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1 INTRODUCTION

In the classical world information can be copied
exactly, however the ability to do so in the quantum
regime would lead to paradoxes such as Herbert’s
faster–than–light flash telegraph [1], which moti�
vated Zurek and Wootters to develop the no cloning
theorem [2], showing that quantum information can�
not be copied perfectly. This concept is at the basis of
quantum cryptography, as an eavesdropper attempting
to duplicate information in a quantum communica�
tion channel will necessarily introduce errors and
reveal his presence. So, if quantum information can�
not be copied exactly, what is the best that can be
done? This question can be answered by the theoreti�
cal and experimental study of Quantum Cloning
Machines. In this article we will not examine quantum
cloning as applied to cryptography, but rather review
our recent work on how cloning can be used for two
other purposes: first we demonstrate, both theoreti�
cally and experimentally, how quantum cloning can
produce an absolute measure of spectral radiance [3].
In the second part of this article we examine whether a
Bell–experiment could be made by amplifying (clon�
ing) one photon, such that the measurement could be
performed by a human’s naked eye, and selecting the
measurement basis just before the pupil. This thought
experiment will help us to clarify certain important
aspects of quantum mechanics such as what can be
inferred by detecting a macroscopic (cloned) state and
the importance of the detection loophole when per�
forming a Bell inequality experiment. We will see that

1 The article is published in the original.

what can be inferred about a cloned state strongly
depends on the detection technology available [4].
Before looking at the individual applications, we will
briefly describe the different types of cloning machine.

Cloning Machines

A cloning machine [5] will take a quantum state on
its input, for example the polarisation of a photon, and
produce multiple particles with a similar state on the
output, so that if we measure the state of each output
particle individually, on average it will have a fidelity 
with respect to the input. If the measured  is equal to
the theoretical maximum, the cloning machine is said
to be optimal.

The process of stimulated emission is a good illus�
tration of how cloning works: injecting a photon of a
particular polarisation into a gain medium will pro�
duce more photons of the same polarisation. However,
stimulated emission is always accompanied by sponta�
neous emission which will produce photons of random
polarisation in the same spatiotemporal mode. As it is
impossible to separate the photons emitted by the
stimulated process from the ones emitted by the spon�
taneous process, noise will always be present at the
output: this guarantees that the “no cloning” theorem
is satisfied.

It is possible to optimise a cloning machine for a
specific task. For example, if one has no a priori
knowledge on the state to be cloned it is best to use a
Universal Cloning Machine which will copy any arbi�
trary qubit with the same fidelity. However, if one has
some knowledge of the input state, we can choose the
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symmetry of the cloning process such that it clones
more likely states with better fidelity at the expense of
cloning more rare states with lower fidelity. One such
device is the phase–covariant cloning machine, which
is able to clone states on the equator of the Bloch
sphere with increased fidelity at the expense of states
lying outside of the equator. When high gains are
desired (many output photons) a “measure and pre�
pare” cloning machine will offer the same fidelity as a
phase–covariant cloner, with the advantage of being
less sensitive to losses before the cloning process and
with the disadvantage of not being a unitary operation.

More formally, the universal cloner provides the
following transformation:

(1)

where G is the gain parameter and b is the anti�clone
mode (e.g., ions in a doped fiber). Its orthogonal mode

 obeys the same transformation where we replace b
by , and it is easy to see that this implies the same
transformation for all photons on the Poincaré sphere.
The anti�clone mode is initially empty in such a way
that the photon number is transformed as

(2)

The phase covariant cloner may be achieved in the
down�conversion scenario where the anti�clone mode
b is matched with the clone mode a in such a way that

(3)

The photon number then obeys

(4)

which gives  for qubits (
terms give zero), which give less noise and better fidel�
ity than the universal cloner. It is easy to see that each
mode that obeys  +  obeys the
same transformation rule. However, if we go out of that
circle on the Poincaré sphere this is to be modified.

