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Abstract

Introduction Notochordal cells and nucleus pulposus

cells are co-existing in the intervertebral disc at various

ratios among different mammalians. This fact rises the

question about the interactions and the evolutionary rele-

vance of this phenomenon. It has been described that these

relatively large notochordal cells are mainly dominant in

early lifetime of all vertebrates and then differences occur

with ageing. Human, cattle, sheep, and goat lose the cells

with age, whereas rodents and lagomorphs maintain these

throughout their lifetime.

Materials and methods Here, we addressed the impor-

tance of cell ratio using alginate bead 3-D co-culture of

bovine nucleus pulposus cells (bNPC) and porcine noto-

chordal cells (pNCs) for 14 days using culture inserts.

Result We found a significant stimulation of bNPC in the

presence of pNC in terms of cell activity and glycosami-

noglycan production, but not for proliferation (DNA con-

tent). Relative gene expression was significantly stimulated

for collagen type 2 and aggrecan.

Conclusion The stimulating effect of NC was confirmed

and the ideal ratio of NPC: NC was found to be *50:50.

This has direct implications for tissue-engineering

approaches, which aim to repopulate discs with NP-like

precursor cells.

Keywords Co-culture � Notochord � Nucleus pulposus �
Proteoglycan/DNA content � Relative gene expression

Introduction

Notochordal cells (NC) are remnant cells originating from

the notochord present in all chordates in early embryo-

genesis and these cells are located in the center of the

intervertebral disc [6, 17, 20, 37]. With ageing, these pre-

sumably progenitor-like cells disappear in some species

and in other species they persist up to adulthood [5, 28]. In

human, they disappear early in childhood [19]. Strikingly,

these cells co-exist with nucleus pulposus cells (NPCs) at

different ratios among different vertebrate species [28].

Rodents (rats and mice) and lagomorphs (e.g., rabbits)

maintain a high number of NC cells throughout their life-

time, whereas in other animals such as bovine, goat, and

sheep these cells disappear early in lifetime [19, 20].

Previous study on co-culture of non-chondrodystrophoid

dog cells (e.g., Greyhound) with bovine NPCs seems to

point toward regulatory mechanism and positive cell–cell

interaction [1, 3, 22]. It has been speculated that these cells

have precursor character and might belong to the exact

same cell lineage as the disc cells since there were not too

many differences reported between these two lineages [27,

32]. Other research groups are convinced that these cells

are originating from another cell layer than the mesoderm,

but are rather ectodermal origin. Here, we hypothesised

that whether there is a ratio of NC relative to NPC cells,

which is most favourable for both cell populations in terms

of cell activity and extracellular matrix (ECM) production

and whether these cells can influence each other by

secretion of soluble factors as previous experiments have

been demonstrated with co-cultures of a single cell–cell

ratio [1, 3].

We hypothesize that cells of these two phenotypes are

possibly influencing each other by soluble cytokines

released into the media and that there is a mutualism
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between these cells. Thus, we systematically co-cultured

porcine coccygeal NCs (in fact a NCs ? NPC mix) and

bovine coccygeal NPCs at different ratios, i.e., 0, 25, 50, 75

and 100%, respectively.

Materials and methods

Cell source and expansion

Porcine notochordal cells (pNCs) were isolated from the

nucleus pulposus (NP) tissue of 4 to 5-month-old porcine

tails obtained from the local abattoir. The high percentage

of NCs in porcine NP tissue was confirmed by size and the

haemocytometer using bright-field microscopy (*80%).

Bovine nucleus pulposus cells (bNPCs) were harvested

from the NP tissue of *1-year-old bovine tails obtained

from the local abattoir. Both cells were separated from

native ECM by 0.19% pronase digestion (Roche, Basel,

Switzerland) for 1 h and subsequent collagenase type 2

(Worthington, London, UK) digestion overnight (*14 h)

and primary culture. The NCs from porcine NP tissue were

expanded in monolayer up to Passage 2, which has been

previously described as non-problematic concerning de-

differentiation [3]. This expansion step of NCs was nec-

essary since the cell yield of cell isolation was much lower

(*1 9 106 cells) for porcine coccygeal disc cells relative

to the bovine tails, and *8 9 106 cells per cell type were

used for each co-culture experiment.

