics : (1) the free-particle Foldy–Wouthuysen trans-

formation is first applied to the Fock operator, (2) a UX-type

transformation is employed in the second step, (3) the Y

operator is either iteratively or non-iteratively constructed.

However, it appears that the two-step transformation has

no advantages over the one-step transformation and hence

the X2C scheme can be used instead.

4.3 Expansion of the transformation

The DKH method is the only one of this category. In the

past, the acronyms DKH (or DK) referred to Hess’ original

truncated DKH2 method (DKH to 2nd order in the elec-

trostatic potential). However, one should clearly distinguish

finite-order from infinite-order DKH results. Also, the still

used abbreviation ‘‘DK’’ for ‘‘Douglas–Kroll’’ should be

avoided in favor of ‘‘DKH’’ to highlight Hess’ work without

which the suggestion by Douglas and Kroll would probably

not been known (apart from the fact that it was Hess who

demonstrated how to employ the DK transformation in

actual calculations). We should note that different param-

eterizations of Uk, i.e., different sets of ak,i expansion

parameters, give different exactly decoupled Fock opera-

tors. The infinite-order DKH Fock operators are therefore

not unique. However, at infinite-order, the results obtained

for expectation values are, of course, the same, independent

of the chosen parametrization. Only the infinite-order DKH

spinors differ by a unitary transformation from one another.

The DKH method has the following characteristics : (1)

the free-particle Foldy–Wouthuysen transformation is

applied to the relativistic Fock operator, (2) the electro-

static potential is used as an order parameter for an order-

by-order expansion of the relativistic Fock operator, (3) the

Uk transformation matrices are parametrized in terms of

off-diagonal anti-Hermitian Wk of k-th order in the elec-

trostatic potential.

5 Approximations involved in many-electron

calculations

So far, we have discussed the three existing variants for

exact-decoupling methods. In principle, they are all exact

two-component methods employing the full electrostatic

potential Veff. However, in practice, approximations are

introduced in order to increase the efficiency (ideally

without compromising the accuracy). The discussion to

follow now is independent of how the exact-decoupling

transformation U is obtained and thus holds for all exact-

decoupling methods.

5.1 The cumbersome two-electron terms

In many-electron calculations, the effective electrostatic

potential contains two terms

Veff ¼ Vext þ Vee½fwðþÞi g�; ð50Þ

i.e. the external potential and the effective potential from

electron–electron interactions which depends on the positive-

energy spinors that enter the expression for the total electronic

wave function (cf. Sect. 2) Therefore, the exact-decoupling

transformations must be updated if the spinors have changed,

e.g., upon their optimization in a self-consistent field

procedure (or when the positions of the nuclei, i.e., the

molecular structure is changed). In general, this change of the

exact-decoupling transformation has been shown to be small

[54, 79]. An exact-decoupling transformation constructed

only for the external electrostatic potential, Veff ! Vext;
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turned out to be an excellent approximation for molecular

many-electron calculation. Within this approximation, the

exact two-component Fock operator is approximated as

f ð2þÞ � U½Vext� ðhD þ qeVext þ qeVee½wðþÞi �ÞU½Vext�y
� �þþ

;

ð51Þ

where � � �ð Þþþ denotes the upper-left part of the trans-

formed four-dimensional operator. Formally, the choice of

U = U[Veff] for exact decoupling preserves equivalency to

the four-component approach, while U = U[Vext] is

equivalent to the external-field no-pair projection

approximation.

Untouched by this approximation, the untrans-

formed electron–electron interaction potential operator,

Vee[{wi
(?)}], still depends on all occupied positive-energy

4-spinors in the many-electron case. To exploit the

advantages of the two-component approach, we need to

compute it from the 2-spinors /i
(?). There exist two

approaches to achieve this. One is the back-transformation

approach. In an exact-decoupling method, we have avail-

able both the exact-decoupling transformation and

the 2-spinor. It is then easy to back-transform the two-

component orbital to a four-component one:

wðþÞi ¼ U�1 /ðþÞi

0

� �
¼ Uy /ðþÞi

0

� �
: ð52Þ

However, this approach is only useful to calculate one-

electron properties, but it is useless for calculating two-

electron integrals, because the former requires two times a

back-transformation, while latter requires four. If the back-

transformation is applied four times, the computational

costs will be higher than those of the corresponding four-

component calculation.

If we directly replace the four-component spinor wi
(?) by

its corresponding two-component spinor /i
(?) in the cal-

culation of the Vee operator, we introduce a picture change

error (see below). To correct for this error, we may add a

correction term, Vcor [42]. The correction term can be

added either before the transformation is carried out,

f ð2þÞ � ðU½Vext� ðhD þ Vext þ Vee½/ðþÞi �

þ VcorÞU½Vext�yÞþþ;
ð53Þ

or as an a posteriori correction

f ð2þÞ � ðU½Vext� ðhD þ VextÞU½Vext�yÞþþ

þ Vee½/ðþÞi � þ Vcor:
ð54Þ

Note that the correction term Vcor is not the same in both

equations.

