
Empir Software Eng (2012) 17:348–389
DOI 10.1007/s10664-011-9180-x

Time variance and defect prediction in software projects
Towards an exploitation of periods of stability and change
as well as a notion of concept drift in software projects

Jayalath Ekanayake · Jonas Tappolet ·
Harald C. Gall · Abraham Bernstein

Published online: 3 November 2011
© Springer Science+Business Media, LLC 2011
Editors: Jim Whitehead and Michael Godfrey

Abstract It is crucial for a software manager to know whether or not one can rely on
a bug prediction model. A wrong prediction of the number or the location of future
bugs can lead to problems in the achievement of a project’s goals. In this paper we
first verify the existence of variability in a bug prediction model’s accuracy over time
both visually and statistically. Furthermore, we explore the reasons for such a high
variability over time, which includes periods of stability and variability of prediction
quality, and formulate a decision procedure for evaluating prediction models before
applying them. To exemplify our findings we use data from four open source projects
and empirically identify various project features that influence the defect prediction
quality. Specifically, we observed that a change in the number of authors editing a
file and the number of defects fixed by them influence the prediction quality. Finally,
we introduce an approach to estimate the accuracy of prediction models that helps a
project manager decide when to rely on a prediction model. Our findings suggest that
one should be aware of the periods of stability and variability of prediction quality
and should use approaches such as ours to assess their models’ accuracy in advance.

J. Ekanayake was partially supported by funding from the Sabaragamuwa University
of Sri Lanka while J. Tappolet was partially supported by funding from the Swiss National
Science Foundation award number 200021–112330.

J. Ekanayake (B) · J. Tappolet · A. Bernstein
Dynamic and Distributed Information Systems, Institute of Informatics,
University of Zurich, Zurich, Switzerland
e-mail: jayalath@ifi.uzh.ch

J. Tappolet
e-mail: tappolet@ifi.uzh.ch

A. Bernstein
e-mail: bernstein@ifi.uzh.ch

H. C. Gall
Software Evolution and Architecture Lab, Institute of Informatics,
University of Zurich, Zurich, Switzerland
e-mail: gall@ifi.uzh.ch

Empir Software Eng (2012) 17:348–389 349

Keywords Time variance · Mining software repository · Defect prediction ·
Decision tree learner · Concept drift

1 Introduction

Many different approaches have been developed to predict the number and location
of future bugs in source code (e.g., Khoshgoftaar et al. 1996; Graves et al. 2000;
Hassan and Holt 2005; Ostrand et al. 2005; Bernstein et al. 2007)). Such predictions
can help project managers to quantitatively plan and steer a project according to
the expected number of bugs and their bug-fixing effort. Bug prediction can also be
helpful in a qualitative way whenever the defect location is predicted: testing efforts
can focus on the predicted bug locations.

Many bug prediction approaches (including the ones cited above) use software
evolution (or history) information to predict defects. This information is, typically,
collected from software development systems such as CVS or Bugzilla. From this
data, file related features (i.e. attributes of source-code files) such as number of
revisions or number of authors etc. are extracted.

Those features are then used to train a prediction model. To evaluate such a
model, it is given the feature values from another time period and the predicted
values are compared with observed ones facilitating the quality assessment of
the model. The common downside of these approaches is their temporally coarse
evaluations. Usually, a bug prediction algorithm is evaluated in terms of accuracy in
only one or a small number of points in time. Such an evaluation implicitly assumes
that the evolution of a project and its underlying data are relatively stable over time.
But, according to findings of Tsymbal (2004) and Widmer and Kubat (1993) this
assumption is not necessarily valid. Therefore, a generalization of such a model is
difficult and jeopardizes correct decision-making by software managers.

Given the dynamic nature of software evolution data, the purpose of this paper
is to analyze the variability in prediction quality and measure the reliability of
prediction models. The general hypothesis of this paper is: Defect prediction quality
varies over time exhibiting periods of stability and variability. Derived from this
hypothesis, this paper focuses on the following research questions:

RQ1 Can we develop methods to assess the prediction quality over time?
RQ2 Is it possible to identify periods of stability in the prediction quality?
RQ3 Can we identify elements from the models’ input features which are responsible

for the variability?
RQ4 Can we develop a method to predict the future variability of a prediction

model?

Possible reasons for a high variability could be the sudden change of influencing
factors such as a changing number of developers, the use of a new development
tool, or even political/economical events (e.g., financial crisis, holiday seasons). Our
goal in this work is to uncover possible candidate factors by looking for correlating
features in the development process and provide software managers with a decision
procedure to evaluate the prediction model’s accuracy in advance.

Our approach can be summarized as follows: Similar to other techniques described
in Kagdi et al. (2007) we use software evolution data to extract file-related features.

350 Empir Software Eng (2012) 17:348–389

The set of features chosen reflects data about the files itself and its history (see
Table 2). In addition we extract these features for many time periods of the
investigated projects. From this data we then train our prediction models.

1.1 General Overview of Experiments

The first set of experiments, described in Section 5.1, addresses RQ1. First, for one
prediction time period—in our case a single month, i.e. the target period—many
prediction models are trained using datasets generated from every possible training
period.

This procedure is repeated with varying target periods. The predictive power of
the models is measured using the receiver operating characteristics (ROC) and the
area under the ROC (AUC). For example, if a given software project is evolved over
the last 36 months then we use data from the past 35 months to train 34 different
bug prediction models and then predict defects on the 36th month. Second, we use
the same model to predict defects on every possible target. For example, a prediction
model is trained using the data from the first 10 months and then this model is used
to predict defects from month 11 onwards until the end of the observed period. To
substantiate our claims we illustrate the predictions using heat-maps as a visual tool
and additionally employ statistical methods to further support our observations. Our
results indicate that there are periods of stability and variability of prediction quality
over time and, hence, project managers should not always rely on bug prediction
models without such stability information.

Our second set of experiments, described in Section 5.2, addresses RQ2: We first
determined a suitable threshold for the prediction quality measure denoting periods
of “good” predictions computed by the BugCache algorithm (Kim et al. 2007). Using
this threshold we then graphically illustrate how each of the four investigated projects
exhibits periods of stability in terms of prediction quality and change.

The third set of experiments is aimed at establishing statistically that the observa-
tions about stability and variations are not random. To that end we intersperse our
features with random information and show that our experiments are statistically
unaffected by the random data and, hence, show a non-random phenomenon.

The fourth and fifth set of experiments, described in Sections 5.4 and 5.5, address
RQ3. Using regression analysis we empirically uncover potential reasons for the
variability of prediction quality that can serve as early indicators for upcoming
variability. For example, we observe that an increasing number of authors editing
a project causes a decline in prediction quality. Another observation is that more
work done for fixing bugs relative to other activities reduces the prediction quality.
Moreover, more authors being active in the training period and fixing many bugs
help increasing the prediction quality.

The last set of experiments, described in Section 6, addresses RQ4 to make the
results actionable. Using the insights of the previous experiments as a foundation
we developed a tool that evaluates the quality of the prediction models. Specifically,
we train a meta-model that predicts the quality of the models. Using these ‘meta-
predictions’ software project managers can easily decide when to use bug prediction
models and when to forgo them given their (expected) bad quality and/or reduced
expressivity.

Empir Software Eng (2012) 17:348–389 351

2 Related Work

Research in mining software repositories investigates the usage of historical data
from software projects for various kinds of analyses (as described in Kagdi et al.
2007). One line of this research focuses on building models for the prediction of the
occurrence of future defects, changes, or refactorings (cf. Diehl et al. 2009). To put
our work in relation to these studies, we discuss a brief selection of related papers.
Note, however, that to the best of our knowledge, there is no prior work investigating
the possible variation in defect prediction quality over time and its causes.

2.1 General Issues in Bug Prediction

A critical survey of defect prediction models was conducted by Fenton and Neil
(1999). They claim that there are numerous serious theoretical and practical prob-
lems in many studies. In particular, they mentioned five issues regarding defect pre-
diction models: (1) unknown relationship between defects and failures, (2) problems
with the multivariate statistical approach, (3) problems of using size and complexity
metrics as sole predictors of defects, (4) problems in statistical methodology and
data quality and (5) false claims about software decomposition. In this work, we
tried to avoid the above issues. Nevertheless, this was not completely possible, and,
therefore, we mention those problems in Section 4 (Threats to Validity). Addition-
ally, to ensure methodological soundness, we employed the methods described in
Zimmermann et al. (2007) to link CVS and Bugzilla databases and rely on Eaddy
et al. (2008), Antoniol et al. (2008), and Bird et al. (2009) to validate the defect
datasets.

Lessmann et al. (2008) introduce a framework to compare defect prediction
models. They criticize the usage of only a few number of datasets which might
also be proprietary. Furthermore they criticize the usage of inappropriate accuracy
indicators and the limited usage of statistical testing procedures to substantiate
findings. We are convinced that we address all these issues by (1) using well-known
open-source projects as data sources, (2) reporting AUC for measuring the accuracy
of our prediction models and (3) using statistical tests where appropriate.

2.2 Different Approaches for Bug Prediction

Apart from our work, there are different approaches that try to predict defects
in software systems based on their source code information. For instance Hassan
(2009) proposed complexity metrics that are based on the code-change process. He
used concepts from information theory to define the change complexity metrics. He
considered the code-change introduction process in order to measure the change
probability or entropy during specific time periods. Their definition of time frames is
similar to the one used in this paper.

Li et al. (2005) present an approach for the prediction of model parameters for
software reliability growth models (SRGMs). These are time-based models using
metrics-based modeling methods. They used three SRGMs, seven metrics-based pre-
diction methods, and two different sets of predictors to forecast pre-release defect-
occurrence rates. Our study also uses time-based prediction models to predict the
location of defects. However, we predict defects in every possible time period which

352 Empir Software Eng (2012) 17:348–389

allows us to perform a continuous analysis of the bug prediction quality. Further, we
use only one prediction model—i.e. class probability estimation models—and only
process metrics as predictors. Moreover, our goal is to investigate the variability of
defect prediction quality over time as opposed to forecasting defect occurrence rate.
Ostrand et al. (2005) and Knab et al. (2006) both used code metrics and modification
history to train regression models predicting the location and number of faults in
software systems. Zimmermann et al. (2007), in contrast, used only code metrics.
They all share the following experimental procedure: first, they constructed several
file-level and project-level features from the software history and use those features
to train prediction models. Then, the feature values from another time period are
computed and the predicted values are compared with observed ones. The common
downside of these approaches are their temporally coarse evaluations. Usually, a
bug prediction algorithm is evaluated, in terms of accuracy, in only one or a small
number of points in time. This renders the generalization of models difficult, as such
an evaluation implicitly assumes that the evolution of a project and its underlying
data are relatively stable over time. In our study, we also use the software history to
compute a set of features and some of our features are similar to these studies. In
contrast, however, our feature set reflects almost all the changes to a file in the past.
In addition, we evaluate our prediction models throughout the project duration in
order to show the variability in prediction quality over time and illustrate the limited
“temporal generalizability” of bug prediction models.

