
Distrib. Comput. (2006) 18(5): 359–374
DOI 10.1007/s00446-005-0129-4

André Schiper

Dynamic group communication

Received: 23 August 2002 / Revised: 16 January 2005 / Accepted: 25 February 2005 / Published online: 31 December 2005
C© Springer-Verlag 2005

Abstract Group communication is the basic infrastructure
for implementing fault-tolerant replicated servers. While
group communication is well understood in the context of
static groups (in which the membership does not change),
current specifications of dynamic group communication (in
which processes can join and leave groups during the com-
putation) have not yet reached the same level of maturity.

The paper proposes new specifications – in the primary
partition model – for dynamic reliable broadcast (simply
called “reliable multicast”), dynamic atomic broadcast (sim-
ply called “atomic multicast”) and group membership. In the
special case of a static system, the new specifications are
identical to the well known static specifications. Interest-
ingly, not only are these new specifications “syntactically”
close to the static specifications, but they are also ”seman-
tically” close to the dynamic specifications proposed in the
literature. We believe that this should contribute to clarify
a topic that has always been difficult to understand by out-
siders.

Finally, the paper shows how to solve atomic multicast,
group membership and reliable broadcast. The solution of
atomic multicast is close to the (static) atomic broadcast so-
lution based on reduction to consensus. Group membership
is solved using atomic multicast. Reliable multicast can be
efficiently solved by relying on a thrifty generic multicast
algorithm.

Keywords Group communication · Dynamic group ·
Specification · Reliable broadcast · Atomic broadcast ·
Group membership

1 Introduction

Fault-tolerance in distributed systems is ensured by replica-
tion, which is traditionally implemented on top of a group

A. Schiper (B)
Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne,
Switzerland
E-mail: Andre.Schiper@epfl.ch

communication infrastructure. Reliable broadcast – which
ensures that all correct processes or none of them deliver a
given message – and atomic broadcast – which in addition
to the properties of reliable broadcast orders messages – are
examples of group communication primitives. These prim-
itives provide the right level of abstraction for implement-
ing replicated (fault-tolerant) services. For example, atomic
broadcast is the adequate group communication primitives
for active replication (also called state machine approach
[25]). Group communication also addresses the need of pas-
sive replication, as shown in [13, 19].

Group communication is well understood in the context
of a static groups, in which the membership of a group does
not change. The specification of static group communica-
tion primitives can be found in [14], and an implementation
of reliable broadcast and atomic broadcast is discussed for
example in [4]. However, a static group has practical limi-
tations. Consider for example a replicated server with three
replicas s1, s2, s3. If s3 crashes, the probability for the service
to be permanently available decreases. To increase this prob-
ability a new replica s4 must be created to replace s3. This
requires dynamic group communication. However, despite
the recent good survey by Chockler et al. [6], dynamic group
communication has not yet reached the level of maturity of
static group communication. The goal of this paper is to con-
tribute to a better understanding of dynamic group commu-
nication. Note that the paper only considers processes that
fail by crashing (no Byzantine processes).

The key component of a dynamic group is the group
membership service, which is responsible for adding and
removing processes during the computation [7, 22]. In
this paper we consider only the so called primary partition
membership problem. Group membership is strongly related
to view synchrony, a property ensuring that processes deliver
the same set of messages between two membership changes
[3, 23]. However, despite the fact that view synchrony
(with dynamic groups) and reliable broadcast (with static
groups) are related, their specifications are quite different.
The same holds for the specification of atomic broadcast in
a static vs. in dynamic setting (atomic broadcast is usually

360 A. Schiper

specified as an extension of reliable broadcast, respt. view
synchrony).The paper shows that the gap between static and
dynamic specifications is not ineluctable, by proposing new
specifications for dynamic group communication that map
to the standard static specifications in the special case when
the group membership does not change. The paper also
proposes a specification of the group membership problem
that differs from the existing specifications. Contrary to
existing specifications, all membership changes, including
the exclusion of a process that is suspected to have crashed,
result from explicit invocations of membership change
primitives. This approach allows us to simply specify the
group membership problem by properties derived from
those of dynamic atomic broadcast.

The interesting feature of the new specifications is not
only that they are syntactically close to the standard static
specifications, but also that they are semantically close to
the dynamic specifications proposed in the literature [6]. In
our opinion, this is the most important contribution of the
paper. However, new specifications without implementation
is not satisfactory: the question of solvability must be ad-
dressed. The paper shows that traditional static solutions can
be extended to solve the dynamic problems: dynamic atomic
broadcast can be solved by reduction to consensus, simi-
larly to (static) atomic broadcast [4]. We show that group
membership can be solved using dynamic atomic broadcast.
The solution of dynamic atomic broadcast trivially solves
dynamic reliable broadcast. However, the solution is ineffi-
cient. We discuss a more efficient solution, based on the use
of generic broadcast [1, 20, 21].

The rest of the paper is structured as follows. Section 2 is
devoted to the specifications of dynamic reliable broadcast,
dynamic atomic broadcast and group membership. Section 3
compares our new specifications with those in the recent sur-
vey by Chockler et al. [6]. Section 4 solves dynamic atomic
broadcast and group membership, and proves the correctness
of the solution. Section 5 extends the solution to dynamic re-
liable broadcast. Section 6 concludes the paper.

2 Specification of dynamic group communication

In this section we define dynamic reliable broadcast, dy-
namic atomic broadcast and group membership. In order to
shorten names, we call dynamic reliable broadcast simply
atomic “multicast”, and dynamic atomic broadcast simply
reliable “multicast”. We adopt the same presentation order
as in [14]: we define reliable multicast first, and then extend
it to atomic multicast. We start with a preliminary discussion
and some definitions.

2.1 Preliminary discussion

Contrary to the specification of static group communication
concerned only with communication primitives, the speci-
fication of dynamic group communication has two parts: a

communication primitives part, and another part dedicated
to group membership changes. There are two options here:
one is to specify communication primitives first, the other is
to specify membership changes first.

Quite universally, e.g., [6], the membership part is spec-
ified first. This choice can be explained by existing imple-
mentations, in which the group membership layer is the
basic layer of group communication stacks. Indeed, if the
group membership layer is beneath the group communica-
tion layers in protocol stacks, it is quite natural to specify
the group membership problem first (and the communica-
tion primitives in a second step). The paper takes a slightly
different approach motivated by the following arguments:

– Justification of membership changes: Consider atomic
broadcast, defined by abroadcast and adeliver. If some
process executes adeliver(m), it seems obvious to re-
quire that some process has executed previously abroad-
cast(m): adeliver(m) can be explained (or justified) by
abroadcast(m). This seems quite natural in the context
of atomic broadcast. However, for historical reasons, the
situation is different in the context of the specification
of group membership, where most existing specifications
do not justify all membership changes, i.e., inclusions
and exclusions.1 Our opinion is that group membership
specifications become more “natural” if all group mem-
bership changes (inclusions and exclusions) are justified.
This can be done by introducing primitives to add and
remove processes to/from a group. Note that the reason
for adding or removing a process is not part of the spec-
ification. This is similar to atomic broadcast, where the
specification of atomic broadcast does not explain why
some process executes atomic broadcast. The decision to
issue atomic broadcast is left to the application that uses
the group communication infrastructure. In the same way,
the decision to add or remove a process to/from a group
is left to the application. We advocate this separation of
concern (see [24] for a more extensive discussion).

– Simplicity: One of the properties usually required from
a primary partition membership service is that, for all i ,
processes agree on the i th membership of the group. This
agreement property, together with the requirement that
membership changes are justified by invocations to add
or remove a process, leads to a problem that has a strong
flavor of atomic multicast. So, a simple solution is to de-
rive the specification of the group membership problem
from the specification of atomic multicast.

These two arguments lead us to specify atomic broad-
cast first, and group membership in a second step. However,
the specification of group membership that we give below
is independent of the specification of atomic broadcast. So,
our presentation order does not enforce a dependency order
between atomic multicast and group membership: nothing
prevents, once these two specifications are understood, to

1 Some specifications, e.g., [16] and [11], justify view changes us-
ing oracles or internal events, i.e., events not under the control of the
application.

Dynamic group communication 361

switch them. However, this is not done here, as it would not
add any benefit.2

2.2 Definitions

We consider a distributed system composed of processes
taken from a finite set �: � is the set of all possible pro-
cesses (the universe of processes). A group g consists of a
subset of �. The processes in g are said to be the members
of the group. The membership of g can change over time.

2.2.1 View

We use the standard notion of view to refer to the succes-
sive membership of a group. As commonly done, we de-
fine a view to be a tuple v = (i, S), where i is an inte-
ger, and S is a non-empty subset of �: the integer i is the
identifier of view v, and S is the membership of v. A priori,
i.e., before the specification of group membership, we do
not put any constraints on views. So, we need a notation to
distinguish the views perceived by different processes: we
denote by v p = (i p, S p) the view of p with identifier i p.
Given two processes p and q , their views v p = (i p, S p) and
vq = (iq , Sq) are equal if i p = iq and S p = Sq . Moreover,
we introduce the following terminology:

– Process p is in view v (or simply p is in v): Given view
v = (i, S), we say that p is in view v if p ∈ S.

– View installation: The event by which a process changes
its view is called view installation.

– The view of process p is v: We say that the view of process
p is v, after p has installed view v and before p installs
another view.