Atomic mean field (AMFI) [80] and screened spin–orbit

(SNSO) [81] approaches have been proposed to correct for

two-electron picture change errors, but so far they have

only been applied to quasi-relativistic methods. An exten-

sion to exact-decoupling methods would be most desirable.

However, we should emphasize that in many calculations

the bare (untransformed) electron–electron interaction

operator is employed in the two-component Fock operator

f ð2þÞ � U½Vext�ðhD þ VextÞU½Vext�y
� �þþ

þVee½/ðþÞi �: ð55Þ

It is already known for a long time from quasi-relativistic

calculations that this bare-potential approximation provides

reliable results for valence electron properties (this is par-

ticularly true (see e.g., Refs. [82, 83]) for the scalar-rela-

tivistic variant introduced in the next section, but may be

different for the truely two-component method including

spin–orbit splitting [84]; but see also the numerical results

section below). However, it might be not good enough for

core-electron properties and gives large errors for the spin–

orbit splitting of high-angular-momentum orbitals [42, 81].

5.2 Scalar-relativistic approximations

There exist scalar versions of the exact-decoupling meth-

ods, which have the huge advantage that they can be easily

interfaced with a standard non-relativistic quantum chem-

istry program package. These scalar-relativistic versions

allow for an efficient description of kinematic relativistic

effects. However, scalar exact-decoupling is not uniquely

defined, because there is no unique definition of the scalar

full-relativistic Fock equation [85]. There exist two prin-

cipal ways to obtain a scalar exact-decoupling Fock

operator.

One is the ‘‘a priori’’ approach, where a scalar fully

relativistic Fock equation is defined first, then follows the

same steps as in the exact decoupling of the two-dimen-

sional operator to obtain a scalar electron-only Fock

operator. The commonly used scalar fully relativistic Fock

equation is obtained by replacing the two-component V
term in the Fock equation, Eq. 42, by a scalar operator

ðp � VpÞ: The scalar exact-decoupling method would then

provide the same eigenvalues. Another option is the

‘‘a posteriori’’ approach. Once the two-component elec-

tron-only Fock operator has been obtained, the spin-

dependent terms are discarded (by virtue of Dirac’s rela-

tion) to obtain the scalar version.

5.3 Local approximations

Because of the fact that all operators in molecular elec-

tronic structure calculations are evaluated in a one-electron

basis set, the matrix operations required by the exact-

decoupling methods require a computational effort that

scales with the molecular size rather than with the number
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of heavy atoms, which contribute most to the numerical

relativistic effect. For large molecules, efficient local

approximations are required. Naturally, one may restrict

the unitary transformation to those matrix elements of basis

functions that are located at a heavy atom (see e.g., the

work by Peralta and Scuseria [86, 87]). A more systematic

analysis has been provided by Thar and Kirchner [88]. The

main conclusion from these studies is that the unitary

transformation can be restricted to atom-same-atom diag-

onal blocks of the relativistic Fock operator without loss of

numerical accuracy. However, a more rigorous localization

scheme, which would also include all relevant atom-other-

atom off-diagonal blocks of the relativistic Fock operator,

is desired.

5.4 Transformed expectation values

To correctly evaluate an expectation value of a molecular

property operator P from a two-component wave function

the operator P must be transformed as well

hwðþÞi jPjw
ðþÞ
i i ¼ hUwðþÞi jUPUyjUwðþÞi i

¼ h/ðþÞi jðUPUyÞþþj/ðþÞi i

¼ hUy/ðþÞi jPjUy/
ðþÞ
i i:

ð56Þ

If the transformation of the property operator is neglected,

a picture change error [89, 90] is introduced, whose mag-

nitude depends on the type of property considered [91–97].

In general, the picture change error is large for core

properties. If the two-component result does not match the

four-component reference even though the property oper-

ator has been properly transformed, then this is most likely

because of other approximations discussed in this section.

6 Numerical comparison of the three exact-decoupling

variants

For a detailed numerical one-to-one comparison of the three

exact-decoupling methods, (infinite-order) DKH, X2C, and

BSS, we have implemented them into the MOLCAS program

(see Sect. 7) However, only scalar-relativistic versions

of these methods are currently available in MOLCAS. For

this reason, the explicit order does not need to be denoted.

To also shed light on spin–orbit effects, we carried out

atomic calculations for the radon atom as an example (see

Sect. 7).