For the modes  and a
v
 = 

the transformation is

(5)

The indices h and v are present because in real exper�
iments these modes correspond to linear polariza�
tions. This implies that the difference in number of

photons between these two modes  stays
unchanged during cloning, so we create photons in
pairs and the fidelity is very low for these modes. As its
name indicates, the phase covariant cloning is only
optimal for photons laying on the  circle described
above.
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QUANTUM CLONING FOR AN ABSOLUTE 
RADIOMETRIC PRIMARY STANDARD

Background

Radiometry deals with the measurement of the
properties of the electromagnetic radiation. Its incep�
tion as a systematic and quantitative research field can
be attributed to the first attempts in the 18th century to
quantify the intensity of light produced by stars and
the development of the theory of electromagnetism by
Maxwell in 1864. Since then, one of the fundamental
goal of radiometry has been the discovery of primary
standards for the spectral radiance of optical sources.

The first radiometric approaches have exploited the
equivalence between electromagnetic energy, heat and
electrical energy. One of the first radiometers were
based on the electrical substitution (ES) principle,
according to which the heating effect of the optical
radiation to be measured is compared with the heating
effect produced via Joule effect by a measured electri�
cal power. Measurements performed with these radi�
ometers, such as the first observation by Lummer and
Kurlbaum in 1892 [6] of the spectral distribution of the
radiation emitted by a heated black body, led to the
physical understanding by Planck in 1900 of the black
body radiation spectrum based on quantum hypothe�
sis. Historically, this has marked the beginning of a
deep tie between radiometry and quantum mechanics.
The ES radiometer is still used as the primary standard
for spectral radiance by many metrology laboratories.
The accuracy of these systems have been improved
over more than a century and now uncertainties
smaller than 0.01% can be achieved in cryogenic con�
ditions [7]. ESRs show the highest accuracy when
measurements of radiant flux are performed at the
power level of hundreds of microwatts (1013 pho�
tons/s).

Recently, the possibility of providing new primary
standards by linear silicon photodetectors has been
investigated. In this case photons do not produce heat
by absorption but are converted directly into an elec�
trical current, through the photoelectric effect. The
deviation of the quantum efficiency from unity can be
determined independently of other radiometric mea�
surements, but uncertainties of this technique imple�
mented with commercial photodiodes seem to be lim�
ited. In any case, even if radiometric measurements
find their explanation in quantum electrodynamics,
the ES or the photodetector–based radiometers can�
not distinguish the discrete nature of single photons.
Nevertheless, quantum mechanics can offer concep�
tually brand new primary standard methods in the sin�
gle photon regime.

The quantum interpretation of non linear phenom�
ena has offered in recent years another conceptually
new primary standard method, which exploits the cor�
relations in photon pairs produced by Spontaneous
Parametric Down Conversion. The observation of one
photon from a pair in a certain direction implies the
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presence of the other paired photon in the conjugated
direction. This absolute technique is attractive because
it relies simply on the counting of events, requires the
measurement of few quantities and does not depend
on any reference standard. This primary standard is
particularly suited for the calibration of single photon
detectors and the realization of absolute radiometric
scales in the single photon regime [8, 9]. Therefore,
this primary standard works for signal levels approach�
ing picowatt and femtowatt (104–107 photons/s). The
accuracy of this technique has been improved by
nearly one order of magnitude every ten years reaching
recently a relative uncertainty of 0.18% [10].

The Cloning Radiometer: Principle of Operation

In this paper we present another radiometric pri�
mary standard, which finds its basis in the quantum
information theory. Classical information can be per�
fectly copied, independently of the initial quantity.
This is not allowed in the quantum domain. Quantum
information can be cloned only with a non unitary
fidelity value. Moreover, this value depends on the
quantity of information that needs to be cloned; in
other terms the quality of the cloning changes for
quantum systems with growing dimensions. In partic�
ular, Gisin and Massar in 1997 [11] proved that for an
optimal quantum cloning machine (QCM), the fidel�
ity of cloning N to M > N identical qubits can be
derived ab initio [11] to be

(6)

The fidelity  increases gradually to 1 for a grow�
ing number of input qubits N, that is the quality of the
clones becomes perfect as the initial quantum infor�
mation becomes classical. An absolute radiance mea�
surement can be therefore realized by exploiting this
particular aspect of the quantum to classical transi�
tion: by measuring the quality of the cloning one can
estimate the number of input qubits.