Khoshgoftaar et al. (1996), Graves et al. (2000), Nagappan and Ball (2005) and
Bernstein et al. (2007) all developed prediction models using software evolution
data to predict future failures of the software systems. Mockus and Votta (2000)
showed that a textual description field of change history is essential to predict the
causes for this change. Further, they define three causes for a change: Adding new
features, correcting faults and restructuring code to accommodate future changes
(i.e. refactoring). We also use the change history for constructing features, but we
predict only faults. We partially base our work on the above mentioned related
approaches by adopting some of their presented features.

3 Experimental Setup

Now we succinctly introduce the overall experimental setup. We present the data
used, its acquisition method, and the measures used to evaluate the quality of the
results.

3.1 The Data: CVS and Bugzilla for Eclipse, Netbeans, Mozilla, and Open Office

The availability of data about multiple development cycles and their possible associ-
ation to the variation in prediction quality was essential to this study. We therefore
selected four open source projects with a particularly long development history (>6
years): Eclipse, Netbeans, Mozilla, and Open Office.

Within each project we considered unique file names with file path and source
code file type *.java in Eclipse and Netbeans, *.cpp in Mozilla and *.hxx and
*.cxx in Open Office during the observed periods of each project. Further, we
considered only those files that were not marked as dead within the observation

Empir Software Eng (2012) 17:348–389 353

Table 1 Analyzed projects: time spans and number of files

Project First release Last release # Files

Eclipse 2001-01-31 2007-06-30 9,948
Mozilla 2001-01-31 2008-02-29 1,896
Netbeans 2001-01-31 2007-06-30 38,301
Open Office 2001-01-31 2008-04-30 1,847

Total 51,992

Note As starting date we picked the first date at which all projects were under development (i.e.
Jan 01)

period. We did not follow file renaming events as this is not a feature supported by
CVS.

All data was collected from the projects’ Concurrent Versioning Systems (CVS)1

and Bugzilla.2 The data from the two sources was then linked using the method
described in Zimmermann et al. (2007). Even though the method has been shown to
lead to bias in terms of links (see Bird et al. 2009; Bachmann and Bernstein 2009) it
has been argued that it is highly unlikely to contain false positives (i.e. links between
commits and bugs that should not be there). Consequently, we can say that we predict
the presence of bugs (fixes) instead of just commits. Note, that in total we considered
114,186 bug reports from all four projects. The manual verification of such a large
number of bug reports would be prohibitively expensive.

We also considered reusing existing and verified datasets.3 However, given that
we needed temporally oriented data for our analysis (organized on a monthly basis)
we decided to extract the data from the CVS and Bugzilla databases. We will discuss
possible bias in the threats to validity in Section 4.

Table 1 shows an overview of the observation periods and the number of files
considered. Moreover, Tables 13, 14 and 154 provide detailed descriptions about all
components and the number of files of those components. In Eclipse, we consider
the core components of the products Equinox, JDT, PDE and Platform available in
June 2007. We selected all the components from Netbeans and Mozilla available in
June 2007 and February 2008, respectively. For Open Office we only used files from
the SW component. This component relates to the product Writer being the word
processor of the Open Office suite.

3.2 The Data: Features

All features available to the decision tree learner are listed in Table 2. These reflect
information about or changes made to a file in the past. All the features, with the
exception of the target variable hasBug, are computed during the training period of
a model. The target variable is computed in the test period of the model. The training

1http://www.nongnu.org/cvs/
2http://www.bugzilla.org/
3E.g., http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/ or http://www.cs.columbia.edu/
∼eaddy/concerntagger/.
4Tables can be found in Appendix A.

http://www.nongnu.org/cvs/
http://www.bugzilla.org/
http://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
http://www.cs.columbia.edu/~eaddy/concerntagger/
http://www.cs.columbia.edu/~eaddy/concerntagger/

354 Empir Software Eng (2012) 17:348–389

Table 2 Extracted variables (features) from CVS and Bugzilla

Name Description

Versioning system features (per file)
activityRate Number of revisions per month
lineAdded # of lines added
lineDeleted # of lines deleted
lineOperationRRevision Number of line added and deleted per revision
revision Number of revisions
totalLineOperations Total # of lines added and deleted

Bugtracker features
blockerFixes # of blocker type bugs fixed
blockerReported # of blocker type bugs reported
criticalFixes # of critical type bugs fixed
criticalReported # of critical type bugs reported
enhancementFixes # of enhancement requests fixed
enhancementReported # of enhancement requests reported
majorFixes # of major type bugs fixed
majorReported # of major type bugs reported
minorFixes # of minor type bugs fixed
minorReported # of minor type bugs reported
normalFixes # of normal type bugs fixed
normalReported # of normal type bugs reported
trivialFixes # of trivial type bugs fixed
trivialReported # of trivial type bugs reported
p1-fixes # of priority 1 bugs fixed
p1-reported # of priority 1 bugs reported
p2-fixes # of priority 2 bugs fixed
p2-reported # of priority 2 bugs reported
p3-fixes # of priority 3 bugs fixed
p3-reported # of priority 3 bugs reported
p4-fixes # of priority 4 bugs fixed
p4-reported # of priority 4 bugs reported
p5-fixes # of priority 5 bugs fixed
p5-reported # of priority 5 bugs reported

Compound features
chanceRevision Likelihood of a revision in the target period

computed using 1/2i

chanceBug Likelihood of a bug in the target period
computed using 1/2i

lineAddedI # of lines added to fix bugs
lineDeletedI # of lines deleted to fix bugs

Project level features
lineOperationIRbugFixes Average number of lines operated to fix a bug
lineOperationIRTotalLines # of lines operated to fix bugs relative to total line operated
lifeTimeBlocker Average lifetime (avg. lt.) of blocker type bugs
lifeTimeCritical Avg. lt. of critical type bugs
lifeTimeMajor Avg. lt. of major type bugs
lifeTimeMinor Avg. lt. of minor type bugs
lifeTimeNormal Avg. lt. of normal type bugs
lifeTimeTrivial Avg. lt. of trivial type bugs
totalLineOperationsI Total # of lines touched to fix bugs
grownPerMonth Project grown per month (can be negative)
hasBug (target) Indicates the existence of a bug

Empir Software Eng (2012) 17:348–389 355

period is always before the test period with no overlap, as the target variable hasBug
is only known ex-post (i.e. in the future) whilst the other features are available ex-
ante (i.e. at the time where a prediction is made).

To investigate the robustness of the predictions against variation in the training
period length we vary its length from two months to the maximum length possible
given the data collected.

To determine the correct value for each feature the length of the month is
dependent on its calendar length (i.e. starting on the 1st and ending on the 28th,
29th, 30th, or 31st of the month).

Target Feature We consider that a change or a revision is made to a file as a bug-
fixing activity if there is a referenced (or linked) entry in the bug database and that
is marked as a defect (Zimmermann et al. 2007). In the referenced (or linked) cases
the bug database contains information about the opening date of the bugs. Therefore,
we can determine the number of bugs that have been reported for each file during
a specific time period. When commits do not reference an entry in the bug database
then we consider those as non-bug-fixing commits which are all changes that are not
related to a defect (i.e. feature enhancements or refactoring activities).

Other Features Most of the names of the features listed in Table 2 are self-
explanatory. Some need additional context, which is provided below.5

The activityRate represents how many activities (revisions) took place per
month. To determine the rate we count the number of revisions during the training
period and then divide it by the length of the training period (leading to averaging of
the value). The length of the training period is given by months.

The features lineAdded and lineDeleted are the total number of lines of code
added and deleted in all revisions during the training period. The sum of these two
features is totalLineOperations.
grownPerMonth describes the evolution of the overall project (in terms of lines

of code) in the training period. Specifically, we compute the difference between
number of lines added and deleted. This number can be positive (growth) or negative
(shrinkage). We then average this value by dividing it by the length of the training
period (in months).

The feature lineOperationRRevision describes the average number of lines
added and deleted per revision during the training period.

The chanceRevision and chanceBug features describe the probability of
having a revision and a bug in the future as used in the BugCache approach (Kim
et al. 2007) discussed in Section 2. We compute those two features using the formula
1/2i, where i represents how far back (in months) the latest revision or bug occurred
from the prediction time period. If the latest revision or bug occurrence is far from
the prediction time period, then i is large and the overall probability of having a bug

5Note that a complete description can be found in Appendix B and that for all features where
authorship is relevant it is determined as the person committing the code into the CVS rather
than the developer noted in the comments of the code. However, most of active contribu-
tors are committers of a project. For example in the PDT project (http://www.eclipse.org/pdt/
people/contributors.php#Seva-%28Wsevolod%29-Lapsha), out of 12 participants 11 of them are
committers. Hence, this assumption will not have a great impact on the outcome of the experiments.

http://www.eclipse.org/pdt/people/contributors.php#Seva-%28Wsevolod%29-Lapsha
http://www.eclipse.org/pdt/people/contributors.php#Seva-%28Wsevolod%29-Lapsha

356 Empir Software Eng (2012) 17:348–389

(or revision) in the near future is low. Hence, these variables model the scenario that
files with recent bugs are more likely to have bugs in the future than others (see Kim
et al. 2007; Hassan and Holt 2005).

The features from blockerFixes to p5-reported provide information about
the different types of bugs reported and fixed for files during the observed training
period. If an opening date of a bug reported for a file falls into the training period
then a bug is considered as being reported during the training period. Analogously,
we count the number of fixed bugs.
lineAddedI,lineDeletedI and totalLineOperationsI provide the num-

ber of lines operated to fix bugs and lineOperationIRbugFixes provides the
average number of lines operated per bug during the training period.
LineOperIRTolLines counts how many lines were added and deleted to fix

bugs in relation to the total number of lines added/deleted. This indicates what
fraction of changes is focused on fixing bugs in relation to other activities (such as
adding new features).

Finally, the remaining features represent the average lifetimes of bugs. Note that
if a fixed bug is revised then the revision date is considered as the closing date of
that bug. The corresponding entry for the bug fixing revision in the bug database
provides the opening date of the bug and, hence, we can compute the lifetime of
the bug. Though the opening date lies outside the training period we still use it to
compute the lifetime of the bug.

3.3 Performance Measures

In our experiments we train two types of models: class probability estimation and
regression models.

For most of our experiments we trained class probability estimation (CPE)
models. Specifically, we used a simple decision tree inducer: Weka’s (Witten and
Frank 2005) J48 decision tree learner. This is a reimplementation of C4.5 introduced
by Quinlan (1993), which predicts the probability distribution of a given instance over
the two possible classes of the target variable: hasBug and hasNoBug. Typically, one
then chooses a cut-off threshold to determine the actual predicted class, which in turn
can be used to derive a confusion matrix and the prediction’s accuracy. We introduce
misclassification cost when training a model such that both misclassification costs—
false negative and false positive—are equal.