6.1 Scaling behavior

The efficiency of the three decoupling methods are com-

pared in calculations of a test one-electron atomic system

(Rn85?). 100, 200, and 300 even-tempered Gaussian basis

functions were used. Since a 64-bit calculation turned out

to be too fast for this test, all calculations were carried out

with 128-bit precision (this also cures the failure of the

diagonalization routine for large basis sets in 64-bit preci-

sion). The calculations were performed on the Opteron 250

CPU. The evaluation of one-electron integrals has not been

included in the measurement of the CPU time, only the

transformation steps have been counted. Since the calcu-

lations are dominated by matrix multiplications and diag-

onalization, all methods are of the order OðaN2 þ bN3Þ
where N denotes the number of basis functions. The formal

scaling analysis is confirmed by the data given in Table 1,

where the ratios are 7.8 & 23 and 26.2 & 33 for increasing

the basis set from N = 100 to N = 200 and N = 300. This

demonstrates that the diagonalization dominates the com-

putational effort, i.e., that the prefactor a is rather small. The

ratio between different methods is then a constant factor.

The approximate DKH2 method is the fastest one, but it

does, of course, not achieve exact decoupling. The com-

putation time of the BSS method is almost the same as (still

approximate) DKH8, while X2C is a little bit faster than

BSS since the additional free-particle FW transformation is

missing in the X2C approach.

6.2 The hydrogen-like Rn85? heavy ion

Table 2 presents results for the 1s state of the one-electron

heavy ion Rn85? obtained with the different variants of

exact-decoupling methods as well as the four-component

Dirac equation solution denoted as DEQ. As explained

above, we will use the abbreviation ‘DKH’ for results

converged with respect to the order in the external poten-

tial. We employed a 35th order DKH scheme, i.e., DKH35,

in all cases presented here and below, which yields results

Table 1 Computation times (in seconds) of various decoupling

methods (for Rn85?)

N = 100 N = 200 N = 300

DKH2 1.8 12.6 (7.1) 41.5 (23.5)

DKH4 2.6 19.3 (7.3) 63.9 (24.3)

DKH6 4.4 33.2 (7.5) 110.8 (25.0)

X2C 7.0 54.2 (7.7) 181.1 (25.9)

DKH8 7.4 57.1 (7.8) 191.0 (26.0)

BSS 7.5 58.3 (7.8) 194.5 (26.0)

DKH10 12.6 97.8 (7.7) 326.0 (25.8)

DKH12 19.3 151.1 (7.8) 505.6 (26.2)

DKH14 29.5 230.3 (7.8) 771.4 (26.1)

DKH16 41.3 322.4 (7.8) 1,082.3 (26.2)

N the number of basis functions. Time ratios with respect to N = 100

are given in parentheses
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well converged to the infinite-order result. All eigenvalues

are identical to the original DEQ (in the same finite basis

set) as one would have expected for exact-decoupling

methods. Of course, this is possible because we do not

invoke any approximations for the electron–electron

interaction as this is absent in a one-electron system. The

equivalence of the energy eigenvalues is, of course, not a

surprising result since we have already discussed the

equivalence of the three variants for exact decoupling for

any finite basis set.

In order to study the difference of eigenfunctions, we

report picture change error affected expectation values of

radial momenta {rn, n = -2, -1, 1, 2}. If we would

properly transform the operators, all expectation values

would be the same as they should be. Instead, we evaluate

the expectation value as an integral of the squared two-

component eigenfunction multiplied by the proper power

of r, rn. The lower the power n the more weight is given to

the core part of the squared eigenfunction. From the data in

Table 2, we can see that there exist discrepancies among

different exact-decoupling methods which indicates that

their eigenfunctions are indeed different. The fact that the

differences observed for different operators rn are of the

same order indicates that discrepancies exist in the whole

range of the two-component eigenfunctions. Also, the large

difference between the four-component and two-compo-

nent results shows that the picture change error is not

negligible.

Table 3 reports additional (picture change error affec-

ted) expectation values for the operator r-1 for different

states of Rn85?. It can be seen that larger deviations from

the DEQ reference result are found for core orbitals. The

DKH results are found to be very close to BSS results,

especially for the outer core orbitals, which may be due to

the free-particle Foldy–Wouthuysen transformation that is

the first step in both schemes. We should stress again that,

if the operators rn would have been properly transformed

or if the two-component eigenstates were back-transformed

to the four-component picture, the exact decoupling

methods yield expectation values are identical to the DEQ

reference which is the reason, why we did not report them

in Tables 2 and 3.

This last point cannot be overemphasized. Within the

finite basis set used, we obtain exactly the same energies

and expectation values for all states and methods consid-

ered. It turned out that basis set convergence of the r-1 and

r-2 momenta for one-electron heavy ions is much better

than first observed in Ref. [91]. The persistent (small)

deviation of high-order DKH results from the exact DEQ

reference for these operators was believed in Ref. [91] to

be an artifact of the finite basis set used. However, we

discovered a bug in the original implementation of Ref.

[91], which caused a wrong prefactor in front of one of the

commutators of the third-order DKH property operator

expression. As a consequence, the comparatively small

deviation from the DEQ result completely vanishes upon

correction of the erroneous prefactor indicating again the

excellent convergence of the DKHn series.

