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Abstract. A theorem of Green, Lazarsfeld and Simpson (formerly a conjecture of Beauville
and Catanese) states that certain naturally defined subvarieties of the Picard variety of a smooth
projective complex variety are unions of translates of abelian subvarieties by torsion points.
Their proof uses analytic methods. We refine and give a completely new proof of their result.
Our proof combines galois-theoretic methods and algebraic geometry in positive characteristic.
When the variety has a model over a function field and its Picard variety has no isotrivial fac-
tors, we show how to replace the galois-theoretic results we need by results from model theory
(mathematical logic). Furthermore, we prove partial analogs of the conjecture of Beauville and
Catanese in positive characteristic.

1. Introduction

In this article we shall refine and give a new proof of the following result of Green,
Lazarsfeld and Simpson, which was conjectured by Beauville and Catanese. To
formulate it, let Y be a smooth projective complex manifold and let Pic0(Y ) be
its Picard variety, which classifies the holomorphic line bundles on Y which are
algebraically equivalent to 0. For integers i, j, m ≥ 0 let

Si,j
m (Y ) := {L ∈ Pic0(Y )(C)| dimC(H i(Y, �

j

Y ⊗ L)) ≥ m}

The semi-continuity theorem implies that this set is Zariski-closed.

Theorem 1.1 (Green-Lazarsfeld; Simpson). The irreducible components of
S

i,j
m (Y ) are translates of abelian subvarieties of Pic0(Y ) by torsion points.

In [5], Green and Lazarsfeld prove that the irreducible components of S
i,j
m (Y )

are translates of abelian subvarieties of Pic0(Y ) by some points. Their proof relies
on an in-depth analysis of the relative de Rham complex of the universal fam-
ily over Pic0(Y ). In [11], Simpson proves the full statement; his proof relies on
the fact that the set S

i,j
m (Y ) carries several different algebraic structures, which
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arise from the various descriptions of line bundles that are algebraically equiva-
lent to 0 (e.g. as locally constant systems ofrank 1 or as line bundles with a flat
connection). This allows him to reprove the result of Green and Lazarsfeld. To
obtain the full Theorem 1.1, he applies a result from transcendance theory, the
criterion of Schneider-Lang. Both of the above proofs are analytic in nature. In
our proof, we first suppose that Y has a model over a number field. Our proof of
the conjecture in this case then relies on a result by Deligne and Illusie (Theorem
3.2) originally used to give a proof of the Kodaira-Nakano vanishing theorem and
on a classification theorem (Theorem 2.1). The proof of this classification result
combines algebraic geometry in positive characteristic and density arguments.
The infinitesimal arguments used in the analytic approach are thus replaced by
density arguments in our approach. Finally, one can reduce the general case of
the conjecture of Beauville and Catanese to the number field case by standard
arguments. The just described proof is contained in Section 3 and the proof of the
classification theorem 2.1 is contained in Section 2.

When the variety Y has a model over a function field (in one variable) and
Pic0(Y ) has no isotrivial factors (this is made precise in Section 6), we give a proof
of Theorem 1.1, which does not use density arguments but relies on results from
model-theory (of mathematical logic) instead. We use results of Hrushovski (see
[7]) which appear in his proof that the Mordell-Lang conjecture for function fields
in characteristic 0 can be deduced from the analogous result in characteristic p.
This proof is contained in Section 6.

We shall also prove the following result, which improves the result of Simpson.
Let r, k ≥ 0 and let

Sr
k(Y ) := {L ∈ Pic0(Y )(C)|

∑

i+j=r

dimC(H i(Y, �
j

Y ⊗ L)) ≥ k}.

Let cr,k ≥ 0 be the number of irreducible components of Sr
k(Y ). Now let m ≥ 0

and let Mr,m := Maxk≥mcr,k.

Proposition 1.2. Let i + j = r . For each irreducible components C of S
i,j
m (Y ),

there exists a torsion point t ∈ C such that ϕ(order(t)) ≤ Mr,m.

Here ϕ is Euler’s ϕ-function (ϕ(a) := #(Z/aZ)∗ for all a ≥ 2 and ϕ(1) = 1).
Since ϕ(a) → ∞ as a → ∞, we see that Proposition 1.2 really gives an upper
bound for order(t). We shall give an algebraic proof of this result, although an
analytic proof is also possible. The proof is given in Section 3 (Theorem 3.6).

In Section 4, we show the implications of our methods for the natural positive
characteristic analog of the conjecture of Beauville and Catanese.

In Section 5, we formulate a conjecture on the cohomology of torsion line
bundles, which would imply the natural positive characteristic analog of the con-
jecture of Beauville and Catanese.
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2. Linear subvarieties of abelian varieties

In the rest of this article, we shall use the following terminology. If B is an abelian
variety defined over an algebraically closed field L and Z is a reduced closed
subscheme of B, we shall say that Z is linear (resp. completely linear) if the
irreducible components of Z are translates of abelian subvarieties of A by some
elements of B(L) (resp. some torsion elements of B(L)). Note that an irreducible
completely linear subscheme is also referred to as a torsion subvariety.