– Event e occurs in view v: We say that event e occurs on
process p in view v if event e occurs while the view of p
is v.

– View v is the last view of p: We say that view v is the last
view of p if p does not install any view after v.

2.2.2 g-correct vs. g-faulty process

Specifications of static group communication distinguish
correct processes (processes that never crash) and faulty pro-
cesses (processes that crash): obligations in the specifica-
tions (i.e., the obligation to delivery messages) are put on
correct processes. This is comes from the fact that static
specifications implicitly assume one single group and all
processes are members of this group. So a correct process
is always a member of this single group.

This is no more the case with dynamic groups, even if
we consider one single dynamic group g: we can have cor-
rect processes not member of g. A correct process p not in

2 Note that [18] also specifies atomic broadcast before group mem-
bership (and uses atomic broadcast to implement group membership).
However, contrary to this paper, the specification of group membership
does not require process exclusions to be justified.

g has no obligation with respect to messages broadcast to g.
So, dynamic group communication cannot be specified by
putting requirements on correct processes. Instead, the re-
quirements must be put on processes that are member of g
but do not crash. We formalize this in the context of some
group g, by introducing the notions of g-correct process and
g-faulty process. The definition of g-correct and g-faulty is
in two steps. Given a view v of g, we define first the notions
v-correct process and v-faulty process.

– v-correct process: Consider some view v with process p
in v. We say that process p is v-correct if:
(i) p installs view v, and

(ii) p does not crash while its view is v, and
(iii) if v is not the last view of some process in v, then

∃ view v′ installed immediately after v by some pro-
cess in v such that p is in v′.

A process that is not v-correct is v-faulty. Although this
definition does not subsumes the primary partition model (in
which processes agree on the sequence of views), the defi-
nition can easily be understood in the context of the primary
partition model. Consider that processes p, q , r all install
view v = (0, {p, q, r}), and that process p installs view
v′ = (1, {p, q}). According to our definition, process p is
v-correct. Moreover, since q is in v′, process q is v-correct
unless it crashes in v. What about process r? If we assume
the primary partition model, the only view that q and r can
install after v is also v′. Since r is not in v′, r is v-faulty. So,
to be v-correct, a process must not crash in v and be in the
next view.

The notion of v-correct process allows us to define
the notion of g-correct process. Intuitively, process p is
g-correct if p is v-correct in all its views. Formally:

– g-correct process: Consider a group g, process p with
v

p
init the initial view of p for g, and p in v

p
init. We say that

p is g-correct if (i) p is v
p
init-correct, and (ii) there exists

no view v′ such that (a) p is in v′ and (b) p is v′-faulty.

A process that is not g-correct is g-faulty. As for the defi-
nition of v-correct, this definition does not assume a primary
partition membership model. In the primary partition mem-
bership model, according to this definition, a process p is
g-correct if p, after having installed its initial view v

p
init, (i) is

never removed from the group, (ii) installs all the subsequent
views that are defined, and (iii) never crashes. A process that
crashes or is removed from the group is g-faulty. Note that
this does not mean that a g-faulty process has crashed.

2.2.3 Static group

A static group is a special case of our dynamic model with
one single group g, and v0 = (0, S0), S0 ⊆ �, the first and
the last view of group g. If we apply the above definition
to this static case, we have that p is g-correct if and only
if p is correct. So, in the special case of static groups, our
definition of a g-correct process is the usual definition of a

362 A. Schiper

correct process. Moreover, p is v0-correct if and only if p
is correct. These equivalences will allow us to compare our
dynamic group communication specifications with the usual
static specifications.

2.3 List of primitives

In order to make the specification sections easier to read,
here is the full list of primitives considered below:

– rmulticast and rdeliver, used to define reliable multicast;
– amulticast and adeliver, used to define atomic multicast;
– join-inv and join-exec, used to define group membership

(to add a process);
– leave-inv and leave-exec, used to define group member-

ship (to remove a process);
– init, used in the context of group membership (to initialize

the view of a process).

2.4 Reliable multicast: first attempt

The definition of (static) reliable broadcast assumes the
static group model. Our definition of reliable multicast con-
siders the dynamic model with views and some implicit
group g. Reliable multicast is defined by the two primitives
rmulticast and rdeliver, and – as a first attempt – the follow-
ing three properties:3

R1 Validity: If a g-correct process executes rmulticast(m),
then it eventually rdelivers m.

R2 Uniform Agreement: If a process p rdelivers m in view
v p, then all processes that are v p-correct eventually
rdeliver m.

R3 Uniform Integrity: For any message m, (i) every process
rdelivers m at most once, and (ii) only if m was previ-
ously rmulticast by sender(m).4

This definition has a problem. It allows runs in which
the specification is satisfied with respect to some process p,
and violated with respect to some other process q . Consider
the following example in which no process crashes. View
v0 = (0, {p, q}) is the initial view of the group and

– process p executes rmulticast(m) and later rdelivers m in
view v0,

– process q installs view v1 = (1, {p, q, r}) and rdelivers
m in view v1 = (1, {p, q, r}),

– process r installs view v1 = (1, {p, q, r}) and never
rdelivers m. No other view is defined and r does not crash.
Since r does not crash, r is v1-correct.

3 All the broadcast primitives that we define in this section are uni-
form [14]. To simplify the notation, we drop the word “uniform” from
the various broadcast types. Non uniform primitives are discussed in
Sect. 2.9.

4 As usual, since every process can multicast several messages, we
assume that every message has an identifier field that makes every mes-
sage that is multicast unique.

In this example, the above specification is satisfied for p
(q has rdelivered m), but not for q (r is v1-correct, q has
rdelivered m in view v1, but r never rdelivers m).

2.5 Reliable multicast: second attempt

To avoid the above problem, we add a property that requires
message m to be delivered by all processes in the same view:

R4 Uniform Same View Delivery: If two processes p and
q rdeliver m in view v p (for p) and vq (for q), then
v p = vq .

Altogether, we define reliable multicast by the following
properties: Validity, Uniform Agreement, Uniform Integrity
and Same View Delivery.

It is easy to see that our definition of reliable multicast
is a generalization of (static) reliable broadcast. If the group
is static, i.e., if the view never changes, then the Same
View Delivery property is trivially satisfied. Moreover,
since v0-correct and g-correct reduce to “correct”, the
other properties are identical to those that define reliable
broadcast [14]. So, if the group is static, reliable multicast
is equivalent to (static) reliable broadcast.

2.6 Atomic multicast

We define atomic multicast by the two primitives amulticast
and adeliver, and – similarly to [14] for static groups – by
the properties R1–R4 that define reliable multicast,5 plus an
additional ordering property. For this last property, we take
the definition in [1] – which contrary to the order property
in [14] forbids “holes” in the delivery sequence of messages.
However, we must adapt the definition in [1] since dynamic
joining of processes poses a specific problem: we do not
want process p to have to deliver messages delivered before
p has joined the group. We express this using views:

A5 Uniform Total Order: If some process (whether g-
correct or g-faulty) adelivers message m in view v be-
fore it adelivers message m′, then every process p in v,
adelivers m′ only after it has adelivered m.

To illustrate A5, consider some process q that has
adelivered m in view v, and later m′ in view v′ (possibly
v = v′). If p has adelivered m′, and p is in v, then p has
joined the group before the delivery of m, and consequently
p must adeliver m. If p is not in v and has adelivered m′,
then p has joined the group after the delivery of m, and does
not have to adeliver m.

As for reliable multicast, if the group is static, atomic
multicast is equivalent to (static) atomic broadcast.

5 In these properties rmulticast must be replaced with amulticast
and rdeliver with adeliver.

Dynamic group communication 363

2.7 Group membership

2.7.1 Specification based on join and leave requests

To complete the definition of dynamic group communica-
tion, we need to specify how views change, i.e., we need
to specify the group membership problem. We consider the
most basic specification, with only two operations: one to
add a process to the group, and one to remove a process from
the group.We call these operations join, respectively leave.

The join and leave operations are the only means to mod-
ify the membership. So, events such as process crashes, fail-
ure suspicions or similar events do not appear in our speci-
fication. This allows a clear separation of concerns between
the question of why a process is excluded and the question
of how it is excluded. As explained in Sect. 2.1, our specifi-
cation addresses the second issue.

Process p requests to add process r to the group by
invoking the operation join(r). However, the view only
changes when the join(r) operation is scheduled for execu-
tion. In other words, process r is included in the view of
some process q (possibly q = p) when q executes join(r).
Similarly, process p requests to remove r from the group by
invoking the operation leave(r), and the view changes once
the operation is scheduled for execution: process r is re-
moved from the view of process q when q executes leave(r).

2.7.2 Notation

We introduce the following notation. The “invocation” of
the operation join (respt. leave) is denoted by join-inv (re-
spt. leave-inv). The “execution” of the operation join (re-
spt. leave) is denoted by join-exec (respt. leave-exec). Upon
occurrence of join-exec(x) at process p in view v =
(i, S), the view of p atomically becomes (i+1, S∪{x}). So,
join-exec(x) is the last event in view v for p. Upon occur-
rence of leave-exec(x) at process p in view v = (i, S), the
view of p atomically becomes (i+1, S−{x}): leave-exec(x)
is the last event in view v for p. The notation join-exec()v

(respt. leave-exec()v) is used to denote that the execution of
join (respt. leave) leads to the view v. When process p ex-
ecutes join-exec()v or leave-exec()v , we say that p installs
view v (see Sect. 2.2).