6.3 A many-electron case: the Rn atom

In Table 4, we present results of DFT calculations of the

ground state of the neutral radon atom. The orbital energies

of exact decoupling methods now differ from each other

and from the four-component results due to the picture

Table 2 Energy eigenvalue and expectation values of untransformed operators {rn, n = -2, -1, 1, 2} of the 1s state in the one-electron

heavy ion Rn85?

DEQ DKH X2C BSS

�i -4,154.6625406 -4,154.6625406 -4,154.6625406 -4,154.6625406

r-2 31,523.20 50,897.75 51,129.21 51,391.38

r-1 110.1254 126.3773 125.1675 126.4942

r 1.488335E-02 1.389296E-02 1.396132E-02 1.389185E-02

r2 3.080482E-04 2.761091E-04 2.779321E-04 2.760894E-04

The energy eigenvalue �i is obtained to be exactly the same for all methods. However, note that the {rn, n = -2, -1, 1, 2} are affected by

picture change errors to highlight the fact that two-component eigenfunctions are obtained that are identical only up to another unitary

transformation. All data are in Hartree atomic units

Table 3 Picture change error affected expectation values of the

operator r-1 for ground and excited states of the Rn85? hydrogen-like

ion

DEQ DKH X2C BSS

1s1/2 110.12545 126.37731 125.16747 126.49422

1p1/2 29.275384 28.034662 27.975650 28.036643

1p3/2 22.643647 23.005977 22.989564 23.006007

1d3/2 10.237159 10.166282 10.165467 10.166282

1d5/2 9.7717553 9.8145082 9.8138649 9.8145083

1f5/2 5.5349079 5.5216606 5.5216008 5.5216606

1f7/2 5.4423748 5.4519652 5.4519099 5.4519652

All values are in Hartree atomic units
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change error in the two-electron Coulomb interaction term.

For the mean absolute errors (MAEs) of the complete set of

occupied electron orbitals, the results of DKH, X2C, and

BSS calculations are 0.397, 0.377 and 0.397 Hartree for

B3LYP (and 0.363, 0.346 and 0.363 Hartree for Hartree-

Fock), respectively. These deviations are basically the

same. All variants have the same mean relative errors

(MREs) for all occupied orbitals with a value of 0.397%

(B3LYP). The differences of the total energies are also at

the same level. It is evident that, for the calculation of

many-electron systems without a proper inclusion of the

two-electron interaction operator, current exact-decoupling

Table 4 Total and selected B3LYP as well as Hartree–Fock orbital energies of the neutral Rn atom

4c DKH ? SNSO DKH X2C BSS

B3LYP results

Total -23,611.4636 -23,597.9850 (0.057) -23,598.9075 (0.053) -23,599.8921 (0.049) -23,598.9087 (0.053)

1s1/2 -3,619.9163 -3,612.3095 (0.210) -3,611.4756 (0.233) -3,612.2372 (0.212) -3,611.4679 (0.233)

3s1/2 -162.3668 -162.1464 (0.136) -162.1294 (0.146) -162.1402 (0.140) -162.1294 (0.146)

6s1/2 -0.8575 -0.8568 (0.089) -0.8568 (0.090) -0.8568 (0.086) -0.8568 (0.090)

2p1/2 -634.9644 -633.8152 (0.181) -635.6840 (0.113) -635.7755 (0.128) -635.6833 (0.113)

2p3/2 -533.8440 -533.1097 (0.138) -532.3910 (0.272) -532.4396 (0.263) -532.3909 (0.272)

2pSO 101.1203 100.7055 (0.410) 103.2929 (2.149) 103.3359 (2.191) 103.2923 (2.148)

6p1/2 -0.4160 -0.4160 (0.006) -0.4189 (0.683) -0.4189 (0.693) -0.4189 (0.682)

6p3/2 -0.2789 -0.2787 (0.057) -0.2779 (0.333) -0.2779 (0.332) -0.2779 (0.333)

6pSO 0.1372 0.1373 (0.133) 0.1409 (2.747) 0.1410 (2.779) 0.1409 (2.746)

5d3/2 -1.8692 -1.8723 (0.166) -1.8862 (0.907) -1.8861 (0.901) -1.8862 (0.907)

5d5/2 -1.7045 -1.7046 (0.008) -1.6962 (0.484) -1.6961 (0.492) -1.6962 (0.484)

5dSO 0.1648 0.1677 (1.793) 0.1900 (15.305) 0.1900 (15.310) 0.1900 (15.305)

4f5/2 -8.2980 -8.3035 (0.066) -8.3759 (0.938) -8.3752 (0.931) -8.3759 (0.938)

4f7/2 -8.0377 -8.0455 (0.097) -7.9930 (0.556) -7.9924 (0.563) -7.9930 (0.556)

4fSO 0.2603 0.2580 (0.877) 0.3828 (47.080) 0.3828 (47.077) 0.3828 (47.080)