If Y → S is any morphism of schemes, we shall write k(s) for the resi-
due field of the point s ∈ S and Ys for Y ×S Spec k(s); we also write Ys for
Y ×S Spec k(s). If S ⊂ Spec OK for a number field K we also write Yp and Yp

for the fibre, respectively the geometric fibre, at a finite prime p.
The aim of this section is to prove the following classification theorem, that

we shall combine with a result a Deligne-Illusie (Theorem 3.2) in the next section
to deduce the conjecture of Beauville and Catanese.

Let K be a number field and let A be an abelian variety defined over K . Let
X be a closed subvariety of A, which is defined over K . We do not assume that
X is irreducible. Let U be an open subscheme of Spec OK , such that A extends
to an abelian scheme A over U , and X extends to a closed subscheme X ⊂ A.

Theorem 2.1. Suppose that for all but a finite number of primes p ∈ U we have
p · Xp ⊆ Xp, where p := char(k(p)). Then X is a finite union of translates of
abelian subvarieties of A by torsion points of A(K).

The proof of Theorem 2.1 hinges on the following results.

I. Results from algebraic geometry

Let A be an abelian variety over an algebraically closed field L, endowed with an
isogeny ϕ : A → A. We say that A is pure of positive weight if there are positive
integers r and s, not necessarily relatively prime, such that ϕs = Frobpr for some
model of A over Fpr . We say that A is pure of weight 0 if ϕ is an automorphism of
finite order on A. If A is pure of either positive weight or pure of weight 0, then
we simply say that A is pure. If A′ is another abelian variety over L endowed with
an isogeny ϕ′, we shall say that a homomorphism f : A → A′ is equivariant if
ϕ′ ◦ f = f ◦ ϕ. The following theorem is proven in [10, Th. 3.1].
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Theorem 2.2 (Pink-Roessler). Let A be an abelian variety over an algebraically
closed field L, endowed with an isogeny ϕ : A → A. Let X ⊂ A be an irreduc-
ible, reduced closed subscheme satisfying ϕ(X) = X. Suppose that there is no
non-trivial equivariant homomorphism from A to a pure abelian variety. Then X

is linear.

Next, recall the following constructibility statements. Let S be a noetherian
scheme and π : Y → S a scheme of finite type over S. Recall Chevalley’s theo-
rem: the image by π of a constructible set of Y is constructible in S (see [6, Th.
1.8.4, chap. IV, IHES no. 20, p. 239]).

Recall also that the following subsets of S are constructible: {s : Ys is geomet-
rically irreducible}, {s : Ys is geometrically reduced} (see [6, Th. 9.7.7, chap. IV,
IHES 28, p. 79]).

Now suppose that S is also integral and normal. Let η ∈ S be its generic point
and suppose that k(η) is a field of characteristic 0.

Proposition 2.3. Suppose that Y is a closed subscheme of an abelian scheme B
over S. If Ys is linear in Bs for all the s ∈ D, where D is dense in S, then Yη is
linear.

Proof. Choose a finite extension F of k(η) where the irreducible components of
Y ×S Spec F are geometrically irreducible. Let f : S ′ → S be the normalisation
of S in F ′. We shall need the

Lemma 2.4. Let g : X1 → X2 be a surjective morphism of finite type, where X1

and X2 are integral noetherian schemes. Let E ⊆ X2 be a dense subset of X2.
Then the set g−1(E) is dense in X1.

Proof. Suppose that the conclusion does not hold and let V ⊆ X1\g−1(E) be
a non-empty open subset of X1. The set g(V ) is constructible by Chevalley’s
theorem and thus g(V ) �= X2 by hypothesis. The closed subset g−1(g(V )) is not
equal to X1 since g is surjective. This contradicts the fact that X1 is irreducible
and finishes the proof. �

By the lemma, the set f −1(D) is dense in S ′. Let π ′ : Y ′ → S ′ be the scheme
obtained from Y by base-change. By the mentioned constructibility results and
the hypothesis, there is an open set V ′ ⊆ S ′ such that for each irreducible com-
ponent Z of Y ′ ∩ (π ′)−1(V ′), Zs is irreducible and reduced for all s ∈ V ′. Let
Z be any irreducible component of Y ′ ∩ (π ′)−1(V ′) and let h, h′, h′′ ∈ Z(F). If
we further shrink V ′, we may suppose that h, h′, h′′ extend to sections h, h′, h′′ ∈
Z(V ′). By hypothesis, we have (hs − h′′

s ) + (h′
s − h′′

s ) ∈ Zs(k(s)) − h′′
s for

s ∈ f −1(D)∩V ′. Hence (h−h′′)+ (h′ −h′′) ∈ Z(F)−h′′. Similarly, we deduce
that −(h − h′′) ∈ Z(F) − h′′. Since F can be taken arbitrarily large, this implies
that (h − h′′) + (h′ − h′′) ∈ Z(k(η)) − h′′ and −(h − h′′) ∈ Z(k(η)) − h′′ for any
h, h′, h′′ ∈ Z(k(η)). Thus Zk(η) is linear and we are done. �
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II. Density results

Theorem 2.5. For 1 ≤ i ≤ d let Ai be an abelian variety over a number field K

and ai ∈ Ai(K) a rational point. Assume that for all finite places v of K in a set
of Dirichlet density 1 the reduction of at least one ai is annihilated by a power of
the residue characteristic pv. Then at least one ai = 0.