The Eq. (6) remains valid for the cloning of polar�
ization qubits distributed over a large number of modes
and can be rewritten in terms of the average number of
input and output photons per mode  and  [12]:

(7)
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 can be expressed as the sum of the stimulated
emission  and the spontaneous emission, equiva�
lent to amplifying the vacuum, in such a way that

(8)

Equations (7) and (8) can be combined to obtain the
spectral radiance  as a function of fidelity and gain:

(9)

where we have written  in the place of  for
simplicity. The approximation in (9) holds for .
From Eq. (9) it is evident that measuring the fidelity of
the cloning process allows to directly estimate the
number of input photons per mode , that is the
input spectral radiance. The optical power of a light
source under test at the input of the optimal QCM 
can then be derived from  by measuring the number
of modes per unit time. The principle of the cloning
radiometer is shown in Fig. 1.

What makes this method very interesting from a
practical point of view is that the fidelity can be deter�
mined by a relative measurement. In the case of an
optimal QCM of input polarization photonic qubits,
the fidelity is given by the mean overlap between the
input and output polarizations, and can be expressed
as follows:

(10)

where  and  are the output powers in the polariza�
tions parallel and perpendicular to the polarization of
the input light. Notice that the light at the input of the
cloning machine must be in a pure state of polariza�
tion; if it is not, one measurement for each polariza�
tion must be made. Since the device measuring the
fidelity does not need to be calibrated, this is an abso�
lute primary standard method, based on a fundamen�
tal principle of quantum information.

Experimentally, optimal cloning has been imple�
mented by stimulating parametric downconversion in
bulk nonlinear crystals [13, 14]. Unfortunately, for
reaching very high amplification gains, particularly
powerful pump powers and system stability are needed
[15]. Universal optimal quantum cloning can even be
realized by stimulated emission in atomic systems [16,
17], as in Er3+ doped fiber amplifiers [12].

In this paper we propose a radiometer inspired by
the above mentioned idea, which is based on a home�
made Er3+ doped fiber amplifier. Three aspects make
this scheme attractive: the first is that after amplifica�
tion input power information is polarization encoded
and is therefore insensitive to losses2; the second is

2 The effect of Polarization Dependent Losses (PDL) is mitigated
by averaging over a number of random polarizations produced
by the scrambler.
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Fig. 1. Principle of the cloning radiometer.
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that the experiment can be performed entirely in fiber,
ensuring the selection of a single spatial mode. The
third advantage is that this scheme works over a broad
scale of powers: from single photon levels up to several
tens of nW (~1011 photons/s).

Treatment of Losses

The reasoning presented above assumes the univer�
sal cloning process to be optimal. It has been shown
theoretically that amplification in an inverted atomic
medium indeed provides optimal cloning [16]. In
order to evaluate the practical feasibility of optimal
universal quantum cloning via stimulated emission in
an Er3+ doped fiber, we should take into account the
potential effects of internal losses. The amplification
medium can be naively modeled, as shown in Fig. 2, as
a sequence of thin amplifying atomic slices spaced out
by beam splitters, representing the internal optical
losses. The photonic propagation on the mode a in a
lossy amplifier can be seen as successive interaction
with these elements.

The action of the nth beam�splitter on modes a and
, an auxiliary mode initially in the vacuum state

( ), can be expressed in the Heisenberg pic�
ture as

(11)

where ‘L’ stands for losses and  is the specific trans�
mission coefficient of the beam�splitter element.

A similar relation can be found for the amplifying
element. By exploiting the equivalence between the
amplification achievable by stimulated emission in an
inverted atomic medium and by stimulated parametric
down conversion in nonlinear crystals [17], the action
of the amplifying element on modes a and bn an auxil�
iary mode initially in the vacuum state ( ), in
the Heisenberg picture yields

(12)

where ‘A’ stands for amplification and  is the spe�
cific gain value of the nth amplifying element.