Our datasets have a heavily skewed distribution, i.e. the ratio between defective
files and non-defective ones is, depending on the project, about 1:20 and approxi-
mately keeps this ratio in all samples. For that reason we do not use the confusion
matrix and associated accuracy as our performance measure as they are heavily
influenced by this prior distribution. Instead we use the receiver operating charac-
teristics (ROC) and the area under the ROC curve (AUC), which relate the true-
positive rate to the false-positive rate and is independent of the prior distribution
(see Provost and Fawcett 2001). An AUC of 1.0 represents perfect, and 0.5 random
prediction quality.

For the regression experiments we use linear regression models. The linear
regression is a form of regression analysis in which the relationship between one
or more independent variables and another variable, called the dependent variable,
is modeled by a linear function that minimizes the squared error of the weights

Empir Software Eng (2012) 17:348–389 357

associated with the independent variables. This function is a weighted linear combi-
nation of one or more model parameters, called regression coefficients. We report
Pearson correlation, root mean squared error (RMSE), and mean absolute error
(MAE) to measure the performance of the regression models.

4 Threats to Validity

In this section we briefly discuss the most important threats to validity concerning
the data gathering process, the data itself, and the applied methodologies.

4.1 Determination of Authorship

Throughout this paper, we consider the committer to be the author of a change.
This is possibly wrong when looking at projects that do not allow direct write-access
to CVS. Apache’s code base, e.g., can only be changed via trusted proxy persons
(i.e. committers). For our experiments, we did not consider source code information
and therefore needed to rely on the information available from the versioning
system (CVS). Even with the source code information available (e.g., relying on the
@author tag from Javadoc) we could not be sure that the listed person is also the
author of the code change. Consider the following example: a developer makes a
minor addition to the code in order to fix a defect and does not add himself to the
list of authors in the source code because he thinks it is not worth mentioning. In
such a situation the initial author of the file would be considered to also have made
the bug-fix. Hence, our method is limited to determining the person who brought the
code into the project’s codebase—but that without doubt (be it as the actual author
or not).

4.2 Creation-Time vs. Commit-Time

In this work we did only consider data that is made publicly available by the
developer. Since we use a time-based partitioning of the datasets we make an
implicit assumption that bugs occur at the moment when they are reported and
are being fixed at the moment when a respective code change is committed. This
may not always be correct because a code change may have been made long before
committing (on the developers private workspace). Also, a bug might be in the code
for months (or years) without being noticed. Given the available data we see no way
to address this limitation. However, from a project management perspective it can be
argued that defects and code changes only become relevant when they are reported.
Only at reporting time they “materialize” as a task for the development team and
cause further actions.

4.3 Bug-Fixing or Enhancement? A Clear Case of Bias

It is hard to distinguish between bug fixing efforts and enhancements of the code
(e.g., the addition of new features or refactoring). Oftentimes, developers make
a connection between a bug report and its related code changes by mentioning
a bug ID in the commit message. However, this is a brittle connection without

358 Empir Software Eng (2012) 17:348–389

any mechanisms granting exclusivity of the submitted files to the mentioned bug
report. A clear distinction between bug-fixing and code enhancement activities
would require manually verified datasets (see also Bachmann and Bernstein 2009).
In addition to the brittle connection some information could be outright missing.
For instance, a minor bug that is quickly fixed changes its state from open to
fixed; without having a priority and/or severity assigned. Consequently, the data
of this study clearly exhibits both commit feature bias as well as bug feature bias
as introduced by Bird et al. (2009). In addition, Ko and Chilana (2010) revealed
that most of power users reported non-issues that devolved into technical support,
redundant reports with little new information and expert feature requests, and the
reports that did lead to changes were reported by a comparably small group of
experienced, frequent reporters. This implies that even the power users have no clear
intention about the state of the reports.

Unfortunately, barring the availability of manually verified models, we we see no
practical way to address these biases. A main characteristic of the methods used in
this work is the long-term evaluation of prediction models on software projects. To
manually verify our datasets we would need to look into every bug report and every
code change of a whole project and its history—an effort clearly beyond the scope of
this study.

4.4 Choice of Time Frames

We chose two-month windows as datasets for our prediction models. We do not insist
that this window is the only or even correct one. We decided on two months because
it was a time-frame that we found useful in one of our previous studies (see Bernstein
et al. 2007) and is a release cycle that we observed in different projects. Often, a
version/milestone is reached after 6–8 weeks. Obviously, software projects, just like
any other projects, can exhibit some form of entrainment (see Ancona and Chong
1996). For future work it would be interesting to (i) assess the entrainment cycles6

and (ii) investigate the robustness of our results when narrowing the time windows
to, e.g., days or weeks.

4.5 Choice of Observed Periods of Projects

We selected January 1, 2001 as the starting date of all four projects. At this date all
projects were under development. However, at this date not all projects were very
mature and, hence, their data might be inconsistent. Eclipse and Open Office, for
example, had no bug reports during a period of nine months in 2001; this is probably
due to the early state of the projects or their less systematic use of a bug-tracker, and
not because these projects were bug free. Nonetheless, as our analyses will show, the
starting date should not have an undue influence on our results, as we investigated
long time periods (>6 years).

6E.g. how the individual committers coding behavior synchronizes towards a milestone.

Empir Software Eng (2012) 17:348–389 359

5 Experiments: Change in Bug Prediction Quality

In this section we explore the nature and possible causes for the variation in bug
prediction quality. From these findings we finally develop a “meta-model” that
predicts the quality of the prediction models in advance. This meta-model helps
project manages to decide when to use their bug prediction model and when not—a
goal we explore in Section 6.

5.1 Defect Prediction Quality Varies Over Time

The first research question we explore is whether defect prediction quality varies
over time. To that end, we conduct two different kinds of experiments. In the first
experiment, we keep the target period constant and predict defects on that target
using the models trained on data collected from every possible combination of
training periods. In the second experiment, we keep the prediction model constant
and predict defects on varying target periods. As mentioned we use Weka’s (Witten
and Frank 2005) J48 decision tree learner as a CPE induction method, which is
trained with the features listed in Table 2. In both experiments the algorithm predicts
the location of defects: i.e. it predicts which files will (or will not) contain bugs in the
target period. The datasets for these two experiments is described in Appendix C.

For the first experiment, we start predicting defects in the last month—the target
period—of the observed period of each project using the models trained from data
collected in two months—the training period—before the target period. Next, we
expand the training period by one month in order to collect more information
still predicting on the same target period. This procedure is repeated until the
training period reaches the maximum possible length into the past. Consequently,
the maximum length for the training period in Eclipse and Netbeans is 74 months,
for Mozilla 82 months, and for Open Office 85 months. Then, we move the target
period one month backwards and repeat the above procedure. For example, if the
initial target period is the month t and the initial training period is [t − 1, t − 2],
followed by [t − 1, t − 3] etc. Next we move the target period to t − 1 and the initial
training to [t − 2, t − 3] and repeat the procedure. For each training run we measure
the model’s prediction quality using its AUC value and visualize it using a heat-map.
Since all the projects show similar characteristics we only show the results for Eclipse
in Fig. 1. In this heat-map, the X-axis indicates the target period and the Y-axis the
length of the training period in terms of number of months (i.e. for the training period
[t − n, t − m] Y is m − n).

We further compute the maximum, minimum, mean, and variance of the AUC
values as well as the histogram of AUC variance’s in each column of the Eclipse
heat-map (cf. Fig. 1) and visualize them using bar charts as in Fig. 2. In the bar
charts (Fig. 2a–d), the x-axis shows the target period and the y-axis shows the AUC.
In Fig. 2e, the x-axis shows the bin values and the y-axis shows the frequencies.
According to the observations in Fig. 1, the models involved in predicting defects on
certain target periods (e.g., April 2005) obtain an AUC around 0.9 (see Mean AUC in
Fig. 2c) while the models that predict defects in August 2003 obtain an AUC around
0.6. In some prediction periods (e.g., March 2006) the prediction quality is initially
relatively low but when expanding the learning period up to certain months back the
models gain prediction quality. In other cases (e.g., July 2005), in contrast, a further

360 Empir Software Eng (2012) 17:348–389

Fig. 1 Eclipse heat-map: Prediction quality using different training periods with the points of highest
AUC highlighted

expansion of the training period causes a degradation of prediction quality. The
maximum AUC values for each target period (shown as square in Fig. 1) typically
lie on neither ends. This suggests that in order to obtain higher prediction accuracy,
the models should not be trained on data collected from a very long or very short
history.

Hence, models at different time periods (and varying length) seem to vary, but is
the variation significant? To establish that the AUC varies significantly we compare
the distribution of high and low AUC-variance values. Specifically, we use the split-
half method as described by Ko and Chilana (2010): First, we rank the variance
values in descending order and divide them into two equal parts. Second, we compare
the higher and lower parts using the Mann–Whitney signed rank test (at α = 95%)
and find that the mean rank AUC-variance is significantly different (see Table 3 for
details).7

What we have learned so far is that when we keep the target constant but vary the
training then we find some variation in prediction quality. In the second experiment

7Note that we used the Mann–Whitney test as the test for normality (one-Sample Kolmogorov–
Smirnov test: p = 0.055) produced a borderline result. As some still use the t-test for large collections
of slightly non-parametric data we also ran an independent-sample t-test and found it to be significant
at α = 0.001.

Empir Software Eng (2012) 17:348–389 361

May07Sep05Jan04May02

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Target period

(a) Maximum AUC

May07Sep05Jan04May02

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Target period

(b) Minimum AUC

May07Sep05Jan04May02

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Target period

(c) Mean AUC

May07Sep05Jan04May02

0

2.5

5

7.5

x 10−3

A
U

C

Target period

(d) Variance AUC

1 2 3 4 5 6 7 8

x 10−3

0

5

10

15

20

25

Fr
eq

ue
nc

y

Variance

(e) Histogram:Variance

Fig. 2 Descriptive statistics of AUC values in each column of the Eclipse heat-map (Fig. 1)

we establish that the prediction quality also varies when we keep the training period
constant and change the target.

To that end our second experiment initially trains a prediction model using the
data collected from the first two months of the observed period and then uses this
model to predict defects on the third month, fourth month until the last month of

Table 3 Half-split test on column AUC values (P = 0.00 at 95% confidence level): keep target
constant and varying training length

of values Mean rank

Upper half 34 51.5
lower half 34 17.5

362 Empir Software Eng (2012) 17:348–389

Fig. 3 Eclipse heat-map:
Prediction quality at different
target periods

the observed period. Next we expand the training period by one month and start
predicting defects from the fourth month onward. This procedure is repeated until
the training periods reach the maximum observation period. Similar to the first
experiment, we measure model’s prediction quality for each target period using AUC
value and visualize all of these values in a heat-map (see Fig. 3; x- and y-axes are the
same as in Fig. 1). In Fig. 3 the bottom row of the heat-map, for example, shows the
AUCs of the models trained from the data collected from the first two months of the
observation period. The target periods are the third, fourth and so on until the last
month. The second row (from the bottom) shows the AUCs of the models trained
from the first three months of the observation period and the target periods are from
the fourth month onward. Analogously we compute the descriptive statistics of the
AUC values in each row of this heat-map and visualized in bar charts as in Fig. 4. In
the Fig. 4a–d, the x-axis shows the length of the training period and the y-axis shows
the AUC values. The x- and y-axes of bar chart (Fig. 4e) is the same as in the above
experiment. Following the one-sample Shapiro–Wilk test for normality (p = 0.442)
we repeat the split-half method on the variance values of AUC as above and compare
the high and low AUC-variance values using the Mann–Whitney signed rank test (at
α = 95%) as shown in the Table 4.8 Again we find significant variation over time.
Note, however, that this experiment does not address the question of establishing
the optimal training period—a question we leave open for future work. It is also
important to note that the models trained in different periods are likely to rely on
different combinations of predictors.