3-D cell encapsulation and co-culture

The cells were encapsulated at a density of 4 9 106 cells/mL

into 1.2% alginate by the application of a syringe/22G needle

and by formation of *30 ll droplets into a 102 mM CaCl2
salt solution [25]. Assuming porcine NP tissue to be 100%

notochordal, the cells were kept in co-culture of pNC:bNPC

ratios of 0, 25, 50, 75 and 100% in serum-free defined

medium, containing 100 lg/mL penicillin/streptomycin,

50 lg/mL ascorbic acid, ITS ? (Sigma, Buchs, Switzer-

land) and non-essential amino acids (Gibco ? Sigma,

Switzerland). All bead–bead co-cultures were conducted in

duplicate in 12-well plates, using 0.4-lm pore size, high pore

density, polyethylene terephthalate (PET) track-etched cul-

ture inserts (Becton, Dickinson and Company, Allschwil,

Switzerland). The co-cultures were tracked on day 0, 7, and

day 14. There were four co-culture pairings (thus, each

N = 4 for the porcine and bovine animals).

Metabolic activity

Cell activity of the cells in alginate beads was measured

using Alamar Blue� assay (Invitrogen, Bale, Switzerland)

[2]. Two beads per condition were incubated in 500 lL of

DMEM with 10% of FCS and Alamar Blue for 3.5 h in a

48-well plate. Relative fluorescence unit (RFU) was mea-

sured at an excitation wavelength of 547 nm and an emission

wavelength of 582 nm using a microplate reader (Infinite

200, Tecan, Männedorf, Switzerland). RFU measured for

each tissue was normalized with the amount of DNA.

Quantification of GAG and DNA content

Alginate beads from the Alamar Blue assay were digested

with papain (Sigma–Aldrich, Bale, Switzerland) overnight

at 60�C. The papain-digested samples were used for

glycosaminoglycan (GAG) and DNA measurement. The

GAG content was measured by the modified dimethylm-

ethylene blue (DMMB) assay (pH 1.5) [7, 11]. The

absorbance of the samples added to the DMMB buffer

was read at 595 nm with a spectrophotometer. GAG

concentrations were calculated from a standard curve

obtained with chondroitin sulfate (Sigma–Aldrich). The

amount of DNA in the sample was measured with bis-

benzimidol fluorescent dye (Hoechst 33258, Sigma–Aldrich).

Fluorescence was detected with Hoefer DyNAQuant

(Amersham Bioscience, San Francisco, CA, US). A stan-

dard curve was generated with known concentrations of

calf thymus DNA (Sigma–Aldrich, Buchs, Switzerland)

and the amount of DNA of each sample was calculated

from the standard curve.

Relative RT-PCR

Relative gene expression at major anabolic genes was

monitored, i.e., ACAN, collagen type 1 and 2 (Col 1 and

Col 2, respectively), and ribosomal 18S as a reference gene

[23, 26, 34]. Due to DNA substitutions between the porcine

and bovine codon sequences of one of the two primer

regions, species-specific RT-PCR was designed (Table 1)

for pNCs and bNPCs. Relative gene expression was esti-

mated by the application of a threshold cycle (Ct) and

calculation of DDCt and the statistics of the 2-DDC

according to Livak and Schmittgen [24].

Statistical analyses

All data are given as relative to the pure cell population of

the same culture day. Statistical significance was tested

using one-way ANOVA and Bonferroni’s multiple com-

parison test using GraphPad Prism version 5.0d, GraphPad

Software, San Diego, CA, USA, http://www.graphpad.com.