2.7.3 Specification

We want join-exec and leave-exec to be executed in the same
total order by all processes. This can be easily specified by
relying on the properties of atomic multicast:

– we map join-inv(x), x ∈ �, to amulticast(add(x)), and
adeliver(add(x)) to join-exec(x).

– we map leave-inv(x), x ∈ �, to amulticast(remove(x)),
and adeliver(remove(x)) to leave-exec(x).

With this mapping, we specify the group member-
ship problem for some implicit group g by the properties

R1–R4, A5 of atomic multicast, plus an additional initial-
ization property G0. Property G0 defines the initial view of
process p to be either the initial view v0 of the group, or a
view v installed by some other process q:

G0 GM Initialization: The initial view of the group is v0 =
(0, S0), S0 ⊆ �. For every process p, its initial view v,
defined by the execution of the primitive initv , is such
that (i) p is in view v, and (ii) either v = v0 or there
exists a process q different from p that installs view v.

GR1 GM Validity: If a g-correct process executes
join-inv(x) (respt. leave-inv(x)), then it eventually
executes join-exec(x) (respt. leave-exec(x)).

GR2 GM Uniform Agreement: If a process p executes
join-exec(x) (respt. leave-exec(x)) in view v p, then
all processes that are v p-correct eventually execute
join-exec(x) (respt. leave-exec(x)).

GR3 GM Uniform Integrity: For any process p, every pro-
cess q executes join-exec(p) (respt. leave-exec(p)) at
most once, and only if join-inv(p) (respt. leave-inv(p))
was previously invoked.

GR4 GM Uniform Same View Delivery: If two processes p
and q execute join-exec(x) (respt. leave-exec(x)) in view
v p (for p) and vq (for q), then v p = vq .

GA5 GM Uniform Total Order: Let op(x) denote either
join-exec(x) or leave-exec(x). If some process (whether
g-correct or g-faulty) executes op(x) in view v before
it executes op(y), then every process p in v, executes
op(y) only after it has executed op(x).

Remark 1 GR3 prevents join-exec(x), respt. leave-exec(x),
to be executed more than once. This prevents fictitious
view changes (view changes where the old and the new
view have the same membership). Consider for example
view v = (i, {p, q, r}) and processes p, q both invoking
leave-inv(r) in view v. GR3 requires leave-exec(r) to be ex-
ecuted only once. This prevents to have a first view change
from (i, {p, q, r}) to (i + 1, {p, q}), followed by a second
view change from (i + 1, {p, q}) to (i + 2, {p, q}).

Remark 2 The ordering property GA5 is actually redundant.
It is easy to show that GA5 follows from GR4. The proof
is by contradiction. Assume that process q executes op(x)
in view v before executing op(y) in view v′, and process
p in v executes op(y) before executing op(x). Let i be the
identifier of view v, and i ′ the identifier of view v′. Since q
executes op(x) before op(y), we have i < i ′ (*). By the Uni-
form Same View Delivery property GR4, p executes op(x)
in view v and op(y) in view v′. Since p executes op(x) be-
fore op(y), we have i ′ < i : a contradiction with (*).

Remark 3 We define init(i,S) followed immediately by
join-exec(x) (i.e., no message broadcast or delivered in-
between) to be equivalent to init(i+1,S∪{x}). This property is
exploited by the implementation in Sect. 4.

364 A. Schiper

2.8 Examples

We illustrate now our specifications on a few examples (in
the context of one implicit group g).

Example 1 In the first example, the initial view is
v0 = (0, {p, q}), no process crashes, and all processes
are g-correct. Message m is amulticast in view v0 by
process p and adelivered in view (1, {p, q, r}):
– local history of p:
init(0,{p,q}); amulticast(m); join-exec(r)(1,{p,q,r}); adeliver(m)

– local history of q:
init(0,{p,q}); join-inv(r); join-exec(r)(1,{p,q,r}); adeliver(m)

− local history of r :
init(1,{p,q,r}); adeliver(m)

In this example, process q executes join-inv(r) to add
process r . Process q may have done so based on its own
initiative, in order to increase the size of the group. Or pro-
cess q may have done so because it was contacted by r that
wanted to join the group. The exact reason is outside the
scope of our specifications. Moreover, if p was contacted by
r , the life of r before being member of the group is outside
of our model.

Example 2 The second example shows a process r that is
g-faulty because of the execution of leave-exec(r): process
r is v0-faulty with v0 = (0, {p, q, r}) since it is not member
of the next view (1, {p, q}). Being v0-faulty, process r has
no obligation to deliver m. Processes p and q are g-correct:

–local history of p:
init(0,{p,q,r}); amulticast(m); adeliver(m); leave-exec(r)(1,{p,q})
–local history of q:
init(0,{p,q,r}); leave-inv(r); adeliver(m); leave-exec(r)(1,{p,q})
– local history of r :
init(0,{p,q,r})

Example 3 The following history, slightly changed with re-
spect to Example 2, is also allowed by the specification. Our
specifications do not restrict the behavior of g-faulty pro-
cesses. The g-faulty process r may deliver m and install view
(1, {p, q}):
– local history of p:
init(0,{p,q,r}); amulticast(m); adeliver(m); leave-exec(r)(1,{p,q})
– local history of q:
init(0,{p,q,r}); leave-inv(r); adeliver(m); leave-exec(r)(1,{p,q})
– local history of r :
init(0,{p,q,r}); adeliver(m); leave-exec(r)(1,{p,q})

Example 4 This example shows a process r that crashes.
Our specification does not require r to be removed for the
group. The following history is allowed by the specification:

– local history of p: init(0,{p,q,r}); amulticast(m);adeliver(m)

– local history of q: init(0,{p,q,r}); adeliver(m)

– local history of r : init(0,{p,q,r}); crash

Example 5 Consider again the crash of process r in
Example 4. Even though our specification does not require
r to be removed from the group, the application (i.e., the
software that issues amulticast, join-inv and leave-inv) may
suspect the crash of r (using whatever mechanism) and ask
to remove r . This could lead to the following history:6

– local history of p:
init(0,{p,q,r}); amcast(m); adlvr(m); lv-inv(r); lv-exec(r)(1,{p,q})
– local history of q:
init(0,{p,q,r}); adlvr(m); lv-exec(r)(1,{p,q})
– local history of r :
init(0,{p,q,r}); crash

2.9 Uniform vs. non uniform specifications

As mentioned in Sect. 3, the specifications given for reliable
multicast, atomic multicast are uniform. Some of the uni-
form properties could be weaken to non uniform properties,
by simply requiring the properties to hold only for g-correct
processes:

R2a Agreement: If a g-correct process p rdelivers m in
view v p, then all processes that are v p-correct eventu-
ally rdeliver m.

R3a Integrity: For any message m, (i) every g-correct pro-
cess rdelivers m at most once, and (ii) only if m was
previously rmulticast by sender(m).

R4a Same View Delivery: If two g-correct processes p and
q rdeliver m in view v p (for p) and vq (for q), then
v p = vq .

A5a Total Order: If some g-correct process adelivers mes-
sage m in view v before it adelivers message m′, then
every process p in v, adelivers m′ only after it has
adelivered m.

Are non uniform properties desirable, and what are their
advantages over uniform specifications? Non uniform spec-
ifications have an advantage only if they allow for less
costly implementation. This is however not always the case.
Défago et al. [8] show the following result for (static) atomic
broadcast: any algorithms that solves non uniform atomic
broadcast with the failure detectors �P (respt. S, �S) [4],
solves also the uniform version of atomic broadcast with �P
(respt. S, �S).7 So, in this context, non uniform specifica-
tions do not provide any advantage.

However, existing group communication system do pro-
vide non uniform communication primitives that are less
costly than the uniform ones. This is possible because these
systems rely on a different system model, called process
controlled crash. This model gives the ability to processes to
kill other processes (see [8]). However, in this context, non
uniform primitives can have drawbacks that balance their ef-
ficiency. They can lead a faulty process, before it crashes, to

6 To have the history fit on one line, the name of the primitives have
been shortened, e.g., amulticast → amcast, adeliver → adlvr .

7 The result was initially established for consensus in [12].

Dynamic group communication 365

disseminate information in the system based on an inconsis-
tent state. As a result, the whole system state can become
inconsistent.

Finally, even though our model allows us to force a pro-
cess to become g-faulty (by removing the process from the
group), the model that we use in Sect. 4 to implement our
specifications, together with the failure detectors �P , S or
�S, does not allow us to exploit the non uniform properties.
The argument is basically the same as the one given in [8]
for (static) atomic broadcast. Interestingly, this shows that
contrary to a common belief, it is not the ability to force
processes to become faulty (or g-faulty) that allows the ex-
ploitation of non uniform specifications. The exploitation
of non uniform specifications is only possible if the atomic
broadcast algorithm has the right to force processes to be-
come faulty (or g-faulty). We do not allow this. In our spec-
ification, removing processes from the group is not under the
control of the atomic broadcast algorithm.

3 Comparison with current specifications

We compare now the above specifications with those of
Chockler et al. [6]. The paper surveys over thirty published
group communication specifications. As stated by the au-
thors, the goal is to serve as a unifying framework for the
comparison of group communication systems. So, the com-
parison of our specifications with those of Chockler et al.
indirectly allows the comparison of our specifications with
those surveyed in [6]. Note however that the specifications
in [6] have a broader scope: they address group communica-
tion in the primary partition model and in the partitionable
model. The comparison below is with the subset of [6] that
is relevant to the primary partition model.

