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Abstract. To investigate the dynamic effects of external
forces on the displacement of the otolith membrane and
subsequent neuronal responses of otoliths, we performed
numerical analyses of otolith membrane displacements.
In these studies we included the full geometry of the
human otolith maculae, including their 3D curvature.
The first part focuses on mechanical aspects of the otolith
membrane. While it was found that the mechanical
coupling of distant parts of the otolith membrane is only
weak, these simulations indicate that curvature may have
considerable local effects on displacements. They further
suggest that the movements of the otoconia, embedded in
the interotoconial matrix, show a resonance in a range
between 100 and 2000 Hz. In the second part of the
article we also investigate the tonic-phasic responses in
the vestibular nerve emanating from hair cells in the
striola region. Small head tilts away from head upright
position are used. The simulations indicate that the
direction of head tilt is coded in characteristic response
patterns along the striola.

1 Introduction

The task of our sensory systems looks quite simple: they
have to tell us what we are doing (i.e., standing upright
or lying on the ground) and what is happening around
us. Studies investigating how the different sensory inputs
achieve this goal have shown that sensory systems work
efficiently, exploiting all information available. For
example, the auditory system is optimized to the point
that any “improvement” in hearing would transduce the
Brownian motion of the particles in the inner ear as
acoustic noise. For the visual and the auditory systems,
a detailed understanding has been achieved by present-
ing different stimuli: by presenting light dots at different
locations we can excite different retinal ganglion cells,
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and by playing sounds with different frequencies we can
stimulate different locations on the basilar membrane.
For the balance system, however, selective stimulation
of the individual areas of the sensory epithelia does not
occur for any kind of head movement. Since we can only
move the head as a whole, transducers of rotations
about certain axes (semicircular canals) or linear accel-
erometers (otoliths) receive information from all parts of
their epithelia. Investigations have largely succeeded in
describing the transduction properties of the semicircu-
lar canals where all hair cells in a crista ampullaris have
similar on-directions, i.e., they are maximally excited by
rotations about a certain fixed axis. Our understanding
of the semicircular canals has also benefited significantly
from theoretical investigations of their mechanics, which
have, for example, shown that even plugged canals can
exhibit significant responses to high-frequency oscilla-
tions (Damiano and Rabbitt 1996).

In contrast, any given linear translation elicits a
complicated pattern of responses on the otolith epithe-
lium as indicated by the diversity of neural responses to
head tilts (Fernandez et al. 1972). Compared with the
semicircular canals, the transformation of linear accel-
erations into neural signals also depends on the more
complicated geometry and the arrangement of hair cell
on-directions on the epithelium.

Here we investigate the effects of the 3D otolith
geometry on the responses to time-dependent linear
accelerations with a numerical model that accounts for the
basic mechanical and physiological properties of the ot-
oliths. The otoliths, utricle and saccule are located in the
inner ear labyrinth (Fig. 1). Their epithelia are made up of
hair cells and connective tissue that is tightly attached to
the temporal bone. Superimposed on this epithelium is the
otolith membrane, and the whole structure is covered by
inner ear endolymph fluid. The utricle and saccule have
distinctly different boundaries: while the saccule resem-
bles an inverted L, the utricle has a more compact kid-
neylike shape. Contrary to long-standing assumptions,
they are not planar but show substantial curvature
(Curthoys et al. 1999; Takagi and Sando 1988). Otoliths
are organized structurally in several layers with different
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Fig. 1. View of the macular surfaces of left (a) utricle and (b) saccule.
Shaded regions show the location of the striola, and arrows indicate
the direction of the hair cell polarization. (¢) Internal structure of the
otoliths

mechanical properties. One of their most remarkable
features (indicated in the word ““oto-lith”, or “ear-stone”)
are the otoconia crystals embedded in the topmost layer.
The density of these crystals is higher than that of the
surrounding materials, and linear accelerations of the
head therefore result in forces leading to their displace-
ment. The movement of the otoconia affects the otolith
membrane, which is mechanically coupled to them.
Shearing displacements of the membrane with respect to
the underlying epithelium are sensed by hair cells located
in the epithelium and subsequently signaled to the brain
via the vestibular nerve.

Single otolith afferent nerve fibers exhibit responses
that can be either ““tonic” or “‘tonic-phasic” (Goldberg
et al. 1990a). Due to their response properties, tonic
units are believed to respond proportionally to mem-
brane displacements (Grant et al. 1994) and dominate in
the lateral parts of the otoliths (Goldberg et al. 1990b).
Tonic-phasic units are found predominantly along a
bandlike region in the central part of the otoliths, the
“striola” (Fig. 1). They are especially interesting for
information processing since they provide dynamic
information about movements. Since little quantitative
information is available about regional variations of the
physiological and transduction properties of otolith hair
cells, as well as of interconnections further downstream,
we approximate the neural responses of such cells by
using their known mean-response curves in the fre-
quency domain (Goldberg et al. 1990a).

2 Methods
2.1 Physiology

2.1.1 Otolith structure. Though it has been known for a
long time that otoliths sense linear accelerations of the

head, a detailed view of the mechanical properties has
been hampered by the difficulty of fixating otolith tissue
(Lindeman 1969; Lins et al. 2000). We based our model
on the finding that three morphologically different
sublayers can be found in the otolith membrane (Kachar
et al. 1990; Ross et al. 1987) (Fig. 1): First the gel layer,
which is closest to the apical surface of the hair cells,
then the mesh layer, and on top the otoconial layer.
Note that different terminologies are used for the
individual layers.

