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Abstract

 

—To provide stability of classification, a robust supervised minimum distance classifier based on the
minimax (in the Huber sense) estimate of location is designed for the class of generalized Gaussian pattern dis-
tributions with a bounded variance. This classifier has the following low-complexity form: with relatively small
variances, it is the nearest mean rule (

 

NMean

 

), and with relatively large variances, it is the nearest median rule
(

 

NMed

 

). The proposed classifier exhibits good performance both under heavy- and short-tailed pattern distri-
butions.
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1. INTRODUCTION

In statistical pattern recognition, pattern distribu-
tions are usually unknown and may vary in a wide
range from short- to heavy-tailed forms. To provide sta-
bility of the classification performance under uncon-
trolled departures from the assumed distribution mod-
els and to protect against gross outliers in the data, var-
ious approaches have been used, including nonlinear
programming methods, advanced neural statistical
algorithms, and robust estimation procedures [1–3].

Here we consider the simplest scalar case of super-
vised classifiers, namely, the minimum distance classi-
fier with the conventional decision rule

(1)

where 

 

x

 

 is a pattern and  and  are some estimates
of location for the patterns obtained from training sets.

Under Gaussian pattern distributions, the use of the
sample means in (1) leads to the optimal 

 

NMean

 

-rule
[3]. As the sample mean is an extremely non-robust
estimate, we apply robust minimax (in the Huber sense)
estimates in (1) in order to enhance the performance of
classification in the conditions of uncertainty of an
underlying pattern distribution.

The paper is organized as follows. In Section 2, the
robust minimax (in the Huber sense) estimate of loca-
tion for the class of nondegenerate pattern distributions
with a bounded variance is written out. In Section 3, a
low-complexity threshold mean–median estimate of
location is proposed. In Section 4, robust classifiers
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based on minimax estimates are introduced and stud-
ied. In Section 5, the conclusion is given.

2. MINIMAX ESTIMATES OF LOCATION

Huber’s minimax approach [1] in robust estimation
can be roughly formulated as follows: in a given class
of distributions, the least favorable distribution mini-
mizing Fisher information is determined and the maxi-
mum likelihood method for this distribution is then
applied. This approach provides a guaranteed accuracy
of estimation under departures from the assumptions
about an underlying distribution.

Let 

 

x

 

1

 

, …, 

 

x

 

n

 

 be i.i.d. random variables with com-
mon density f(

 

x

 

 – 

 

θ

 

) in a convex class 

 

F

 

. Then an

 

M

 

-estimate  of a location parameter 

 

θ

 

 is defined as a

zero of (

 

x

 

i

 

 – ) = 0 with a suitable score function

 

ψ

 

(

 

x

 

) belonging to some class 

 

Ψ

 

 [1]. The minimax
approach implies the determination of the least favor-
able density 

 

f

 

* minimizing Fisher information 

 

I

 

(

 

f

 

)
over the class 

 

F

 

: f* = (f) with subsequent

designing of the maximum likelihood estimate (MLE)
with the score function 

 

ψ

 

* = –f*'/f*. Under rather gen-
eral conditions of regularity imposed on the classes 

 

F

 

and 

 

Ψ

 

, (  – 

 

θ

 

) is asymptotically normal with vari-
ance V(

 

ψ

 

, f) satisfying the minimax property and pro-
viding the guaranteed estimation accuracy [1]

Within Huber’s minimax approach, the choice of a
distribution class 

 

F

 

 determines all the subsequent
stages and the character of the corresponding robust
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procedure. In turn, the choice of distribution class
depends either on the available prior information about
data distributions or on the possibilities of getting this
information from the data samples.

In practice there often exists prior information about
the pattern distribution, for example, about its moments
and quantiles. In order to raise the efficiency of robust
procedures, it is advantageous to use such information
in the minimax settings by introducing the correspond-
ing distribution classes. Here we consider distributions
different from 

 

ε

 

-contaminated Gaussian. Henceforth,
symmetry and unimodality of distributions are
assumed.