We discuss the properties in the same order as in [6]: first
safety and then liveness properties. The safety properties in
[6] start with the properties of group membership.

3.1 Group membership safety properties

In [6], the safety properties of group membership are split
into (1) basic and (2) primary vs. partitionable properties.
There are three basic properties:8

– Property 3.1 (Self Inclusion): If process p installs view
v, then p is a member of v.

The property is uniform (it must hold also for faulty –
or g-faulty – processes). Our specification, which is non
uniform with respect to self inclusion, is weaker. We explain
why.

By our Initialization property G0, the initial view of a
process satisfies the Self Inclusion property. Self Inclusion
is also satisfied by all subsequent views installed by some

8 We give only the informal specification of [6]. For additional in-
formation, please refer to [6].

process p, until p is removed from the group. Our specifica-
tion does not prevent a g-faulty process p (i.e., a process re-
moved from the group) to install a view that does not include
it. This can be useful: it allows the process that is removed
to know when this removal exactly takes place.

– Property 3.2 (Local Monotonicity): If a process p in-
stalls view v after installing view v′, then the identifier
of v′ is greater than that of v.

In our model views also have identifiers, and view identifiers
are incremented by one for each new view (see Sect. 2.7.2),
i.e., Property 3.2 holds. However, strictly speaking, this is
not part of our specification.

– Property 3.3 (Initial View Event): Every send, recv and
sa f e pre f i x event occurs within some view.

This property is not ensured by our specification, which
allows a process to execute events without being member of
a group (e.g., before joining a group).

There is only one non-basic safety property in [6]:

– Property 3.4 (Primary Component Membership): There
is a one to one function f from the set of views installed
in the trace to the natural numbers, such that f satisfies
the following property: for every view v with f (v) > 1
there exists a view v′, such that f (v) = f (v′) + 1, and a
member p of v that installs v in v′ (i.e., v is the successor
of v′ at process p). This property implies that for every
pair of consecutive views, there is a process that survives
from the first view to the second [6].

Our specification satisfies this property. Consider the first
part of Property 3.4, and let f be defined recursively as
follows: (i) f (v0) = 0, (ii) if some process installs view v′
immediately after view v, then f (v′) = f (v) + 1. By the
Uniform Total Order property GA5, f is indeed a function.
We show by contradiction that the second part of Property
3.4 also holds. Assume for contradiction that there exists
views v and v′ such that f (v) = f (v′) + 1 and that no
process in v′ installs v. By definition, v is not the initial view
v0. By the Initialization property G0, there exists a process
q – different from p – that installs v. Since f (v) = f (v′)+1,
q installs v in view v′.

To summarize, our specification of group membership
implies the relevant safety properties of [6]. The opposite is
not true. For example, the Uniform Integrity property GR3
does not hold in [6], where view changes are not required to
be “justified”.

Note that [6] defines two other group membership safety
properties: Property 4.6 (Transitional Set) and Property 4.7
(Agreement on Successor). However, since these two prop-
erties are related to the partitionable membership model, we
do not discuss them here.

366 A. Schiper

3.2 Multicast safety properties

In [6], the multicast safety properties are split into (1) ba-
sic, (2) sending view delivery and weaker alternatives, and
(3) virtual synchrony properties. There are two basic proper-
ties:9

– Property 4.1 (Delivery Integrity): For every recv event
there is a preceding send event of the same message.

This property corresponds to part (ii) of our Uniform In-
tegrity property R3.

– Property 4.2 (No Duplication): Two different recv
events with the same content cannot occur at the same
process.

This corresponds to part (i) of our Uniform Integrity
property R3.

There are two properties in the category sending view
delivery and weaker alternatives:

– Property 4.3 (Sending View Delivery): If a process re-
ceives message m in view v, and some process q (possi-
bly p = q) sends m in view v′, then v = v′.

Our specification does not require Sending View Delivery.
This property could be added, but as noticed in [6], Same
View Delivery (see below) is the basic property (rather than
Sending View Delivery).

– Property 4.4 (Same View Delivery): If processes p and
q both receive message m, they receive m in the same
view.

This property is ensured by our Uniform Same View
Delivery property R4.

Three properties are given in the category virtual syn-
chrony, but only one is relevant to the primary partition
model:

– Property 4.5 (Virtual Synchrony): If processes p and q
install the same view v in the same previous view v′, then
any message received by p in v′ is also received by q
in v′.

In [6], by the Self Inclusion property, if p and q install views
v and v′, then p and q are in v and v′. Our specification does
not prevent a g-faulty process to install a view to which it
does not belong. If we assume that p and q are in v and v′,
then our specification satisfies the Virtual Synchrony prop-
erty.

Consider processes p and q that install view v in view v′,
and message m delivered (rdelivered or adelivered) by p in
view v′. If q is in v and v′, and q installs view v, according
to our definition, q is v′-correct. Since p has delivered m
in view v′, by the Uniform Agreement property R2 and the
Uniform Same View Delivery property R4, q also delivers
m in view v′.

9 As in Sect. 3.1, we give only the informal specification.

To summarize, our specifications imply the properties of
[6], except for “sending view delivery”. The opposite is also
true: the specifications in [6] imply our safety properties R3
and R4.

3.3 Ordering and reliability properties

The ordering and reliability properties in [6] are split into
FIFO multicast, causal multicast, and total order multicast.
Since we do not consider FIFO order and causal order, we
discuss only the total order multicast category:

Property 6.5 (Strong Total Order): There is a timestamp
function f such that messages are received at all processes
in an order consistent with f .

Property 6.7 (Reliable Total Order): There exists a times-
tamp function f such that if a process p receives a message
m′, and messages m and m′ were sent in the same view, and
f (m) < f (m′), then q receives m before m′.

Reliable Total Order requires processes to deliver mes-
sages in the same order if they were sent in the same view.
Note that Strong Total Order and Reliable Total Order are
incomparable. Our specification, by the Uniform Total Or-
der property A5, implies the Strong Total Order property:
messages are delivered in the same order even if they were
sent in different views.

3.4 Liveness properties

The liveness properties of [6] related to group membership
are difficult to compare to our specifications. This is be-
cause events that trigger view changes do not appear in the
specification of [6]. For example, our Validity property GR1
and our Uniform Agreement property GR2 do not hold in
[6]. Even the weaker non-uniform version of GR2 does not
hold.

Concerning message multicast, we can make the follow-
ing observations. Whereas [6] requires the properties to hold
only in runs in which there exists a stable component and
the failure detector behaves like �P , our properties do not
require such a condition. This makes it difficult to formally
compare the two specifications.

3.5 Discussion

The comparison has shown strong similarities between our
new specifications and those in [6] that are relevant in the
primary partition model. The main difference is with respect
to liveness properties, which in [6] are required to hold
only if the system stabilizes. Our liveness properties, which
are expressed much like in [14], do not depend on such a
condition.

Dynamic group communication 367

4 Solving atomic multicast with membership changes

Giving new specifications without addressing the issue of
solvability is not satisfactory. This is the purpose of this sec-
tion, which shows how to solve the atomic multicast problem
with membership changes. The solution also trivially solves
the reliable multicast problem, however inefficiently. An im-
proved (and more complex) solution for reliable multicast is
discussed in Sect. 5.

Since atomic multicast and group membership require
a strong form of agreement, and the FLP impossibil-
ity result [10] shows that agreement cannot be built on
top of weak communication primitives in asynchronous
systems, we solve static atomic multicast over a basic
layer solving consensus. Moreover, since our specifica-
tion of group membership is close to the specification
of atomic multicast, we simply solve group membership
using static atomic multicast. The solution is given by
Algorithm 1.

Note that our solution is derived from existing solutions
and ideas. The idea of implementing total order by reduc-
tion to consensus has been described in [4]. Algorithm 1
is derived from this solution (we explain below the differ-
ences). Using total order broadcast to solve the group mem-
bership problem was already proposed in [18]. However,
the solution does not separate atomic broadcast/multicast
from its use to change the membership as clearly as in our
solution. The idea of using total order to solve the group
membership problem appears also in [15], where it is sug-
gested to consider the membership as part of the state man-
aged by a state machine (i.e., a membership change appears
as a state change). Finally, a related idea, which consists
of solving the group membership directly by reduction to
consensus, instead of indirectly as done here, was proposed
in [17].

4.1 System model

The definitions in Sect. 2.2 are related to the specification of
reliable/atomic multicast and group membership. The issue
was not solvability, which is a different issue.10 We give now
the system model that we assume to address the solvability
issue. With respect to communication, we assume reliable
channels, defined by the primitives send(m) and receive(m),
which have the following properties: (i) if process q receives
message m from p, then p has sent m to q (no creation), (ii)
q receives m from p at most once (no duplication), and (iii)
if p sends m to q , and q is correct, then q eventually receives
m (no loss).