MAE 0.293 0.397 0.377 0.397

MRE (%) 0.088 0.392 0.392 0.392

Hartree–Fock results

Total -23,602.1044 -23,591.3125 (0.046) -23,592.1434 (0.042) -23,593.2115 (0.038) -23,592.1283 (0.042)

1s1/2 -3,641.1973 -3,635.6614 (0.152) -3,634.9353 (0.172) -3,635.5917 (0.154) -3,634.9235 (0.172)

3s1/2 -166.8331 -166.6451 (0.113) -166.6291 (0.122) -166.6378 (0.117) -166.6289 (0.122)

6s1/2 -1.0714 -1.0704 (0.094) -1.0704 (0.091) -1.0704 (0.090) -1.0704 (0.091)

2p1/2 -642.3301 -642.0151 (0.049) -643.9010 (0.245) -643.9966 (0.259) -643.9001 (0.244)

2p3/2 -541.1023 -540.5336 (0.105) -539.8050 (0.240) -539.8547 (0.231) -539.8049 (0.240)

2pSO 101.2278 101.4815 (0.251) 104.0960 (2.833) 104.1419 (2.879) 104.0952 (2.833)

6p1/2 -0.5403 -0.5411 (0.151) -0.5440 (0.688) -0.5441 (0.700) -0.5440 (0.688)

6p3/2 -0.3840 -0.3836 (0.089) -0.3827 (0.319) -0.3827 (0.318) -0.3827 (0.319)

6pSO 0.1563 0.1575 (0.742) 0.1613 (3.162) 0.1613 (3.200) 0.1613 (3.161)

5d3/2 -2.1897 -2.1940 (0.197) -2.2085 (0.863) -2.2084 (0.857) -2.2085 (0.863)

5d5/2 -2.0165 -2.0156 (0.047) -2.0066 (0.491) -2.0065 (0.498) -2.0066 (0.491)

5dSO 0.1731 0.1784 (3.037) 0.2019 (16.634) 0.2019 (16.640) 0.2019 (16.634)

4f5/2 -9.1939 -9.2009 (0.076) -9.2763 (0.896) -9.2757 (0.889) -9.2763 (0.896)

4f7/2 -8.9282 -8.9313 (0.034) -8.8764 (0.580) -8.8758 (0.587) -8.8764 (0.580)

4fSO 0.2657 0.2696 (1.481) 0.3999 (50.506) 0.3999 (50.503) 0.3999 (50.506)

MAE 0.203 0.363 0.346 0.363

MRE (%) 0.077 0.396 0.395 0.396

The relative errors (in %) with respect to the four-component reference values are presented in parentheses. The mean absolute error (MAE) and

mean relative error (MRE) are indicated for the complete set of occupied orbitals. The SO (spin–orbit splitting) entry is the energy difference

between orbitals j = l ? 1/2 and j = l -1/2. All values are in Hartree atomic units
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methods provide the same accuracy for electronic energies,

but do not fully reproduce the reference result.

Neglecting the picture change of the two-electron

interaction operator also leads to large errors for the spin–

orbit splitting, especially for orbitals of high-angular

momentum. As we can see from Table 4, the relative errors

of spin–orbit splitting of the 6p, 5d, and 4f orbitals are

roughly 2.7, 15.3, and 47.1% for B3LYP (and 3.2, 16.6,

and 50.5% for Hartree–Fock), respectively, when com-

pared with the four-component reference. The spin–orbit

splitting of the f shell has an error larger than 50% for

B3LYP.

The SNSO [81] approach proposed by Boettger is a

simple method to correct the two-electron picture change

error and can be applied for atomic systems. We employed

the same parameters for our SNSO infinite-order DKH

calculation as Boettger did for the DKH2 approximation (it

is obvious that such parameters are not very suitable for the

exact-decoupling methods and we will improve on it in

future work). We find that the DKH method with SNSO

correction significantly reduces the relative errors of spin–

orbit couplings, especially for the high-angular-momentum

orbitals. The relative error of 6p, 5d, and 4f orbitals

decreases to 0.1, 1.8, and 0.9% for B3LYP (and 0.7, 3.0,

and 1.5% for Hartree–Fock), respectively. The MAE and

MRE are also improved. The MRE of all occupied orbitals

is decreased to 0.088% in the case of B3LYP and to

0.077% in the case of Hartree–Fock. However, the total

energy is not improved because the contribution of high-

angular momenta is too small.

The SNSO correction approach includes only the cor-

rection of spin–orbit terms and thus no scalar-relativistic

terms are involved (by contrast to the approach of van

Wüllen [42] mentioned earlier). The error in total elec-

tronic energy is mainly determined by the innermost 1s

orbital, which accounts for 56% of the total energy error. If

a scalar-relativistic picture change correction term can also

be included to account for the deficiencies in the approxi-

mate treatment of the electron–electron interaction, we

may expect that it will improve the total electronic energy

as well as the inner core orbitals. If one is only interested in

energy differences, as is usually the case in chemical

applications, which may mainly come from the valence

orbitals, a spin–orbit picture change correction scheme may

be already good enough. The SNSO approach combined

with the X2C or BSS methods yields the same results as for

DKH. We therefore reported only the SNSO-DKH results

in Table 4.