Proof. This is [9, Th. 5.1]. The second author noticed that this also follows from
results of Wong, Nori and Zarhin. See [9, Par. 5, Rem. 5.2] for details about this
implication. �

The following theorem is [9, Th. 5.3] and is more difficult to prove than The-
orem 2.5.

Theorem 2.6 (Pink). For 1 ≤ i ≤ d let Ai be an abelian variety over a number
field K and ai ∈ Ai(K) a rational point. Let f (T ) ∈ Z[T ] be any polynomial
which is a product of cyclotomic polynomials and a power of T . For any finite
place v of K let pv denote the characteristic of the residue field and ai,v the reduc-
tion of ai . Assume that for all finite places v of K in a set of Dirichlet density 1 at
least one ai,v is annihilated by f (pv). Then at least one ai is a torsion point.

Finally we shall need a density statement on supersingular reduction. To state
it consider any abelian variety B over an algebraically closed field L of character-
istic p > 0. Recall that B is supersingular if and only if the Dieudonné module
of its p-divisible group is pure of slope 1/2. When B possesses a model over a
finite subfield Fq ⊂ L with q elements, this is equivalent to saying that all the
eigenvalues of the characteristic polynomial of the Frobenius morphism Frobq

have the form
√

q ·z, where z is a root of unity. This in turn is equivalent to saying
that B is pure of positive weight for the isogeny given by multiplication by p. In
general, B is supersingular if and only if B is isogenous to a supersingular abelian
variety defined over a finite field.

We shall say that B has a supersingular factor if it possesses a non-trivial
subquotient which is a supersingular abelian variety. Since abelian varieties are
semisimple up to isogeny, this is equivalent to saying that there exists a non-trivial
homomorphism from B to an abelian variety which is pure of positive weight for
the isogeny given by multiplication by p. Note that multiplication by p is never an
automorphism of finite order on any non-trivial abelian variety over L. Thus saying
that B has no supersingular factor is equivalent to saying that there exists no non-
trivial homomorphism from B to an abelian variety which is pure for the isogeny
given by multiplication by p, which is just the condition from Theorem 2.2.

Theorem 2.7 (Pink). Let A be an abelian variety over a number field K . Then
there exists a finite extension L of K such that for all finite places of L in a set
of Dirichlet density 1 the reduction of A ×K L does not have a supersingular
factor.

For the proof see [9, Cor. 1.7].
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III. Proof of Theorem 2.1

Recall that U is an open subscheme of Spec OK , such that A extends to an abelian
scheme A over U , and X extends to a closed subscheme X ⊂ A. After shrinking
U we may suppose that p · Xp ⊆ Xp for all U .

Before beginning with the proof of Theorem 2.1, notice that one of the difficul-
ties of the proof is the fact that we do not require X to be geometrically irreducible.
If X is geometrically irreducible, then Theorem 2.7 together with Theorem 2.2
immediately imply that Xp is linear for a set of places of density 1 and Proposition
2.3 implies that X is linear. To show that X is completely linear, just notice that
the image of X in A/ Stab(X) is a point which is almost everywhere a p − 1
torsion point. This implies that this point is a torsion point by Theorem 2.6 and
concludes the proof in this case.

We shall now tackle the general case. We may suppose that the irreducible
components X1, . . . ,Xr of X are flat over U and that Xi := Xi,K is defined over
K and geometrically irreducible for all i ≥ 1. We may also suppose that K is
sufficiently large so that the conclusion of Theorem 2.7 holds for A. Let U0 ⊆ U

be the set of non-archimedean places p such that X1,p, . . .Xr,p are geometrically
integral and such that Ap has no supersingular factors. The set U0 has Dirichlet
density 1 by Theorem 2.7. Let p ∈ U0. Consider the descending sequence

Xp ⊇ p · Xp ⊇ p2 · Xp ⊇ . . .

where p = char(k(p)). By Noethericity, this sequence must stabilize and we call
Yp the first stable term. By the construction of Yp there exists k0 ≥ 0 such that

Xp ⊆ (pk0)−1Yp. (1)

Furthermore, Theorem 2.2 and the equality p · Yp = Yp implies that Yp is lin-
ear. Fix i ≥ 1. The inclusion (1) now implies that Xi,p is contained in a closed
set of the form t + Z where Z is a (necessarily linear) irreducible component
of Yp and t is a pk0 -torsion point of Ap(k(p)). Amongst the pairs t, Z with this
property, choose one such that the dimension of Z is maximal. We claim: Z is an
irreducible component of Xp as well. To see this, suppose the contrary, i.e. that
there is an irreducible component Z′ of Xp such that Z ⊆ Z′ and Z �= Z′. There
exists t ′, a pk0 -torsion point and an irreducible component Z′′ of Yp such that
Z′ ⊆ t ′ + Z′′. This implies that there is an inclusion Xi,p ⊆ (t + t ′) + Z′′, where
dim(Z′′) > dim(Z), which is impossible, thus proving the claim. We deduce that
there is a function