We also assume a consensus-oracle that solves consen-
sus. The consensus-oracle is defined by propose(k,S,val)
and decide(k,decision). When process p executes pro-
pose(k,S,val), the parameter k identifies a specific instance
of consensus, S denotes the set of processes that have to

10 For example, consensus can be specified independently of its solv-
ability.

reach agreement, and val is p’s initial value. Given instance
k0 of consensus and a set Sk0 , the consensus oracle ensures
the following property. If all processes p in Sk0 that do
not crash execute propose(k0, Sk0, valp), then all those pro-
cesses eventually decide (Termination), the decision is one
of the initial values valp (Validity), and no two processes
in Sk0 decide differently (Uniform Agreement) [4]. Solving
consensus is discussed for example in [4].

4.2 Algorithm 1: atomic multicast and membership changes

Algorithm 1 consists of four tasks (Task 1 to Task 4) that
execute atomically, and one task (Task 5) consisting of two
atomic blocks, the first corresponding to lines 21–24, the
second to lines 25–37. Algorithm 1 is close to the static
atomic broadcast algorithm in [4] that works as follows. Pro-
cesses execute a sequence of consensus numbered 1, 2,
The initial value and the decision of each consensus is a set
of messages. Let adeliverk be the set of messages decided
by consensus #k: (1) the messages in the set adeliverk are
delivered before the messages in the set adeliverk+1, and (2)
the messages in the set adeliverk are delivered according to
a deterministic function.

The main difference between [4] and our dynamic algo-
rithm is that the sequence of consensus is no more executed
by a constant set of processes. Instead, consensus #k is exe-
cuted by the processes that are members of the group when
consensus #k is started. The management of this dynamism
requires additional changes. The first change is the intro-
duction of message types, in order to distinguish the atomic
multicast of ordinary messages (messages of type am, lines
12,13 of Algorithm 1), from the multicast of join requests
(messages of type add, lines 14,15), respt. leave requests
(messages of type remove, lines 16,17). The other changes
are the following:

1. Initialization of the joining processes (line 36 and lines
7-8).

2. Line 37, by which p sends the messages received but
not yet delivered (i.e., receivedp − adeliveredp) to the
joining processes.

3. The delivery order, by which messages of type am (line
27) are delivered first, then messages of type remove
(line 28) and finally messages of type add (line 30).

We explain these three points.

1. Let us denote by vprev the view preceding a view
change, and by vnew the view after the view change. The
initialization allows processes in vnew.S − vprev.S to
initialize their variables, see lines 7-8 (set of processes
joined, view v, set of messages adelivered, counter k
used to identify consensus instances). The last field new-
Processes (line 36, line 8) identifies the newly joining
processes. This information is used in line 9, where the
message received in line 8 is sent to the set newPro-
cesses. Line 9 is needed in the case all processes in
vprev.S − vnew.S crash before or during execution of

368 A. Schiper

Algorithm 1 Atomic multicast and membership change (code of process p)

1: Variables:
2: v {current view; notation: v ≡ (v.id, v.S)}
3: joined {set of processes that have joined the group}
4: k {integer used to identify the different instances of consensus}
5: received , adelivered {set of messages received, respt. adelivered}
6: Initialization:
7: received ← ∅
8: wait until ini t1-receive(joined, v, adelivered, k, newProcesses)
9: ini t1-send(joined, v, adelivered, k, newProcesses) to newProcesses

10: execute ini tv

11: Once Initialization done:

12: To execute amulticast(m): {Task 1}
13: send(am, m) to v.S

14: To execute join-inv(x): {Task 2}
15: send(add, x) to v.S

16: To execute leave-inv(x): {Task 3}
17: send(remove, x) to v.S

18: upon receive(t ype, m) for the first time : {Task 4}
19: if sender(m) �= p then send(t ype, m) to v.S
20: received ← received ∪ {(t ype, m)}
21: upon received − adelivered �= ∅ : {Task 5}
22: k ← k + 1
23: a undelivered ← received − adelivered
24: propose(k, v.S, a undelivered)

25: wait until decide(k, adeliverk)
26: prevV iew ← v

27: for all messages (am, m) in adeliverk in some deterministic order: adeliver(m)

28: for all messages (remove, x) in adeliverk in some deterministic order:
29: if (x ∈ v.S) then leave-exec(x) {view v becomes (v.id+1, v.S − {x})}
30: for all messages (add, x) in adeliverk in some deterministic order:
31: if (x /∈ joined) then join-exec(m) {view v becomes (v.id+1, v.S ∪ {x})}
32: adelivered ← adelivered ∪ adeliverk

33: if prevV iew �= v then
34: newProcesses ← v.S − prevV iew.S
35: joined ← joined ∪ newProcesses
36: ini t1-send(joined, v, adelivered, k, newProcesses) to newProcesses
37: if p ∈ v.S then ∀(t ype, m) ∈ (received − adelivered) : send(t ype, m) to newProcesses

line 36: it ensures that if one newly joining process ter-
minates its initialization, then all joining processes do so
unless they crash.

2. Line 37 is for Validity R1 (respt. GR1): if a g-correct
process executes amulticast(m), then it eventu-
ally adelivers m. Consider a process p executing
amulticast(m) (line 12) in view v. To guarantee that m
is eventually adelivered by p, there must exist a view
v′ in which for all non crashed processes q , we have
m ∈ receivedq . For this purpose, whenever the view
changes, if p is in the new view, it sends the messages
received but not yet delivered to the joining processes
(line 37) (if p is not in the new view, p is g-faulty, i.e.,
the Validity property is trivially ensured).

3. In each batch adeliverk , messages of type am are
delivered before messages of type add or remove for
the following reason. Let consensus #k be executed by
the processes in the current view v = (i, {p, q}), and
let adeliverk = {(add, r), (am, m)} be the decision.
Consider the following two options:

(i) delivery of (add,r) followed by the delivery of
(am, m), or

(ii) delivery of (am, m) followed by the delivery of
(add,r).

In case (i), the new view v′ = (i + 1, {p, q, r}) is first
installed, and m is delivered in the new view v′. According to

Dynamic group communication 369

the specification (property R2), process r must also deliver
m, which requires a special mechanism. In case (ii), m is
delivered in view v, and then the new view v′ is installed.
Here r does not have to deliver m. Delivering messages of
type am before messages of type add or remove makes the
solution simpler.

The simplicity argument also leads us to deliver mes-
sages of type remove before messages of type add: with
this solution, the newly joining processes do not have to
start by executing leave-exec() actions. Finally, consider the
case of two joining processes r and s, where r is added be-
fore s, i.e., we have (i+1, {p, q, r}) and (i + 2, {p, q, r, s}).
Formally, after the initialization of r , process r should ex-
ecute join-exec(s). With our solution, r and s both install
(i + 2, {p, q, r, s}) as their initial view. However, according
to Remark 3 at the end of Sect. 2.7.3, the two solutions are
equivalent.

4.3 Algorithm 2: Group initialization

Algorithm 2 is the code to be executed when initializing
some group g. First the initial view v0 is defined (line 2),
and then the group state of processes in view v0 is initialized
by the message sent at line 3.

Algorithm 2 Group initialization

1: Group initialization:
2: v0 ← (0, any subset of �)
3: init1-send(v0.S, v0, ∅, 0, v0.S) to v0.S

4.4 Proof of atomic multicast

We prove in this section that Algorithm 1 solves atomic mul-
ticast defined by the properties R1-R4 and A5.

Lemma 1
Let a undeliveredk

p denote the value of a undeliveredp when

p executes propose(k, v.S,−), let adeliveredk
p denote the

value of adeliveredp when p executes propose(k, v.S, −),
and let vk

p denote the view of p when p executes
propose(k, v.S,−). For two processes p and q and all
k ≥ 1:

1. If adeliveredk
p and adeliveredk

q are both defined, then we

have adeliveredk
p = adeliveredk

q .

2. If vk
p and vk

q are both defined, then we have vk
p = vk

q .

3. If a undeliveredk
p is defined, for any message m ∈

a undeliveredk
p, if q is g-correct and q is in v, then even-

tually m ∈ receivedq or m ∈ adeliveredq .
4. If p executes propose(k, v.S,−), then if q is v-correct, it

eventually executes propose(k, v.S,−).

5. If, after propose(k, v.S,−), p adelivers messages in
adeliverk

p, then q v-correct eventually adelivers mes-

sages in adeliverk
q , and adeliverk

p = adeliverk
q .11, 12

Proof The proof is by simultaneous induction on (1), (2),
(3), (4) and (5).13

Base step (1): (1) trivially holds, since adelivered1
p =

adelivered1
q = ∅.

Base step (2): (2) also trivially holds, since v1
p = v1

q = v0.

Base step (3): We now show that (3) holds for k = 1. If
m ∈ a undelivered1

p, since adeliveredp = ∅, p has re-
ceived m at line 18. Since q is in v, p has sent m to q at line
19. If q is g-correct (and so correct), since channels are re-
liable, q eventually receives m, and inserts m in receivedq
(line 20).

Base step (4): We next show that if p executes
propose(1, v0.S,−), then q that is v-correct eventually ex-
ecutes propose(1, v0.S,−). We distinguish two cases: (i)
v0 is not the last view of q; (ii) v0 is the last view of q . In
case (i), by definition q installs a view after v0. So q must
have executed propose(1, v0.S, −).
Case (ii): If v0 is the last view of q , then q is v0-
correct is equivalent to q is g-correct. If p executes
propose(1, v0.S,−), then receivedp must contain some
message m. If q never executes propose(1, v0.S,−),
receivedq remains empty (since adeliveredq is initially
empty). A contradiction with (3). Thus, q eventually exe-
cutes Task 5 and propose(1, v0.S,−).