The gel layer has viscoelastic properties and is com-
monly treated as a Kelvin-Voight fluid (Grant et al.
1990). Since the mechanical sensors of the hair cells, i.e.,
the hair bundles, are embedded in the gel layer, the
elasticity and viscosity of this layer have a large effect on
the neural otolith response. The elasticity of the gel layer
has been attributed to a columnar filament structure and
to the hair bundles (Benser et al. 1993). We assumed a
constant height of 10 um for this layer. The second
layer, which we call the “mesh layer”, is much stiffer
than the gel layer. It is made up of a densely connected
isotropic filament mesh and also has a height of about
10 pm. Mechanically, this layer probably acts to dis-
perse high local otoconial forces over a wider area. The
otoconia are embedded in the uppermost part of the
otolith membrane, labeled “otoconial layer” in Fig. 1.
They are connected to each other and the underlying
mesh layer through an interotoconial filament matrix
(Kachar et al. 1990). We assumed a height of 15 um for
this layer.

The calculations presented here include the geometry
of human macular surfaces, which were obtained from
reconstructed slices of the inner ear (Sato et al. 1992;
Takagi and Sando 1988). They are shown in Fig. 1, with
the data presented in a head-fixed coordinate system
corresponding to the head upright position. Since the
reconstructed slices also included the semicircular
canals, we were able to ensure the proper orientation of
the otoliths by calculating the unit vectors perpendicular
to the planes of the semicircular canals and comparing
them with published data (Blanks et al. 1975). In addi-
tion, the part of the data set that characterizes the planes
of the maculae was smoothed. A detailed description of
the smoothing procedure has been given in Jaeger et al.
(2002).

2.1.2 Hair cells and transformation properties. Direction
and magnitude of otolith membrane deflections are
detected by the hair cells (Fernandez and Goldberg
1976; Shotwell et al. 1981). Short hair bundles, called
“stereocilia”, are embedded in the gel layer (Fig. lc).
They are interconnected via tip links (Hackney and
Furness 1995; Howard and Hudspeth 1987) and linked
to a single long hair, the “kinocilium’. Bending of the
hair bundle due to a deformation of the gel layer leads to
direction-specific hyperpolarization or depolarization of
the hair cell. The “polarization vector” indicates the
direction leading to maximum depolarization. The
polarization vectors of different hair cells are not
randomly distributed over the epithelium but show a
distinct pattern (Lindeman 1969), indicated by the



arrows in Fig. 1. Due to the curvature of the epithelium,
the vectors have x, y, and z components. To obtain the
3D components of the polarization vectors, we manually
created a 2D vector field according to the observations
by Lindeman. This field was then projected onto the
curved macula. The intracellular hair cell potential
depends on the cosine of the angle between the local
polarization vector and the hair cell deflection (Shotwell
et al. 1981). We assumed that the hair cell potential is
linearly related to the magnitude of deflection, which is
justified as long as the external acceleration is smaller
than about 3 g (Fernandez and Goldberg 1976).

Two types of hair cells can be distinguished mor-
phologically — spherical type I cells and flasklike type 11
cells (Goldberg et al. 1990b). Hair cells are innervated
by vestibular neurons situated in Scarpa’s ganglion.
They exhibit a resting discharge frequency of 80—
100 Hz. Afferent fibers generally innervate more than
one hair cell. Depending on the type of hair cells
innervated, afferent fibers are termed calyx, bouton, and
dimorphic units. Calyx units form connections with one
or more type I hair cells and are found in the striola.
Bouton units exclusively innervate type II cells and are
found in the extrastriola region. Dimorphic units form
connections with both types of hair cells and are found
all over the epithelium.

Sinusoidal accelerations with different frequencies are
usually employed to measure the responses in terms of
changes of the discharge frequency. These changes are
usually scaled by the amplitude of the acceleration
present for a specific stimulus frequency. The resulting
gain and phase values characterize the vestibular
response to time-dependent acceleration stimuli.

In this paradigm, units exhibit different responses
depending on their location on the epithelium (Goldberg
et al. 1990b). Striolar units show transient, tonic-phasic
responses and large gain increases as the frequency of
the stimulus is increased. In contrast, units in the
extrastriola region typically exhibit tonic responses with
only small gain enhancements (Goldberg et al. 1990a). It
is thought that tonic responses are proportional to the
amount of kinocilium deflections, while tonic-phasic
units are also sensitive to the time rate of the deflection
(Hess 1992). Responses of both types of units vary
around a mean response, with larger variations for to-
nic-phasic units. To our knowledge these variations are
not systematically associated with specific regions on the
epithelium. Consequently, previous descriptions of the
frequency dependence of gain and phase in the form of
transfer functions were related to the mean responses
(Goldberg et al. 1990a; Grant et al. 1994). Goldberg et
al. introduced a transfer function H(s) that was formed
by multiplying the three parts Hy(s), Hy(s), and Hy(S)
(Goldberg et al. 1990a). Hy,(s) reflects the mechanics of
the otolith membrane, Hy(s) incorporates the transfor-
mations of the response by the hair cells and their
afferent connections, and H,(s) describes adaptive
components. Only H,(s) has been measured directly.
Goldberg et al. found the other functions and their
respective parameters by fitting them to measured data.
When we compared the transfer functions predicted by
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our simulations with the mechanical transfer functions
Hy(s) from Goldberg et al., we found that the two were
similar in the range between 0.1 and 10 Hz. Since the
results regarding hair cell dynamics are qualitative, no
attempts were made to readjust the parameters of Hy (s),
and we employed the same functions Hy(s), Hy(s) and
their respective parameters as Goldberg et al. in this
investigation.