Let us consider now the two different situations
represented schematically in Fig. 3. In the first case
the propagation mode  passes through an amplify�
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ing element of gain G before interacting with mode c in
a beam splitter of transmission . In the second situa�
tion the order is inverted with the parameters  and

. Using Eqs. (11) and (12) the value of a at the output
for the two cases is

(13)

(14)

Suppose that we fix the value of G and  and solve for
the value of  and  that would give the same output

. The system of equations that we get by
these conditions always has the solution

(15)

The consequence of this result is that we can pull all
the beam�splitter elements in Fig. 2 on the left, if we
take care of correctly modifying the characteristic
parameter for each element, obtaining the resulting
transmission rate

(16)

with

(17)

where  is the effective gain between the
beginning of the amplifier and element . The
approximation holds for small loss ( ).

The same is valid for the series of amplification lay�

ers giving a total amplification . So the ini�
tial process represented in Fig. 2 can be equivalently
seen as a transmission loss Q before an amplification .

A fully inverted medium would have . From
Eq. (17) it is apparent that the effect of a small loss

( ) is proportional to . As  grows expo�
nentially over the length of the fiber, losses towards the
end can be neglected. At the beginning of the amplifier
two effects guarantee that the medium is fully inverted:
the input signal is small, as it has not been amplified
yet, and the signal and pump co�propagate, ensuring
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maximum pump power in this region. Cloning opti�
mality can then be achieved in a non�ideal amplifier.

Experimental Setup

The setup of the experiment is shown in Fig. 4, It
can be conceptually divided in four main parts: prepa�
ration of a set amount of power, comparison between
the power measured by the cloning radiometer and
that determined by a calibrated reference powermeter,
realization of optimal cloning through the optical

amplification by an  fiber and fidelity measure�
ment.

To test our system, we prepare states with a known
number of photons per mode ( ). This is done using
a polarized LED at telecom wavelength that is passed
through a polarization scrambler and a variable atten�
uator. The scrambler chooses a new random polariza�
tion before each experiment, which is repeated at a
rate of 200 Hz.

The power is then split (50 : 50), with one branch
monitored on a calibrated powermeter, while the other
is sent to the amplification stage. The powermeter
(EXFO PM–1100) has been recently calibrated by the
Swiss national institute of standards (METAS) to an
absolute uncertainty of 0.7% and with a measurement
to measurement standard deviation of 0.5% (including
fiber re�connection).

3+
Er

µin

Optimal cloning is provided by 2 m of Er3+ doped
fiber (attenuation 16.7 dB/m at 1530 nm), pumped by
a 980 nm diode laser. The pump light is combined with
the signal on the input of the Er3+ fiber using a wave�
length division multiplexer (WDM), and an isolator is
placed before the input to prevent unwanted reso�
nances. After the Er3+ doped fiber, most of the pump
power is removed using an additional WDM. In this
realization, the no�cloning theorem is guaranteed by
the Er3+ spontaneous emission, which adds randomly
polarized photons to the signal.

The measurement stage consists of a grating�based
tunable filter and a polarimeter (Profile PAT 9000).
The filter has a width of 273.3(5) pm (FWHM). It
serves two purposes: the first is to precisely determine
the spectral width, and therefore the coherence time
of the light, and the second is to ensure that polariza�
tion mode dispersion is negligible. The polarimeter
measures the degree of polarization (DOP) with a
nominal accuracy of 1%, where the DOP is defined as
the polarized power (in any basis) Ppol over the total
power , and is related to fidelity by

. Using a polarimeter rather than
simply a polarizing beamsplitter and powermeter is
less accurate, but allows us to test whether the system
works equally well for arbitrary input states of polariza�
tion, i.e., whether the QCM is truly universal.

Experimental Procedure and Results

First of all we verify that the gain per unit length is
constant over the entire Er3+ fiber, indicating that the
atomic medium is fully inverted. We used an optical
frequency–domain reflectometer [18], which mea�
sures the backscattering signal through the fiber and
allows, in our case, to get information about the local
amplification of the input light. Results are shown in
Fig. 5. They show an exponential behaviour of the
amplification, which is expected for a stimulated
emission process.