8Like above a t-test reconfirmed these findings at α = 0.001.

Empir Software Eng (2012) 17:348–389 363

9 19 29 39 49 59

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Length of training period

(a) Maximum AUC

9 19 29 39 49 59

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Length of training period in months

(b) Minimum AUC

9 19 29 39 49 59

0.5

0.6

0.7

0.8

0.9

1

A
U

C

Length of training period

(c) Mean AUC

9 19 29 39 49 59

0

0.025

0.05

0.075

0.1

A
U

C

Length of training period

(d) Variance AUC

0 0.02 0.04 0.06 0.08 0.1 0.12

0

5

10

15

Fr
eq

ue
nc

y

Variance

(e) Histogram: Variance

Fig. 4 Descriptive statistics of AUC values in each row of the Eclipse heat-map (Fig. 3)

Summarizing, these two experiments show that the prediction quality varies over
time: both when holding the model constant and predicting varying target periods
(change along the x-axis in Fig. 3) as well as when sliding the training period while
predicting the same target (change along the y-axis in Fig. 1). Hence, models that are
good predictors in some target periods are likely to be bad ones in others and the
prediction quality of models for a given target period varies based on the training
period.

Table 4 Half-split test on row AUC values (P = 0.00 at 95% confidence level): keep model constant
and varying target

#of values Mean rank

Upper half 33 63.0
lower half 34 21.5

364 Empir Software Eng (2012) 17:348–389

5.2 Finding Periods of Stability and Change

So far we have seen that the prediction quality varies over time. Hence, it is worth
investigating whether there are periods when the prediction quality is good and
this trend continues and forms a period of stability or when there are periods of
continuous changes of the model’s prediction quality.

To differentiate periods of stability and change we slightly adapted our experiment
as follows: similar to the first experiments we kept the target period constant but
varied the training period. In contrast, we used a two-month training window and
slided this training window into the past. The format of the dataset is the same
as described in Appendix C, but the difference is that the length of the training
period is two months. We decided to use a two-month training window because the
release cycle of the considered projects is typically 6–8 weeks. In addition, the work
of Bernstein et al. (2007) has shown that two months of history data attains higher
prediction quality. Again, we employed Weka’s J48 decision tree learner.

Figures 5, 6, 7 and 8 visualize the results of this procedure for the considered
projects. Note that whilst the X-axis of these graphs shows the target period as before,
the Y-axis has a different meaning: it represents the time-difference between the
target period and the two-months training window in months. Hence, the higher
in the figure we are looking the older the two-month period is compared to the

Fig. 5 Two-month Heat-map: Eclipse. Note In the first nine months there are no bug reports in the
target period and therefore no prediction model was built (white area at the bottom left corner)

Empir Software Eng (2012) 17:348–389 365

Fig. 6 Two-month Heat-map: Mozilla

target. Values on the diagonal (bottom left to top right) from each other represent
predictions of the model trained on the same period.

By looking at the the above heat-maps we can see some triangle shapes (dark
color). For instance, in Fig. 5, one such triangle starts from April 2002 and continues
till July 2003. During these periods the prediction quality stayed relatively stable and
a triangle seemingly emerges as the old training data (along the upper left bound-
ary/diagonal of the triangle) remains predictive. But what is a “good” prediction
quality?

To identify periods of stably good predictions and maintain that the triangles are
indicative of these periods we need a notion of what “good” predictions are. Whilst
the AUC scale clearly has some boundaries for “perfect” (= 1) and “random” (= 0.5)
it is not necessarily clear what can be regarded as “decent” in any particular task.

To determine a notion of “decent” for our task empirically we first determined the
attainable prediction quality on our data using the BugCache9 prediction model by
Kim et al. (2007). We ran BugCache on our Eclipse project data (the observed period
is from April 2001 to January 2005) with different cache sizes (as the number of files
varies) and present the results in Table 5. The table shows the minimum, maximum,

9More precisely, we used FixCache as BugCache is only the theoretical model behind the method.
Nevertheless, BugCache is the often-used term for both methods.

366 Empir Software Eng (2012) 17:348–389

Fig. 7 Two-month Heat-map: Netbeans

median and mean of AUC for each of the runs. As the table shows the maximum
attained AUC varies between 0.66 for the smallest cache and 0.76 for the largest
one. Given BugCache’s usual prediction quality we decided to take the lower end
of these values as indicating “sufficiently good” and set our threshold for “decent”
predictions on our data to AUC = 0.65.

To illustrate the resulting triangle shapes Figs. 5–8 indicate periods where more
than 80% of the values are higher than the threshold with a drawn triangle. Conse-
quently, we find that the prediction periods inside the triangles are stable even on
models learned from older data. Returning to the stable example period in Eclipse
(April 2002–July 2003 in Fig. 5) we find that even data from the second quarter of
2002 (more than a year old) provides a decent prediction quality.

Table 5 Prediction quality (AUC) of the model (Kim et al. 2007) for Eclipse project; observed
period is Apr 2001–Jan 2005

Cache size% min max Median Mean

10 0.45 0.66 0.51 0.52
15 0.40 0.69 0.51 0.52
20 0.40 0.74 0.52 0.54
25 0.40 0.76 0.55 0.57

Empir Software Eng (2012) 17:348–389 367

Fig. 8 Two-month Heat-map: Open Office. Note In the first four months there are no bug reports in
the target period and therefore no prediction model was built (white area at the bottom left corner)

In all figures we also observe that the further we move the training period to
the past the more likely the prediction quality would drop down to almost random
(≈ 0.5). This provides some evidence to the statement the further back you go in time
the more the prediction deteriorates (Kenmei et al. 2008). More formally, from April
2002 to July 2003 the model exhibits a stable good prediction quality. In March 2004
the project seems to recover some stability in defect prediction quality and generate
another, but slightly less pronounced triangle until October 2004. The triangles
exhibited by the Netbeans project look similar to the one of Eclipse: relatively small
(approximately 1 year) but with a high frequency. Mozilla and Open Office, on
the other hand, have long periods of stability (e.g., Mozilla: from May 2001 until
November 2004). In such a period, a two-month training window, which is older than
three years can predict defects with decent accuracy of AUC around 0.7.

Summarizing, the model exhibits periods of stability and variability in defect
prediction quality over time. The causes of the changes—be they observable in our
features or not—are not obvious from the graphs and will be investigated in Section
5.4. Another interesting observation in the heat-maps is the height of the triangle-
shapes. This height indicates the length of the stable period. Note that the height
varies both within and between projects. Hence, a universal optimal training period
length cannot be determined but is highly dependent on the causes for the current
stable period. Finally, this finding indicates that decision makers in software project

368 Empir Software Eng (2012) 17:348–389

should be cautious to base their decisions on a generic defect prediction model.
Whilst they might be useful in periods of stability they should be ignored in periods
of variability.

All of these findings assume that the triangle shapes observed are indeed a feature
of the underlying software projects rather than a random artifact—a question to
which we turn next.

5.3 Triangle Shapes are not Random Phenomena

To illustrate that the triangle shapes are not an epiphenomenon of the data or the
prediction algorithm, we graphed the result of a naïve model. In the naïve model
we simply assume that if a file in the target period was recorded to contain at least
one bug in the given two-month training period then we predict that file is going to be
buggy in the target period. Figure 9a shows for Eclipse that most predictions attained
in this manner are random (i.e. AUC ≈ 0.5; white in the figure) and do not exhibit
the triangle shapes.

To elicit whether the triangles indeed visualize a phenomenon of the underlying
data rather than the prediction process itself, we added ten random variables to our
feature set. The random features are generated from similar distributions as ten real
variables that are selected randomly. To avoid an outlying result we repeated this
procedure four times. In each of these runs the number of models that actually picked
up the random features was between 158 to 162 of the total 2,850 models computed.10

Figure 9b shows the run with 162 models picking random features; the other runs
look almost identical. It is important to note that the models containing random
features (marked with a square in the figure) are mostly found when the AUC is
close to 0.5 (i.e. random). In 14% of the cases does a model with AUC > 0.65 pick
up a random variable. Hence, we can assume that they are mostly picked due to the
noise in the data. Models pick a maximum of two random features, which appear
lower than the 3rd level in the decision tree. Hence, the random features seem to
be seldomly used by predictive models (where AUC � 0.5) and do not seem to be
dominating in those models. But do they deteriorate the predictive quality of those
models?

To show that the random features have no statistically significant effect on the
prediction quality we compare the prediction quality of the models with the random
features (see Fig. 9b) to the ones without (see Fig. 5). To that end, we first determine
triangles in Fig. 9b (with random feature) using the same method described in the
previous section. Further, we confirmed that these triangles are located in the same
places as in Fig. 5. We then generate pairs of AUC values as follows: We pick one
AUC value from Fig. 5 and the other AUC value from Fig. 9b at the same coordinate.
Having confirmed that the data does not follow a standard distribution using visual
techniques, we performed Wilcoxon signed rank test comparing those selected values
and found them to be significantly similar (p = 0.446).

10Note that the observed number of models (162) that pick random features is significantly different
from the expected number of models (1,425) according to a χ2-test (p < 0.001).

Empir Software Eng (2012) 17:348–389 369

(a) Naïve prediction model (b) Usage of random features

Fig. 9 Experiments to exclude the possibility of the triangles being an epiphenomenon of the data
or the prediction algorithm (Eclipse data)

The above experiments show that our feature set is better than a set of random
features and the quality of prediction models (i.e. the ones within the triangles) is not
significantly different when random features are present or not. Hence, the triangles
must be a result of the underlying models’ predictive power given the available data.
Having found that our observation of periods of stability and variability is sound we
turn to trying to identify the causes for such variability and set the stage for making
these observations actionable.

5.4 Finding Indicators for Prediction Quality Variability

In Section 5.2 we show that defect prediction models exhibit periods of stability and
change. Can we uncover reasons for such variability?

To that end we learned a regression model to predict the AUC of the bug
prediction model according to the following procedure:

First, we computed the AUC of the bug prediction model based on the data in
the three months (two months training period and one month labeling period as
described in Appendix C) before the target period in exactly the same way as in the
previous subsection. The AUC is derived using the file-level features but is a feature
of predicting defects within a project. Hence, it is a project-level feature.