Since the response depends on the direction of the
stereocilia displacement as well as its magnitude, we
calculated an “‘effective displacement” (ED) by

ED < p-u=|u|cos(p,u) with |p| =1

for every location on the striola and point in time. Here
p is the normalized polarization vector, u the displace-
ment of the otolith membrane at the border between gel
and mesh layer, and ““-” the scalar product. Following
Grant et al. (1994) we assumed that the hair cells sensed
the direction and magnitude of the displacement at the
gel/mesh layer boundary. The manual adjustment of the
directions of the polarization vectors induced small
discontinuities in the ED. To reduce this local effect as
well as numerical inaccuracies, we applied a moving
average filter on neighboring striola points to smooth
the ED. The resulting time series were transformed into
the frequency domain and multiplied by Hy(s) and
H,(s), as found by Goldberg et al. for tonic-phasic units.
The inverse transformation yielded the responses in the
time domain. As the original derivation of H(s) used a
DC gain that was scaled to unit magnitude, responses
are proportional to mean vestibular firing rates.

Since the present study was interested primarily in the
dynamic response patterns of striola units based on the
3D geometry of the epithelium, we did not include de-
tails of the micromechanics of vestibular hair cells.
Similarly, empirical models of otolith membrane
mechanics can lead to a better approximation of
experimental data than the approach in this investiga-
tion (Goldberg et al. 1990a; Grant et al. 1994). Since the
additional gain changes vary smoothly and by < 20%,
they would not lead to qualitative changes of the pre-
dicted response patterns.

2.2 Theory

2.2.1 Continuum mechanics. We modeled the mechanical
properties of the otolith membrane as a linearly elastic,
isotropic material. Though it is known that the gel layer
is anisotropic, we believe that this is a valid approach.
Based on morphological investigations (Kachar et al.
1990), we assume that the main anisotropy arises from a
higher stiffness of the columnar filament in the direction
perpendicular to the epithelium, compared to a lower
stiffness in directions parallel to the epithelium. Since the
displacement of the gel layer is largely due to shear
forces parallel to the epithelium, the increased stiffness in
the perpendicular direction probably has only a small
effect. Based on the linear relationship between acceler-
ation and neural responses for accelerations smaller than
2-3 g in tonic units (Fernandez and Goldberg 1976;
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Fernandez et al. 1972), we further assumed that
nonlinear effects in the viscoelastic properties of the
materials could be ignored. Simulations by other groups
that also used these assumptions have demonstrated that
this leads to results that are in close correspondence with
experimental findings (Grant and Cotton 1990; Kon-
drachuk 2000). In this case, the equation governing the
displacement of a small part of the membrane is

6211 —_—
Pap = PerrAce + (tta + Zat)Ve + pg Au
Oe u
+ (:uvisc + )vvisc)va + :uviscAE . (1)
The variables “u” and “¢” denote spatial displacement

and time, respectlvely, and e =div u. p indicates the
density of the material and p. its effective density (i.e.,
the difference between p and the density of the
endolymph fluid). If p. is different from zero, as in
the case of the otoconial layer, accelerations Acc
produce forces within the otolith membrane. The elastic
properties of an isotropic, linear material can be
described using the two “Lamé parameters”, 4 and
u. A and pg are the Lamé constants that characterize
the elastic properties of the material, and Ayise and g
describe the damping aspects of the continuum. They are
associated with terms that include the time derivative of
u (i.e., the velocity of displacements). Equation (1) can
be used to model all layers of the otolith membrane by
choosing appropriate material parameters.

We used standard finite element techniques (Rao
1982) to solve (1). The volume of the otolith membrane
was broken down into about 1000 small hexahedrons
that were placed in such a way as to ensure that they
belonged to only one type of material. With finite ele-
ment analysis, (1) is transformed into

U U

This is a matrix equation for all nodal degrees of
freedom U. For 3D displacements, the size of U is given
by 3xN: “3” for the three dimensions and “N”’ for the
number of nodes. The vector U incorporates the 3D
displacements at all nodes. [4] is called the ‘“‘mass
matrix” since it is associated with the nodal accelera-
tions, [B] the “damping matrix”, and [C] the “stiffness
matrix”’. The time-dependent function F(¢) characterizes
the external force on the system. To determine the
system completely, boundary conditions need to be
specified. In our model, the nodes at the gel/epithelium
border were not allowed to move (i.e., those points were
fixed), and no interaction was assumed at the boundary
between endolymph fluid and the otolith membrane.

Commonly, the damping matrix [B] is constructed as
a linear superposition of the mass and the stiffness
matrix (Rayleigh damping):

B] = a4] + pC] . 3)

The parameters o and f determine to which degree [A4]
and [C] participate in the damping matrix. We used
stiffness proportional damping only (i.e., & = 0).