jp : {1, . . . , r} → {1, . . . , r}
such that

Xi,p ⊆ ti,p + Xjp (i),p.
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where Xjp (i),p is linear and ti,p is a p∞-torsion point. Let now Ji be the subset of
{1, . . . , r} of elements that are equal to jp(i) for an infinity of p ∈ U0. Let l ∈ Ji .
Proposition 2.3 implies that Xl is linear and thus the image of Xl in A/ Stab(Xl) is
a point Ql . Similarly, the image of Xi,p in Ap/ Stab(Xl,p) is a point for an infinity
of p ∈ U and thus the image of Xi in A/ Stab(Xl) is also a point Pl . Consider
the set of points Pl − Ql , where l ∈ Ji . This set has the property that for all but
a finite number of places p ∈ U0, there is an l ∈ Ji such that (Pl − Ql) (mod p)

is a p∞-torsion point. Thus Theorem 2.5 implies that Pl = Ql for some l ∈ Ji .
This implies that Xi,p = Xl,p for an infinity of p ∈ U and thus Xi = Xl; hence
Xi is linear and since i was arbitrary X is linear.

To prove that X is completely linear, suppose that it is not and let C be an
irreducible component of X which is a translate of an abelian subvariety B of
A such that C/B is not a torsion point. Suppose that C is of the largest possible
dimension with this property and let C be the corresponding irreducible compo-
nent of X . Let c0 be the number of irreducible components of dimension dim(C).
Let C1, . . . , Ch be the irreducible components of X which are of dimension larger
than dim(C) and let C1, . . . , Ch be the corresponding components of X . Let bi

(1 ≤ i ≤ h) be the order of the point which is the image of Ci in A/ Stab(Ci).
Let n := b1! · · · . . . · · · bh! · (c0 + 1)!.

For almost all p ∈ U0, we have:

(1) pn · Ci,p = Ci,p (1 ≤ i ≤ h);
(2) either pn ·Cp is an irreducible component of Xp or pn ·Cp is contained in one

of the Ci,p, where i depends on p.

If pn · Cp is an irreducible component of Xp, then the closed sets

Cp, p · Cp, p2 · Cp, . . . , pc0+1 · Cp

are also irreducible components of Xp. Hence there are natural numbers kp and
lp, with 1 ≤ kp, lp ≤ c0, such that plp · (pkp · Cp) = (pkp · Cp). This implies that
pn · (pkp · Cp) = pkp · Cp and finally that pn+c0 · Cp = pc0Cp.

After a permutation of the numbering, we may assume that C1, . . . , Cr are the
components which appear in (2) for an infinite number of places (r ≤ h). Con-
sider the following set of points S: the image of C in A/ Stab(C), the image of
C − Ci in A/ Stab(Ci) where 1 ≤ i ≤ r . Then for almost all p ∈ U0, there is a
P ∈ S such that pn · (pn+c0 − pc0)(P mod p) = 0. By Theorem 2.6, one of the
elements of S is a torsion point. So let T be a torsion point in S. Suppose first
that T �= 0. The restriction of the reduction map A(K) → Ap(k(p)) to the set
of torsion points of order prime to p is injective for all p ∈ U0. Hence T cannot
satisfy the condition pn · (T mod p) = 0 for an infinite number of p ∈ U , thus
it has to be the image of C in A/ Stab(C). This implies that C is a translate of
Stab(C) by a torsion point, which is a contradiction. Thus T = 0; but this implies
that either C is a translate of Stab(C) by a torsion point or C ⊆ Ci for some i with
1 ≤ i ≤ h. This is the contradiction which concludes the proof of the theorem. �
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Remark. In the above proof, Theorem 2.6 is only needed to prove that X is com-
pletely linear. To prove that X is linear, the theorems 2.5 and 2.7 suffice.

3. A new proof of the conjecture of Beauville and Catanese

The conjecture of Beauville and Catanese is now a simple consequence of the
classification theorem 2.1 and of a result of Deligne-Illusie originally used to give
an algebraic proof of the Kodaira-Nakano vanishing theorem.

We shall use the following terminology. If Y is a smooth and projective variety
over a field k and L is a line bundle over Y , we define

hi,j (Y,L) := dimk(H
i(Y, �

j

Y ⊗ L)),

where �Y is the sheaf of differentials of Y over k and

hr
D(Y,L) = hr

D(L) :=
∑

i,j≥0, i+j=r

hi,j (Y,L).

Furthermore, we define

Sr
m(Y ) := {L ∈ Pic0(Y )(k)|hr

D(Yk,L) ≥ m}
and

Si,j
m (Y ) := {L ∈ Pic0(Y )(k)|hi,j (Yk,L) ≥ m}

for any r, m, i, j ≥ 0. Here Pic0(Y ) is the neutral component of the Picard scheme
of Y ; its underlying reduced scheme is an abelian variety over k. The sets Sr

m(Y )

and S
i,j
m (Y ) are Zariski-closed by the semi-continuity theorem and we endow them

with their reduced induced subscheme structure. About these sets, we have the
following result.

Proposition 3.1. Every irreducible component of S
i,j
m (Y ) is an irreducible com-

ponent of S
i+j

m′ (Y ) for some m′ ≥ m.