Post-hoc power analysis was run with G*Power software

[12] to determine the type II error of the statistical tests. The

power analysis revealed that it was [0.80 for the gene
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expression tests and the Alamar Blue data using ANOVA,

and it was *70% for the DNA and GAG statistics.

Results

Cell proliferation, metabolism and GAG synthesis

In both pNCs and bNPCs, the DNA content of beads was

stable over culture time or even increased slightly relative to

day 0 control after 14 days of co-culture (Fig. 1). There was

no difference obvious among co-culture groups on the side of

NC. There was a trend toward higher DNA content in the

pure bNPC and the 25% bNPC and 75% pNC group; how-

ever, this was non-significant. As for the cell metabolism

(Fig. 2a, b) the bNPCs were more strongly activated by the

presence of pNCs (Fig. 2b) (p = 0.008) than vice versa

(Fig. 2a), and this effect was the strongest in 75% of pNC co-

culture and was also significant using Bonferroni testing for

the 0 versus the 50% group and for the 0 versus the 75%

group (Fig. 1a). We found a significant increase in GAG/

DNA ratio for the 50% bNPC group after 14 days of co-

culture (Fig. 3b), but no effect for pNC co-cultures (Fig. 3a).

Relative gene expression

For bNPCs, relative gene expression revealed up-regula-

tion of ACAN by two to five times and slight up-regulation

of Col 2 (Fig. 4b). It was most strongly up-regulated in the

50% pNC co-culture group. For pNCs, ACAN and collagen

type 2 were found to be up-regulated by about 1,000 times,

however, this effect was not significant for both mRNAs

(Fig. 4a). This up-regulation by a factor of *1,000 times

for all three co-culture ratios containing bNPCs could

be interpreted as a progenitor-like cell status of pNCs prior

co-culture. On the other hand, Col 1 was found unchanged

for the entire duration of the co-culture experiment, indi-

cating maintenance of the original phenotype during the

experiment.

Table 1 Primer sequences used

for relative real-time RT-PCR

* Denotes primer match for

both species

Gene Forward (50–30) Reverse (50–30)

Bovine (Bos taurus)

Bt_r18S ACG GAC AGG ATT GAC AGA TTG CCA GAG TCT CGT TCG TTA TCG

Bt_ACAN GGC ATC GTG TTC CAT TAC AG ACT CGT CCT TGT CTC CAT AG

Bt_col1 A2 GCC TCG CTC ACC AAC TTC AGT AAC CAC TGC TCC ATT CTG

Bt_col2 A2* CGG GTG AAC GTG GAG AGA CA GTC CAG GGT TGC CAT TGG AG

Porcine (Sus scrofa domestica)

Ssd_r18S TAG AAG GAA GAG GAA CCA T TAA TGT CCA ACT CAC TGA AG

Ssd_ACAN CAG TAA CTT CGT GCC TAG GGT CCT CTA TCT CCA GTT

Ssd_col1 A2 TAT CGG AAT TAA CCA GAC A ACA GGA TTG ACA GAT TGA

Fig. 1 DNA content of the alginate bead after 7 and 14 days co-

culture for a porcine notochordal cells (pNC) and b for bovine

nucleus pulposus (bNPC). N = 4 co-cultures repeats, plot of

mean ± SEM
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Discussion

Cell identity of notochordal cells

The notochordal cells (NC) are entrapped during early

embryogenesis (around day 20 in humans) and formation

of the somites. This formation of the so-called prototissue

which forms at the center of the embryo appears as a rod of

tissue known as the notochord, which guides the embryonic

development of the neural tube and the vertebral column,

including the intervertebral disks [31]. The exact role of the

entrapped notochordal cells after condensation is unclear,

but they are believed to take part in the formation of the

nucleus pulposus [4, 17, 37].