In the class 

 

F

 

1

 

 = {f : f(0) 

 

≥

 

 1/(2

 

a

 

) > 0} of nondegen-
erate pattern distributions with a bounded density value
at the center of symmetry, the least favorable density is
the Laplace [4]

Hence, we have the sign score function (

 

x

 

) =
sgn(

 

x

 

)/

 

a

 

 and the sample median med

 

n

 

x

 

 as the optimal

 

L

 

1

 

-norm estimate. The parameter 

 

a

 

 characterizes the
dispersion of the central part of a distribution. It is a
very wide class, since any unimodal distribution den-
sity with a nonzero value at the center of symmetry
belongs to it.

In the class 

 

F

 

2

 

 = {f : 

 

σ

 

2

 

(f) = f(

 

x

 

)

 

dx

 

 

 

≤ } of pat-

tern distributions with a bounded variance, the Gauss-
ian density is optimal, [4]

with the corresponding linear score function (x) =

x/  and the sample mean  as the optimal L2-norm
estimate. Being minimax, the sample mean guarantees
a reasonably good accuracy of estimation in class F2
when distribution variances are really small, and it evi-
dently fails with large variances.

Since the optimal solutions in the classes F1 and F2
are qualitatively different, it is advantageous to con-
sider the intersection of these classes:

(2)

The class F12 comprises qualitatively different den-
sities, for example, the Gaussian, heavy-tailed ε-con-

taminated Gaussian, Laplace, Cauchy (with  = ∞),
short-tailed densities close to the uniform, etc. In this
case, the least favorable density simultaneously

depends on the two parameters a and  through their
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ratio /a2, having the Gaussian and Laplace densities
as the limit cases linked by the Weber–Hermite family
of distributions, which can be rather accurately approx-
imated by the generalized Gaussian densities

(3)

for p ≥ 1 [4, 5]. In formula (5), β and p are the scale and
shape parameters, respectively.

The corresponding minimax estimate of location
has the following three branches: (i) with relatively
small variances, it is the sample mean; (ii) with rela-
tively large variances, it is the sample median; and (iii)
with relatively moderate variances, it is a compromise
between them, namely, the Lp-norm estimate with 1 <
p < 2. However, for the class of generalized Gaussian
distributions, we have a very similar result.

Theorem 1 (Shevlyakov and Vilchevski, [4]; p. 78).
In the parametric subclass of generalized Gaussian dis-
tributions (3) of the class F12 of nondegenerate distribu-
tions with a bounded variance, the minimax estimate of
a location parameter θ is given by the Lp-norm estimate
of the following form:

(4)

with the power p defined by

where p* satisfies the following equation

(5)

3. A LOW-COMPLEXITY THRESHOLD 
MEAN-MEDIAN ESTIMATE

A low-complexity approximation of the minimax
estimate (4) given by Theorem 1, henceforth called the
threshold mean–median estimate, has the form

(6)

where λ is a threshold value such that 2/π ≤ λ ≤ 2. The
optimal choice of a threshold value λ can be done by
solving the maximin problem

(7)
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for the asymptotic efficiency eff (p, λ) of the
threshold mean–median estimate of location. The pre-
cise result giving the optimal value of the threshold can
be formulated as follows.

Theorem 2. In the parametric subclass of general-
ized Gaussian distributions (3) of the class F12 of non-
degenerate distributions with a bounded variance, the
threshold mean–median estimate of the guaranteed effi-
ciency in the sense of criterion (7) is given by

(8)

or, in other words, λ = λ* = 1. The guaranteed mini-
mum of efficiency is attained at the saddle point (p*,
λ*) = (1.407, 1) and is equal to the efficiencies of the

sample mean and the sample median eff (p*, λ*) =
eff  = effmednx = 0.868.

Proof. The efficiency of the threshold mean–median
estimate depends both on the power p and the threshold
λ as follows:

(9)

where the upper and lower branches of (9) are the effi-
ciencies of the sample mean and the sample median,
respectively. In turn, the power p is defined through the

ratio /a2 by (5). Hence, the solution of the inner min-
imization problem in (7) can be obtained by the direct
comparison of the efficiencies of the sample mean and
the sample median given the value of λ. These results
are displayed in Table 1. From Table 1 it also can be
seen that the maximum of the minimal efficiency is
attained at λ = 1. Q. E. D.