+[CU = F(1) . 2)

Equation (2) is a differential equation in time. We
used two methods to integrate the equation. For the tilt
experiments, we employed a direct integration scheme.
Starting from a nondeformed and nonmoving initial
configuration, displacements, velocities, and accelera-
tions at subsequent time steps were calculated. By taking
the configuration of the previous step as the initial
condition, the dynamic state of the system at the next
time step was calculated. Equation (2) can also be solved
with the “mode superposition’” method, where the free-
vibration mode shapes of the finite element structure are
used to calculate its mechanical response. The response
is then described as a superposition of these mode
shapes. We used mode superposition to find the transfer
functions of the otolith membrane. The calculations
were performed with “Abaqus”, a commercial finite-
element software package (Hibbitt, Karlsson & Soren-
sen, Inc., Rhode Island, USA).

2.2.2 Mechanical transfer function. For an externally
applied sinusoidal acceleration, the otolith system reacts
with a sinusoidal movement. The frequency-dependent
displacement amplitudes and phase shifts relative to the
acceleration characterize the system. For an infinitely
extended planar otolith, Grant et al. (1994) derived an
analytical solution. They assumed a two-layered mem-
brane: an otoconial and a gel layer, covered by
endolymph fluid. We extended this approach to a
three-layer system by including an intermediate mesh
layer (Fig. 1). The transfer function is

i _ Zotopgﬁfo (4)
Ace (porobs + myfic'e)so + (L3 + wie"s)y
with
=—— % _oa coth(almesn)
r= sinh(almesh) mesh/

o= %Coth(blgel) sinh(almesh) + cosh(almesh)

and
ps?
a mesh mesh )
He + Hyise ™S
ps?
b= gel gel )
Ko + vised

[ ps
Cc = —
fluid
Hyise

where ¢ indicates the displacement at the gel/mesh layer
boundary, Acc, g, and pSif are external acceleration,
otoconia density, and effective density of the otoconial
layer, respectively. The heights of the three layers are
characterized by /., for the otoconial layer, /s, for the
mesh layer, and /g for the gel layer. Elastlc properties of
the system are indicated by ,umeSh and ,uel , which are the
shear moduli of the mesh and gel layers, respectively.

ufvll‘ilcd, y‘vfllfcs}‘, and ,umC are the viscosity of the endolymph



fluid, the mesh layer, and the gel layer, respectively. The
density of the endolymph fluid is characterized by p. We
assumed that all parts of the system except the otoconial
layer have this density. Equation (4) depends on the
Laplace transform variable s. By multiplying this
equation by Acc we obtain the frequency-dependent
magnitude of displacement at the gel/mesh layer bound-
ary, as well as the corresponding phase shift.

2.3 Mechanical parameters

The analysis of mechanical properties of the otolith
membrane requires the specification of appropriate
mechanical parameters for the different layers. For the
density of the gel and mesh layers we took 1.0 g/cm?,
which is close to the density of the endolymph fluid.
Therefore, these layers are not subject to external
accelerations (1). Otoconia crystals have a density of
2.7 g/em?® (Money et al. 1971). They are embedded in the
interotoconial matrix, which has a lower density and
leads to a density of about 2.0 g/cm?® for the otoconial
layer (Trincker 1962).

The properties of elastic materials are often given in
terms of ““Young’s modulus™ E and ‘“‘Poisson ratio” v,
instead of the Lamé parameters. They are related to each
other by

E:M and v:ﬂL. (5)
A+ 2(A+ )

We assumed that all parts of the otolith membrane are

virtually incompressible and used a Poisson ratio of

0.49. (Completely incompressible materials have a

Poisson ratio of 0.5.)

Due to the small size of the otoliths and preparation
problems, Young’s modulus for the gel, mesh, and
otoconial layers are hard to measure. Calculations point
to a value of about 10 Pa for the gel layer of mammals
(Kondrachuk 2001a). The elasticity of the mesh layer is
not available for mammals. For the bullfrog, Kondra-
chuk (2000), based on experimental data from Benser
et al. (1993), found an elasticity ratio (Emesh/Egel) of
about 20. Using this ratio, we obtained a Young mod-
ulus of 200 Pa for the mesh layer. Less is known about
the elasticity of the otoconial layer. It is unclear how the
elasticity is affected by the distribution of the otoconia.
It is generally believed that otoconia crystals are dis-
tributed randomly within the layer, although Lindeman
(1969) found that they are organized in layers. Lind-
eman also pointed out that crystals in the extrastriola
region are larger than in the striola. While the crystals
consist of hard materials and may be treated as rigid
bodies in this investigation, observations suggest that the
elasticity of the interotoconial matrix is considerably
lower than the corresponding parameter of the mesh
layer (Lins et al. 2000). The mechanical properties of the
otoconial layer are thus determined by the properties of
the otoconia, their distribution within the layer, and the
interotoconial matrix. Since the interotoconial matrix is
a rather weak structure, its purpose may be to keep the
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otoconia in place while allowing substantial flexibility of
the layer. To reflect this property in the simulation, we
chose a rather small Young modulus of 10 Pa for this
layer, which is identical to the elasticity of the gel layer.