Base step (5): Finally, we show that if p adelivers messages
in adelivered1

p, then q that is v-correct eventually adeliv-

ers messages in adeliver1
q , and adeliver1

p = adeliver1
q .

From the algorithm, if p adelivers messages in adeliver1
p,

it previously executed propose(1, v.S,−). From part (4)
of the lemma, all v-correct processes eventually execute
propose(1, v.S, −). By termination and uniform integrity
of consensus, every process that is v-correct eventually
executes decide(1, adeliver1) and adelivers messages in
adeliver1. By uniform agreement of consensus, all pro-
cesses that execute decide(1, adeliver1) do so with the
same value adeliver1.

Induction step (1): We assume that the lemma holds for all
1 ≤ k ≤ l − 1 and show that adeliveredl

p = adeliveredl
q .

We consider three cases: (i) v is not the initial view of p nor
of q , (ii) v is the initial view of p only, and (iii) v is the initial
view of p and q .
Case (i) By line 32, for k > 1 we have adeliveredk

p =
adeliveredk−1

p ∪ adeliverk−1
p and the same for q . By the

induction hypothesis of part (1) of this lemma we have

11 adeliverk
p is the decision value of p following propose(k, v.S, −),

not to be confused with adeliveredk
p .

12 To simplify the notation adeliver means here adeliver (line 27),
leave-exec (line 29) and join-exec (line 31).

13 The proof of (4) and (5) is adapted from [4].

370 A. Schiper

adeliveredl−1
p = adeliveredl−1

q . By the induction hy-

pothesis of part (5) of this lemma we have adeliverl−1
p =

adeliverl−1
q . Together we have that adeliveredl

p =
adeliveredl

q .
Case (ii) By line 36 there exists some process r for
which v is not the initial view, such that adeliveredl

p =
adeliveredl

r . By case (i), we have that adeliveredl
r =

adeliveredl
q , and so adeliveredl

p = adeliveredl
q .

Case (iii) By line 36 there exists processes r and s
(possibly r = s) for which v is not the initial view,
such that adeliveredl

p = adeliveredl
r and adeliveredl

q

= adeliveredl
s . By case (i) we have adeliveredl

r =
adeliveredl

s . Together we have that adeliveredl
p =

adeliveredl
q .

Induction step (2): We now show that vl
p = vl

q . By the
induction hypothesis of part (2) and (5), we have (i)
vl−1

p = vl−1
q and (ii) adeliverl−1

p = adeliverl−1
q . By (ii),

the view changes applied by p to vl−1
p are the same as the

view changes applied by q to vl−1
q . Together with (i), we

have vl
p = vl

q .

Induction step (3): We now show that (3) holds for l. We
consider three cases: (i) a undeliveredl−1

p not defined, (ii)

a undeliveredl−1
p defined and m /∈ a undeliveredl−1

p , and

(iii) a undeliveredl−1
p defined and m ∈ a undeliveredl−1

p .
Case (i) Here view v is the initial view of p. In this case, p
has received m in view v, and has sent m to all processes in
v (line 19), including to q . Since q is g-correct, eventually
m ∈ receivedq .
Case (ii) Since m /∈ a undeliveredl−1

p , by the definition

of a undeliveredl−1
p , p has received m either in view v or

in view vl−1
p . If p has received m in view v, it has sent m

to all processes in v, including to q . Since q is g-correct,
eventually m ∈ receivedq . If p has received m in view
vl−1

p and q in vl−1
p , by the same argument, eventually

m ∈ receivedq . If p has received m in view vl−1
p and q not

in vl−1
p , then v is the initial view of q . If m ∈ adeliverl−1

p ,
then p sends m to q at line 36, and since q is g-correct,
eventually m ∈ adeliveredq . If m /∈ adeliverl−1

p , since
m ∈ receivedp, then p sends m to q at line 37, and since q
is g-correct, eventually m ∈ receivedq .
Case (iii) Consider view vl−1

p . If q in vl−1
p , the result follows

immediately from the induction hypothesis. If q not in vl−1
p ,

then v is the initial view of q , and we can apply the same
reasoning as in case (ii).

If m ∈ adeliverl−1
p , then p sends m to q at line 36, and

since q is g-correct, eventually m ∈ adeliveredq . If m /∈
adeliverl−1

p , since m ∈ receivedp, then p sends m to q at
line 37, and since q is g-correct, eventually m ∈ receivedq .

Induction step (4): We show that if p executes
propose(l, v.S, −), then q that is v-correct eventually
executes propose(l, v.S,−). If v is not the last view of q ,
then by definition q installs a view after v, i.e., executes

propose(l, v.S, −). So let us assume that v is the last view
of q .

We prove the result by contradiction. Assume that
q never executes propose(l, v.S,−). When p executes
propose(l, v.S, −), receivedp must contain some message
m that is not in adeliveredp. Thus m is not in adeliveredl

p.
From part (1) of this lemma, adeliveredl

p = adeliveredl
q .

So m is not in adeliveredl
q .

By part (3) of this lemma, since a undeliveredl
p is de-

fined, m ∈ a undeliveredl
p and q v-correct, eventually

m ∈ receivedq in view v. Since m /∈ adeliveredl
q , there is a

time after which the condition received −adeliveredp �= ∅
that triggers Task 5 (line 21) becomes true in view v for q .
So q eventually executes Task 5 and propose(l, v.S,−). A
contradiction.

Induction step (5): We now show that if p adelivers mes-
sages in adeliverl

p, then q adelivers messages in adeliverl
q

and adeliverl
p = adeliverl

q . Since p adelivers messages
in adeliverl

p, it must have executed propose(l, v.S,−).
By part (4) of this lemma, all v-correct processes eventually
execute propose(l, v.S, −). If v is not the last view of q ,
then by definition q eventually installs a view after v, i.e.,
executes decide(l,−). If v is the last view of q , then q
is v-correct is equivalent to q is g-correct. By termination
of consensus, q eventually executes decide(l,−) and
adelivers messages in adeliverl

q . By uniform agreement of
consensus, all processes that execute decide(l, adeliverl)
do so with the same adeliverl . So adeliverl

p =
adeliverl

q . �

Lemma 2 The Uniform Agreement property of atomic
multicast is satisfied.

Proof We prove that if process p adelivers message m
in view v, then all processes that are v-correct eventu-
ally adeliver m. So assume that p adelivers m in view
v. By line 27 (messages of type am are adelivered
before messages of type add or remove), no message
is adelivered by any process in view v before the first
execution of propose(k, view.S,−) where view = v. So,
if p adelivers m in view v, this happens after p has executed
propose(k, v.S,−). By Lemma 1 part (5), q eventually
adelivers m. �

Lemma 3 The Uniform Total Order property of atomic
multicast is satisfied.

Proof Immediate from Lemma 1 part (5), and the fact that
processes adeliver messages in each batch in the same
deterministic order. �

Lemma 4 The Validity property of atomic multicast is
satisfied.

Proof 14 We have to prove that if a g-correct process
executes amulticast(m), then it eventually adelivers m.

14 Adapted from [4].

Dynamic group communication 371

The proof is by contradiction. Suppose a g-correct process
p amulticasts m in view vi0 , but never adelivers m. By
Lemma 2 no process ever adelivers m.

At line 13 or 19, p sends m to all processes in view vi0 .
Let vi0 , vi1 , vi2 , . . ., vilast , be the sequence of views of p after
it has amulticast m. The sequence is finite, since the set �
is finite (Sect. 2.2), and a process can be added and removed
from the view at most once. Since m is never adelivered by
p, for all the views vi j , i0 ≤ i j ≤ ilast, message m is never
in the decision adeliverk of any consensus. By line 36,
process p sends m to all processes in vi1 − vi0 , vi2 − vi1 ,
. . ., vilast − vilast−1 . So p sends m to all processes in vilast , and
every vilast -correct process q eventually receives m and in-
serts it in receivedq . Since processes never adeliver m, they
never insert m in adelivered . Thus for every vilast -correct
process q , there is a time after which m is permanently in
receivedq − adeliveredq . From Algorithm 1 and Lemma 1
part (4), there is a k1 such that for all l ≥ k1, all vilast -correct
processes execute propose(l, vilast .S,−), and they do so
with sets that always include m.

Since all faulty processes eventually crash, there is
a k2 such that no faulty process, and so no g-faulty pro-
cess, executes propose(l, vilast .S, −) with l ≥ k2. Let
k = max(k1, k2). Since all vilast-correct processes exe-
cute propose(k, vilast .S, −), by termination and uniform
agreement of consensus, all vilast-correct processes execute
decide(k, adeliverk) with the same adeliverk . By uni-
form validity of consensus, some process q has executed
propose(k, vilast .S, adeliverk). From our definition of k,
adeliverk contains m. Thus all vilast -correct processes,
including p, adeliver m. A contradiction that concludes the
proof. �

Lemma 5 The Uniform Integrity property of atomic multi-
cast is satisfied.

Proof Same argument as in the proof in [4]. �

Lemma 6 The Uniform Same View Delivery property of
atomic multicast is satisfied.

Proof We have to prove that if two g-correct process p and
q adeliver m in view v p (for p) and in vq (for q), then
v p = vq . The result follows immediately from Lemma 1
part (5), which holds for messages of type am, as well as
for messages of type add and remove, and from the fact
that processes adeliver messages in each batch in the same
deterministic order (line 27). �

Theorem 1 Algorithm 1 solves atomic multicast.