The analysis of energies does not provide a complete

picture of the accuracy of the exact-decoupling methods.

We therefore also report results of other properties. Again,

we utilize data for the expectation values of operator r-1 as

listed in Table 5. The leftmost column shows the results

without picture change correction. This leads to 5.2% rel-

ative error of the total quantities. The error mainly stems

from the 1s orbital, which has 14.5% relative error. Even

for the MRE of all occupied orbitals, it is 1.14% for

B3LYP (and 1.13% for Hartree–Fock) and obviously not

negligible.

Clearly, in the step of calculating the one-electron

expectation values, the picture change correction, i.e., the

unitary transformation of the R-1:
P

i ri
-1 operator, is

necessary. As we can see from Table 5, the picture change

correction reduces the relative error of total expectation

value from 5.2 to 0.1%. The MAE and MRE are also

reduced from 0.4857 and 1.144% to 0.0101 and 0.156% for

B3LYP (and 0.4838 and 1.132% to 0.0069 and 0.051% for

Hartree–Fock), respectively. There errors are close to or

even better than those obtained for energies. Note that the

picture change error not only affects the operator R-1, but

also the two-component spinors through the neglect of the

transformation of Vee in the optimization of the spinors.

Adding the SNSO correction term improves further the

accuracy of expectation values. However, the total expec-

tation value is not improved for the same reason as dis-

cussed above. We even observe that the results for 2p1/2

become worse, although 2p3/2 turns out to be more accu-

rate. For high-angular momentum orbitals d and f all results

are improved.

6.4 Contact densities

Contact densities are most sensitive to the proper set-up of

transformation of operators [93, 94, 98–100]. Picture

change affected results are dramatically wrong. Especially,

the contact density of p1/2 would be zero without a proper

treatment of the picture change. Our results for the contact

density of the Rn atom in Table 6 show that all exact

decoupling methods provide results of the same accuracy.

Not unexpectedly, the SNSO correction does not improve

the accuracy of the contact densities as it has been designed

to correct the spin–orbit splitting, while the contact density

is dominated by the 1s orbital, which has a contribution of

more than 80%.

Since the RnH molecule considered for an illustrative

calculation of relative contact densities with the Rn atom as

reference is somewhat artificial (we unexpectedly obtained

with Hartree–Fock and with B3LYP an increased contact

density for the Rn contact density in the molecule; as can

be seen for Hartree–Fock in Table 7), we also studied

contact densities and contact-density shifts for the heavy

water analog of the sixth period of the periodic table, i.e.,

for PoH2, for which we obtained negative shifts. The most

important result from Table 7 is that DKH and X2C yield

the same results for the contact-density shift and very

similar absolute contact densities.
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7 Conclusion and outlook

In this paper, we reviewed the current status of exact-

decoupling methods applied to the relativistic Fock operator.

Three different approaches—DKH, X2C, and BSS—exist for

this purpose and they are all intimately related. In addition to

this discussion of all important formal aspects, we then set out

to provide numerical results which are obtained on the same

basis (same program platform, same basis set, same elec-

tronic structure method). The main results of this study, of

which some have already been obtained in previous work as

cited above, may be summarized as follows.

(a) The exact decoupling of the relativistic Fock

operator can be achieved with either DKH, X2C,

or BSS. The iteration scheme within the X2C and

BSS approaches may suffer from convergence

problems, but can be cured by the non-iterative

scheme.

(b) DKH, X2C, and BSS calculations in a finite basis set

produce the same eigenvalues as the four-component

reference (in the same KB basis set). However, their

eigenfunctions may differ (but are related by to one

another by a unitary transformation).

(c) In many-electron calculations, the exact decoupling

transformation is usually carried out with the external

potential only, thus introducing an approximation.

Employing untransformed two-electron potentials is

computationally very beneficial, but also introduces a

Table 5 B3LYP and Hartree-Fock expectation values of the r-1 operator for selected orbitals of the neutral Rn atom as well as for the total

operator, R-1:
P

i ri
-1

4c DKH ? SNSO DKH X2C DKH [pce]

B3LYP results

Total 699.505703 698.833118 (0.096) 698.944382 (0.080) 698.991685 (0.073) 735.502906 (5.146)

1s1/2 109.179301 109.071618 (0.099) 109.059783 (0.109) 109.070963 (0.099) 125.051113 (14.537)

3s1/2 9.969738 9.962444 (0.073) 9.961970 (0.078) 9.962248 (0.075) 10.466635 (4.984)

6s1/2 0.695418 0.695001 (0.060) 0.694979 (0.063) 0.694997 (0.060) 0.699724 (0.619)

2p1/2 27.194679 27.093849 (0.371) 27.200967 (0.023) 27.205183 (0.039) 26.138550 (3.884)