However, it seems obvious that these two cell populations

differ in a number of characteristics such as cell size, nutri-

tion [16], surface markers [13], and mechano-sensitivity

[14]. Recently, the physiological requirements in terms of

nutrition were compared between these two cell types and it

was found that notochordal cells are more sensitive and

consume more glucose than nucleus pulposus cells under the

identical culture condition [16]. Furthermore, non-invasive

femtosecond laser microscopy revealed clear size differ-

ences between these two cell types and seems to point toward

two different cell lineages, if cell shape and size are con-

sidered [15]. Furthermore, the NC differs by the presence of

large vacuoles, which can be separated by the size-scatter of

FACS analysis [5]. These large vacuoles found in NC of the

intervertebral disc has been attributed a possible functional

role in osmoregulation [18].

There are also considerable differences in the nucleus

pulposus cell shape among different animal species [19, 20].

Of interest are especially the two dog breeding lines, i.e., the

chondrodystrophoid dogs, e.g., Dachs hound and Beagle and

the non-chondrodystrophoid dogs, e.g., Mongrels, Grey-

hound, and German shepherd lines. There have been several

Fig. 2 a, b Cell metabolism per DNA (cell) in porcine notochordal

cells (pNCs) and bovine nucleus pulposus cells (bNPCs) cultured in

3-D alginate for 7 and 14 days, respectively. Plot of mean ± SEM.

*p \ 0.05, **p \ 0.01

Fig. 3 GAG/DNA ratio of a porcine notochordal cells (pNCs) and

b bovine nucleus pulposus cells (bNPCs). N = 4 co-cultures repeats,

mean ± SEM. *p \ 0.05
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morphological papers published, which describe the mor-

phological differences between these cells [19, 20].

Transcriptomics, on the other hand, comparing the two

cell populations revealed that there are only about two dozen

genes really distinct between these two cell types [27, 30].

The search for specific markers to distinguish these two cell

populations has just started [13]. Weiler et al. [38] found that

cells in the human fetal and juvenile nucleus pulposus with

the typical morphology of the notochord (physaliferous)

express the markers cytokeratin (CK)-8, -18, -19 and

galectin-3 [29]. Gilson et al. [13] found that pig NP cells,

which are phenotypically similar to human infant nucleus

pulposus cells, were all CK-8 positive. In human discs, the

presence of notochordal cells has been associated with the

occurrence of chordomas, which are malignant tumours that

occur along the spine [36]. Brachyury (i.e., T gene) is a

transcription factor associated with the notochord. It has

been demonstrated that brachyury positive (T?) cells are

associated with chordoma. Interestingly, human chordoma

express high levels of aggrecan, collagen type 2, but lack

expression of collagen X completely [36]. T? cells are also

related to cancer stem cells and express nanog and other stem

cell-related markers and have been described as cells with

higher ‘‘plasticity’’ [33].

It has also been shown that notochordal cells are per-

fectly adapted to low-oxygen environment. They can pro-

duce a better aligned ECM under hypoxic conditions [10].

Here, we cultured the cells under normoxic conditions. It is

very likely that the current results would be even more

pronounced under hypoxic conditions [10]. This should be

tested in a further experiment.

Optimal cell ratio

We could demonstrate a significant increase of cell activity

of the bNPCs in the presence of pNCs and activation of

GAG/DNA ratio by a ratio of 1:1. The strongest activation

of cell activity was found with a ratio of *75% pNCs.