Second, since the AUC is a project-level feature, we needed project-level features
to train a prediction model. Thus, we computed a series of project-level features
(listed in Table 6) by aggregating the respective file-level features in two-months
training windows and one-month labeling periods. However, we do not include
the information about the labeling period in the features since it is unique and
consequently not a useful predictor. We also exclude the distance between the target

370 Empir Software Eng (2012) 17:348–389

Table 6 Project level features for regression

Name Description

revision Number of revisions
grownPerMonth Project grown per month
totalLineOperations # of lines added and deleted
bugFixes # of bugs fixed (all types)
bugReported # of bugs reported (all types)
enhancementFixes # of enhancement requests fixed
enhancementReported # of enhancement requests reported
p1-fixes # of priority 1 bugs fixed
p2-fixes # of priority 2 bugs fixed
p3-fixes # of priority 3 bugs fixed
p4-fixes # of priority 4 bugs fixed
p5-fixes # of priority 5 bugs fixed
p1-reported # of priority 1 bugs reported
p2-reported # of priority 2 bugs reported
p3-reported # of priority 3 bugs reported
p4-reported # of priority 4 bugs reported
p5-reported # of priority 5 bugs reported
lineAddedI # of lines added to fix bugs
lineDeletedI # of lines deleted to fix bugs
totalLineOperationsI # lines operated to fix bugs
lineOperIRbugFixes Average (avg.) # of lines operated to fix a bug
lineOperIRTotalLines # of lines operated to fix bugs relative to total line operated
lifeTimeIssues Avg. lifetime of bugs (all types)
lifeTimeEnhancements Avg. lifetime of enhancement type bugs
author # of authors
workload Avg. work done by an author
AUC (target) Area under ROC curve

period and the two-months training window since the finding the further you go
back in time worst will be the prediction is not novel for the software engineering
community.

Third, since (i) the AUC prediction model used a two-months training period and
(ii) we are interested in changes between the training and the labeling period we
transformed the features by taking the average of the two training months (avgt =
average(f eaturet−1, f eaturet−2)) and subtracting it from the values of the labeling
month (f eaturet − avgt).

Fourth and last, we trained a traditional linear regression model predicting the
AUC from these transformed features.

The resulting regression models are shown in Tables 7, 8, 9, and 10.
If a regression coefficient is large compared to its standard error, then it is

probably different from zero. The p-value of each coefficient indicates whether the
coefficient is significantly different from zero such that if it is ≤ 0.05 (with 95%
confidence interval) then those variables significantly contribute to the model. In
the Eclipse and Mozilla regression models the p-value of each coefficient listed in
Tables 7 and 8 is better than the standard level of 95%. We did not list coefficients
that are not significant. The performance of the models as measured in terms of their
Pearson correlation, Spearman’s rank correlation, mean absolute error (MAE), and
root mean square error (RMSE) is shown in Table 11. Note that all models have a

Empir Software Eng (2012) 17:348–389 371

Table 7 Eclipse: regression
model (p-value is better than
the standard level 95%)

Feature Unstand Standard

(Constant) 0.6700
enhancementFixes 0.0002 0.168
enhancementReported 0.0001 0.125
p1-fixes −0.0013 −0.494
p3-fixes −0.0002 −0.481
p5-fixes −0.0430 −0.071
p1-reported 0.0015 0.540
p2-reported 0.0001 0.118
p3-reported −0.0001 −0.090
p4-reported −0.0005 −0.069
p5-reported −0.0050 −0.145
LineOperIRbugFixes −0.0010 −0.264
LineOperIRTolLines −0.1127 −0.244
author −0.0065 −0.324

moderate correlation between the predicted and actual values of AUC. The small
MAE and RMSE reflect the good performance of our regression models.

In all regression models the change in the number of authors feature (for brevity
we call this author in the tables) has a negative impact on the AUC: if the number
of authors in the target period is larger than the number of authors in the learning
period then the defect prediction quality goes down and vice versa.

Hence, the increase of authors in a project reduces the applicability of the defect
prediction model learned without those authors. One possible reason could be that
adding more authors to a project may lead to a change in the underlying development
patterns in the software project.

The regression coefficients (unstandardized) for author in all four models are
very small, but since the AUC moves in the range of 0–0.9 they contribute about 1%
to the model having at least an indicative character. For example in Eclipse: including

Table 8 Mozilla: regression model (p-value is better than the standard level 95%)

Feature Unstand Standard

(Constant) 0.7333
revision −0.0001 −0.600
bugFixes 0.0001 0.722
enhancementFixes −0.0012 −0.264
enhancementReported −0.0004 −0.098
p1-fixes 0.0004 0.153
p2-fixes 0.0003 0.221
p3-fixes 0.0003 0.150
p4-fixes 0.0012 0.185
p5-fixes −0.0016 −0.393
p3-reported 0.0007 0.202
p4-reported 0.0005 −0.073
p5-reported 0.0010 0.087
LineOperIRbugFixes 0.0011 0.396
LineOperIRTolLines −0.2478 −0.220
author −0.0007 −0.137

372 Empir Software Eng (2012) 17:348–389

Table 9 Open Office:
regression model

Feature Unstand Standard p

(Constant) 0.6700 0.000
bugFixes −0.0025 −0.034 0.000
enhancementFixes −0.0022 0.060 0.015
patchFixes −0.0020 0.056 0.010
featureFixes −0.0024 −0.178 0.000
enhancementReported −0.0001 −0.208 0.000
patchReported 0.0001 0.041 0.024
p2-fixes 0.0005 0.176 0.004
p2-reported 0.0025 −0.067 0.038
p4-reported 0.0022 −0.310 0.000
p5-reported 0.0035 0.122 0.000
LineOperIRTolLines −0.0491 −0.180 0.000
author −0.0008 −0.037 0.103

ten authors more in the target period than in the learning period will decrease the
AUC by 0.065 and this is a considerable amount of decrease in AUC. For the other
projects, the influence is an order of magnitude smaller but still pointing in the
right direction. For Open Office, the effect is statistically insignificant at the 98%
confidence interval. Hence, the effect is observable in most projects but is most
pronounced in Eclipse.

Another interesting feature of the models is the number of lines
added/removed to fix bugs relative to the total number of lines changed (called
LineOpeIRTotLines). This feature reflects the fraction of work performed to fix
bugs relative to the total work done. In all models except for Netbeans this factor has
a high impact compared to the other features. In Eclipse, Mozilla, and Open Office,
this factor contributes negatively to the model, while in Netbeans it contributes
positively but not significantly.

Hence, if the coefficient is negative (as in Eclipse, Mozilla, and Open Office) then
an increased bug fixing activity (compared to new feature additions) will have a
negative impact on the AUC—presumably as an increased overall bug fixing effort
will increase general code stability and, however, change the relationship between
the project level features and the prediction quality of a bug prediction model.
In addition, more bug fixing effort will result in changing the underlying defect
generation rules and consequently, the prediction quality will drop. The new defect
generation rules have to be fed to the prediction models so that the models comply
with this new piece of information.

Table 10 Netbeans: regression
model

Feature Unstand Standard p

(Constant) 0.6020 0.000
enhancementFixes 0.0003 0.391 0.000
patchFixes 0.0040 0.155 0.000
featureReported −0.0006 −0.141 0.000
p4-fixes −0.0001 −0.083 0.035
p5-fixes 0.0024 0.650 0.000
p1-reported −0.0001 −0.274 0.000
LineOperIRTolLines 0.026 0.057 0.102
author −0.0007 −0.2490 0.000

Empir Software Eng (2012) 17:348–389 373

Table 11 Performance of the
regression models: correlations
are significant at α = 0.01 level

Project Pearson Spearman MAE RMSE

Eclipse 0.59 0.308 0.046 0.061
Mozilla 0.57 0.361 0.045 0.057
Netbeans 0.65 0.623 0.041 0.056
Open Office 0.55 0.350 0.066 0.083

Our assumption for the cause of this relationship (between bug fixing effort and
the prediction quality) and the different influence in NetBeans is supported by the
projects’ data: NetBeans has the smallest bug fixing rate per file (3.36) compared
to the other three projects (Eclipse: 3.65, Mozilla: 9.77 and Open Office: 9.29) and
the Netbean’s mean bug fixing rate is significantly different from the other three
projects at α = 0.05 level. We compute the bug fixing rate per file by dividing the
unique number of bugs fixed during the observed periods by the number of files
that have at least one bug fixing activity during those periods. Table 12 shows the
projects, number of buggy files, mean number of bugs fixed for a file and the standard
deviation.

Also, it is worth mentioning that the four regression models use different sets of
features for their predictions. One reason could be that the observed projects are
completely independent from each other in terms of authors, their workload, their
experiences, development environment, etc. Therefore, the set of project features
that influence the defect prediction quality varies from one project to another
resulting in different regression models. Unfortunately, however, we have no firm
theory for why the predictors vary between projects.

Finally, we would like to point out that the somewhat moderate (but significant)
correlations reported in Table 11 are no cause for concern. Indeed we embarked on
this experiment with the goal of showing that such a prediction of an AUC is possible
and produces promising results. We have achieved this goal given the results reported
in the table. Obviously, there is room for improvement: a further exploration should
consider non-linear regression models.

To conclude, we found that we can predict the AUC of a defect prediction model
with a decent accuracy (in terms of mean squared and absolute error). In addition,
we found that the feature is consistent in three projects and hence, we further explore
this feature in the next section.

5.5 Author Fluctuation and Bug Fixing Activities

The project feature LineOpeIRTotLines in the previous experiment encourages
us to further investigate the authors’ contribution for bug fixing activities. This
feature has a negative impact on the AUC of Eclipse, Mozilla and Open office

Table 12 Bug fixing rate per
file: mean value of Netbeans
project significant at 0.01 level

Project #of buggy files Mean Std. dev.

Eclipse 10,371 3.65 5.7
Mozilla 1,585 9.77 18.8
Netbeans 10,371 3.36 5.7
Open Office 1,832 9.29 10.2

374 Empir Software Eng (2012) 17:348–389

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90

F
ra

ct
io

n
 o

f
w

o
rk

 d
o

n
e

b
y

n
ew

 a
u

th
o

rs
 t

o
 f

ix
 b

u
g

s

Eclipse

Netbeans

Mozilla

Open Office

Time-different between target and 2-months training window in months

Fig. 10 Work done by new authors to fix bugs

projects. However, this feature does not have any significant effect on the Netbeans
model (p = 10.2%). One could, therefore, hypothesize that in Eclipse, Mozilla and
Open Office projects most bugs are fixed by authors, who are not active in the
training period but in the target period.

To test this proposition we computed the fraction of bug-fixing work done by
the authors, who are not in the training period but in the target period. Figure 10
graphs the result for one target period (the last month of the observed period; the
others are omitted due to space considerations;11 but they look similar to this figure),
where the x-axis represents the time different between the target period and the two-
month training window in months and the y-axis represents the fraction of bug fixing
performed by authors, who are not active in the two-months training period, but in
the one-month target period.

The figure shows that in Eclipse and Mozilla an increasing proportion of bugs
are fixed by those authors, who are not in the training period, and the fraction
continuously increases the further we look back into the past. In Open Office
the fraction of work done by new authors drastically varies and is probably not
meaningful due to a significantly smaller number of transactions (commits) per
month. For Netbeans the fraction of work done by authors who are not in the two-
months training period to fix bugs is initially very small and never rises above 50%
with a mean of 33.2%. Also, the number for Netbeans is relatively constant indicating
some stability in its developer base. Hence, authors that are active in the two-months
training period fix bugs seems to be increasing the models prediction quality.