The effects of damping are measured by the viscosity
parameter. Gels in general show a frequency dependence
of the viscosity. We did not include such a relation in
our model because results of other studies have indicated
that the viscous properties of the gel layer can be mod-
eled reasonably by a proportional model (Goldberg et
al. 1990a; Grant et al. 1994). Estimates of the shear
viscosity of the gel layer that were based on electro-
physiological studies (Goldberg et al. 1990a) range be-
tween 0.1 Poise (Grant et al. 1994) and 1.0 Poise
(Kondrachuk 2000). We used an intermedial gel layer
viscosity of 0.3 Poise. As mentioned above, stiffness-
proportional Rayleigh damping was employed. From (3)
and a viscosity of 0.3 Poise, we obtained for f§ a value of
0.01 s. We used the same value to model the mesh layer
since this value has not been measured and the effects of
damping should be small in this layer. Apart from the
investigation into the resonance properties of the
otoconial layer, we did not include damping in this layer
because its structure differs from that of the other two
layers.

3 Results
3.1 Mechanical results

3.1.1 Curvature effects on otolith dynamics. We previ-
ously found that distant parts of the otolith structure
interact only weakly during static displacements (Jaeger
et al. 2002). We therefore studied the dynamic effects of
otolith curvature by investigating a comparatively small,
quadratic section of the otoliths (300 pm x 300 pm).
The planar otolith section was deformed in such a way
that the curved otolith region represented a section of a
sphere with radius R (Fig. 2). This deformed structure
was then oscillated sinusoidally, parallel to the tangent
of the layers in the central region of the section, with a
maximum acceleration of 1 g and a frequency between
0.1 and 10 Hz. This frequency range covers all typical
head movements (Viirre and Demer 1997). Due to the
assumed incompressibility of the otolith membrane,
accelerations perpendicular to the layers produce virtu-
ally no effect.

Figure 2 shows the transfer functions of the analytical
solution (4) and the numerical results for the planar and
deformed otolith sections. It depicts the magnitude and
phase of the displacements at the gel/mesh layer
boundary in the central region of the section. In all cases
the phase shift is almost identical. The uppermost trace
represents the amplitude of the planar sample, which
coincides almost perfectly with the analytical solution.
The lower traces indicate that for decreasing curvature
radii the displacement amplitude is progressively re-
duced. Figure 3a shows the relation between displace-
ment amplitude and curvature radius. While for a radius
above 1000 pm the amplitude reduction is < 10%
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Fig. 2. Transfer function of a quadratic otolith section at the gel/mesh
layer boundary. a While the displacements are identical for the planar
section and the analytical case (solid line), finite curvature of the
section leads to a reduction of the displacement. b The phase shifts are
unaltered by the magnitude of the curvature radius R. The inset
illustrates the definition of this parameter

compared to the planar sample, it is more pronounced
for smaller radii. Based on the data set used in this
investigation, we found that the radius of curvature in
most areas is larger than 1000 pm. However, a small
region on the utricle, marked in Fig. 3b as “large cur-
vature area” (LC), shows a local curvature radius of
about only 400 um. Note that curvature is defined by
1/R, where R is the curvature radius. Curvature radii in
the saccule were generally above 1000 pum.

3.1.2 Effects at higher stimulation frequencies. Recent
experimental findings suggest that noise and mechanical
vibrations impair otoliths (Perez et al. 2002; Otsuka
et al. 2003). To study the effects of higher vibration
frequencies on the otolith membrane, we abandoned the
simplifying assumption of isotropy in the otoconial layer
(Fig. 1). If there are deformations of the otolith
structure, they should be found in the vicinity of the
otoconia since the gel layer is strongly damped. We
constructed a simple model that included otoconia
separated by an isotropic interotoconial filament matrix.
For this matrix we took a density of 1.0 g/cm?® and for
the otoconia crystals a density of 2.7 g/cm® (Carlstrém
et al. 1953). Since measurements of the density of the
otoconial layer, i.e., otoconia plus interconnecting
matrix, have shown that the combined density is about
2.0 g/em?® (Trincker 1962), we chose the distance
between the otoconia such that it accounted for the
lower density of the compounded structure. The otoco-
nia were approximated by bricks with a basis length of

=== Low Frequency Amplitude

10° 10

Curvature Radius [um]

Fig. 3. a Dependence of the displacement amplitude at low frequen-
cies on the curvature radius. b Region on the utricle where large
curvature (LC) can be found. LC corresponds to a small curvature
radius

4 x 4 um and a height of 6.5 um, which were oriented in
the way indicated in Fig. 4a. The height of most
otoconia falls into the range of 3 to 7 um (Lindeman
1969). To obtain the desired overall density of 2 g/cm?, a
uniform spacing of 1 pum (in all dimensions) between the
otoconia (Fig. 4a) was necessary.

These are substantial simplifications with respect to
the situation found in the otolith membrane. Otoconia
are believed to be randomly distributed and are expected
to touch each other, which would largely restrict the
movement of single otoconia embedded in the structure.
Nevertheless, otoconial layers with randomly or regu-
larly distributed otoconia, as used in this investigation,
share important mechanical properties. In both cases the
number of otoconia found in a large volume of the layer
and the space available for the elastic element (the
interotoconial matrix) are similar. More accurate bio-
mechanical models would require more quantitative
information about the distribution and the mechanics of
the otoconial layer.