Considering that the porcine nucleus pulposus contains not

100% notochordal cells, but to some extent, i.e., *10–20%

of pNPCs, the real ratio might have been shifted toward

NPCs and thus was around 30:70 for pNC:bNPC. It is of

interest that NPCs reacted positively to the addition of

bovine NPCs since the ‘‘pure’’ population was so to say a

natural ‘‘co-culture’’ of conspecific NCs and NPCs. The fact

that cross-specific cell co-culture results in an activation of

the notochordal cells could be either an artifact of the cross-

species cytokines or a true effect pointing to a precursor

state of notochordal cells, which can be triggered toward

higher expression of aggrecan and collagen type 2 by the

presence of additional NP cells. The fact that the DNA

content in pNC was not significantly higher than in the

bNPCs suggests that the expansion phase with serum in

monolayer of the NCs did not bias the results of the GAG/

DNA ratio. The fact that a 50% ratio of pNCs and bNPCs

increased significantly GAG/DNA ratio of bNPCs exclu-

sively is interesting with respect to the existence of pre-

established regulator mechanisms, which can be triggered

by reaching an optimum interaction between the two cell

populations. Addition of bNPCs to the NPC population

resulted in relative increase of cell metabolism in bNPCs

(Fig. 2b). This activation is in line with the increase of

GAG/DNA over time on the side of NPCs. GAG/DNA ratio

on the side of NCs was elevated (around 50% higher than

day 0) after 7 days and then were reduced to the level of the

start of the co-culture. This is a contradiction to the gene

expression results, which show an increase of aggrecan and

collagen type 2.

Fig. 4 Relative Gene Expression after 14 days in co-culture of

bNPCs and pNCs in 3-D microspheres in alginate, respectively.

N = 4 co-cultures repeats, mean ± SEM. *p \ 0.05
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Future experiments will test the influence of cell–cell

contact by seeding pNCs and bNPCs into alginate beads

enabling cell–cell interaction and also the importance of

hypoxic conditions. Gene expression revealed a significant

up-regulation of Col 1 and Col 2 by the pNCs in the

presence of bNPCs, which confirms previous findings of

Boyd [3] and Aguiar et al. [1] that NCs express certain

stimulating cytokines, which seems evident and has been

demonstrated using conditioning media [3, 9, 22]. Korecki

et al. also detected that SOX-9 (transcription factor for

chondrogenesis) was down-regulated if human mesenchy-

mal stem cells (hMSCs) are exposed to notochordal con-

ditioned medium (NCM) as compared to a chondrogenic

medium containing TGF-b. NCM, however, also increased

expression of collagen type 2, but not to the same extent as

in the presence of TGF-b. They also concluded that NCM

tended to increase laminin b1 mRNA expression, and also

found significantly higher level of GAG production than

for TGF-b-treated cells. In addition, NCM conditioning of

MSCs tended to up-regulate collagen type II mRNA less

strongly than with TGF-b from which the others concluded

that NCM has the potential to thrive cells toward the

‘‘discogenic’’ phenotype rather than TGF-b alone. Inter-

estingly, NCM stimulated the migration of IVD cartilage

endplate chondrocytes in in vitro cell migration assays

[21].

Conclusion

In conclusion, co-culture of porcine notochordal cells

(pNC) together with bovine nucleus pulposus cells (bNPC)

definitively stimulates both cells in a synergistic way.

However, our data also show that bNPC are activated by

the presence of pNC, which results in a higher GAG per

cell production (significant in the case of a cell ratio of 1:1)

and higher cell activity as measured by Alamar Blue assay.

The NPC, on the other hand, neither activate the NC pro-

liferation nor the GAG/DNA ratio, but instead the gene

expression of collagen type 2 and aggrecan. We interpret

this result as an indication that the notochordal cell phe-

notypes might have been at a progenitor state before the co-

culture experiment. These data do not contradict the latest

hypotheses about their origin being very related cell pop-

ulation to the chondrocyte-like disc cells [30]. The fact that

the co-culture with cross-specific additional NPCs cells can

trigger aggrecan and col 2 gene expression seems to point

toward a progenitor-like status of notochordal cells.

Moreover, these cells might be of key importance for the

regeneration of the intervertebral disc using cell-based

approaches [8, 13]. Although these notochord cells seem to

be highly related to chondrocyte-like cells, the differential

response in our co-culture experiments questions whether

notochordal cells are irrelevant for the choice of animal

models for disc regeneration [30, 35]. Although NC have

stimulating effects on other IVD cells their implication for

therapeutic usage for the human IVD can only be followed-

up after clarification of their phenotypic status and poten-

tial to form chordoma. Much easier might be the clinical

application of their yet unknown cytokines/substances

which they secrete for potential medication.
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