2p3/2 21.081260 21.072395 (0.042) 21.043522 (0.179) 21.045230 (0.171) 21.347845 (1.265)

6p1/2 0.579729 0.579411 (0.055) 0.580965 (0.213) 0.581003 (0.220) 0.579486 (0.042)

6p3/2 0.492555 0.492325 (0.047) 0.491740 (0.166) 0.491751 (0.163) 0.492103 (0.092)

5d3/2 1.247426 1.247309 (0.009) 1.250741 (0.266) 1.250737 (0.265) 1.249353 (0.154)

5d5/2 1.202089 1.202033 (0.005) 1.199814 (0.189) 1.199806 (0.190) 1.200621 (0.122)

4f5/2 2.974877 2.972309 (0.086) 2.982564 (0.258) 2.982533 (0.257) 2.979985 (0.172)

4f7/2 2.929191 2.930927 (0.059) 2.923331 (0.200) 2.923299 (0.201) 2.925170 (0.137)

MAE 0.0083 0.0101 0.0099 0.4857

MRE (%) 0.067 0.156 0.155 1.144

Hartree–Fock results

Total 699.258976 698.707959 (0.079) 698.819315 (0.063) 698.865968 (0.056) 735.341956 (5.160)

1s1/2 109.178769 109.059584 (0.109) 109.048561 (0.119) 109.058925 (0.110) 125.027648 (14.516)

3s1/2 9.980194 9.972547 (0.077) 9.972099 (0.081) 9.972330 (0.079) 10.475999 (4.968)

6s1/2 0.676254 0.675837 (0.062) 0.675876 (0.056) 0.675890 (0.054) 0.680187 (0.582)

2p1/2 27.149872 27.085486 (0.237) 27.192072 (0.155) 27.196654 (0.172) 26.131226 (3.752)

2p3/2 21.071816 21.066569 (0.025) 21.037648 (0.162) 21.039426 (0.154) 21.341624 (1.280)

6p1/2 0.574960 0.575095 (0.023) 0.576472 (0.263) 0.576515 (0.270) 0.575063 (0.018)

6p3/2 0.492764 0.492489 (0.056) 0.491984 (0.158) 0.491998 (0.156) 0.492334 (0.087)

5d3/2 1.243663 1.243946 (0.023) 1.247251 (0.288) 1.247249 (0.288) 1.245899 (0.180)

5d5/2 1.198849 1.198650 (0.017) 1.196512 (0.195) 1.196505 (0.196) 1.197296 (0.130)

4f5/2 2.975837 2.973897 (0.065) 2.984120 (0.278) 2.984090 (0.277) 2.981547 (0.192)

4f7/2 2.930898 2.932343 (0.049) 2.924769 (0.209) 2.924738 (0.210) 2.926603 (0.147)

MAE 0.0069 0.0117 0.0114 0.4838

MRE (%) 0.051 0.170 0.170 1.132

The relative errors (in %) with respect to the four-component data are presented in parentheses. The mean absolute error (MAE) and mean

relative error (MRE) are indicated for the complete set of occupied orbitals. ‘pce’ denotes picture-change affected results. All values are in

Hartree atomic units
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picture change error, which may be compensated by

an effective correction term.

(d) The SNSO correction of the two-electron picture

change error improves significantly the accuracy of

the spin–orbit splitting. Since no scalar-relativistic

correction is included in this ansatz, total expectation

values are not improved.

(e) Picture change corrections of property operators are

mandatory—especially for core properties such as the

contact density.

The discussion in this work has highlighted various

directions of future developments for exact-decoupling

methods. The basic theory is well established, but a couple

of practical issues for actual calculations are still to be

solved. Examples are:

(a) The development of an intelligent infinite-order DKH

method, which automatically truncates the expansion

at desired accuracy without the pre-input of the

desired order.

Table 6 B3LYP and Hartree–Fock contact densities and contributions from individual orbitals of the neutral Rn atom in Hartree atomic units

4c DKH ? SNSO DKH X2C DKH [pce]

B3LYP results

Total 3,813,828.11 3,812,599.15 (0.032) 3,814,303.57 (0.012) 3,815,690.02 (0.049) 11,155,986.64 (192.514)

1s1/2 1,550,219.61 1,550,969.85 (0.048) 1,550,367.62 (0.010) 1,550,950.37 (0.047) 4,607,441.57 (197.212)

2s1/2 248,537.74 248,697.85 (0.064) 248,617.89 (0.032) 248,689.67 (0.061) 739,534.03 (197.554)

3s1/2 58,180.21 58,241.41 (0.105) 58,224.13 (0.075) 58,239.10 (0.101) 173,192.71 (197.683)

4s1/2 15,342.95 15,361.35 (0.120) 15,356.94 (0.091) 15,360.79 (0.116) 45,680.35 (197.729)

5s1/2 3,527.57 3,532.14 (0.129) 3,531.22 (0.103) 3,532.09 (0.128) 10,503.85 (197.764)