To evaluate the accuracy of our system, we will
need to compare our measurement of  with the

value  obtained from the reference powermeter. We
first measure the ratio between the power at the moni�
tor output and the power at the entrance of the ampli�
fier within the bandwidth of the tunable filter. This is
done by placing the filter just before the amplification
stage (position ‘a’ in Fig. 4). Together with a measure�
ment of the filter’s attenuation, this allows us to obtain
the power at the input of the Er3+ doped fiber from the
monitor powermeter . The value of  has to be
derived from this value of power. Only the number of
temporal modes per second need to be measured since
we are using a single�mode fiber which ensures that
there is only a single spatial mode. Therefore, we have
to determine the frequency bandwidth of the filter or,
equivalently, the coherence time of the filtered pho�
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Fig. 4. Setup of the experiment.
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tons. It is convenient to define the coherence time 
as in [19]:

(18)

where  is the autocorrelation function normalized
such that . Using this definition, the coherence
length  is the length of the unit cell of photon phase
space [19], so that the number of modes per second is

simply . Measuring this value with an optical low�
coherence interferometer (Fig. 6) yields,  =
19.71(4) ps, which corresponds, assuming a Gaussian
shape, to wavelength FWHM of  = 273.3(5) pm.
We also performed a (less precise) spectrometric mea�
surement yielding  = 271 pm. With this filter, a
mean of one photon per temporal mode corresponds
to 6.461 nW.

can thus be estimated as the ratio between the

number of input photons per unit time  (corre�
sponding to  and the number of modes :

(19)

where  is the energy of a single photon.

At this point we measure the amplifier gain of the
Er3+ doped fiber to be G = 66.5(3) by directly compar�
ing the power at the output of the amplifier with the
power at the input. The inset of Fig. 7 shows a typical
plot, in terms of  and .  is the number of

photons per mode at the output of the  doped
fiber: it is obtained from the value of power measured
by the polarimeter’s internal powermeter and calcu�
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lated by considering the output losses (especially in the
output WDM) and using the Eq. (19).

The thickness of the line in the inset of Fig. 7 rep�
resents random errors. Note from Eq. (8) that the gain
is ; so that any systematic error in
either the power measurement or the estimation of the
number of modes cancels. The line in the inset of
Fig. 7 is a fit of the data for , revealing that at
high  the gain is reduced. Pumping at the beginning
of the Er3+ doped fiber allows the atoms to be inverted
most likely at the beginning of the fiber. This effect
could be minimized by pumping from both sides of the
Er3+ doped fiber. Moreover, at high , so at the end
of the fiber, the system is not sufficiently doped to
amplify with the same gain a growing number of pho�
tons. Nevertheless, the gain is constant for ,
allowing us to assume within this range that the inter�
cept  corresponds to the spontaneous emission
(2G – 2) from Eq. (8), so that: . In this
range it is then possible to measure  without distin�

guishing the polarizations, as  =  –  –2.

We then measure the fidelity  versus : Fig. 7
shows a typical plot, which can be fitted with Eq. (9),

where  has been replaced with  and k is the fit�

ted parameter. With this definition  repre�
sents the discrepancy between our measurement of 

and the value  obtained from the reference power�
meter. Here, k also accounts for the possibility of
non–optimal cloning which would introduce a further
factor , equivalent to a loss at the input of the
cloning machine. The fitted curve in Fig. 7 yields k =
1.013(5), where the indicated error represents statisti�
cal uncertainty. Systematic errors, as we shall see in the
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next section, could be up to one order of magnitude
higher.

Treatment of Errors

The aim of this experiment was to demonstrate the
principle of a cloning radiometer, rather than to build
a standard that can compete with metrology laborato�
ries. It is however important to discuss the errors
involved, both for the interpretation of the results and
to evaluate the applicability of this method.