Proof. Let Z be an irreducible component of S
i,j
m (Y ). Then by semicontinuity

there exists an open dense subset V ⊂ Z such that for all pairs (i ′, j ′) the value
h

i′,j ′
Z := hi′,j ′

(Yk,L) for L ∈ V (k) is independent of L. Moreover, again by
semicontinuity there exists an open neighbourhood U ⊂ Pic0(Y ) of V such that
for all (i ′, j ′) we have hi′,j ′

(Yk,L) ≤ h
i′,j ′
Z for all L ∈ (U � V )(k). Furthermore,

since Z is an irreducible component of S
i,j
m (Y ), we can choose U and V such that

the last inequality is strict for (i ′, j ′) = (i, j). Summing up over all pairs (i ′, j ′)
with i ′ + j ′ = i + j we deduce that h

i+j

D (Yk,L) takes some constant value m′ for
all L ∈ V (k), and that h

i+j

D (Yk,L) < m′ for all L ∈ (U � V )(k). This shows that
V = U ∩ S

i+j

m′ (Y ); hence its closure Z is an irreducible component of S
i+j

m′ (Y ),
as desired. �
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To formulate the result of Deligne and Illusie, suppose now that k is perfect
of characteristic p > 0 and let Y be a smooth and projective variety over k. Let
L be a line bundle over Y .

Theorem 3.2 (Deligne-Illusie). Suppose that Y admits a lifting to a flat scheme
over the ring w2(k) of the Witt vectors of length 2 of k and that dim(Y ) ≤ char(k).
Then the inequality

hr
D(L) ≤ hr

D(Y,L⊗p)

holds for all r ≥ 0.

For the proof see [3, Lemma 2.9, par. 3, p. 258].
Let now Y be a smooth projective variety over Q.

Proposition 3.3. For any r, m ≥ 0, the scheme Sr
m(Y ) is completely linear.

Proof. Choose a number field K which is a field of definition for Y . We shall thus
view Y as a K-scheme. Let Y be a smooth an projective model of Y over an open
subscheme U0 of OK . Shrink U0 so that Pic0(Y ) has a model A over U0 which
is an abelian scheme. Suppose also that the universal line bundle on Y × Pic0(Y )

extends to a line bundle M on Y ×U0 A which is also compatible with the group
scheme structure of A. Let Sr

m(Y) := {s ∈ A|hr
D(Yk(s),M(s)) ≥ m}. This set

is again closed by the semicontinuity theorem; endow Sr
m(Y) with its reduced

induced subscheme structure. By construction, its set of Q-points is Sr
m(Y )(Q).

Furthermore, for all the closed p ∈ U0 which are unramified over Q and of residue
field characteristic ≥ dim(Y ), we have p · Sr

m(Y)p(k(p)) ⊆ Sr
m(Y)p(k(p)). Thus

if we apply Theorem 2.1 to (a cofinite subset of) U0 and Sr
m(Y ), we are done. �

If we combine the proposition 3.3 with the Proposition 3.1, we obtain

Corollary 3.4. For any i, j, m ≥ 0, the scheme S
i,j
m (Y ) is completely linear.

Finally this implies the conjecture of Beauville and Catanese. We shall need
the following lemma:

Proposition 3.5. Let Y be a smooth projective variety over Q. Let n ≥ 1, r ≥ 0
and let L be a line bundle over Y , such that L⊗n � OY . Then hr

D(L⊗k) = hr
D(L)

if (k, n) = 1.

Proof. Let K be a number field which a field of definition for Y and L. Let
U ⊂ Spec OK be an open subscheme of Spec OK with the following properties:

• Y has smooth and proper model Y over U ;
• L extends to a line bundle L̃ over Y for which the identity L̃⊗n � OY also

holds;
• all the non-archimedean places in U are coprime to n, unramified over Q and

of residue field characteristic ≥ dim(Y ).
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Let p be any non-archimedean place in U . Let l be the smallest integer such that
pl = 1 (mod n), where p = char(k(p)). By Theorem 3.2, we have

hr
D(L̃p) ≤ hr

D(L̃⊗p
p ) ≤ hr

D(L̃⊗pl

p ) = hr
D(L̃p)

and thus hr
D(L̃p) = hr

D(L̃⊗p
p ). By Dirichlet’s theorem on arithmetic progressions,

there is an infinity of prime numbers in the sequence a · n + k, a → ∞. Thus
there is an infinity of non-archimedean places p in U such that

hr
D(L̃⊗k

p ) = hr
D(L̃⊗(a·n+k)

p ) = hr
D(L̃⊗p

p ) = hr
D(L̃p),

where a depends on p. Thus hr
D(L⊗k) = hr

D(L) and we are done. �
Remark. The last lemma can also be proven by an analytic method.

Notice that Lemma 3.5 together with Proposition 3.1 immediately imply Propo-
sition 1.2 in the case where Y is a smooth and projective variety over Q.

Theorem 3.6. Let Y be smooth projective variety over C. Then the sets S
i,j
m (Y )

are completely linear. Furthermore Proposition 1.2 holds.