6s1/2 551.01 551.73 (0.131) 551.61 (0.109) 551.74 (0.133) 1,640.81 (197.782)

2p1/2 22,656.27 21,456.97 (5.293) 22,615.67 (0.179) 22,630.44 (0.114) 0.00 (100.000)

3p1/2 5,966.57 5,655.97 (5.206) 5,956.62 (0.167) 5,959.76 (0.114) 0.00 (100.000)

4p1/2 1,561.98 1,481.19 (5.173) 1,560.03 (0.125) 1,560.82 (0.075) 0.00 (100.000)

5p1/2 331.14 314.11 (5.141) 330.97 (0.051) 331.13 (0.001) 0.00 (100.000)

6p1/2 38.99 37.00 (5.100) 39.08 (0.222) 39.10 (0.274) 0.00 (100.000)

Hartree–Fock results

Total 3,802,285.57 3,789,453.14 (0.337) 3,791,548.74 (0.282) 3,792,519.57 (0.257) 11,094,058.60 (191.773)

1s1/2 1,546,350.48 1,542,225.22 (0.267) 1,541,792.70 (0.295) 1,542,205.45 (0.268) 4,583,791.56 (196.426)

2s1/2 247,684.15 246,976.59 (0.286) 246,934.60 (0.303) 246,966.92 (0.290) 734,830.91 (196.681)

3s1/2 57,987.93 57,844.73 (0.247) 57,836.71 (0.261) 57,842.34 (0.251) 172,111.81 (196.806)

4s1/2 15,121.89 15,087.81 (0.225) 15,086.38 (0.235) 15,087.72 (0.226) 44,894.20 (196.882)

5s1/2 3,339.99 3,332.53 (0.223) 3,332.59 (0.222) 3,332.88 (0.213) 9,917.13 (196.921)

6s1/2 499.71 498.47 (0.248) 498.58 (0.225) 498.62 (0.217) 1,483.69 (196.912)

2p1/2 22,383.11 21,341.25 (4.655) 22,482.12 (0.442) 22,507.49 (0.556) 0.00 (100.000)

3p1/2 5,898.06 5,627.65 (4.585) 5,923.69 (0.435) 5,929.55 (0.534) 0.00 (100.000)

4p1/2 1,528.81 1,459.34 (4.544) 1,536.26 (0.487) 1,537.73 (0.583) 0.00 (100.000)

5p1/2 311.92 297.89 (4.499) 313.70 (0.570) 314.00 (0.667) 0.00 (100.000)

6p1/2 36.74 35.11 (4.429) 37.04 (0.818) 37.08 (0.920) 0.00 (100.000)

The relative errors (in %) with respect to the four-component values are presented in parentheses. ‘pce’ denotes picture-change affected results

Table 7 Hartree–Fock contact densities for Rn and Po atoms and for the molecules RnH (bond distance 108.7 pm))and PoH2 (Po–H distance

177.3 pm)

Method Rn RnH DRnH Po PoH2 DPoH2

sfDKH [pce] 11,097,679.77 11,097,810.30 130.53 9,448,555.63 9,448,442.35 -113.28

sfDKH 3,744,321.59 3,744,366.39 44.80 3,197,017.33 3,196,979.51 -37.82

sfX2C 3,745,217.87 3,745,262.68 44.81 3,197,772.34 3,197,734.51 -37.83

Difference densities are denoted as DRnH ¼ RnH� Rn;DPoH2 ¼ PoH2 � Po. ‘sf’ denotes the scalar-relativistic spin-free approximations of the

exact-decoupling methods. ‘pce’ denotes picture-change-affected results
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(b) The efficiency of transformations of property opera-

tors should be improved. This is most apparent for the

position-dependent density operator.

(c) Two-electron picture change correction schemes for

exact decoupling methods require more work. Devel-

opments could be based on ideas of the AMFI and

SNSO approaches.
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Appendix: Computational methodology

For the molecular calculations presented in this paper, we

have been implemented the scalar-relativistic polynomial-

cost DKH algorithm as well as X2C and BSS into the

MOLCAS programme package [37] by docking the module

described in Ref. [39] to the existing interface to the

exponentially scaling DKH module [36]. Calculations with

truly two-component versions are performed with the

atomic program presented in Ref. [39], where also the four-

component approach is available. Dyall’s TZ basis set was

employed for Rn and Po in uncontracted form yielding a

(30s26p17d11f) primitive basis for both. For H, Dunning’s

aug-cc-pVTZ basis set was used (6s3p2d)/(4s3p2d) [101].

The (finite) nuclear charge distribution was modeled by a

Gaussian distribution [102]. In the DFT calculations we

applied the B3LYP hybrid density functional [103–105].

Different Rn–H distance were tested for RnH (from

171.6 to 108.7 pm) and the contact density turned out to be

always positive. For PoH2 we chose Po–H bond lengths of

177.3 pm and an angle of 89.6�.
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