The primary standard that we have discussed in this
paper consists in the estimation of a spectral radiance

 through a measurement of the cloning fidelity. The
relationship between the fidelity and  tells us how a
small uncertainty in the fidelity  translates into an
error in the measurement of . From Eq. (9) for

 we obtain

By expressing  as a function of , we find for high
gains

 has a minimum of  at
, i.e., when spontaneous and stimulated emis�

sions are equal. At higher spectral radiances, 
rises linearly with . The spectral bandwidth of the
filter can be chosen as to operate in the desired power
regime: our system is optimal at 13 nW, commercially
available filters would allow this point to be easily low�
ered to 100 pW. From preliminary tests we estimate
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that this technique would work to an upper limit of
100 nW, above which the effects of polarization mode
dispersion and wavelength dependence of the compo�
nents need to be taken into account.

There is also a series of systematic uncertainties
that we have to take into account. One is due to the
polarimeter. The polarimeter (Profile PAT 9000) is
able to measure the degree of polarization (DOP) with
a nominal uncertainty of ΔDOP = 10–2. We noticed
that the fidelity was overestimated by 10–2 for unpolar�

ized light, and underestimated by  for polarized
light. Devices with a nominal accuracy of ΔDOP =
2.5 × 10–3 and better are commercially available. The
fidelity  is related to the DOP by ,

so that  =  = . As discussed
before, for , , so that the
uncertainty contribution of the polarimeter is

. In this experiment we used a com�
mercial polarimeter for practical reasons, however the
precision of this device is far from any fundamental
limit: a polarimeter performs only a relative measure�
ment of different polarization components which can
be done very precisely. The precision of this relative
measurement can then be transferred to the absolute
measurement of spectral radiance via the cloning radi�
ometer. The equations in the above paragraph show
that the absolute measurement uncertainty will be
only 4 times larger than the relative uncertainty. The
uncertainties due to filter attenuation and insertion
loss arise from the fact that the components' fibers are
manually reconnected after the measurement. During
this procedure, variations in the connector losses can
occur on a level of 0.5%. The amplifier gain G can be
determined precisely (0.5%), furthermore Eq. (9) in
the article shows that a small variation  will only

affect  by  so that its effect on the mea�
surement uncertainty is negligible at high gains. The
above uncertainties affect our measurement of spectral
radiance, however in the article we demonstrate the
accuracy of our radiometer by relating the measured
radiance to optical power and comparing our results
with those obtained via a calibrated powermeter. In
measuring k (the discrepancy between these two mea�
surements) two further uncertainties come into play:
the calibrated powermeter’s absolute accuracy (0.7%)
and the uncertainty in our measurement of coherence
time (0.2%). A summary of the experimental uncer�
tainties is shown in Table 1. A further complication
arises from the Polarization Dependent Losses (PDL)
of the various components. This effect is usually small
( ) and can therefore be eliminated by repeating
the experiment for many different states of polariza�
tions and averaging. The polarization scrambler is
used for this purpose, by averaging over 20 different
polarizations the mean PDL is reduced to below 0.2%.
Table 2 summarizes the contribution of the various
components to the PDL.
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Fig. 7. Fidelity versus number of input photons per mode,
fitted with Eq. (9). Representative errors are shown as
boxes on some points. The inset shows the output versus
input number of photons per mode, the line is a fit on the

first data points ( ), showing reduced gain as 
grows.
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We would like to note that limits to the accuracy of
the experiment do not arise from the principle of oper�
ation or from the cloning machine itself, but rather
from the usual complications encountered when
building a primary standard.

In conclusion we have demonstrated the theoreti�
cal principle and experimental feasibility of a radio�
metric primary standard based on optimal quantum
cloning: by measuring the cloning fidelity one can
directly determine the spectral radiance of an optical
source. The system we develop is completely fiber–
based and works in a broad range of optical powers at
telecommunication wavelength. Our experimental
realization of this standard shows an uncertainty on
the spectral radiance of 1.3%, when compared with a
calibrated powermeter, and 4%, when the error is cal�
culated using the equipment’s nominal uncertainties.
However, it leaves a large margin for improvement by a
metrology laboratory. Our experiment also shows that
by Er3+ doped fiber amplification, optimal cloning of
one to many qubits can be easily realized in spite of
losses.