From Theorem 2 it follows that the maximum loss
of efficiency of the threshold mean–median estimate as
compared to the precise estimate (4) of Theorem 1 can-
not exceed 13%. However, the low-complexity struc-
ture of estimate (8) entirely compensates this loss in its
efficiency.

Finally, we deal with the following estimates: the
sample mean , the sample median mednx, the mini-

θ̂MM
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max estimate  (4), the mean–median estimate 
(8), and their adaptive versions when the characteristics
of class F12 are estimated from the sample:

where x(k) is the kth order statistic (n = 2k + 1) [4, 5].
The performance of these estimates is studied both

in asymptotics and on finite samples of n = 27 (this
sample size originates from the practical problem of
glaucoma diagnostics, for the solution of which our
algorithms among others have been used) for the Gaus-
sian, Laplace, Cauchy, uniform, Simpson, and general-
ized Gaussian distributions. The obtained results con-
firm the results of the similar studies represented in [4]:
on the one hand, the minimax and mean–median esti-
mates exhibit high robustness close to the sample
median mednx on the heavy-tailed distributions, e.g.,
the Laplace and Cauchy; on the other hand, they are
close to the sample mean  for short-tailed distribu-
tions like the Gaussian, Simpson, and uniform.

4. ROBUST CLASSIFIERS OF THE NEAREST 
MEAN TYPE: PERFORMANCE EVALUATION

In our study, we consider the following classifiers of
the nearest mean type (1) based on: (i) the NMean-rule,
(ii) the NMed-rule, and (iii) the NMeanMed-rule, the
last having the adaptive version of the threshold mean–
median estimate (8).

For binary classification, a Monte Carlo experiment
is performed on samples n = 27 for the Gaussian,
Laplace, uniform, and Simpson pattern distributions
with unit variance, as well as for the extremely heavy-
tailed Cauchy distribution. The classes differ in loca-
tion: |θ1 – θ2 | = 3.

To characterize the quality of classification, the
power of classification PD is computed for each classi-
fier (in this case, the false alarm probability PF = 1 – PD)
and the number of cycles in Monte Carlo modeling is
taken equal to 10000; the results of modeling are exhib-
ited in Table 2.

From Table 2 it can be seen that the NMeanMed-rule
is a compromise between the NMean- and NMed-rules,
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Table 1.  The minimal efficiency eff (p, λ) versus the value of λ

λ 2/π 0.8 0.9 1.0 1.2 1.4 1.6 2.0

(p, λ) 2/π 0.768 0.824 0.868 0.774 0.690 0.617 0.5

θ̂MM

min
p

eff θ̂MM



PATTERN RECOGNITION AND IMAGE ANALYSIS      Vol. 18      No. 2      2008

ROBUST CLASSIFICATION BY A NEAREST MEAN–MEDIAN RULE 263

providing good performance both under short- and
heavy-tailed pattern distributions. However, it is much
closer in performance to the NMed-rule.

For short-tail distributions, the performance of all
the classifiers is approximately the same; it becomes
different under the heavy-tailed distributions, espe-
cially for the Cauchy. In the latter case, the NMean-rule
has the extremely poor performance. Also we may con-
clude that the low-complexity robust NMeanMed-rule
performs quite well on the chosen set of pattern distri-
butions.

5. CONCLUSIONS

A low-complexity robust analogue of the nearest
mean classifier based on the new minimax (in the
Huber sense) estimate of location has been introduced:
as the particular cases, it comprises the nearest mean
and the nearest median rules. The proposed classifier
demonstrates good performance on a wide set of pat-
tern distributions. Finally, we note that the proposed
robust classification rules can be extended to the multi-
variate case on the basis of a coordinate-wise approach.
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NMM = NMeanMed.
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