The above observations encouraged us to further investigate the relationships
between author fluctuation and bug fixing activity in periods of stability versus

11You can find a complete set of the figures in the technical report Ekanayake et al. (2011) online.
http://www.ifi.uzh.ch/research/publications/technical-reports.html.

http://www.if/i.uzh.ch/research/publications/technical-reports.html

Empir Software Eng (2012) 17:348–389 375

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

A
pr-02

Jun-02

A
ug-02

O
ct-02

D
ec-02

F
eb-03

A
pr-03

Jun-03

A
ug-03

O
ct-03

Month

N
o

rm
al

iz
ed

 D
if

fe
re

n
ce

Author

Bug Fix

Fig. 11 Eclipse: Tipping starts in July 2003

variability. To that end we identified tipping points from stable to variable periods
in each of the projects and graphed the normalized change in number of authors
and normalized change in bug fixing activity for the months preceding the onset of
the variability and some months into the variability. Consider Eclipse (Fig. 5) as an
example: here the investigated months include “stable” months leading up to the
tipping month of July 2003 and including the “variable” months until October 2003.

The value for the authors is computed as:

authchangemonth = #authmonth − #authmonth−1
∑

t∈months |#autht − #autht−1|

In words: the difference between the number of authors (#auth) of the month
(#authmonth) and its preceding month (#authmonth−1) normalized by the sum of the

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
pr-05

Jun-05

A
ug-05

O
ct-05

D
ec-05

F
eb-06

A
pr-06

Jun-06

A
ug-06

Month

N
o

rm
al

iz
ed

 D
if

fe
re

n
ce

Author

Bug Fix

Fig. 12 Netbeans: Tipping starts in April 2006

376 Empir Software Eng (2012) 17:348–389

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

M
ay-01

N
ov-01

M
ay-02

N
ov-02

M
ay-03

N
ov-03

M
ay-04

Month

N
o

rm
al

iz
ed

 D
if

fe
re

n
ce

Author

Bug Fix

Fig. 13 Open Office: Tipping starts in February 2004

absolute differences of all the months considered in the graph. The value for changes
in bug fixes is computed analogously. The rationale for the normalization is to make
the figures somewhat comparable across different projects and time-frames.

Figures 11, 12, 13 and 14 show a selection of the resulting figures, which are titled
by the “tipping” month.

According to the figures, in most cases we observe a relative drop in the number
of authors in the “tipping” month mostly followed by an increase in authors during
the drift (decrement in the prediction quality). We also find that in many instances,
the relative amount of work done for bug fixing increases in the “tipping” month.

Unfortunately, none of these observations are unique to the tipping periods.
Considering Eclipse (Fig. 11), e.g., we find that normalized author differential dips
3 times: in January 03, April 03, and preceding the drop down in prediction quality
on July 03. The same can be said for the normalized bug differential. Hence, we
cannot argue that these factors can be used exclusively to predict periods when

-0.1

-0.05

0

0.05

0.1

0.15

0.2

M
ay-06

Jul-06

S
ep-06

N
ov-06

Jan-07

M
ar-07

M
ay-07

J ul-07

S
ep-07

N
ov-07

Jan-08

M
ar-08

Month

N
o

rm
al

iz
ed

 D
if

fe
re

n
ce

Author

Bug Fix

Fig. 14 Open Office: Tipping starts in September 2007

Empir Software Eng (2012) 17:348–389 377

the prediction quality starts declining, but together they can serve as a basis for
developing such an early warning indicator.

Summarizing, we observe that increasing the number of authors editing the project
has a negative impact on defect prediction quality. We also saw that more work
done to fix bugs in relation to the other activities causes a reduction of the defect
prediction quality. Further explorations indicated that when authors/developers, who
are already present during the learning period and are involving in fixing bugs, helps
to increase prediction quality. These finding indicate that it is possible to uncover
reasons that influence defect prediction quality.

6 Turning the Insights into Actionable Knowledge

In the previous section we explored the variation in defect prediction quality and
early indicators for such a variation. Particularly, in Section 5.4 we found that a
prediction model can be learned that predicts the performance of bug prediction
models. Our approach essentially devises a prediction model of a prediction model,
which we will call ‘meta-prediction model’ in the following. The main remaining
question is, if such a meta-model can be used within a decision procedure for software
project managers. In this section, we address this issue and present such a decision
procedure that relies on these meta-prediction models.

Consider the meta-prediction models learned in Section 5.4 and shown in Tables
7–10. As we argued these meta-prediction models can predict the AUC of the bug
prediction model at any given time period using the project features. Assuming
that these predictions are good—and we showed in Table 11 that they are at least
decent—then it would seem to be natural to use these predictions as a decision
measure about the expected quality of bug prediction methods.

Specifically, a software manager hoping to attain a reliable indication for the
location and quantity of bugs should only use bug prediction methods when they can
be expected to have a certain prediction quality. A good indicator for the expected
quality of a bug prediction method that we have is the value generated by the meta-
prediction model. Hence, she should only use the bug prediction method when the
meta-prediction model predicts an AUC above a certain threshold. We have shown in
Section 5.2 that the AUC > 0.65 is a “decent” result when compared to BugCache.

To show that this method works, Fig. 15 graphs the average AUC of all actual
predictions gained from the bug prediction models that were predicted to have an
AUC above the threshold by the meta-prediction model on the y-axis whilst varying
the threshold on the x-axis. Note that whenever the meta-prediction model makes a
bad prediction an AUC below the threshold will result.

The figures show that raising the thresholds will eventually lead to better pre-
dictions. The figures also show some prediction quality instabilities with a rising
threshold, and in three of the four cases a collapse of prediction quality at the very
end. Whilst this is disappointing at first it becomes logical when considering that
the number of data-points decreases with the rising threshold. In other words: the
further right in the figure one looks the less actual predictions are used to compute
the average. This has two consequences: First, at the very end only one model is over
the threshold and the “average” is really the prediction quality of that model. Second,
as the number of data points included in the average decreases, it also becomes

378 Empir Software Eng (2012) 17:348–389

Fig. 15 Graphs estimate the
actual AUC based on the
predicted AUC by the linear
models

0.58

0.59

0.6

0.61

0.62

0.63

0.64

0.65

0.66

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Threshold

A
ve

ra
g

e
A

U
C

(a) Eclipse

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Threshold

A
ve

ra
g

e
A

U
C

(b) Netbeans

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
Threshold

A
ve

ra
g

e
A

U
C

(c) Mozilla

(d) Open Office

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Threshold

A
ve

ra
g

e
A

U
C

Empir Software Eng (2012) 17:348–389 379

increasingly influenced by single misjudgments. Hence, the instability, which initially
is quite disappointing becomes understandable.

As a consequence, we can conclude that our approach actually works quite well
for all projects. Indeed, choosing thresholds (>0.825 for Eclipse; >0.8 for Mozilla;
>0.6 for Open Office) will assure a manager that her model will obtain the minimum
required prediction quality (AUC 0.65). However, it does not imply that the model’s
prediction quality cannot exceed that limit. It can vary in the range of 0.65, which
is the minimum in our case, to 1.0. For Netbeans, the threshold is >0.7 and it
gives approximately 0.61–0.62 minimum prediction quality. The prediction quality
looks rather low. Please note that in Netbeans, we explored 93 subcomponents
for this experiment. These subcomponents have been developed under different
development environments (different authors, tools, etc.). Therefore, we can expect
a large variability in Netbeans data and a consequently lower prediction quality for
the model. However, this experiment is not designed for testing the proposition that
the large variability in software data has an impact on defect prediction quality; this is
a venue for future research.

7 Discussion, Conclusions, and Future Work

This paper investigated the notion of periods of stability and variability in data
from software projects. Specifically, we were interested in such differing periods
with respect to their impact on defect prediction algorithms. Using data from four
open source projects we found that the quality of defect prediction approaches
indeed varies significantly over time. We, furthermore, found that the quality of
the prediction clearly follows periods of stability and variability, indicating that
dif fering periods are indeed an important factor to consider when investigating defect
prediction. As a consequence, the benef it of bug prediction in general must be seen as
volatile over time and, therefore, should be used with caution.

We observed that the number of authors editing the project is rising right before,
or during periods of instability. This reinforces the well-known software engineering
lesson “adding manpower to a late software project makes it even later” (Brooks
and Phillips 1995). We also saw a relationship between the changes of the proportion
of work done to fix bugs and other activities and the changes in defect prediction
quality. Unfortunately, both those correlations were not observed uniformly and can
only serve as a start to elicit early warning indicators for changes in stability and,
hence, the reduced quality of existing defect prediction models. Furthermore, we
found that bug fixing by authors who were active in the learning period helps to
improve defect prediction quality. Nonetheless, we found that we can build a “meta-
prediction model” to predict the bug prediction model’s quality with a decent accuracy.
This meta-prediction model in turn can be used as the basis for a decision procedure
that allows software managers to decide when to use bug prediction models and when
not. Empirically we found that this decision procedure works well for three out of
the four investigated projects. It, therefore, can be seen as a first step to turn insights
with regards to stable and volatile phases into an actionable element in software
managers’ decisions.

During our experimentation we repeatedly asked ourselves if the causes behind
the periods of stability and variability lies in concept drift. Concept drift is a

380 Empir Software Eng (2012) 17:348–389

notion from machine learning that refers to changes in the data generation process.
Specifically, Tsymbal (2004) defines is as follows:

In the real world concepts are often not stable but change with time. . . . Often
these changes make the model built on old data inconsistent with the new
data, and regular updating of the model is necessary. This problem is known
as concept drift, . . . drifts can occur suddenly (abruptly, instantaneously) or
gradually.

Our phenomena exhibits strong attributes of concept drift: It shows periods of
stability followed by periods of variability (= drift). Indeed, it was this “behavior”
that inspired us to draw on some of previous work about prediction under concept
drift and adapt it to our meta-prediction model (Vorburger and Bernstein 2006). In
addition, we found some limited evidence for concept drift: the author fluctuations
discussed in Section 5.5, for example, indicate that the influx of new developers
is associated with changes in variability. Obviously, these new authors may not be
familiar with the norms of the projects and, hence, import new programming habits.
This in turn may lead to the introduction of new bugs and changing the concept and
generating the periods of variability we observe. Whilst this scenario seems plausible
we have no evidence for it. One would have to conduct interviews with developers
and extract a multitude of events that may influence a project in order to identify the
underlying reasons of the phenomena. While interesting, this is a new study and we
and have to leave it open for future work.

Obviously, the generalizability of all our findings is curtailed by the limited num-
ber of projects considered. Whilst four projects is a decent size the generalizability
of these findings needs to be investigated by looking at additional open and closed
source projects. Furthermore, we find that the results are not as ‘clean’ as one would
wish. Indeed, as the Figs. 5–8 illustrate, the triangle shapes indicating periods of
stability are sometimes difficult to discern even though we identified and highlighted
them using an auto-detection method. We hope that further investigations may
uncover the reasons for this seeming ‘noise’ in the data.