QUANTUM CLONING FOR A BELL 
EXPERIMENT WITH HUMAN EYES

Some predictions of quantum physics are so fasci�
nating and counterintuitive that, since the birth of
quantum mechanics, physicists try to find trace of its
manifestation in the macroscopic world. In this per�
spective quantum cloning is very appealing, it appears
as a natural candidate for bringing quantumness to
macroscopic level. For example one can think of clon�
ing an entangled pair of photons, which has been bril�
liantly done in Rome by the De Martini group using
the phase covariant cloner [15]. States produced in
this manner can contain a huge number of photons
and can still be formally equivalent to an entangled
photon pair (as in the case of lossless phase covariant
cloning).

Experimental Setup

First, an entangled photon pair is produced in a low
probability parametric down–conversion process and
can be set to be in the singlet state

(20)

with  defining a basis on the Poincaré sphere.
Then one of the photons, say the one in mode a, is
amplified with different cloning machines. The detec�
tion of the other photon in mode b is used to trigger a
successful creation of the pair.

† † † †( ) 0 / 2a b a b−
ϕ ϕ⊥ ϕ⊥ ϕψ = − ,

{ , }⊥ϕ ϕ

Inferring Micro–Micro Entanglement with Human Eyes 
As Detectors

The frontier between the microscopic and the
macroscopic world is not an objective ontological
entity, for example one can argue that the cloned state
contains tens of thousands of photons and is thus
clearly macroscopic, but it can be retorted that the
energy contained in such state is still of microscopic
scale. One way of setting this frontier in our case is to
ask the photonic state under consideration to be
directly accessible to our senses, i.e., use human eyes
as detectors.

The Human Eye

The human eye happens to be quite an efficient
detector. If adapted to darkness, a person can see a
light pulse of around ten photons. However, the prob�
ability that such a weak pulse is detected is small. This
probability grows with the number of photons and
attains one for few hundred photon pulses, depending
on the person. The experimental behaviour for the
human eye can be reproduced with a simple model
[20]: an ideal threshold detector with efficiency lim�
ited by an imperfect transmission . In the
Fock state representation the probability to have a

0 07η ≈ .

Table 1.  Contributions of the various components to the un�
certainty of Δμin/μin . Values marked with an asterisk (*) only
contribute to our measurement of k, i.e., the discrepancy of a
power measurement performed with our apparatus with re�
spect to one performed with a calibrated powermeter

Sources of error Uncertainty, %

Polarimeter 4

Filter attenuation 0.5 

Insertion loss 0.5 

Gain 0.007 

PDL 0.8 

Powermeter 0.7 

Coherence time* 0.2* 

Total 4.1 

Table 2.  Summary of PDL of the different elements of the ex�
periment

Sources of PDL PDL, %

Filter 1.0 

Attenuator 1.4 

Powermeter 1.6 

Isolator <1.2 

WDM <2.0 
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“click” with an ideal threshold detector is associated
to the projector

(21)

which gives 1 for Fock states with the number of pho�
tons exceeding the threshold  (the threshold is
around 7 for the human eye), and 0 in the other case.
In Eq. (21) a denotes the measured mode that corre�
sponds to . The imperfect transmission is modeled
by a beam splitter  acting on the ideal threshold
operator

(22)

The action of the beam splitter is

where c is an initially empty auxiliary mode which is
traced out.

The detection of the amplified side of the qubit is
done in the following way. First a measurement basis

 is chosen by applying a linear optical element
corresponding to the rotation of the Poincaré sphere
that brings  on . The two linear polariza�
tions (that now correspond to ) are separated on
a PBS and then sent in two different detectors, which
are human eyes in our case.