Proof Follows directly from Lemma 2 to Lemma 6. �

4.5 Proof of group membership

The proof of the group membership properties G0,
GR1–GR4 and GA5 are straightforward. Properties GR1,

GR2, GR4, GA5 follow immediately from the correspond-
ing properties R1, R2, R4, A5 of atomic multicast. The
first part of GR3 – ∀p, every g-correct process q executes
join-exec(p) (respt. leave-exec(p)) at most once – follows
from lines 31 (respt. line 29) of Algorithm 1. The sec-
ond part of GR3 – ∀p, every g-correct process q executes
join-exec(p) (respt. leave-exec(p)) only if join-inv(p) (re-
spt. leave-inv(p)) was previously invoked – follows from
R3.

We discuss now G0. For the processes in the initial view
v0, the property of the initial view follows trivially from
the initialization algorithm (Algorithm 2). For the other pro-
cesses, the property of the initial view follows from the lines
31 and 36 of Algorithm 1.

4.6 Practical issues

4.6.1 Evaluation of the solution

We now briefly evaluate our atomic multicast algorithm.
The evaluation can be done from various points of view: (1)
efficiency of the algorithm compared to a non uniform solu-
tion, (2) efficiency of the algorithm compared to a solution
based on a group membership service, (3) robustness of the
algorithm. We also discuss possible optimizations of the
algorithm.

Uniform vs. non uniform algorithm. As already observed
in Sect. 2.9, the above algorithm, which solves the uniform
atomic multicast problem, is less efficient than a non
uniform algorithm. However, non uniform algorithms also
have drawbacks: they may lead to an inconsistent system
state (see Sect. 2.9).

Atomic broadcast: Group membership or failure detector
based solution. In a recent study, Urbán et al. [28] compare
the performance of (1) the atomic broadcast algorithm of
[4] when consensus is solved using the Chandra-Toueg
�S rotating coordinator algorithm, with (2) the perfor-
mance of a (uniform) atomic broadcast algorithm based
on group membership (the algorithm uses a sequencer;
if the sequencer process is suspected, it is removed from
the group by the membership service, and a new process
becomes the sequencer). Since the above algorithm is
close to the atomic broadcast algorithm of [4], the re-
sults of [28] can directly be reused to evaluate the above
solution. These results, obtained by simulation, show
the latency as a function of the throughput for various
scenarios: (1) normal-steady, i.e., the performance with no
crashes nor failure suspicions, (2) crash-steady, i.e., the
performance in the steady state long after a crash, (3)
suspicion-steady, i.e., the performance with wrong failure
suspicions, and (4) crash-transient, i.e., the performance
immediately after a crash. In the normal-steady sce-
nario, the two algorithms have the same performance. In
the crash-steady scenario, the group membership based

372 A. Schiper

algorithm performs slightly better. In the suspicion-steady
and in the crash-transient scenarios, the failure detector
based algorithm outperforms the group membership based
algorithm.

The results of the suspicion-steady scenario show a very
important property of algorithms based on failure detectors
compared to algorithms based on group membership: better
performance in the case of wrong failure suspicions (which
can happen frequently whenever the failure detection time-
out has been set to a value close to the average message
transmission delay, to ensure a short crash detection time).
Indeed, upon a false failure suspicion, an algorithm based on
group membership performs two costly operations: removal
of the suspected process from the group, followed by a join
of the same process.

While an atomic broadcast algorithm does not “require”
a group membership service, it may nevertheless be neces-
sary at some point to remove a silent process, in order to
get back system resources, e.g., buffer space. However, it is
better to base this removal on the base of system resources,
rather than on timeouts [5].

Robustness of the solution. Tolerating wrong failure suspi-
cions can not only improve the efficiency of the algorithm,
it also leads to a very robust algorithm. In [27], the atomic
broadcast algorithm of [4] has been evaluated on a cluster
of PCs under extreme conditions for the case n = 3 (three
replicas): very high load of atomic broadcasts (10 000
per second) and a very small timeout value, approaching
the resolution of the clock (1 ms). The algorithm always
terminated, even under these extreme conditions. Since
our atomic multicast algorithm is close to the atomic
broadcast algorithm of this experiment, it has the same
robustness.

Optimizations. Can the performance of our atomic multi-
cast algorithm be improved? Some solutions have been pro-
posed in the literature. [15] suggests to increase the par-
allelism among the different atomic broadcast instances.
[2] explores another solution, in which there is uncertainty
among the participants to consensus. However, experiments
are needed to understand the performance gain that can ac-
tually be obtained by these techniques. Indeed, the time
complexity or message complexity of an algorithm are not
necessarily good predictors of its real performance [26].
Typically, time complexity ignores contention on the net-
work and contention on the CPU (for sending or receiving
messages).

4.6.2 About reliable channels

Despite the fact that in Sect. 4.1 we assume reliable channels
(an assumption common to many papers, e.g., [4]), our solu-
tion does not exclude link failures and network partitions. To
do so, an implementation must provide a low level layer that
implements reliable channels over (fair) lossy links. Does
TCP provide such a layer? Not really. Indeed, consider a pro-

cess p on node n p that executes send(m) to a correct process
q located on a different node nq . After the TCP send func-
tion returns on p, there is no guarantee that m will eventually
be received by q . For example, if node n p crashes while m
is in the TCP buffer on n p, and has not yet been sent to q ,
then m is lost.

From a practical point of view, the adequate abstraction
is the quasi-reliable channel, where the “no loss” property
of Sect. 4.1 is replaced with the following weaker “no loss”
property: if p sends m to q , and q as well as p are cor-
rect, then q eventually receives m.15 Algorithm 1 remains
correct with quasi-reliable channels instead of reliable chan-
nels. The same holds for the Chandra-Toueg �S consensus
algorithm.

A quasi-reliable channel from p to q can be opened
on p using the primitive open-qr-channel(q), and closed
by the primitive close-qr-channel(q) (qr stands for quasi-
reliable). These two primitives are related as follows to
the view change mechanism. Whenever p installs a new
view v that includes some new process q , then p invokes
open-qr-channel(q); whenever p installs a new view v from
which some process q is removed, then p invokes close-
qr-channel(q). By executing close-qr-channel(q), the chan-
nel between p and q looses its quasi-reliable property: any
message sent by p but not yet received by q might get
lost.

5 Solving reliable multicast with membership changes

5.1 Thrifty solution

In this section we discuss the solution of reliable multi-
cast. As already noted, a trivial solution is obtained by using
atomic multicast to solve reliable multicast:

– upon rmulticast(m), execute amulticast(m);
– upon adeliver(m), execute rdeliver(m).

This solution is however unnecessarily costly, since the
consensus oracle is used in every run, although it is obvi-
ously not needed in runs in which join-inv and leave-inv are
not called. We want a cheaper solution that satisfies the fol-
lowing thriftiness properties (adapted from [1]):

– If join-inv and leave-inv are not invoked, then the consen-
sus oracle is never used.

– If there is a time after which join-inv and leave-inv are no
more invoked, then there is a time after which the consen-
sus oracle is no more used.

A reliable multicast solution that satisfies these two
properties is said to be thrifty with respect to the consen-

15 Actually, TCP does not provide this abstraction, since a TCP con-
nection can be broken even though the two endpoints have not crashed.
However, TCP can easily be extended to provide the semantics of
quasi-reliable channels, see [9].

Dynamic group communication 373

sus oracle. Such a solution can be obtained by using generic
multicast (instead of atomic multicast).

5.2 Generic multicast vs. generic broadcast

We define generic multicast (or dynamic generic broadcast)
as the dynamic extension of the (static) generic broadcast
group communication primitive [1, 20, 21]. Generic broad-
cast is a flexible primitive defined by gbroadcast, gdeliver
and parametrized by a (symmetric and non-reflexive) con-
flict relation on the set of messages: conflicting messages
are delivered in the same order on all processes, while non-
conflicting messages may be delivered in any order. Our
conflict relation is the following: view change messages (of
type add or remove) conflict with all other messages, while
reliable multicast messages (of type rm) do not conflict with
other reliable multicast messages. So reliable multicast mes-
sages are ordered with respect to view change messages, but
not with respect to other reliable multicast messages.

Generic broadcast (static) is formally defined by the
properties of (static) reliable broadcast (Validity, Uniform
Agreement, Uniform Integrity) and the following Uniform
Generalized Order property:

– Uniform Generalized Order: If messages m and m′
conflict, and some process (whether correct or faulty)
gdelivers messages m before it gdelivers message m′,
then a process gdelivers m′ only after it has gdelivered
m.

We define (dynamic) generic multicast similarly. The
primitives gmulticast and gdeliver are defined by the proper-
ties R1 – R4 of reliable multicast and the following Modified
Uniform Generalized Order property:

– Modified Uniform Generalized Order: If messages m and
m′ conflict, and some process (whether g-correct or g-
faulty) gdelivers messages m in view v before it gdelivers
message m′, then every process p in v gdelivers m′ only
after it has gdelivered m.