This paper only scratches the surface of changing periods in software projects.
Indeed, further investigations into the causes these changes in software projects are
needed. In the ideal case it would be possible to identify the influential factors that
hold for software projects in general. Also, we need to investigate other models
for change in addition to our straightforward meta-model. Whatever the outcome
of future investigations, we can safely say that the notion of periods of stability
and variability seems to have a profound influence on the empirical investigation
of software evolution and needs to be taken seriously in any empirical software
engineering study—in particular studies about predicting software bugs.

Acknowledgements We would like to thank the anonymous reviewers for their many detailed
comments that helped us to significantly improve the paper.

Appendix A: Component List

Tables 13, 14 and 15 list all the investigated components and the number of files that
each component consists.

Empir Software Eng (2012) 17:348–389 381

Table 13 Eclipse: Investigated components and number of files

Component # files Component # files

ant_core 36 pde_build 20
ant_ui 294 pde_ui 430
apt_core 161 pluggable_core 10
apt_tests 121 pluggable_tests 5
apt_ui 11 search 126
cknaus 6 text_tests 150
compare 160 ui_home 292
equinox_incubator 5,770 update_core 45
jdt_debug 435 update_home 7
jdt_ui 1,864 update_ui 5

Table 14 Netbeans:
Investigated components and
number of files

Component # files Component # files

a11y 22 junit 106
accelerators 16 languages 124
ant 221 latex 322
antlr 58 lexer 198
apisupport 319 management 174
archivesupport 31 mdr 324
autoupdate 148 metrics 51
beans 52 mobility 1,412
classclosure 6 monitor 99
classfile 55 nbbuild 111
clazz 26 nbi 278
cnd 1,603 netbrowser 154
codecoverage 39 openide 941
collab 698 performance 343
contrib 1,517 platform 107
corba 513 pluginportal 57
core 1,000 portalpack 253
cpp 40 print 13
cpplite 100 projects 164
db 434 properties 41
debugercore 113 qa 184
debugerjpda 192 refactoring 212
debugertools 21 regsup 110
diff 72 remotefs 21
editor 843 rmi 72
enterprise 4,261 ruby 314
extbrowser 46 schema2beans 94
externaleditor 20 scripting 204
form 472 serverplugins 1,136
freestylebrowser 36 sim 204
graph 287 spellchecker 26
html 93 subversion 151
httpserver 16 tasklist 402
i18n 58 tomcatint 47
ide 183 treefs 47
innertesters 1 ui 65
installer 163 uml 3,757

382 Empir Software Eng (2012) 17:348–389

Table 14 (continued) Component # files Component # files

j2ee 2,023 utilities 81
j2eeserver 126 vcsgeneric 239
jackpot 89 visualweb 2,410
jasm 76 wasp 183
java 2,085 web 614
javacvs 368 webl 11
javadoc 43 websvc 1,107
jemmy 353 xml 2,102
jemmysupport 23 xtest 209
jndi 73

Table 15 Mozilla:
Investigated components and
number of files

Component # files Component # files

accessibl 105 extension 328
browse 22 gf 101
buil 20 int 297
calenda 17 ip 38
camin 6 j 90
cap 6 mai 5
conten 388 mailnew 4
d 62 module 9
director 23 rd 5
do 28 suit 4
docshel 17 widge 5
edito 69 xpf 5
embeddin 242

Appendix B: Detailed Feature Description

This section describes the features used in the paper as well as explains their
computation and rationale.

revision We consider a revision as a change made to a file for some reason. The
feature revision represents the number of changes made to a file during training
periods. Both Graves et al. (2000) and Khoshgoftaar et al. (1996) found that past
changes are good defect indicators.

activityRate This feature measures how often a file has been revised during
the training periods and is computed by dividing the number of revisions during the
training period by the length of the training period (in months). Hassan and Holt
(2005) concluded that a high frequency of changes in a file is a good defect predictor.

lineAdded, lineDeleted and totalLineOperations Several studies
showed that past changes are good defect predictors (Graves et al. 2000;
Khoshgoftaar et al. 1996). Therefore, we further quantify the amount of change
done by authors using the features lineAdded and lineDeleted that describe
the number of lines of code added and deleted during training periods. Further, we

Empir Software Eng (2012) 17:348–389 383

introduce the total amount of work done for a revision by adding those two features
resulting the feature totalLineOperations.

grownPerMonth This feature provides information about the growth rate of a
project or file in the training periods. We compute the amount of grown using
the total number of line added and deleted during that time period. Usually, we
subtract the total number of line deleted from the total number of line added and
then average this value by dividing this number by the length of the training period
(in months). Therefore, this number can be ether positive (representing growth) or
negative (representing shrinkage). We introduced this feature to address issues that
may arise due to too fast change.

lineOperationRRevision This feature captures the average size of a revision
in terms of number of lines of code added and deleted. We simply add the total
numbers of lines of code added and deleted during training periods and divide that
amount by the number of revisions during that period.

chanceRevision and chanceBug These two features provide the probability of
having a revision or a bug in a file in the future. These features mimic the award
winning BugCache approach (Kim et al. 2007), which proposes that more recently
fixed files are more vulnerable for bugs. We model this probability using the formula
1/2i, where i represents how far back (in months) the latest revision or bug occurred
from the prediction time period. If the latest revision or bug occurrence is far from
the prediction time period, then i is large and the overall probability of having a bug
(or revision) in the near future is low.

blockerFixes, criticalFixes, majorFixes, minorFixes, normalFixes
and trivialFixes These six features report the number of different types of
bugs fixed during training periods. The bugs are categorized according to their
severity such as blocker, critical, major, minor, normal and trivial. We can find
the severity information of fixed bugs from bugzilla database. If a revision has a
referenced or linked entry in the bugzilla database and the severity of that entry
is marked as one of the above categories then we consider that the revision is for a
bug fixing activity. Further, the bug-fixing revision date falls into the training periods
then we count as one bug has been fixed in the assigned category. Our intention of
introducing these features is to uncover any correlation between the severity and
defects.

enhancementFixes This feature counts the number of revisions made for en-
hancements requested during the training period of the models. In the bug cate-
gorization process, authors find that some requests are not for fixing bugs, but for
enhancements. Hence, we introduce the feature enhancementFixes that counts
such fixed enhancements.

blockerReported , criticalReported , majorReported , minorReported ,
normalReported and trivialReported These six features provide informa-
tion about the number of reported bugs in terms of severity. We introduce these
features as not all reported bugs during a training period may be fixed within that
period. Note that we consider the opening date and the reported dates are same. If

384 Empir Software Eng (2012) 17:348–389

an opening date falls into the training period then we count as one bug has been
reported in the assigned category.

enhancementReported This feature counts number of enhancements reported
during training periods. The reported is determined as above.

p1-fixes, p2-fixes, p3-fixes, p4-fixes and p5-fixes Each Bug report is
further categorized based on its priority such that the highest and the lowest priority
bugs are categorized as P1 and P5 respectively. The other priorities are fallen in
between P1 and P5. Theses five features describe the number of priority wise bugs
fixed during training periods. Bug fixing dates are determined as in the above cases.
If a bug-fixing date falls into the training periods then we count as one bug has been
fixed in the assigned category.

p1-reported, p2-reported, p3-reported, p4-reported and p5-reported
These five feature provide information about the number of bugs reported with
corresponding priority during training periods. The reported dates are determined
as in the above.

lineAddedI, lineDeletedI and totalLineOperationsI Theses three fea-
tures provide information about lines of code added, deleted, and total lines of
code operated (or changed) to fix bugs during training periods. If a revision has a
referenced entry or link in the bugzilla database and the corresponding bug report
is not marked as an enhancement but has a severity levels then we consider that
revision to be a big fixing activity. Furthermore, the information in the CVS log
allows us to extract how many lines of code where added and deleted for that
revision supplying the basis for lineAddedI and lineDeletedI. Adding these
two features results in totalLineOpertaionsI. These three variables capture
how much work (in terms of number of lines of code) is accomlished by the authors
to fix bugs.

lineOperationIRBugFixes This feature measures the average number of lines
of code changed to fix bugs during the training periods. Thus, this features captures
the size of the bugs fixed and provides any correlation between the average size of
fixed bugs and the defects. We can derive the feature lineOperationIRBugFixes
by dividing the total number of lines changed to fix bugs by the total number of bugs
fixed.

lineOperationIRTotalLines This feature describes the work effort by the
authors to fix bugs relative to the other work during the training periods. We already
computed the total number of lines changed (or operated) to fix bugs and other
activities such as enhancements. Hence, we can derive this feature by dividing the
total number of lines to fix bugs by the total number of lines changed for any other
activity.

lifeTimeBlocker, lifeTimeCritical, lifeTimeMajor, lifeTimeMinor,
lifeTimeNormal and lifeTimeTrivial These six feature describe about the
lifetime of different types of bugs fixed during training periods. Both Bugzilla and
CVS databases provide the information about opening and closing dates of the bugs.

Empir Software Eng (2012) 17:348–389 385

Further, Bugzilla provides the severity level of a bugs. Consequently, we can compute
the lifetimes of any type of bug by taking the difference between the closing and the
opening dates. Note that even when the opening dates lie outside the considered
training periods we use them to compute the bug lifetimes.

hasBug This is the target variable of some of our models. This variable describes
whether any kind of bug (blocking, critical, major, minor, normal, or trivial) has been
reported or not in target periods.

Appendix C: Dataset Format

This section describe the format of datasets used in the first experiment.
A dataset contains two parts, labeling and feature computation. The length of the

labellings period is usually one month and in this period, we record the number of
bugs reported—target variable—for each observed file. The length of the feature
computation period—training period—can be extended from one month to the
maximum length of the observed period and further, this period starts one month
before the labeling period and expands into past. In this period, we compute features
listed in Table 2 for each file, which we recorded the number of bugs reported during
the labeling period. The description of each feature can be found in the above section.
Following is the mathematical notion of the dataset:

Assume that the observed period is d months. YT = {yT,1, yT,2, ..., yT, j,, yT,s} is
a vector of dimension s (s is the number of observed files) and yT, j is the number
of bugs reported for file j at T, where 1 < T ≤ d. if Xt = { ft,1, ft,2, ft,i,, ft,n} is a
feature vector of dimension n and ft,i is a file feature i computed from the history
information at time t, where n ∈ N and 1 < t ≤ d − 1, t < T and s >>> n, then
constructed dataset is given by

∑T−1
t=x Xt, YT . By changing the x and T variables we

can generate different datasets.