This measurement scenario has four possible out�
comes, but the two cases where both eyes see or both
do not see are considered inconclusive and are disre�
garded in further data analysis. The fact that we post�
select only a part of all measurement events opens the
detection loophole and we will return to this crucial
point later. The other two events will be denoted 

0

ˆ ( ) 1s

n

T a n n
θ

≥

= − ,∑

θ

n
U BS

†ˆ ˆ( ) 0 ( ) 0s c s cE a U T a U= .BS BS

† 1 ,U aU a c= η + − ηBS BS

{ , }⊥ϕ ϕ

{ , }⊥ϕ ϕ { , }h v

{ , }⊥ϕ ϕ

Pϕ

and  depending on which eye have seen the signal.
The corresponding operators are

(23)

Note that for each cloner we only chose measurement
basis among those that leave the state invariant.

Micro–Micro Entanglement

The detection scheme with human eyes described
above can be used to design a CHSH violation experi�
ment between the photon b and the amplified state.
On the single photon side we take the binary observ�
able  =  – , while the observable

on the amplified state is  =  that can have
a value of –1 or 1. The value of the CHSH parameter
after the post�selection is then given by the observable

(24)

where  is the total probability of a conclusive detec�

tion given by the mean value . As in the sin�

gle–photon case,  can be shown to vary with
, and for optimal settings the violation of

CHSH is given by

(25)

 is the correlation visibility and is given by

(26)

where the mean value is taken on the amplified 
state. From (25) we see that the local bound is violated

if the visibility is higher than . The values of the
visibility for the phase covariant cloner is reported in
the Fig. 8. It can be shown that the universal cloner

also allows to achieve visibilities higher than .

The Measure & Prepare Cloner 
and the Detection Loophole

Because of the results of the last section one is
tempted to admit that there is indeed some non�local�
ity between the single photon and the amplified state.
However that is where the detection loophole comes
into play. The fact that we disregard some of the mea�
surement outcomes allows a whole new family of local
models where the detector can choose to click or not
depending on the measurement settings.

From this perspective it is not surprising that the
measure & prepare cloner, that produces a separable
state, also gives a violation of the CHSH inequality
after post–selection [4]. This is a very nice illustration
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Fig. 8. Visibility of correlations  (upper curves) and the
probability that a measurement is conclusive  (lower
curves) for the phase covariant cloner in function of the
total number of photons in the amplified state. The dashed
and the thin line show how this parameters change if we
add losses after the amplification. 
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of the importance of the detection loophole, that is
sometimes considered as esoteric.

The conclusion may appear disappointing: if even a
separable state passes our post–selective CHSH test,
the test seems to teach us nothing about the states
under consideration. However there is still something
that can be done. Indeed it can be shown that for any
cloner if the observed visibility  is above 1/2 then the
photon pair before the clones was entangled. See [4]
for more details.

Entanglement Witness 
and Micro–Macro Entanglement

Since the human eye Bell test doesn’t give us
knowledge about the entanglement of the single pho�
ton and the amplified state, we have to develop new
tools that allow us to investigate this entanglement.

Following [21], we introduce a quantity that wit�
nesses the entanglement between subsystems A and B.
It has the following form:

(27)

where  and  denote Stokes vectors (total polariza�
tion) on parts A and B, while  and  are the total
number of photons for A and B. For any separable state

 we can bound :

where the ' sign on the states  and  means that we
choose the basis where only the z component of 
nonzero. Hence, the positivity of W means that A and
B are entangled. In terms of photon number operators

the Stokes vectors are  =  –  on the ampli�
fied side and  =  –  on the single pho�
ton side, with i denoting a particular basis. To evaluate
W for the amplified singlet state, since the photon in
mode b not amplified, we can directly take the mean
value on it, and obtain

(28)

Here  is the mean value on the amplified  and
 is the mean value on the vacuum. Using the trans�

formations of the photon number operator derived
before we can easily find that the violation is W = 2
both for the universal and the phase covariant cloners.
The losses after the amplification transform the pho�

ton number operator  and the witness vio�
lation gets simply multiplied by the transmission

. And the entanglement is never completely
broken. For the treatment of losses during and before
the amplification and the persistence of entanglement
the interested reader can look in [4].

In conclusion, we have shown that although it is
possible to violate a Bell inequality using a cloned state
and lossy threshold detectors, such as human eyes, this
can only be done with limited efficiency, by opening
up the detection efficiency loophole.
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