Proof. Let L0 be a field of definition for Y , which is finitely generated over Q.
From now on, we shall view Y as an L0-variety. Choose a normal, integral scheme
S0 of finite type over Q so that the variety Y can be extended to a smooth and
projective fibration f̃ : Ỹ → S0. Suppose also that there is a section S0 → Ỹ and
that the natural map OS0 → f̃∗OỸ is universally an isomorphism (i.e. remains
so after any base-change). This can be achieved by shrinking S0. Let Pic(Ỹ )/S0

be the Picard scheme of Ỹ /S0. There is a line bundle M on Ỹ ×S0 Pic(Ỹ ) with
the obvious universal property with respect to line bundles which are rigidified
along the section S0 → Ỹ (see [1, Prop. 4, chap. 8.2, p. 211]). There is an open
and closed S0-group-subscheme Picτ (Ỹ )/S0 of Pic0(Ỹ ) which is projective over
S0 and has the following property: for any point s ∈ S0, the set Picτ (Ỹ )s(k(s))

coincides with the line bundles on Ỹs whose image in the Néron-Severi group of Ỹs

is of finite order (see [1, Th. 3, Th. 4, chap. 8.4]). The reduced identity component
of Picτ (Ỹ )s coincides with the Picard variety Pic0(Ỹs). As Picτ (YL0

) is smooth,
we may replace S0 by one of its open subsets and suppose that Picτ (Ỹ ) is smooth
over S0. After replacing S0 by its normalisation in a finite extension and further
shrinking S0, we may suppose that there is an irreducible component Pic0(Ỹ ) of
Picτ (Ỹ ) such that Pic0(Ỹ )s = Pic0(Ỹs) for all s ∈ S0. Let

Si,j
m (Ỹ ) := {s ∈ Pic0(Ỹ )| dimk(s) H i(Ỹs, �

j

Ỹs
⊗ M(s)) ≥ m}

which is a Zariski-closed set. Endow this set with its reduced-induced subscheme
structure. For each closed point s ∈ S0, the residue field k(s) is a number field
and thus S

i,j
m (Ỹs) is completely linear by Proposition 3.3. Furthermore, closed
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points are dense in S0 and by construction S
i,j
m (Ỹ )(L0) = S

i,j
m (Y )(L0). Thus,

using Proposition 2.3, we conclude that S
i,j
m (YL0

) is linear.

Now consider that since S
i,j
m (Ỹs) is completely linear, there exists a con-

stant cs ≥ 2 such that cs · S
i,j
m (Ỹs) = S

i,j
m (Ỹs) for each closed point s in S0.

We may choose cs := l
∏

t ϕ(dt,s )
s . Here dt,s is the order of the image of Ct,s

in Pic0(Ỹs)/ Stab(Ct,s), where Ct,s runs through the irreducible components of
S

i,j
m (Ỹs); the number ls is the smallest prime number wich is larger than dt,s for

all t . Now further shrink S0 so that for all m′ ≥ m, the number of irreducible
components of S

i+j

m′ (Ỹs) remains constant. By Lemma 3.5 and Proposition 3.1,
the numbers ls and dt,s have to remain bounded on S0 (otherwise the number of
irreducible components of ∪m′≥mS

i+j

m,′ (Ỹs) couldn’t be finite). Thus cs remains
bounded too. This implies that there is a dense subset D ⊆ S0 such that cs is a
constant c0 in D. This in turn implies that c0 · Si,j

m (YL0
) = S

i,j
m (YL0

) and thus that

S
i,j
m (YL0

) is completely linear. The estimate of Proposition 1.2 then follows from

the corresponding estimate for S
i,j
m (Ỹs), where s varies in a dense subset of closed

points of S0. �
Remark. One could also have used Hilberts irreducibility theorem (see [4, Cor.
6.3, p. 244]) instead of Proposition 3.5 to prove that Si,j

m (YL0
) is completely linear.

4. The conjecture of Beauville and Catanese over perfect fields of positive
characteristic

The proof given in section 3 of the conjecture of Beauville and Catanese com-
bines results in positive characteristic with density results. In this section, we shall
briefly indicate the consequences of the positive characteristic results alone for
the natural analog of the conjecture of Beauville and Catanese over a perfect field
of positive characteristic.

Proposition 4.1. Let Y be a smooth and projective variety over a perfect field k of
characteristic p > 0. Suppose that Y admits a flat lift to a scheme over w2(k) and
that dim(Y ) ≤ char(k). Suppose furthermore that the Picard variety of Y has no
supersingular factors. Then for any integers r, m ≥ 0, the irreducible components
of maximal dimension of Sr

m(Y ) are completely linear.

Proof. By Theorem 3.2, we have p · Sr
m(Y ) ⊆ Sr

m(Y ). Let C be an irreducible
component of maximal dimension of Sr

m(Y ). Since the multiplication by p map is
finite, pk ·C is also an irreducible component of maximal dimension, for all k ≥ 1.
Since the number of such components is finite, there are integers k2 > k1 ≥ 1
such that pk1 ·C = pk2 ·C. Let C ′ := pk1 ·C. Since pk2−k1 ·C ′ = C ′, the Theorem
2.2 implies that C ′ is completely linear. Since C ⊆ (pk1)−1(C ′), we deduce that
C is also completely linear. �
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If we combine the last proposition with the Proposition 3.1, we obtain

Corollary 4.2. Let Y be a smooth and projective variety defined over a finite field
k. Suppose that Y admits a flat lift to a scheme over w2(k) and that dim(Y ) ≤
char(k). Suppose furthermore that the Picard variety of Y is simple and not
supersingular. Then for any integers i, j, m ≥ 0, the set S

i,j
m (Y ) is finite.