The elastic properties of the interotoconial matrix
directly influenced the results of our simulations. Lins
et al. observed that the interotoconial matrix provides
weak links between individual otoconia when compared
with the rigidity of the supporting mesh layer (Lins et al.
2000). By assuming that the gel layer represents a typical
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“weak’ material of the inner ear, we used elasticity
constants identical to that of this layer (i.e., Young’s
modulus 10 Pa, and Poisson ratio 0.49) to model the
interotoconial matrix. It may further be assumed that,
besides the interotoconial matrix, the interotoconial
space is filled with fluid, i.e., a two-phase system fills this
space. Since there is no clearly defined border between
the interotoconial filament and the endolymph, the
endolymph fluid probably fills the interotoconial space.
We chose for the viscosity of the interotoconial material
a value similar to that of the endolymph fluid,
0.01 Poise, i.e., we assumed that the elasiticity of this
material is provided by the filament matrix and the
viscosity by the fluid. As a result, this material provided
little damping. Young’s modulus of the otoconia crystals
was taken to be 10'! Pa and their Poisson ratio 0.3.
The resulting transfer functions, shown in Fig. 4b,
were obtained numerically for mechanical vibrations
with a maximum acceleration of 1 g. Crosses indicate
the amplitude and phase at the gel/mesh layer boundary
in the central region of the structure, depicted in Fig. 4a.
The transfer function in this zone is very similar to the
corresponding result without separated otoconia
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(Fig. 2): frequency independence below 5 Hz and a
reduction of the amplitude around 10 Hz, accompanied
by an increasing phase lag. The amplitude approaches
zero at about 100 Hz and shows only minor deviations
from this value at higher frequencies.

The results were different for the otoconia. The filled
dots and open rectangles in Fig. 4b indicate the transfer
function of single otoconia from the central region of the
upper and lower sublayers, respectively (Fig. 4a). The
amplitude at lower frequencies is considerably larger
than at the gel/mesh layer boundary. At around 10 Hz
the displacement amplitude decreases, which can be
attributed to the reduced displacements of the underly-
ing gel layer as otoconial and gel layer move together.
For frequencies around 650 Hz the otoconia resonate.
The movement of the otoconial sublayers with respect to
the mesh layer characterizes this resonance mode.
Amplitudes are larger for the upper sublayer since upper
and lower sublayers move in phase and an additional
elastic element is present between the sublayers.
Depending on the magnitude of the acceleration, such a
resonance could lead to considerable stress within the
interotoconial matrix.

3.2 Vestibular responses

Based on the displacements at the gel/mesh layer
boundary, the distribution of hair cell polarization
vectors, and the transfer functions Hy(s) and Hy(s)
(Goldberg et al. 1990a), we calculated the time-depen-
dent vestibular responses at different locations along the
striola. To investigate neural responses to natural
stimuli, we simulated small head tilts. Starting from an
upright position, the head rotated 10° smoothly in 0.4 s
to a tilted position.

Figure 5 shows the model responses for the utricle. At
the beginning the head is in an upright position. At 0.2 s
the head tilt starts, and at 0.6 s it finishes. Figures 5a
and b present the effective displacements and neuronal
responses at three locations along the striola for a tilt left
ear down. The resulting response traces correspond to
three sections through the surface in Fig. 5d. For all
three traces, maximum responses occur simultaneously
before the end of the head movement, and the decay to
the tonic state is similar. Figure 5a also shows the time
course of gravitational acceleration along the interaural
axis (thick, solid line).

By calculating the effective displacements and corre-
sponding neural responses for many locations along the
striola, we obtained patterns of these two variables,
which uniquely represent the direction of head tilts.
Utricular patterns of effective displacements and neural
response are shown in Figs. 5¢c and d for left ear down
tilts. Figures 5e and f present results for nose down tilts
of the same magnitude and time course. Zero on the
“Position” axis corresponds to the lateral end of the left
utricle, and positive values indicate the location along
the bent striola. As in Fig. 5b, neural responses reach
their maximum values before the end of the head
movement and then approach the steady state value
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corresponding to the tilted head orientation. Figures 5d
and f show that different tilt directions lead to clearly
distinct dynamic response patterns. For a given tilt
direction, however, the time courses at different striola
positions are quite similar. The maximum responses,
indicated in Figs. 5d and f by the thick dashed and solid
line, respectively, are shown again in Fig. 6a.

Figure 6 summarizes the patterns of maximum neural
response to tilts in various directions for both otoliths.
For the saccule zero on the “Position” axis corresponds
to the ventral (lower) end of the saccular striola. The
thick dashed and solid lines in Fig. 6a correspond to the
maximum response shown in Figs. 5d and f. The direc-
tion of 10° head tilts from upright position is charac-
terized by an angle: 0° corresponds to forward tilt, 90° to
left ear down tilt, 180° to backward tilt, and 270° to right
ear down tilt.