References

Ancona D, Chong CL (1996) Entrainment: pace, cycle, and rhythm in organizational behavior. In:
Research in organizational behavior, vol 18. JAI Press, Greenwich, pp 251–284

Antoniol G, Ayari K, Di Penta M, Khomh F, Guéhéneuc YG (2008) Is it a bug or an enhancement?:
a text-based approach to classify change requests. In: Proceedings of the 2008 conference of the
Center for Advanced Studies on Collaborative Research (CASCON). ACM, New York, pp 304–
318

Bachmann A, Bernstein A (2009) Data retrieval, processing and linking for software process data
analysis. Tech. Rep. IFI-2009.0003, University of Zurich, Department of Informatics

Bernstein A, Ekanayake J, Pinzger M (2007) Improving defect prediction using temporal features
and non linear models. In: IWPSE ’07: ninth international workshop on principles of software
evolution, ACM, New York, pp 11–18. doi:10.1145/1294948.1294953

Bird C, Bachmann A, Aune E, Duffy J, Bernstein A, Filkov V, Devanbu P (2009) Fair and balanced?:
bias in bug-fix datasets. In: Proceedings of the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on the foundations of software
engineering (ESEC/FSE). ACM, New York, pp 121–130

Brooks FP, Phillips F (1995) The mythical man-month: essays on software engineering. Addison-
Wesley, Reading

http://doi.acm.org/10.1145/1294948.1294953

386 Empir Software Eng (2012) 17:348–389

Diehl S, Gall HC, Hassan AE (2009) Guest editors introduction: special issue on mining software
repositories. Empir Software Eng 14(3):257–261

Eaddy M, Zimmermann T, Sherwood KD, Garg V, Murphy GC, Nagappan N, Aho AV (2008)
Do crosscutting concerns cause defects? IEEE Trans Softw Eng 34(4):497–515

Ekanayake J, Tappolet J, Gall HC, Bernstein A (2011) Time variance and defect prediction in soft-
ware projects—additional figures. Tech. Rep. IFI-2011.0004, University of Zurich, Department
of Informatics

Fenton NE, Neil M (1999) A critique of software defect prediction models. IEEE Trans Softw Eng
25(5):675–689. doi:10.1109/32.815326

Graves TL, Karr AF, Marron JS, Siy H (2000) Predicting fault incidence using software change
history. IEEE Trans Softw Eng 26(7):653–661. doi:10.1109/32.859533

Hassan AE (2009) Predicting faults using the complexity of code changes. In: ICSE ’09: Proceed-
ings of the 31st international conference on software engineering. IEEE Computer Society,
Washington, DC, pp 78–88. doi:10.1109/ICSE.2009.5070510

Hassan AE, Holt RC (2005) The top ten list: dynamic fault prediction. In: ICSM ’05: Proceedings
of the 21st IEEE international conference on software maintenance. IEEE Computer Society,
Washington, DC, pp 263–272. doi:10.1109/ICSM.2005.91

Kagdi H, Collard ML, Maletic JI (2007) A survey and taxonomy of approaches for mining soft-
ware repositories in the context of software evolution. J Softw Maint Evol 19(2):77–131.
doi:10.1002/smr.344

Kenmei B, Antoniol G, Di Penta M (2008) Trend analysis and issue prediction in large-scale open
source systems. In: Proc 12th European conference on software maintenance and reengineer-
ing CSMR 2008. IEEE Computer Society, Los Alamitos, pp 73–82. http://ieeexplore.ieee.org/
lpdocs/epic03/wrapper.htm?arnumber=4493302

Khoshgoftaar TM, Allen EB, Goel N, Nandi A, McMullan J (1996) Detection of software modules
with high debug code churn in a very large legacy system. In: ISSRE ’96: Proceedings of the the
seventh international symposium on software reliability engineering. IEEE Computer Society,
Washington, DC, p 364

Kim S, Zimmermann T, Whitehead Jr EJ, Zeller A (2007) Predicting faults from cached history.
In: ICSE ’07: Proceedings of the 29th international conference on software engineering. IEEE
Computer Society, Washington, DC, pp 489–498. doi:10.1109/ICSE.2007.66

Knab P, Pinzger M, Bernstein A (2006) Predicting defect densities in source code files with decision
tree learners. In: MSR ’06: Proceedings of the 2006 international workshop on mining software
repositories. ACM, New York, pp 119–125. doi:10.1145/1137983.1138012

Ko AJ, Chilana PK (2010) How power users help and hinder open bug reporting. In: CHI ’10:
Proceedings of the 28th international conference on human factors in computing systems. ACM,
Atlanta, pp 1665–1674

Lessmann S, Baesens B, Mues C, Pietsch S (2008) Benchmarking classification models for software
defect prediction: a proposed framework and novel findings. IEEE Trans Softw Eng 34(4):485–
496. doi:10.1109/TSE.2008.35

Li PL, Herbsleb J, Shaw M (2005) Forecasting field defect rates using a combined time-based
and metrics-based approach: a case study of openbsd. In: ISSRE ’05: Proceedings of the 16th
IEEE international symposium on software reliability engineering. IEEE Computer Society,
Washington, DC, pp 193–202. doi:10.1109/ISSRE.2005.19

Mockus A, Votta LG (2000) Identifying reasons for software changes using historic databases. In:
ICSM ’00: Proceedings of the international conference on software maintenance (ICSM’00).
IEEE Computer Society, Washington, DC, p 120

Nagappan N, Ball T (2005) Static analysis tools as early indicators of pre-release defect density.
In: ICSE ’05: Proceedings of the 27th international conference on software engineering. ACM,
New York, NY, pp 580–586. doi:10.1145/1062455.1062558

Ostrand T, Weyuker E, Bell R (2005) Predicting the location and number of faults in large software
systems. IEEE Trans Softw Eng 31(4):340–355

Provost F, Fawcett T (2001) Robust classification for imprecise environments. Mach Learn
42(3):203–231

Quinlan JR (1993) C4.5: programs for machine learning. Morgan Kaufmann, San Mateo
Tsymbal A (2004) The problem of concept drift: definitions and related work. Tech. rep., Depart-

ment of Computer Science Trinity College
Vorburger P, Bernstein A (2006) Entropy-based concept shift detection. In: ICDM ’06: Proceedings

of the sixth international conference on data mining. IEEE Computer Society, Washington, DC,
pp 1113–1118. doi:10.1109/ICDM.2006.66

http://dx.doi.org/10.1109/32.815326
http://dx.doi.org/10.1109/32.859533
http://dx.doi.org/10.1109/ICSE.2009.5070510
http://dx.doi.org/10.1109/ICSM.2005.91
http://dx.doi.org/10.1002/smr.344
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4493302
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4493302
http://dx.doi.org/10.1109/ICSE.2007.66
http://doi.acm.org/10.1145/1137983.1138012
http://dx.doi.org/10.1109/TSE.2008.35
http://dx.doi.org/10.1109/ISSRE.2005.19
http://doi.acm.org/10.1145/1062455.1062558
http://dx.doi.org/10.1109/ICDM.2006.66

Empir Software Eng (2012) 17:348–389 387

Widmer G, Kubat M (1993) Effective learning in dynamic environments by explicit context tracking.
In: ECML ’93: Proceedings of the European conference on machine learning. Springer, London,
pp 227–243

Witten IH, Frank E (2005) Data mining: practical machine learning tools and techniques. Morgan
Kaufmann, San Mateo

Zimmermann T, Premraj R, Zeller A (2007) Predicting defects for eclipse. In: PROMISE ’07:
Proceedings of the third international workshop on predictor models in software engineering.
IEEE Computer Society, Washington, DC, p 9. doi:10.1109/PROMISE.2007.10

Jayalath Ekanayake received his BSc and MSc degrees from the University of Peradeniya,
Sri Lanka. He started his PhD at the University of Zurich in December 2006. His main research
interest is mining software repositories. Currently, he has been working as a junior lecturer in
computer science at the Sabaragamuwa University of Sri Lanka.

Jonas Tappolet is a PhD candidate at the University of Zurich. His research focuses on temporal
aspects of graph-based data in the Semantic Web and related fields. Before he started his PhD he
studied Business Information Systems at the University of Zurich. He worked in the industry as a
software developer for Norwel AG and as a project manager for SAP.

http://dx.doi.org/10.1109/PROMISE.2007.10

388 Empir Software Eng (2012) 17:348–389

Harald C. Gall received the MSc and PhD (Dr. techn.) degrees in informatics from the Technical
University of Vienna, Austria. He is a professor of software engineering in the Department of
Informatics at the University of Zurich, Switzerland. Prior to that, he was an associate professor
in the Distributed Systems Group at the Technical University of Vienna, Austria.

His research interests include software engineering and software analysis, focusing on software
evolution, software quality, software architecture, collaborative software engineering, and service-
centric software systems.

He is probably best known for his work on software evolution analysis and mining software
archives. Since 1997 he has worked on devising ways in which mining these repositories can help
to better understand software development, to devise predictions about quality attributes, and to
exploit this knowledge in software analysis tools such as Evolizer.

In 2005, he was the program chair of ESEC-FSE, the joint meeting of the European Software
Engineering Conference (ESEC), and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE). In 2006 and 2007 he co-chaired MSR, the International Workshop and
now Working Conference on Mining Software Repositories, the major forum for software evolution
analysis. He will be program co-chair of ICSE 2011, the International Conference on Software
Engineering, to be held on the tropical island of Oahu in Hawaii.

Since 2010 he is an Associate Editor of IEEE’s Transactions on Software Engineering.

Abraham Bernstein is a Full Professor of informatics at the University of Zurich, Switzerland.
His current research focuses on various aspects of the semantic web, knowledge discovery, service
discovery/matchmaking, and mobile/pervasive computing. His work is based on both social science
(organizational psychology/sociology/economics) and technical (computer science, artificial intelli-
gence) foundations. Mr. Bernstein is a Ph.D. from MIT, where he has played a key role in the
development of the Process Handbook (PH), which has been under development at the Center for
Coordination Science (CCS).

Empir Software Eng (2012) 17:348–389 389

Prior to joining the University of Zurich Mr. Bernstein was on the faculty at New York University.
He also worked for Union Bank of Switzerland, first as a research scientist at the corporate research
center for information technology (UBILAB) and then as a project manager for IT-projects, where
he worked on a variety of research issues such as HCI for complex tasks, document management,
workflow management and data warehousing. Mr. Bernstein also holds a Diploma in Computer
Science (comparable to a M.S.) from the Swiss Federal Institute in Zurich (ETH).

	Time variance and defect prediction in software projects
	Abstract
	Introduction
	General Overview of Experiments

	Related Work
	General Issues in Bug Prediction
	Different Approaches for Bug Prediction

	Experimental Setup
	The Data: CVS and Bugzilla for Eclipse, Netbeans, Mozilla, and Open Office
	The Data: Features
	Performance Measures

	Threats to Validity
	Determination of Authorship
	Creation-Time vs. Commit-Time
	Bug-Fixing or Enhancement? A Clear Case of Bias
	Choice of Time Frames
	Choice of Observed Periods of Projects

	Experiments: Change in Bug Prediction Quality
	Defect Prediction Quality Varies Over Time
	Finding Periods of Stability and Change
	Triangle Shapes are not Random Phenomena
	Finding Indicators for Prediction Quality Variability
	Author Fluctuation and Bug Fixing Activities

	Turning the Insights into Actionable Knowledge
	Discussion, Conclusions, and Future Work
	Component List
	Detailed Feature Description
	Dataset Format
	References