Another noteworthy result is

Proposition 4.3. Let Y be a smooth and projective variety defined over a finite
field k. Suppose that Y admits a flat lift to a scheme over w2(k) and that dim(Y ) ≤
p := char(k). Suppose furthermore that the Picard variety of Y has no supersin-
gular factors and has p-rank 0. Then for any integers i, j, m ≥ 0, the scheme
S

i,j
m (Y ) is completely linear.

Proof. The condition on the p-rank insures that p · Sr
m(Y ) = Sr

m(Y ). This fol-
lows from the fact that all the k-points of Sr

m(Y ) are then torsion points of order
prime to p. We can thus apply Theorem 2.2 to conclude that Sr

m(Y ) is linear and
Proposition 3.1 to conclude the proof. �

5. A conjecture

We shall formulate a conjecture which is suggested by Proposition 3.5.

Conjecture 5.1. Let X be a smooth and projective variety over a perfect field
L of positive characteristic. Suppose that X has a flat lift to w2(L) and that
dim(X) ≤ char(L). Let L be a line bundle on X which is defined over L. Fix
n ≥ 1 and suppose that L⊗n � OX. Then

hr
D(X,L) = hr

D(X,L⊗k)

for all k ≥ 1 such that (k, n) = 1.

The theorem 3.2 shows that this conjecture holds when L has positive charac-
teristic p and k = p. The Proposition 3.5 shows that the natural characteristic 0
analog of the conjecture holds.
A positive answer to the latter conjecture would imply that the natural positive
characteristic analog of the conjecture of Beauville and Catanese holds for X. To
show this implication, one needs the Weil conjectures and an easy special case of
Theorem 2.2.
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6. Function fields

In this section, we shall tackle the function field analog of the sections 2 and 3.
The analog of section 2 is simpler and relies on earlier results by Hrushovski.

Linear varieties. We want to formulate and prove the analog of Theorem 2.1
(Theorem 6.1) when K is a function field in one variable over a number field k.
Let U ⊆ Spec Ok be an open subset and let S be an affine smooth (relative) curve
over U , whose field of rational functions is K . Let A → S be an abelian scheme
and let A := A ×S K . We suppose that there are no non-trivial K−homomor-
phisms from an abelian variety which has a model over a number field to A. This
is by definition equivalent to saying that A has no isotrivial factors. For any point
p ∈ U , denote by Sp the affine curve over k(p) obtained by base-change. We also
write Kp for the function-field of Sp. If Y/S is an S-scheme, we then write Yp

for the Sp-scheme Yp/Sp obtained by base-change, YKp for the corresponding
scheme over Spec Kp and YKp

for the corresponding scheme over Spec Kp. The
aim is to prove

Proposition 6.1. Let X ↪→ A be a closed S-subscheme such that X := X ×S K

is reduced. Suppose that it has the following property: for any closed point p ∈ U ,
p.XKp

⊆ XKp
, where p = char(k(p)). Then YK is completely linear.

Proof. The proof hinges on the following facts, all proven by Hrushovski in [7]:

(*) Let Y be a geometrically reduced, geometrically irreducible closed Kp-
subscheme of dimension ≥ 1 of AKp , where p ∈ U is closed and suppose that
the stabiliser of Y in AKp is finite. If for all k ≥ 0, pk.AKp ((Kp)sep) ∩ Y (Kp)

is geometrically dense in Y , then there is a non-trivial Kp-map from an abelian
variety defined over a finite field to AKp

(more is true; see [2, th. 3.3, p. 192]).

Here (Kp)sep ⊆ Kp is the separable closure of Kp.

Remark. The only known proof of (*) is via model theory.

(**) For almost all p ∈ U , the reduction map A(K) → AKp (Kp) is injective (see
[7, Lemma 4, p. 199]).

(***) For almost all p ∈ U , there are no non-trivial Kp-maps from an abelian
variety defined over a finite field to AKp

(see [7, Cor. 8, p. 201]).

(*)’ Let Y be a geometrically reduced, geometrically irreducible closed Kp-
subscheme of AKp , where p ∈ U is closed. Suppose that for all k ≥ 0, pk.AKp

((Kp)sep) ∩ Y (Kp) is geometrically dense in Y . Furthermore suppose that there
are no non-trivial Kp-maps from an abelian variety defined over a finite field to
AKp

. Then Y must be the translate of an abelian subvariety.

The statement (*)’ follows from the statement (*), applied to the quotient of AKp

by the stabilisor of Y . We shall now prove:
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(1) X is linear.
For this, it is sufficient to prove that XKp

is linear for almost all p ∈ U . We may
replace K by a finite extension and remove a finite number of closed points from
U if necessary. Thus we may assume that, for any p ∈ U , the base change to Kp of
an irreducible component of X is irreducible, reduced and of the same dimension;
we may also assume that the irreducible components of X remain distinct after
base change to Kp. We may also assume that (***) holds for all p ∈ U .