Different tilt directions elicited different response
patterns along the striolas. For example, while the

T
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T T
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Fig. 5. Time course of mechanical and
neural responses along the utricular striola
during a 10° head tilt. The left column shows
effective displacements and the right column
neural responses along the striola. Top row:
a, b Time course of effective displacements
and neural responses at various position
values in ¢ and d (1, 3, and 5 mm). The solid
line in a also includes the acceleration along
the interaural direction (right vertical axis).
Middle row: ¢, d Effective displacement

(¢) and neural response (d) for tilt left ear
down. “Position” indicates the parameter-
ized location on the striola. In the bottom row
(e, f), effective displacement and neural
responses are depicted for a 10° pitch tilt.
The units of response magnitude are arbi-
trary
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lateral part of the utricle (0—1 mm) has similar response
levels for tilts backward (180°) and diagonally forward
(300°), the levels at the medial utricular striola are quite
different. Responses varied smoothly with the tilt angle.

Though it might be expected that this kind of accel-
eration stimulus leads predominantly to utricular re-
sponses, we also found substantial responses for the
saccule. This can be seen from Figs. 6¢ and d for utricle
and saccule, respectively. Here the total change in re-
sponse to head tilts is depicted by the integral between
the initial and the maximum response along the striola.
The difference between these two responses was always
taken to be positive, i.e., the integration ran over the
absolute value of the difference. In Figs. 6¢c and d, the
magnitude of the total response change is plotted along
the radius coordinate for every tilt direction. Large
values indicate a large total response change. While total
saccular responses (Fig. 6d) are generally smaller than
total responses of the utricle, saccular responses still
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represent a substantial fraction of the utricular re-
sponses. For certain tilt angles (10°) total responses from
the saccule and the utricle are even of similar magnitude.

4 Discussion
4.1 Mechanical results

4.1.1 Curvature effects on otolith dynamics. Few studies
have investigated the dynamic behavior of the otolith
membrane (Grant and Best 1987; Grant and Cotton
1990; Grant et al. 1994; Kondrachuk 2001b). These
studies were based on a number of simplifying assump-
tions: they assumed that the otolith membrane consists
of only two individual sublayers with different mechan-
ical properties and is planar. The present study elimi-
nates these assumptions.

In accordance with experimental findings (Kachar
et al. 1990), we subdivided the otolith membrane into
three different layers, i.e., we added a stiff intermediate
mesh layer to the otolith structure. Both the finite-ele-
ment response and the analytical transfer function that
we derived showed that for flat parts of the otoliths the
mesh layer does not change the movement characteris-
tics of the gel layer compared to the model described by
Grant et al. (1994). The displacement amplitude remains
constant for frequencies up to 1 Hz and decreases to
zero for higher frequencies, while the phase shift grad-
ually increases. Numerical and analytically derived
transfer functions differ with respect to the treatment of
the endolymph fluid. While the analytical solution
incorporates velocity-dependent forces of the endo-
lymph on the otolith membrane, the finite-element
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Fig. 6. Maximum responses for tilts into
different directions, for utricle (left column,
a) and saccule (right column, b). “Tilt
Direction” 0° corresponds to nose down, 90°
to left ear down tilt, etc. The dashed and solid
lines in a correspond to the respective lines in
Fig. 5d and f. “Position” is the parametric
location along the striola. The bottom row
(¢, d) shows the absolute value of the area
between the initial and the maximum
response for the different tilt angles. Dark
shaded regions correspond to the left and
light shaded regions to the right otoliths

approach does not. The similarity in the predicted re-
sponses suggests that viscous forces from the endolymph
have only minor effects on otolith displacements in the
frequency range of typical head movements.

For the three-dimensional shape of the otoliths, we
used experimentally measured data from human otoliths
(Sato et al. 1992; Takagi and Sando 1988). Static
investigations of otolith membrane displacements that
were based on these data sets indicated that the local
displacements are largely determined by the local ori-
entation of the membrane (Jaeger et al. 2002). This al-
lowed us to study the effects of curvature on otolith
displacements on small, quadratic slices. Our results
indicate that curvature changes the response properties.
While the phase shift remains identical to the planar
case, the amplitude is reduced over the whole frequency
range. This can be explained by the fact that elements
outside the central region of the quadratic slice are not
subject to the optimal, parallel acceleration. Instead,
their displacement depends on the local orientation.
Since the deflections in the neighboring parts are smal-
ler, the displacement in the central region is reduced,
too. This reduction increases as the radius of curvature
becomes smaller. For most arecas of the human otoliths,
the curvature radius is > 1000um, and the amplitude
reduction is less than 10%. However, on the utricle we
also found a region where the radius is substantially
smaller (Fig. 3b). Interestingly, this region of large cur-
vature is close to the striola and shows a similar orien-
tation. Since other researchers have put the striola more
frontally and laterally than Lindeman did (Flock 1964),
it is even more likely that this proximity is more than
mere coincidence. It is possible that the areas of large
curvature are specifically used to optimize the
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transduction of orientation and movement, especially
since the direction of largest curvature and the direction
of hair cell polarization coincide there.

4.1.2 High-frequency responses of the otolith structure.
Our results indicate that the properties of the intero-
toconial matrix might allow resonances. We propose
such a process since it was found that intense impulsive
noise and vibration of the inner ear lead to long-term
impairment and damage of the otoliths (Perez et al.
2002; Otsuka et al. 2003). As noted above, the model of
the otoconial layer used in this investigation includes
substantial simplifications, especially with respect to the
distribution of the otoconia. The mechanical properties
of the material filling the interotoconial space are further
unknown. It is thus important to emphasize the model
character of this investigation. Nevertheless, we have
included it here since it demonstrates how the otoconial
layer may be affected by vibrational stimuli and predicts
that there is a most effective frequency range, and gives
an estimate of where this range might be found. There
probably also exist other mechanisms that could account
for the damage to this layer, like vibration of the
otoconia with respect to each other. We chose this
approach since shear displacements of the otoconial
layer may represent the natural response of the structure
to movements of the head. Ultimately, experiments that
monitor vibrational frequencies are needed to under-
stand which processes damage the otoliths.