5.3 Thrifty solution based on generic multicast

In the same way as the atomic broadcast algorithm of [4] has
been adapted to solve atomic multicast (see Algorithm 1),
the thrifty generic broadcast algorithms of [1] can be adapted
to provide a thrifty solution for generic multicast.16 Using
this solution, reliable multicast is easy to solve:

– rmulticast(m) translates to gmulticast(rm, m), where rm
is the type of the message;

– join-inv(x) translates to gmulticast(add, x), where add is
the type of the message;

16 The algorithms in [1] are thrifty with respect to the atomic broad-
cast oracle. In these algorithms, calls to the atomic broadcast ora-
cle need to be replaced with calls to our atomic multicast algorithm
(Algorithm 1), which invokes the consensus oracle.

– leave-inv(x) translates to gmulticast(remove, x), where
remove is the type of the message.

Messages of type rm do not conflict with themselves,
but conflict with messages of type add and remove, while
messages of type add and remove conflict with all mes-
sages. With this conflict relation, view change messages are
ordered (1) with respect to other view change messages, and
(2) with respect to reliable multicast messages. (1) ensures
the GM Uniform Total Order property GA5, and (2) ensures
the Uniform Same View Delivery property R4.

6 Conclusion

The paper has brought a new insight to the specification of
dynamic reliable broadcast – called reliable multicast – and
dynamic atomic broadcast – called atomic multicast. The
specifications that we have given in this paper are simple and
close to those of static group communication. This shows
that the gap between static and dynamic group communica-
tion can be made very small.

The paper has also given another perspective on the
implementation of dynamic group communication. While
group membership has almost universally been considered
to be the basic layer of a group communication infrastruc-
ture, the paper proposes a different – and probably simpler
– solution, in which atomic multicast is the basic layer – on
top of which group membership can easily be solved, an idea
that already appears in [15] and [18].

Incidentally, the paper shows that, contrary to a common
belief, it is not the ability to force processes to become faulty
(or g-faulty) by excluding them from the group that alone al-
lows to exploit non uniform specifications. The exploitation
of non uniform specifications requires the ability to force
processes to become faulty (or g-faulty) to be under the con-
trol of the atomic broadcast algorithm.

To summarize, the paper has shown that the specification
and the implementation of dynamic group communication
can be simple, i.e., easily understood. This should contribute
to clarify a topic that has always been difficult to understand
by outsiders.

Acknowledgements I would like to thank Sergio Mena for his com-
ments on an earlier version of this paper, Sam Toueg for the numerous
discussions about the specification of the group membership problem
and the anonymous referees for their valuable comments and sugges-
tions.

Research funded by the Swiss National Science Foundation under
grant number 21-67715.02 and by Hasler Stiftung under grant number
DICS-1825.

References

1. Aguilera, M.K., Delporte-Gallet, C., Fauconnier, H., Toueg,
S.: Thrifty generic broadcast. In: Proceedings of the 14th
International Symposium on Distributed Computing (DISC),
pp. 268–282. Toledo, Spain, October 2000. Springer Berlin
Heidelberg New York, LNCS (1914)

374 A. Schiper

2. Bar-Joseph, Z., Keidar, I., Lynch, N.: Early delivery dynamic
atomic broadcast. In: 16th Int Symposium on Distributed Com-
puting (DISC), pp. 1–16. Toulouse, France. Springer Berlin
Heidelberg New York, LNCS 2508 (2002)

3. Birman, K., Joseph, T.: Reliable communication in the presence
of failures. ACM Trans. Comput. Syst. 5(1), 47–76 (1987)

4. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

5. Charron-Bost, B., Défago, X., Schiper, A.: Broadcasting mes-
sages in fault-tolerant distributed systems: the benefit of handling
input-triggered and output-triggered suspicions differently. In:
Proceedings of 21st IEEE Symposium on Reliable Distributed
Systems (SRDS), pp. 244–249. Osaka, Japan (2002)

6. Chockler, G.V., Keidar, I., Vitenberg, R.: Group communication
specifications: a comprehensive study. ACM Comput. Surveys
4(33), 1–43 (2001)

7. Cristian, F.: Reaching agreement on processor group membership
in synchronous distributed systems. Distrib. Comput., 4(4),
175–187 (1991)

8. Défago, X., Schiper, A., Urban, P.: Totally ordered broadcast
and multicast algorithms: taxonomy and survey. ACM Comput.
Surveys 4(36), 1–50 (2004)

9. Ekwall, R., Urbán, P., Schiper, A.: Robust TCP connections for
fault-tolerant computing. J. Inf. Sci. Eng. 19, 503–516 (2002)

10. Fischer, M., Lynch, N., Paterson, M.: Impossibility of distributed
consensus with one faulty process. J. ACM 32, 374–382 (1985)

11. Friedman, R., van Renesse, R.: Strong and weak virtual synchrony
in horus. Technical Report 95-1537. Department of Computer
Science, Cornell University (1995)

12. Guerraoui, R.: Revisiting the relationship between non-blocking
atomic commitment and consensus. In: 9th Intl. Workshop on Dis-
tributed Algorithms (WDAG), pp. 87–100. Le Mont-St-Michel,
France. Springer Berlin Heidelber New York, LNCS 972 (1995)

13. Guerraoui, R., Schiper, A.: Software-based replication for fault
tolerance. IEEE Comput. 30(4), 68–74 (1997)

14. Hadzilacos, V., Toueg, S.: Fault-Tolerant broadcasts and related
problems. Technical Report 94–1425. Department of Computer
Science, Cornell University (1994)

15. Lamport, L.: The part-time parliament. ACM Trans. Comput.
Syst. 16(2), 133–169 (1998)

16. Lin, K., Hadzilacos, V.: Asynchronous group membership service.
In: 13th. Intl. Symposium on Distributed Computing (DISC), pp.
79–93. Bratislava, Slovakia, September 1999. Springer Berlin
Heidelber New York, LNCS (1693)

17. Malloth, C., Schiper, A.: View synchronous communication in
large scale networks. In: ESPRIT Basic Research BROADCAST,
Third Year Report, Vol. 4 (1995)

18. Melliar-Smith, P.M., Moser, L.E., Agrawala, V.: Processor mem-
bership in asynchronous distributed systems. IEEE Trans. Parallel
Distrib. Syst. 5(5), 459–473 (1994)

19. Mena, S., Schiper, A., Wojciechowski, P.: A step towards a
new generation of group communication systems. In: Proc. Int.
Middleware Conference, pp. 414–432. Rio de Janeiro, Brazil.
Springer Berlin Heidelberg New York, LNCS 2672 (2003)

20. Pedone, F., Schiper, A.: Generic broadcast. In: 13th. Intl. Sympo-
sium on Distributed Computing (DISC), pp. 94–108. Bratislava,
Slovakia. Springer Berlin Heidelberg New York, LNCS (1693)
(1999)

21. Pedone, F., Schiper, A.: Handling message semanticas with
generic broadcast protocols. Distrib. Comput. 15(2), 97–107
(2002)

22. Ricciardi, A.M., Birman, K.P.: Using process groups to implement
failure detection in asynchronous environments. In: Proc. of the
10th ACM Symposium on Principles of Distributed Computing
(PODC), pp. 341–352. Montreal, Quebec, Canada (1991)

23. Schiper, A., Sandoz, A.: Uniform reliable multicast in a virtually
synchronous environment. In: IEEE 13th Intl. Conf. Distributed
Computing Systems, pp. 561–568. Pittsburgh, Pennsylvania,
USA (1993)

24. Schiper, A., Toueg, S.: From set membership to group mem-
bership: a separation of concerns. Technical Report IC/2003/56.
EPFL-IC Faculty (2003)

25. Schneider, F.B.: Implementing fault tolerant services using the
state machine approach: a tutorial. Comput. Surveys 22(4),
299–319 (1990)

26. Urbán, P., Défago, X., Schiper, A.: Contention-aware metrics
for distributed algorithms: comparison of atomic broadcast
algorithms. In: IEEE 9th Int Conf on Computer Communications
and Networks (ICCCN), pp. 582–589. Las Vegas, USA (2000)

27. Urbán, P., Défago, X., Schiper, A.: Chasing the FLP impossibility
result in a lan or how robust can a fault tolerant server be? In:
20th IEEE Symp. on Reliable Distributed Systems (SRDS),
pp. 190–193. New Orleans, USA (2001)

28. Péter, U., Ilya, S., André, S.: Comparison of failure detectors and
group membership: Performance study of two atomic broadcast
algorithms. In: IEEE Int Conf on Dependable Systems and
Networks (DSN), pp. 645–654. San Fransisco, USA (2003)

André Schiper graduated in
Physics from the ETHZ in Zurich
in 1973 and received the PhD de-
gree in Computer Science from the
EPFL (Federal Institute of Tech-
nology in Lausanne, Switzerland)
in 1980. He has been a professor
of computer science at EPFL
since 1985, leading the Distributed
Systems Laboratory. During the
academic year 1992–1993, he
was on sabbatical leave at the
University of Cornell, Ithaca, New
York, and in 2004-2005 at the
Ecole Polytechnique near Paris. His
research interests are in the area
of dependable distributed systems,

middleware support for dependable systems, replication techniques
(including for database systems), group communication, distributed
transactions, and, recently MANETs (mobile ad-hoc networks). From
2000 to 2002, he was the chair of the steering committee of the Inter-
national Symposium on Distributed Computing (DISC). He has taken
part in several European projects. He is currently a member of the
editorial board of Distributed Computing, and of IEEE Transactions
on Dependable and Secure Computing.