As in the proof of Theorem 2.1, for some fixed p ∈ U , we consider the
descending sequence

XKp
⊇ p · XKp

⊇ p2 · XKp
⊇ . . .

which must stabilize by Noethericity and we denote by Z(p) the first stable term.
Fact (*) (perhaps applied to an extension of Kp) and (***) imply that Z(p) is
linear. The theorem 2.2 has the same consequence and can be used as a substitute
for (*) and (***). Therefore each irreducible component of XKp

is contained in
an irreducible component of Z(p) translated by an element of AKp

[p∞], i.e. a

torsion point of order a power of p in AKp
(Kp). Let W0 be an irreducible compo-

nent of XKp
; we know that W0 ⊆ B(p)+P(p), where B(p) is a linear irreducible

component of Z(p) and P(p) ∈ AKp
[p∞]; choose B(p) of maximal dimension

with this property. As in the proof of Theorem 2.1, B(p) is then an irreducible
component of XKp

. Let W̃0 be the irreducible component of X corresponding to
W0. Since U is infinite and the number of irreducible components of X is finite,
we see that there exists a linear irreducible component B̃ of X corresponding to
B(p) for an infinite number of places p ∈ U . Consider now the image of W̃0 in the
quotient A/B̃. This is a point Q ∈ A/B̃(K), with the property that, for an infinite
number of places p ∈ U , its reduction mod. Kp is a p∞-torsion point. Fact (∗∗)

(applied to A/B̃ rather than A) then implies that Q = 0. Thus X is linear.
(2) X is completely linear.
We first shrink U even further so that for all p ∈ U , XKp

is linear. For any
p ∈ U and any d ≥ 0, let XKp ,d be the union of the irreducible components of
dimension d of XKp

.
First, we claim that for any d ≥ 0 the following holds: for almost all closed

p ∈ U , p · XKp ,d ⊆ XKp ,d .
To prove the claim, suppose the contrary. This implies that there is an infinite

set I0 ⊆ U , such that for all p ∈ I0, there exists an irreducible component Cp of
XKp

, such that p · Cp is contained in an irreducible component Dp of XKp
, such

that dim(Dp) > dim(Cp). For each p ∈ I0, choose Cp of maximal dimension
with this property. Let C be an irreducible component of X which corresponds
to Cp for all p in an infinite set I1 ⊆ I0. Let D be an irreducible component of
X which corresponds to Dp for all p in an infinite set I2 contained in I1. For all
p ∈ I2, we then have Cp ⊆ D′

p + lp, where D′
p is an irreducible component of

XKp
which is of dimension dim(D) and lp is a torsion point whose order is a
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power of p. Let D′ be an irreducible component of X which corresponds to D′
p

in an infinite set I3 ⊆ I2. The variety C/ Stab(D′) is then a non-zero point, whose
reduction is of order p for an infinite number of p, which is a contradiction to
(**).

Secondly, we claim: for almost all closed p ∈ U , XKp
is completely linear.

To prove the claim, fix a p ∈ U such that for all d ≥ 0, p ·XKp ,d ⊆ XKp ,d . Let
C := t (p) + B(p) be any irreducible component of XKp

. Here B(p) is an abelian

subvariety of AKp
and t (p) ∈ AKp

(Kp). Let c0 be the number of irreducible
components of dimension dim(B(p)) of Xp (and thus of X). As in the proof of
2.1, we deduce that pc0!pc0 · C = pc0 · C. The image of t (p) in AKp

/B(p) is

thus in the kernel of (pc0! − 1)pc0 and is thus a torsion point. Consider now any
irreducible component t +B of X, where t ∈ A(K) and B is an abelian subvariety
of A. By the first claim and the second claim together, the image of t in A/B is
a point in (A/B)(K), such that for almost all closed p ∈ U , its reduction mod.
Kp is a torsion point. Fact (**) implies that t is torsion point. This concludes the
proof. �
The conjecture of Beauville and Catanese. The Theorem 6.1 can be combined
with a relative generalisation of 3.2 (relying on [3, Cor. 3.7, p. 263]) to obtain the
following theorem, which is the function field case of the conjecture of Beauville
and Catanese.

Theorem 6.2. Let Y be a smooth projective variety defined over a function field
K of characteristic 0. Suppose that Pic0(YK) has no isotrivial factors. Then the
sets S

i,j
m (Y ) are completely linear for all integers i, j, m ≥ 0.

Since this theorem can reduced to a special case of Theorem 3.6 using the
Lefschetz principle, we shall not give the details of the proof.
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Rham. Invent. Math. 89 (2), 247–270 (1987)

[4] Lang, S.: Fundamentals of Diophantine geometry. Springer-Verlag, New York, 1983
[5] Green, M., Lazarsfeld, R.: Higher obstructions to deforming cohomology groups of line

bundles. J. Amer. Math. Soc. 4 (1), 87–103 (1991)
[6] Grothendieck, A., Dieudonné, J.: Éléments de géométrie algébrique. Publ. Math. Inst.
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