Crucial to the resonance frequency is the elasticity of
the interotoconial matrix, Ej, (assuming linear material
properties). Since no experimental data are available
about the possibly nonlinear stress-displacement rela-
tionship, our estimate relies on the observation that the
rigidity of this matrix is much smaller than that of the
mesh layer. The resonance frequency for lightly damped
materials is related to the parameter by a square law

fRes X VEint . (6>

This ensures that, even if the elasticity is wrong by a
factor of 10, the resonance frequency will only shift by a
factor of 3. Assuming that the elasticity of the gel layer is
typical for a ““weak’ inner-ear material and the error
associated with the elasticity of the material is of this
order, we estimate that the resonance frequency falls
into a range of between 100 Hz and 2 kHz. Even if the
elasticity is similar in all parts of the otoconial layer, it is
well known that otoconia have considerably different
masses: otoconia from the extrastriola region are larger
than those from the striola. For this reason, no single
resonance frequency can be expected. Instead, it is more
likely that a whole band of resonance frequencies exists
for the different parts of the otolith membrane.

While the mass of the otoconia and the elasticity of
the interotoconial matrix determine the resonance
frequency, the damping provided by the fluid-filled
interotoconial matrix specifies how pronounced the
resonance is. If the damping were stronger than assumed
in our simulations, the amplitude of the resonance

would decrease. For an overdamped system, the reso-
nance would vanish completely. If, on the other hand,
the fluid-filled interotoconial matrix were not strong
enough to provide such a large magnitude of damping,
oscillating acceleration in this frequency range could
lead to harmful results. Due to their different masses,
different parts of the otoconial layer oscillate with dif-
ferent phase relations. This would result in large stresses
within the interotoconial matrix and could ultimately
lead to a damage of the structure. Such a process might
induce benign paroxysmal positional vertigo. Reso-
nances of the otoconia may also be linked to reports
about disorientation and stranding of whales and dol-
phins in areas where low frequency active sonar has been
used. The frequencies employed in this kind of sonar
(about 100-500 Hz) fall into the frequency range where
otoconial resonances may be expected. While it is ac-
cepted that the high levels of sound used in these sur-
veillance systems significantly impair the hearing of
crustaceans, our simulations suggest an additional
mechanism for these observations, provided that the
mechanical properties of the otolith structure in dol-
phins and whales is similar to that of other mammals.

4.2 Hair cell responses

Many units in the extrastriola region exhibit tonic
responses (Goldberg et al. 1990a). The response patterns
elicited by time-dependent, linear accelerations in these
units are therefore similar to the ones elicited by
corresponding, static linear accelerations. In contrast,
the tonic-phasic units in the striola provide additional
dynamic information. The narrow shape of the striola
allowed us to characterize these units by their location
along the striola. The right column in Fig. 5 shows the
time course of responses over the striola for different
directions of head tilts. Since responses to sensory inputs
are most likely optimized for everyday movements, we
used natural, small head tilts of 10°. The response
patterns arising from tilts in different directions can vary
substantially (Figs. 5d and f).

Although both response patterns in Figs. 5d and f are
due to 10° tilts, left ear down tilts seem to be more
effective since the amplitudes are larger. The dynamic
responses are a mixture of tonic and phasic components.
During movements these components lead to a maxi-
mum response that decays to the tonic state corre-
sponding to the new head position. In our model, peak
responses occur simultaneously on different locations of
the striola. This indicates that the mechanical properties
of the otolith structure induce no time delays in the
displacement between different parts of the striola, and
no information on tilt direction is coded in the temporal
shape of the response. Also, the temporal decay of the
patterns yields no information on the tilt direction. As
Fig. 5b shows, the time course of the decay from the
maximum to the tonic state is similar throughout the
striola. Both observations support the assumption that
tilt directions might be coded as spatially distributed
response patterns. This is shown in Figs. 6a and b,



where maximum responses were calculated for different
tilt directions of the head. For both utricle and saccule,
different tilt directions lead to distinctly different re-
sponse patterns. Thus the direction of head tilt uniquely
determines the response pattern.

At this point we can only speculate as to how the
information about orientation and movement is coded in
these patterns. For example, simply integrating the overall
response along the striola may provide information about
the direction of head tilts (Figs. 6¢ and d). These results
also indicate that the saccule can contribute significantly
to the detection of head movements about the upright
orientation. Though the maximum responses are gener-
ally smaller for the saccule, they are still a large fraction of
the corresponding value for the utricle. Interestingly,
summed maximum responses of the left and right saccule
are in the 45°/225° and 135°/315° direction, respectively
(Fig. 6d). These summed responses are thus in similar
planes as the superior and posterior lateral semicircular
canals, suggesting a simple mechanism for interactions
between cumulative saccular responses and afferent
signals from the angular velocity sensors.
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